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Chapter 1

Introduction

The goal of the Real-Time Specification for Java (RTSJ) is to support the use of
Java technology in embedded and realtime systems. It provides a specification for
refining the Java Language Specification and the Java Virtual Machine Specification
and for providing an extended Application Programming Interface that facilitates
the creation, verification, analysis, execution, and management of realtime Java
programs such as control and sensor applications.

The Java Virtual Machine and the Java Language were conceived as a portable en-
vironment for desktop and server applications. The emphasis has been on throughput
and responsiveness. These are characteristics obtainable with time-sharing systems.
For this conventional Java environment, it is more important that each task makes
progress, than that a particular task completes within a predefined time slot.

In a realtime system, the system tries to schedule the most critical task that is
ready to run first. This task runs either until it is finished, or it needs to wait for
some event or data, or a more critical task is released or a more critical task becomes
schedulable after waiting for its event or data.

Realtime scheduling is commonly done with a priority preemptive scheduler,
where tasks that have short deadlines are given higher priority than tasks that have
longer deadlines. The programmer is responsible for encoding some notion of task
importance to priorities. The goal is to see that all tasks finish within their deadlines.
Scheduling analysis, such as Rate Monotonic Analysis, can be used to help achieve
this goal.

Many realtime systems have nonrealtime components, so it is desirable to be able
to combine realtime and nonrealtime tasks in a single system. Realtime tasks are then
given preference over nonrealtime tasks. For Java, this means that realtime tasks
must be scheduled before threads with conventional Java priorities (1-10). Being
able to synchronize between tasks, both realtime and conventional Java threads,
imposes additional requirements.

Providing realtime semantics and the additional programming interfaces required



1 Introduction

is a core part of this specification. This led the original specification to provided
special memory areas to avoid the use of garbage collection; however, the availability
of various techniques for realtime garbage collection has changed the state of practice
since RTSJ Version 1.0. Though still part of the specification, these special memory
areas are no longer central to it. Realtime scheduling and priority inversion avoidance
for synchronization are the core of providing realtime response. These are provided
through refinements to the core Java semantics and with additional classes.

Realtime tasks can be modeled both with realtime threads and with event handlers.
Realtime threads are much the same as conventional Java threads except for how
they are scheduled. Event handlers encapsulate a bit of work that is done every time
some event occurs. Events are referred to as asynchronous because they generally
occur independent of program flow. Thus, a periodic timed event is considered to be
an asynchronous event, but scheduled periodically. Event handling provides a less
resource intensive means of writing control applications because the underlying thread
mechanism can be shared between event handlers. Deadline analysis is also somewhat
simpler because the end of the work to be done is well bounded. Event handling
is ideal for periodic tasks and responding to external impulses. The specification
provides both paradigms.

Though realtime is necessary for many control tasks, it is not sufficient. A
significant part of the RTSJ API addresses communication with the outside world
through devices and signals. This makes it possible to write control applications
without resorting to JNI, thereby maintaining the integrity and safety that Java
offers.

Since not all applications need all aspects of the specification, there are now
modules to suite the major application scenarios. This should make it easier for
conventional JVM providers to include basic specification facilities without negatively
impacting their core application domains, but still be compatible with hard realtime
implementations. The goal is to make the transition between conventional JVMs
and realtime JVMs easier.

1.1 Guiding Principles

Providing a coherent semantics and a set of programming interfaces requires some
guiding principles around which to organize the RTSJ. The following principles delimit
the scope of the RTSJ and its compatibility requirements with conventional Java.
They ensure that conventional Java code can be run with realtime Java code on a
single Java virtual machine.

2 RTSJ 2.0 (Draft 57)
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1.1.1 Applicability Across Java Environments

The RTSJ shall not include specifications that restrict its use to a particular Java
environment, such as a particular versions of the Java Development Kit, an Embedded
Java Application Environment, or a Java Edition, beyond the natural development
of the Java language.

1.1.2 Backward Compatibility

The RTSJ shall not prevent existing, properly written, conventional Java programs
from executing on implementations of the RTSJ.

1.1.3 Write Once, Run Anywhere

The RTSJ should recognize the importance of “Write Once, Run Anywhere”, but it
should also recognize the difficulty of achieving WORA for realtime programs and not
attempt to increase or maintain binary portability at the expense of predictability.
Hence, the goal should be “Write Once Carefully, Run Anywhere Conditionally”.

1.1.4 Current Practice vs. Advanced Features

The RTSJ should address current realtime system practice as well as allow future
implementations to include advanced features.

1.1.5 Predictable Execution

The RTSJ shall hold predictable execution as first priority in all trade-offs; this may
sometimes be at the expense of typical general-purpose computing performance
measures.

1.1.6 No Syntactic Extension

In order to facilitate the job of tool developers, and thus to increase the likelihood of
timely implementations, the RTSJ shall not introduce new keywords or make other
syntactic extensions to the Java language.

1.1.7 Allow Variation in Implementation Decisions

Implementations of the RTSJ may vary in a number of implementation decisions,
such as the use of efficient or inefficient algorithms, trade-offs between time and
space efficiency, inclusion of scheduling algorithms not required in the minimum

RTSJ 2.0 (Draft 57) 3
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implementation, and variation in code path length for the execution of byte codes.
The RTSJ should not mandate algorithms or specific time constants for such, but
require that the semantics of the implementation be met and where necessary put
limits on execution time complexity. The RTSJ offers implementers the flexibility to
create implementations suited to meet the requirements of their customers.

1.1.8 Interoperability

It should be possible to implement all aspects of the RTSJ on a conventional JVM
with the exception that realtime response and pointer assignment rules would not
necessarily be guaranteed. This should ease the transition between conventional and
realtime programming and aid functional testing on a conventional JVM. The API
should support modules for this as well.

1.2 Areas of Enhancement

Each guiding principle has had a direct effect on the development of the specification.
These pricples are reflected in the following aspects of the realtime refinements and ad-
ditional classes in the specification. Their enumeration should aid the understanding
of the rest of the specification.

1.2.1 Thread Scheduling and Dispatching

Portability dictates the specification of at least one standard realtime scheduler, but
in light of the significant diversity in scheduling and dispatching models and the
recognition that each model has wide applicability in the diverse realtime systems
industry, the specification provides an underlying scheduling infrastructure that can
be extended to use other algorithms for scheduling realtime Java threads and event
handlers.

To accommodate current practice, the RTSJ shall require a base scheduler in all
implementations. The required base scheduler will be familiar to realtime system
programmers. It is a priority preemptive, first-in-first-out, scheduler. Since most
realtime systems also support round-robin scheduling, a round-robin scheduler shall
also be supplied. For compatibility with conventional Java implementations, both
schedulers shall use priorities above the conventional Java priorities (1-10).

The specification is constructed to allow implementations to provide unanticipated
scheduling algorithms. Implementations will enable the programmatic assignment
of parameters appropriate for the underlying scheduling mechanism as well as
provide any necessary methods for the creation, management and termination of
realtime Java threads. In the current specification, any other thread, scheduling, and
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dispatching mechanism may be bound to an implementation; however, there should
be enough flexibility in the thread scheduling framework to enable future versions of
the specification to build on this release.

1.2.2 Memory Management

Automatic memory management is a particularly important feature of the Java
programming environment. The specification enables, as far as possible, the job of
memory management to be implemented automatically by the underlying system
and not intrude on the programming task. Many automatic memory management
algorithms, also known as garbage collection (GC), exist, and many of those apply
to certain classes of realtime programming styles and systems. In an attempt to
accommodate a diverse set of GC algorithms, the specification defines a memory
allocation and reclamation paradigm that
e is independent of any particular GC algorithm,
e requires the VM to precisely characterize its GC algorithm’s effect on the
preemption of realtime Java tasks, and
e enables the allocation and reclamation of objects outside of any interference by
any GC algorithm.

1.2.3 Synchronization and Resource Sharing

Logic often requires exclusive access to resources, and realtime systems introduce
an additional complexity: the need to minimize priority inversion and hence the
excessive delay of more critical tasks. The least intrusive specification for enabling
realtime safe synchronization is to require that implementations of the Java keyword
synchronized use one or more algorithms that prevent priority inversion among
realtime Java tasks that share the serialized resource. In addition, the specification
provides other data passing mechanisms to minimize the need for synchronization.

1.2.4 Asynchronous Event Handling

Realtime systems typically interact closely with the real world. With respect to
the execution of logic, the real world is asynchronous; therefore, the specification
includes efficient mechanisms for programming disciplines that would accommodate
this inherent asynchrony. The RTSJ has a general mechanism for asynchronous event
handling. This specification provides classes that represent things that can happen
and logic that executes when those things happen. The execution of the logic is
scheduled and dispatched by the RTSJ runtime.

RTSJ 2.0 (Draft 57) 5
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1.2.5 Task Interruption

Sometimes, the real world changes so drastically (and asynchronously) that the
current point of logic execution should be immediately, efficiently, and safely ended,
and control should be transferred to another point of execution. The RTSJ provides
a mechanism which extends Java’s interrupt and exception handling mechanisms to
enable applications to programmatically change the locus of control of another Java
task. This mechanism may restrict this asynchronous transfer of control to logic
specifically written with the assumption that its locus of control may asynchronously
change. Due to the inherent susceptibility to deadlock, the Thread.stop method
cannot be used for this.

1.2.6 Raw Memory Access

Accessing device memory is not in and of itself a realtime issue; however, many
realtime systems require it for providing realtime control of a system. This requires
an API providing programmers with byte-level access to physical device registers,
whether in main memory or in some I/O space. This API must be as efficient as
possible, since such access is often under tight time constraints.

1.2.7 Physical Memory Access

Some systems provide memory areas that differ in important aspects, such as time
to read or write data and its persistence. Being able to take advantage of these areas
can have an impact on performance. This specification enables their efficient use.

1.2.8 Modularization

Not all applications require all aspects of the specification. In fact, having a core set
of the APIs presented is useful for conventional Java programming and aids overall
interoperability. To this end, the specification provides a core set of APIs and a
few optional modules as well as semantics for use in conventional JVMs that do
not offer realtime guarantees. This should enable implementations to be optimized
for particular use cases and enable conventional Java environments to be used to
help develop code that can be more easily shared between realtime and conventional
systems.
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Chapter 2

Overview

The RTSJ comprises several areas of extended semantics. These areas are discussed
in approximate order of their relevance to realtime programming. The semantics
and mechanisms of each topic—threads and scheduling, synchronization, asynchrony;,
clocks and timers, memory management, device access and raw memory, system
options, and exceptions—are all crucial to the acceptance of the RTSJ as a viable real-
time development platform. Further details, exact requirements, class documentation,
and rationale for these extensions are given in subsequent chapters.

2.1 Threads and Scheduling

One of the concerns of realtime programming is to ensure the timely and predictable
execution of sequences of machine instructions. Various scheduling schemes name
these sequences of instructions differently, for example, thread, task, module, or
block. In Java, this computation is executed in the context of a thread. Since Java
threads were designed for fair execution' rather than predictable execution, the RTSJ
introduces the concept of a schedulable. These are the objects managed by the base
scheduler: RealtimeThread and its subclasses and AsyncBaseEventHandler and its
subclasses. RealtimeThread is a specialization of Java’s Thread.

Timely execution of schedulables means that the programmer can determine,
by analysis of the program, testing the program on particular implementations,
or both, whether particular threads will always complete execution before a given
timeliness constraint. This is the essence of realtime programming: the addition of
temporal constraints to the correctness conditions for computation. For example, for
a program to compute the sum of two numbers, it may no longer be acceptable to

!Actually, neither the Java Virtual Machine Specification[6] nor the Java Language
Specification[5] defines how Java threads should be scheduled, but most implementations, in-
cluding the reference implementations, use some sort of fair scheduling.
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compute only the correct arithmetic answer but the answer must be computed within
a particular time interval. Typically, temporal constraints are deadlines expressed in
either relative or absolute time.

The term scheduling (or scheduling algorithm) refers to the production of a
sequence (or ordering) for the execution of a set of schedulables (a schedule). This
schedule attempts to optimize a particular metric (a metric that measures how well
the system is meeting the temporal constraints). A feasibility analysis determines
if a schedule has an acceptable value for the metric. For example in hard realtime
systems, the typical metric is “number of missed deadlines” and the only acceptable
value for that metric is zero. So called soft realtime systems use other metrics, such
as mean tardiness, and may accept various values for the metric in use.

Many systems, including most conventional Java implementations, use thread
priority to guide the determination of a schedule. Priority is typically an integer
associated with a thread; these integers convey to the system the order in which the
threads should execute. The generalization of the concept of priority is execution
eligibility. The term dispatching refers to that portion of the system which selects
the thread with the highest execution eligibility from the pool of threads that are
ready to run.

In current realtime system practice, the assignment of priorities is typically under
programmer control as opposed to under system control. As a base scheduler for
realtime tasks, the RTSJ provides preemptive priority-based first-in-first-out (FIFO)
scheduler, which also leaves the assignment of priorities to programmer control. It
also provides a priority-based round-robin (RR) scheduler. Most realtime operating
systems (RTOS) are also based on priority preemptive scheduling and support both
FIFO and RR scheduling.

The RTSJ defines a number of classes with names of the form <string>Paramet-
ers such as ReleaseParameters, which provide parameters for resource management.
An instance of one of these parameter classes holds a particular resource-demand
characteristic for one or more schedulables. For example, the PriorityParameters
subclass of SchedulingParameters contains the execution eligibility metric of the
base scheduler, i.e., a priority. At some time (construction-time or later when the
parameters are replaced using setter methods), instances of parameter classes are
bound to a schedulable. The schedulable then assumes the characteristics of the
values in the parameter object. For example, a PriorityParameters instance with
its priority set to the value representing the highest priority available on a system is
bound to a schedulable, then that schedulable will assume the characteristic that it
will execute whenever it is ready in preference to all other schedulables (except, of
course, those also with the same priority).

The RTSJ provides implementers with the flexibility to install arbitrary scheduling
algorithms in an implementation of the specification. This is to support the widely
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varying requirements of the realtime systems industry with respect to scheduling.
Use of the Java platform may help produce code written once but able to be executed
on many different computing platforms. The RTSJ contributes to this goal, but the
rigors of realtime systems detract from it. The RTSJ’s rigorous specification of the
required priority scheduler is critical for portability of time-critical code, but the
RTSJ permits and supports platform-specific schedulers which are not necessarily
portable.

2.2 Synchronization

If the computation in each thread were independent of the computation in all other
threads, scheduling alone would be enough to ensure timeliness; however, this is
usually not the case. Threads often need to communicate with one another or share
data. Resources must be shared as well. Two threads cannot read different data from
the disk at the same time nor write data to a disk at the same time. They cannot
send a message to another machine at the same time. They cannot update the same
in-memory data at the same time. One thread may have to wait for another thread
to get the data it needs. Just as in a normal system, synchronization is required.
In a realtime system, this synchronization must not prevent other threads from
completing their tasks on time.

2.2.1 Priority Inversion

The additional concern for synchronization in a realtime system, as opposed to a
conventional system, is that blocking can cause the wrong thread to run first. A
high priority thread can be blocked by a low priority thread that is vying for the
same resource. A priority queue can be used to ensure that a highest priority thread
goes first, when more than one thread is waiting to enter a synchronized block, but
this is not always sufficient.

Consider a single processor system with three threads, t;, to, and t3, where t;
has the highest priority and ¢3 has the lowest priority. It is possible that t, can
prevent ¢; from running by preempting t3. This is called priority inversion. It occurs
when ¢, is blocked by attempting to acquire a lock that is held by thread t3 and t3
is preempted by t5. When 5 does run, it may prevent t3 from running indefinitely,
thereby keeping ¢, blocked past its deadline.

What is needed is a mechanism the ensure that, while ¢; is waiting on a resource
in use by t3, thread t3 runs before all threads with a priority less than that of ¢;.

RTSJ 2.0 (Draft 57) 9
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2.2.2 Priority Inversion Avoidance

Two of the most common mechanisms for avoiding priority inversion are priority
inheritance and priority ceiling emulation (a.k.a. highest locker protocol). Both
of these boost the priority of a thread holding the lock in order to prevent a
noncontending thread from transitively blocking a higher priority thread which is
waiting for the same lock. The difference is how high the priority is raised and when.
Both take effect when a thread is in a synchronized section of code.

The first mechanism is the default behavior for synchronized blocks and methods.
It applies to all code running within the implementation, not just to schedulables.
The priority inheritance protocol is a well-known algorithm in the realtime scheduling
literature and it has the following effect. When thread ¢; attempts to acquire a lock
that is held by a lower-priority thread t3, then t3’s priority is raised to that of t; as
long as t3 holds the lock (and recursively if ¢3 is itself waiting to acquire a lock held
by an even lower-priority thread).

The specification also provides a mechanism by which the programmer can override
the default system-wide policy, or control the policy to be used for a particular
monitor, provided that policy is supported by the implementation. The second
mechanism, priority ceiling emulation protocol, can be set using this mechanism. It
is also a well-known algorithm in the literature. The following three points provide a
somewhat simplified description of its effect.

1. A monitor is given a “priority ceiling" when it is created; the programmer
should choose at least the highest priority of any thread that could attempt to
enter the monitor.

2. As soon as a thread enters synchronized code, its (active) priority is raised to
the monitor’s ceiling priority. If, through programming error, a thread has a
higher base priority than the ceiling of the monitor it is attempting to enter,
then an exception is thrown.

3. On leaving the monitor, the thread has its active priority reset. In simple
cases it will set be to the thread’s previous active priority, but under some
circumstances (e.g. a dynamic change to the thread’s base priority while it was
in the monitor) a different value is possible.

In addition, threads and asynchronous event handlers waiting to acquire a resource
must be released from highest to lowest priority (in priority order). This applies to
processors as well as to synchronized blocks. If schedulables with the same priority
are possible under the active scheduling policy, such schedulables are awakened in
FIFO order. This is exemplified in the following scenarios.

1. Threads waiting to enter synchronized blocks are granted access to the syn-

chronized block in priority order.

2. A blocked thread that becomes ready to run is given access to a processor in
priority order.

10 RTSJ 2.0 (Draft 57)



Asynchrony 2.3

3. A thread whose priority is explicitly set by itself or another thread is given
access to a processor in priority order.

4. A thread that performs a yield will be given access to the processor after
waiting for threads of the same priority to be given a processor.

5. Threads that are preempted in favor of a thread with higher priority may
be given access to a processor at any time as determined by a particular
implementation. The implementation is required to provide documentation
stating exactly the algorithm used for granting such access.

In any case, there needs to be a fixed upper bound on the time required to enter

a synchronized block for an unlocked monitor.

2.2.3 Execution Eligibility

Since an implementation of the RTSJ may provide schedulers other than priority-based
schedulers, the notion of priority can be generalized to execution eligibility. Execution
eligibility defines a partial ordering over all tasks for determining which task should
run before which other tasks. Execution eligibility may be determined dynamically.
For example, earliest deadline first (EDF) scheduling determines execution eligibility
ordering by the order of the next deadlines for each of its tasks. The notion of
priority, as described above, can be generalized to execution eligibility to integrate
other schedulers into an RTSJ implementation.

2.2.4 Wait-Free Queues

While the RTSJ requires that the execution of schedulables which do not access
the heap must not be delayed by garbage collection on behalf of lower-priority
schedulables, an application can cause such a schedulable to wait for garbage collection
by synchronizing using an object shared with a heap-using thread or schedulable.
The RTSJ provides wait-free queue classes to provide protected, nonblocking, shared
access to objects accessed by both regular Java threads and schedulables, which do
not access the heap.

2.3 Asynchrony

Since a realtime system must be able to react to the outside world, the system needs
to be able to change its execution flow asynchronously to the current execution. All
external signals, whether interrupts, messages, or timed events, are asynchronous
with respect to ongoing computation. This means that computation must be both
startable and stoppable based on external stimuli.
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2.3.1 Asynchronous Events

Asynchronous event provide a means of starting computation based on external
stimuli. The asynchronous event facility is based on two classes: AsyncBaseEvent
and AsyncBaseEventHandler. An AsyncBaseEvent object represents something
that can happen, like a POSIX signal, a hardware interrupt, or a computed event
like an airplane entering a specified region. When one of these events occurs,
which is indicated by the fire() method being called, the associated instances of
AsyncBaseEventHandler are scheduled and the handleAsyncEvent () methods are
invoked, thus the required logic is performed. Also, methods on AsyncBaseEvent
are provided to manage the set of instances of AsyncBaseEventHandler associated
with the instance of AsyncBaseEvent.

An instance of an AsyncBaseEventHandler can be thought of as something sim-
ilar to a thread. When an event fires, the associated handlers are scheduled and the
handleAsyncEvent () methods are invoked. What distinguishes an AsyncBaseEvent-
Handler from a simple Runnable is that an AsyncBaseEventHandler has associated
instances of ReleaseParameters, SchedulingParameters and MemoryParameters
that control the actual execution of the handler once the associated AsyncBaseEvent
is fired. When an event is fired, the handlers are executed asynchronously, sched-
uled according to the associated ReleaseParameters and SchedulingParameters
objects, in a manner that looks like the handler has just been assigned to its own
thread. It is intended that the system can cope well with situations where there are
large numbers of instances of AsyncBaseEvent and AsyncBaseEventHandler (tens
of thousands), since the number of fired (in progress) handlers is expected to be
much smaller.

There are specialized forms of AsyncBaseEvent: AsyncEvent, AsyncLongEvent,
and AsyncObjectEvent for events that are stateless, carry a long payload, and
carry an Object payload, respectively. They are matched by specialized forms
of AsyncBaseEventHandler: AsyncEventHandler, AsyncLongEventHandler, and
AsyncObjectEventHandler. Most external events are stateless, but sometimes it is
helpful to be able to receive some information about the event or pass some data with
the event. The Long and Object variants enable this and the POSIXRealtimeSignal
takes advantage of it.

Another specialized form of an AsyncEvent is the Timer class, which represents
an event whose occurrence is driven by time. There are two forms of Timers: the
OneShotTimer and the PeriodicTimer. Instances of OneShotTimer fire once, at
the specified time. Periodic timers fire initially at the specified time, and then
periodically according to a specified interval.

Timers are driven by Clock objects. There is a special Clock object, Clock.
getRealtimeClock (), that represents the realtime clock. The Clock class may be
extended to represent other clocks, which the underlying system might make available
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(such as an execution-time clock of some granularity).

2.3.2 Asynchronous Transfer of Control

Many event-driven computer systems that tightly interact with external physical
systems (e.g., humans, machines, control processes, etc.) may require mode changes
in their computational behavior as a result of significant changes in the actual
real-world system. It simplifies the architecture of a system when a task can be
programmatically terminated when an external physical system change causes its
computation to be superfluous. Without this facility, a thread or set of threads
have to be coded so that their computational behavior anticipates all of the possible
transitions among possible states of the external system. When the external system
makes a state transition, the changes in computation behavior can be managed by
an oracle that terminates a set of threads required for the old state of the external
system, and invokes a new set of threads appropriate for the new state of the external
system. Since the possible state transitions of the external system are encoded only
in the oracle and not in each thread, the overall system design is simpler.

There is a second requirement for a mechanism to terminate some computation,
where a potentially unbounded computation needs to be done in a bounded period
of time. In this case, if that computation can be executed with an algorithm that
is iterative, and produces successively refined results, the system could abandon
the computation early and still have usable results. The RTSJ supports aborting a
computation by a signal from another thread or by the expiration of a timer with a
feature termed Asynchronous Transfer of Control (ATC).

An example of the second case is processing compressed video for a human
controller. The system knows that a new frame must be produced at a constant
update frequency. The cost of each iteration is highly variable and the minimum
required latency to terminate the computation and receive the last consistent result
is much less than the mean cost and bound of an iteration. Therefore, using ATC
for interrupting a computation to capture an intermediate result at the expiration of
a known time bound is a convenient programming style. Of course, there are other
kinds of programming tasks that may also benefit from ATC.

The RTSJ’s approach to ATC uses asynchronous interruptions and exceptions,
and is based on several guiding principles covering methodology, expressiveness,
semantics, and pragmatic concerns.

2.3.2.1 Methodological Principles

1. A method must explicitly indicate its susceptibility to ATC, i.e., it is asyn-
chronously interruptible. Since legacy code or library methods might have been
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written assuming no ATC, by default ATC must be turned off (more precisely,
must be deferred as long as control is in such code).

. Even if a method allows ATC, some code sections must be executed to comple-

tion and thus ATC is deferred in such sections. These ATC-deferred sections
are synchronized methods, static initializers, and synchronized statements.

. Code that responds to an ATC does not return to the point in the schedulable

where the ATC was triggered; that is, an ATC is an unconditional transfer of
control. Resumptive semantics, which returns control from the handler to the
point of interruption, are not needed since they can be achieved through other
mechanisms (in particular, an AsyncEventHandler).

2.3.2.2 Expressibility Principles

1. A mechanism is needed through which an ATC can be explicitly triggered in

a target schedulable. This triggering may be direct (from a source thread or
schedulable) or indirect (through an asynchronously interrupted exception).

. It must be possible to trigger an ATC based on any asynchronous event

including an external happening or an explicit event firing from another thread
or schedulable. In particular, it must be possible to base an ATC on a timer
going off.

. Through ATC it must be possible to abort a realtime thread but in a manner

that does not carry the dangers of the Thread class’s stop() and destroy()
methods.

2.3.2.3 Semantic Principles

14

1. When ATC is modeled by exception handling, there must be some way to

ensure that an asynchronous exception is only caught by the intended handler
and not, for example, by an all-purpose handler that happens to be on the
propagation path.

. Nested ATCs must work properly. For example, consider two, nested ATC-

based timers and assume that the outer timer has a shorter time-out than the
nested, inner timer. When the outer timer times out while control is in the
nested code of the inner timer, then the nested code must be aborted (as soon
as it is outside an ATC-deferred section), and control must then transfer to the
appropriate catch clause for the outer timer. An implementation that either
handles the outer time-out in the nested code, or that waits for the longer
(nested) timer, is incorrect.
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2.3.2.4 Pragmatic Principles

1. There should be straightforward programming idioms for common cases such
as timer handlers and realtime thread termination.

2. When code with a time-out completes before the timer’s expiration, the timer
needs to be automatically stopped and its resources returned to the system.

2.3.3 Asynchronous Realtime Thread Termination

A special case of stopping a particular computation is stopping a thread. Earlier
versions of the Java language supplied mechanisms for achieving these effects: in par-
ticular the methods stop() and destroy() in class Thread. However, since stop()
could leave shared objects in an inconsistent state, stop() has been deprecated. The
use of destroy() can lead to deadlock, e.g., when a thread is destroyed while it
is holding a lock, and although it was not deprecated until version 1.5 of the Java
specification, its usage has long been discouraged. A goal of the RTSJ was to meet the
requirements of asynchronous thread termination without introducing the dangers of
the stop() or destroy() methods.

The RTSJ accommodates safe asynchronous realtime thread termination through
a combination of the asynchronous event handling and the asynchronous transfer of
control mechanisms. To create such a set of realtime threads consider the following
steps:

1. make all of the application methods of the realtime thread asynchronously
interruptible;

2. create an oracle’ which monitors the external world by setting up an asyn-
chronous event with a number of asynchronous event handlers, which is fired
when an appropriate mode change;

3. have the handlers call interrupt () on each of the realtime threads affected
by the change; then

4. after the handlers call interrupt (), have them create a new set of realtime
threads appropriate to the current state of the external world.

The effect of the event is to cause each interruptible method to abort abnormally by
transferring control to the appropriate catch clause. Ultimately the run() method
of the realtime thread will complete normally.

This idiom provides a quick but orderly clean up and termination of the realtime
thread.

2Note, the oracle can comprise as many or as few asynchronous event handlers as appropriate.
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2.4 Clocks, Time, and Timers

Realtime systems require a high resolution notion of time. Both very small units
and very long periods of time must be uniformly representable, a range that is not
even representable with a long value. Furthermore, a time can represent an absolute
value, usually represented as some absolute fixed point in time plus an offset, or it
can represent an interval of time. The time classes defined in Chapter 9 support a
longs worth of seconds and another integer for nanoseconds.

2.5 Memory Management

The Java language is designed around automatic memory management, in particular
garbage collection. Unfortunately, though garbage collection is a functional safety and
security feature, conventional garbage collectors interrupt the normal flow of control
in a program. Therefore, garbage-collected memory heaps had been considered an
obstacle to realtime programming due to the potential for unpredictable latencies
introduced by the garbage collector. Though conventional collectors still have these
drawbacks, there are now realtime collectors that can be used for hard realtime
application. Still, the RTSJ provides an alternative to garbage collection for systems
which require it, either because they do not have a garbage collector or deterministic
garbage collector, or require heap partitioning for some other reason. Extensions
to the memory model, which support memory management in a manner that does
not interfere with the ability of realtime code to provide deterministic behavior,
are provided to support these alternatives. This goal is accomplished by providing
memory areas for the allocation of objects outside of the garbage-collected heap for
both short-lived and long-lived objects. In order to provide additional separation
between the garbage collector and schedulables which do not require its services, a
schedulable can be marked to indicate that it never accesses the heap.

2.5.1 Memory Areas

The RTSJ introduces the concept of a memory area. A memory area represents an
area of memory that may be used for allocating objects. Some memory areas exist
outside of the heap and place restrictions on what the system and garbage collector
may do with objects allocated within. Objects in some memory areas are never
garbage collected; however, the garbage collector must be capable of scanning these
memory areas for references to any object within the heap to preserve the integrity
of the heap.

There are four basic types of memory areas:
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1. Heap memory represents an area of memory that is the heap. The RTSJ does
not change the determinant of lifetime of objects on the heap. The lifetime is
still determined by visibility.

2. Immortal memory represents an area of memory containing objects that may
be referenced without exception or garbage collection delay by any schedul-
able, specifically including realtime threads and asynchronous event handlers
configured to not have access to the heap.

3. Scoped memory provides a mechanism for managing objects that have a lifetime
defined by their scope. It is akin to, but more general than, allocating objects
on the thread stack.

4. Physical memory allows objects to be created within specific physical memory
regions that have particular important characteristics, such as memory that
has substantially faster access.

2.5.2 Heap Memory

Heap memory is the memory area used by Java by default. It is garbage collected
and the access time to objects in this area are not guaranteed unless the implemen-
tation supports realtime garbage collection. The RTSJ, as with conventional Java,
supports only one Heap in a system. Multiple heaps are only practical in one of two
configurations: the heaps are completely independent of one another or there are
subsidiary heaps from which a program may not store references in the main heap.
In other words, the subsidiary heaps can reference the main heap but not vice versa.
Currently, the RTSJ does not address these cases.

2.5.3 Immortal Memory

ImmortalMemory is a memory resource shared among all schedulable objects and
threads in an application. Objects allocated in ImmortalMemory are always available
to extraheap threads and asynchronous event handlers without the possibility of a
delay for garbage collection.

2.5.4 Scoped Memory

The RTSJ introduces the concept of scoped memory. A memory scope is used to give
bounds to the lifetime of any objects allocated within it. When a scope is entered,
every use of new causes the memory to be allocated from the active memory scope.
A scope may be entered explicitly, or it can be attached to a schedulable which will
effectively enter the scope before it executes the object’s run() method.

The contents of a scoped memory are discarded when no object in the scope can
be accessed. This is done by a technique similar to reference counting the scope.
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A conforming implementation might maintain a count of the number of external
references to each memory area. The reference count for a ScopedMemory area would
be increased by entering a new scope through the enter () method of MemoryArea,
by the creation of a schedulable using the particular ScopedMemory area, or by the
opening of an inner scope. The reference count for a ScopedMemory area would be
decreased when returning from the enter () method, when the schedulable using the
ScopedMemory terminates, or when an inner scope returns from its enter () method.
When the count drops to zero, the finalize method for each object in the memory
would be executed to completion. Reuse of the scope is blocked until finalization is
complete.

Scopes may be nested. When a nested scope is entered, all subsequent allocations
are taken from the memory associated with the new scope. When the nested scope
is exited, the previous scope is restored and subsequent allocations are again taken
from that scope.

Because of the lifetimes of scoped objects, it is necessary to limit the references
to scoped objects, by means of a restricted set of assignment rules. A reference to a
scoped object cannot be assigned to a variable from an outer scope, or to a field of an
object in either the heap or the immortal area. A reference to a scoped object may
only be assigned into the same scope or into an inner scope. The virtual machine
must detect illegal assignment attempts and must throw an appropriate exception
when they occur.

For cases where the usage of memory does not follow a stack discipline, in
particular code that uses the producer-consumer pattern, a special variant of scoped
memory is provided. This variant PinnableMemory has the same semantics as
LTMemory except that a task can “pin” the memory, thereby keeping it open, even
when no task is in the area. One task can fill the memory, put a reference in its
portal, and then pass it on to another task to consume the data therein. Thus one
does not have to have a dummy task to hold a pinned area open while it is passed
from producer to consumer.

The flexibility provided in choice of scoped memory types enables the application
to use a memory area that has characteristics that are appropriate to a particular
syntactically defined region of the code.

2.5.5 Physical Memory Areas

In many cases, systems needing the predictable execution of the RTSJ will also need
to access various kinds of memory at particular addresses for performance or other
reasons. Consider a system in which very fast static RAM was programmatically
available. A design that could optimize performance might wish to place various
frequently used Java objects in the fast static RAM. The PhysicalMemoryRegion
and PhysicalMemoryFactory classes provide the programmer this flexibility. The
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programmer would construct a physical memory object on the memory addresses
occupied by the fast RAM.

2.5.6 Budgeted Allocation

The RTSJ also provides limited support for providing memory allocation budgets
for schedulables using memory areas. Maximum memory area consumption and
maximum allocation rates for individual schedulable objects may be specified when
they are created.

2.6 Device Access and Raw Memory

The RTSJ defines classes for programmers wishing to directly access physical memory
from code written in the Java language. The RawMemory<Size> types, where <Size>
is one of Byte, Short, Long, Float, or Double, define methods that enable the
programmer to construct an object that represents a vector of consecutive positions
in memory where the Size represents a primitive numerical data type, i.e., byte,
short, int, long, float, and double repectively. Access to the physical memory is then
accomplished through get<Size>() and set<Size>() methods of that object. No
semantics other than the set<Size>() and get<Size>() methods are implied. On
the other hand, the PhysicalMemoryRegion and PhysicalMemoryFactory classes
enable programmers to construct an object that represents a range of physical
memory addresses. When this object is used as a MemoryArea other objects can be
constructed in the physical memory using the new keyword as appropriate. Factories
can be used to create the desired type of both physical and raw memory.

2.6.1 Raw Memory Access

An instance of RawMemory models a range of physical memory locations as a fixed
sequence of elements of a given size. The elements correspond to Java primitive
types. For objects that access more than a single physical address, elements can be
accessed through offsets from the base, where the offset is measured in multiples of
the element size, not necessarily the byte offset in memory.

The RawMemory interface enables a realtime program to implement device drivers,
memory-mapped registers, I/O space mapped registers, flash memory, battery-backed
RAM, and similar low-level hardware.

A raw memory area cannot contain references to Java objects. Such a capability
would be unsafe (since it could be used to defeat Java’s type checking) and error
prone (since it is sensitive to the specific representational choices made by the Java
compiler).
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2.7 System Options

POSIX defines some convenient interfaces for interacting with the system. These
interactions include catching keyboard interrupts, user-to-process signaling, and
interprocess signaling. Many realtime operating systems support this POSIX signal
interface. For this reason, the RTSJ provides a POSIX signal interface. Though many
of the features POSIX signals provide are also available on most other operating
systems, the specification does not require the POSIX signal interface to be emulated
on these other platforms. Thus they are optional in the sense that they are only
required on systems that directly support POSIX signals.

2.8 Exceptions

Aside from several new exceptions, the RTSJ provides a new interface for using
exceptions without creating ephemeral objects and some new treatment of exceptions
surrounding asynchronous transfer of control.

Using exceptions is resource intensive, since a new exception is allocated for each
throw. This is particularly a problem for scoped memory, since scopes may need to
be sized much larger than otherwise necessary to hold exceptions and their stack
traces. Additionally, the information they contain cannot be propagated beyond the
scope in which they are allocated. To better support scoped, immortal, and physical
memory, a new class of throwable has been included: StaticThrowable. Exceptions
and Errors which implement this interface are not thrown in the usual manner, but
with a style that does not require memory to be allocated at all.

Asynchronous transfer of control can cause the exception that triggered it to be
propagated even when it is caught but the underlying interrupt is not cleared. The
system rethrows the exception once the catch is finished. This is necessary since
the Java exception hierarchy is poorly designed: there is no common base class for
checked exceptions, so application code often contains a catch for Exception when
only checked exceptions need to be caught. Even the JVM specification wording
is awkward on this point, where a checked exception is an exception that is not a
subclass of RuntimeException and an error is a throwable that is not a subclass of
Exception.

2.9 Summary

The RTSJ refines the semantics of threads, scheduling, synchronization, memory
management, and exceptions and adds features to support realtime threads, realtime
scheduling, configuring synchronization, handling asynchrony, representing time,
clocks and timers, additional methods for memory management, device access and
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raw memory, system options. These features and semantic refinements to the Java
language and virtual machine have been outlined above, but the description does not
constitute a definition for them. In other words, it is not normative. The normative
chapters follow.
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Chapter 3

General Requirements

The RTSJ is both an Application Programmer Interface (API) and a refinement of
the semantics of the Java virtual machine. Both aspects are necessary to produce
a programming environment conducive to programming realtime systems. Most
realtime systems require features that go beyond simply being able to react within a
defined time bounds, they must also respond to something and take action thereon.
Therefore, the ability to interact with the external environment is a necessary part
of a realtime specification.

There are many applications that can benefit from the API and semantic re-
finements of the Java runtime environment that have been described above. Not
every application requires all parts, so some flexibility of implementation is neces-
sary. Therefore the RTSJ is divided into a core package and three optional packages.
Furthermore, it also provides for different usage modes to support both development
and deployment.

Finally, the vast majority of realtime systems are also embedded systems. The
constraints of such system must also be considered. The specification begins with
the overall requirements of these concerns.

3.1 Definitions

Code — Program text written in the Java programming language.

Java Language — A programming language defined through the Java Community
Process.

Heap — An area of memory for allocating data structures (objects) defined by the
Java Language.

Extraheap Memory — An area of memory for allocating data structures (objects)
other than the heap defined by the Java Language.

Thread — An instance of the java.lang.Thread class.
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Realtime Thread — An instance of the javax.realtime.RealtimeThread class.
Java Thread — An instance of java.lang. Thread class, but does not extend the
javax.realtime.RealtimeThread class.

Heapless Realtime Thread — An instance of the javax.realtime.Realtime-
Thread class that must not access the heap.
Event Handler — An instance of the javax.realtime.AbstractAsyncEvent-

Handler class.

Schedulable — Any object that is of type Schedulable, and is recognized as a
dispatchable entity by the required schedulers. The required schedulers’ set of
schedulables comprises instances of RealtimeThread and AbstractAsyncEven-
tHandler. Other schedulers may support a different set of schedulables, but
this specification only defines the behavior of the required schedulers so the
term schedulable should be understood as “schedulable by the base scheduler.”

Task — Any object that represents computation, including schedulables and Java
threads.

Garbage Collection — A processes that reclaims memory on the heap that is no
longer reachable by the application program. It may be accomplished through
a dedicated set of threads or be distributed throughout the application.

3.2 Semantics

This specification is a contract between the specification implementer and the user
who writes a program to run on an implementation. To be able to support both
implementation and use, many chapters provide additional rationale to help both
the implementer and the user understand the intention behind the normative text.
The remainder of this specification, including this chapter, is normative, except for
the introductory text in each chapter and the sections named Rationale.

3.2.1 Base Requirements

The base requirements of this specification are as follows.

1. Except as specifically required by this specification, any implementation shall
fully conform to a Java platform configuration.

2. Any implementation of this specification shall implement all classes and methods
in the base module of this specification.

3. Except as noted in this chapter, all classes and methods in an implemented
module shall be implemented.

4. The javax.realtime package and its subpackages shall contain no public or
protected classes or methods not included in this specification.
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5. A realtime JVM implementation shall not be implemented in a way that permits
unbounded priority inversion in any scheduling interaction it implements.

6. All methods defined under javax.realtime can safely be used concurrently
by multiple threads unless otherwise documented.

7. Static final values, as found in AperiodicParameters, SporadicParameters,
RealtimeSystem, and PriorityScheduler, shall be implemented such that
their values cannot be resolved by a conformant Java compiler (Java source to
byte code).

Many aspects of this specification set a minimum requirement, but permit latitude
in its implementation. For instance, the required priority scheduler requires at least
28 consecutively numbered realtime priorities. It does not, however, specify the
numeric values of the maximum and minimum realtime priorities. Implementations
are encouraged to offer as many realtime priority levels immediately above the
conventional Java priorities as they can support.

Except where otherwise specified, when this specification requires object creation,
the object is created in the current allocation context.

3.2.2 Modules

The original RTSJ specification was conceived, with the exception of some optional
features, as a monolith specification. This has inhibited the adoption of the RTSJ
beyond the hard realtime community, because some of the features were considered
to have an overly negative impact on overall JVM performance. Version 2.0 addresses
this by breaking the specification into modules.

Modules provide a means of grouping related functionality together in a way
that promotes maximal adoption for various implementation classes. A conventional
JVM may simply implement the Core Module API, without providing any realtime
guarantees at all, thereby providing programmers with the benefits of features such
as asynchronous event programming as an alternative to conventional threading. A
hard realtime implementation could implement all modules to provide the maximal
flexibility and functionality to the realtime programmer. Both would benefit from
easier migration of code to realtime systems.

Every RTSJ implementation shall provide the Core Module functionality, but
all other modules are optional. The optional modules are the Device Module, the
Alternative Memory Areas Module and the POSIX Module. In addition, there are
a couple of optional features as well. This give the implementers some choice over
which modules and features to include and which not.
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3.2.2.1 Core Module

The Core Module adds the concepts of processor affinity, threads with realtime
schedulnig, and asynchronous event handling. This includes the notion of executing
code at a given time interval, providing a much more stable response than using
sleep in a loop. These features should have no impact on the overall performance
of a system that implements them, but enrich the programming modules available
to the programmer. The classes and interfaces required in this module are all in

package javax.realtime and are listed below.
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AbsoluteTime (Section 9.3.1.1)

ActiveEvent (Section 8.3.1.1)
ActiveEventDispatcher (Section 8.3.2.1)
Affinity (Section 6.3.3.1)
AffinityPermission (Section 14.2.2.1)
AperiodicParameters (Section 6.3.3.2)
AsyncBaseEvent (Section 8.3.2.2)
AsyncBaseEventHandler (Section 8.3.2.3)
AsyncEvent (Section 8.3.2.4)
AsyncEventHandler (Section 8.3.2.5)
AsyncLongEvent (Section 8.3.2.6)
AsyncLongEventHandler (Section 8.3.2.7)
AsyncObjectEvent (Section 8.3.2.8)
AsyncTimable (Section 10.3.1.1)
AsyncObjectEventHandler (Section 8.3.2.9)
BoundAsyncBaseEventHandler (Section 8.3.1.2)
BoundAsyncEventHandler (Section 8.3.2.11)
BoundAsyncLongEventHandler (Section 8.3.2.12)
BoundAsyncObjectEventHandler (Section 8.3.2.13)
BoundRealtimeExecutor (Section 6.3.1.1)
Clock (Section 10.3.2.1)

Chronograph (Section 10.3.1.2)
ConfigurationParameters (Section 5.3.2.1)
CoreMemoryPermission (Section 14.2.2.2)
FirstInFirstOutScheduler (Section 6.3.3.4)
GarbageCollector (Section 14.2.2.3)
HeapMemory (Section 11.3.2.1)
HighResolutionTime (Section 9.3.1.2)
ImmortalMemory (Section 11.3.2.2)
ImportanceParameters (Section 6.3.3.5)
Interruptible (Section 8.3.1.3)

MemoryArea (Section 11.3.2.3)
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All throwables defined in the RTSJ are also in the javax.realtime package:

MemoryParameters (Section 11.3.2.4)
MonitorControl (Section 7.3.1.1)
OneShotTimer (Section 10.3.2.2)
PeriodicParameters (Section 6.3.3.6)
PeriodicTimer (Section 10.3.2.3)
PhasingPolicy (Section 5.3.1.1)
PriorityCeilingEmulation (Section 7.3.1.2)
PriorityInheritance (Section 7.3.1.3)
PriorityParameters (Section 6.3.3.7)
PriorityScheduler (Section 6.3.3.8)
ProcessingGroup (Section 6.3.3.9)
QueueOverflowPolicy (Section 6.3.2.2)
RealtimeSecurity (Section B.2.2.24)
RealtimeSystem (Section 14.2.2.5)
RealtimeThread (Section 5.3.2.2)
RelativeTime (Section 9.3.1.3)
Releasable (Section 8.3.1.4)
ReleaseParameters (Section 6.3.3.10)
RoundRobinScheduler (Section 6.3.3.11)
RTSJModule (Section 14.2.1.1)
Schedulable (Section 6.3.1.3)
Scheduler (Section 6.3.3.12)
SchedulingParameters (Section 6.3.3.14)
SchedulingPermission (Section 14.2.2.6)
SizeEstimator (Section 11.3.2.6)
SporadicParameters (Section 6.3.3.15)
TaskPermission (Section 14.2.2.7)
Timable (Section 10.3.1.3)

Timed (Section 8.3.3.1)

TimeDispatcher (Section 10.3.2.4)
Timer (Section 10.3.2.5)
WaitFreeReadQueue (Section 7.3.1.4)
WaitFreeWriteQueue (Section 7.3.1.5)

AlignmentError (Section 15.2.2.1)
ArrivalTimeQueueOverflowException (Section 15.2.3.1)
CeilingViolationException (Section 15.2.3.3)
DeregistrationException (Section 15.2.3.5)
IllegalAssignmentError (Section 15.2.2.2)
InaccessibleAreaException (Section 15.2.3.9)
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LateStartException (Section 15.2.3.10)
MemoryAccessError (Section 15.2.2.3)
MemoryInUseException (Section 15.2.3.12)
MemoryScopeException (Section 15.2.3.13)
MemoryTypeConflictException (Section 15.2.3.14)
MITViolationException (Section 15.2.3.11)
OffsetOutOfBoundsException (Section 15.2.3.15)
POSIXException (Section 15.2.3.16)
POSIXInvalidSignalException (Section 15.2.3.17)
POSIXInvalidTargetException (Section 15.2.3.18)
POSIXSignalPermissionException (Section 15.2.3.19)
ProcessorAffinityException (Section 15.2.3.20)
RangeOutOfBoundsException (Section 15.2.3.21)
RegistrationException (Section 15.2.3.22)
ResourceLimitError (Section 15.2.2.4)
ScopedCycleException (Section 15.2.3.23)
StaticCheckedException (Section 15.2.3.25)
StaticError (Section 15.2.2.5)
StaticOutOfMemoryError (Section 15.2.2.6)
StaticRuntimeException (Section 15.2.3.26)
StaticThrowable (Section 15.2.1.1)
StaticThrowableStorage (Section 15.2.2.7)
SizeOutOfBoundsException (Section 15.2.3.24)
ThrowBoundaryError (Section 15.2.2.8)
UnsupportedPhysicalMemoryException (Section 15.2.3.28)
UnsupportedRawMemoryRegionException (Section 15.2.3.29)

3.2.2.2 Device Module

The Device Module provides a low level interface for interacting with the real world.
Though realtime control systems need this kind of interaction, other systems can
benefit from it as well. Data collection, that is not time critical, is a good example.
For instance, monitoring the temperature or humidity in a room could be done easily
with off-the-self hardware using this module. The classes required in this module are
all in the package javax.realtime.device and are listed below.

e Happening (Section 12.3.2.3)
HappeningDispatcher (Section 12.3.2.4)
HappeningPermission (Section 14.3.1.2)
InterruptServiceRoutine (Section 12.3.2.5)
DirectMemoryByteBuffer (Section 12.3.1.1)
DirectMemoryBufferFactory (Section 12.3.2.1)
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3.2.2.3 Alternative Memory Areas Module

DirectMemoryPermission (Section 14.3.1.1)
DirectMemoryRegion (Section 12.3.2.2)

RawMemory (Section 12.3.1.17)
RawMemoryFactory (Section 12.3.2.6)

RawMemoryPermission (Section 14.3.1.3)

RawMemoryRegion (Section 12.3.2.7)

RawMemoryRegionFactory (Section 12.3.1.18)

RawByte (Section 12.3.1.2)
RawByteReader (Section 12.3.1.3)
RawByteWriter (Section 12.3.1.4)
RawDouble (Section 12.3.1.5)
RawDoubleReader (Section 12.3.1.6)
RawDoubleWriter (Section 12.3.1.7)
RawFloat (Section 12.3.1.8)
RawFloatReader (Section 12.3.1.9)
RawFloatWriter (Section 12.3.1.10)
RawInt (Section 12.3.1.11)
RawIntReader (Section 12.3.1.12)
RawIntWriter (Section 12.3.1.13)
RawLong (Section 12.3.1.14)
RawLongReader (Section 12.3.1.15)
RawLongWriter (Section 12.3.1.16)
RawShort (Section 12.3.1.19)
RawShortReader (Section 12.3.1.20)
RawShortWriter (Section 12.3.1.21)

The Alternative Memory Areas Module provides an alternative to a single heap with
garbage collection model for memory management. Most of the facilities are centered
around providing an alternative to garbage collection, but facilities for providing
what memory to use for Java objects is also addressed. The classes required in this
module are all in package javax.realtime.memory and are listed below.

MemoryGroup (Section 11.4.3.2)
ScopedMemory (Section 11.4.3.8)

ScopedMemoryPermission (Section 14.4.1.2)

LTMemory (Section 11.4.3.1)
PinnableMemory (Section 11.4.3.6)
StackedMemory (Section 11.4.3.9)
ScopeParameters (Section 11.4.3.7)

PhysicalMemoryCharacteristic (Section 11.4.1.1)
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PhysicalMemoryFactory (Section 11.4.3.3)
PhysicalMemoryPermission (Section 14.4.1.1)
PhysicalMemoryRegion (Section 11.4.3.4)
PhysicalMemorySelector (Section 11.4.3.5)

3.2.3 POSIX module

The POSIX module provides access to functionality particular to POSIX systems.
In particular, it addresses POSIX signals and POSIX realtime signals. This module
is optional, but an implementation of this standard on a POSIX platform should
provide it. Implementations on platforms that are not POSIX compliant may provide
it. The classes in this module are in the package javax.realtime.posix and are
listed below.

e RealtimeSignal (Section 13.3.1.1)
RealtimeSignalDispatcher (Section 13.3.1.2)
Signal (Section 13.3.1.3)
SignalDispatcher (Section 13.3.1.4)
POSIXPermission (Section 14.5.1.1)

3.2.4 Optional Features

Even with modules, it is difficult to eliminate all optional features. These features
are either not easy to implement on all platforms or have the potential to cause
a significant performance overhead. Therefore, an application cannot depend on
them to be present in every implementation. However, if an optional facility is
implemented, the application may rely on it to behave as specified here. Those
extensions are illustrated in Table 3.1.

Table 3.1: RTSJ Options

Hard cost enforcement Provides an automatic means of controlling the
processor usage of a task or group of tasks.
Processing group deadline less | Enables the application to specify a processing

than period group deadline less than the processing group
period

Allocation-rate enforcement on | Enables the application to limit the rate at which

heap allocation a schedulable creates objects in the heap.

Interrupt service routine Provides first level interrupt processing in Java.

The ProcessingGroup class only intervenes in scheduling on systems that support
the hard cost enforcement option. The precision of intervention is limited by the
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precision of the clock being used to measure time times the number of CPUs involved
in the enforcement. When cost enforcement is supported, the precision of enforcement
is the drive precision of the clock being used. In any event, cost and deadline overrun
handlers are fired with the resolution specified for hard cost enforcement.

In implementations where processing group deadline less than period is not
supported, values passed to the constructor for ProcessingGroup and its setDead-
line method are constrained to be equal to the period. If the option is supported,
processing group deadlines less than the period shall be supported and function as
specified.

In implementations where heap allocation rate enforcement is supported, it shall
be implemented as specified. If heap allocation rate enforcement is not supported,
the allocation rate attribute of MemoryParameters shall be checked for validity but
otherwise ignored by the implementation.

First level interrupt handling can only be supported in certain contexts, such
as in kernel space and in a device driver context in user space on systems that
support this feature. Normally user space programs cannot handle interrupts di-
rectly. The class should be present in every system that implements the device
module, but in implementations that do not support first level interrupt handling,
the InterruptServiceRoutine.register should always throw an UnsupportedQOp-
erationkException.

Extensions to this specification are allowed, but shall not require changes to the
public interfaces defined in the javax.realtime package tree in particular and the
java and javax package trees in general.

3.2.5 Deprecated Classes

Classes and methods that have been deprecated as of this specification are not part of
any module, but may be implemented by a full RTSJ implementation. The following
classes are deprecated:
e DuplicateFilterException (Section B.2.3.2)
ImmortalPhysicalMemory (Section B.2.2.9)
LTMemory (Section B.2.2.10)
LTPhysicalMemory (Section B.2.2.11)
NoHeapRealtimeThread (Section B.2.2.14)
PhysicalMemoryManager (Section B.2.2.19)
PhysicalMemoryTypeFilter (Section B.2.1.1)
ProcessingGroupParameters (Section B.2.2.21)
POSIXSignalHandler (Section B.2.2.16)
RawMemoryAccess (Section B.2.2.22)
RawMemoryFloatAccess (Section B.2.2.23)
ScopedMemory (Section B.2.2.30)
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e UnknownHappeningException (Section B.2.3.5)
e VTMemory (Section B.2.2.34)
e VTPhysicalMemory (Section B.2.2.35)

They are documented fully in Chapter B.

3.2.6 Implementation types Allowed

As described in Section 3.2.2; the RTSJ now has modules. Every implementation,
except one supporting Safety Critical Java, must implement the Core module.
Each module provided by an implementation must be provided in full. None of the
classes of an unimplemented module should be present. Only an implementation
of this specification exclusively used for supporting Safety Critical Java may
subset classes and packages herein, but must implement the methods and classes
defined in that specification.

3.2.6.1 Realtime Deployment Implementation

A realtime deployment implementation must support all semantics described herein
necessary for deterministic programming. In addition to implementing the core
module, a realtime deployment implementation must have a realtime garbage collector
or implement the alternative memory areas module. All other modules are optional.

The minimum scheduling semantics that must be supported in all implementations
of the RTSJ are fixed-priority preemptive scheduling with support for at least 28
unique priority levels'. Fixed priority means that the system does not change the
priority of any Schedulable except, temporarily, for priority inversion avoidance.
Priority change is under control of the application.

What the RTSJ precludes by this statement is scheduling algorithms for realtime
priorities which change thread priorities according to policies for optimizing through-
put. An implementation may not increase the priority of a thread that has been
receiving few processor cycles because of higher priority threads (aging) or other
so-called fair scheduling algorithms. Fair scheduling operations are also prohibited.
These types of algorithms are reserved for conventional Java thread priorities. This
does not prohibit an application from implementing other realtime schedulers, such
as earliest deadline first, which use underlying OS priorities to support an application
meeting its deadlines.

The 28 priority levels are required to be unique to preclude implementations from
using fewer priority levels of underlying systems to implement the required 28 by
simplistic algorithms (such as lumping four RTSJ priorities into seven buckets for an
underlying system that only supports seven priority levels). It is sufficient for systems

IThis does not mean that each deployment must have all 28 priorities active
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with fewer than 28 priority levels to use more sophisticated algorithms to implement
the required 28 unique levels as long as Schedulable behave as though there were
at least 28 unique levels. (e.g. if there were 28 RealtimeThreads (1, ..., t25) with
priorities (py, ..., p2g), respectively, where the value of p; was the highest priority and
the value of p, the next highest priority, etc., then for all executions of threads t;
through tog thread t; would always execute in preference to threads to, ..., t9s and
thread ¢t would always execute in preference to threads ts, ..., tss, etc.)

The minimum synchronization semantics that must be supported in all deployment
implementations of the RTSJ are detailed in the section on synchronization below
and repeated here. All deployment implementations of the RTSJ must provide an
implementation of the synchronized primitive with default behavior that ensures
that there is no unbounded priority inversion. Furthermore, this must apply to code
if it is run within the implementation as well as to schedulables. Both the priority
inheritance and the priority ceiling emulation protocols must be implemented, but
priority inheritance is the default.

All instances of Schedulable waiting to acquire a resource must be queued in
priority order. This applies to the processor as well as to synchronized blocks. When
schedulables with the same exact priority are possible under the active scheduling
policy, schedulables with the same priority are queued in FIFO order. Note that
these requirements apply only to the required scheduling policy and hence use the
specific term "priority". In particular,

1. schedulables waiting to enter synchronized blocks are granted access to the
synchronized block in priority order;

2. a blocked schedulable that becomes ready to run is given access to the processor
in priority order;

3. a schedulable whose execution eligibility is explicitly set by itself or another
schedulable is given access to the processor in priority order;

4. a schedulable that performs a yield() will be given access to the processor
after all other schedulables waiting at the same priority;

5. however, schedulables that are preempted in favor of a schedulable with higher
priority may be given access to the processor at any time as determined
by a particular implementation. The implementation is required to provide
documentation stating exactly the algorithm used for granting such access.

Other realtime schedulers must provide and document similar algorithms to expe-
dited schedulables with higher execution eligibility over those with lower execution
eligibility.

The RTSJ does not require any particular garbage collection algorithm; however,
every deployment implementation must either implement the alternate memory
area module or have a realtime garbage collection. In the later case, the realtime
limitations must be documented. All implementations of the RTSJ must support the
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class GarbageCollector and implement all of its methods.

Notwithstanding the above, a program that uses the RTSJ and is deployed as
an executable, so that it does not provide general access to the virtual machine,
but solely runs that program code, need only include the RTSJ methods and classes
needed by the application.

3.2.6.2 Simulation Implementation

An implementation that chooses not to provide realtime guarantees, is termed a
simulation implementation. Such an implementation does not need to provide the
realtime characteristic described above, but does need to at least provide all the
APIs of the core module. A simulation implementation can be a production system,
but not for realtime applications. This enables a conventional JVM to make the base
APIs available to a wider audience without changing its performance characteristics.

The following semantics are optional for an RTSJ implementation designed and
licensed exclusively as a development tool.

1. The priority scheduler need not support fixed-priority preemptive scheduling or
the priority inversion avoidance algorithms. This does not excuse an implemen-
tation from fully supporting the relevant APIs. It only reduces the required
behavior of the underlying scheduler to the level of the scheduler in the Java
specification extended to at least 28 priorities.

2. No semantics constraining timing beyond the requirements of the Java spec-
ifications need be supported. Specifically, garbage collection may delay any
thread without bound and any delay in delivering asynchronously interrupted
exceptions (AIE) is permissible including never delivering the exception. Note,
however, that if any AIE other than the generic AIE is delivered, it shall
meet the AIE semantics, and all heap-memory-related semantics other than
preemption remain fully in effect. Further, relaxed timing does not imply
relaxed sequencing. For instance, semantics for scoped memory shall be fully
implemented.

3. The RTSJ semantics that alter standard Java method behavior, such as the
modified semantics for Thread.setPriority and Thread.interrupt, are not
required for a development tool, but such deviations from the RTSJ shall be
documented, and the implementation shall be able to generate a runtime
warning each time one of these methods deviates from standard RTSJ behavior.

These relaxed requirements set a floor for RTSJ development system tool imple-
mentations. A development tool may choose to implement semantics that are not
required.
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3.3 Required Documentation

In order to properly engineer a realtime system, an understanding of the cost
associated with any arbitrary code segment is required. This is especially important
for operations that are performed by the runtime system, largely hidden from the
programmer. An example of this is the maximum expected latency before the garbage
collector can be interrupted.

The RTSJ does not require specific performance or latency numbers to be matched.
Rather, to be conformant to this specification, an implementation must provide
documentation regarding the expected behavior of particular mechanisms. The
mechanisms requiring such documentation, and the specific data to be provided, will
be detailed in the class and method definitions.

Each implementation of the RTSJ is required to provide documentation for several
behaviors.

1. If schedulers other than the required first-in-first-out (FIFO) and round robin
(RR) schedulers are available to applications, the behavior of these schedulers
and their interaction with each other and the required schedulers as detailed
in Chapter 6, Scheduling, shall be documented.

(a) The documentation must define how its order of execution eligibility
relates to that of the priority schedulers, where the order of execution
eligibility of a priority scheduler is the priority order.

(b) The list of classes whose instances constitute schedulables for the scheduler,
unless that list is the same as the list of schedulables for the required
schedulers, shall be included.

(c) If there are restrictions on use of the scheduler from a nonheap context,
such restrictions shall be documented as well.

2. A scheduler that cannot place a schedulable at the front of the queue for its
active priority when it is preempted by a higher-priority schedulable must
document such a deviation from the specification.

3. An implementation is required to document the granularity at which the current
CPU consumption is updated for cost monitoring and cost enforcement, when
the later is implemented.

4. The implementation shall fully document the behavior of any subclasses of
GarbageCollector.

5. An implementation that provides any MonitorControl subclasses not detailed
in this specification shall document their effects, particularly with respect to
priority inversion control and which (if any) schedulers fail to support the new
policy.

6. If on losing “boosted” priority due to a priority inversion avoidance algorithm,
the schedulable is not placed at the front of its new queue, the implementation
shall document the queuing behavior.
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7.

10.

11.

12.

13.

14.
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For any available scheduler other than the required schedulers, an implementa-
tion shall document how, if at all, the semantics of synchronization differ from
the rules defined for the default PriorityInheritance monitor control policy.

(a) It shall supply documentation for the behavior of the new scheduler with
priority inheritance (and, if it is supported, priority ceiling emulation
protocol) equivalent to the semantics for the base priority scheduler found
in the Synchronization chapter.

(b) If there are restrictions on use of the scheduler from an extraheap context,
the documentation shall detail the effect of these restrictions for each
RTSJ APL

The worst-case response interval from the firing of an AsyncEvent, due to a
bound happening, to releasing an associated AsyncEventHandler, assuming
no higher-priority schedulables are runnable, shall be documented for at least
one reference architecture.

The interval between firing an AsynchronouslyInterruptedException at an
ATC-enabled thread and first delivery of that exception (assuming no higher-
priority schedulables are runnable) shall be documented for at least one reference
architecture.

If cost enforcement is supported and the implementation assigns the cost of
running finalizers for objects in scoped memory to any schedulable other than
the one that caused the scope’s reference count to drop to zero by leaving the
scope, the rules for assigning the cost shall be documented.

If hard cost enforcement is supported and enforcement (blocked-by-cost-overrun)
can be delayed beyond the enforcement time granularity, the maximum such
delay shall be documented.

If the implementation of RealtimeSecurity is more restrictive than the re-
quired implementation, or has run-time configuration options, those features
shall be documented.

For each supported clock, the documentation shall specify whether the res-
olution is settable, and if it is settable the documentation shall indicate the
supported values.

If an implementation includes any clocks other than the required realtime clock,
their documentation shall indicate in what contexts those clocks can be used.
If they cannot be used in extraheap context, the documentation shall detail the
consequences of passing the clock, or a time that uses the clock to a heapless
schedulable.
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3.4 Rationale

The embedded market, especially for safety critical applications, is quite sensitive
to including code that is not needed by an application. Furthermore, different
application domains have differing needs on API. Flexibility is needed to ensure that
these diverse domains and requirements are met. Still, it is important to ensure
that when a given function is needed, it is included as defined herein. It is also
important that an open virtual machine deployment has a well-defined API set. This
has required moving a few classes into a new package, so that the resulting modules
will be consistent with the rules imposed by the JSR 376, the Java Platform Module
System. The above modules and deployment rules provide both this flexibility and
standardization.
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Chapter 4

Realtime vs Conventional Java

Though compatibility with conventional Java (i.e., any Java runtime environments
that implement the Java Virtual Machine Specification and the Java Language
Specification but not the RTSJ) is the first concern of this specification, there are
several cases where being able to meet realtime constraints requires a tightening of
the semantics of the virtual machine and some subtle changes to the semantics of two
key classes: java.lang.Thread and java.lang.ThreadGroup. These constraints
and changes place additional requirements on scheduling, the memory model, and
memory management. The specification additionally defines both an extension to
thread for realtime scheduling and a new type of concurrent activity called an event
handler; hence, the meaning of current thread has a different interpretation than in
conventional Java. The term task is used when referring to any of these three types:
conventional Java thread, realtime thread, and event handler.
Behaviors that may be different from conventional Java or may be surprising
to developers of conventional Java applications under the RTSJ can be divided into
three categories. The first category applies to conventional Java code that was not
developed with the RTSJ in mind and does not use RTSJ features but runs under an
RTSJ implementation. The second is conventional Java code that was not developed
with the RTSJ in mind but is called by code developed for the RTSJ in an RTSJ
implementation. The final category is Java code that was developed for the RTSJ
and is being used in an RTSJ implementation.
The first category, conventional Java code running on an RTSJ implementation
but not using any RTSJ features, may encounter the following behaviors that are not
(necessarily) experienced under a conventional Java VM.
e Any object allocated in a static initializer that later becomes garbage may be
unable to be collected by the VM. (See Section 11.2.6.)

e Some Throwables, in particular those implementing StaticThrowable, which
includes StaticOutOfMemoryError, thrown by an RTSJ VM in preference to
OutOfMemoryError, have stack trace and message information which is valid
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only while the Throwable is in flight and in the thread which originally threw
the Throwable. (See Section 15.1.)

The second category, conventional Java code that is running on an RTSJ imple-
mentation and in use by code that was developed for the RTSJ, may encounter the
following differences in behavior.

IllegalAssignmentError may be thrown in non RTSJ-aware classes when
the Alternative Memory Management module (Chapter 11) is in use. (See
Section 11.2.7.)

Tasks in an RTSJ application might not be scheduled by a fair scheduler. The
result is that there may be thread starvation unexpected by conventional Java
applications. (See Section 6.2.1.)

A call to Thread.getPriority() may return a priority higher than
Thread.MAX_PRIORITY. (See Section 6.3.3.8.2.)

Methods cannot rely on any thread local information when used in conjunction
with asynchronous event handlers. This includes thread local data and calls
to Thread. currentThread (). Hence, care must be taken when using thread
identifiers to determine the identity of callers. (This is analogous to the use of
ThreadPool in conventional Java.) (See Sections 8.2.1 and 8.3.2.5.)

The third and final category comprises behaviors exhibited by code designed for
the RTSJ running on an RTSJ implementation that are departures from conventional
Java semantics or may be otherwise surprising.

Finally clauses in asynchronously interruptible methods are not executed
during propagation of an AsynchronouslyInterruptedException. However,
synchronized code is always ATC-deferred, and therefore monitor locks are
released normally. (See Section 8.2.4.)

Catch clauses that name AsynchronouslyInterruptedException (or its par-
ent classes) will not automatically stop the propagation of AIEs. An Asynchron-
ouslyInterruptedException must be explicitly cleared. (See Section 8.2.4.)
Exceptions propagating into asynchronously interruptible regions of code will
be lost if an AsynchronouslyInterruptibleException is pending. (See Sec-
tion 8.2.4.)

Subclasses of AsynchronouslyInterruptibleException indicated in the sig-
nature of a method do not indicate that the method is asynchronously inter-
ruptible. (See Section 8.2.4.)

Catch clauses for AsynchronouslyInterruptibleException or its subclasses
in asynchronously interruptible methods will not catch an AIE. (See Sec-
tion 8.2.4.)

A Throwable crossing a MemoryArea boundary might be transformed into
a ThrowBoundaryError, and the original exception may be lost. (See Sec-
tion 15.2.2.8 and the enter family of methods on MemoryArea.)
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4.1 Definitions

Conventional Java — The language and runtime as defined by the “Java Language
Specification[5]” and “Java Virtual Machine Specification[6],” without any
realtime extensions.

Realtime Java — Conventional Java extended and refined according to this speci-
fication for programming realtime systems.

Fair Scheduling — A method of nonrealtime scheduling which tries to ensure that
all tasks get a chance to run, thus preventing starvation. Tasks with a higher
priority get a notionally larger share of execution time than lower priority tasks.
Tasks running at the same priority get notionally equal shares of the processor.

Happens-Before — The “Java Language Specification[5]” specifies the happens-
before relationship as “If one action happens-before another, then the first
is visible to and ordered before the second.” See the specification for the
implications of this relationship.

Priority — An indication of the relative scheduling eligibility of a task. A task
with a higher priority is scheduled before a task with a lower priority. The
priority assigned to a task is not necessarily the one used for scheduling, since
priority avoidance and cost enforcement mechanisms may transiently override
it. See Base Priority in Section 6.1 and Active Priority in Section 7.1.

Task — A conventional Java thread or an RTSJ Schedulable.

4.2 Semantics

The refinements and changes to the semantics of the Java runtime environment
and classes shall not affect the functional correctness of Java code written for a
conventional Java implementation when running on a Java runtime environment
which implements this specification. There may be changes in the relative timing
of threads, but these should not violate the conventional Java specifications. The
use of some RTSJ features with code written for a conventional Java implementation
may, however, cause unexpected behaviors. This is particularly true when using
alternate memory areas, asynchronous transfer of control, and thread local memory
in conjunction with unbound asynchronous event handlers.

4.2.1 Scheduling

How tasks are scheduled in a realtime system is quite different from what one expects
in a conventional Java virtual machine. For compatibility, this means that there
must be a domain where conventional Java threads are scheduled in a familiar way
and another domain that supports realtime scheduling. This separation is done in
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part via task priority.

Tasks running with the conventional ten priorities defined in Java should be
scheduled as expected. Unfortunately, in order to ease the porting of Java to different
environments, the scheduling of conventional Java threads is underspecified in [5].
This has been resolved in practice to avoid surprising the programmer by providing
some sort of fair scheduling for these threads, i.e, scheduling that at least prevents
task starvation, but may also try to balance CPU availability across threads. For
tasks running in these priorities, an implementation of this specification shall provide
some notion of fair scheduling between tasks with priority between one and ten
inclusive.

Realtime threads and event handlers need a stronger notion of prioritization
than conventional Java threads, so this specification requires the implementation of
two priority-preemptive schedulers, one with run to completion (or next suspension
point) and one with round-robin semantics. Priorities above the conventional ten
priorities are used for these schedulers, and the interactions of the two schedulers are
well-defined. Multithreaded code that runs with the priority-preemptive scheduler
(or any other realtime scheduler) is more prone to deadlock or starvation than code
run with fair scheduling. The changes to Thread and ThreadGroup are to support
this realtime scheduling.

1. The semantics of set and get methods for priority in Thread differ for realtime

threads.

2. The ThreadGroup class’s behavior differs with respect to realtime threads.

3. The behavior of the ThreadGroup-related methods in Thread differ when they

are applied to realtime threads.
Code running at realtime priorities can also starve tasks scheduled on the conventional
Java scheduler, possibly indefinitely.

4.2.1.1 Priority

The methods setPriority and getPriority in java.lang.Thread are final.
The realtime thread classes are consequently not able to override them and mod-
ify their behavior to suit the requirements of the RTSJ scheduler. To bring the
java.lang.Thread class in line with its realtime subclasses, the semantics of the
getPriority and setPriority methods must be modified.

4.2.1.1.1 Setting Priority

The setPriority method has the following additional requirements.

1. Use of Thread.setPriority() shall not affect the correctness of the priority
inversion avoidance algorithms controlled by PriorityCeilingEmulation and
PriorityInheritance. Changes to the base priority of a realtime thread as

42 RTSJ 2.0 (Draft 57)



Semantics 4.2

a result of invoking Thread.setPriority() are governed by semantics from
Chapter 7 on Synchronization.

2. Conventional Java threads may not use setPriority to apply the expanded
range of priorities defined by this specification.

3. When setPriority is called on a realtime thread, that thread’s Scheduling-
Parameters are set to null and the thread is scheduled as if it were a Java
thread.

4.2.1.1.2 Getting Priority

The getPriority method has the following additional requirements.

1. When called on a conventional Java thread, its assigned priority is returned
even if it has a higher priority than what would be allowed by conventional Java.
It may be higher only when set with an instance of SchedulingParameters
through a scheduler.

2. When called on a realtime thread with null SchedulingParameters, a value
in the conventional Java priority range is returned.

3. When called on a realtime thread (t) with PriorityParameters, getPriority
behaves effectively as if it included the following code snippet:

1 ((PriorityParameters)t.getSchedulingParameters()) .getPriority
ON

4. When the scheduling parameters are of a type other than PriorityParameters,
a ClassCastException is thrown.

All supported monitor control policies must apply to Java threads as well as to all
schedulables.

4.2.1.2 Thread Groups

Conventional Java provides thread groups as a means of managing groups of threads.
Since the RTSJ provides additional classes for encapsulating control flow under the
umbrella of Schedulable, it makes sense to have facilities for managing groups
of these as well. The RTSJ provides an extension of ThreadGroup for this called
SchedulingGroup.

Every instance of ThreadGroup holds a reference to every member thread and
every subgroup instance of ThreadGroup, as well as a reference to its parent group.
This is problematic under the RTSJ, since realtime threads may be allocated in scoped
memory. Rather than making complicated changes to the semantics of ThreadGroup
(and, in particular, its enumerate methods), the RTSJ requires that no ThreadGroup
or Java thread is allocated in scoped memory, and that no thread allocated in
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ScopedMemory is referenced by a ThreadGroup. Instances of SchedulingGroup are
instead used for these purposes, and an alternative to enumerate is provided on
SchedulingGroup in the form of a visitor.

Scheduling groups, i.e., instances of SchedulingGroup (a subclass of Thread-
Group, are designed to be able to reference threads, schedulables, and other scheduling
groups, even when they are in scoped memory. These are only reachable using a
visitor with a lambda expression. Consequently schedulables and scheduling groups
are not part of any thread group and will hold a scheduling group reference as their
parent thread group. This requires that the thread group of the main thread is also
a schedulable group, so that schedulables and schedule groups can be created from
the main thread.

In order for this to work in a transparent manner, the following rules must hold.

1.

44

An instance of ThreadGroup that is not an instance of SchedulingGroup

cannot contain any instances of Schedulable.

In an RTSJ implementation, both the ThreadGroup at the root of the Thread-
Group hierarchy and the ThreadGroup to which the initial thread belongs

must be instances of SchedulingGroup.

Calls to SchedulingGroup.enumerate (Thread[]) and SchedulingGroup.enu-
merate(Thread[], boolean) only return Java threads.

Calls to SchedulingGroup.enumerate(ThreadGroup[]) and Scheduling-
Group.enumerate (ThreadGroup[], boolean) only return threads groups and

scheduling groups allocated in heap and immortal memory.

A Java thread (not a realtime thread) that is created from a realtime thread or

bound asynchronous event handler without an explicit thread group and that

is not assigned a thread group by the security manager, inherits the scheduling

group of its creator, when that group is allocated in heap or immortal memory;

otherwise an I1legalAssignmentError is thrown.

The thread group of a Java thread that is created from an unbound asyn-

chronous event handler without an explicit thread group and that is not assigned

a thread group by the security manager, is assigned to the scheduling group of

the handler’s dispatcher, when that dispatcher’s scheduling group is allocated in

heap or immortal memory; otherwise an I1legalAssignmentError is thrown.

A thread group cannot be created in scoped memory. The constructor shall

throw an IllegalAssignmentError.

Setting a maximum priority on a scheduling group, either explicitly or via its

parent with a thread group specific method, has no influence on the schedulables

in that group.

Except as specified previously, realtime threads and bound asynchronous event

handlers have the same ThreadGroup membership rules as their parent Thread

class.
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4.2.1.3 Current Thread

In Java, the currently executing thread can always be determined by calling the static
method Thread.currentThread(). In the RTSJ, there are two types of schedulable
entities: threads and asynchronous event handlers. The latter may be mapped
dynamically by the realtime Java virtual machine onto the underlying thread model.
The method Thread.currentThread (), when called from an unbound asynchronous
event handler, will return the thread that is being used as the current execution
engine for that event handler. The program should not rely on this being constant
for the lifetime of the program. It can rely on it being constant for the current release
of the handler (see 6.1 for the definition of a release). It is not recommended that
the program perform any operations on this underlying thread as it may have an
impact beyond that of the current event handler. This also means that thread local
memory cannot be relied on when used with unbound event handlers, because data
saved in one release may not be available in the next release.

4.2.2 InterruptedException

The specification extends the use of the InterruptedException to support asyn-
chronous transfer of control.

The interruptible methods in the standard libraries (such as Object.wait, Thread.
sleep, and Thread.join) have their contract expanded slightly such that they
will respond to interruption not only when the interrupt method is invoked on
the current thread, but also, for schedulables, when executing within a call to
ATE.doInterruptible and that AIE is fired where AIE is an instance of the Asyn-
chronouslyInterruptedException. See Chapter 8 on Asynchrony.

4.2.3 Java Memory Model

Some aspects of the Java Memory Model must be tightened for this specification, in
particular with regards to interactions with native code or when using the Device
Module. A conforming implementation must ensure that volatile loads and stores, raw
memory operations (see 12.2.1), and DirectMemoryBufferFactory fence methods
are ordered to be consistent with respect to native code or hardware devices that
use platform-native memory coherency protocols to access raw memory or raw byte
buffers shared with the virtual machine. In particular, all Java code that precedes a
JNI call in the source happens-before the code executed during the JNI call, which
happens-before all Java code that follows its return.

Though not specified for conventional Java, most implementations provide explicit
fencing for JNT calls.
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4.2.4 Memory Management

The specification provides for two means of managing memory: garbage collection
and special memory areas. The latter are not collected by the garbage collector.
Since memory allocated in Java is always in the heap, or at least appears to be,
the initial allocation area is the heap. Furthermore, the allocation area can only
be changed either by entering another memory area or by calling a method that
explicitly causes allocation in another area. When the alternative memory areas
module is not present, the conventional Java semantics for allocation prevails.

4.2.4.1 Memory Areas

Using a conventional class in a memory area other than a heap can result in
unexpected behavior. This is particularly the case when a method of a class is
called when the current allocation context is different from the allocation context in
which the object was created; this can lead to exceptions. In general, memory areas
other than the heap may become full much faster than expected, because objects
that are no longer referenced will not be collected automatically.

A method that allocates an object or takes an object that was created in a
different memory area and tries to assign it to a field of its associated object can fail.
For example, creating a List on the heap and adding to it an object from a scoped
memory area will most likely cause an exception. Although using other memory
areas, such as scoped memory, is useful for helping to improve determinism, its use
complicates the logic of application and library code.

On systems that support memory areas other than heap and do not support
realtime garbage collection, some global resources must be put in immortal memory.
System properties and their String values allocated during system initialization
shall be allocated in immortal memory. For such a system, class objects should also
be stored there. Though this avoids priority inversion with the garbage collector, it
can cause higher memory use than expected.

4.2.4.2 Garbage Collection

Garbage collection is an important safety feature of the Java language and runtime
environment. Unfortunately, the garbage collection process can interfere with a
realtime program’s ability to always meet its timing deadlines. This specification
provides two main means of circumventing this problem: using a realtime garbage
collector or using the memory area module as an alternative to garbage collection
for realtime code. Additionally, an implementation may ignore the problem for
an environment meant as a development system or for systems that choose not to
provide realtime guarantees. In any case, an implementation must document what
realtime guarantees it gives and which methods it uses to do so.
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4.2.4.3 Realtime Garbage Collections

Industrial realtime garbage collectors are available with varying approaches to
providing realtime response. Though new collectors will undoubtably be developed,
all current ones use a variant of the mark-and-sweep algorithm. In all cases, the
collectors are incremental: realtime response is obtained by limiting how much of a
collection cycle is done each time the collector runs. Even on a multicore machine,
the garbage collector must be incremental, because it must tolerate changes to the
heap during garbage collection. Then CPU use is limited by tying the collector to
one or more cores.

4.2.4.3.1 Thread-Based Collectors

A realtime thread-based collector is an incremental garbage collector that has its
own thread of control and runs at intervals. In this case, the garbage collector needs
to be scheduled to ensure that it runs often enough and long enough at each interval
to recycle discarded objects fast enough to keep up with allocations. There should
also be some maximum time after which the garbage collector can be interrupted.

4.2.4.3.2 Allocation-Based Collectors

A realtime allocation-based garbage collector does not have its own thread of
control. Instead, some interval of garbage collection work is done at each allocation.
This work is generally a function of the size of the object being allocated. This work
becomes part of the execution time of the program. Again, there should be some
maximum time after which the garbage collector can be interrupted.

4.2.4.3.3 Alternatives to Garbage Collection

This specification provides an alternative Memory Areas Module for managing
memory without garbage collection. An implementation of this specification may
provide realtime response by requiring applications to use that module instead of
providing a realtime garbage collector. This means that all realtime threads would
have to run above the priority of the garbage collector and all communication with
conventional threads would have to use some nonblocking protocol.

4.2.4.3.4 Developer Implementation
An implementation that simply provides all the API but no realtime guarantee

is also permitted. This is useful as a development environment. Also, many of the
APIs are useful event in a conventional Java implementation.
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4.3 Rationale

The threading model of conventional Java was never meant for realtime programming.
Refinements to the virtual machine and new APIs are necessary to support the
additional requirements of applications, which have tasks that must complete in
a fixed amount of time. However, to ensure that any conventional Java program
can run on a virtual machine or runtime that implements this specification requires
careful consideration of each refinement to the Java programming model. Therefore,
conventional Java APIs and semantics have been extended, rather than replaced, to
facilitate compatibility with conventional Java runtime implementations.
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Realtime Threads

Conventional Java provides a thread class for its tasking model. Tasks can be
run simultaneously by creating multiple threads, but they do not provide realtime
scheduling semantics. For this, the specification provides a realtime thread class.
This class provides for the creation of

e realtime threads that have more precise scheduling semantics than java.lang.-

Thread, and

e realtime threads that have no dependency on the heap.

The RealtimeThread class extends java.lang.Thread. The ReleaseParamet-
ers, SchedulingParameters, and MemoryParameters objects that can be passed to
the RealtimeThread constructor provide the temporal and processor configuration of
the thread to be communicated to the scheduler. ProcessingGroup, a class derived
from ThreadGroup, provides cost enforcement on groups of tasks. The Configura-
tionParameters class defines, among other things, the size of Java’s thread stack.
The PhasingPolicy class defines the relationship between the threads start time
and its first release time when the start time is in the past.

The RTSJ provides two types of objects that implement the Schedulable interface:
realtime threads and asynchronous event handlers. This chapter defines the facilities
that are available to realtime threads. In many cases, these functionalities are also
available to asynchronous event handlers. In particular,

e the default scheduler must support the scheduling of both realtime threads
and asynchronous event handlers;

e realtime threads and asynchronous event handlers are allowed to enter into
memory areas and consequently they have associated scope stacks; and

e the flow of control of realtime threads and asynchronous event handlers are
affected by the RTSJ asynchronous transfer of control facilities.

Where the semantics apply to both realtime threads and asynchronous event handlers,
the term schedulable will be used.
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5.1 Definitions

Exception — Both a mechanism of nonlocal transfer of control and a Java object

which carried information about the cause of the control transfer.

Scheduler — A module that manages the execution of tasks, as well as detects

deadline misses and monitoring costs.

5.2 Semantics

Instances of RealtimeThread have the same semantics as conventional Java threads
except as noted below.

1.

20

Garbage collection executing in the context of a Java thread must not in itself
block execution of a schedulable with a higher execution eligibility that may
not access the heap; however, application locks work as specified even when
the lock causes synchronization between a heap-using thread and a schedulable
that may not use the heap.

Each schedulable has an attribute which indicates whether an Asynchron-
ouslyInterruptedException is pending. This attribute is set when a call
to RealtimeThread. interrupt () is made on the associated realtime thread,
when a call is made to the interrupt method in one of the family of asynchronous
event handler classes, and when an asynchronously interrupted exception’s fire
method is invoked between the time the schedulable has entered that exception’s
doInterruptible method, and before it has return from doInterruptible.
(See Chapter 8 on Asynchrony.)

A call to Schedulable.interrupt() generates the system’s generic Asyn-
chronouslyInterruptedException. (See Chapter 8 on Asynchrony.)

The RealtimeThread.waitForNextRelease method is for use by realtime
threads that have periodic or aperiodic release parameters. In the absence of
any deadline miss or cost overrun, or an interrupt, the method returns when
the realtime thread’s next period is due or the next release happens.

In the presence of a cost overrun or a deadline miss, the behavior of waitFor-
NextRelease is governed by the thread’s scheduler.

The first release time of a realtime thread is governed by the value of any start
time in its associated ReleaseParameter object and the time at which the
RealtimeThread.start method is called and the value of any PhasingPolicy
parameter passed to it.

. Instances of RealtimeThread may not be created with a thread group which

is not an instance of SchedulingGroup.
System-related termination activity (such as execution of finalizers for scoped
objects in scoped memory areas that become unreferenced) triggered by termi-
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nation of a realtime thread is not subject to cost enforcement or deadline miss
detection.

. The scheduling of a realtime thread is governed by its SchedulingParameters
and its Scheduler unless set explicitly with method setPriority(int) in
java.lang.Thread, which causes it to be treated as a conventional java thread
until a new SchedulingParameters object is set.
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5.3 javax.realtime

5.3.1 Enumerations

5.3.1.1 PhasingPolicy

public enum PhasingPolicy

Inheritance

java.lang.Object
java.lang.Enum<PhasingPolicy >
PhasingPolicy

Description
This class defines a set of constants that specify the supported policies for starting
a periodic thread or periodic timer, when it is started later than the assigned
absolute time. The following table specifies the effective start time, that is, the
first release time of a periodic realtime thread. The effective start time of a

periodic timer is similar; where the first firing is equivalent to the first release,
and a call to the constructor is equivalent to a call to RealtimeThread.start ().

Available since RTSJ 2.0

5.3.1.1.1 Enumeration Constants

ADJUST_IMMEDIATE

public static final ADJUST_IMMEDIATE

Description

Indicates that a periodic thread started after the absolute time given for its start
time should be released immediately with the next release one period later.

ADJUST_FORWARD
public static final ADJUST_FORWARD
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Table 5.1: PhasingPolicy Effect on First Release of a RealtimeThread with Periodic-

Parameters
ADJUST IM-| ADJUST ADJUST STRICT
MEDIATE FORWARD BACKWARD | PHASING
RelativeTime | The time of | The time of | The time of | The time of
start method | start method | start method | start method
invocation invocation invocation invocation
plus start | plus start | plus start | plus start
time. time. time. time.
AbsoluteTime, | Release  im-| All  releases | The first | The start
earlier than | mediately before the | release occurs | method
call to start | and set next | time start | immediately | throws an
release time | is called are | and the next | exception.
to be at the | ignored. The | release is at

time the start
method was
invoked plus
period.

first release is
at the start
time plus the
smallest multi-
ple of period
whose time is
after the time
start
called.

was

the start time
plus the small-
est multiple
of period
whose time is
after the time
start was
called.

is at time of
start method
invocation

is at time of
start method
invocation

is at time of
start method
invocation

AbsoluteTime, | First release is | First release is | First release is | First release is
later than call | at time passed | at time passed | at time passed | at time passed
to start to start. to start. to start. to start.

Without Time | First release | First release | First release | First release

is at time of
start method
invocation

Description

Indicates that a periodic thread started after the absolute time given for its start
time should be released at the next multiple of its period from its start time.

ADJUST_BACKWARD

public static final ADJUST_BACKWARD
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Description

Indicates that a periodic thread started after the absolute time given for its start
time should be released immediately with the next release at the next multiple of
its period from its start time.

STRICT_PHASING

public static final STRICT_PHASING

Description

Indicates that a periodic thread started after the absolute time given for its start
time should throw the LateStartException exception instead of being released.

5.3.1.1.2 Methods

values
Signature
public static javax.realtime.PhasingPolicy[]

values ()

Description

Gets all enumeration constants.

valueOf(String)
Signature
public static javax.realtime.PhasingPolicy

valueOf (String name)

Description

Gets enumeration constants corresponding to name.
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5.3.2 Classes

5.3.2.1 ConfigurationParameters

public class ConfigurationParameters

Inheritance
java.lang.Object
ConfigurationParameters

Description

Configuration parameters provide a way to specify various implementation-
dependent parameters such as the Java stack and native stack sizes, and to
configure the statically allocated ThrowBoundaryError associated with a Sched-
ulable.

Note that these parameters are immutable.

Available since RTSJ 2.0

5.3.2.1.1 Constructors

ConfigurationParameters(int, int, long)

Signature
public
ConfigurationParameters(int messagelength,
int stackTracelength,
long[] sizes)
throws IllegalStateException

Description

Creates a parameter object for initializing the state of a Schedulable. The
parameters provide the data for this initialization. For RealtimeThread and
bound versions of AsyncBaseEventHandler, the stack and message buffers can
be set exactly, but for the unbound event handlers, the system cannot give any
guarentees to allow thread sharing.
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Parameters
messageLength—The size of the buffer, in units of char, for storing an exception

message used by preallocated exceptions and errors thrown in the context of
an instance of Schedulable which was created with this as its configuration
parameters. The value 0 indicates that no message should be stored. The value
of -1 uses the system default and is the default when an instance of this class
is not provided.

stackTraceLength—The length of the stack trace buffer, in units of a number of

StackTraceElement instances, reserved use by preallocated exceptions and
errors thrown in the execution context of the Schedulable object created with
these parameters. The amount of space this requires is implementation-specific.
The value 0 indicates that no stack trace should be stored. The value of -1
uses the system default and is the default when an instance of this class is not
provided.

sizes—An array of implementation-specific values dictating memory parameters for

Schedulable objects created with these parameters, such as maximum Java and
native stack sizes. The sizes array will not be stored in the constructed object.
The default is system dependent, and indicated by setting this parameter to
null or by not providing an instance of this class.

ConfigurationParameters(long)

Signature

public
ConfigurationParameters(long[] sizes)

Description

Same as ConfigurationParameters(int,int,long[]) with arguments -1, -1,
sizes.

5.3.2.1.2 Methods

getMessageLength

Signature

26
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public int
getMessageLength()

Description

Gets the size of the buffer dedicated to storing the message of the last thrown
throwable in the context of instances of Schedulable created with these parame-
ters. The value 0 indicates that no message will be stored.

Returns
reserved memory size in units of char.

getStackTraceLength

Signature
public int
getStackTraceLength()

Description

Gets the length of the stack trace buffer dedicated to Schedulable objects created
with these parameters’ preallocated exceptions, measured in number of Stack-
TraceElement instances. The amount of space this requires is implementation-
specific. The value 0 indicates that no stack trace will be stored.

Returns
reserved memory size in implementation-dependent stack frames.

getSizes

Signature
public longl[]
getSizes()

Description

Gets the array of implementation-specific sizes associated with Schedulable
objects created with these parameters. This method may allocate memory.

Returns
a copy of the array of implementation-specific sizes.
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5.3.2.2 RealtimeThread

public class RealtimeThread

Inheritance

java.lang.Object
java.lang.Thread
RealtimeThread

Interfaces
javax.realtime.BoundSchedulable
javax.realtime.AsyncTimable

Description

Class RealtimeThread extends Thread and adds access to realtime services such
as asynchronous transfer of control, nonheap memory, and advanced scheduler
services.
As with java.lang.Thread, there are two ways to create a RealtimeThread.
e Create a new class that extends RealtimeThread and override the run()
method with the logic for the thread.
e (Create an instance of RealtimeThread using one of the constructors with a
logic parameter. Pass a Runnable object whose run() method implements
the logic of the thread.

5.3.2.2.1 Constructors

RealtimeThread(SchedulingParameters, ReleaseParameters,
MemoryParameters, MemoryArea, ConfigurationParame-
ters, TimeDispatcher, SchedulingGroup, Runnable)

Signature
public
RealtimeThread(SchedulingParameters scheduling,
ReleaseParameters release,
MemoryParameters memory,
MemoryArea area,
ConfigurationParameters config,
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TimeDispatcher dispatcher,
SchedulingGroup group,
Runnable logic)

Description

Creates a realtime thread with the given characteristics and a specified Runnable.
The scheduling group of the new thread is inherited from its parent task unless
group is set. The newly-created realtime thread is associated with the scheduler
in effect during execution of the constructor.

Available since RTSJ 2.0

Parameters
scheduling—The SchedulingParameters associated with this (And possibly
other instances of Schedulable). When scheduling is null and the creator is
a schedulable, SchedulingParameters is a clone of the creator’s value created
in the same memory area as this. When scheduling is null and the creator
is a Java thread, the contents and type of the new SchedulingParameters
object is governed by the associated scheduler.

release—The ReleaseParameters associated with this (and possibly other in-
stances of Schedulable). When release is null the new RealtimeThread
will use a clone of the default ReleaseParameters for the associated scheduler
created in the memory area that contains the RealtimeThread object.

memory—The MemoryParameters associated with this (and possibly other in-
stances of Schedulable). When memory is null, the new RealtimeThread
receives null value for its memory parameters, and the amount or rate of
memory allocation for the new thread is unrestricted, and it may access the
heap.

area—The initial memory area of this handler.

config—The ConfigurationParameters associated with this (and possibly other
instances of Schedulable). When config is null, this RealtimeThread will
reserve no space for preallocated exceptions and implementation-specific values
will be set to their implementation-defined defaults.

dispatcher—The TimeDispatcher to use for realtime sleep and determining the
period of a periodic thread.

group—The SchedulingGroup of the newly created realtime thread or the parent’s
scheduling group when null.

logic—The Runnable object whose run() method will serve as the logic for the
new RealtimeThread. When logic is null, the run() method in the new
object will serve as its logic.
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Throws

IllegalArgumentException—when the parameters are not compatible with the
associated scheduler or the current thread group is not a SchedulingGroup
and group is null.

IllegalAssignmentError—when the new RealtimeThread instance cannot hold
a reference to any of the values of scheduling, release, memory, or group,
when those parameters cannot hold a reference to the new RealtimeThread,
when the new RealtimeThread instance cannot hold a reference to the values
of area or logic, when the initial memory area is not specified and the new
RealtimeThread instance cannot hold a reference to the default initial memory
area, and when the thread may not use the heap, as specified by its memory
parameters, and any of the following is true:

the initial memory area is not specified,

the initial memory is heap memory;,

the initial memory area, scheduling, release, memory, or group is allocated
in heap memory.

when this is in heap memory, or

logic is in heap memory.

ScopedCycleException—when memory is a scoped memory area that has already
been entered from a memory area other than the current scope.

RealtimeThread (SchedulingParameters, ReleaseParameters,
MemoryParameters, MemoryArea, ConfigurationParame-
ters, Runnable)

Signature

public
RealtimeThread(SchedulingParameters scheduling,

ReleaseParameters release,
MemoryParameters memory,
MemoryArea area,
ConfigurationParameters config,
Runnable logic)

Description

Creates a realtime thread with the given SchedulingParameters, ReleasePar—
ameters, MemoryParameters, ConfigurationParameters, a specified Runnable,
and default values for all other parameters.
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This constructor is equivalent to RealtimeThread(scheduling, release,
memory, area, config, null, null, logic).

Available since RTSJ 2.0

RealtimeThread(SchedulingParameters, ReleaseParameters,
ConfigurationParameters, Runnable)

Signature
public
RealtimeThread(SchedulingParameters scheduling,
ReleaseParameters release,
ConfigurationParameters config,
Runnable logic)

Description

Creates a realtime thread with the given SchedulingParameters, ReleasePar-
ameters, MemoryArea and a specified Runnable and default values for all other
parameters.

This constructor is equivalent to RealtimeThread(scheduling, release,
null, null, config, null, null, logic).

Available since RTSJ 2.0

RealtimeThread(SchedulingParameters, ReleaseParameters,
ConfigurationParameters)

Signature
public
RealtimeThread(SchedulingParameters scheduling,
ReleaseParameters release,
ConfigurationParameters config)

Description

Creates a realtime thread with the given SchedulingParameters, ReleasePar-—
ameters and MemoryArea and default values for all other parameters.
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This constructor is equivalent to RealtimeThread(scheduling, release,
null, null, config, null, null, null).

Available since RTSJ 2.0

RealtimeThread(SchedulingParameters, ReleaseParameters,
Runnable)

Signature
public
RealtimeThread(SchedulingParameters scheduling,
ReleaseParameters release,
Runnable logic)

Description

Creates a realtime thread with the given SchedulingParameters, ReleasePar-—
ameters and a specified Runnable and default values for all other parameters.

This constructor is equivalent to RealtimeThread(scheduling, release,
null, null, null, null, null, logic).

Available since RTSJ 2.0

RealtimeThread (SchedulingParameters, ReleaseParamet-
ers)

Signature
public
RealtimeThread(SchedulingParameters scheduling,
ReleaseParameters release)

Description

Creates a realtime thread with the given SchedulingParameters and Release-
Parameters and default values for all other parameters.

This constructor is equivalent to RealtimeThread(scheduling, release,
null, null, null, null, null, null).
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RealtimeThread (SchedulingParameters, TimeDispatcher)

Signature
public
RealtimeThread(SchedulingParameters scheduling,
TimeDispatcher dispatcher)

Description
Creates a realtime thread with the given SchedulingParameters and Time-
Dispatcher and default values for all other parameters. This constructor is
equivalent to RealtimeThread(scheduling, null, null, null, null, dis-
patcher, null, null).

Available since RTSJ 2.0
RealtimeThread(SchedulingParameters)

Signature
public
RealtimeThread(SchedulingParameters scheduling)

Description
Creates a realtime thread with the given SchedulingParameters and default
values for all other parameters. This constructor is equivalent to Realtime-
Thread(scheduling, null, null, null, null, null, null, null).

RealtimeThread

Signature
public
RealtimeThread ()

Description
Creates a realtime thread with default values for all parameters. This construc-
tor is equivalent to RealtimeThread(null, null, null, null, null, null,
null, null).
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5.3.2.2.2 Methods

currentRealtimeThread

Signature
public static javax.realtime.RealtimeThread
currentRealtimeThread ()
throws ClassCastException

Description

Gets a reference to the current instance of RealtimeThread.

Calling currentRealtimeThread is permissible when control is in an Async-
EventHandler. The method will return a reference to the RealtimeThread
supporting that release of the async event handler.

Throws
ClassCastException—when the current execution context is not an instance of
Schedulable.

Returns
a reference to the current instance of RealtimeThread.

currentSchedulable

Signature
public static javax.realtime.RealtimeThread
currentSchedulable()
throws ClassCastException

Description

Gets a reference to the current instance of Schedulable. It behaves the same
when the current thread is an instance of java.lang.Thread, but otherwise it
produces an instance of AsyncBaseEventHandler.

Throws
ClassCastException—when the current execution context is that of a conventional
Java thread.

Returns
a reference to the current instance of Schedulable.
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getCurrentMemoryArea

Signature
public static javax.realtime.MemoryArea
getCurrentMemoryArea ()

Description

Gets a reference to the MemoryArea object representing the current allocation
context. For a task that is not an instance of Schedulable, the result can only
be heap or immortal memory.

Returns
a reference to the MemoryArea object representing the current allocation context.

sleep(HighResolutionTime)

Signature
public static void
sleep(javax.realtime.HighResolutionTime<?> time)
throws InterruptedException,
ClassCastException,
IllegalArgumentException

Description

A sleep method that is controlled by a generalized clock. Since the time is
expressed as a HighResolutionTime, this method is an accurate timer with
nanosecond granularity. The actual resolution available for the clock and even the
quantity it measures depends on clock. The time base is the given Clock. The
sleep time may be relative or absolute. When relative, then the calling thread is
blocked for the amount of time given by time, and measured by clock. When
absolute, then the calling thread is blocked until the indicated value is reached by
clock. When the given absolute time is less than or equal to the current value
of clock, the call to sleep returns immediately.

Calling sleep is permissible when control is in an AsyncEventHandler. The
method causes the handler to sleep.

This method must not throw IllegalAssignmentError. It must tolerate
time instances that may not be stored in this.

Parameters
time—The amount of time to sleep or the point in time at which to awaken.
Throws
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InterruptedException—when the thread is interrupted by interrupt() or
AsynchronouslyInterruptedException.fire() during the time between call-
ing this method and returning from it.

ClassCastException—when the current execution context is not an instance of
Schedulable.

IllegalArgumentException—when time is null, when time is a relative time less
than zero, or when the Chronograph of time is not a Clock.

suspend (HighResolutionTime)

Signature
public static void
suspend (javax.realtime.HighResolutionTime<?> time)
throws ClassCastException,
IllegalArgumentException

Description

The same as sleep(HighResolutionTime) except that it is not interruptible.

Parameters
time—An absolute or relative time until which to suspend.
Throws
ClassCastException—when the current execution context is not an instance of
Schedulable.

IllegalArgumentException—when time is null, when time is a relative time less
than zero, or when the Chronograph of time is not a Clock.

Available since RTSJ 2.0

spin(HighResolutionTime)

Signature
public static void
spin(javax.realtime.HighResolutionTime<?> time)
throws InterruptedException,
ClassCastException,
IllegalArgumentException

Description
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Similar to sleep (HighResolutionTime) except it performs a busy wait by polling
on the Chronograph associated with time until time has been reached. Note
that interaction with other tasks, scheduling considerations, and other effects
may reduce the frequency of polling for long delays, so an application cannot
assume that the associated Chronograph will be polled as quickly as possible.

Parameters
time—An absolute or relative time at which to stop spinning.
Throws
InterruptedException—when the thread is interrupted by interrupt() or
AsynchronouslyInterruptedException.fire() during the time between call-
ing this method and returning from it.

ClassCastException—when the current execution context is not an instance of
Schedulable.

IllegalArgumentException—when time is null, or when time is a relative time
less than zero.

Available since RTSJ 2.0

spin(int)

Signature
public static void
spin(int nanos)
throws InterruptedException,
ClassCastException,
IllegalArgumentException

Description

The same as calling spin(HighResolutionTime) with a relative time to the
default realtime clock, zero milliseconds, and nanos nanoseconds, except no
relative time object is necessary.

Parameters
nanos—A relative number of nanoseconds to wait.
Throws

InterruptedException—when the thread is interrupted by interrupt() or
AsynchronouslyInterruptedException.fire() during the time between call-
ing this method and returning from it.

ClassCastException—when the current execution context is not an instance of
Schedulable.
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IllegalArgumentException—when nanos is less than zero.

Available since RTSJ 2.0

waitForNextRelease

Signature
public static boolean
waitForNextRelease ()
throws AsynchronouslyInterruptedException,
IllegalStateException,
ClassCastException

Description

Causes the current realtime thread to delay until the next release. (See re-
lease().) Used by threads that have a reference to either periodic or aperiodic
ReleaseParameters. The first release starts when this thread is released as a
consequence of the action of one of the start () family of methods. Each time
this method is called it will block until the next release unless the thread is in a
deadline miss condition. In that case, the operation of waitForNextRelease is
controlled by this thread’s scheduler. (See PriorityScheduler.)

Throws

AsynchronouslylInterruptedException—when the thread is interrupted by in-
terrupt() or AsynchronouslyInterruptedException.fire() during the
time between calling this method and returning from it and the
ReleaseParameters.isRousable() on its release parameters returns true.
An interrupt during waitForNextPeriodInterruptible() is treated as a re-
lease for purposes of scheduling. This is likely to disrupt proper operation of
the periodic thread. The timing behavior of the thread is unspecified until the
state is reset by altering the thread’s release parameters or the thread is no
longer in a deadline miss state.

IllegalStateException—when this does not have a reference to a ReleasePar-
ameters type of either PeriodicParameters or AperiodicParameters.

ClassCastException—when the current thread is not an instance of Realtime-
Thread.

Returns
either false when the thread is in a deadline miss condition or true otherwise.
When a deadline miss condition occurs is defined by its thread’s scheduler.

68 RTSJ 2.0 (Draft 57)



RealtimeThread javaz.realtime 5.3

Available since RTSJ 2.0

getMemoryArea

Signature
public javax.realtime.MemoryArea
getMemoryArea ()

Description

Obtains the initial memory area for this RealtimeThread. When not specified
through the constructor, the default is a reference to the current allocation context
when this was constructed.

Returns
a reference to the initial memory area for this thread.

Available since RTSJ 1.0.1

getMemoryParameters

Signature
public javax.realtime.MemoryParameters
getMemoryParameters ()

Description

Gets a reference to the MemoryParameters object for this schedulable.

Returns
a reference to the current MemoryParameters object.

getSchedulingGroup
Signature
public javax.realtime.SchedulingGroup

getSchedulingGroup ()

Description

Gets a reference to the SchedulingGroup instance of this schedulable.
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Returns
a reference to the current SchedulingGroup object.

Available since RTSJ 2.0

getConfigurationParameters

Signature
public javax.realtime.ConfigurationParameters
getConfigurationParameters()

Description
Gets a reference to the ConfigurationParameters object for this schedulable.

Returns
a reference to the associated ConfigurationParameters object.

Available since RTSJ 2.0

getReleaseParameters

Signature
public javax.realtime.ReleaseParameters
getReleaseParameters ()

Description

Gets a reference to the ReleaseParameters object for this schedulable.

Returns
a reference to the current ReleaseParameters object.

getScheduler
Signature
public javax.realtime.Scheduler

getScheduler ()

Description

Gets a reference to the Scheduler object for this schedulable.
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Returns
a reference to the associated Scheduler object.

getSchedulingParameters

Signature
public javax.realtime.SchedulingParameters
getSchedulingParameters ()

Description

Gets a reference to the SchedulingParameters object for this schedulable.

Returns
A reference to the current SchedulingParameters object.

release

Signature
public void
release()

Description

Generates a release for this RealtimeThread. The action of this release is
governed by the scheduler. It may, for instance, act immediately, or be queued,
delayed, or discarded.

Throws
IllegalStateException—when this does not have a reference to a ReleasePar-
ameters type of AperiodicParameters.

Available since RTSJ 2.0

interrupt
Signature
public void
interrupt ()

Description
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Makes the generic AsynchronouslyInterruptedException pending for this,
and sets the interrupted state to true. As with Thread.interrupt (), blocking
operations that are interruptible are interrupted. When this.isRousable() is
true causes an early release. In any case, AsynchronouslyInterruptedExcep-
tion is thrown once a method is entered that implements AsynchronouslyIn-
terruptedException.

Behaves as if Thread.interrupt () were called on the implementation thread
underlying this Schedulable.

Throws
I1llegalSchedulableStateException—when this is not currently releasable, i.e.,
is disabled, not firable, its start method has not been called, or it has terminated.

Available since RTSJ 2.0

isInterrupted

Signature
public boolean
isInterrupted()

Description
Determines whether or not any AsynchronouslyInterruptedException is pend-
ing.
Returns
true when and only when the generic AsynchronouslyInterruptedException is
pending.

Available since RTSJ 2.0

deschedule

Signature
public void
deschedule()

Description
Performs any deschedule actions specified by this thread’s scheduler, either
immediately when in waitForNextRelease () or the next time the thread enters
waitForNextRelease().
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Available since RTSJ 2.0

reschedule

Signature
public void
reschedule ()
throws IllegalSchedulableStateException

Description
Gets the thread to the blocked-for-next-release state. This causes the next event
to release the thread and waitForNextRelease to return. Deadline miss and
cost enforcement are re-enabled.
The details of the interaction of this method with deschedule, waitForNext-
Release and release are dictated by this thread’s scheduler.

Throws
IllegalSchedulableStateException—when the configured Scheduler and
SchedulingParameters for this RealtimeThread are not compatible.

Available since RTSJ 2.0

startPeriodic(PhasingPolicy)

Signature
public void
startPeriodic(PhasingPolicy phasingPolicy)
throws LateStartException,
IllegalSchedulableStateException,
IllegalArgumentException

Description
Starts the thread with the specified phasing policy.

Parameters
phasingPolicy—The phasing policy to be applied when the start time given in
the realtime thread’s associated PeriodicParameters is in the past.
Throws
javax.realtime.LateStartException—when the actual start time is after the
assigned start time and the phasing policy is PhasingPolicy.STRICT PHASING.
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IllegalArgumentException—when the thread is not periodic, or when its start
time is not absolute.

IllegalSchedulableStateException—when the configured Scheduler and
SchedulingParameters for this RealtimeThread are not compatible.

Available since RTSJ 2.0

start

Signature
public void
start ()

throws IllegalStateException
Description

Sets up the realtime thread’s environment and starts it. The set up might include
delaying it until the assigned start time and initializing the thread’s memory area
stack. (See ScopedMemory.)

Throws
IllegalStateException—when the configured Scheduler and SchedulingPar-
ameters for this RealtimeThread are not compatible.

Available since RTSJ 2.0 adds new exception

getLastReleaseTime
Signature
public javax.realtime.AbsoluteTime

getLastReleaseTime ()

Description

Equivalent to getLastReleaseTime(null)

Available since RTSJ 2.0
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getLastReleaseTime(AbsoluteTime)

Signature
public javax.realtime.AbsoluteTime
getLastReleaseTime (AbsoluteTime dest)

Description

Gets the absolute time of this thread’s last release, whether periodic or aperiodic.
The clock in the returned absolute time shall be the realtime clock for aperiodic
releases and the clock used for the periodic release for periodic releases.

Returns
the last release time in dest. When dest is null, create a new absolute time
instance in the current memory area.

Available since RTSJ 2.0

getEffectiveStartTime

Signature
public javax.realtime.AbsoluteTime
getEffectiveStartTime ()

Description

Equivalent to getEffectiveStartTime (null).

Available since RTSJ 2.0

getEffectiveStartTime(AbsoluteTime)

Signature
public javax.realtime.AbsoluteTime
getEffectiveStartTime (AbsoluteTime dest)

Description

Determines the effective start time of this realtime thread. This is not necessarily
the same as the start time in the release parameters.
e When the release parameters’ start time is relative, the effective start time
is the time of the first release.
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e When the release parameters’ start time is an absolute time after start() is
invoked, the effective start time is the same as the release parameters’ start
time.

e When the release parameters’ start time is an absolute time before start()
is invoked, the effective start time depends on the phasing policy.

The default is to set the effective start time equal to the time start() is invoked.

Returns
the effective start time in dest. When dest is null, returns the effective start time
in an AbsoluteTime instance created in the current memory area.

Available since RTSJ 2.0

getCurrentConsumption(RelativeTime)

Signature
public static javax.realtime.RelativeTime
getCurrentConsumption(RelativeTime dest)

Description

Determines the CPU consumption for this release.

Throws
IllegalStateException—when the caller is not a Schedulable.

Returns
when dest is null, returns the CPU consumption in a RelativeTime instance
created in the current execution context. When dest is not null, returns the
CPU consumption in dest

Available since RTSJ 2.0

getCurrentConsumption
Signature
public static javax.realtime.RelativeTime

getCurrentConsumption ()

Description

Equivalent to getCurrentConsumption(null).
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Available since RTSJ 2.0

getMinConsumption(RelativeTime)

Signature
public javax.realtime.RelativeTime
getMinConsumption(RelativeTime dest)

Description

Gets the minimum CPU consumption measured for any completed release of this
schedulable.

Throws
IllegalStateException—when the caller is not a Schedulable.

Returns
the minimum CPU consumption in dest. When dest is null, it returns the
minimum CPU consumption in a RelativeTime instance created in the current
mMemory area.

Available since RTSJ 2.0

getMinConsumption

Signature
public javax.realtime.RelativeTime
getMinConsumption ()

Description

Equivalent to getMinConsumption(null).

Available since RTSJ 2.0

getMaxConsumption(RelativeTime)
Signature

public javax.realtime.RelativeTime
getMaxConsumption(RelativeTime dest)
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Description

Gets the maximum CPU consumption measured for any completed release of this
schedulable.

Throws
IllegalStateException—when the caller is not a Schedulable.

Returns
the maximum CPU consumption in dest. When dest is null, it returns the
maximum CPU consumption in a RelativeTime instance created in the current
memory area.

Available since RTSJ 2.0

getMaxConsumption

Signature
public javax.realtime.RelativeTime
getMaxConsumption()

Description

Equivalent to getMaxConsumption(null).

Available since RTSJ 2.0

getDispatcher
Signature
public javax.realtime.TimeDispatcher

getDispatcher ()

Description

Gets the dispatcher responsible for handling sleep requests issued by this thread

See Section Timable.getDispatcher()

Available since RTSJ 2.0
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fire

Signature
public final void
fire()

Description

Used by the Clock infrastructure to cause a call to waitForNextRelease to
return.

See Section AsyncTimable.fire()

Available since RTSJ 2.0

mayUseHeap

Signature
public boolean
mayUseHeap ()

Description

Determines whether or not this schedulable may use the heap.

Returns
true only when this Schedulable may allocate on the heap and may enter Heap-
Memory.

Available since RTSJ 2.0

awaken
Signature

public final void
awaken ()

Description

Used by the Clock infrastructure to cause a call to sleep to return.
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See Section Schedulable.awaken()

Available since RTSJ 2.0

setMemoryParameters(MemoryParameters)

Signature
public javax.realtime.RealtimeThread
setMemoryParameters (MemoryParameters memory)

Description

Sets the memory parameters associated with this instance of Schedulable.
This change becomes effective at the next allocation; on multiprocessor
systems, there may be some delay due to synchronization between processors.

Parameters
memory—A MemoryParameters object which will become the memory parameters
associated with this after the method call. When null, the default value is
governed by the associated scheduler; a new object is created when the default
value is not null. (See PriorityScheduler.)
Throws
IllegalArgumentException—when memory is not compatible with the schedul-
able’s scheduler. Also when this schedulable may not use the heap and memory
is located in heap memory.
IllegalAssignmentError—when the schedulable cannot hold a reference to mem-
ory, or when memory cannot hold a reference to this schedulable instance.

Returns
this

Available since RTSJ 2.0 returns itself

setReleaseParameters(ReleaseParameters)
Signature
public javax.realtime.RealtimeThread

setReleaseParameters(ReleaseParameters release)

Description
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Sets the release parameters associated with this instance of Schedulable.

This change becomes effective under conditions determined by the scheduler
controlling the schedulable. For instance, the change may be immediate or it may
be delayed until the next release of the schedulable. The different properties of
the release parameters may take effect at different times. See the documentation
for the scheduler for details.

Parameters
release—A ReleaseParameters object which will become the release parameters
associated with this after the method call, and take effect as determined by
the associated scheduler. When null, the default value is governed by the
associated scheduler; a new object is created when the default value is not
null. (See PriorityScheduler.)
Throws
IllegalArgumentException—when release is not compatible with the associated
scheduler. Also when this schedulable may not use the heap and release is
located in heap memory.

IllegalAssignmentError—when this object cannot hold a reference to release
or release cannot hold a reference to this.

IllegalSchedulableStateException—when the task is running and the new
release parameters are not compatible with the current scheduler.

Returns
this

Available since RTSJ 2.0 returns itself

setScheduler(Scheduler)

Signature
public javax.realtime.RealtimeThread
setScheduler (Scheduler scheduler)

Description

Sets the reference to the Scheduler object. The timing of the change must be
agreed between the scheduler currently associated with this schedulable, and
scheduler. If the Schedulable is running, its associated SchedulingParamet-
ers (if any) must be compatible with scheduler.

For an instance of RealtimeThread, the Schedulable is running when
RealtimeThread.start() has been called on it and RealtimeThread. join()
would block.
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Parameters
scheduler—A reference to the scheduler that will manage execution of this sched-
ulable. Null is not a permissible value.
Throws
IllegalArgumentException—when scheduler is null, or the schedulable’s ex-
isting parameter values are not compatible with scheduler. Also when this
schedulable may not use the heap and scheduler is located in heap memory.
IllegalAssignmentError—when the schedulable cannot hold a reference to sched-
uler or the current Schedulable is running and its associated Scheduling-
Parameters are incompatible with scheduler.
SecurityException—when the caller is not permitted to set the scheduler for this
schedulable.
IllegalSchedulableStateException—when scheduler has scheduling or release

parameters that are not compatible with the new scheduler and this schedulable
is running.

Returns
this

Available since RTSJ 2.0 returns itself

setScheduler(Scheduler, SchedulingParameters, ReleasePar-
ameters, MemoryParameters)

Signature
public javax.realtime.RealtimeThread
setScheduler (Scheduler scheduler,
SchedulingParameters scheduling,
ReleaseParameters release,
MemoryParameters memoryParameters)

Description

Sets the scheduler and associated parameter objects. The timing of the change
must be agreed between the scheduler currently associated with this schedulable,
and scheduler.

Parameters

scheduler—A reference to the scheduler that will manage the execution of this
schedulable. Null is not a permissible value.
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scheduling—A reference to the SchedulingParameters which will be associated
with this. When null, the default value is governed by scheduler; a new
object is created when the default value is not null. (See PriorityScheduler.)

release—A reference to the ReleaseParameters which will be associated with
this. When null, the default value is governed by scheduler; a new object
is created when the default value is not null. (See PriorityScheduler.)

memoryParameters—A reference to the MemoryParameters which will be associated
with this. When null, the default value is governed by scheduler; a new
object is created when the default value is not null. (See PriorityScheduler.)

Throws

IllegalArgumentException—when scheduler is null or the parameter values
are not compatible with scheduler. Also thrown when this schedulable may
not use the heap and scheduler, scheduling release, memoryParameters,
or group is located in heap memory.

IllegalAssignmentError—when this object cannot hold references to all the
parameter objects or the parameters cannot hold references to this.

SecurityException—when the caller is not permitted to set the scheduler for this
schedulable.

Returns
this

Available since RTSJ 2.0

setSchedulingParameters(SchedulingParameters)

Signature
public javax.realtime.RealtimeThread
setSchedulingParameters(SchedulingParameters scheduling)

Description
Sets the scheduling parameters associated with this instance of Schedulable.
This change becomes effective under conditions determined by the scheduler
controlling the schedulable. For instance, the change may be immediate or it
may be delayed until the next release of the schedulable. See the documentation
for the scheduler for details.

Parameters
scheduling—A reference to the SchedulingParameters object. When null, the
default value is governed by the associated scheduler; a new object is created
when the default value is not null. (See PriorityScheduler.)

RTSJ 2.0 (Draft 57) 83



5 Realtime Threads RealtimeThread

Throws
IllegalArgumentException—when scheduling is not compatible with the as-
sociated scheduler. Also when this schedulable may not use the heap and
scheduling is located in heap memory.

IllegalAssignmentError—when this object cannot hold a reference to schedul-
ing or scheduling cannot hold a reference to this.

IllegalSchedulableStateException—when the task is active and the new
scheduling parameters are not compatible with the current scheduler.
Returns
this
Available since RTSJ 2.0 returns itself

get Affinity

Signature
public javax.realtime.Affinity
getAffinity()

Description

Determine the affinity set instance associated with task.

Returns
The associated affinity.

set Affinity (Affinity)

Signature
public void
setAffinity(Affinity set)
throws IllegalArgumentException,
ProcessorAffinityException,
NullPointerException

Description

Set the processor affinity of a task to set with immediate effect.

Parameters
set—is the processor affinity
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Throws
IllegalArgumentException—when the intersection of set the affinity of any
ThreadGroup instance containing task is empty.

ProcessorAffinityException—is thrown when the runtime fails to set the affinity
for platform-specific reasons.

NullPointerException—when set is null.

5.4 Rationale

Realtime programming requires a scheduling method radically different than what
a conventional Java programmer would expect, but most other aspects of thread
behavior are the same. Therefore, it is reasonable to model a realtime thread as an
extension to a java.lang.Thread. The main additions needed are for scheduling
control such as release control for asynchronous event handling. Here asynchronous
includes periodic releases, since release is asynchronous with regards to the executing
code.

The RTSJ platform’s priority-preemptive dispatching model is very similar to the
dispatching model found in the majority of commercial realtime operating systems.
The ReleaseParameters and MemoryParameters provided to the RealtimeThread
constructor provide a number of common realtime thread types, including periodic
threads. However, conventional Java thread scheduling is supported. The realtime
priorities are all above the conventional Java priorities to ensure the realtime threads
take precedence over normal tasks.

The MemoryParameters class is provided with a may-use-heap option in order to
enable time-critical schedulables to execute in preference to the garbage collector
given appropriate assignment of execution eligibility when false. The memory access
and assignment semantics of these heapless schedulables are designed to guarantee
that the execution of such threads does not lead to an inconsistent heap state.
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Chapter 6

Scheduling

Scheduling is a key differentiator between a conventional Java implementation and a
realtime Java implementation. Whereas conventional Java implementations relies on
some sort of fair scheduling, a realtime Java implementation must provide a realtime
scheduler. In a realtime scheduler, ensuring that critical tasks finish on time is more
important than overall throughput or fairness.

The scheduler required by this specification is fixed-priority preemptive with
at least 28 unique priority levels. At least 28 must be supported by each imple-
mentation, but a deployment need not have all 28 active, when not needed by the
application. It is represented by the class FirstInFirstOutScheduler, a subclass
of PriorityScheduler, and is called the base scheduler. As the name implies, this
scheduler does not time-slice threads at a given priority, but rather runs each to
completion, so long as no higher priority thread becomes ready to run and no other
processor is available for the higher priority thread. In that case, the current thread
is preempted by the higher priority thread.

The schedulables required by this specification are denoted by the Schedulable
interface and include the classes RealtimeThread and AsyncBaseEventHandler
along with its subclasses. The base scheduler assigns processor resources according to
the schedulables’ release characteristics, execution eligibility, affinity, and processing
group values. Subclasses of these schedulables are also schedulables and behave as
these required classes.

The scheduler dispatches a schedulable, that is ready to run, on a CPU. Some
systems, such as multicore systems, have more than one CPU to choose from. By
default, a ready schedulable would be dispatched on the next available CPU; however,
the specification provides an interface, Affinity, to control on which sets of CPUs
a given schedulable may run.

An instance of the SchedulingParameters class contains values of execution
eligibility. A schedulable is considered to have the execution eligibility represented
by the SchedulingParameters object currently bound to it. For implementations
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providing only the base scheduler, the scheduling parameters object is an instance of
PriorityParameters (a subclass of SchedulingParameters).

An instance of the ReleaseParameters class or its subclasses, PeriodicParame-
ters, AperiodicParameters, and SporadicParameters, contains values that define
a particular release characteristic. A schedulable is considered to have the release
characteristics of a single associated instance of the ReleaseParameters class.

For a realtime thread, the scheduler defines the behavior of the realtime thread’s
waitForNextRelease methods. For all Schedulables, the scheduler monitors cost
overrun and deadline miss conditions based on its release parameters. Release

parameters also govern the treatment of the minimum interarrival time for sporadic
schedulables.

The ThreadGroup class has special significance in an RTSJ implementation. As
in conventional Java, the maximum priority of a thread is governed in part by its
thread group, but the CPU affinity of a thread is also governed by its thread group
along with the Affinity class. Furthermore, there are two important subclasses:
SchedulingGroup and ProcessingGroup. These classes provide additional means
of managing tasks.

An instance of the SchedulingGroup provides scheduling constraints for schedula-
bles similar to how a TheadGroup does for conventional Java threads. The scheduler
and maximum SchedulingParameters can be set. A schedulable can only be created
in an instance of SchedulingGroup or its subclass. Therefore the root thread group
and the thread group of the initial thread must both be scheduling groups in an
RTSJ implementation.

The ProcessingGroup class is a subclass of SchedulingGroup. An instance of the
ProcessingGroup class contains values that define a temporal scope for a processing
group. When a schedulable has an associated instance of the ProcessingGroup
class, it is said to execute within the temporal scope defined by that instance. A
single instance of the ProcessingGroup class can be, and typically is, associated
with many schedulables. In an implementation that supports cost enforcement, the
combined processor demand of all of the schedulables associated with an instance
of the ProcessingGroup class must not exceed the values in that instance (i.e., the
defined temporal scope). The processor demand is determined by the Scheduler.

The scheduling classes provide the necessary support for realtime scheduling.
These classes

e enable the definition of schedulables,

e manage the assignment of execution eligibility to schedulable objects,

e manage the execution of instances of the AsyncBaseEventHandler and Real-

timeThread classes,

e assign release characteristics to schedulables,

e assign execution eligibility values to schedulables, and
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e manage the execution of groups of schedulables that collectively exhibit addi-
tional release characteristics.

6.1 Definitions

Task — A unit of independent execution. In conventional Java, this is a thread.
The Schedulable interface marks realtime tasks. The classes that implement
Schedulable are subject to the scheduling behavior of realtime schedulers.
Instances of these classes are referred to as Schedulables (SO) and provide four
execution states: executing, eligible-for-execution, blocked, and descheduled.

1. FEzecuting refers to the state where the schedulable is currently running
on a pProcessor.
2. Blocked refers to the state where the schedulable is not among those
schedulables that could be selected to have their state changed to executing.
The blocked state will have a reason associated with it, e.g., blocked-for-
[/O-completion, blocked-for-release-event, or blocked-by-cost-overrun.
3. Eligible-for-execution refers to the state where the schedulable could be
selected to have its state changed to executing.
4. Descheduled refers to the state where the schedulable is ineligible to be
released.
Each type of schedulable defines its own release events, for example, the release
events for a periodic schedulable are caused by the passage of time and occur
at programmatically specified intervals.

Release — The changing of the state of a schedulable from blocked-for-release-event
to eligible-for-execution. When the state of a schedulable is blocked-for-release-
event and a release event occurs then the state of the schedulable is changed
to eligible-for-execution. Otherwise, a state transition from blocked-for-release-
event to eligible-for-execution is queued; this is known as a pending release.
When the next transition of the schedulable into state blocked-for-release-
event occurs, and there is a pending release, the state of the schedulable is
immediately changed to eligible-for-execution. (Some actions implicitly clear
any pending releases.)

Completion — The changing of the state of a schedulable from executing to
blocked-for-release-event. Each completion corresponds to a release. A realtime
thread is deemed to complete its most recent release when it terminates.

Deadline — A time before which a schedulable should complete. The it deadline
is associated with the i** release event and a deadline miss occurs when the
completion would occur after the i** deadline.

Deadline Monitoring — The process by which the implementation responds to
deadline misses. When a deadline miss occurs for a schedulable object, the
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deadline miss handler, if any, for that schedulable is released. This behaves
as if there were an asynchronous event associated with the schedulable, to
which the miss handler was bound, and which was fired when the deadline miss
occurred.

Periodic, Sporadic, and Aperiodic — Adjectives applied to schedulables which
describe the temporal relationship between consecutive release events. Let R;
denote the time at which a schedulable has had the i** release event occur.
Ignoring the effect of release jitter:

1. a schedulable is periodic when there exists a value T" > 0 such that for all
1, Riv1 — R; =T, where T is called the period;

2. a schedulable that is not periodic is said to be aperiodic; and

3. an aperiodic schedulable is said to be sporadic when there is a known
value T" > 0 such that for all i, R;;; — R; >= T. T is then called the
minimum interarrival time (MIT).

Cost — The maximum amount of CPU time that a schedulable is allowed between
a release and its associated completion.

Current CPU Consumption — The amount of CPU time that the schedulable
has consumed since its last release.

Cost Overrun — The time at which a schedulable’s current CPU consumption
becomes greater than, or equal to, its cost.

Cost Monitoring — The process by which the implementation tracks CPU con-
sumption and responds to cost overruns. When a cost overrun occurs for a
schedulable, its cost overrun handler, if any, is released. This behaves as if
there were an asynchronous event associated with the schedulable, to which
the overrun handler was bound, and which is fired when a cost overrun occurs.

Cost Enforcement — The process by which the implementation ensures that the
CPU consumption of a schedulable is no more than the value of the cost
parameter in its associated ReleaseParameters. (Cost enforcement is an
optional facility in an implementation of the RTSJ.)

Base Priority — The priority assigned to a task, either in its associated Priori-
tyParameters object or by Thread.setPriority; the base priority of a Java
thread is the priority returned by its getPriority method.

Enforced Priority — A priority below the idle priority, which ensures the sched-
ulable has no execution eligibility.

Active Priority — The execution eligibility criterion for the priority-based sched-
ulers. It is the maximum of the base (or enforced priority) and any priority a
task has acquired due to the action of priority inversion avoidance algorithms
(see the Synchronization Chapter).

Processing Group — A collection of tasks whose combined execution has further
execution time constraints which the scheduler uses to govern the group’s
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execution eligibility.

Base Scheduler — An instance of the FirstInFirstOutScheduler class as defined
in this specification. This is the initial default scheduler.

Round-Robin Scheduler — An instance of the RoundRobinScheduler class as
defined in this specification. It is specified to execute in tandem with the base
scheduler in a predictable fashion.

Processor — A logical processing element that is capable of physically executing a
single thread of control at any point in time. Hence, multicore platforms have
multiple processors, platforms that support hyperthreading also have more
than one processor. It is assumed that all processors are capable of executing
the same instruction sets.

Affinity — A set of processors on which the global scheduling of a schedulable can
be supported.

Idle Task — A notional system or VM-provided task that consumes all CPU time
not used by other tasks. It may be an actual process or thread, or it may be
a power-saving mode that halts or slows the CPU, or it may be an artificial
construction. For the purposes of this specification, it has a priority below that
of all nonblocked tasks and above that of tasks blocked due to cost overrun.
Details of its implementation are not specified here.

6.2 Semantics

Scheduling semantics determines when each task runs. Both The Java Virtual
Machine Specification[6] and The Java Language Specification[5] are silent on the
semantics for scheduling; only the semantics for synchronization is provided. Since
scheduling is central to realtime programming, a detailed semantic, applicable
across all available scheduler algorithms, is defined below, along with definitions
of the required scheduling algorithms. Semantics that apply to particular classes,
constructors, methods, and fields can be found in the class description and the
constructor, method, and field detail sections.

6.2.1 Schedulers

There are four basic requirements for schedulers.

1. A scheduler may only change the execution eligibility of the schedulables which
it manages and only in accordance with its scheduling algorithm.

2. Each scheduler provided for application code by an RTSJ implementation must
have documentation describing its semantics including at least the following:
the algorithm used to determine eligibility, what schedulables may be scheduled
by it, the subclasses of Scheduler and SchedulingParameters used to control
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the scheduler, and any other classes needed by the scheduler.

3. Every implementation must provide a round-robin scheduler and a first in first
out scheduler using priorities above the ten (1-10) conventional Java priorities
as documented below.

4. Tasks with a conventional Java priority (1-10) must be scheduled such that
when two or more threads run at the same priority, one thread cannot block
another indefinitely or violate the requirements dictated by java.lang.Thread.

5. Tasks with a conventional Java priority must be scheduled using some sort of
fair scheduler such that higher-priority Java tasks cannot starve lower-priority
Java tasks indefinitely.

The scheduler can be changed independently of the SchedulingParameters and
vice versa only when the Schedulable in question is descheduled. Rescheduling
will throw an I1legalSchedulableStateException when called on a Schedulable
scheduling parameters that are inconsistent with its scheduler. Trying to add a
handler with SchedulingParameters that do not match its scheduler to an event
will also result in an I1legalSchedulableStateException being thrown.

6.2.1.1 Parameter Values

A scheduler uses the values contained in the different parameter objects associated
with a schedulable to control the behavior of the schedulable. The scheduler deter-
mines what values are valid for the schedulables it manages, which defaults apply and
how changes to parameter values are acted upon by the scheduler. Invalid parameter
values result in exceptions, as documented in the relevant classes and methods.

1. The default values for the priority schedulers are as follows.

(a) Scheduling parameters are copied from the creating schedulable when
possible; when the creating schedulable does not have scheduling parame-
ters, the default is an instance of the default parameters for the prevailing
scheduler when the schedulable starts.

(b) The default for release depend on the type of schedulable:

i. for instance of RealtimeThread the default is an instance of Back-
groundParameters with default values (see AperiodicParameters),
and

ii. for instance of AsyncBaseEventHandler the default is an instance of
aperiodic parameters with default values (see AperiodicParameters).

(¢) Memory parameters default to null which signifies that memory allocation
by the schedulable is not constrained by the scheduler.

(d) The default scheduling parameter values for parameter objects created by
a schedulable controlled by the base scheduler are given by the following
table (see FirstInFirstOutScheduler).
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Attribute Default Value
Priority parameters
priority norm priority
Importance parameters
importance No default.
A value must be supplied.

. All numeric or RelativeTime attributes in parameter values must be greater
than or equal to zero.
. Values of period must be greater than zero.
. Changes to scheduling, release, memory, and processing group parameters,
either by methods on the schedulables bound to the parameters or by altering
the parameter objects themselves, potentially modify the behavior of the
scheduler with regard to those schedulables. When such changes in behavior
take effect depends on the parameter in question, and the type of schedulable,
as described below.
. When changes to a parameter type—scheduling, release, memory, and process-
ing group—take effect depends on the parameter type.
(a) Changes to scheduling parameters take effect immediately except when
constrained by priority inversion avoidance algorithms.
(b) Changes to release parameters depend on the parameter being changed,
the type of release parameter object, and the type of schedulable.
i. Changes to the deadline and the deadline miss handler take effect at
each release event as follows: when the iy, release event occurred at
a time t;, then the i*" deadline is the time ¢; + D;, where D; is the
value of the deadline stored in the schedulable’s release parameters
object at the time ¢;. When a deadline miss occurs then it is the
deadline miss handler that was installed in the schedulable’s release
parameters at time ¢; that is released.
ii. Changes to cost and the cost overrun handler take effect immediately.
iii. Changes to the period and start time values in PeriodicParameters
objects are described in “Release of a Realtime Thread” below.
iv. Changes to the additional values in ReleaseParameters objects and
SporadicParameters are described, respectively, in “General Release
Control” and “Sporadic Release Control”, below.
v. Changes to the type of release parameters object generally take effect
after completion, except as documented in the following sections.
(¢) Changes to memory parameters take effect immediately.
(d) Changes to processing group parameters take effect as described in “Pro-
cessing Groups” below.
(e) Changes to the scheduler responsible for a schedulable object take effect
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at completion.

(f) Changes to cost enforcement state, i.e., enabling or disabling cost enforce-
ment on a processing group or release parameters object associated with
one or more schedulables, take effect at the next release of the associated
ProcessingGroup or associated Schedulable, respectively.

6.2.1.2 Release Control

Schedulables are released in response to the occurrence of events, such as starting
a realtime thread, calling the release method of a realtime thread, or firing the
asynchronous event associated with an asynchronous event handler. The occurrence
of these events, each of which is a potential release event, is termed an arrival, and
the time that they occur is termed the arrival time. The only difference between a
periodic and an aperiodic event is the regularity of the arrival times.

A scheduler behaves effectively as if it maintained a queue, called the arrival time
queue, for each schedulable object. This queue maintains information related to each
release event, including any parameters passed with the release mechanism, from its
“arrival” time until the associated release completes, or another release event occurs,
whichever is later. When an arrival is accepted into the arrival time queue, then it is
a release event and the time of the release event is the arrival time. The initial size
of this queue is an attribute of the schedulable’s aperiodic parameters, and is set
when an aperiodic parameter object is first associated with the schedulable. Over
time, the queue may become full and its behavior in this situation is determined by
the queue overflow policy specified in the schedulable’s aperiodic parameters. The
enumeration class QueueOverflowPolicy defines four overflow policies.

Policy Action on Overflow

IGNORE | Silently ignore the arrival. The arrival is not accepted,
no release event occurs, and, when the arrival was caused
programmatically, such as by invoking fire on an asyn-
chronous event, the caller is not informed that the arrival
has been ignored.

EXCEPT | Throw an ArrivalTimeQueueQOverflowException. The ar-
rival is not accepted, and no release event occurs, but when
the arrival was caused programmatically, the caller will have
ArrivalTimeQueueOverflowException thrown.
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REPLACE | The arrival replaces the latest release in the queue, when
there is one, but no new release event occurs. When the
completion associated with the last release event in the
queue has not yet occurred, and the deadline has not been
missed, the release event time for that release event is re-
placed with the arrival time of the new arrival and any
associated parameters overwritten. This will alter the dead-
line for that release event. When the deadline has already
been missed or the queue length is zero, the behavior of the
REPLACE policy is equivalent to the IGNORE policy.

SAVE Behave effectively as if the queue were expanded as nec-
essary to accommodate the new arrival. This expansion
is permanent. The arrival is accepted and a release event
occurs.

DISABLE | No queuing takes place. All incoming events increment the
pending fire or release count. I may only be used where
there is no payload and the release parameters are not
sporadic.

Changes to the queue overflow policy take effect immediately. When an arrival
occurs, and the queue is full, the policy applied is the policy as defined at that time.

6.2.1.2.1 Sporadic Release Control

“Sporadic Release Control” is a special case of “Release Control,” where the arrival
time or execution time may be additionaly regulated. Sporadic parameters include
a minimum interarrival time (MIT) which characterizes the expected frequency of
releases. When an arrival is accepted, the implementation behaves as if it calculates
the earliest time at which the next arrival could be accepted, by adding the current
MIT to the arrival time of this accepted arrival. The scheduler guarantees that each
sporadic schedulable it manages, is released at most once in any MIT.

Two mechanisms are specified for enforcing this rule: arrival-Time regulation and
release-time requlation. Arrival-time regulation controls the work-load by considering
the time between arrivals. When a new arrival occurs earlier than the expected next
arrival time then a MIT violation has occurred, and the scheduler acts to prevent
a release from occurring that would break the “one release per MIT” guarantee.
Release-time regulation controls when events are released. Under this policy all
arrivals that can be queued under the current QueueOverflowPolicy are accepted,
but the scheduler behaves effectively as if released schedulable objects were further
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constrained by a scheduling policy that restricts releases to at most one release per
MIT. As described in the following tables, three types of arrival-time regulation and
one type of release-time regulation are supported.

Arrival-Time Regulation

Policy Action on Violation
IGNORE | Silently ignore the violating arrival. The arrival is not
accepted, no release event occurs, and, when the arrival
was caused programmatically (such as by invoking fire on
an asynchronous event), the caller is not informed that the
arrival has been ignored.
EXCEPT | Throw a MITViolationException. The arrival is not ac-
cepted, and no release event occurs, but when the arrival
was caused programmatically, the caller will have MITVio-
lationException thrown.
REPLACE | The arrival is not accepted and no release event occurs.
When the completion associated with the last release event
in the queue has not yet occurred, and the deadline has not
been missed, then the release event time for that release
event is replaced with the arrival time of the new arrival and
any associated parameters overwritten. This will alter the
deadline for that release event. When the completion associ-
ated with the last release event has occurred, or the deadline
has already been missed, the behavior of the REPLACE
policy is equivalent to the IGNORE policy.

Release-Time Regulation

Policy | Action on Violation

SAVE | The arrival time is delayed until after the current MIT
interval. This policy is only able to delay the effective
release of a schedulable. The deadline of each release event
is always set relative to its arrival time. This policy might
not schedule the effective release of an asynchronous event
handler until after its deadline has passed. In this case, the
deadline miss handler is released at the deadline time even
though the related asynchronous event has not yet reached
its effective release. Once an arrival is queued, the SAVE
policy makes no direct use of the next expected arrival time,
but it maintains the value in case the MIT violation policy
is changed from SAVE to one of the arrival-time regulation
policies.
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The effective release time of a release event i is the earliest time that the handler
can be released in response to that release event. It is determined for each release
event based on the MIT policy in force at the release event time.

1. For IGNORE, EXCEPT and REPLACE the effective release time is the release

event time.

2. For SAVE the effective release time of release event 7 is the effective release

time of release event i-1 plus the current value of the MIT.
The scheduler will delay the release associated with the release event at the head of
the arrival time queue until the current time is greater than or equal to the effective
release time of that release event.

Changes to minimum interarrival time and the MIT violation policy take effect
immediately, but only affect the next expected arrival time, and effective release
time, for release events that occur after the change.

6.2.1.2.2 Releasing a Realtime Thread

The repeated release of a realtime thread is achieved by executing in a loop
and invoking the RealtimeThread.waitForNextRelease' methods, or its interrupt-
ible equivalent RealtimeThread.waitForNextReleaseInterruptible) within that
loop. For simplicity, unless otherwise stated, the semantics in this section apply to
both forms of this method.

1. A realtime thread’s release characteristics are determined by the following:

(a) the invocation of the realtime thread’s start method and the value of its
phasing policy parameter (if applicable);

(b) the action of the RealtimeThread methods waitForNextRelease, sched-
ule, and deschedule;

(¢) the occurrence of deadline misses and whether or not a miss handler is
installed; and

(d) whether the passing of time generates periodic release events or calls to
the release method generates aperiodic release events.

2. The initial release event depends on the type of release parameters given the
realtime thread:

(a) for a realtime thread with periodic parameters, the initial release event
occurs in response to the invocation of its start method in accordance
with the start time specified in its release parameters and its assigned
phasing policy—see PeriodicParameters and PhasingPolicy;

(b) For a realtime thread with aperiodic parameters, the initial release event
occurs immediately in response to the invocation of its start method.

!The method RealtimeThread.waitForNextPeriod has been replaced by Realtime-
Thread.waitForNextRelease as of RTSJ 2.0. The same goes for its interruptible equivalent.
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3. Changes to the start time in a realtime thread’s PeriodicParameters object
only have an effect on its initial release time. Consequently, when a Periodic-
Parameters object is bound to multiple realtime threads, a change in the start
time may affect all, some or none, of those threads, depending on whether or
not start has been invoked on them.

4. When subsequent release events occur also depends on the type of release
parameters given to the realtime thread:

(a) for periodic realtime threads, each period (and hence each release) falls
due, except as described below (in 6d), at regular intervals such that when
the it" release event occurred at a time ¢;, the i + 1 release event occurs at
the time t; + T}, where T; is the value of the period stored in the realtime
thread’s PeriodicParameters object at the time ¢;;

(b) for aperiodic realtime threads, a release occurs with each call of the release
method, except as described below (in 6d); and

(c) for sporadic realtime threads, a release occurs with each call of the release
method, except, as described below (in 6d), when additional regulation is
required to enforce MIT as defined in Sporadic Release Control below.

5. Each release of an aperiodic realtime thread is an arrival.

(a) When the thread has release parameters of type ReleaseParameters,
then the arrival may become a release event for the thread according to
the semantics given in “General Release Control” below.

(b) When the thread has release parameters of type SporadicParameters,
then the arrival may become a release event for the thread according to
the semantics given in “Sporadic Release Control” below.

6. The implementation should behave effectively as if the following state variables
were added to a realtime thread’s state,

boolean deschedule,

integer pendingReleases,

integer missCount, and

boolean 1lastReturn;

and manipulated by the actions as described below.

(a) Initially

deschedule = false,
pendingReleases =0,
missCount =0, and
lastReturn = true.

(b) The function of the deschedule method depends on the current state of
the realtime thread.
i. When current state is a blocked state, either blocked-for-release-event
or blocked-for-missed-release, it sets the value of deschedule to true
and sets the thread’s state to descheduled.
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ii. When the current state is not a blocked state, it just sets the value
of deschedule to true.

(c) The function of the reschedule method also depends on the current state
of the realtime thread.

i. When the realtime thread is in the descheduled state, it sets the value
of deschedule to false, sets the values of pendingReleases and
missCount to zero, changes the thread’s state to blocked-for-release-
event, and tells the cost monitoring and enforcement system to reset
for this thread.

ii. When the realtime thread is not in the Descheduled state, it just sets
the value of deschedule to false.

(d) A realtime thread that is in the descheduled state will not receive any
further release events until after it has been rescheduled by a call to
reschedule; this means that no deadline misses can occur.

(e) What happens when a release event occurs depends on the current state.

i. When the state of the realtime thread is descheduled, do nothing.

ii. When the state is blocked-for-release-event, i.e., it is waiting in wait-
ForNextRelease, increment the value of pendingReleases, inform
cost monitoring and enforcement that the next release event has
occurred, and notify the thread to make it eligible for execution;

iii. Otherwise, when the thread is in a release, increment the value of
pendingReleases, and inform cost monitoring and enforcement that
the next release event has occurred.

(f) On each deadline miss, one of two things happen:

i. when the realtime thread has a deadline miss handler, the value of
deschedule is set to true, the handler is atomically released with
its fireCount increased by the value of missCount + 1, and zero for
missCount;

ii. otherwise, one is added to the missCount value.

(g) When the waitForNextRelease method is invoked by the current realtime
thread there are three possible behaviors depending on the value of
missCount and lastReturn.

i. When missCount is zero, any pending parameter changes are applied,
cost monitoring and enforcement are informed of completion, and then
the thread waits while deschedule is true, or pendingReleases is
zero. Then the lastReturn value is set to true, pendingReleases
is decremented, and true is returned.

ii. When missCount is greater than zero and the lastReturn value is
false, completion occurs: the missCount value is decremented; then
any pending parameter changes are applied, pendingReleases is
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1ii.

decremented, cost monitoring and enforcement is informed that the
realtime thread has completed, and false is returned;

Otherwise, when missCount is greater than zero and the lastRe-
turn value is true, the missCount value is decremented and the
lastReturn value is set to false and false is returned.

7. An invocation of the RealtimeThread.waitForNextRelease method with
release parameters, where ReleaseParameters.isRousable returns true, be-
haves as described above with the following differences.

(a) When the invocation commences with an instance of AsynchronouslyIn-
terruptedException (AIE) is pending on the realtime thread, then the
invocation immediately completes abruptly by throwing that pending in-
stance as an InterruptedException. When this occurs, the most recent
release has not completed. When the pending instance is the generic AIE
instance, then the interrupt state of the realtime thread is cleared.

(b) What happens when an instance of AIE becomes pending on a realtime
thread is dependent on the state of the thread.

1.

ii.

iii.

iv.

V.

When the thread is descheduled, the AIE remains pending until the
realtime thread is no longer descheduled. The associated reschedule
acts as a release event. Execution then continues as in 7c¢ where
the time value used as t;,; is the time at which the schedulable was
rescheduled.

When it is blocked-for-release-event, then this acts as a release event.
Execution then continues as in 7c, where the time value used as t;,;
is the time at which the AIE becomes pending.

i. The realtime thread is made eligible for execution.
. Upon execution, the invocation completes abruptly by throwing the

pending AIE instance as an InterruptedException. When the
pending instance is the generic AIE instance, the interrupt state of
the realtime thread is cleared.

The deadline associated with this release is the time t;,;4+D;,:, where
D;,¢ is the value of the deadline stored in the realtime thread’s release
parameters object at the time t;,;.

The next release time for the realtime thread will be t;,;+7T;,:, where
T;n: is the value of the period stored in the realtime thread’s release
parameters object at the time t;,;.

Cost monitoring and enforcement is informed of the release event.

When the thrown AIE instance is caught, the AIE becomes pending again (as
per the usual semantics for AIE) until it is explicitly cleared.

8. Changes to release parameter types are treated as a pseudo RESTART of the
realtime thread and
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(a) any old pending releases are cleared,
(b) any old arrival queue is flushed,
(c) any outstanding call to deschedule is cleared, and
(d) any outstanding deadline misses are cleared.
9. The effect of the change on the thread falls into one of four main cases.
(a) When the realtime thread is not waiting for the next release event and is
not descheduled,
i. there is no effect until the end of current release, and
ii. when the change occurs, it is a pseudo restart of the thread, i.e., when
the new parameters are aperiodic, the release is immediate and when
the parameters are periodic, the periodic start time algorithm is used.
(b) When the realtime thread is not waiting for the next release event, but
there is an outstanding deschedule,
i. there is an immediate “schedule” of the thread,
ii. there is no further effect until end of current release, and
iii. when change occurs, it is a pseudo restart of the thread, i.e., when
the new parameters are aperiodic, the release is immediate, and when
the new parameters are periodic, the periodic start time algorithm is
used.
(¢) When the realtime thread state is blocked-for-release-event, i.e., it is wait-
ing in waitForNextRelease, and the release parameter type is changed,
i. from Periodic to Aperiodic, at the next periodic release event occurs,
the thread becomes aperiodic with an immediate release, or
ii. from Aperiodic to Periodic, there is an immediate pseudo restart of
the thread using the periodic start time algorithm.
(d) When the realtime thread state is descheduled and the of release parame-
ters is changed,

i. the change is from Periodic to Aperiodic, there is an immediate
“schedule” of the thread, and when the next periodic release event
occurs, the thread becomes aperiodic with an immediate release, or

ii. the change is from Aperiodic to Periodic, there is an immediate
“schedule” of the thread and there is an immediate pseudo restart of
the thread using the periodic start time algorithm.

o

6.2.1.2.3 UML Diagrams for Realtime Thread Releases

The three UML diagrams in Figures 6.1, 6.2, and 6.3, are provided to illustrate
the foregoing rules for releasing realtime threads. The first two figures are for a
thread without a deadline miss handler. The first is a UML sequence diagram of
some examples of Realtime Thread releases. The second is a UML state chart of the
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Figure 6.1: Sequence Diagram of Some Example Realtime Thread Releases
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Figure 6.2: A State Chart for a Realtime Thread without a Deadline Miss Handler
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Figure 6.3: A State Chart for a Realtime Thread with a Deadline Miss Handler
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release process for a realtime thread. The third is a UML state chart of the release
process for a realtime thread with a deadline miss handler.

In Figure 6.1, a yellow background marks the execution of a normal release, an
orange background marks the execution of a miss handler, and a red background
marks the execution of a missed release. Both the miss handler and all missed
releases are eligible to run as soon as the previous release is finished. A normal
release, which encounters a deadline miss during its execution, is not complete until
its miss handler completes.

In the other two figures, a yellow background marks releases and a pink background
marks blocked states. There are three release states: normal release, miss handler,
and missed release. They can only be left by a call to waitForNextRelease or its
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equivalent. The miss handler state is part of a normal release that misses its deadline
during the release. There are two blocked-for-release-event states: blocked for normal
release and blocked for missed release. It is only in these states that descheduling
can occur, because only completion occurs upon their entry. In addition, the blocked
for missed release is a ephemeral state, since the deadline miss has already occurred
before the state is entered, so state is left immediately. It is there to enable all
actions that occur on completion.

6.2.1.2.4 Releasing an Asynchronous Event Handlers

Asynchronous event handlers can be associated with one or more asynchronous
events. When an asynchronous event is fired, all handlers associated with it are
released, according to the semantics below.

1. Each firing of an associated asynchronous event is an arrival. Unless the handler
has release parameters of type SporadicParameters, the arrival becomes a
release event for the handler in strict accordance with the semantics given in
“General Release Control” above. When the handler has release parameters of
type SporadicParameters, the arrival becomes a release event for the handler
in strict accordance with the semantics given in “Sporadic Release Control”
above.

2. For each release event that occurs for a handler, an entry is made in the
arrival-time queue and the handler’s fireCount is incremented by one.

3. Initially, a handler is considered to be blocked-for-release-event and its fire-
Count is zero.

4. Releases of a handler are serialized by having its handleAsyncEvent method
invoked repeatedly while its fireCount is greater than zero:

(a) before invoking handleAsyncEvent, the fireCount is decremented and
the front entry (when still present) removed from the arrival-time queue;

(b) each invocation of handleAsyncEvent, in this way, is a release;

(¢) the return from handleAsyncEvent is the completion of a release; and

(d) processing of any exceptions thrown by handleAsyncEvent occurs prior
to completion.

5. The deadline for a release is relative to the release event time and determined
at the release event time according to the value of the deadline contained
in the handler’s release parameters. This value does not change, except as
described previously for handlers using a REPLACE policy for MIT violation
or arrival-time queue overflow.

6. The application code can directly modify the fireCount.

(a) The getAndDecrementPendingFireCount method decreases the fire-
Count by one (when it is greater than zero), and returns the old value.
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This removes the front entry from the arrival-time queue but otherwise
has no effect on the scheduling of the current schedulable, nor the handler
itself. Any data parameter passed with the associated fire request is lost.

(b) The getAndClearPendingFireCount method is functionally equivalent to
invoking getAndDecrementPendingFireCount until it returns zero, and
returning the original fireCount value. Any data parameters passed with
the associated fire requests are lost.

7. The scheduler may delay the invocation of handleAsyncEvent to ensure that
the effective release time honors any restrictions imposed by the MIT violation
policy, when applicable, of that release event.

8. Cost monitoring and enforcement for an asynchronous event handler interacts
with release events and completions as previously defined with the added
requirement that at the completion of handleAsyncEvent, when the fireCount
is now zero, the cost monitoring and enforcement system is told to reset for
this handler.

9. The value of ReleaseParameters.isRousable controls whether a call to
Schedulable.interrupt causes a premature release or only affects a running
schedulable.

(a) When interrupt is called on an instance of Schedulable and the schedul-
able is running, the interrupt is made pending and as soon as Al code is
entered, an AIE is thrown.

(b) Depending on the value of the isRousable property, start will prematurely
complete, i.e., start user code, or simply wait for the start time to occur.

(c) Depending on the value of the isRousable property, the next release of
a firable handler, i.e., an enabled instance of AsyncBaseEventHandler
which is attached to an instance of AsyncBaseEvent, will occur immedi-
ately or not, but in both cases an AIE will be pending until the next Al
method.

6.2.1.3 Dispatching

The execution scheduling semantics described in this section are defined in terms of
a conceptual model that contains a set of queues of schedulables that are eligible for
execution. There is, conceptually, one queue for each scheduler eligibility on each
processor. No implementation structures are necessarily implied by the use of this
conceptual model. It is assumed that no time elapses during operations described
using this model, and therefore no simultaneous operations are possible.

The RTSJ dispatching model specifies its dispatching rules in terms of task priority
for priority schedulers, but other schedulers should act similarly with respect to their
own scheduler eligibility levels.

1. A Schedulable can become a running schedulable only when it is ready and
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10.

one of the processors in its requested affinity is available.

. When two schedulables have different active priorities and request the same

processor, the schedulable with the higher active priority will always execute
in preference to the schedulable with the lower value when both are eligible for
execution.

. Processors are allocated to schedulables based on each schedulable’s active

priority and their associated affinity.

Schedulable dispatching is the process by which one ready schedulable is
selected for execution on a processor. This selection is done at certain points
during the execution of a schedulable called schedulable dispatching points.

. A schedulable reaches a schedulable dispatching point whenever it becomes

blocked, when it terminates, or when a higher priority schedulable becomes
ready for execution on its processor. That is, a schedulable that is executing
will continue to execute until it either blocks, terminates or is preempted by a
higher-priority schedulable.

. The dispatching policy is specified in terms of ready queues and schedulable

states. The ready queues are purely conceptual; there is no requirement that
such lists physically exist in an implementation. A ready queue is an ordered
list of ready schedulable objects. The first position in a queue is called the
head of the queue, and the last position is called the tail of the queue.

A schedulable is ready when it is in a ready queue, or when it is running. Each
processor has one ready queue for each priority value. At any instant, each
ready queue of a processor contains exactly the set of schedulables of that
priority that are ready for execution on that processor, but are not running on
any processor; that is, those schedulables that are ready, are not running on
any processor, and can be executed using that processor.

. Each processor has one running schedulable, which is the schedulable currently

being executed by that processor. Whenever a schedulable running on a
processor reaches a schedulable dispatching point, a new schedulable object
is selected to run on that processor. The schedulable selected is the one at
the head of the highest priority nonempty ready queue for that processor; this
schedulable is then removed from all ready queues to which it belongs.

. In a multiprocessor system, a schedulable can be on the ready queues of more

than one processor. At the extreme, when several processors share the same set
of ready schedulables, the contents of their ready queues are identical, and so
they can be viewed as sharing one ready queue, and can be implemented that
way. Thus, the dispatching model covers multiprocessors where dispatching
is implemented using a single ready queue, as well as those with separate
dispatching domains.

The dispatching mechanism must enable the preemption of the execution of
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12.

13.

14.

15.

schedulables and Java threads with a bounded delay at a point not governed
by the preempted object. The bound on this delay may be implementation-
defined, and could be the time to the next point in execution that the heap is
in a consistent state or some similar restriction. The implementation should
document this bound.

A schedulable that is preempted by a higher priority schedulable is placed in
the queue for its active priority, at a position determined by the implementation.
The implementation must document the algorithm used for such placement. It
is recommended that a preempted schedulable be placed at the front of the
appropriate queue.

A realtime thread that performs a yield() is placed at the tail of the queue
(dictated by its affinity) for its active priority level.

A blocked schedulable that becomes eligible for execution is added to the tail
of the queues (dictated by its affinity) for that priority. This behavior also
applies to the initial release of a schedulable.

A schedulable whose active priority is raised as a result of explicitly setting its
base priority (through the PriorityParameters setPriority() method, the
RealtimeThread setSchedulingParameters() method, or Thread’s setPri-
ority() method) is added to the tail of the queues (dictated by its affinity)
for its new priority level.

Queuing when priorities are adjusted by priority inversion avoidance algorithms
is governed by semantics specified in the Synchronization chapter.

6.2.1.4 Cost Monitoring and Cost Enforcement

The cost of a schedulable is defined by the value returned by invoking the getCost
method of the schedulable’s release parameters object. When a schedulable is initially
released, its current CPU consumption is zero, and as the schedulable executes, the
current CPU consumption increases. For cost monitoring, an implementation must
conform to the following requirements.

1.

3.

4.

108

If, at any time, due to either execution of the schedulable or a change in the
schedulable’s cost, the current CPU consumption becomes greater than or
equal to the current cost of the schedulable, then a cost overrun is triggered.

The implementation is required to document the granularity at which the
current CPU consumption is updated.

When a cost overrun is triggered, the cost overrun handler associated with the
schedulable, if any, is released. No further action is taken.

The current CPU consumption is reset to zero when the schedulable is next
released (i.e. it moves from the blocked-for-release-event state to the eligible-
for-execution state).
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When cost enforcement is supported, an implementation must conform to the
following requirements.

1. When a cost overrun is triggered, in addition to releasing any cost overrun
handler, the following actions must be performed.

(a) When the most recent release of the schedulable is the 7' release, and the
1 + 1 release event has not yet occurred, the following must hold.

i. When the state of the schedulable is either executing or eligible-for-
execution, the schedulable is placed into the state blocked-by-cost-
overrun. There may be a bounded delay between the time at which a
cost overrun occurs and the time at which the schedulable becomes
blocked-by-cost-overrun.

ii. Otherwise, the schedulable must have been blocked for a reason
other than blocked-by-cost-overrun. In this case, the state change to
blocked-by-cost-overrun is left pending; when the blocking condition
for the schedulable is removed, then its state changes to blocked-by-
cost-overrun. There may be a bounded delay between the time at
which the blocking condition is removed and the time at which the
schedulable becomes blocked-by-cost-overrun.

(b) When the most recent release of the schedulable is the i release, and the
1 + 1 release event has occurred, the current CPU consumption is set to
zero, the schedulable remains in its current state, and the cost monitoring
system considers the most recent release to be the ¢ + 1 release.

2. When the " release event occurs for a schedulable, the action taken depends
on the state of the schedulable.

(a) When the schedulable is blocked-by-cost-overrun then the cost monitoring
system considers the most recent release to be the i** release, the current
CPU consumption is set to zero and the schedulable is made eligible for
execution,;

(b) When the schedulable is blocked for a reason other than blocked-by-cost-
overrun then

i. when there is a pending state change to blocked-by-cost-overrun then
the pending state change is removed, the cost monitoring system
considers the most recent release to be the i release, the current
CPU consumption is set to zero, and the schedulable remains in its
current blocked state;

ii. otherwise, no cost monitoring action occurs.

(¢) When the schedulable is not blocked, no cost monitoring action occurs.

3. When the " release of a schedulable completes, and the cost monitoring system
considers the most recent release to be the i release, then the current CPU
consumption is set to zero and the cost monitoring system considers the most
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recent release to be the i 4+ 1 release. Otherwise, no cost monitoring action
occurs.

4. Changes to the cost parameter take effect immediately.

(a) When the new cost is less than or equal to the current CPU consumption,
and the old cost was greater than the current CPU consumption, then a
cost overrun is triggered.

(b) When the new cost is greater than the current CPU consumption,

i. in the case that the schedulable is blocked-by-cost-overrun, the sched-
ulable is made eligible for execution;

ii. in the case that the schedulable is blocked for a reason other than
blocked-by-cost-overrun and there is a pending state change to blocked-
by-cost-overrun, the pending state change is removed;

iii. in all other cases, no cost monitoring action occurs.

5. When a schedulable changes state to blocked-by-cost-overrun, it must behave
as if its base priority has been reduced to the enforced priority. In other words,
unless its active priority has been modified by a priority inversion avoidance
algorithm as defined in this specification, it should not be scheduled on any
CPU. Upon moving out of this state, it will resume execution as if its base
priority had been restored to its configured base priority.

6. The state of the cost monitoring system for a schedulable can be reset by
the scheduler (see 6.2.1.2.2 in the Release of a Realtime Thread section,
below). When the most recent release of the schedulable is considered to be
the m' release and the most recent release event for the schedulable was the
n'" release event (where n > m), a reset causes the cost monitoring system to
consider the most recent release to be the n'" release, and to zero the current
CPU consumption.

6.2.2 Priority Schedulers

This specification defines a class of scheduler that are priority preemptive. Their
semantics assumes a uniprocessor or shared memory multiprocessor execution envi-
ronment. Two subclasses are defined: the base scheduler and a round-robin scheduler.

The semantics for the base scheduler is priority preemptive with run to
completion semantics, also known as first-in-first-out (FIFO) semantics: FirstIn-
FirstOutScheduler. The base scheduler supports the execution of all schedulables.
When a schedulable managed by the base scheduler is scheduled, it will run either
until it blocks (as on a monitor or for some I/O operation), voluntarily relinquishes
the CPU (as for sleep), or is preempted by a higher priority task.

The round-robin scheduler is a fixed-quantum, fixed-priority, priority-preemptive
scheduler that interacts predictably with the base scheduler: RoundRobinScheduler.
The time at which a quantum expires may be calculated either from the last task
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switch or on a heartbeat. It uses the PriorityParameters class for the configuration
of schedulable priorities. It may not be present on all systems, but if it is present
then it will obey the semantics specified here. When a schedulable managed by the
round-robin scheduler is scheduled, it will run no longer than until it blocks (as on
a monitor or for some I/O operation), it voluntarily relinquishes the CPU (as for
sleep), or it is preempted by a higher priority task, as with the base scheduler, but
also yields when its quantum has expired.

The scheduler is not responsible for ensuring that a release, such as an event
handler, will complete within the quantum. A release which would run longer than
its quantum will be rescheduled at the end of that quantum, when another task with
the same priority is ready to run, even if it has not completed. When this is not the
desired behavior, the FirstInFirstOutScheduler should be used instead.

Both schedulers share the same base class: PriorityScheduler.

6.2.2.1 Priorities

Not only the presence or absence of a time quantum, but also the semantics for
scheduling eligibility differ between the base (FIFO) and round-robin schedulers.
Both schedulers use a numerical priority value to determine scheduling eligibility.
A higher value means a higher scheduler eligibility and a lower one means a lower
scheduler eligibility. Although the values themselves have the same relative meaning
between the two schedulers, the details of their semantics vary.

6.2.2.1.1 First-In-First-Out-Scheduler

The base scheduler is a priority scheduler with the following requirements.

1. The base scheduler must support at least 28 distinct values (realtime pri-
orities) that can be stored in an instance of PriorityParameters in addi-
tion to the values 1 through 10 required to support the priorities defined by
java.lang.Thread.

2. The realtime priority values must be greater than 10, and they must include
all integers from the base scheduler’s getMinPriority() value to its getMax-
Priority() value inclusive.

3. Higher priority values in an instance of PriorityParameters have a higher
execution eligibility.

4. The 10 priorities defined for java.lang.Thread must effectively have lower
execution eligibility than the realtime priorities.

5. When the round-robin scheduler is present, the base scheduler must support
at least one priority value numerically greater than the maximum allowable
round-robin priority.
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6. For realtime scheduling, the base priority of each Schedulable under the
control of the base scheduler must be from the range of realtime priorities. A
Schedulable with a priority in the java.lang.Thread range will be scheduled
as if it were an instance of java.lang.Thread.

7. Assignment of any of the realtime priority values to any Schedulable controlled
by the base priority scheduler is legal. It is the responsibility of application
logic to make rational priority assignments.

8. The base scheduler does not use the importance value in the ImportancePa-
rameters subclass of PriorityParameters.

9. Calling the java.lang.Thread.setPriority on a thread can only be used to
set the thread’s priority to a conventional Java priority (1-10).

10. For schedulables managed by the base scheduler, the implementation must not
change the execution eligibility for any reason other than

(a) the implementation of a priority inversion avoidance algorithm requires it,
or

(b) as a result of a program’s request to change the priority parameters
associated with one or more schedulables; e.g., by changing a value in a
scheduling parameter object that is used by one or more schedulables, or
by using setSchedulingParameters() to give a schedulable a different
SchedulingParameters value.

11. Use of Thread.setPriority(), or any of the methods defined for schedula-
bles, or any of the methods defined for parameter objects must not affect
the correctness of the priority inversion avoidance algorithms controlled by
PriorityCeilingEmulation and PriorityInheritance—see Chapter?7.

12. When schedulable A, managed by the base scheduler, creates Java thread B,
then the initial base priority of B is the minimum of the priority value returned
by the getMaxPriority method of B’s java.lang.ThreadGroup object and
the priority of A.

13. PriorityScheduler.getNormPriority() shall be set to

1 ((PriorityScheduler.getMaxPriority() -
PriorityScheduler.getMinPriority()) / 3) +
3 PriorityScheduler.getMinPriority()

[\)

14. Hardware priorities, where supported, have values above the base scheduler’s
priority range (see Section 12.2.4).

6.2.2.1.2 The Round-Robin Scheduler

Priorities in the round-robin scheduler are as in the base scheduler, and priority
values are numerically equivalent between the two. Schedulables managed by the
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round-robin scheduler behave as if they are scheduled from the same FIFO queue as
schedulables managed by the base scheduler of the same numeric priority, except
that they will consume no more than one quantum of execution time before being
moved to the tail of the queue. Implementations are permitted to use a single, shared
queue for this purpose.

If the round-robin scheduler is present, its priorities will have the same properties

as the base scheduler, except for the following.

1. The round-robin scheduler must support at least one priority, and may support
an arbitrarily large number of priorities.

2. All round-robin priorities must be greater than 10, and they must include
all integers from the round-robin scheduler’s getMinPriority () value to its
getMaxPriority() value, inclusive.

3. The round-robin scheduler does not use the importance value in the Impor-
tanceParameters subclass of PriorityParameters.

4. RoundRobinScheduler.getNormPriority() shall be set to

1 ((RoundRobinScheduler.getMaxPriority() -
2  RoundRobinScheduler.getMinPriority()) / 3) +
3 RoundRobinScheduler.getMinPriority()

The round-robin scheduler may provide priorities strictly lower than that of the
base scheduler or a set of priorities partially or entirely overlapping with the priorities
provided by the base scheduler.

6.2.3 Associating Schedulables with Schedulers

The Scheduler associated with a Schedulable at the time it is started is derived from
its configuration and the configuration of the task (an instance of Thread or Sched-
ulable) that started it. The start time of a RealtimeThread is the time at which its
RealtimeThread.start () method is invoked, and the start time of an event handler
is the time at which it is attached to an event with AsyncBaseEvent.addHandler ().
For the following discussion, let si be the instance of Schedulable being started,
parent be the task from which it is started, ns be some arbitrary scheduler, and
sg be the SchedulingGroup instance associated with si. The Scheduler for si is
determined as follows and in the order stated.

1. When Scheduler.setScheduler(ns) has been used to explicitly configure a
scheduler for si, that scheduler will be the scheduler associated with si.

2. When parent is an instance of Schedulable and the scheduler associated with
parent is an instance of the class returned by sg.getScheduler(), then the
scheduler associated with si will be the scheduler associated with parent.

3. When parent is not an instance of Schedulable (i.e., it is a Java Thread)
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but is currently scheduled with a realtime Scheduler and that scheduler is
an instance of the class returned by sg.getScheduler (), then si will use the
scheduler currently associated with parent.

4. When the default scheduler is an instance of the class returned by

sg.getScheduler (), then si will use the default scheduler.

5. When none of these conditions hold, a scheduler cannot be determined for si

and an IllegalStateException will be thrown.

Schedulables must always have a compatible Scheduler and SchedulingPar-
ameters any time these are explicitly configured. This means that appropriate
configuration objects must be passed in at construction time, and that all later
changes must be compatible; if both the Scheduler and SchedulingParameters
must be changed in such a way that neither is compatible with the current configu-
ration, setScheduler may be called on the Schedulable with both a scheduler and
compatible parameters passed at the same time.

6.2.4 Managing Groups of Schedulables

Conventional Java provides the class ThreadGroup to manage groups of threads.
Only minimal functionality is provided: limiting priority, setting daemon status, and
interrupting a group of threads at once. RTSJ extends this concept in two ways:
limiting CPU affinity on an instance of ThreadGroup through the Affinity class
and providing subclasses for managing Schedulables.

6.2.4.1 Scheduling Groups

The SchedulingGroup subclass of ThreadGroup provides a means of constraining
the possible scheduling parameters and scheduler of tasks. The setMaxPriority
method on ThreadGroup only pertains to tasks scheduled in the conventional Java
range (1-10), and not to tasks scheduled with a realtime scheduler. To ensure that
this works and that conventional thread groups must not need to be scope aware, an
implementation must enforce several restrictions:
1. only tasks in a scheduling group may use a realtime scheduler,
2. instances of Schedulable may only be created in a scheduling group,
3. the root ThreadGroup instance must be an instance of SchedulingGroup,
4. the ThreadGroup instance of the initial thread must be an instance of Schedu-
lingGroup,
5. an instance of SchedulingGroup may not have a parent that is not an instance
of SchedulingGroup, and
6. all children of a SchedulingGroup allocated in a ScopedMemory must be in-
stances of SchedulingGroup.
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Furthermore, the enumeration methods on a scheduling group are aware of scoped
memory and the referential integrity restrictions discussed in Chapter 11, Alternative
Memory Areas. The enumeration methods of SchedulingGroup will not return
references to any descendants allocated in a ScopedMemory to which references may
not be made from the current allocation context. That is, if a newly allocated object
in the current allocation context could not safely hold a reference to a descendant of
the ScopedMemory, that descendant will not be included in the array returned by
enumerate (). For processing such SchedulingGroups, a visitor must be used.

The maximum priority and scheduler restrictions on SchedulingGroup and
ThreadGroup apply only to the base priority of a task belonging to that group.
Priority inversion avoidance algorithms (see Chapter 7, Synchronization) may cause
a task to temporarily obtain a priority notionally higher than its maximum base
priority as specified in its associated instance of ThreadGroup.

Changing the maximum eligibility allowed to tasks in a SchedulingGroup (via the
SchedulingGroup.setMaxEligibility(SchedulingParameters) method) takes ef-
fect immediately, and will do the following.

1. For any task t in the affected SchedulingGroup that is associated with a
SchedulingParameters not allowable under the new eligibility restriction, set
the SchedulingParameters associated with t to the SchedulingParameters
currently being set by setMaxEligibility().

2. For any SchedulingGroup child sg of the affected SchedulingGroup that has
a maximum eligibility not allowed under the new eligibility restriction, set the
maximum eligibility of sg to the SchedulingParameters currently being set
by setMaxEligibility(). Note that this will recursively effect the tasks and
SchedulingGroup children in sg.

6.2.4.2 Processing Groups

A processing group is defined by an instance of the ProcessingGroup subclass of
SchedulingGroup and each schedulable that is bound to that parameter object is
called a member of that processing group. A processing group instance acts as a
proxy for its members, but enforcement does have an effect on the execution of
member threads. As a subclass of ThreadGroup, SchedulingGroup instances are
members of the thread group hierarchy of thread groups in the system. Since a
SchedulingGroup may have another SchedulingGroup instance as its ancestor, a
task might be in more than one scheduling group, and hence can be in more than
one processing group.
1. The deadline of a processing group is defined by the value returned by invoking
the getDeadline method of the processing group object.
2. A deadline miss for the processing group is triggered when any member of the
processing group consumes CPU time at a time greater than the deadline for
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the most recent release of the processing group.
When a processing group misses a deadline:

(a) when the processing group has a miss handler, it is released for execution,
(b) otherwise, the processing group has no miss handler, no action is taken.

The cost of a processing group is defined by the value returned by invoking
the getCost method of the processing group object.

When a processing group is initially released, its current CPU consumption is
zero and as the members of the processing group execute, the current CPU
consumption increases. The current CPU consumption is set to zero in response
to certain actions as described below.

Whenever, due to either execution of the members of the processing group or
a change in the group’s cost, the current CPU consumption becomes greater
than or equal to the current cost of the processing group, then a cost overrun
is triggered. The implementation is required to document the granularity at
which the current CPU consumption is updated.

When a cost underrun handler has been set, it is released at the end of any
cost period, where the minimal cost has not been consumed by the tasks in
the group.

When the affinity of the group contains more than one processor, the granularity
enforced may be as large as the base granularity times the number of processors
in the group’s affinity.

When a cost overrun is triggered, the cost overrun handler associated with the
processing group, if any, is released.

When more than one processing group monitoring a given task or set of tasks
reach their limits at the same time, all corresponding handlers are released in
an unspecified order.

Any group entering enforcement between a given group and the root enforces
that group.

When cost enforcement is supported, enabled, and triggered, the processing
group enters the enforced state. For each member of the processing group:

(a) the schedulable is placed into the enforced state; and

(b) when a schedulable is in the enforced state, the base scheduler schedules
that schedulable effectively as if it has a base priority lower than that of
a notional idle task.

When the release event occurs for a processing group, the action taken depends
on the state of the processing group.

(a) When the processing group is not in the enforced state, the current CPU
consumption for the group is set to zero.

(b) Otherwise, the processing group is in the enforced state. It is removed
from the enforced state, the current CPU consumption of the group is
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set to zero, and each member of the group is removed from the enforced
state.
14. Changes to the cost, minimum and maximum, take effect immediately.

(a) When the new cost is less than or equal to the current CPU consumption,
and the old cost was greater than the current CPU consumption, a cost
overrun is triggered.

(b) When the new cost is greater than the current CPU consumption there
are two case:

i. when the processing group is enforced, then the processing group
behaves as defined in semantic 13;
ii. otherwise, no cost monitoring and enforcement action occurs.
15. Changes to other parameters take place as follows:

(a) changes to start have no effect;

(b) changes to period take effect at each release, so the next period is set
based on the current value of the processing group’s period;

(c) changes to deadline take effect at each release, so the next deadline is
set based on the current value of the processing group’s deadline;

(d) changes to OverrunHandler take effect at each release, so the over-
runHandler is set based on the current value of the processing group’s
overrunHandler;

(e) changes to MissHandler take effect at each release, so the missHandler
is set based on the current value of the processing group’s missHandler;
and

(f) changes to UnderrunHandler take effect at each release, so the under-
runHandler is set based on the current value of the processing group’s
underrunHandler.

16. Changes to the membership of the processing group take effect immediately.
17. The start time for the processing group may be relative or absolute.

(a) When the start time is absolute, the processing group behaves effectively
as if the initial release time were the start time.

(b) When the start time is relative, the initial release time is computed relative
to the time that the processing group is constructed.

Note that until a processing group starts (i.e., its start time has been reached) it
will perform no cost monitoring or enforcement on the Schedulables that it contains.
Once a processing group is started, it behaves effectively as if it runs continuously
until the defining ProcessingGroup object is freed. The start time does not affect
limits placed on the group that are inherited from ThreadGroup or SchedulingGroup,
such as affinity and scheduling parameters.

RTSJ 2.0 (Draft 57) 117



6 Scheduling BoundRealtimeExecutor

6.3 javax.realtime

6.3.1 Interfaces

6.3.1.1 BoundRealtimeExecutor

public interface BoundRealtimeExecutor

Description

All objects that encapsulate execution. This type includes Schedulable and
javax.realtime.device.InterruptServiceRoutine. It is used by Affinity
to remove the need to have a reference into the javax.realtime.device package.

Available since RTSJ 2.0

6.3.1.1.1 Methods

get Affinity

Signature
public javax.realtime.Affinity
getAffinity ()

Description

Determine the affinity set instance associated with task.

Returns
The associated affinity.

set Affinity (Affinity)

Signature
public void
setAffinity(Affinity set)
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throws IllegalArgumentException,
ProcessorAffinityException,
NullPointerException

Description

Set the processor affinity of a task to set with immediate effect.

Parameters
set—is the processor affinity
Throws
IllegalArgumentException—when the intersection of set the affinity of any
ThreadGroup instance containing task is empty.

ProcessorAffinityException—is thrown when the runtime fails to set the affinity
for platform-specific reasons.

NullPointerException—when set is null.

6.3.1.2 BoundSchedulable

public interface BoundSchedulable

Interfaces
javax.realtime.Schedulable
javax.realtime.BoundRealtimeExecutor

Description

A marker interface to provide a type safe reference to all schedulables that are
bound to a single underlying thread. A RealtimeThread is by definition bound.

Available since RTSJ 2.0

6.3.1.3 Schedulable

public interface Schedulable

Interfaces
Runnable
javax.realtime.Timable
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Description

Handlers and other objects can be dispatched by a Scheduler when they provide
a run() method and the methods defined below. The Scheduler uses this
information to create a suitable context to execute the run() method.

6.3.1.3.1 Methods

getMemoryParameters

Signature
public javax.realtime.MemoryParameters
getMemoryParameters ()

Description

Gets a reference to the MemoryParameters object for this schedulable.

Returns
a reference to the current MemoryParameters object.

setMemoryParameters(MemoryParameters)

Signature
public javax.realtime.Schedulable
setMemoryParameters (MemoryParameters memory)

Description

Sets the memory parameters associated with this instance of Schedulable.
This change becomes effective at the next allocation; on multiprocessor
systems, there may be some delay due to synchronization between processors.

Parameters
memory—A MemoryParameters object which will become the memory parameters
associated with this after the method call. When null, the default value is
governed by the associated scheduler; a new object is created when the default
value is not null. (See PriorityScheduler.)
Throws
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IllegalArgumentException—when memory is not compatible with the schedul-
able’s scheduler. Also when this schedulable may not use the heap and memory
is located in heap memory.

IllegalAssignmentError—when the schedulable cannot hold a reference to mem-
ory, or when memory cannot hold a reference to this schedulable instance.

Returns
this

Available since RTSJ 2.0 returns itself

getReleaseParameters

Signature
public javax.realtime.ReleaseParameters
getReleaseParameters()

Description

Gets a reference to the ReleaseParameters object for this schedulable.

Returns
a reference to the current ReleaseParameters object.

setReleaseParameters(ReleaseParameters)

Signature
public javax.realtime.Schedulable
setReleaseParameters(ReleaseParameters release)

Description

Sets the release parameters associated with this instance of Schedulable.

This change becomes effective under conditions determined by the scheduler
controlling the schedulable. For instance, the change may be immediate or it may
be delayed until the next release of the schedulable. The different properties of
the release parameters may take effect at different times. See the documentation
for the scheduler for details.

Parameters
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release—A ReleaseParameters object which will become the release parameters
associated with this after the method call, and take effect as determined by
the associated scheduler. When null, the default value is governed by the
associated scheduler; a new object is created when the default value is not
null. (See PriorityScheduler.)

Throws

IllegalArgumentException—when release is not compatible with the associated
scheduler. Also when this schedulable may not use the heap and release is
located in heap memory.

IllegalAssignmentError—when this object cannot hold a reference to release
or release cannot hold a reference to this.

IllegalSchedulableStateException—when the task is running and the new
release parameters are not compatible with the current scheduler.

Returns
this

Available since RTSJ 2.0 returns itself

getScheduler

Signature
public javax.realtime.Scheduler
getScheduler ()

Description

Gets a reference to the Scheduler object for this schedulable.

Returns
a reference to the associated Scheduler object.

setScheduler(Scheduler)

Signature
public javax.realtime.Schedulable
setScheduler (Scheduler scheduler)
throws SecurityException,
I1legalSchedulableStateException

Description
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Sets the reference to the Scheduler object. The timing of the change must be
agreed between the scheduler currently associated with this schedulable, and
scheduler. If the Schedulable is running, its associated SchedulingParamet-
ers (if any) must be compatible with scheduler.

Parameters
scheduler—A reference to the scheduler that will manage execution of this sched-
ulable. Null is not a permissible value.
Throws
IllegalArgumentException—when scheduler is null, or the schedulable’s ex-
isting parameter values are not compatible with scheduler. Also when this
schedulable may not use the heap and scheduler is located in heap memory.

IllegalAssignmentError—when the schedulable cannot hold a reference to sched-
uler or the current Schedulable is running and its associated Scheduling-
Parameters are incompatible with scheduler.

SecurityException—when the caller is not permitted to set the scheduler for this
schedulable.

IllegalSchedulableStateException—when scheduler has scheduling or release
parameters that are not compatible with the new scheduler and this schedulable
is running.

Returns
this

Available since RTSJ 2.0 returns itself

setScheduler(Scheduler, SchedulingParameters, ReleasePar-
ameters, MemoryParameters)

Signature
public javax.realtime.Schedulable
setScheduler (Scheduler scheduler,
SchedulingParameters scheduling,
ReleaseParameters release,
MemoryParameters memoryParameters)

Description

Sets the scheduler and associated parameter objects. The timing of the change
must be agreed between the scheduler currently associated with this schedulable,
and scheduler.
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Parameters
scheduler—A reference to the scheduler that will manage the execution of this
schedulable. Null is not a permissible value.
scheduling—A reference to the SchedulingParameters which will be associated
with this. When null, the default value is governed by scheduler; a new
object is created when the default value is not null. (See PriorityScheduler.)
release—A reference to the ReleaseParameters which will be associated with
this. When null, the default value is governed by scheduler; a new object
is created when the default value is not null. (See PriorityScheduler.)
memoryParameters—A reference to the MemoryParameters which will be associated
with this. When null, the default value is governed by scheduler; a new
object is created when the default value is not null. (See PriorityScheduler.)
Throws
IllegalArgumentException—when scheduler is null or the parameter values
are not compatible with scheduler. Also thrown when this schedulable may
not use the heap and scheduler, scheduling release, memoryParameters,
or group is located in heap memory.
IllegalAssignmentError—when this object cannot hold references to all the
parameter objects or the parameters cannot hold references to this.

SecurityException—when the caller is not permitted to set the scheduler for this
schedulable.

Returns
this

Available since RTSJ 2.0

getSchedulingParameters

Signature
public javax.realtime.SchedulingParameters
getSchedulingParameters ()

Description

Gets a reference to the SchedulingParameters object for this schedulable.

Returns
A reference to the current SchedulingParameters object.
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setSchedulingParameters(SchedulingParameters)

Signature
public javax.realtime.Schedulable
setSchedulingParameters(SchedulingParameters scheduling)
throws IllegalSchedulableStateException,
IllegalAssignmentError,
IllegalArgumentException

Description

Sets the scheduling parameters associated with this instance of Schedulable.

This change becomes effective under conditions determined by the scheduler
controlling the schedulable. For instance, the change may be immediate or it
may be delayed until the next release of the schedulable. See the documentation
for the scheduler for details.

Parameters
scheduling—A reference to the SchedulingParameters object. When null, the
default value is governed by the associated scheduler; a new object is created
when the default value is not null. (See PriorityScheduler.)
Throws
IllegalArgumentException—when scheduling is not compatible with the as-
sociated scheduler. Also when this schedulable may not use the heap and
scheduling is located in heap memory.

IllegalAssignmentError—when this object cannot hold a reference to schedul-
ing or scheduling cannot hold a reference to this.

IllegalSchedulableStateException—when the task is active and the new
scheduling parameters are not compatible with the current scheduler.

Returns
this

Available since RTSJ 2.0 returns itself

getSchedulingGroup

Signature
public javax.realtime.SchedulingGroup
getSchedulingGroup ()

Description
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Gets a reference to the SchedulingGroup instance of this schedulable.

Returns
a reference to the current SchedulingGroup object.

Available since RTSJ 2.0

getConfigurationParameters

Signature
public javax.realtime.ConfigurationParameters
getConfigurationParameters()

Description

Gets a reference to the ConfigurationParameters object for this schedulable.

Returns
a reference to the associated ConfigurationParameters object.

Available since RTSJ 2.0

getMinConsumption(RelativeTime)

Signature
public javax.realtime.RelativeTime
getMinConsumption(RelativeTime dest)

Description
Determines the minimum CPU consumption for this schedulable in any single
release. When this method is called on the current schedulable, the CPU con-
sumption of the current release is not considered. When dest is null, returns the
minimum consumption in a RelativeTime instance from the current allocation
context. When dest is not null, returns the minimum consumption in dest

Parameters

dest—When not null, the object in which to return the result.
Returns

the minimum time consumed in any release.

Available since RTSJ 2.0
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getMinConsumption

Signature
public javax.realtime.RelativeTime
getMinConsumption ()

Description
Equivalent to getMinConsumption(null).

Returns
the minimum time consumed in any release.

Available since RTSJ 2.0

getMaxConsumption(RelativeTime)
Signature
public javax.realtime.RelativeTime

getMaxConsumption(RelativeTime dest)

Description

Determines the maximum CPU consumption for this schedulable in any single
release. When this method is called on the current schedulable, the CPU con-
sumption of the current release is not considered. When dest is null, returns the
maximum consumption in a RelativeTime instance from the current allocation
context. When dest is not null, returns the maximum consumption in dest

Parameters

dest—When not null, the object in which to return the result.

Returns
the maximum time consumed in any release.

Available since RTSJ 2.0

getMaxConsumption
Signature

public javax.realtime.RelativeTime
getMaxConsumption ()
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Description

Equivalent to getMaxConsumption(null).

Returns

the maximum time consumed in any release.

Available since RTSJ 2.0

setDaemon(boolean)
Signature
public void

setDaemon(boolean on)

Description

Marks this schedulable as either a daemon or a user task. A realtime virtual
machine exits when the only tasks running are all daemons. This method must
be called before the task is attached to any event or started. Once attached or

started, it cannot be changed.

Parameters

on—When true, marks this event handler as a daemon handler.

Throws

IllegalThreadStateException—when this schedulable is active.

SecurityException—when the current schedulable cannot modify this event han-

dler.
Available since RTSJ 2.0

isDaemon
Signature
public boolean

isDaemon ()

Description

Tests if this event handler is a daemon handler.

Returns

true when this event handler is a daemon handler; false otherwise.
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Available since RTSJ 2.0

mayUseHeap

Signature
public boolean
mayUseHeap ()

Description

Determines whether or not this schedulable may use the heap.

Returns
true only when this Schedulable may allocate on the heap and may enter the

Heap.
Available since RTSJ 2.0

interrupt

Signature
public void
interrupt ()
throws IllegalSchedulableStateException

Description

Makes the generic AsynchronouslyInterruptedException pending for this,
and sets the interrupted state to true. As with Thread.interrupt(), blocking
operations that are interruptible are interrupted. When this.isRousable() is
true causes an early release. In any case, AsynchronouslyInterruptedExcep-
tion is thrown once a method is entered that implements AsynchronouslyIn-
terruptedException.

Behaves as if Thread.interrupt () were called on the implementation thread
underlying this Schedulable.

Throws
IllegalSchedulableStateException—when this is not currently releasable, i.e.,
is disabled, not firable, its start method has not been called, or it has terminated.

Available since RTSJ 2.0
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isInterrupted

Signature
public boolean
isInterrupted()

Description
Determines whether or not any AsynchronouslyInterruptedException is pend-
ing.

Returns
true when and only when the generic AsynchronouslyInterruptedException is
pending.

Available since RTSJ 2.0

awaken

Signature
public void
awaken ()
throws IllegalStateException

Description
Provides a means for a Clock to end a sleep.

Throws
IllegalStateException—when called from user code.

Available since RTSJ 2.0

6.3.2 Enumerations

6.3.2.1 MinimumlInterarrivalPolicy

public enum MinimumlInterarrivalPolicy

Inheritance
java.lang.Object
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java.lang. Enum<MinimumInterarrivalPolicy>
MinimumlInterarrivalPolicy

Description

Defines the set of policies for handling interarrival time violations in Sporadic-
Parameters. Each policy governs every instance of Schedulable which has
SporadicParameters with that minimum interarrival time policy.

Available since RTSJ 2.0

6.3.2.1.1 Enumeration Constants

EXCEPT

public static final EXCEPT

Description

Represents the "EXCEPT" policy for minimum interarrival time. Under this
policy, when an arrival time of a release occurs at a time less than the last
release time plus its minimum interarrival time, the fire() method shall throw
a preallocated instance of MITViolationException.

IGNORE

public static final IGNORE

Description

Represents the "IGNORE" policy for minimum interarrival time. Under this
policy, when an arrival time of a release occurs at a time less than the last release
time plus its minimum interarrival time, the new arrival time is ignored.

REPLACE

public static final REPLACE

Description
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Represents the "REPLACE" policy for minimum interarrival time. Under this
policy, when an arrival time of a release occurs at a time less than the last release
time plus its minimum interarrival time, the information for this arrival replaces
a previous arrival. For cases when the previous event has already been released or
the event queue has a length of zero, the arrival is ignored as with the "IGNORE'"
policy.

SAVE

public static final SAVE

Description
Represents the "SAVE" policy for minimum interarrival time. Under this policy,
when an arrival time of a release occurs at a time less than the last release time
plus its minimum interarrival time, the new release is queued until the last release
time plus its minimum interarrival time is reached.

6.3.2.1.2 Methods

values
Signature
public static javax.realtime.MinimumInterarrivalPolicy[]

values ()

Description

Gets all enumeration constants.

valueOf(String)
Signature
public static javax.realtime.MinimumInterarrivalPolicy

valueOf (String name)

Description

Gets enumeration constants corresponding to name.
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value

Signature
public java.lang.String
value()

Description
Determines the string corresponding to this value.

Returns
the corresponding string.

value(String)

Signature
public static javax.realtime.MinimumInterarrivalPolicy
value(String value)

Description
Converts a string into a policy type.

Parameters

value—is the string to convert.
Returns

the corresponding policy type.

6.3.2.2 QueueOverflowPolicy

public enum QueueOverflowPolicy

Inheritance

java.lang.Object
java.lang. Enum<QueueOverflowPolicy >
QueueOverflowPolicy

Description
Defines the set of policies for handling overflow on event queues used by Re-
leaseParameters. An event queue holds a number of event arrival times with
any respective payload provided with the event. A reference to the event itself
is only held when it happens to be the payload, e.g., for an AsyncObjectEvent
associated with a Timer.

RTSJ 2.0 (Draft 57) 133



6 Scheduling QueueOverflowPolicy

Available since RTSJ 2.0

6.3.2.2.1 Enumeration Constants

DISABLE

public static final DISABLE

Description

Represents the "DISABLE" policy which means, when an arrival occurs, no
queuing takes place, thus no overflow can happen. This policy is for instances of
ActiveEvent with no payload and instances of RealtimeThread with Periodic-
Parameters. In contrast to IGNORE, all incoming events increment the pending
fire or release count, respectively. For this reason, it may not be used with an
event handler that supports an event payload or any instance of Schedulable
with SporadicParameters. This policy is also the default for PeriodicParam-
eters. Instances of RealtimeThread with null release parameters have this
policy implicitly, as they do not have an event queue either.

EXCEPT

public static final EXCEPT

Description

Represents the "EXCEPT" policy which means, when an arrival occurs and its
event time and payload should be queued but the queue already holds a number
of event times and payloads equal to the initial queue length, the fire () method
shall throw an ArrivalTimeQueueOverflowException. When fire is used within

a Timer, the exception is ignored and the fire does nothing, i.e., it acts the same
as “IGNORE”.

IGNORE

public static final IGNORE

Description
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Represents the "IGNORE" policy which means, when an arrival occurs and its
event time and payload should be queued, but the queue already holds a number
of event times and payloads equal to the initial queue length, the arrival is ignored.

REPLACE

public static final REPLACE

Description

Represents the "REPLACE" policy which means, when an arrival occurs and
should be queued but the queue already holds a number of event times and
payloads equal to the initial queue length, the information for this arrival replaces

a previous arrival. When the queue length is zero, the behavior is the same as
the "IGNORE" policy.

SAVE

public static final SAVE

Description

Represents the "SAVE" policy which means, when an arrival occurs and should
be queued but the queue is full, the queue is lengthened and the arrival time and
payload are saved. This policy does not update the'"initial queue length" as it
alters the actual queue length. Since the SAVE policy grows the arrival time queue
as necessary, for the SAVE policy the initial queue length is only an optimization.
It is also the default for AperiodicParameters.

6.3.2.2.2 Methods

values
Signature
public static javax.realtime.QueueOverflowPolicy[]

values ()

Description

Gets all enumeration constants.

RTSJ 2.0 (Draft 57) 135



6 Scheduling

Affinity

valueOf(String)

Signature
public static javax.realtime.(QueueOverflowPolicy
valueOf (String name)

Description

Gets enumeration constants corresponding to name.

value

Signature
public java.lang.String

value()
Description
Determines the string corresponding to this value.

Returns
the corresponding string.

value(String)

Signature
public static javax.realtime.(QueueOverflowPolicy
value(String value)

Description
Converts a string into a policy type.
Parameters
value—is the string to convert.

Returns
the corresponding policy type.
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6.3.3 Classes
6.3.3.1 Affinity

public class Affinity

Inheritance

java.lang.Object
Affinity

Description

This is the API for all processor-affinity-related aspects of the RTSJ. It includes
a factory that generates Affinity objects, and methods that control the CPU
affinity used by java.lang.ThreadGroup to control the affinity of all its tasks.
With it, the affinity of every task in the JVM can be controlled.

An affinity is a set of processors that can be associated with certain types
of tasks. Each task (java.lang.Thread and BoundRealtimeExecutor) can be
associated with an affinity. Groups of these can be assigned an affinity through
their java.lang.ThreadGroup.

Each implementation supports an array of predefined affinities. They can
be used either to reflect the scheduling arrangement of the underlying OS or
they can be used by the system designer to impose defaults for groups of task.
A program is only allowed to dynamically create new affinities with cardinality
of one. This restriction reflects the concern that not all operating systems will
support multiprocessor affinities.

The processor membership of an affinity is immutable. The tasks associations
of an affinity are mutable. The processor affinity of a task can be changed by
static methods in this class. The internal representation of a set of processors
in an Affinity instance is not specified, but the representation that is used to
communicate with this class is a BitSet where each bit corresponds to a logical
processor ID. The relationship between logical and physical processors is beyond
the scope of this specification, and may change.

The affinity factory only generates usable Affinity instances; i.e., affinities
that (at least when they are created) can be used with BoundRealtimeExecutor.
setAffinity(Affinity), SchedulingGroup.setAffinity(Affinity), and
set (Affinity, Thread). The factory cannot create an affinity with more than
one processor member, but such affinities are supported. They may be internally
created by the RTSJ runtime at startup time.

The set of affinities created at startup (the predefined set) is visible through
the getPredefinedAffinities(Affinity[]) method. The affinity factory may
be used to create affinities with a single processor member at any time. This
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operation only supports processor members that are available to the JVM at the
time of creation.

External changes to the set of processors available to the RT'SJ runtime is
likely to cause serious trouble ranging from violation of assumptions underlying
schedulability analysis to freezing the entire RT'SJ runtime, so when a system is
capable of such manipulation it should not exercise it on RTSJ processes.

Tasks are subject to both their own processor affinity and that of their thread
group. Their processor affinity is governed by the intersection of the thread
group’s affinity and the task’s affinity. The intersection of a thread group’s
affinity with the schedulable’s affinity must contain at least one entry. Trying
to set a task’s affinity outside its thread group always fails. Trying to set the
affinity of a thread group that does not intersect with the thread group of its
tasks will also fail.

Ordinarily, an execution context inherits its creator’s affinity, but

e Java threads do not inherit affinity from Schedulables,

e instances of AsyncBaseEventHandler that are not bound do not inherit

affinity, and

e Schedulables do not inherit affinity from Java threads.

When a task does not inherit its creator’s affinity, its initial affinity is set to all
processors and is thus only limited by its thread group.

There is no public constructor for this class. All instances must be created by
the factory method (generate).

Available since RTSJ 2.0

6.3

.3.1.1 Methods

ge

tPredefined AffinitiesCount

Signature

public static final int
getPredefinedAffinitiesCount ()

Description

Determines the minimum array size required to store references to all the prede-
fined processor affinities.

Returns
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the minimum array size required to store references to all the predefined affinities.

getPredefined Affinities

Signature
public static final javax.realtime.Affinity[]
getPredefinedAffinities()

Description

Equivalent to invoking getPredefinedAffinitySets(null).

Returns
an array of the predefined affinities.

getPredefined Affinities(Affinity)

Signature
public static final javax.realtime.Affinity[]
getPredefinedAffinities(javax.realtime.Affinity[] dest)

Description

Determines what affinities are predefined by the Java runtime.

Parameters
dest—The destination array, or null.
Throws
IllegalArgumentException—when dest is not large enough.

Returns
dest or a newly created array when dest is null, populated with references to the
predefined affinities. When dest has excess entries, those entries are filled with
null.

isSet AffinitySupported
Signature
public static final boolean
isSetAffinitySupported()

Description
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Determines whether or not affinity control is supported.

Returns
true when the following methods are supported:
e BoundRealtimeExecutor.setAffinity(Affinity),
e SchedulingGroup.setAffinity(Affinity), and
e set(Affinity, Thread).

generate(BitSet)

Signature

public static final javax.realtime.Affinity
generate(BitSet set)

Description

Determines the Affinity corresponding to a BitSet, where each bit in set repre-
sents a CPU.

Platforms that support specific affinities will register those Affinity instances
with Affinity. They appear in the arrays returned by getPredefinedAffini-
ties() and getPredefinedAffinities(Affinityl[]).

Parameters
set—The BitSet to convert into an Affinity.
Throws

NullPointerException—when set is null.

IllegalArgumentException—when set does not refer to a valid set of processors,
where “valid” is defined as the bitset from a predefined affinity set, or a
bitset of cardinality one containing a processor from the set returned by
getAvailableProcessors(). The definition of “valid set of processors” is
system dependent; however, every set consisting of one valid processor makes

up a valid bit set, and every bit set corresponding to a predefined affinity set
is valid.

Returns
the resulting Affinity.

get AvailableProcessors

Signature
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public static final java.util.BitSet
getAvailableProcessors()

Description

This method is equivalent to getAvailableProcessors(BitSet) with a null
argument.

Returns
the set of processors available to the program.

get AvailableProcessors(BitSet)

Signature
public static final java.util.BitSet
getAvailableProcessors(BitSet dest)

Description

In systems where the set of processors available to a process is dynamic (e.g.,
because of system management operations or because of fault tolerance capabili-
ties), the set of available processors shall reflect the processsors that are allocated
to the RTSJ runtime and are currently available to execute tasks.

Parameters
dest—When dest is non-null, use dest as the returned value. When it is null,
create a new BitSet.
Returns
a BitSet representing the set of processors currently valid for use in the bitset
argument to generate(BitSet).

isAffinityChangeNotificationSupported

Signature
public static final boolean
isAffinityChangeNotificationSupported()

Description

Determines whether or not the system can trigger an event for notifying the
application when the set of available CPUs changes.

Returns
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true when change notification is supported. (See setProcessorAddedE-
vent (AsyncEvent) and setProcessorRemovedEvent (AsyncEvent).)

getProcessorAddedEvent

Signature
public static javax.realtime.AsyncEvent
getProcessorAddedEvent ()

Description

Gets the event used for CPU addition notification.

Returns
the async event that will be fired when a processor is added to the set available to
the JVM. Returns null when change notification is not supported, or when no
async event has been designated.

setProcessorAddedEvent (AsyncEvent)

Signature
public static void
setProcessorAddedEvent (AsyncEvent event)

throws UnsupportedOperationException,
IllegalArgumentException

Description

Sets the AsyncEvent that will be fired when a processor is added to the set
available to the JVM.

Parameters
event—The async event to fire in case an added processor is detected, or null to
cause no async event to be called in case an added processor is detected.

Throws
UnsupportedOperationException—when change notification is not supported.

IllegalArgumentException—when event is not in immortal memory.
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getProcessorRemovedEvent

Signature
public static javax.realtime.AsyncEvent
getProcessorRemovedEvent ()

Description

Gets the event used for CPU removal notification.

Returns
the async event that will be fired when a processor is removed from the set available
to the JVM. Returns null when change notification is not supported, or when
no async event has been designated.

setProcessorRemovedEvent(AsyncEvent)

Signature
public static void
setProcessorRemovedEvent (AsyncEvent event)

Description

Sets the AsyncEvent that will be fired when a processor is removed from the set
available to the JVM.

Parameters
event—Called when a processor is removed.
Throws

UnsupportedOperationException—when change notification is not supported.

IllegalArgumentException—when event is not null or in immortal memory.

get(Thread)

Signature
public static final javax.realtime.Affinity
get (Thread thread)

Description

Determines the affinity set instance associated with thread.

Parameters
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thread—A Java thread, or one of its subclasses (including RealtimeThread).

Returns
the associated affinity set.

set(Affinity, Thread)

Signature
public static final void
set (Affinity set,
Thread thread)
throws ProcessorAffinityException

Description

Sets the processor affinity of a Java thread or RealtimeThread to set with
immediate effect.

Parameters
set—The new processor affinity set for thread

thread—The thread or realtime thread.
Throws
IllegalArgumentException—when the intersection of set and the affinity of any
ThreadGroup instance containing thread is empty.
ProcessorAffinityException—when the runtime fails to set the affinity for
platform-specific reasons.
NullPointerException—when set or thread is null.

getProcessors
Signature
public final java.util.BitSet

getProcessors()

Description

Obtains a BitSet representing the processor affinity set for this Affinity.

Returns
a newly created BitSet representing this Affinity.
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getProcessors(BitSet)

Signature
public final java.util.BitSet
getProcessors(BitSet dest)

Description

Determines the set of CPUs representing the processor affinity of this Affinity.

Parameters
dest—Set dest to the BitSet value. When dest is null, create a new BitSet in
the current allocation context.
Returns
a BitSet representing the processor affinity set of this Affinity.

isProcessorInSet (int)

Signature
public final boolean
isProcessorInSet(int processorlId)

Description

Asks whether a processor is included in this affinity set.

Parameters

processorId—A number identifying a single CPU in a multiprocessor system.
Returns

true when and only when processorNumber is represented in this affinity set.

getProcessorCount

Signature
public int
getProcessorCount ()

Description

Determines the number of CPUs in this affinity

Returns
the number of CPUs.
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6.3

.3.2 AperiodicParameters

public class AperiodicParameters

Inh

eritance

java.lang.Object

ReleaseParameters
AperiodicParameters

Description

146

When a reference to an AperiodicParameters object is given as a parameter
to a schedulable’s constructor or passed as an argument to one of the sched-
ulable’s setter methods, the AperiodicParameters object becomes the release
parameters object bound to that schedulable. Changes to the values in the
AperiodicParameters object affect that schedulable. When bound to more than
one schedulable, changes to the values in the AperiodicParameters object affect
all of the associated objects. Note that this is a one-to-many relationship and
not a many-to-many.

Only changes to an AperiodicParameters object caused by methods on that
object cause the change to propagate to all schedulables using the object. For
instance, calling setCost on an AperiodicParameters object will make the
change, then notify the scheduler that the parameter object has changed. At that
point the object is reconsidered for every schedulable that uses it. Invoking a
method on the RelativeTime object that is the cost for this object may change
the cost but it does not pass the change to the scheduler at that time. That
change must not change the behavior of the schedulables that use the parameter
object until a setter method on the AperiodicParameters object is invoked,
the parameter object is used in setReleaseParameters(), or it is used in a
constructor for a schedulable.

The implementation must use modified copy semantics for each HighResolu-
tionTime parameter value. The value of each time object should be treated as if
it were copied at the time it is passed to the parameter object, but the object
reference must also be retained. For instance, the value returned by getCost ()
must be the same object passed in by setCost(), but any changes made to the time
value of the cost must not take effect in the associated AperiodicParameters
instance unless they are passed to the parameter object again, e.g. with a new
invocation of setCost.

Correct initiation of the deadline miss and cost overrun handlers requires
that the underlying system know the arrival time of each aperiodic task. For an
instance of RealtimeThread the arrival time is the time at which the start () is
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invoked. For other instances of Schedulable, the required behavior may force
the implementation to act effectively as if it maintained a queue of arrival times.
When the release parameters for a RealtimeThread are set to an instance of
this class or one of its subclasses, the thread does not start executing code until
the RealtimeThread.release () method is called.
The following table gives the default values for the constructors parameters.

Table 6.3: AperiodicParameters Default Values

Attribute Value
cost new RelativeTime(0,0)
deadline new RelativeTime(Long.MAX_VALUE, 999999)
overrunHandler None
missHandler None
rousable false
Arrival time queue size | 0
Queue overflow policy | SAVE

Caution: This class is explicitly unsafe for multithreading when being changed.
Code that mutates instances of this class should synchronize at a higher level.

6.3.3.2.1 Constructors

AperiodicParameters(RelativeTime, RelativeTime, Async-
EventHandler, AsyncEventHandler, boolean)

Signature
public

AperiodicParameters(RelativeTime cost,

Description

RelativeTime deadline,
AsyncEventHandler overrunHandler,
AsyncEventHandler missHandler,
boolean rousable)
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Creates an AperiodicParameters object.

Available since RTSJ 2.0

Parameters
cost—Processing time per invocation. On implementations which can measure the
amount of time a schedulable object is executed, this value is the maximum
amount of time a schedulable receives. On implementations which cannot
measure execution time, it is not possible to determine when any particu-
lar object exceeds cost. When null, the default value is a new instance of
RelativeTime(0,0).

deadline—The latest permissible completion time measured from the release time
of the associated invocation of the schedulable. When null, the default value
is a new instance of RelativeTime (Long.MAX VALUE, 999999).

overrunHandler— This handler is invoked when an invocation of the schedulable
exceeds cost. Not required for minimum implementation. When null, the
default value is no overrun handler.

missHandler—This handler is invoked when the run() method of the schedulable
object is still executing after the deadline has passed. When null, the default
value is no miss handler.

rousable—determines whether or not an instance of Schedulable can be prema-
turely released by a thread interrupt.
Throws
IllegalArgumentException—when the time value of cost is less than zero, or
the time value of deadline is less than or equal to zero.

IllegalAssignmentError—when cost, deadline, overrunHandler or missHan-
dler cannot be stored in this.

AperiodicParameters(RelativeTime, RelativeTime, Async-
EventHandler, AsyncEventHandler)

Signature
public
AperiodicParameters(RelativeTime cost,
RelativeTime deadline,
AsyncEventHandler overrunHandler,
AsyncEventHandler missHandler)

Description
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Equivalent to AperiodicParameters(RelativeTime, RelativeTime, Async-—
EventHandler, AsyncEventHandler, boolean) with the argument list (cost,
deadline, overrunHandler, missHandler, false).

Parameters
cost—Processing time per invocation. On implementations that support cost
enforcement, this value is the maximum amount of time a schedulable receives.
On implementations which do not support cost enforcement, it is not possible
to determine when any particular object exceeds cost. When null, the default
value is a new instance of RelativeTime(0,0).

deadline—The latest permissible completion time measured from the release time
of the associated invocation of the schedulable. When null, the default value
is a new instance of RelativeTime (Long.MAX VALUE, 999999).

overrunHandler—This handler is invoked when an invocation of the schedulable
exceeds cost. Not required for minimum implementation. When null, the
default value is no overrun handler.

missHandler—This handler is invoked when the run() method of the schedulable
object is still executing after the deadline has passed. When null, the default
value is no miss handler.

Throws

IllegalArgumentException—when the time value of cost is less than zero, or
the time value of deadline is less than or equal to zero.

IllegalAssignmentError—when cost, deadline, overrunHandler or missHan-
dler cannot be stored in this.

AperiodicParameters(RelativeTime, AsyncEventHandler,
boolean)

Signature
public
AperiodicParameters(RelativeTime deadline,
AsyncEventHandler missHandler,
boolean rousable)

Description

Equivalent to AperiodicParameters(RelativeTime, RelativeTime, Async-
EventHandler, AsyncEventHandler, boolean) with the argument list (null,
deadline, null, missHandler, rousable).
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Available since RTSJ 2.0

AperiodicParameters(RelativeTime)

Signature
public
AperiodicParameters(RelativeTime deadline)

Description

Equivalent to AperiodicParameters(RelativeTime, RelativeTime, Async-
EventHandler, AsyncEventHandler, boolean) with the argument list (null,
deadline, null, null, false).

Available since RTSJ 2.0

AperiodicParameters

Signature
public
AperiodicParameters()

Description

Equivalent to AperiodicParameters(RelativeTime, RelativeTime, Async-
EventHandler, AsyncEventHandler, boolean) with the argument list (null,
null, null, null, false).

Available since RTSJ 1.0.1

6.3.3.2.2 Methods

setDeadline(RelativeTime)

Signature
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public javax.realtime.AperiodicParameters
setDeadline(RelativeTime deadline)

Description

Sets the deadline value.

When this parameter object is associated with any schedulable object, either by
being passed through the schedulable’s constructor or being set with a method such
as RealtimeThread.setReleaseParameters(ReleaseParameters), the dead-
line of those schedulables is altered as specified by each schedulable’s respective
scheduler.

Parameters
deadline—The latest permissible completion time measured from the release time
of the associated invocation of the schedulable. When deadline is null, the
deadline is set to a new instance of RelativeTime (Long.MAX_VALUE, 999999).
Throws
IllegalArgumentException—when the time value of deadline is less than or
equal to zero, or when the new value of this deadline is incompatible with the
scheduler for any associated schedulable.

IllegalAssignmentError—when deadline cannot be stored in this.

Returns
this

Available since RTSJ 2.0 returns itself

6.3.3.3 BackgroundParameters

public class BackgroundParameters

Inheritance

java.lang.Object
ReleaseParameters
BackgroundParameters

Description

Parameters for realtime threads that are only released once. A thread using
this release parameters may not use RealtimeThread.waitForNextRelease ()
or have its RealtimeThread.release() methods called. Calling these methods
results in an I1legalThreadStateException. Event handlers may not use this
type of ReleaseParameters.
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Available since RTSJ 2.0

6.3.3.3.1 Constructors

BackgroundParameters(RelativeTime, RelativeTime, Async-
EventHandler, AsyncEventHandler)

Signature
public
BackgroundParameters(RelativeTime cost,
RelativeTime deadline,
AsyncEventHandler overrunHandler,
AsyncEventHandler missHandler)

Description
A constructor for both cost and deadline monitoring.

Caution: This class is explicitly unsafe for multithreading when being changed.
Code that mutates instances of this class should synchronize at a higher level.
Parameters

cost—The maximum cost for the initial release

deadline—The deadline for the initial release
overrunHandler—The handler to call on cost overrun.

missHandler—The handler to call on deadline miss.
Throws
IllegalArgumentException—when the time value of cost is less than zero, or
the time value of deadline is less than or equal to zero, or the chronograph
associated with the cost or deadline parameters is not an instance of Clock.

IllegalAssignmentError—when cost, deadline, overrunHandler, or missHandler
cannot be stored in this.

BackgroundParameters(RelativeTime, AsyncEventHand-
ler)

Signature
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public
BackgroundParameters(RelativeTime deadline,
AsyncEventHandler missHandler)

Description

A constructor for deadline monitoring. Equivalent to BackgroundParameters(null,
deadline, null, missHandler)

BackgroundParameters

Signature
public
BackgroundParameters ()

Description

A constructor for not having any restrictions on, or monitoring of, scheduling.
Equivalent to BackgroundParameters(null, null, null, null, false)

6.3.3.4 FirstInFirstOutScheduler

public class FirstInFirstOutScheduler

Inheritance

java.lang.Object
Scheduler
PriorityScheduler
FirstInFirstOutScheduler

Description

A version of PriorityScheduler where once a thread is scheduled at a given
priority, it runs until it is blocked or is preempted by a higher priority thread.
When preempted, it remains the next thread ready for its priority. This is the
default scheduler for realtime tasks. It represents the required (by the RTSJ)
priority-based scheduler. The default instance is the base scheduler which does
fixed priority, preemptive scheduling.

This scheduler, like all schedulers, governs the default values for scheduling-
related parameters in its client schedulables. The defaults are as follows:
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Table 6.4: FirstInFirstOut Default PriorityParameter Values

Attribute Default Value
Priority norm priority

The system contains one instance of the FirstInFirstOutScheduler which
is the system’s base scheduler and is returned by FirstInFirstOutScheduler.
instance(). The instance returned by the instance() method is the base
scheduler and is returned by Scheduler.getDefaultScheduler () unless the
default scheduler is reset with Scheduler.setDefaultScheduler(Scheduler).

Available since RTSJ 2.0

6.3.3.4.1 Methods

instance

Signature
public static javax.realtime.FirstInFirstOutScheduler
instance()

Description

Obtains a reference to the distinguished instance of PriorityScheduler which
is the system’s base scheduler.

Returns
a reference to the distinguished instance PriorityScheduler.

getMaxPriority
Signature
public int
getMaxPriority ()

Description
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Obtains the maximum priority available for a schedulable managed by this
scheduler.

Returns
the value of the maximum priority.

getMinPriority

Signature
public int
getMinPriority()

Description

Obtains the minimum priority available for a schedulable managed by this
scheduler.

Returns
the minimum priority used by this scheduler.

getNormPriority

Signature
public int
getNormPriority ()

Description

Obtains the normal priority available for a schedulable managed by this scheduler.

Returns
the value of the normal priority.

getPolicyName

Signature
public java.lang.String
getPolicyName ()

Description

Obtains the policy name of this.
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Returns
the policy name (Fixed Priority First In First Out) as a string.

reschedule(Thread, int)

Signature
public void
reschedule(Thread thread,
int priority)

Description

Promotes a java.lang.Thread to realtime priority under this scheduler. The
affected thread will be scheduled as if it were a RealtimeThread of the given
priority. This does not make the affected thread a RealtimeThread, however,
and it will not have access to facilities reserved for instances of RealtimeThread.

Parameters
thread—The thread to promote to realtime scheduling.
priority—An integer priority equivalent to a priority set via PriorityParameters
on a RealtimeThread.
Throws
IllegalArgumentException—when priority is not between getMinPriority ()
and getMaxPriority (), inclusive.

6.3.3.5 ImportanceParameters

public class ImportanceParameters

Inheritance

java.lang.Object
SchedulingParameters
PriorityParameters
ImportanceParameters

Description

Importance is an additional scheduling metric that may be used by some priority-
based scheduling algorithms during overload conditions to differentiate execution
order among threads of the same priority.

I