
Realtime and Embedded
Specification for Java

Version 2.0

Draft 57
Baden-Powell Edition

24th of January 2017

Editor
James J. Hunt
aicas GmbH

Haid-und-Neu-Straße 18
D-76131 Karlsruhe, Germany

Copyright c© 1999–2012 TimeSys
Copyright c© 2012–2015 aicas GmbH

All rights reserved

2

i

The Realtime Specification for Java (RTSJ) is under development within the Java
Community Process (JCP) by the members of the JSR-282 Expert Group (EG).

This group, was lead by TimeSys Inc. Corporation, but has been taken over by aicas
GmbH.

JSR-282 Expert Group Membership

James J. Hunt aicas GmbH
Benjamin Brosgol

Andy Wellings
Kelvin Nilsen

Ethan Blanton

Past Expert Group Members

Peter Dibble TimeSys
David Holmes Oracle

ii

Table of Contents

Contents i

List of Figures xiii

List of Tables xiv

1 Introduction 1
1.1 Guiding Principles . 2
1.1.1 Applicability Across Java Environments 3
1.1.2 Backward Compatibility . 3
1.1.3 Write Once, Run Anywhere . 3
1.1.4 Current Practice vs. Advanced Features 3
1.1.5 Predictable Execution . 3
1.1.6 No Syntactic Extension . 3
1.1.7 Allow Variation in Implementation Decisions 3
1.1.8 Interoperability . 4

1.2 Areas of Enhancement . 4
1.2.1 Thread Scheduling and Dispatching 4
1.2.2 Memory Management . 5
1.2.3 Synchronization and Resource Sharing 5
1.2.4 Asynchronous Event Handling . 5
1.2.5 Task Interruption . 6
1.2.6 Raw Memory Access . 6
1.2.7 Physical Memory Access . 6
1.2.8 Modularization . 6

2 Overview 7
2.1 Threads and Scheduling . 7
2.2 Synchronization . 9
2.2.1 Priority Inversion . 9
2.2.2 Priority Inversion Avoidance . 10
2.2.3 Execution Eligibility . 11

i

TABLE OF CONTENTS

2.2.4 Wait-Free Queues . 11
2.3 Asynchrony . 11
2.3.1 Asynchronous Events . 12
2.3.2 Asynchronous Transfer of Control 13
2.3.2.1 Methodological Principles . 13
2.3.2.2 Expressibility Principles . 14
2.3.2.3 Semantic Principles . 14
2.3.2.4 Pragmatic Principles . 15

2.3.3 Asynchronous Realtime Thread Termination 15
2.4 Clocks, Time, and Timers . 16
2.5 Memory Management . 16
2.5.1 Memory Areas . 16
2.5.2 Heap Memory . 17
2.5.3 Immortal Memory . 17
2.5.4 Scoped Memory . 17
2.5.5 Physical Memory Areas . 18
2.5.6 Budgeted Allocation . 19

2.6 Device Access and Raw Memory . 19
2.6.1 Raw Memory Access . 19

2.7 System Options . 20
2.8 Exceptions . 20
2.9 Summary . 20

3 General Requirements 23
3.1 Definitions . 23
3.2 Semantics . 24
3.2.1 Base Requirements . 24
3.2.2 Modules . 25
3.2.2.1 Core Module . 26
3.2.2.2 Device Module . 28
3.2.2.3 Alternative Memory Areas Module 29

3.2.3 POSIX module . 30
3.2.4 Optional Features . 30
3.2.5 Deprecated Classes . 31
3.2.6 Implementation types Allowed . 32
3.2.6.1 Realtime Deployment Implementation 32
3.2.6.2 Simulation Implementation 34

3.3 Required Documentation . 35
3.4 Rationale . 37

4 Realtime vs Conventional Java 39

ii RTSJ 2.0 (Draft 57)

TABLE OF CONTENTS

4.1 Definitions . 41
4.2 Semantics . 41
4.2.1 Scheduling . 41
4.2.1.1 Priority . 42
4.2.1.2 Thread Groups . 43
4.2.1.3 Current Thread . 45

4.2.2 InterruptedException . 45
4.2.3 Java Memory Model . 45
4.2.4 Memory Management . 46
4.2.4.1 Memory Areas . 46
4.2.4.2 Garbage Collection . 46
4.2.4.3 Realtime Garbage Collections 47

4.3 Rationale . 48

5 Realtime Threads 49
5.1 Definitions . 50
5.2 Semantics . 50
5.3 javax.realtime . 52
5.3.1 Enumerations . 52
5.3.1.1 PhasingPolicy . 52

5.3.2 Classes . 55
5.3.2.1 ConfigurationParameters . 55
5.3.2.2 RealtimeThread . 58

5.4 Rationale . 85

6 Scheduling 87
6.1 Definitions . 89
6.2 Semantics . 91
6.2.1 Schedulers . 91
6.2.1.1 Parameter Values . 92
6.2.1.2 Release Control . 94
6.2.1.3 Dispatching . 106
6.2.1.4 Cost Monitoring and Cost Enforcement 108

6.2.2 Priority Schedulers . 110
6.2.2.1 Priorities . 111

6.2.3 Associating Schedulables with Schedulers 113
6.2.4 Managing Groups of Schedulables 114
6.2.4.1 Scheduling Groups . 114
6.2.4.2 Processing Groups . 115

6.3 javax.realtime . 118
6.3.1 Interfaces . 118

RTSJ 2.0 (Draft 57) iii

TABLE OF CONTENTS

6.3.1.1 BoundRealtimeExecutor . 118
6.3.1.2 BoundSchedulable . 119
6.3.1.3 Schedulable . 119

6.3.2 Enumerations . 130
6.3.2.1 MinimumInterarrivalPolicy 130
6.3.2.2 QueueOverflowPolicy . 133

6.3.3 Classes . 137
6.3.3.1 Affinity . 137
6.3.3.2 AperiodicParameters . 146
6.3.3.3 BackgroundParameters . 151
6.3.3.4 FirstInFirstOutScheduler . 153
6.3.3.5 ImportanceParameters . 156
6.3.3.6 PeriodicParameters . 159
6.3.3.7 PriorityParameters . 167
6.3.3.8 PriorityScheduler . 169
6.3.3.9 ProcessingGroup . 172
6.3.3.10 ReleaseParameters . 185
6.3.3.11 RoundRobinScheduler . 197
6.3.3.12 Scheduler . 201
6.3.3.13 SchedulingGroup . 204
6.3.3.14 SchedulingParameters . 209
6.3.3.15 SporadicParameters . 211

6.4 Rationale . 218
6.4.1 SchedulingGroup and ProcessingGroup 219
6.4.2 Multiprocessor Support . 219
6.4.3 Impact of Clock Granularity . 220
6.4.4 Deadline Miss Detection . 221

7 Synchronization 223
7.1 Definitions . 223
7.2 Semantics . 224
7.2.1 Monitor Control . 224
7.2.2 Priority Schedulers . 225
7.2.3 Additional Schedulers . 228

7.3 javax.realtime . 229
7.3.1 Classes . 229
7.3.1.1 MonitorControl . 229
7.3.1.2 PriorityCeilingEmulation . 232
7.3.1.3 PriorityInheritance . 235
7.3.1.4 WaitFreeReadQueue . 236
7.3.1.5 WaitFreeWriteQueue . 243

iv RTSJ 2.0 (Draft 57)

TABLE OF CONTENTS

7.4 Rationale . 250

8 Asynchrony 251
8.1 Definitions . 253
8.2 Semantics . 255
8.2.1 Asynchronous Events and their Handlers 256
8.2.2 Active Events and Dispatching . 258
8.2.3 Termination . 259
8.2.4 Asynchronous Transfer of Control 260
8.2.4.1 Extending Conventional Java Interrupts 262
8.2.4.2 Nesting AsynchronouslyInterruptedExceptions 263

8.3 javax.realtime . 264
8.3.1 Interfaces . 264
8.3.1.1 ActiveEvent . 264
8.3.1.2 BoundAsyncBaseEventHandler 267
8.3.1.3 Interruptible . 267
8.3.1.4 Releasable . 268

8.3.2 Classes . 269
8.3.2.1 ActiveEventDispatcher . 269
8.3.2.2 AsyncBaseEvent . 273
8.3.2.3 AsyncBaseEventHandler . 278
8.3.2.4 AsyncEvent . 294
8.3.2.5 AsyncEventHandler . 295
8.3.2.6 AsyncLongEvent . 303
8.3.2.7 AsyncLongEventHandler . 305
8.3.2.8 AsyncObjectEvent . 311
8.3.2.9 AsyncObjectEventHandler 313
8.3.2.10 BlockableReleaseRunner . 319
8.3.2.11 BoundAsyncEventHandler 322
8.3.2.12 BoundAsyncLongEventHandler 327
8.3.2.13 BoundAsyncObjectEventHandler 331
8.3.2.14 ReleaseRunner . 335

8.3.3 Exceptions . 338
8.3.3.1 Timed . 338

8.4 Rationale . 341

9 Time 345
9.1 Definitions . 345
9.2 Semantics . 346
9.3 javax.realtime . 349
9.3.1 Classes . 349

RTSJ 2.0 (Draft 57) v

TABLE OF CONTENTS

9.3.1.1 AbsoluteTime . 349
9.3.1.2 HighResolutionTime . 363
9.3.1.3 RelativeTime . 372

9.4 Rationale . 383

10 Clocks and Timers 385
10.1 Definitions . 386
10.2 Semantics . 387
10.2.1 Clock Model . 387
10.2.2 Clocks and Timables . 388
10.2.3 Timers . 392
10.2.3.1 Counter Model . 392
10.2.3.2 Comparator Model . 392
10.2.3.3 Triggering . 393
10.2.3.4 Behavior of Timers . 393
10.2.3.5 Phasing . 394

10.3 javax.realtime . 395
10.3.1 Interfaces . 395
10.3.1.1 AsyncTimable . 395
10.3.1.2 Chronograph . 396
10.3.1.3 Timable . 399

10.3.2 Classes . 400
10.3.2.1 Clock . 400
10.3.2.2 OneShotTimer . 407
10.3.2.3 PeriodicTimer . 409
10.3.2.4 TimeDispatcher . 418
10.3.2.5 Timer . 421

10.4 Rationale . 434

11 Alternative Memory Areas 435
11.1 Definitions . 437
11.2 Semantics . 438
11.2.1 Allocation Execution Time . 439
11.2.2 Allocation Context . 439
11.2.3 The Parent Scope . 440
11.2.4 Memory Areas and Schedulables 441
11.2.5 Scoped Memory Reference Counting 441
11.2.6 Immortal Memory . 443
11.2.7 Maintaining Referential Integrity 443
11.2.8 Object Initialization . 444
11.2.9 Maintaining the Scope Stack . 444

vi RTSJ 2.0 (Draft 57)

TABLE OF CONTENTS

11.2.10 The enter Method . 445
11.2.11 The executeInArea or newInstance Methods 445
11.2.12 Constructor Methods for Schedulables 446
11.2.13 The Single Parent Rule . 446
11.2.14 Scope Tree Maintenance . 447
11.2.14.1 Pushing a MemoryArea onto the Scope Stack 447
11.2.14.2 Popping a MemoryArea off the Scope Stack 448
11.2.14.3 Reservation Management . 448

11.2.15 Physical Memory . 449
11.2.16 Stacked Memory . 450

11.3 javax.realtime . 454
11.3.1 Enumerations . 454
11.3.1.1 EnclosedType . 454

11.3.2 Classes . 456
11.3.2.1 HeapMemory . 456
11.3.2.2 ImmortalMemory . 461
11.3.2.3 MemoryArea . 463
11.3.2.4 MemoryParameters . 479
11.3.2.5 PerennialMemory . 485
11.3.2.6 SizeEstimator . 485

11.4 javax.realtime.memory . 492
11.4.1 Interfaces . 492
11.4.1.1 PhysicalMemoryCharacteristic 492

11.4.2 Enumerations . 492
11.4.2.1 PhysicalMemorySelector.CachingBehavior 492
11.4.2.2 PhysicalMemorySelector.PagingBehavior 494

11.4.3 Classes . 495
11.4.3.1 LTMemory . 495
11.4.3.2 MemoryGroup . 499
11.4.3.3 PhysicalMemoryFactory . 501
11.4.3.4 PhysicalMemoryRegion . 508
11.4.3.5 PhysicalMemorySelector . 510
11.4.3.6 PinnableMemory . 513
11.4.3.7 ScopeParameters . 520
11.4.3.8 ScopedMemory . 524
11.4.3.9 StackedMemory . 550

11.5 The Rationale . 566
11.5.1 The Scoped Memory Model . 566
11.5.2 The Physical Memory Model . 567
11.5.2.1 The Original Physical Memory Framework 569

RTSJ 2.0 (Draft 57) vii

TABLE OF CONTENTS

11.5.2.2 The RTSJ 2.0 Physical Memory Framework 570
11.5.2.3 An example . 572

12 Devices and Triggering 575
12.1 Definitions . 576
12.2 Semantics . 577
12.2.1 Raw Memory . 577
12.2.1.1 Raw Memory Region . 579
12.2.1.2 Raw Memory Factory . 580
12.2.1.3 Stride . 581

12.2.2 Direct Memory Access Support 581
12.2.3 External Triggering . 582
12.2.3.1 Happenings . 582

12.2.4 Interrupt Service Routines . 584
12.3 javax.realtime.device . 588
12.3.1 Interfaces . 588
12.3.1.1 DirectMemoryByteBuffer . 588
12.3.1.2 RawByte . 603
12.3.1.3 RawByteReader . 604
12.3.1.4 RawByteWriter . 607
12.3.1.5 RawDouble . 610
12.3.1.6 RawDoubleReader . 610
12.3.1.7 RawDoubleWriter . 614
12.3.1.8 RawFloat . 617
12.3.1.9 RawFloatReader . 617
12.3.1.10 RawFloatWriter . 620
12.3.1.11 RawInt . 623
12.3.1.12 RawIntReader . 624
12.3.1.13 RawIntWriter . 627
12.3.1.14 RawLong . 630
12.3.1.15 RawLongReader . 630
12.3.1.16 RawLongWriter . 633
12.3.1.17 RawMemory . 636
12.3.1.18 RawMemoryRegionFactory 638
12.3.1.19 RawShort . 658
12.3.1.20 RawShortReader . 658
12.3.1.21 RawShortWriter . 661

12.3.2 Classes . 664
12.3.2.1 DirectMemoryBufferFactory 664
12.3.2.2 DirectMemoryRegion . 668
12.3.2.3 Happening . 670

viii RTSJ 2.0 (Draft 57)

TABLE OF CONTENTS

12.3.2.4 HappeningDispatcher . 680
12.3.2.5 InterruptServiceRoutine . 683
12.3.2.6 RawMemoryFactory . 688
12.3.2.7 RawMemoryRegion . 712

12.4 Rationale . 714
12.4.1 Raw Memory . 714
12.4.1.1 Direct memory access . 716

12.4.2 Interrupt Handling . 717
12.4.3 An Illustrative Example . 719
12.4.3.1 Software architecture . 719
12.4.3.2 Device initialization . 721
12.4.3.3 Responding to external happenings 722
12.4.3.4 Access to the flash controller’s device registers 722

13 Interprocess Signaling 725
13.1 Definitions . 725
13.2 Semantics . 725
13.2.1 POSIX Signals . 726
13.2.2 POSIX Realtime Signals . 726

13.3 javax.realtime.posix . 727
13.3.1 Classes . 727
13.3.1.1 RealtimeSignal . 727
13.3.1.2 RealtimeSignalDispatcher . 733
13.3.1.3 Signal . 736
13.3.1.4 SignalDispatcher . 743

13.4 Rationale . 746

14 System and Options 749
14.1 Semantics . 749
14.1.1 RealtimeSystem . 749
14.1.2 Realtime Security . 750
14.1.3 GarbageCollection . 753
14.1.4 Compliance Version . 753

14.2 javax.realtime . 755
14.2.1 Enumerations . 755
14.2.1.1 RTSJModule . 755

14.2.2 Classes . 758
14.2.2.1 AffinityPermission . 758
14.2.2.2 CoreMemoryPermission . 760
14.2.2.3 GarbageCollector . 764
14.2.2.4 RealtimePermission . 765

RTSJ 2.0 (Draft 57) ix

TABLE OF CONTENTS

14.2.2.5 RealtimeSystem . 769
14.2.2.6 SchedulingPermission . 777
14.2.2.7 TaskPermission . 781

14.3 javax.realtime.device . 785
14.3.1 Classes . 785
14.3.1.1 DirectMemoryPermission . 785
14.3.1.2 HappeningPermission . 787
14.3.1.3 RawMemoryPermission . 791

14.4 javax.realtime.memory . 795
14.4.1 Classes . 795
14.4.1.1 PhysicalMemoryPermission 795
14.4.1.2 ScopedMemoryPermission . 797

14.5 javax.realtime.posix . 801
14.5.1 Classes . 801
14.5.1.1 POSIXPermission . 801

14.6 Rationale . 804

15 Exceptions 805
15.1 Semantics . 805
15.2 javax.realtime . 807
15.2.1 Interfaces . 807
15.2.1.1 StaticThrowable . 807

15.2.2 Classes . 812
15.2.2.1 AlignmentError . 812
15.2.2.2 IllegalAssignmentError . 813
15.2.2.3 MemoryAccessError . 814
15.2.2.4 ResourceLimitError . 816
15.2.2.5 StaticError . 817
15.2.2.6 StaticOutOfMemoryError . 823
15.2.2.7 StaticThrowableStorage . 828
15.2.2.8 ThrowBoundaryError . 834

15.2.3 Exceptions . 835
15.2.3.1 ArrivalTimeQueueOverflowException 835
15.2.3.2 AsynchronouslyInterruptedException 837
15.2.3.3 CeilingViolationException . 843
15.2.3.4 ConstructorCheckedException 844
15.2.3.5 DeregistrationException . 845
15.2.3.6 EventQueueOverflowException 846
15.2.3.7 ForEachTerminationException 847
15.2.3.8 IllegalSchedulableStateException 848
15.2.3.9 InaccessibleAreaException 853

x RTSJ 2.0 (Draft 57)

TABLE OF CONTENTS

15.2.3.10 LateStartException . 855
15.2.3.11 MITViolationException . 856
15.2.3.12 MemoryInUseException . 858
15.2.3.13 MemoryScopeException . 859
15.2.3.14 MemoryTypeConflictException 861
15.2.3.15 OffsetOutOfBoundsException 862
15.2.3.16 POSIXException . 864
15.2.3.17 POSIXInvalidSignalException 864
15.2.3.18 POSIXInvalidTargetException 865
15.2.3.19 POSIXSignalPermissionException 866
15.2.3.20 ProcessorAffinityException 867
15.2.3.21 RangeOutOfBoundsException 868
15.2.3.22 RegistrationException . 868
15.2.3.23 ScopedCycleException . 869
15.2.3.24 SizeOutOfBoundsException 871
15.2.3.25 StaticCheckedException . 873
15.2.3.26 StaticRuntimeException . 878
15.2.3.27 UninitializedStateException 883
15.2.3.28 UnsupportedPhysicalMemoryException 884
15.2.3.29 UnsupportedRawMemoryRegionException 886

15.3 Rationale . 887

A Bibliography 889

B Deprecated APIs 891
B.1 Semantics . 891
B.2 javax.realtime . 892
B.2.1 Interfaces . 892
B.2.1.1 PhysicalMemoryTypeFilter 892
B.2.1.2 Schedulable . 899

B.2.2 Classes . 913
B.2.2.1 AbsoluteTime . 913
B.2.2.2 AperiodicParameters . 918
B.2.2.3 AsyncEvent . 923
B.2.2.4 AsyncEventHandler . 926
B.2.2.5 BoundAsyncEventHandler . 942
B.2.2.6 Clock . 944
B.2.2.7 HighResolutionTime . 946
B.2.2.8 IllegalAssignmentError . 948
B.2.2.9 ImmortalPhysicalMemory . 949
B.2.2.10 LTMemory . 958

RTSJ 2.0 (Draft 57) xi

TABLE OF CONTENTS

B.2.2.11 LTPhysicalMemory . 964
B.2.2.12 MemoryAccessError . 974
B.2.2.13 MemoryParameters . 974
B.2.2.14 NoHeapRealtimeThread . 978
B.2.2.15 OneShotTimer . 982
B.2.2.16 POSIXSignalHandler . 983
B.2.2.17 PeriodicParameters . 989
B.2.2.18 PeriodicTimer . 991
B.2.2.19 PhysicalMemoryManager . 992
B.2.2.20 PriorityScheduler .1002
B.2.2.21 ProcessingGroupParameters1011
B.2.2.22 RawMemoryAccess .1021
B.2.2.23 RawMemoryFloatAccess .1045
B.2.2.24 RealtimeSecurity .1056
B.2.2.25 RealtimeSystem .1060
B.2.2.26 RealtimeThread .1060
B.2.2.27 RelativeTime .1081
B.2.2.28 ReleaseParameters .1086
B.2.2.29 Scheduler .1087
B.2.2.30 ScopedMemory .1093
B.2.2.31 SporadicParameters .1109
B.2.2.32 ThrowBoundaryError .1113
B.2.2.33 Timer .1114
B.2.2.34 VTMemory .1115
B.2.2.35 VTPhysicalMemory .1121

B.2.3 Exceptions .1131
B.2.3.1 ArrivalTimeQueueOverflowException1131
B.2.3.2 DuplicateFilterException .1132
B.2.3.3 MemoryScopeException .1133
B.2.3.4 OffsetOutOfBoundsException1134
B.2.3.5 UnknownHappeningException1134
B.2.3.6 UnsupportedPhysicalMemoryException1135

B.3 Rationale .1136

C Indices 1137
C.1 Class Index .1137
C.2 Method Index .1139

Open Issues 1147

xii RTSJ 2.0 (Draft 57)

List of Figures

6.1 Sequence Diagram of Some Example Realtime Thread Releases 102
6.2 A State Chart for a Realtime Thread without a Deadline Miss Handler103
6.3 A State Chart for a Realtime Thread with a Deadline Miss Handler . 104

8.1 The Event Class Hierarchy . 255
8.2 Releasing an AysncEventHandler . 257
8.3 States of a Simple AsyncBaseEvent 258
8.4 States of an ActiveEvent . 259

10.1 Sequence Diagram for Using a Timer 390
10.2 Sequence Diagram for Realtime Sleep 391
10.3 States of a Timer . 395

11.1 Manipulation of StackedMemory Areas 452

12.1 Raw Memory Interface . 578
12.2 Event Classes . 580
12.3 Happening State Transition Diagram 582
12.4 Interrupt servicing . 584
12.5 Creating Raw Memory Accessors . 715
12.6 Flash memory device . 717
12.7 Flash memory classes . 719
12.8 Sequence diagram showing initialization operations 721
12.9 Sequence diagrams showing operations to initialize the hardware device722
12.10The FMSocketController.handleAsync method 723
12.11Application usage . 724

xiii

List of Tables

3.1 RTSJ Options . 30

5.1 PhasingPolicy Effect on First Release of a RealtimeThread with Peri-
odicParameters . 53

6.3 AperiodicParameters Default Values 147
6.4 FirstInFirstOut Default PriorityParameter Values 154
6.5 PeriodicParameter Default Values . 160
6.6 PriorityScheduler Default PriorityParameter Values 170
6.7 ProcessingGroup Default Values . 174
6.8 ReleaseParameter Default Values . 186
6.9 SporadicParameters Default Values 212

8.1 Event to Handler Matrix . 252

9.1 Examples of Normalized Times . 347
9.2 Semantics of Time Conversion . 348

11.1 Memory Area Referencing Restrictions 444

12.1 Properties Array . 690
12.2 Device registers . 720

B.1 ProcessingGroupParameter Default Values1013
B.2 Properties Array .1023

xiv

Chapter 1

Introduction

The goal of the Real-Time Specification for Java (RTSJ) is to support the use of
Java technology in embedded and realtime systems. It provides a specification for
refining the Java Language Specification and the Java Virtual Machine Specification
and for providing an extended Application Programming Interface that facilitates
the creation, verification, analysis, execution, and management of realtime Java
programs such as control and sensor applications.

The Java Virtual Machine and the Java Language were conceived as a portable en-
vironment for desktop and server applications. The emphasis has been on throughput
and responsiveness. These are characteristics obtainable with time-sharing systems.
For this conventional Java environment, it is more important that each task makes
progress, than that a particular task completes within a predefined time slot.

In a realtime system, the system tries to schedule the most critical task that is
ready to run first. This task runs either until it is finished, or it needs to wait for
some event or data, or a more critical task is released or a more critical task becomes
schedulable after waiting for its event or data.

Realtime scheduling is commonly done with a priority preemptive scheduler,
where tasks that have short deadlines are given higher priority than tasks that have
longer deadlines. The programmer is responsible for encoding some notion of task
importance to priorities. The goal is to see that all tasks finish within their deadlines.
Scheduling analysis, such as Rate Monotonic Analysis, can be used to help achieve
this goal.

Many realtime systems have nonrealtime components, so it is desirable to be able
to combine realtime and nonrealtime tasks in a single system. Realtime tasks are then
given preference over nonrealtime tasks. For Java, this means that realtime tasks
must be scheduled before threads with conventional Java priorities (1–10). Being
able to synchronize between tasks, both realtime and conventional Java threads,
imposes additional requirements.

Providing realtime semantics and the additional programming interfaces required

1

1 Introduction

is a core part of this specification. This led the original specification to provided
special memory areas to avoid the use of garbage collection; however, the availability
of various techniques for realtime garbage collection has changed the state of practice
since RTSJ Version 1.0. Though still part of the specification, these special memory
areas are no longer central to it. Realtime scheduling and priority inversion avoidance
for synchronization are the core of providing realtime response. These are provided
through refinements to the core Java semantics and with additional classes.

Realtime tasks can be modeled both with realtime threads and with event handlers.
Realtime threads are much the same as conventional Java threads except for how
they are scheduled. Event handlers encapsulate a bit of work that is done every time
some event occurs. Events are referred to as asynchronous because they generally
occur independent of program flow. Thus, a periodic timed event is considered to be
an asynchronous event, but scheduled periodically. Event handling provides a less
resource intensive means of writing control applications because the underlying thread
mechanism can be shared between event handlers. Deadline analysis is also somewhat
simpler because the end of the work to be done is well bounded. Event handling
is ideal for periodic tasks and responding to external impulses. The specification
provides both paradigms.

Though realtime is necessary for many control tasks, it is not sufficient. A
significant part of the RTSJ API addresses communication with the outside world
through devices and signals. This makes it possible to write control applications
without resorting to JNI, thereby maintaining the integrity and safety that Java
offers.

Since not all applications need all aspects of the specification, there are now
modules to suite the major application scenarios. This should make it easier for
conventional JVM providers to include basic specification facilities without negatively
impacting their core application domains, but still be compatible with hard realtime
implementations. The goal is to make the transition between conventional JVMs
and realtime JVMs easier.

1.1 Guiding Principles

Providing a coherent semantics and a set of programming interfaces requires some
guiding principles around which to organize the RTSJ. The following principles delimit
the scope of the RTSJ and its compatibility requirements with conventional Java.
They ensure that conventional Java code can be run with realtime Java code on a
single Java virtual machine.

2 RTSJ 2.0 (Draft 57)

Guiding Principles 1.1

1.1.1 Applicability Across Java Environments
The RTSJ shall not include specifications that restrict its use to a particular Java
environment, such as a particular versions of the Java Development Kit, an Embedded
Java Application Environment, or a Java Edition, beyond the natural development
of the Java language.

1.1.2 Backward Compatibility
The RTSJ shall not prevent existing, properly written, conventional Java programs
from executing on implementations of the RTSJ.

1.1.3 Write Once, Run Anywhere
The RTSJ should recognize the importance of “Write Once, Run Anywhere”, but it
should also recognize the difficulty of achieving WORA for realtime programs and not
attempt to increase or maintain binary portability at the expense of predictability.
Hence, the goal should be “Write Once Carefully, Run Anywhere Conditionally”.

1.1.4 Current Practice vs. Advanced Features
The RTSJ should address current realtime system practice as well as allow future
implementations to include advanced features.

1.1.5 Predictable Execution
The RTSJ shall hold predictable execution as first priority in all trade-offs; this may
sometimes be at the expense of typical general-purpose computing performance
measures.

1.1.6 No Syntactic Extension
In order to facilitate the job of tool developers, and thus to increase the likelihood of
timely implementations, the RTSJ shall not introduce new keywords or make other
syntactic extensions to the Java language.

1.1.7 Allow Variation in Implementation Decisions
Implementations of the RTSJ may vary in a number of implementation decisions,
such as the use of efficient or inefficient algorithms, trade-offs between time and
space efficiency, inclusion of scheduling algorithms not required in the minimum

RTSJ 2.0 (Draft 57) 3

1 Introduction

implementation, and variation in code path length for the execution of byte codes.
The RTSJ should not mandate algorithms or specific time constants for such, but
require that the semantics of the implementation be met and where necessary put
limits on execution time complexity. The RTSJ offers implementers the flexibility to
create implementations suited to meet the requirements of their customers.

1.1.8 Interoperability
It should be possible to implement all aspects of the RTSJ on a conventional JVM
with the exception that realtime response and pointer assignment rules would not
necessarily be guaranteed. This should ease the transition between conventional and
realtime programming and aid functional testing on a conventional JVM. The API
should support modules for this as well.

1.2 Areas of Enhancement
Each guiding principle has had a direct effect on the development of the specification.
These pricples are reflected in the following aspects of the realtime refinements and ad-
ditional classes in the specification. Their enumeration should aid the understanding
of the rest of the specification.

1.2.1 Thread Scheduling and Dispatching
Portability dictates the specification of at least one standard realtime scheduler, but
in light of the significant diversity in scheduling and dispatching models and the
recognition that each model has wide applicability in the diverse realtime systems
industry, the specification provides an underlying scheduling infrastructure that can
be extended to use other algorithms for scheduling realtime Java threads and event
handlers.

To accommodate current practice, the RTSJ shall require a base scheduler in all
implementations. The required base scheduler will be familiar to realtime system
programmers. It is a priority preemptive, first-in-first-out, scheduler. Since most
realtime systems also support round-robin scheduling, a round-robin scheduler shall
also be supplied. For compatibility with conventional Java implementations, both
schedulers shall use priorities above the conventional Java priorities (1–10).

The specification is constructed to allow implementations to provide unanticipated
scheduling algorithms. Implementations will enable the programmatic assignment
of parameters appropriate for the underlying scheduling mechanism as well as
provide any necessary methods for the creation, management and termination of
realtime Java threads. In the current specification, any other thread, scheduling, and

4 RTSJ 2.0 (Draft 57)

Areas of Enhancement 1.2

dispatching mechanism may be bound to an implementation; however, there should
be enough flexibility in the thread scheduling framework to enable future versions of
the specification to build on this release.

1.2.2 Memory Management

Automatic memory management is a particularly important feature of the Java
programming environment. The specification enables, as far as possible, the job of
memory management to be implemented automatically by the underlying system
and not intrude on the programming task. Many automatic memory management
algorithms, also known as garbage collection (GC), exist, and many of those apply
to certain classes of realtime programming styles and systems. In an attempt to
accommodate a diverse set of GC algorithms, the specification defines a memory
allocation and reclamation paradigm that
• is independent of any particular GC algorithm,
• requires the VM to precisely characterize its GC algorithm’s effect on the

preemption of realtime Java tasks, and
• enables the allocation and reclamation of objects outside of any interference by

any GC algorithm.

1.2.3 Synchronization and Resource Sharing

Logic often requires exclusive access to resources, and realtime systems introduce
an additional complexity: the need to minimize priority inversion and hence the
excessive delay of more critical tasks. The least intrusive specification for enabling
realtime safe synchronization is to require that implementations of the Java keyword
synchronized use one or more algorithms that prevent priority inversion among
realtime Java tasks that share the serialized resource. In addition, the specification
provides other data passing mechanisms to minimize the need for synchronization.

1.2.4 Asynchronous Event Handling

Realtime systems typically interact closely with the real world. With respect to
the execution of logic, the real world is asynchronous; therefore, the specification
includes efficient mechanisms for programming disciplines that would accommodate
this inherent asynchrony. The RTSJ has a general mechanism for asynchronous event
handling. This specification provides classes that represent things that can happen
and logic that executes when those things happen. The execution of the logic is
scheduled and dispatched by the RTSJ runtime.

RTSJ 2.0 (Draft 57) 5

1 Introduction

1.2.5 Task Interruption
Sometimes, the real world changes so drastically (and asynchronously) that the
current point of logic execution should be immediately, efficiently, and safely ended,
and control should be transferred to another point of execution. The RTSJ provides
a mechanism which extends Java’s interrupt and exception handling mechanisms to
enable applications to programmatically change the locus of control of another Java
task. This mechanism may restrict this asynchronous transfer of control to logic
specifically written with the assumption that its locus of control may asynchronously
change. Due to the inherent susceptibility to deadlock, the Thread.stop method
cannot be used for this.

1.2.6 Raw Memory Access
Accessing device memory is not in and of itself a realtime issue; however, many
realtime systems require it for providing realtime control of a system. This requires
an API providing programmers with byte-level access to physical device registers,
whether in main memory or in some I/O space. This API must be as efficient as
possible, since such access is often under tight time constraints.

1.2.7 Physical Memory Access
Some systems provide memory areas that differ in important aspects, such as time
to read or write data and its persistence. Being able to take advantage of these areas
can have an impact on performance. This specification enables their efficient use.

1.2.8 Modularization
Not all applications require all aspects of the specification. In fact, having a core set
of the APIs presented is useful for conventional Java programming and aids overall
interoperability. To this end, the specification provides a core set of APIs and a
few optional modules as well as semantics for use in conventional JVMs that do
not offer realtime guarantees. This should enable implementations to be optimized
for particular use cases and enable conventional Java environments to be used to
help develop code that can be more easily shared between realtime and conventional
systems.

6 RTSJ 2.0 (Draft 57)

Chapter 2

Overview

The RTSJ comprises several areas of extended semantics. These areas are discussed
in approximate order of their relevance to realtime programming. The semantics
and mechanisms of each topic—threads and scheduling, synchronization, asynchrony,
clocks and timers, memory management, device access and raw memory, system
options, and exceptions—are all crucial to the acceptance of the RTSJ as a viable real-
time development platform. Further details, exact requirements, class documentation,
and rationale for these extensions are given in subsequent chapters.

2.1 Threads and Scheduling
One of the concerns of realtime programming is to ensure the timely and predictable
execution of sequences of machine instructions. Various scheduling schemes name
these sequences of instructions differently, for example, thread, task, module, or
block. In Java, this computation is executed in the context of a thread. Since Java
threads were designed for fair execution1 rather than predictable execution, the RTSJ
introduces the concept of a schedulable. These are the objects managed by the base
scheduler: RealtimeThread and its subclasses and AsyncBaseEventHandler and its
subclasses. RealtimeThread is a specialization of Java’s Thread.

Timely execution of schedulables means that the programmer can determine,
by analysis of the program, testing the program on particular implementations,
or both, whether particular threads will always complete execution before a given
timeliness constraint. This is the essence of realtime programming: the addition of
temporal constraints to the correctness conditions for computation. For example, for
a program to compute the sum of two numbers, it may no longer be acceptable to

1Actually, neither the Java Virtual Machine Specification[6] nor the Java Language
Specification[5] defines how Java threads should be scheduled, but most implementations, in-
cluding the reference implementations, use some sort of fair scheduling.

7

2 Overview

compute only the correct arithmetic answer but the answer must be computed within
a particular time interval. Typically, temporal constraints are deadlines expressed in
either relative or absolute time.

The term scheduling (or scheduling algorithm) refers to the production of a
sequence (or ordering) for the execution of a set of schedulables (a schedule). This
schedule attempts to optimize a particular metric (a metric that measures how well
the system is meeting the temporal constraints). A feasibility analysis determines
if a schedule has an acceptable value for the metric. For example in hard realtime
systems, the typical metric is “number of missed deadlines” and the only acceptable
value for that metric is zero. So called soft realtime systems use other metrics, such
as mean tardiness, and may accept various values for the metric in use.

Many systems, including most conventional Java implementations, use thread
priority to guide the determination of a schedule. Priority is typically an integer
associated with a thread; these integers convey to the system the order in which the
threads should execute. The generalization of the concept of priority is execution
eligibility. The term dispatching refers to that portion of the system which selects
the thread with the highest execution eligibility from the pool of threads that are
ready to run.

In current realtime system practice, the assignment of priorities is typically under
programmer control as opposed to under system control. As a base scheduler for
realtime tasks, the RTSJ provides preemptive priority-based first-in-first-out (FIFO)
scheduler, which also leaves the assignment of priorities to programmer control. It
also provides a priority-based round-robin (RR) scheduler. Most realtime operating
systems (RTOS) are also based on priority preemptive scheduling and support both
FIFO and RR scheduling.

The RTSJ defines a number of classes with names of the form <string>Paramet-
ers such as ReleaseParameters, which provide parameters for resource management.
An instance of one of these parameter classes holds a particular resource-demand
characteristic for one or more schedulables. For example, the PriorityParameters
subclass of SchedulingParameters contains the execution eligibility metric of the
base scheduler, i.e., a priority. At some time (construction-time or later when the
parameters are replaced using setter methods), instances of parameter classes are
bound to a schedulable. The schedulable then assumes the characteristics of the
values in the parameter object. For example, a PriorityParameters instance with
its priority set to the value representing the highest priority available on a system is
bound to a schedulable, then that schedulable will assume the characteristic that it
will execute whenever it is ready in preference to all other schedulables (except, of
course, those also with the same priority).

The RTSJ provides implementers with the flexibility to install arbitrary scheduling
algorithms in an implementation of the specification. This is to support the widely

8 RTSJ 2.0 (Draft 57)

Synchronization 2.2

varying requirements of the realtime systems industry with respect to scheduling.
Use of the Java platform may help produce code written once but able to be executed
on many different computing platforms. The RTSJ contributes to this goal, but the
rigors of realtime systems detract from it. The RTSJ’s rigorous specification of the
required priority scheduler is critical for portability of time-critical code, but the
RTSJ permits and supports platform-specific schedulers which are not necessarily
portable.

2.2 Synchronization

If the computation in each thread were independent of the computation in all other
threads, scheduling alone would be enough to ensure timeliness; however, this is
usually not the case. Threads often need to communicate with one another or share
data. Resources must be shared as well. Two threads cannot read different data from
the disk at the same time nor write data to a disk at the same time. They cannot
send a message to another machine at the same time. They cannot update the same
in-memory data at the same time. One thread may have to wait for another thread
to get the data it needs. Just as in a normal system, synchronization is required.
In a realtime system, this synchronization must not prevent other threads from
completing their tasks on time.

2.2.1 Priority Inversion

The additional concern for synchronization in a realtime system, as opposed to a
conventional system, is that blocking can cause the wrong thread to run first. A
high priority thread can be blocked by a low priority thread that is vying for the
same resource. A priority queue can be used to ensure that a highest priority thread
goes first, when more than one thread is waiting to enter a synchronized block, but
this is not always sufficient.

Consider a single processor system with three threads, t1, t2, and t3, where t1
has the highest priority and t3 has the lowest priority. It is possible that t2 can
prevent t1 from running by preempting t3. This is called priority inversion. It occurs
when t1 is blocked by attempting to acquire a lock that is held by thread t3 and t3
is preempted by t2. When t2 does run, it may prevent t3 from running indefinitely,
thereby keeping t1 blocked past its deadline.

What is needed is a mechanism the ensure that, while t1 is waiting on a resource
in use by t3, thread t3 runs before all threads with a priority less than that of t1.

RTSJ 2.0 (Draft 57) 9

2 Overview

2.2.2 Priority Inversion Avoidance
Two of the most common mechanisms for avoiding priority inversion are priority
inheritance and priority ceiling emulation (a.k.a. highest locker protocol). Both
of these boost the priority of a thread holding the lock in order to prevent a
noncontending thread from transitively blocking a higher priority thread which is
waiting for the same lock. The difference is how high the priority is raised and when.
Both take effect when a thread is in a synchronized section of code.

The first mechanism is the default behavior for synchronized blocks and methods.
It applies to all code running within the implementation, not just to schedulables.
The priority inheritance protocol is a well-known algorithm in the realtime scheduling
literature and it has the following effect. When thread t1 attempts to acquire a lock
that is held by a lower-priority thread t3, then t3’s priority is raised to that of t1 as
long as t3 holds the lock (and recursively if t3 is itself waiting to acquire a lock held
by an even lower-priority thread).

The specification also provides a mechanism by which the programmer can override
the default system-wide policy, or control the policy to be used for a particular
monitor, provided that policy is supported by the implementation. The second
mechanism, priority ceiling emulation protocol, can be set using this mechanism. It
is also a well-known algorithm in the literature. The following three points provide a
somewhat simplified description of its effect.

1. A monitor is given a “priority ceiling" when it is created; the programmer
should choose at least the highest priority of any thread that could attempt to
enter the monitor.

2. As soon as a thread enters synchronized code, its (active) priority is raised to
the monitor’s ceiling priority. If, through programming error, a thread has a
higher base priority than the ceiling of the monitor it is attempting to enter,
then an exception is thrown.

3. On leaving the monitor, the thread has its active priority reset. In simple
cases it will set be to the thread’s previous active priority, but under some
circumstances (e.g. a dynamic change to the thread’s base priority while it was
in the monitor) a different value is possible.

In addition, threads and asynchronous event handlers waiting to acquire a resource
must be released from highest to lowest priority (in priority order). This applies to
processors as well as to synchronized blocks. If schedulables with the same priority
are possible under the active scheduling policy, such schedulables are awakened in
FIFO order. This is exemplified in the following scenarios.

1. Threads waiting to enter synchronized blocks are granted access to the syn-
chronized block in priority order.

2. A blocked thread that becomes ready to run is given access to a processor in
priority order.

10 RTSJ 2.0 (Draft 57)

Asynchrony 2.3

3. A thread whose priority is explicitly set by itself or another thread is given
access to a processor in priority order.

4. A thread that performs a yield will be given access to the processor after
waiting for threads of the same priority to be given a processor.

5. Threads that are preempted in favor of a thread with higher priority may
be given access to a processor at any time as determined by a particular
implementation. The implementation is required to provide documentation
stating exactly the algorithm used for granting such access.

In any case, there needs to be a fixed upper bound on the time required to enter
a synchronized block for an unlocked monitor.

2.2.3 Execution Eligibility
Since an implementation of the RTSJ may provide schedulers other than priority-based
schedulers, the notion of priority can be generalized to execution eligibility. Execution
eligibility defines a partial ordering over all tasks for determining which task should
run before which other tasks. Execution eligibility may be determined dynamically.
For example, earliest deadline first (EDF) scheduling determines execution eligibility
ordering by the order of the next deadlines for each of its tasks. The notion of
priority, as described above, can be generalized to execution eligibility to integrate
other schedulers into an RTSJ implementation.

2.2.4 Wait-Free Queues
While the RTSJ requires that the execution of schedulables which do not access
the heap must not be delayed by garbage collection on behalf of lower-priority
schedulables, an application can cause such a schedulable to wait for garbage collection
by synchronizing using an object shared with a heap-using thread or schedulable.
The RTSJ provides wait-free queue classes to provide protected, nonblocking, shared
access to objects accessed by both regular Java threads and schedulables, which do
not access the heap.

2.3 Asynchrony
Since a realtime system must be able to react to the outside world, the system needs
to be able to change its execution flow asynchronously to the current execution. All
external signals, whether interrupts, messages, or timed events, are asynchronous
with respect to ongoing computation. This means that computation must be both
startable and stoppable based on external stimuli.

RTSJ 2.0 (Draft 57) 11

2 Overview

2.3.1 Asynchronous Events
Asynchronous event provide a means of starting computation based on external
stimuli. The asynchronous event facility is based on two classes: AsyncBaseEvent
and AsyncBaseEventHandler. An AsyncBaseEvent object represents something
that can happen, like a POSIX signal, a hardware interrupt, or a computed event
like an airplane entering a specified region. When one of these events occurs,
which is indicated by the fire() method being called, the associated instances of
AsyncBaseEventHandler are scheduled and the handleAsyncEvent() methods are
invoked, thus the required logic is performed. Also, methods on AsyncBaseEvent
are provided to manage the set of instances of AsyncBaseEventHandler associated
with the instance of AsyncBaseEvent.

An instance of an AsyncBaseEventHandler can be thought of as something sim-
ilar to a thread. When an event fires, the associated handlers are scheduled and the
handleAsyncEvent() methods are invoked. What distinguishes an AsyncBaseEvent-
Handler from a simple Runnable is that an AsyncBaseEventHandler has associated
instances of ReleaseParameters, SchedulingParameters and MemoryParameters
that control the actual execution of the handler once the associated AsyncBaseEvent
is fired. When an event is fired, the handlers are executed asynchronously, sched-
uled according to the associated ReleaseParameters and SchedulingParameters
objects, in a manner that looks like the handler has just been assigned to its own
thread. It is intended that the system can cope well with situations where there are
large numbers of instances of AsyncBaseEvent and AsyncBaseEventHandler (tens
of thousands), since the number of fired (in progress) handlers is expected to be
much smaller.

There are specialized forms of AsyncBaseEvent: AsyncEvent, AsyncLongEvent,
and AsyncObjectEvent for events that are stateless, carry a long payload, and
carry an Object payload, respectively. They are matched by specialized forms
of AsyncBaseEventHandler: AsyncEventHandler, AsyncLongEventHandler, and
AsyncObjectEventHandler. Most external events are stateless, but sometimes it is
helpful to be able to receive some information about the event or pass some data with
the event. The Long and Object variants enable this and the POSIXRealtimeSignal
takes advantage of it.

Another specialized form of an AsyncEvent is the Timer class, which represents
an event whose occurrence is driven by time. There are two forms of Timers: the
OneShotTimer and the PeriodicTimer. Instances of OneShotTimer fire once, at
the specified time. Periodic timers fire initially at the specified time, and then
periodically according to a specified interval.

Timers are driven by Clock objects. There is a special Clock object, Clock.
getRealtimeClock(), that represents the realtime clock. The Clock class may be
extended to represent other clocks, which the underlying system might make available

12 RTSJ 2.0 (Draft 57)

Asynchrony 2.3

(such as an execution-time clock of some granularity).

2.3.2 Asynchronous Transfer of Control
Many event-driven computer systems that tightly interact with external physical
systems (e.g., humans, machines, control processes, etc.) may require mode changes
in their computational behavior as a result of significant changes in the actual
real-world system. It simplifies the architecture of a system when a task can be
programmatically terminated when an external physical system change causes its
computation to be superfluous. Without this facility, a thread or set of threads
have to be coded so that their computational behavior anticipates all of the possible
transitions among possible states of the external system. When the external system
makes a state transition, the changes in computation behavior can be managed by
an oracle that terminates a set of threads required for the old state of the external
system, and invokes a new set of threads appropriate for the new state of the external
system. Since the possible state transitions of the external system are encoded only
in the oracle and not in each thread, the overall system design is simpler.

There is a second requirement for a mechanism to terminate some computation,
where a potentially unbounded computation needs to be done in a bounded period
of time. In this case, if that computation can be executed with an algorithm that
is iterative, and produces successively refined results, the system could abandon
the computation early and still have usable results. The RTSJ supports aborting a
computation by a signal from another thread or by the expiration of a timer with a
feature termed Asynchronous Transfer of Control (ATC).

An example of the second case is processing compressed video for a human
controller. The system knows that a new frame must be produced at a constant
update frequency. The cost of each iteration is highly variable and the minimum
required latency to terminate the computation and receive the last consistent result
is much less than the mean cost and bound of an iteration. Therefore, using ATC
for interrupting a computation to capture an intermediate result at the expiration of
a known time bound is a convenient programming style. Of course, there are other
kinds of programming tasks that may also benefit from ATC.

The RTSJ’s approach to ATC uses asynchronous interruptions and exceptions,
and is based on several guiding principles covering methodology, expressiveness,
semantics, and pragmatic concerns.

2.3.2.1 Methodological Principles

1. A method must explicitly indicate its susceptibility to ATC, i.e., it is asyn-
chronously interruptible. Since legacy code or library methods might have been

RTSJ 2.0 (Draft 57) 13

2 Overview

written assuming no ATC, by default ATC must be turned off (more precisely,
must be deferred as long as control is in such code).

2. Even if a method allows ATC, some code sections must be executed to comple-
tion and thus ATC is deferred in such sections. These ATC-deferred sections
are synchronized methods, static initializers, and synchronized statements.

3. Code that responds to an ATC does not return to the point in the schedulable
where the ATC was triggered; that is, an ATC is an unconditional transfer of
control. Resumptive semantics, which returns control from the handler to the
point of interruption, are not needed since they can be achieved through other
mechanisms (in particular, an AsyncEventHandler).

2.3.2.2 Expressibility Principles

1. A mechanism is needed through which an ATC can be explicitly triggered in
a target schedulable. This triggering may be direct (from a source thread or
schedulable) or indirect (through an asynchronously interrupted exception).

2. It must be possible to trigger an ATC based on any asynchronous event
including an external happening or an explicit event firing from another thread
or schedulable. In particular, it must be possible to base an ATC on a timer
going off.

3. Through ATC it must be possible to abort a realtime thread but in a manner
that does not carry the dangers of the Thread class’s stop() and destroy()
methods.

2.3.2.3 Semantic Principles

1. When ATC is modeled by exception handling, there must be some way to
ensure that an asynchronous exception is only caught by the intended handler
and not, for example, by an all-purpose handler that happens to be on the
propagation path.

2. Nested ATCs must work properly. For example, consider two, nested ATC-
based timers and assume that the outer timer has a shorter time-out than the
nested, inner timer. When the outer timer times out while control is in the
nested code of the inner timer, then the nested code must be aborted (as soon
as it is outside an ATC-deferred section), and control must then transfer to the
appropriate catch clause for the outer timer. An implementation that either
handles the outer time-out in the nested code, or that waits for the longer
(nested) timer, is incorrect.

14 RTSJ 2.0 (Draft 57)

Asynchrony 2.4

2.3.2.4 Pragmatic Principles

1. There should be straightforward programming idioms for common cases such
as timer handlers and realtime thread termination.

2. When code with a time-out completes before the timer’s expiration, the timer
needs to be automatically stopped and its resources returned to the system.

2.3.3 Asynchronous Realtime Thread Termination

A special case of stopping a particular computation is stopping a thread. Earlier
versions of the Java language supplied mechanisms for achieving these effects: in par-
ticular the methods stop() and destroy() in class Thread. However, since stop()
could leave shared objects in an inconsistent state, stop() has been deprecated. The
use of destroy() can lead to deadlock, e.g., when a thread is destroyed while it
is holding a lock, and although it was not deprecated until version 1.5 of the Java
specification, its usage has long been discouraged. A goal of the RTSJ was to meet the
requirements of asynchronous thread termination without introducing the dangers of
the stop() or destroy() methods.

The RTSJ accommodates safe asynchronous realtime thread termination through
a combination of the asynchronous event handling and the asynchronous transfer of
control mechanisms. To create such a set of realtime threads consider the following
steps:

1. make all of the application methods of the realtime thread asynchronously
interruptible;

2. create an oracle2 which monitors the external world by setting up an asyn-
chronous event with a number of asynchronous event handlers, which is fired
when an appropriate mode change;

3. have the handlers call interrupt() on each of the realtime threads affected
by the change; then

4. after the handlers call interrupt(), have them create a new set of realtime
threads appropriate to the current state of the external world.

The effect of the event is to cause each interruptible method to abort abnormally by
transferring control to the appropriate catch clause. Ultimately the run() method
of the realtime thread will complete normally.

This idiom provides a quick but orderly clean up and termination of the realtime
thread.

2Note, the oracle can comprise as many or as few asynchronous event handlers as appropriate.

RTSJ 2.0 (Draft 57) 15

2 Overview

2.4 Clocks, Time, and Timers
Realtime systems require a high resolution notion of time. Both very small units
and very long periods of time must be uniformly representable, a range that is not
even representable with a long value. Furthermore, a time can represent an absolute
value, usually represented as some absolute fixed point in time plus an offset, or it
can represent an interval of time. The time classes defined in Chapter 9 support a
longs worth of seconds and another integer for nanoseconds.

2.5 Memory Management
The Java language is designed around automatic memory management, in particular
garbage collection. Unfortunately, though garbage collection is a functional safety and
security feature, conventional garbage collectors interrupt the normal flow of control
in a program. Therefore, garbage-collected memory heaps had been considered an
obstacle to realtime programming due to the potential for unpredictable latencies
introduced by the garbage collector. Though conventional collectors still have these
drawbacks, there are now realtime collectors that can be used for hard realtime
application. Still, the RTSJ provides an alternative to garbage collection for systems
which require it, either because they do not have a garbage collector or deterministic
garbage collector, or require heap partitioning for some other reason. Extensions
to the memory model, which support memory management in a manner that does
not interfere with the ability of realtime code to provide deterministic behavior,
are provided to support these alternatives. This goal is accomplished by providing
memory areas for the allocation of objects outside of the garbage-collected heap for
both short-lived and long-lived objects. In order to provide additional separation
between the garbage collector and schedulables which do not require its services, a
schedulable can be marked to indicate that it never accesses the heap.

2.5.1 Memory Areas

The RTSJ introduces the concept of a memory area. A memory area represents an
area of memory that may be used for allocating objects. Some memory areas exist
outside of the heap and place restrictions on what the system and garbage collector
may do with objects allocated within. Objects in some memory areas are never
garbage collected; however, the garbage collector must be capable of scanning these
memory areas for references to any object within the heap to preserve the integrity
of the heap.

There are four basic types of memory areas:

16 RTSJ 2.0 (Draft 57)

Memory Management 2.5

1. Heap memory represents an area of memory that is the heap. The RTSJ does
not change the determinant of lifetime of objects on the heap. The lifetime is
still determined by visibility.

2. Immortal memory represents an area of memory containing objects that may
be referenced without exception or garbage collection delay by any schedul-
able, specifically including realtime threads and asynchronous event handlers
configured to not have access to the heap.

3. Scoped memory provides a mechanism for managing objects that have a lifetime
defined by their scope. It is akin to, but more general than, allocating objects
on the thread stack.

4. Physical memory allows objects to be created within specific physical memory
regions that have particular important characteristics, such as memory that
has substantially faster access.

2.5.2 Heap Memory
Heap memory is the memory area used by Java by default. It is garbage collected
and the access time to objects in this area are not guaranteed unless the implemen-
tation supports realtime garbage collection. The RTSJ, as with conventional Java,
supports only one Heap in a system. Multiple heaps are only practical in one of two
configurations: the heaps are completely independent of one another or there are
subsidiary heaps from which a program may not store references in the main heap.
In other words, the subsidiary heaps can reference the main heap but not vice versa.
Currently, the RTSJ does not address these cases.

2.5.3 Immortal Memory
ImmortalMemory is a memory resource shared among all schedulable objects and
threads in an application. Objects allocated in ImmortalMemory are always available
to extraheap threads and asynchronous event handlers without the possibility of a
delay for garbage collection.

2.5.4 Scoped Memory
The RTSJ introduces the concept of scoped memory. A memory scope is used to give
bounds to the lifetime of any objects allocated within it. When a scope is entered,
every use of new causes the memory to be allocated from the active memory scope.
A scope may be entered explicitly, or it can be attached to a schedulable which will
effectively enter the scope before it executes the object’s run() method.

The contents of a scoped memory are discarded when no object in the scope can
be accessed. This is done by a technique similar to reference counting the scope.

RTSJ 2.0 (Draft 57) 17

2 Overview

A conforming implementation might maintain a count of the number of external
references to each memory area. The reference count for a ScopedMemory area would
be increased by entering a new scope through the enter() method of MemoryArea,
by the creation of a schedulable using the particular ScopedMemory area, or by the
opening of an inner scope. The reference count for a ScopedMemory area would be
decreased when returning from the enter() method, when the schedulable using the
ScopedMemory terminates, or when an inner scope returns from its enter() method.
When the count drops to zero, the finalize method for each object in the memory
would be executed to completion. Reuse of the scope is blocked until finalization is
complete.

Scopes may be nested. When a nested scope is entered, all subsequent allocations
are taken from the memory associated with the new scope. When the nested scope
is exited, the previous scope is restored and subsequent allocations are again taken
from that scope.

Because of the lifetimes of scoped objects, it is necessary to limit the references
to scoped objects, by means of a restricted set of assignment rules. A reference to a
scoped object cannot be assigned to a variable from an outer scope, or to a field of an
object in either the heap or the immortal area. A reference to a scoped object may
only be assigned into the same scope or into an inner scope. The virtual machine
must detect illegal assignment attempts and must throw an appropriate exception
when they occur.

For cases where the usage of memory does not follow a stack discipline, in
particular code that uses the producer-consumer pattern, a special variant of scoped
memory is provided. This variant PinnableMemory has the same semantics as
LTMemory except that a task can “pin” the memory, thereby keeping it open, even
when no task is in the area. One task can fill the memory, put a reference in its
portal, and then pass it on to another task to consume the data therein. Thus one
does not have to have a dummy task to hold a pinned area open while it is passed
from producer to consumer.

The flexibility provided in choice of scoped memory types enables the application
to use a memory area that has characteristics that are appropriate to a particular
syntactically defined region of the code.

2.5.5 Physical Memory Areas
In many cases, systems needing the predictable execution of the RTSJ will also need
to access various kinds of memory at particular addresses for performance or other
reasons. Consider a system in which very fast static RAM was programmatically
available. A design that could optimize performance might wish to place various
frequently used Java objects in the fast static RAM. The PhysicalMemoryRegion
and PhysicalMemoryFactory classes provide the programmer this flexibility. The

18 RTSJ 2.0 (Draft 57)

Device Access and Raw Memory 2.7

programmer would construct a physical memory object on the memory addresses
occupied by the fast RAM.

2.5.6 Budgeted Allocation
The RTSJ also provides limited support for providing memory allocation budgets
for schedulables using memory areas. Maximum memory area consumption and
maximum allocation rates for individual schedulable objects may be specified when
they are created.

2.6 Device Access and Raw Memory
The RTSJ defines classes for programmers wishing to directly access physical memory
from code written in the Java language. The RawMemory<Size> types, where <Size>
is one of Byte, Short, Long, Float, or Double, define methods that enable the
programmer to construct an object that represents a vector of consecutive positions
in memory where the Size represents a primitive numerical data type, i.e., byte,
short, int, long, float, and double repectively. Access to the physical memory is then
accomplished through get<Size>() and set<Size>() methods of that object. No
semantics other than the set<Size>() and get<Size>() methods are implied. On
the other hand, the PhysicalMemoryRegion and PhysicalMemoryFactory classes
enable programmers to construct an object that represents a range of physical
memory addresses. When this object is used as a MemoryArea other objects can be
constructed in the physical memory using the new keyword as appropriate. Factories
can be used to create the desired type of both physical and raw memory.

2.6.1 Raw Memory Access
An instance of RawMemory models a range of physical memory locations as a fixed
sequence of elements of a given size. The elements correspond to Java primitive
types. For objects that access more than a single physical address, elements can be
accessed through offsets from the base, where the offset is measured in multiples of
the element size, not necessarily the byte offset in memory.

The RawMemory interface enables a realtime program to implement device drivers,
memory-mapped registers, I/O space mapped registers, flash memory, battery-backed
RAM, and similar low-level hardware.

A raw memory area cannot contain references to Java objects. Such a capability
would be unsafe (since it could be used to defeat Java’s type checking) and error
prone (since it is sensitive to the specific representational choices made by the Java
compiler).

RTSJ 2.0 (Draft 57) 19

2 Overview

2.7 System Options
POSIX defines some convenient interfaces for interacting with the system. These
interactions include catching keyboard interrupts, user-to-process signaling, and
interprocess signaling. Many realtime operating systems support this POSIX signal
interface. For this reason, the RTSJ provides a POSIX signal interface. Though many
of the features POSIX signals provide are also available on most other operating
systems, the specification does not require the POSIX signal interface to be emulated
on these other platforms. Thus they are optional in the sense that they are only
required on systems that directly support POSIX signals.

2.8 Exceptions
Aside from several new exceptions, the RTSJ provides a new interface for using
exceptions without creating ephemeral objects and some new treatment of exceptions
surrounding asynchronous transfer of control.

Using exceptions is resource intensive, since a new exception is allocated for each
throw. This is particularly a problem for scoped memory, since scopes may need to
be sized much larger than otherwise necessary to hold exceptions and their stack
traces. Additionally, the information they contain cannot be propagated beyond the
scope in which they are allocated. To better support scoped, immortal, and physical
memory, a new class of throwable has been included: StaticThrowable. Exceptions
and Errors which implement this interface are not thrown in the usual manner, but
with a style that does not require memory to be allocated at all.

Asynchronous transfer of control can cause the exception that triggered it to be
propagated even when it is caught but the underlying interrupt is not cleared. The
system rethrows the exception once the catch is finished. This is necessary since
the Java exception hierarchy is poorly designed: there is no common base class for
checked exceptions, so application code often contains a catch for Exception when
only checked exceptions need to be caught. Even the JVM specification wording
is awkward on this point, where a checked exception is an exception that is not a
subclass of RuntimeException and an error is a throwable that is not a subclass of
Exception.

2.9 Summary
The RTSJ refines the semantics of threads, scheduling, synchronization, memory
management, and exceptions and adds features to support realtime threads, realtime
scheduling, configuring synchronization, handling asynchrony, representing time,
clocks and timers, additional methods for memory management, device access and

20 RTSJ 2.0 (Draft 57)

Summary 2.9

raw memory, system options. These features and semantic refinements to the Java
language and virtual machine have been outlined above, but the description does not
constitute a definition for them. In other words, it is not normative. The normative
chapters follow.

RTSJ 2.0 (Draft 57) 21

2 Overview

22 RTSJ 2.0 (Draft 57)

Chapter 3

General Requirements

The RTSJ is both an Application Programmer Interface (API) and a refinement of
the semantics of the Java virtual machine. Both aspects are necessary to produce
a programming environment conducive to programming realtime systems. Most
realtime systems require features that go beyond simply being able to react within a
defined time bounds, they must also respond to something and take action thereon.
Therefore, the ability to interact with the external environment is a necessary part
of a realtime specification.

There are many applications that can benefit from the API and semantic re-
finements of the Java runtime environment that have been described above. Not
every application requires all parts, so some flexibility of implementation is neces-
sary. Therefore the RTSJ is divided into a core package and three optional packages.
Furthermore, it also provides for different usage modes to support both development
and deployment.

Finally, the vast majority of realtime systems are also embedded systems. The
constraints of such system must also be considered. The specification begins with
the overall requirements of these concerns.

3.1 Definitions
Code — Program text written in the Java programming language.
Java Language — A programming language defined through the Java Community

Process.
Heap — An area of memory for allocating data structures (objects) defined by the

Java Language.
Extraheap Memory — An area of memory for allocating data structures (objects)

other than the heap defined by the Java Language.
Thread — An instance of the java.lang.Thread class.

23

3 General Requirements

Realtime Thread — An instance of the javax.realtime.RealtimeThread class.
Java Thread — An instance of java.lang.Thread class, but does not extend the

javax.realtime.RealtimeThread class.
Heapless Realtime Thread — An instance of the javax.realtime.Realtime-

Thread class that must not access the heap.
Event Handler — An instance of the javax.realtime.AbstractAsyncEvent-

Handler class.
Schedulable — Any object that is of type Schedulable, and is recognized as a

dispatchable entity by the required schedulers. The required schedulers’ set of
schedulables comprises instances of RealtimeThread and AbstractAsyncEven-
tHandler. Other schedulers may support a different set of schedulables, but
this specification only defines the behavior of the required schedulers so the
term schedulable should be understood as “schedulable by the base scheduler.”

Task — Any object that represents computation, including schedulables and Java
threads.

Garbage Collection — A processes that reclaims memory on the heap that is no
longer reachable by the application program. It may be accomplished through
a dedicated set of threads or be distributed throughout the application.

3.2 Semantics
This specification is a contract between the specification implementer and the user
who writes a program to run on an implementation. To be able to support both
implementation and use, many chapters provide additional rationale to help both
the implementer and the user understand the intention behind the normative text.
The remainder of this specification, including this chapter, is normative, except for
the introductory text in each chapter and the sections named Rationale.

3.2.1 Base Requirements

The base requirements of this specification are as follows.
1. Except as specifically required by this specification, any implementation shall

fully conform to a Java platform configuration.
2. Any implementation of this specification shall implement all classes and methods

in the base module of this specification.
3. Except as noted in this chapter, all classes and methods in an implemented

module shall be implemented.
4. The javax.realtime package and its subpackages shall contain no public or

protected classes or methods not included in this specification.

24 RTSJ 2.0 (Draft 57)

Semantics 3.2

5. A realtime JVM implementation shall not be implemented in a way that permits
unbounded priority inversion in any scheduling interaction it implements.

6. All methods defined under javax.realtime can safely be used concurrently
by multiple threads unless otherwise documented.

7. Static final values, as found in AperiodicParameters, SporadicParameters,
RealtimeSystem, and PriorityScheduler, shall be implemented such that
their values cannot be resolved by a conformant Java compiler (Java source to
byte code).

Many aspects of this specification set a minimum requirement, but permit latitude
in its implementation. For instance, the required priority scheduler requires at least
28 consecutively numbered realtime priorities. It does not, however, specify the
numeric values of the maximum and minimum realtime priorities. Implementations
are encouraged to offer as many realtime priority levels immediately above the
conventional Java priorities as they can support.

Except where otherwise specified, when this specification requires object creation,
the object is created in the current allocation context.

3.2.2 Modules

The original RTSJ specification was conceived, with the exception of some optional
features, as a monolith specification. This has inhibited the adoption of the RTSJ
beyond the hard realtime community, because some of the features were considered
to have an overly negative impact on overall JVM performance. Version 2.0 addresses
this by breaking the specification into modules.

Modules provide a means of grouping related functionality together in a way
that promotes maximal adoption for various implementation classes. A conventional
JVM may simply implement the Core Module API, without providing any realtime
guarantees at all, thereby providing programmers with the benefits of features such
as asynchronous event programming as an alternative to conventional threading. A
hard realtime implementation could implement all modules to provide the maximal
flexibility and functionality to the realtime programmer. Both would benefit from
easier migration of code to realtime systems.

Every RTSJ implementation shall provide the Core Module functionality, but
all other modules are optional. The optional modules are the Device Module, the
Alternative Memory Areas Module and the POSIX Module. In addition, there are
a couple of optional features as well. This give the implementers some choice over
which modules and features to include and which not.

RTSJ 2.0 (Draft 57) 25

3 General Requirements

3.2.2.1 Core Module

The Core Module adds the concepts of processor affinity, threads with realtime
schedulnig, and asynchronous event handling. This includes the notion of executing
code at a given time interval, providing a much more stable response than using
sleep in a loop. These features should have no impact on the overall performance
of a system that implements them, but enrich the programming modules available
to the programmer. The classes and interfaces required in this module are all in
package javax.realtime and are listed below.
• AbsoluteTime (Section 9.3.1.1)
• ActiveEvent (Section 8.3.1.1)
• ActiveEventDispatcher (Section 8.3.2.1)
• Affinity (Section 6.3.3.1)
• AffinityPermission (Section 14.2.2.1)
• AperiodicParameters (Section 6.3.3.2)
• AsyncBaseEvent (Section 8.3.2.2)
• AsyncBaseEventHandler (Section 8.3.2.3)
• AsyncEvent (Section 8.3.2.4)
• AsyncEventHandler (Section 8.3.2.5)
• AsyncLongEvent (Section 8.3.2.6)
• AsyncLongEventHandler (Section 8.3.2.7)
• AsyncObjectEvent (Section 8.3.2.8)
• AsyncTimable (Section 10.3.1.1)
• AsyncObjectEventHandler (Section 8.3.2.9)
• BoundAsyncBaseEventHandler (Section 8.3.1.2)
• BoundAsyncEventHandler (Section 8.3.2.11)
• BoundAsyncLongEventHandler (Section 8.3.2.12)
• BoundAsyncObjectEventHandler (Section 8.3.2.13)
• BoundRealtimeExecutor (Section 6.3.1.1)
• Clock (Section 10.3.2.1)
• Chronograph (Section 10.3.1.2)
• ConfigurationParameters (Section 5.3.2.1)
• CoreMemoryPermission (Section 14.2.2.2)
• FirstInFirstOutScheduler (Section 6.3.3.4)
• GarbageCollector (Section 14.2.2.3)
• HeapMemory (Section 11.3.2.1)
• HighResolutionTime (Section 9.3.1.2)
• ImmortalMemory (Section 11.3.2.2)
• ImportanceParameters (Section 6.3.3.5)
• Interruptible (Section 8.3.1.3)
• MemoryArea (Section 11.3.2.3)

26 RTSJ 2.0 (Draft 57)

Semantics 3.2

• MemoryParameters (Section 11.3.2.4)
• MonitorControl (Section 7.3.1.1)
• OneShotTimer (Section 10.3.2.2)
• PeriodicParameters (Section 6.3.3.6)
• PeriodicTimer (Section 10.3.2.3)
• PhasingPolicy (Section 5.3.1.1)
• PriorityCeilingEmulation (Section 7.3.1.2)
• PriorityInheritance (Section 7.3.1.3)
• PriorityParameters (Section 6.3.3.7)
• PriorityScheduler (Section 6.3.3.8)
• ProcessingGroup (Section 6.3.3.9)
• QueueOverflowPolicy (Section 6.3.2.2)
• RealtimeSecurity (Section B.2.2.24)
• RealtimeSystem (Section 14.2.2.5)
• RealtimeThread (Section 5.3.2.2)
• RelativeTime (Section 9.3.1.3)
• Releasable (Section 8.3.1.4)
• ReleaseParameters (Section 6.3.3.10)
• RoundRobinScheduler (Section 6.3.3.11)
• RTSJModule (Section 14.2.1.1)
• Schedulable (Section 6.3.1.3)
• Scheduler (Section 6.3.3.12)
• SchedulingParameters (Section 6.3.3.14)
• SchedulingPermission (Section 14.2.2.6)
• SizeEstimator (Section 11.3.2.6)
• SporadicParameters (Section 6.3.3.15)
• TaskPermission (Section 14.2.2.7)
• Timable (Section 10.3.1.3)
• Timed (Section 8.3.3.1)
• TimeDispatcher (Section 10.3.2.4)
• Timer (Section 10.3.2.5)
• WaitFreeReadQueue (Section 7.3.1.4)
• WaitFreeWriteQueue (Section 7.3.1.5)

All throwables defined in the RTSJ are also in the javax.realtime package:

• AlignmentError (Section 15.2.2.1)
• ArrivalTimeQueueOverflowException (Section 15.2.3.1)
• CeilingViolationException (Section 15.2.3.3)
• DeregistrationException (Section 15.2.3.5)
• IllegalAssignmentError (Section 15.2.2.2)
• InaccessibleAreaException (Section 15.2.3.9)

RTSJ 2.0 (Draft 57) 27

3 General Requirements

• LateStartException (Section 15.2.3.10)
• MemoryAccessError (Section 15.2.2.3)
• MemoryInUseException (Section 15.2.3.12)
• MemoryScopeException (Section 15.2.3.13)
• MemoryTypeConflictException (Section 15.2.3.14)
• MITViolationException (Section 15.2.3.11)
• OffsetOutOfBoundsException (Section 15.2.3.15)
• POSIXException (Section 15.2.3.16)
• POSIXInvalidSignalException (Section 15.2.3.17)
• POSIXInvalidTargetException (Section 15.2.3.18)
• POSIXSignalPermissionException (Section 15.2.3.19)
• ProcessorAffinityException (Section 15.2.3.20)
• RangeOutOfBoundsException (Section 15.2.3.21)
• RegistrationException (Section 15.2.3.22)
• ResourceLimitError (Section 15.2.2.4)
• ScopedCycleException (Section 15.2.3.23)
• StaticCheckedException (Section 15.2.3.25)
• StaticError (Section 15.2.2.5)
• StaticOutOfMemoryError (Section 15.2.2.6)
• StaticRuntimeException (Section 15.2.3.26)
• StaticThrowable (Section 15.2.1.1)
• StaticThrowableStorage (Section 15.2.2.7)
• SizeOutOfBoundsException (Section 15.2.3.24)
• ThrowBoundaryError (Section 15.2.2.8)
• UnsupportedPhysicalMemoryException (Section 15.2.3.28)
• UnsupportedRawMemoryRegionException (Section 15.2.3.29)

3.2.2.2 Device Module

The Device Module provides a low level interface for interacting with the real world.
Though realtime control systems need this kind of interaction, other systems can
benefit from it as well. Data collection, that is not time critical, is a good example.
For instance, monitoring the temperature or humidity in a room could be done easily
with off-the-self hardware using this module. The classes required in this module are
all in the package javax.realtime.device and are listed below.
• Happening (Section 12.3.2.3)
• HappeningDispatcher (Section 12.3.2.4)
• HappeningPermission (Section 14.3.1.2)
• InterruptServiceRoutine (Section 12.3.2.5)
• DirectMemoryByteBuffer (Section 12.3.1.1)
• DirectMemoryBufferFactory (Section 12.3.2.1)

28 RTSJ 2.0 (Draft 57)

Semantics 3.2

• DirectMemoryPermission (Section 14.3.1.1)
• DirectMemoryRegion (Section 12.3.2.2)
• RawMemory (Section 12.3.1.17)
• RawMemoryFactory (Section 12.3.2.6)
• RawMemoryPermission (Section 14.3.1.3)
• RawMemoryRegion (Section 12.3.2.7)
• RawMemoryRegionFactory (Section 12.3.1.18)
• RawByte (Section 12.3.1.2)
• RawByteReader (Section 12.3.1.3)
• RawByteWriter (Section 12.3.1.4)
• RawDouble (Section 12.3.1.5)
• RawDoubleReader (Section 12.3.1.6)
• RawDoubleWriter (Section 12.3.1.7)
• RawFloat (Section 12.3.1.8)
• RawFloatReader (Section 12.3.1.9)
• RawFloatWriter (Section 12.3.1.10)
• RawInt (Section 12.3.1.11)
• RawIntReader (Section 12.3.1.12)
• RawIntWriter (Section 12.3.1.13)
• RawLong (Section 12.3.1.14)
• RawLongReader (Section 12.3.1.15)
• RawLongWriter (Section 12.3.1.16)
• RawShort (Section 12.3.1.19)
• RawShortReader (Section 12.3.1.20)
• RawShortWriter (Section 12.3.1.21)

3.2.2.3 Alternative Memory Areas Module

The Alternative Memory Areas Module provides an alternative to a single heap with
garbage collection model for memory management. Most of the facilities are centered
around providing an alternative to garbage collection, but facilities for providing
what memory to use for Java objects is also addressed. The classes required in this
module are all in package javax.realtime.memory and are listed below.
• MemoryGroup (Section 11.4.3.2)
• ScopedMemory (Section 11.4.3.8)
• ScopedMemoryPermission (Section 14.4.1.2)
• LTMemory (Section 11.4.3.1)
• PinnableMemory (Section 11.4.3.6)
• StackedMemory (Section 11.4.3.9)
• ScopeParameters (Section 11.4.3.7)
• PhysicalMemoryCharacteristic (Section 11.4.1.1)

RTSJ 2.0 (Draft 57) 29

3 General Requirements

• PhysicalMemoryFactory (Section 11.4.3.3)
• PhysicalMemoryPermission (Section 14.4.1.1)
• PhysicalMemoryRegion (Section 11.4.3.4)
• PhysicalMemorySelector (Section 11.4.3.5)

3.2.3 POSIX module
The POSIX module provides access to functionality particular to POSIX systems.
In particular, it addresses POSIX signals and POSIX realtime signals. This module
is optional, but an implementation of this standard on a POSIX platform should
provide it. Implementations on platforms that are not POSIX compliant may provide
it. The classes in this module are in the package javax.realtime.posix and are
listed below.
• RealtimeSignal (Section 13.3.1.1)
• RealtimeSignalDispatcher (Section 13.3.1.2)
• Signal (Section 13.3.1.3)
• SignalDispatcher (Section 13.3.1.4)
• POSIXPermission (Section 14.5.1.1)

3.2.4 Optional Features
Even with modules, it is difficult to eliminate all optional features. These features
are either not easy to implement on all platforms or have the potential to cause
a significant performance overhead. Therefore, an application cannot depend on
them to be present in every implementation. However, if an optional facility is
implemented, the application may rely on it to behave as specified here. Those
extensions are illustrated in Table 3.1.

Table 3.1: RTSJ Options
Hard cost enforcement Provides an automatic means of controlling the

processor usage of a task or group of tasks.
Processing group deadline less
than period

Enables the application to specify a processing
group deadline less than the processing group
period

Allocation-rate enforcement on
heap allocation

Enables the application to limit the rate at which
a schedulable creates objects in the heap.

Interrupt service routine Provides first level interrupt processing in Java.

The ProcessingGroup class only intervenes in scheduling on systems that support
the hard cost enforcement option. The precision of intervention is limited by the

30 RTSJ 2.0 (Draft 57)

Semantics 3.2

precision of the clock being used to measure time times the number of CPUs involved
in the enforcement. When cost enforcement is supported, the precision of enforcement
is the drive precision of the clock being used. In any event, cost and deadline overrun
handlers are fired with the resolution specified for hard cost enforcement.

In implementations where processing group deadline less than period is not
supported, values passed to the constructor for ProcessingGroup and its setDead-
line method are constrained to be equal to the period. If the option is supported,
processing group deadlines less than the period shall be supported and function as
specified.

In implementations where heap allocation rate enforcement is supported, it shall
be implemented as specified. If heap allocation rate enforcement is not supported,
the allocation rate attribute of MemoryParameters shall be checked for validity but
otherwise ignored by the implementation.

First level interrupt handling can only be supported in certain contexts, such
as in kernel space and in a device driver context in user space on systems that
support this feature. Normally user space programs cannot handle interrupts di-
rectly. The class should be present in every system that implements the device
module, but in implementations that do not support first level interrupt handling,
the InterruptServiceRoutine.register should always throw an UnsupportedOp-
erationException.

Extensions to this specification are allowed, but shall not require changes to the
public interfaces defined in the javax.realtime package tree in particular and the
java and javax package trees in general.

3.2.5 Deprecated Classes
Classes and methods that have been deprecated as of this specification are not part of
any module, but may be implemented by a full RTSJ implementation. The following
classes are deprecated:
• DuplicateFilterException (Section B.2.3.2)
• ImmortalPhysicalMemory (Section B.2.2.9)
• LTMemory (Section B.2.2.10)
• LTPhysicalMemory (Section B.2.2.11)
• NoHeapRealtimeThread (Section B.2.2.14)
• PhysicalMemoryManager (Section B.2.2.19)
• PhysicalMemoryTypeFilter (Section B.2.1.1)
• ProcessingGroupParameters (Section B.2.2.21)
• POSIXSignalHandler (Section B.2.2.16)
• RawMemoryAccess (Section B.2.2.22)
• RawMemoryFloatAccess (Section B.2.2.23)
• ScopedMemory (Section B.2.2.30)

RTSJ 2.0 (Draft 57) 31

3 General Requirements

• UnknownHappeningException (Section B.2.3.5)
• VTMemory (Section B.2.2.34)
• VTPhysicalMemory (Section B.2.2.35)

They are documented fully in Chapter B.

3.2.6 Implementation types Allowed
As described in Section 3.2.2, the RTSJ now has modules. Every implementation,
except one supporting Safety Critical Java, must implement the Core module.
Each module provided by an implementation must be provided in full. None of the
classes of an unimplemented module should be present. Only an implementation
of this specification exclusively used for supporting Safety Critical Java may
subset classes and packages herein, but must implement the methods and classes
defined in that specification.

3.2.6.1 Realtime Deployment Implementation

A realtime deployment implementation must support all semantics described herein
necessary for deterministic programming. In addition to implementing the core
module, a realtime deployment implementation must have a realtime garbage collector
or implement the alternative memory areas module. All other modules are optional.

The minimum scheduling semantics that must be supported in all implementations
of the RTSJ are fixed-priority preemptive scheduling with support for at least 28
unique priority levels1. Fixed priority means that the system does not change the
priority of any Schedulable except, temporarily, for priority inversion avoidance.
Priority change is under control of the application.

What the RTSJ precludes by this statement is scheduling algorithms for realtime
priorities which change thread priorities according to policies for optimizing through-
put. An implementation may not increase the priority of a thread that has been
receiving few processor cycles because of higher priority threads (aging) or other
so-called fair scheduling algorithms. Fair scheduling operations are also prohibited.
These types of algorithms are reserved for conventional Java thread priorities. This
does not prohibit an application from implementing other realtime schedulers, such
as earliest deadline first, which use underlying OS priorities to support an application
meeting its deadlines.

The 28 priority levels are required to be unique to preclude implementations from
using fewer priority levels of underlying systems to implement the required 28 by
simplistic algorithms (such as lumping four RTSJ priorities into seven buckets for an
underlying system that only supports seven priority levels). It is sufficient for systems

1This does not mean that each deployment must have all 28 priorities active

32 RTSJ 2.0 (Draft 57)

Semantics 3.2

with fewer than 28 priority levels to use more sophisticated algorithms to implement
the required 28 unique levels as long as Schedulable behave as though there were
at least 28 unique levels. (e.g. if there were 28 RealtimeThreads (t1, ..., t28) with
priorities (p1, ..., p28), respectively, where the value of p1 was the highest priority and
the value of p2 the next highest priority, etc., then for all executions of threads t1
through t28 thread t1 would always execute in preference to threads t2, ..., t28 and
thread t2 would always execute in preference to threads t3, ..., t28, etc.)

The minimum synchronization semantics that must be supported in all deployment
implementations of the RTSJ are detailed in the section on synchronization below
and repeated here. All deployment implementations of the RTSJ must provide an
implementation of the synchronized primitive with default behavior that ensures
that there is no unbounded priority inversion. Furthermore, this must apply to code
if it is run within the implementation as well as to schedulables. Both the priority
inheritance and the priority ceiling emulation protocols must be implemented, but
priority inheritance is the default.

All instances of Schedulable waiting to acquire a resource must be queued in
priority order. This applies to the processor as well as to synchronized blocks. When
schedulables with the same exact priority are possible under the active scheduling
policy, schedulables with the same priority are queued in FIFO order. Note that
these requirements apply only to the required scheduling policy and hence use the
specific term "priority". In particular,

1. schedulables waiting to enter synchronized blocks are granted access to the
synchronized block in priority order;

2. a blocked schedulable that becomes ready to run is given access to the processor
in priority order;

3. a schedulable whose execution eligibility is explicitly set by itself or another
schedulable is given access to the processor in priority order;

4. a schedulable that performs a yield() will be given access to the processor
after all other schedulables waiting at the same priority;

5. however, schedulables that are preempted in favor of a schedulable with higher
priority may be given access to the processor at any time as determined
by a particular implementation. The implementation is required to provide
documentation stating exactly the algorithm used for granting such access.

Other realtime schedulers must provide and document similar algorithms to expe-
dited schedulables with higher execution eligibility over those with lower execution
eligibility.

The RTSJ does not require any particular garbage collection algorithm; however,
every deployment implementation must either implement the alternate memory
area module or have a realtime garbage collection. In the later case, the realtime
limitations must be documented. All implementations of the RTSJ must support the

RTSJ 2.0 (Draft 57) 33

3 General Requirements

class GarbageCollector and implement all of its methods.
Notwithstanding the above, a program that uses the RTSJ and is deployed as

an executable, so that it does not provide general access to the virtual machine,
but solely runs that program code, need only include the RTSJ methods and classes
needed by the application.

3.2.6.2 Simulation Implementation

An implementation that chooses not to provide realtime guarantees, is termed a
simulation implementation. Such an implementation does not need to provide the
realtime characteristic described above, but does need to at least provide all the
APIs of the core module. A simulation implementation can be a production system,
but not for realtime applications. This enables a conventional JVM to make the base
APIs available to a wider audience without changing its performance characteristics.

The following semantics are optional for an RTSJ implementation designed and
licensed exclusively as a development tool.

1. The priority scheduler need not support fixed-priority preemptive scheduling or
the priority inversion avoidance algorithms. This does not excuse an implemen-
tation from fully supporting the relevant APIs. It only reduces the required
behavior of the underlying scheduler to the level of the scheduler in the Java
specification extended to at least 28 priorities.

2. No semantics constraining timing beyond the requirements of the Java spec-
ifications need be supported. Specifically, garbage collection may delay any
thread without bound and any delay in delivering asynchronously interrupted
exceptions (AIE) is permissible including never delivering the exception. Note,
however, that if any AIE other than the generic AIE is delivered, it shall
meet the AIE semantics, and all heap-memory-related semantics other than
preemption remain fully in effect. Further, relaxed timing does not imply
relaxed sequencing. For instance, semantics for scoped memory shall be fully
implemented.

3. The RTSJ semantics that alter standard Java method behavior, such as the
modified semantics for Thread.setPriority and Thread.interrupt, are not
required for a development tool, but such deviations from the RTSJ shall be
documented, and the implementation shall be able to generate a runtime
warning each time one of these methods deviates from standard RTSJ behavior.

These relaxed requirements set a floor for RTSJ development system tool imple-
mentations. A development tool may choose to implement semantics that are not
required.

34 RTSJ 2.0 (Draft 57)

Required Documentation 3.3

3.3 Required Documentation
In order to properly engineer a realtime system, an understanding of the cost
associated with any arbitrary code segment is required. This is especially important
for operations that are performed by the runtime system, largely hidden from the
programmer. An example of this is the maximum expected latency before the garbage
collector can be interrupted.

The RTSJ does not require specific performance or latency numbers to be matched.
Rather, to be conformant to this specification, an implementation must provide
documentation regarding the expected behavior of particular mechanisms. The
mechanisms requiring such documentation, and the specific data to be provided, will
be detailed in the class and method definitions.

Each implementation of the RTSJ is required to provide documentation for several
behaviors.

1. If schedulers other than the required first-in-first-out (FIFO) and round robin
(RR) schedulers are available to applications, the behavior of these schedulers
and their interaction with each other and the required schedulers as detailed
in Chapter 6, Scheduling, shall be documented.
(a) The documentation must define how its order of execution eligibility

relates to that of the priority schedulers, where the order of execution
eligibility of a priority scheduler is the priority order.

(b) The list of classes whose instances constitute schedulables for the scheduler,
unless that list is the same as the list of schedulables for the required
schedulers, shall be included.

(c) If there are restrictions on use of the scheduler from a nonheap context,
such restrictions shall be documented as well.

2. A scheduler that cannot place a schedulable at the front of the queue for its
active priority when it is preempted by a higher-priority schedulable must
document such a deviation from the specification.

3. An implementation is required to document the granularity at which the current
CPU consumption is updated for cost monitoring and cost enforcement, when
the later is implemented.

4. The implementation shall fully document the behavior of any subclasses of
GarbageCollector.

5. An implementation that provides any MonitorControl subclasses not detailed
in this specification shall document their effects, particularly with respect to
priority inversion control and which (if any) schedulers fail to support the new
policy.

6. If on losing “boosted” priority due to a priority inversion avoidance algorithm,
the schedulable is not placed at the front of its new queue, the implementation
shall document the queuing behavior.

RTSJ 2.0 (Draft 57) 35

3 General Requirements

7. For any available scheduler other than the required schedulers, an implementa-
tion shall document how, if at all, the semantics of synchronization differ from
the rules defined for the default PriorityInheritance monitor control policy.

(a) It shall supply documentation for the behavior of the new scheduler with
priority inheritance (and, if it is supported, priority ceiling emulation
protocol) equivalent to the semantics for the base priority scheduler found
in the Synchronization chapter.

(b) If there are restrictions on use of the scheduler from an extraheap context,
the documentation shall detail the effect of these restrictions for each
RTSJ API.

8. The worst-case response interval from the firing of an AsyncEvent, due to a
bound happening, to releasing an associated AsyncEventHandler, assuming
no higher-priority schedulables are runnable, shall be documented for at least
one reference architecture.

9. The interval between firing an AsynchronouslyInterruptedException at an
ATC-enabled thread and first delivery of that exception (assuming no higher-
priority schedulables are runnable) shall be documented for at least one reference
architecture.

10. If cost enforcement is supported and the implementation assigns the cost of
running finalizers for objects in scoped memory to any schedulable other than
the one that caused the scope’s reference count to drop to zero by leaving the
scope, the rules for assigning the cost shall be documented.

11. If hard cost enforcement is supported and enforcement (blocked-by-cost-overrun)
can be delayed beyond the enforcement time granularity, the maximum such
delay shall be documented.

12. If the implementation of RealtimeSecurity is more restrictive than the re-
quired implementation, or has run-time configuration options, those features
shall be documented.

13. For each supported clock, the documentation shall specify whether the res-
olution is settable, and if it is settable the documentation shall indicate the
supported values.

14. If an implementation includes any clocks other than the required realtime clock,
their documentation shall indicate in what contexts those clocks can be used.
If they cannot be used in extraheap context, the documentation shall detail the
consequences of passing the clock, or a time that uses the clock to a heapless
schedulable.

36 RTSJ 2.0 (Draft 57)

Rationale 3.4

3.4 Rationale
The embedded market, especially for safety critical applications, is quite sensitive
to including code that is not needed by an application. Furthermore, different
application domains have differing needs on API. Flexibility is needed to ensure that
these diverse domains and requirements are met. Still, it is important to ensure
that when a given function is needed, it is included as defined herein. It is also
important that an open virtual machine deployment has a well-defined API set. This
has required moving a few classes into a new package, so that the resulting modules
will be consistent with the rules imposed by the JSR 376, the Java Platform Module
System. The above modules and deployment rules provide both this flexibility and
standardization.

RTSJ 2.0 (Draft 57) 37

3 General Requirements

38 RTSJ 2.0 (Draft 57)

Chapter 4

Realtime vs Conventional Java

Though compatibility with conventional Java (i.e., any Java runtime environments
that implement the Java Virtual Machine Specification and the Java Language
Specification but not the RTSJ) is the first concern of this specification, there are
several cases where being able to meet realtime constraints requires a tightening of
the semantics of the virtual machine and some subtle changes to the semantics of two
key classes: java.lang.Thread and java.lang.ThreadGroup. These constraints
and changes place additional requirements on scheduling, the memory model, and
memory management. The specification additionally defines both an extension to
thread for realtime scheduling and a new type of concurrent activity called an event
handler; hence, the meaning of current thread has a different interpretation than in
conventional Java. The term task is used when referring to any of these three types:
conventional Java thread, realtime thread, and event handler.

Behaviors that may be different from conventional Java or may be surprising
to developers of conventional Java applications under the RTSJ can be divided into
three categories. The first category applies to conventional Java code that was not
developed with the RTSJ in mind and does not use RTSJ features but runs under an
RTSJ implementation. The second is conventional Java code that was not developed
with the RTSJ in mind but is called by code developed for the RTSJ in an RTSJ
implementation. The final category is Java code that was developed for the RTSJ
and is being used in an RTSJ implementation.

The first category, conventional Java code running on an RTSJ implementation
but not using any RTSJ features, may encounter the following behaviors that are not
(necessarily) experienced under a conventional Java VM.
• Any object allocated in a static initializer that later becomes garbage may be

unable to be collected by the VM. (See Section 11.2.6.)
• Some Throwables, in particular those implementing StaticThrowable, which
includes StaticOutOfMemoryError, thrown by an RTSJ VM in preference to
OutOfMemoryError, have stack trace and message information which is valid

39

4 Realtime vs Conventional Java

only while the Throwable is in flight and in the thread which originally threw
the Throwable. (See Section 15.1.)

The second category, conventional Java code that is running on an RTSJ imple-
mentation and in use by code that was developed for the RTSJ, may encounter the
following differences in behavior.
• IllegalAssignmentError may be thrown in non RTSJ-aware classes when
the Alternative Memory Management module (Chapter 11) is in use. (See
Section 11.2.7.)
• Tasks in an RTSJ application might not be scheduled by a fair scheduler. The

result is that there may be thread starvation unexpected by conventional Java
applications. (See Section 6.2.1.)
• A call to Thread.getPriority() may return a priority higher than

Thread.MAX_PRIORITY. (See Section 6.3.3.8.2.)
• Methods cannot rely on any thread local information when used in conjunction
with asynchronous event handlers. This includes thread local data and calls
to Thread.currentThread(). Hence, care must be taken when using thread
identifiers to determine the identity of callers. (This is analogous to the use of
ThreadPool in conventional Java.) (See Sections 8.2.1 and 8.3.2.5.)

The third and final category comprises behaviors exhibited by code designed for
the RTSJ running on an RTSJ implementation that are departures from conventional
Java semantics or may be otherwise surprising.
• Finally clauses in asynchronously interruptible methods are not executed
during propagation of an AsynchronouslyInterruptedException. However,
synchronized code is always ATC-deferred, and therefore monitor locks are
released normally. (See Section 8.2.4.)
• Catch clauses that name AsynchronouslyInterruptedException (or its par-

ent classes) will not automatically stop the propagation of AIEs. An Asynchron-
ouslyInterruptedException must be explicitly cleared. (See Section 8.2.4.)
• Exceptions propagating into asynchronously interruptible regions of code will

be lost if an AsynchronouslyInterruptibleException is pending. (See Sec-
tion 8.2.4.)
• Subclasses of AsynchronouslyInterruptibleException indicated in the sig-
nature of a method do not indicate that the method is asynchronously inter-
ruptible. (See Section 8.2.4.)
• Catch clauses for AsynchronouslyInterruptibleException or its subclasses
in asynchronously interruptible methods will not catch an AIE. (See Sec-
tion 8.2.4.)
• A Throwable crossing a MemoryArea boundary might be transformed into
a ThrowBoundaryError, and the original exception may be lost. (See Sec-
tion 15.2.2.8 and the enter family of methods on MemoryArea.)

40 RTSJ 2.0 (Draft 57)

Definitions 4.2

4.1 Definitions
Conventional Java — The language and runtime as defined by the “Java Language

Specification[5]” and “Java Virtual Machine Specification[6],” without any
realtime extensions.

Realtime Java — Conventional Java extended and refined according to this speci-
fication for programming realtime systems.

Fair Scheduling — A method of nonrealtime scheduling which tries to ensure that
all tasks get a chance to run, thus preventing starvation. Tasks with a higher
priority get a notionally larger share of execution time than lower priority tasks.
Tasks running at the same priority get notionally equal shares of the processor.

Happens-Before — The “Java Language Specification[5]” specifies the happens-
before relationship as “If one action happens-before another, then the first
is visible to and ordered before the second.” See the specification for the
implications of this relationship.

Priority — An indication of the relative scheduling eligibility of a task. A task
with a higher priority is scheduled before a task with a lower priority. The
priority assigned to a task is not necessarily the one used for scheduling, since
priority avoidance and cost enforcement mechanisms may transiently override
it. See Base Priority in Section 6.1 and Active Priority in Section 7.1.

Task — A conventional Java thread or an RTSJ Schedulable.

4.2 Semantics
The refinements and changes to the semantics of the Java runtime environment
and classes shall not affect the functional correctness of Java code written for a
conventional Java implementation when running on a Java runtime environment
which implements this specification. There may be changes in the relative timing
of threads, but these should not violate the conventional Java specifications. The
use of some RTSJ features with code written for a conventional Java implementation
may, however, cause unexpected behaviors. This is particularly true when using
alternate memory areas, asynchronous transfer of control, and thread local memory
in conjunction with unbound asynchronous event handlers.

4.2.1 Scheduling
How tasks are scheduled in a realtime system is quite different from what one expects
in a conventional Java virtual machine. For compatibility, this means that there
must be a domain where conventional Java threads are scheduled in a familiar way
and another domain that supports realtime scheduling. This separation is done in

RTSJ 2.0 (Draft 57) 41

4 Realtime vs Conventional Java

part via task priority.
Tasks running with the conventional ten priorities defined in Java should be

scheduled as expected. Unfortunately, in order to ease the porting of Java to different
environments, the scheduling of conventional Java threads is underspecified in [5].
This has been resolved in practice to avoid surprising the programmer by providing
some sort of fair scheduling for these threads, i.e, scheduling that at least prevents
task starvation, but may also try to balance CPU availability across threads. For
tasks running in these priorities, an implementation of this specification shall provide
some notion of fair scheduling between tasks with priority between one and ten
inclusive.

Realtime threads and event handlers need a stronger notion of prioritization
than conventional Java threads, so this specification requires the implementation of
two priority-preemptive schedulers, one with run to completion (or next suspension
point) and one with round-robin semantics. Priorities above the conventional ten
priorities are used for these schedulers, and the interactions of the two schedulers are
well-defined. Multithreaded code that runs with the priority-preemptive scheduler
(or any other realtime scheduler) is more prone to deadlock or starvation than code
run with fair scheduling. The changes to Thread and ThreadGroup are to support
this realtime scheduling.

1. The semantics of set and get methods for priority in Thread differ for realtime
threads.

2. The ThreadGroup class’s behavior differs with respect to realtime threads.
3. The behavior of the ThreadGroup-related methods in Thread differ when they

are applied to realtime threads.
Code running at realtime priorities can also starve tasks scheduled on the conventional
Java scheduler, possibly indefinitely.

4.2.1.1 Priority

The methods setPriority and getPriority in java.lang.Thread are final.
The realtime thread classes are consequently not able to override them and mod-
ify their behavior to suit the requirements of the RTSJ scheduler. To bring the
java.lang.Thread class in line with its realtime subclasses, the semantics of the
getPriority and setPriority methods must be modified.

4.2.1.1.1 Setting Priority

The setPriority method has the following additional requirements.
1. Use of Thread.setPriority() shall not affect the correctness of the priority

inversion avoidance algorithms controlled by PriorityCeilingEmulation and
PriorityInheritance. Changes to the base priority of a realtime thread as

42 RTSJ 2.0 (Draft 57)

Semantics 4.2

a result of invoking Thread.setPriority() are governed by semantics from
Chapter 7 on Synchronization.

2. Conventional Java threads may not use setPriority to apply the expanded
range of priorities defined by this specification.

3. When setPriority is called on a realtime thread, that thread’s Scheduling-
Parameters are set to null and the thread is scheduled as if it were a Java
thread.

4.2.1.1.2 Getting Priority

The getPriority method has the following additional requirements.
1. When called on a conventional Java thread, its assigned priority is returned

even if it has a higher priority than what would be allowed by conventional Java.
It may be higher only when set with an instance of SchedulingParameters
through a scheduler.

2. When called on a realtime thread with null SchedulingParameters, a value
in the conventional Java priority range is returned.

3. When called on a realtime thread (t) with PriorityParameters, getPriority
behaves effectively as if it included the following code snippet:

1 ((PriorityParameters)t.getSchedulingParameters()).getPriority
();

4. When the scheduling parameters are of a type other than PriorityParameters,
a ClassCastException is thrown.

All supported monitor control policies must apply to Java threads as well as to all
schedulables.

4.2.1.2 Thread Groups

Conventional Java provides thread groups as a means of managing groups of threads.
Since the RTSJ provides additional classes for encapsulating control flow under the
umbrella of Schedulable, it makes sense to have facilities for managing groups
of these as well. The RTSJ provides an extension of ThreadGroup for this called
SchedulingGroup.

Every instance of ThreadGroup holds a reference to every member thread and
every subgroup instance of ThreadGroup, as well as a reference to its parent group.
This is problematic under the RTSJ, since realtime threads may be allocated in scoped
memory. Rather than making complicated changes to the semantics of ThreadGroup
(and, in particular, its enumerate methods), the RTSJ requires that no ThreadGroup
or Java thread is allocated in scoped memory, and that no thread allocated in

RTSJ 2.0 (Draft 57) 43

4 Realtime vs Conventional Java

ScopedMemory is referenced by a ThreadGroup. Instances of SchedulingGroup are
instead used for these purposes, and an alternative to enumerate is provided on
SchedulingGroup in the form of a visitor.

Scheduling groups, i.e., instances of SchedulingGroup (a subclass of Thread-
Group, are designed to be able to reference threads, schedulables, and other scheduling
groups, even when they are in scoped memory. These are only reachable using a
visitor with a lambda expression. Consequently schedulables and scheduling groups
are not part of any thread group and will hold a scheduling group reference as their
parent thread group. This requires that the thread group of the main thread is also
a schedulable group, so that schedulables and schedule groups can be created from
the main thread.

In order for this to work in a transparent manner, the following rules must hold.
1. An instance of ThreadGroup that is not an instance of SchedulingGroup

cannot contain any instances of Schedulable.
2. In an RTSJ implementation, both the ThreadGroup at the root of the Thread-

Group hierarchy and the ThreadGroup to which the initial thread belongs
must be instances of SchedulingGroup.

3. Calls to SchedulingGroup.enumerate(Thread[]) and SchedulingGroup.enu-
merate(Thread[], boolean) only return Java threads.

4. Calls to SchedulingGroup.enumerate(ThreadGroup[]) and Scheduling-
Group.enumerate(ThreadGroup[], boolean) only return threads groups and
scheduling groups allocated in heap and immortal memory.

5. A Java thread (not a realtime thread) that is created from a realtime thread or
bound asynchronous event handler without an explicit thread group and that
is not assigned a thread group by the security manager, inherits the scheduling
group of its creator, when that group is allocated in heap or immortal memory;
otherwise an IllegalAssignmentError is thrown.

6. The thread group of a Java thread that is created from an unbound asyn-
chronous event handler without an explicit thread group and that is not assigned
a thread group by the security manager, is assigned to the scheduling group of
the handler’s dispatcher, when that dispatcher’s scheduling group is allocated in
heap or immortal memory; otherwise an IllegalAssignmentError is thrown.

7. A thread group cannot be created in scoped memory. The constructor shall
throw an IllegalAssignmentError.

8. Setting a maximum priority on a scheduling group, either explicitly or via its
parent with a thread group specific method, has no influence on the schedulables
in that group.

9. Except as specified previously, realtime threads and bound asynchronous event
handlers have the same ThreadGroup membership rules as their parent Thread
class.

44 RTSJ 2.0 (Draft 57)

Semantics 4.2

4.2.1.3 Current Thread

In Java, the currently executing thread can always be determined by calling the static
method Thread.currentThread(). In the RTSJ, there are two types of schedulable
entities: threads and asynchronous event handlers. The latter may be mapped
dynamically by the realtime Java virtual machine onto the underlying thread model.
The method Thread.currentThread(), when called from an unbound asynchronous
event handler, will return the thread that is being used as the current execution
engine for that event handler. The program should not rely on this being constant
for the lifetime of the program. It can rely on it being constant for the current release
of the handler (see 6.1 for the definition of a release). It is not recommended that
the program perform any operations on this underlying thread as it may have an
impact beyond that of the current event handler. This also means that thread local
memory cannot be relied on when used with unbound event handlers, because data
saved in one release may not be available in the next release.

4.2.2 InterruptedException
The specification extends the use of the InterruptedException to support asyn-
chronous transfer of control.

The interruptible methods in the standard libraries (such as Object.wait, Thread.
sleep, and Thread.join) have their contract expanded slightly such that they
will respond to interruption not only when the interrupt method is invoked on
the current thread, but also, for schedulables, when executing within a call to
AIE.doInterruptible and that AIE is fired where AIE is an instance of the Asyn-
chronouslyInterruptedException. See Chapter 8 on Asynchrony.

4.2.3 Java Memory Model
Some aspects of the Java Memory Model must be tightened for this specification, in
particular with regards to interactions with native code or when using the Device
Module. A conforming implementation must ensure that volatile loads and stores, raw
memory operations (see 12.2.1), and DirectMemoryBufferFactory fence methods
are ordered to be consistent with respect to native code or hardware devices that
use platform-native memory coherency protocols to access raw memory or raw byte
buffers shared with the virtual machine. In particular, all Java code that precedes a
JNI call in the source happens-before the code executed during the JNI call, which
happens-before all Java code that follows its return.

Though not specified for conventional Java, most implementations provide explicit
fencing for JNI calls.

RTSJ 2.0 (Draft 57) 45

4 Realtime vs Conventional Java

4.2.4 Memory Management
The specification provides for two means of managing memory: garbage collection
and special memory areas. The latter are not collected by the garbage collector.
Since memory allocated in Java is always in the heap, or at least appears to be,
the initial allocation area is the heap. Furthermore, the allocation area can only
be changed either by entering another memory area or by calling a method that
explicitly causes allocation in another area. When the alternative memory areas
module is not present, the conventional Java semantics for allocation prevails.

4.2.4.1 Memory Areas

Using a conventional class in a memory area other than a heap can result in
unexpected behavior. This is particularly the case when a method of a class is
called when the current allocation context is different from the allocation context in
which the object was created; this can lead to exceptions. In general, memory areas
other than the heap may become full much faster than expected, because objects
that are no longer referenced will not be collected automatically.

A method that allocates an object or takes an object that was created in a
different memory area and tries to assign it to a field of its associated object can fail.
For example, creating a List on the heap and adding to it an object from a scoped
memory area will most likely cause an exception. Although using other memory
areas, such as scoped memory, is useful for helping to improve determinism, its use
complicates the logic of application and library code.

On systems that support memory areas other than heap and do not support
realtime garbage collection, some global resources must be put in immortal memory.
System properties and their String values allocated during system initialization
shall be allocated in immortal memory. For such a system, class objects should also
be stored there. Though this avoids priority inversion with the garbage collector, it
can cause higher memory use than expected.

4.2.4.2 Garbage Collection

Garbage collection is an important safety feature of the Java language and runtime
environment. Unfortunately, the garbage collection process can interfere with a
realtime program’s ability to always meet its timing deadlines. This specification
provides two main means of circumventing this problem: using a realtime garbage
collector or using the memory area module as an alternative to garbage collection
for realtime code. Additionally, an implementation may ignore the problem for
an environment meant as a development system or for systems that choose not to
provide realtime guarantees. In any case, an implementation must document what
realtime guarantees it gives and which methods it uses to do so.

46 RTSJ 2.0 (Draft 57)

Semantics 4.3

4.2.4.3 Realtime Garbage Collections

Industrial realtime garbage collectors are available with varying approaches to
providing realtime response. Though new collectors will undoubtably be developed,
all current ones use a variant of the mark-and-sweep algorithm. In all cases, the
collectors are incremental: realtime response is obtained by limiting how much of a
collection cycle is done each time the collector runs. Even on a multicore machine,
the garbage collector must be incremental, because it must tolerate changes to the
heap during garbage collection. Then CPU use is limited by tying the collector to
one or more cores.

4.2.4.3.1 Thread-Based Collectors

A realtime thread-based collector is an incremental garbage collector that has its
own thread of control and runs at intervals. In this case, the garbage collector needs
to be scheduled to ensure that it runs often enough and long enough at each interval
to recycle discarded objects fast enough to keep up with allocations. There should
also be some maximum time after which the garbage collector can be interrupted.

4.2.4.3.2 Allocation-Based Collectors

A realtime allocation-based garbage collector does not have its own thread of
control. Instead, some interval of garbage collection work is done at each allocation.
This work is generally a function of the size of the object being allocated. This work
becomes part of the execution time of the program. Again, there should be some
maximum time after which the garbage collector can be interrupted.

4.2.4.3.3 Alternatives to Garbage Collection

This specification provides an alternative Memory Areas Module for managing
memory without garbage collection. An implementation of this specification may
provide realtime response by requiring applications to use that module instead of
providing a realtime garbage collector. This means that all realtime threads would
have to run above the priority of the garbage collector and all communication with
conventional threads would have to use some nonblocking protocol.

4.2.4.3.4 Developer Implementation

An implementation that simply provides all the API but no realtime guarantee
is also permitted. This is useful as a development environment. Also, many of the
APIs are useful event in a conventional Java implementation.

RTSJ 2.0 (Draft 57) 47

4 Realtime vs Conventional Java

4.3 Rationale
The threading model of conventional Java was never meant for realtime programming.
Refinements to the virtual machine and new APIs are necessary to support the
additional requirements of applications, which have tasks that must complete in
a fixed amount of time. However, to ensure that any conventional Java program
can run on a virtual machine or runtime that implements this specification requires
careful consideration of each refinement to the Java programming model. Therefore,
conventional Java APIs and semantics have been extended, rather than replaced, to
facilitate compatibility with conventional Java runtime implementations.

48 RTSJ 2.0 (Draft 57)

Chapter 5

Realtime Threads

Conventional Java provides a thread class for its tasking model. Tasks can be
run simultaneously by creating multiple threads, but they do not provide realtime
scheduling semantics. For this, the specification provides a realtime thread class.
This class provides for the creation of
• realtime threads that have more precise scheduling semantics than java.lang.-

Thread, and
• realtime threads that have no dependency on the heap.
The RealtimeThread class extends java.lang.Thread. The ReleaseParamet-

ers, SchedulingParameters, and MemoryParameters objects that can be passed to
the RealtimeThread constructor provide the temporal and processor configuration of
the thread to be communicated to the scheduler. ProcessingGroup, a class derived
from ThreadGroup, provides cost enforcement on groups of tasks. The Configura-
tionParameters class defines, among other things, the size of Java’s thread stack.
The PhasingPolicy class defines the relationship between the threads start time
and its first release time when the start time is in the past.

The RTSJ provides two types of objects that implement the Schedulable interface:
realtime threads and asynchronous event handlers. This chapter defines the facilities
that are available to realtime threads. In many cases, these functionalities are also
available to asynchronous event handlers. In particular,
• the default scheduler must support the scheduling of both realtime threads

and asynchronous event handlers;
• realtime threads and asynchronous event handlers are allowed to enter into

memory areas and consequently they have associated scope stacks; and
• the flow of control of realtime threads and asynchronous event handlers are

affected by the RTSJ asynchronous transfer of control facilities.
Where the semantics apply to both realtime threads and asynchronous event handlers,
the term schedulable will be used.

49

5 Realtime Threads

5.1 Definitions
Exception — Both a mechanism of nonlocal transfer of control and a Java object

which carried information about the cause of the control transfer.
Scheduler — A module that manages the execution of tasks, as well as detects

deadline misses and monitoring costs.

5.2 Semantics
Instances of RealtimeThread have the same semantics as conventional Java threads
except as noted below.

1. Garbage collection executing in the context of a Java thread must not in itself
block execution of a schedulable with a higher execution eligibility that may
not access the heap; however, application locks work as specified even when
the lock causes synchronization between a heap-using thread and a schedulable
that may not use the heap.

2. Each schedulable has an attribute which indicates whether an Asynchron-
ouslyInterruptedException is pending. This attribute is set when a call
to RealtimeThread.interrupt() is made on the associated realtime thread,
when a call is made to the interrupt method in one of the family of asynchronous
event handler classes, and when an asynchronously interrupted exception’s fire
method is invoked between the time the schedulable has entered that exception’s
doInterruptible method, and before it has return from doInterruptible.
(See Chapter 8 on Asynchrony.)

3. A call to Schedulable.interrupt() generates the system’s generic Asyn-
chronouslyInterruptedException. (See Chapter 8 on Asynchrony.)

4. The RealtimeThread.waitForNextRelease method is for use by realtime
threads that have periodic or aperiodic release parameters. In the absence of
any deadline miss or cost overrun, or an interrupt, the method returns when
the realtime thread’s next period is due or the next release happens.

5. In the presence of a cost overrun or a deadline miss, the behavior of waitFor-
NextRelease is governed by the thread’s scheduler.

6. The first release time of a realtime thread is governed by the value of any start
time in its associated ReleaseParameter object and the time at which the
RealtimeThread.start method is called and the value of any PhasingPolicy
parameter passed to it.

7. Instances of RealtimeThread may not be created with a thread group which
is not an instance of SchedulingGroup.

8. System-related termination activity (such as execution of finalizers for scoped
objects in scoped memory areas that become unreferenced) triggered by termi-

50 RTSJ 2.0 (Draft 57)

Semantics 5.2

nation of a realtime thread is not subject to cost enforcement or deadline miss
detection.

9. The scheduling of a realtime thread is governed by its SchedulingParameters
and its Scheduler unless set explicitly with method setPriority(int) in
java.lang.Thread, which causes it to be treated as a conventional java thread
until a new SchedulingParameters object is set.

RTSJ 2.0 (Draft 57) 51

5 Realtime Threads PhasingPolicy

5.3 javax.realtime

5.3.1 Enumerations
5.3.1.1 PhasingPolicy

public enum PhasingPolicy

Inheritance
java.lang.Object
java.lang.Enum<PhasingPolicy>
PhasingPolicy

Description
This class defines a set of constants that specify the supported policies for starting
a periodic thread or periodic timer, when it is started later than the assigned
absolute time. The following table specifies the effective start time, that is, the
first release time of a periodic realtime thread. The effective start time of a
periodic timer is similar; where the first firing is equivalent to the first release,
and a call to the constructor is equivalent to a call to RealtimeThread.start().

Available since RTSJ 2.0

5.3.1.1.1 Enumeration Constants

ADJUST_IMMEDIATE

public static final ADJUST_IMMEDIATE

Description
Indicates that a periodic thread started after the absolute time given for its start
time should be released immediately with the next release one period later.

ADJUST_FORWARD

public static final ADJUST_FORWARD

52 RTSJ 2.0 (Draft 57)

PhasingPolicy javax.realtime 5.3

Table 5.1: PhasingPolicy Effect on First Release of a RealtimeThread with Periodic-
Parameters

ADJUST IM-
MEDIATE

ADJUST
FORWARD

ADJUST
BACKWARD

STRICT
PHASING

RelativeTime The time of
start method
invocation
plus start
time.

The time of
start method
invocation
plus start
time.

The time of
start method
invocation
plus start
time.

The time of
start method
invocation
plus start
time.

AbsoluteTime,
earlier than
call to start

Release im-
mediately
and set next
release time
to be at the
time the start
method was
invoked plus
period.

All releases
before the
time start
is called are
ignored. The
first release is
at the start
time plus the
smallest multi-
ple of period
whose time is
after the time
start was
called.

The first
release occurs
immediately
and the next
release is at
the start time
plus the small-
est multiple
of period
whose time is
after the time
start was
called.

The start
method
throws an
exception.

AbsoluteTime,
later than call
to start

First release is
at time passed
to start.

First release is
at time passed
to start.

First release is
at time passed
to start.

First release is
at time passed
to start.

Without Time First release
is at time of
start method
invocation

First release
is at time of
start method
invocation

First release
is at time of
start method
invocation

First release
is at time of
start method
invocation

Description
Indicates that a periodic thread started after the absolute time given for its start
time should be released at the next multiple of its period from its start time.

ADJUST_BACKWARD

public static final ADJUST_BACKWARD

RTSJ 2.0 (Draft 57) 53

5 Realtime Threads PhasingPolicy

Description
Indicates that a periodic thread started after the absolute time given for its start
time should be released immediately with the next release at the next multiple of
its period from its start time.

STRICT_PHASING

public static final STRICT_PHASING

Description
Indicates that a periodic thread started after the absolute time given for its start
time should throw the LateStartException exception instead of being released.

5.3.1.1.2 Methods

values

Signature
public static javax.realtime.PhasingPolicy[]
values()

Description
Gets all enumeration constants.

valueOf(String)

Signature
public static javax.realtime.PhasingPolicy
valueOf(String name)

Description
Gets enumeration constants corresponding to name.

54 RTSJ 2.0 (Draft 57)

ConfigurationParameters javax.realtime 5.3

5.3.2 Classes
5.3.2.1 ConfigurationParameters

public class ConfigurationParameters

Inheritance
java.lang.Object
ConfigurationParameters

Description
Configuration parameters provide a way to specify various implementation-
dependent parameters such as the Java stack and native stack sizes, and to
configure the statically allocated ThrowBoundaryError associated with a Sched-
ulable.

Note that these parameters are immutable.

Available since RTSJ 2.0

5.3.2.1.1 Constructors

ConfigurationParameters(int, int, long)

Signature
public
ConfigurationParameters(int messageLength,

int stackTraceLength,
long[] sizes)

throws IllegalStateException

Description
Creates a parameter object for initializing the state of a Schedulable. The
parameters provide the data for this initialization. For RealtimeThread and
bound versions of AsyncBaseEventHandler, the stack and message buffers can
be set exactly, but for the unbound event handlers, the system cannot give any
guarentees to allow thread sharing.

RTSJ 2.0 (Draft 57) 55

5 Realtime Threads ConfigurationParameters

Parameters
messageLength—The size of the buffer, in units of char, for storing an exception

message used by preallocated exceptions and errors thrown in the context of
an instance of Schedulable which was created with this as its configuration
parameters. The value 0 indicates that no message should be stored. The value
of -1 uses the system default and is the default when an instance of this class
is not provided.

stackTraceLength—The length of the stack trace buffer, in units of a number of
StackTraceElement instances, reserved use by preallocated exceptions and
errors thrown in the execution context of the Schedulable object created with
these parameters. The amount of space this requires is implementation-specific.
The value 0 indicates that no stack trace should be stored. The value of -1
uses the system default and is the default when an instance of this class is not
provided.

sizes—An array of implementation-specific values dictating memory parameters for
Schedulable objects created with these parameters, such as maximum Java and
native stack sizes. The sizes array will not be stored in the constructed object.
The default is system dependent, and indicated by setting this parameter to
null or by not providing an instance of this class.

ConfigurationParameters(long)

Signature
public
ConfigurationParameters(long[] sizes)

Description
Same as ConfigurationParameters(int,int,long[]) with arguments -1, -1,
sizes.

5.3.2.1.2 Methods

getMessageLength

Signature

56 RTSJ 2.0 (Draft 57)

ConfigurationParameters javax.realtime 5.3

public int
getMessageLength()

Description
Gets the size of the buffer dedicated to storing the message of the last thrown
throwable in the context of instances of Schedulable created with these parame-
ters. The value 0 indicates that no message will be stored.

Returns
reserved memory size in units of char.

getStackTraceLength

Signature
public int
getStackTraceLength()

Description
Gets the length of the stack trace buffer dedicated to Schedulable objects created
with these parameters’ preallocated exceptions, measured in number of Stack-
TraceElement instances. The amount of space this requires is implementation-
specific. The value 0 indicates that no stack trace will be stored.

Returns
reserved memory size in implementation-dependent stack frames.

getSizes

Signature
public long[]
getSizes()

Description
Gets the array of implementation-specific sizes associated with Schedulable
objects created with these parameters. This method may allocate memory.

Returns
a copy of the array of implementation-specific sizes.

RTSJ 2.0 (Draft 57) 57

5 Realtime Threads RealtimeThread

5.3.2.2 RealtimeThread

public class RealtimeThread
Inheritance
java.lang.Object
java.lang.Thread
RealtimeThread

Interfaces
javax.realtime.BoundSchedulable
javax.realtime.AsyncTimable

Description
Class RealtimeThread extends Thread and adds access to realtime services such
as asynchronous transfer of control, nonheap memory, and advanced scheduler
services.

As with java.lang.Thread, there are two ways to create a RealtimeThread.
• Create a new class that extends RealtimeThread and override the run()

method with the logic for the thread.
• Create an instance of RealtimeThread using one of the constructors with a

logic parameter. Pass a Runnable object whose run() method implements
the logic of the thread.

5.3.2.2.1 Constructors

RealtimeThread(SchedulingParameters, ReleaseParameters,
MemoryParameters, MemoryArea, ConfigurationParame-
ters, TimeDispatcher, SchedulingGroup, Runnable)

Signature
public
RealtimeThread(SchedulingParameters scheduling,

ReleaseParameters release,
MemoryParameters memory,
MemoryArea area,
ConfigurationParameters config,

58 RTSJ 2.0 (Draft 57)

RealtimeThread javax.realtime 5.3

TimeDispatcher dispatcher,
SchedulingGroup group,
Runnable logic)

Description
Creates a realtime thread with the given characteristics and a specified Runnable.
The scheduling group of the new thread is inherited from its parent task unless
group is set. The newly-created realtime thread is associated with the scheduler
in effect during execution of the constructor.

Available since RTSJ 2.0

Parameters
scheduling—The SchedulingParameters associated with this (And possibly

other instances of Schedulable). When scheduling is null and the creator is
a schedulable, SchedulingParameters is a clone of the creator’s value created
in the same memory area as this. When scheduling is null and the creator
is a Java thread, the contents and type of the new SchedulingParameters
object is governed by the associated scheduler.

release—The ReleaseParameters associated with this (and possibly other in-
stances of Schedulable). When release is null the new RealtimeThread
will use a clone of the default ReleaseParameters for the associated scheduler
created in the memory area that contains the RealtimeThread object.

memory—The MemoryParameters associated with this (and possibly other in-
stances of Schedulable). When memory is null, the new RealtimeThread
receives null value for its memory parameters, and the amount or rate of
memory allocation for the new thread is unrestricted, and it may access the
heap.

area—The initial memory area of this handler.
config—The ConfigurationParameters associated with this (and possibly other

instances of Schedulable). When config is null, this RealtimeThread will
reserve no space for preallocated exceptions and implementation-specific values
will be set to their implementation-defined defaults.

dispatcher—The TimeDispatcher to use for realtime sleep and determining the
period of a periodic thread.

group—The SchedulingGroup of the newly created realtime thread or the parent’s
scheduling group when null.

logic—The Runnable object whose run() method will serve as the logic for the
new RealtimeThread. When logic is null, the run() method in the new
object will serve as its logic.

RTSJ 2.0 (Draft 57) 59

5 Realtime Threads RealtimeThread

Throws
IllegalArgumentException—when the parameters are not compatible with the

associated scheduler or the current thread group is not a SchedulingGroup
and group is null.

IllegalAssignmentError—when the new RealtimeThread instance cannot hold
a reference to any of the values of scheduling, release, memory, or group,
when those parameters cannot hold a reference to the new RealtimeThread,
when the new RealtimeThread instance cannot hold a reference to the values
of area or logic, when the initial memory area is not specified and the new
RealtimeThread instance cannot hold a reference to the default initial memory
area, and when the thread may not use the heap, as specified by its memory
parameters, and any of the following is true:
• the initial memory area is not specified,
• the initial memory is heap memory,
• the initial memory area, scheduling, release, memory, or group is allocated

in heap memory.
• when this is in heap memory, or
• logic is in heap memory.

ScopedCycleException—when memory is a scoped memory area that has already
been entered from a memory area other than the current scope.

RealtimeThread(SchedulingParameters, ReleaseParameters,
MemoryParameters, MemoryArea, ConfigurationParame-
ters, Runnable)

Signature
public
RealtimeThread(SchedulingParameters scheduling,

ReleaseParameters release,
MemoryParameters memory,
MemoryArea area,
ConfigurationParameters config,
Runnable logic)

Description
Creates a realtime thread with the given SchedulingParameters, ReleasePar-
ameters, MemoryParameters, ConfigurationParameters, a specified Runnable,
and default values for all other parameters.

60 RTSJ 2.0 (Draft 57)

RealtimeThread javax.realtime 5.3

This constructor is equivalent to RealtimeThread(scheduling, release,
memory, area, config, null, null, logic).

Available since RTSJ 2.0

RealtimeThread(SchedulingParameters, ReleaseParameters,
ConfigurationParameters, Runnable)

Signature
public
RealtimeThread(SchedulingParameters scheduling,

ReleaseParameters release,
ConfigurationParameters config,
Runnable logic)

Description
Creates a realtime thread with the given SchedulingParameters, ReleasePar-
ameters, MemoryArea and a specified Runnable and default values for all other
parameters.

This constructor is equivalent to RealtimeThread(scheduling, release,
null, null, config, null, null, logic).

Available since RTSJ 2.0

RealtimeThread(SchedulingParameters, ReleaseParameters,
ConfigurationParameters)

Signature
public
RealtimeThread(SchedulingParameters scheduling,

ReleaseParameters release,
ConfigurationParameters config)

Description
Creates a realtime thread with the given SchedulingParameters, ReleasePar-
ameters and MemoryArea and default values for all other parameters.

RTSJ 2.0 (Draft 57) 61

5 Realtime Threads RealtimeThread

This constructor is equivalent to RealtimeThread(scheduling, release,
null, null, config, null, null, null).

Available since RTSJ 2.0

RealtimeThread(SchedulingParameters, ReleaseParameters,
Runnable)

Signature
public
RealtimeThread(SchedulingParameters scheduling,

ReleaseParameters release,
Runnable logic)

Description
Creates a realtime thread with the given SchedulingParameters, ReleasePar-
ameters and a specified Runnable and default values for all other parameters.

This constructor is equivalent to RealtimeThread(scheduling, release,
null, null, null, null, null, logic).

Available since RTSJ 2.0

RealtimeThread(SchedulingParameters, ReleaseParamet-
ers)

Signature
public
RealtimeThread(SchedulingParameters scheduling,

ReleaseParameters release)

Description
Creates a realtime thread with the given SchedulingParameters and Release-
Parameters and default values for all other parameters.

This constructor is equivalent to RealtimeThread(scheduling, release,
null, null, null, null, null, null).

62 RTSJ 2.0 (Draft 57)

RealtimeThread javax.realtime 5.3

RealtimeThread(SchedulingParameters, TimeDispatcher)

Signature
public
RealtimeThread(SchedulingParameters scheduling,

TimeDispatcher dispatcher)

Description
Creates a realtime thread with the given SchedulingParameters and Time-
Dispatcher and default values for all other parameters. This constructor is
equivalent to RealtimeThread(scheduling, null, null, null, null, dis-
patcher, null, null).

Available since RTSJ 2.0

RealtimeThread(SchedulingParameters)

Signature
public
RealtimeThread(SchedulingParameters scheduling)

Description
Creates a realtime thread with the given SchedulingParameters and default
values for all other parameters. This constructor is equivalent to Realtime-
Thread(scheduling, null, null, null, null, null, null, null).

RealtimeThread

Signature
public
RealtimeThread()

Description
Creates a realtime thread with default values for all parameters. This construc-
tor is equivalent to RealtimeThread(null, null, null, null, null, null,
null, null).

RTSJ 2.0 (Draft 57) 63

5 Realtime Threads RealtimeThread

5.3.2.2.2 Methods

currentRealtimeThread

Signature
public static javax.realtime.RealtimeThread
currentRealtimeThread()
throws ClassCastException

Description
Gets a reference to the current instance of RealtimeThread.

Calling currentRealtimeThread is permissible when control is in an Async-
EventHandler. The method will return a reference to the RealtimeThread
supporting that release of the async event handler.

Throws
ClassCastException—when the current execution context is not an instance of

Schedulable.
Returns
a reference to the current instance of RealtimeThread.

currentSchedulable

Signature
public static javax.realtime.RealtimeThread
currentSchedulable()
throws ClassCastException

Description
Gets a reference to the current instance of Schedulable. It behaves the same
when the current thread is an instance of java.lang.Thread, but otherwise it
produces an instance of AsyncBaseEventHandler.

Throws
ClassCastException—when the current execution context is that of a conventional

Java thread.
Returns
a reference to the current instance of Schedulable.

64 RTSJ 2.0 (Draft 57)

RealtimeThread javax.realtime 5.3

getCurrentMemoryArea

Signature
public static javax.realtime.MemoryArea
getCurrentMemoryArea()

Description
Gets a reference to the MemoryArea object representing the current allocation
context. For a task that is not an instance of Schedulable, the result can only
be heap or immortal memory.

Returns
a reference to the MemoryArea object representing the current allocation context.

sleep(HighResolutionTime)

Signature
public static void
sleep(javax.realtime.HighResolutionTime<?> time)
throws InterruptedException,

ClassCastException,
IllegalArgumentException

Description
A sleep method that is controlled by a generalized clock. Since the time is
expressed as a HighResolutionTime, this method is an accurate timer with
nanosecond granularity. The actual resolution available for the clock and even the
quantity it measures depends on clock. The time base is the given Clock. The
sleep time may be relative or absolute. When relative, then the calling thread is
blocked for the amount of time given by time, and measured by clock. When
absolute, then the calling thread is blocked until the indicated value is reached by
clock. When the given absolute time is less than or equal to the current value
of clock, the call to sleep returns immediately.

Calling sleep is permissible when control is in an AsyncEventHandler. The
method causes the handler to sleep.

This method must not throw IllegalAssignmentError. It must tolerate
time instances that may not be stored in this.

Parameters
time—The amount of time to sleep or the point in time at which to awaken.

Throws

RTSJ 2.0 (Draft 57) 65

5 Realtime Threads RealtimeThread

InterruptedException—when the thread is interrupted by interrupt() or
AsynchronouslyInterruptedException.fire() during the time between call-
ing this method and returning from it.

ClassCastException—when the current execution context is not an instance of
Schedulable.

IllegalArgumentException—when time is null, when time is a relative time less
than zero, or when the Chronograph of time is not a Clock.

suspend(HighResolutionTime)

Signature
public static void
suspend(javax.realtime.HighResolutionTime<?> time)
throws ClassCastException,

IllegalArgumentException

Description
The same as sleep(HighResolutionTime) except that it is not interruptible.

Parameters
time—An absolute or relative time until which to suspend.

Throws
ClassCastException—when the current execution context is not an instance of

Schedulable.
IllegalArgumentException—when time is null, when time is a relative time less

than zero, or when the Chronograph of time is not a Clock.

Available since RTSJ 2.0

spin(HighResolutionTime)

Signature
public static void
spin(javax.realtime.HighResolutionTime<?> time)
throws InterruptedException,

ClassCastException,
IllegalArgumentException

Description

66 RTSJ 2.0 (Draft 57)

RealtimeThread javax.realtime 5.3

Similar to sleep(HighResolutionTime) except it performs a busy wait by polling
on the Chronograph associated with time until time has been reached. Note
that interaction with other tasks, scheduling considerations, and other effects
may reduce the frequency of polling for long delays, so an application cannot
assume that the associated Chronograph will be polled as quickly as possible.

Parameters
time—An absolute or relative time at which to stop spinning.

Throws
InterruptedException—when the thread is interrupted by interrupt() or

AsynchronouslyInterruptedException.fire() during the time between call-
ing this method and returning from it.

ClassCastException—when the current execution context is not an instance of
Schedulable.

IllegalArgumentException—when time is null, or when time is a relative time
less than zero.

Available since RTSJ 2.0

spin(int)

Signature
public static void
spin(int nanos)
throws InterruptedException,

ClassCastException,
IllegalArgumentException

Description
The same as calling spin(HighResolutionTime) with a relative time to the
default realtime clock, zero milliseconds, and nanos nanoseconds, except no
relative time object is necessary.

Parameters
nanos—A relative number of nanoseconds to wait.

Throws
InterruptedException—when the thread is interrupted by interrupt() or

AsynchronouslyInterruptedException.fire() during the time between call-
ing this method and returning from it.

ClassCastException—when the current execution context is not an instance of
Schedulable.

RTSJ 2.0 (Draft 57) 67

5 Realtime Threads RealtimeThread

IllegalArgumentException—when nanos is less than zero.

Available since RTSJ 2.0

waitForNextRelease

Signature
public static boolean
waitForNextRelease()
throws AsynchronouslyInterruptedException,

IllegalStateException,
ClassCastException

Description
Causes the current realtime thread to delay until the next release. (See re-
lease().) Used by threads that have a reference to either periodic or aperiodic
ReleaseParameters. The first release starts when this thread is released as a
consequence of the action of one of the start() family of methods. Each time
this method is called it will block until the next release unless the thread is in a
deadline miss condition. In that case, the operation of waitForNextRelease is
controlled by this thread’s scheduler. (See PriorityScheduler.)

Throws
AsynchronouslyInterruptedException—when the thread is interrupted by in-

terrupt() or AsynchronouslyInterruptedException.fire() during the
time between calling this method and returning from it and the
ReleaseParameters.isRousable() on its release parameters returns true.
An interrupt during waitForNextPeriodInterruptible() is treated as a re-
lease for purposes of scheduling. This is likely to disrupt proper operation of
the periodic thread. The timing behavior of the thread is unspecified until the
state is reset by altering the thread’s release parameters or the thread is no
longer in a deadline miss state.

IllegalStateException—when this does not have a reference to a ReleasePar-
ameters type of either PeriodicParameters or AperiodicParameters.

ClassCastException—when the current thread is not an instance of Realtime-
Thread.

Returns
either false when the thread is in a deadline miss condition or true otherwise.

When a deadline miss condition occurs is defined by its thread’s scheduler.

68 RTSJ 2.0 (Draft 57)

RealtimeThread javax.realtime 5.3

Available since RTSJ 2.0

getMemoryArea

Signature
public javax.realtime.MemoryArea
getMemoryArea()

Description
Obtains the initial memory area for this RealtimeThread. When not specified
through the constructor, the default is a reference to the current allocation context
when this was constructed.

Returns
a reference to the initial memory area for this thread.

Available since RTSJ 1.0.1

getMemoryParameters

Signature
public javax.realtime.MemoryParameters
getMemoryParameters()

Description
Gets a reference to the MemoryParameters object for this schedulable.

Returns
a reference to the current MemoryParameters object.

getSchedulingGroup

Signature
public javax.realtime.SchedulingGroup
getSchedulingGroup()

Description
Gets a reference to the SchedulingGroup instance of this schedulable.

RTSJ 2.0 (Draft 57) 69

5 Realtime Threads RealtimeThread

Returns
a reference to the current SchedulingGroup object.
Available since RTSJ 2.0

getConfigurationParameters

Signature
public javax.realtime.ConfigurationParameters
getConfigurationParameters()

Description
Gets a reference to the ConfigurationParameters object for this schedulable.

Returns
a reference to the associated ConfigurationParameters object.
Available since RTSJ 2.0

getReleaseParameters

Signature
public javax.realtime.ReleaseParameters
getReleaseParameters()

Description
Gets a reference to the ReleaseParameters object for this schedulable.

Returns
a reference to the current ReleaseParameters object.

getScheduler

Signature
public javax.realtime.Scheduler
getScheduler()

Description
Gets a reference to the Scheduler object for this schedulable.

70 RTSJ 2.0 (Draft 57)

RealtimeThread javax.realtime 5.3

Returns
a reference to the associated Scheduler object.

getSchedulingParameters

Signature
public javax.realtime.SchedulingParameters
getSchedulingParameters()

Description
Gets a reference to the SchedulingParameters object for this schedulable.

Returns
A reference to the current SchedulingParameters object.

release

Signature
public void
release()

Description
Generates a release for this RealtimeThread. The action of this release is
governed by the scheduler. It may, for instance, act immediately, or be queued,
delayed, or discarded.

Throws
IllegalStateException—when this does not have a reference to a ReleasePar-

ameters type of AperiodicParameters.

Available since RTSJ 2.0

interrupt

Signature
public void
interrupt()

Description

RTSJ 2.0 (Draft 57) 71

5 Realtime Threads RealtimeThread

Makes the generic AsynchronouslyInterruptedException pending for this,
and sets the interrupted state to true. As with Thread.interrupt(), blocking
operations that are interruptible are interrupted. When this.isRousable() is
true causes an early release. In any case, AsynchronouslyInterruptedExcep-
tion is thrown once a method is entered that implements AsynchronouslyIn-
terruptedException.

Behaves as if Thread.interrupt() were called on the implementation thread
underlying this Schedulable.

Throws
IllegalSchedulableStateException—when this is not currently releasable, i.e.,

is disabled, not firable, its start method has not been called, or it has terminated.
Available since RTSJ 2.0

isInterrupted

Signature
public boolean
isInterrupted()

Description
Determines whether or not any AsynchronouslyInterruptedException is pend-
ing.

Returns
true when and only when the generic AsynchronouslyInterruptedException is

pending.
Available since RTSJ 2.0

deschedule

Signature
public void
deschedule()

Description
Performs any deschedule actions specified by this thread’s scheduler, either
immediately when in waitForNextRelease() or the next time the thread enters
waitForNextRelease().

72 RTSJ 2.0 (Draft 57)

RealtimeThread javax.realtime 5.3

Available since RTSJ 2.0

reschedule

Signature
public void
reschedule()
throws IllegalSchedulableStateException

Description
Gets the thread to the blocked-for-next-release state. This causes the next event
to release the thread and waitForNextRelease to return. Deadline miss and
cost enforcement are re-enabled.

The details of the interaction of this method with deschedule, waitForNext-
Release and release are dictated by this thread’s scheduler.

Throws
IllegalSchedulableStateException—when the configured Scheduler and

SchedulingParameters for this RealtimeThread are not compatible.
Available since RTSJ 2.0

startPeriodic(PhasingPolicy)

Signature
public void
startPeriodic(PhasingPolicy phasingPolicy)
throws LateStartException,

IllegalSchedulableStateException,
IllegalArgumentException

Description
Starts the thread with the specified phasing policy.

Parameters
phasingPolicy—The phasing policy to be applied when the start time given in

the realtime thread’s associated PeriodicParameters is in the past.
Throws

javax.realtime.LateStartException—when the actual start time is after the
assigned start time and the phasing policy is PhasingPolicy.STRICT_PHASING.

RTSJ 2.0 (Draft 57) 73

5 Realtime Threads RealtimeThread

IllegalArgumentException—when the thread is not periodic, or when its start
time is not absolute.

IllegalSchedulableStateException—when the configured Scheduler and
SchedulingParameters for this RealtimeThread are not compatible.

Available since RTSJ 2.0

start

Signature
public void
start()
throws IllegalStateException

Description

Sets up the realtime thread’s environment and starts it. The set up might include
delaying it until the assigned start time and initializing the thread’s memory area
stack. (See ScopedMemory.)

Throws
IllegalStateException—when the configured Scheduler and SchedulingPar-

ameters for this RealtimeThread are not compatible.

Available since RTSJ 2.0 adds new exception

getLastReleaseTime

Signature
public javax.realtime.AbsoluteTime
getLastReleaseTime()

Description

Equivalent to getLastReleaseTime(null)

Available since RTSJ 2.0

74 RTSJ 2.0 (Draft 57)

RealtimeThread javax.realtime 5.3

getLastReleaseTime(AbsoluteTime)

Signature
public javax.realtime.AbsoluteTime
getLastReleaseTime(AbsoluteTime dest)

Description
Gets the absolute time of this thread’s last release, whether periodic or aperiodic.

The clock in the returned absolute time shall be the realtime clock for aperiodic
releases and the clock used for the periodic release for periodic releases.

Returns
the last release time in dest. When dest is null, create a new absolute time

instance in the current memory area.
Available since RTSJ 2.0

getEffectiveStartTime

Signature
public javax.realtime.AbsoluteTime
getEffectiveStartTime()

Description
Equivalent to getEffectiveStartTime(null).

Available since RTSJ 2.0

getEffectiveStartTime(AbsoluteTime)

Signature
public javax.realtime.AbsoluteTime
getEffectiveStartTime(AbsoluteTime dest)

Description
Determines the effective start time of this realtime thread. This is not necessarily
the same as the start time in the release parameters.
• When the release parameters’ start time is relative, the effective start time

is the time of the first release.

RTSJ 2.0 (Draft 57) 75

5 Realtime Threads RealtimeThread

• When the release parameters’ start time is an absolute time after start() is
invoked, the effective start time is the same as the release parameters’ start
time.
• When the release parameters’ start time is an absolute time before start()

is invoked, the effective start time depends on the phasing policy.
The default is to set the effective start time equal to the time start() is invoked.

Returns
the effective start time in dest. When dest is null, returns the effective start time

in an AbsoluteTime instance created in the current memory area.

Available since RTSJ 2.0

getCurrentConsumption(RelativeTime)

Signature
public static javax.realtime.RelativeTime
getCurrentConsumption(RelativeTime dest)

Description
Determines the CPU consumption for this release.

Throws
IllegalStateException—when the caller is not a Schedulable.

Returns
when dest is null, returns the CPU consumption in a RelativeTime instance

created in the current execution context. When dest is not null, returns the
CPU consumption in dest

Available since RTSJ 2.0

getCurrentConsumption

Signature
public static javax.realtime.RelativeTime
getCurrentConsumption()

Description
Equivalent to getCurrentConsumption(null).

76 RTSJ 2.0 (Draft 57)

RealtimeThread javax.realtime 5.3

Available since RTSJ 2.0

getMinConsumption(RelativeTime)

Signature
public javax.realtime.RelativeTime
getMinConsumption(RelativeTime dest)

Description
Gets the minimum CPU consumption measured for any completed release of this
schedulable.

Throws
IllegalStateException—when the caller is not a Schedulable.

Returns
the minimum CPU consumption in dest. When dest is null, it returns the

minimum CPU consumption in a RelativeTime instance created in the current
memory area.

Available since RTSJ 2.0

getMinConsumption

Signature
public javax.realtime.RelativeTime
getMinConsumption()

Description
Equivalent to getMinConsumption(null).

Available since RTSJ 2.0

getMaxConsumption(RelativeTime)

Signature
public javax.realtime.RelativeTime
getMaxConsumption(RelativeTime dest)

RTSJ 2.0 (Draft 57) 77

5 Realtime Threads RealtimeThread

Description
Gets the maximum CPU consumption measured for any completed release of this
schedulable.

Throws
IllegalStateException—when the caller is not a Schedulable.

Returns
the maximum CPU consumption in dest. When dest is null, it returns the

maximum CPU consumption in a RelativeTime instance created in the current
memory area.

Available since RTSJ 2.0

getMaxConsumption

Signature
public javax.realtime.RelativeTime
getMaxConsumption()

Description
Equivalent to getMaxConsumption(null).

Available since RTSJ 2.0

getDispatcher

Signature
public javax.realtime.TimeDispatcher
getDispatcher()

Description
Gets the dispatcher responsible for handling sleep requests issued by this thread

See Section Timable.getDispatcher()

Available since RTSJ 2.0

78 RTSJ 2.0 (Draft 57)

RealtimeThread javax.realtime 5.3

fire

Signature
public final void
fire()

Description
Used by the Clock infrastructure to cause a call to waitForNextRelease to
return.

See Section AsyncTimable.fire()

Available since RTSJ 2.0

mayUseHeap

Signature
public boolean
mayUseHeap()

Description
Determines whether or not this schedulable may use the heap.

Returns
true only when this Schedulable may allocate on the heap and may enter Heap-

Memory.

Available since RTSJ 2.0

awaken

Signature
public final void
awaken()

Description
Used by the Clock infrastructure to cause a call to sleep to return.

RTSJ 2.0 (Draft 57) 79

5 Realtime Threads RealtimeThread

See Section Schedulable.awaken()

Available since RTSJ 2.0

setMemoryParameters(MemoryParameters)

Signature
public javax.realtime.RealtimeThread
setMemoryParameters(MemoryParameters memory)

Description
Sets the memory parameters associated with this instance of Schedulable.

This change becomes effective at the next allocation; on multiprocessor
systems, there may be some delay due to synchronization between processors.

Parameters
memory—A MemoryParameters object which will become the memory parameters

associated with this after the method call. When null, the default value is
governed by the associated scheduler; a new object is created when the default
value is not null. (See PriorityScheduler.)

Throws
IllegalArgumentException—when memory is not compatible with the schedul-

able’s scheduler. Also when this schedulable may not use the heap and memory
is located in heap memory.

IllegalAssignmentError—when the schedulable cannot hold a reference to mem-
ory, or when memory cannot hold a reference to this schedulable instance.

Returns
this

Available since RTSJ 2.0 returns itself

setReleaseParameters(ReleaseParameters)

Signature
public javax.realtime.RealtimeThread
setReleaseParameters(ReleaseParameters release)

Description

80 RTSJ 2.0 (Draft 57)

RealtimeThread javax.realtime 5.3

Sets the release parameters associated with this instance of Schedulable.
This change becomes effective under conditions determined by the scheduler

controlling the schedulable. For instance, the change may be immediate or it may
be delayed until the next release of the schedulable. The different properties of
the release parameters may take effect at different times. See the documentation
for the scheduler for details.

Parameters
release—A ReleaseParameters object which will become the release parameters

associated with this after the method call, and take effect as determined by
the associated scheduler. When null, the default value is governed by the
associated scheduler; a new object is created when the default value is not
null. (See PriorityScheduler.)

Throws
IllegalArgumentException—when release is not compatible with the associated

scheduler. Also when this schedulable may not use the heap and release is
located in heap memory.

IllegalAssignmentError—when this object cannot hold a reference to release
or release cannot hold a reference to this.

IllegalSchedulableStateException—when the task is running and the new
release parameters are not compatible with the current scheduler.

Returns
this

Available since RTSJ 2.0 returns itself

setScheduler(Scheduler)

Signature
public javax.realtime.RealtimeThread
setScheduler(Scheduler scheduler)

Description
Sets the reference to the Scheduler object. The timing of the change must be
agreed between the scheduler currently associated with this schedulable, and
scheduler. If the Schedulable is running, its associated SchedulingParamet-
ers (if any) must be compatible with scheduler.

For an instance of RealtimeThread, the Schedulable is running when
RealtimeThread.start() has been called on it and RealtimeThread.join()
would block.

RTSJ 2.0 (Draft 57) 81

5 Realtime Threads RealtimeThread

Parameters
scheduler—A reference to the scheduler that will manage execution of this sched-

ulable. Null is not a permissible value.
Throws

IllegalArgumentException—when scheduler is null, or the schedulable’s ex-
isting parameter values are not compatible with scheduler. Also when this
schedulable may not use the heap and scheduler is located in heap memory.

IllegalAssignmentError—when the schedulable cannot hold a reference to sched-
uler or the current Schedulable is running and its associated Scheduling-
Parameters are incompatible with scheduler.

SecurityException—when the caller is not permitted to set the scheduler for this
schedulable.

IllegalSchedulableStateException—when scheduler has scheduling or release
parameters that are not compatible with the new scheduler and this schedulable
is running.

Returns
this

Available since RTSJ 2.0 returns itself

setScheduler(Scheduler, SchedulingParameters, ReleasePar-
ameters, MemoryParameters)

Signature
public javax.realtime.RealtimeThread
setScheduler(Scheduler scheduler,

SchedulingParameters scheduling,
ReleaseParameters release,
MemoryParameters memoryParameters)

Description
Sets the scheduler and associated parameter objects. The timing of the change
must be agreed between the scheduler currently associated with this schedulable,
and scheduler.

Parameters
scheduler—A reference to the scheduler that will manage the execution of this

schedulable. Null is not a permissible value.

82 RTSJ 2.0 (Draft 57)

RealtimeThread javax.realtime 5.3

scheduling—A reference to the SchedulingParameters which will be associated
with this. When null, the default value is governed by scheduler; a new
object is created when the default value is not null. (See PriorityScheduler.)

release—A reference to the ReleaseParameters which will be associated with
this. When null, the default value is governed by scheduler; a new object
is created when the default value is not null. (See PriorityScheduler.)

memoryParameters—A reference to the MemoryParameters which will be associated
with this. When null, the default value is governed by scheduler; a new
object is created when the default value is not null. (See PriorityScheduler.)

Throws
IllegalArgumentException—when scheduler is null or the parameter values

are not compatible with scheduler. Also thrown when this schedulable may
not use the heap and scheduler, scheduling release, memoryParameters,
or group is located in heap memory.

IllegalAssignmentError—when this object cannot hold references to all the
parameter objects or the parameters cannot hold references to this.

SecurityException—when the caller is not permitted to set the scheduler for this
schedulable.

Returns
this

Available since RTSJ 2.0

setSchedulingParameters(SchedulingParameters)

Signature
public javax.realtime.RealtimeThread
setSchedulingParameters(SchedulingParameters scheduling)

Description
Sets the scheduling parameters associated with this instance of Schedulable.

This change becomes effective under conditions determined by the scheduler
controlling the schedulable. For instance, the change may be immediate or it
may be delayed until the next release of the schedulable. See the documentation
for the scheduler for details.

Parameters
scheduling—A reference to the SchedulingParameters object. When null, the

default value is governed by the associated scheduler; a new object is created
when the default value is not null. (See PriorityScheduler.)

RTSJ 2.0 (Draft 57) 83

5 Realtime Threads RealtimeThread

Throws
IllegalArgumentException—when scheduling is not compatible with the as-

sociated scheduler. Also when this schedulable may not use the heap and
scheduling is located in heap memory.

IllegalAssignmentError—when this object cannot hold a reference to schedul-
ing or scheduling cannot hold a reference to this.

IllegalSchedulableStateException—when the task is active and the new
scheduling parameters are not compatible with the current scheduler.

Returns
this

Available since RTSJ 2.0 returns itself

getAffinity

Signature
public javax.realtime.Affinity
getAffinity()

Description
Determine the affinity set instance associated with task.

Returns
The associated affinity.

setAffinity(Affinity)

Signature
public void
setAffinity(Affinity set)
throws IllegalArgumentException,

ProcessorAffinityException,
NullPointerException

Description
Set the processor affinity of a task to set with immediate effect.

Parameters
set—is the processor affinity

84 RTSJ 2.0 (Draft 57)

Rationale 5.4

Throws
IllegalArgumentException—when the intersection of set the affinity of any

ThreadGroup instance containing task is empty.
ProcessorAffinityException—is thrown when the runtime fails to set the affinity

for platform-specific reasons.
NullPointerException—when set is null.

5.4 Rationale
Realtime programming requires a scheduling method radically different than what
a conventional Java programmer would expect, but most other aspects of thread
behavior are the same. Therefore, it is reasonable to model a realtime thread as an
extension to a java.lang.Thread. The main additions needed are for scheduling
control such as release control for asynchronous event handling. Here asynchronous
includes periodic releases, since release is asynchronous with regards to the executing
code.

The RTSJ platform’s priority-preemptive dispatching model is very similar to the
dispatching model found in the majority of commercial realtime operating systems.
The ReleaseParameters and MemoryParameters provided to the RealtimeThread
constructor provide a number of common realtime thread types, including periodic
threads. However, conventional Java thread scheduling is supported. The realtime
priorities are all above the conventional Java priorities to ensure the realtime threads
take precedence over normal tasks.

The MemoryParameters class is provided with a may-use-heap option in order to
enable time-critical schedulables to execute in preference to the garbage collector
given appropriate assignment of execution eligibility when false. The memory access
and assignment semantics of these heapless schedulables are designed to guarantee
that the execution of such threads does not lead to an inconsistent heap state.

RTSJ 2.0 (Draft 57) 85

5 Realtime Threads

86 RTSJ 2.0 (Draft 57)

Chapter 6

Scheduling

Scheduling is a key differentiator between a conventional Java implementation and a
realtime Java implementation. Whereas conventional Java implementations relies on
some sort of fair scheduling, a realtime Java implementation must provide a realtime
scheduler. In a realtime scheduler, ensuring that critical tasks finish on time is more
important than overall throughput or fairness.

The scheduler required by this specification is fixed-priority preemptive with
at least 28 unique priority levels. At least 28 must be supported by each imple-
mentation, but a deployment need not have all 28 active, when not needed by the
application. It is represented by the class FirstInFirstOutScheduler, a subclass
of PriorityScheduler, and is called the base scheduler. As the name implies, this
scheduler does not time-slice threads at a given priority, but rather runs each to
completion, so long as no higher priority thread becomes ready to run and no other
processor is available for the higher priority thread. In that case, the current thread
is preempted by the higher priority thread.

The schedulables required by this specification are denoted by the Schedulable
interface and include the classes RealtimeThread and AsyncBaseEventHandler
along with its subclasses. The base scheduler assigns processor resources according to
the schedulables’ release characteristics, execution eligibility, affinity, and processing
group values. Subclasses of these schedulables are also schedulables and behave as
these required classes.

The scheduler dispatches a schedulable, that is ready to run, on a CPU. Some
systems, such as multicore systems, have more than one CPU to choose from. By
default, a ready schedulable would be dispatched on the next available CPU; however,
the specification provides an interface, Affinity, to control on which sets of CPUs
a given schedulable may run.

An instance of the SchedulingParameters class contains values of execution
eligibility. A schedulable is considered to have the execution eligibility represented
by the SchedulingParameters object currently bound to it. For implementations

87

6 Scheduling

providing only the base scheduler, the scheduling parameters object is an instance of
PriorityParameters (a subclass of SchedulingParameters).

An instance of the ReleaseParameters class or its subclasses, PeriodicParame-
ters, AperiodicParameters, and SporadicParameters, contains values that define
a particular release characteristic. A schedulable is considered to have the release
characteristics of a single associated instance of the ReleaseParameters class.

For a realtime thread, the scheduler defines the behavior of the realtime thread’s
waitForNextRelease methods. For all Schedulables, the scheduler monitors cost
overrun and deadline miss conditions based on its release parameters. Release
parameters also govern the treatment of the minimum interarrival time for sporadic
schedulables.

The ThreadGroup class has special significance in an RTSJ implementation. As
in conventional Java, the maximum priority of a thread is governed in part by its
thread group, but the CPU affinity of a thread is also governed by its thread group
along with the Affinity class. Furthermore, there are two important subclasses:
SchedulingGroup and ProcessingGroup. These classes provide additional means
of managing tasks.

An instance of the SchedulingGroup provides scheduling constraints for schedula-
bles similar to how a TheadGroup does for conventional Java threads. The scheduler
and maximum SchedulingParameters can be set. A schedulable can only be created
in an instance of SchedulingGroup or its subclass. Therefore the root thread group
and the thread group of the initial thread must both be scheduling groups in an
RTSJ implementation.

The ProcessingGroup class is a subclass of SchedulingGroup. An instance of the
ProcessingGroup class contains values that define a temporal scope for a processing
group. When a schedulable has an associated instance of the ProcessingGroup
class, it is said to execute within the temporal scope defined by that instance. A
single instance of the ProcessingGroup class can be, and typically is, associated
with many schedulables. In an implementation that supports cost enforcement, the
combined processor demand of all of the schedulables associated with an instance
of the ProcessingGroup class must not exceed the values in that instance (i.e., the
defined temporal scope). The processor demand is determined by the Scheduler.

The scheduling classes provide the necessary support for realtime scheduling.
These classes
• enable the definition of schedulables,
• manage the assignment of execution eligibility to schedulable objects,
• manage the execution of instances of the AsyncBaseEventHandler and Real-

timeThread classes,
• assign release characteristics to schedulables,
• assign execution eligibility values to schedulables, and

88 RTSJ 2.0 (Draft 57)

Definitions 6.1

• manage the execution of groups of schedulables that collectively exhibit addi-
tional release characteristics.

6.1 Definitions
Task — A unit of independent execution. In conventional Java, this is a thread.

The Schedulable interface marks realtime tasks. The classes that implement
Schedulable are subject to the scheduling behavior of realtime schedulers.
Instances of these classes are referred to as Schedulables (SO) and provide four
execution states: executing, eligible-for-execution, blocked, and descheduled.
1. Executing refers to the state where the schedulable is currently running

on a processor.
2. Blocked refers to the state where the schedulable is not among those

schedulables that could be selected to have their state changed to executing.
The blocked state will have a reason associated with it, e.g., blocked-for-
I/O-completion, blocked-for-release-event, or blocked-by-cost-overrun.

3. Eligible-for-execution refers to the state where the schedulable could be
selected to have its state changed to executing.

4. Descheduled refers to the state where the schedulable is ineligible to be
released.

Each type of schedulable defines its own release events, for example, the release
events for a periodic schedulable are caused by the passage of time and occur
at programmatically specified intervals.

Release — The changing of the state of a schedulable from blocked-for-release-event
to eligible-for-execution. When the state of a schedulable is blocked-for-release-
event and a release event occurs then the state of the schedulable is changed
to eligible-for-execution. Otherwise, a state transition from blocked-for-release-
event to eligible-for-execution is queued; this is known as a pending release.
When the next transition of the schedulable into state blocked-for-release-
event occurs, and there is a pending release, the state of the schedulable is
immediately changed to eligible-for-execution. (Some actions implicitly clear
any pending releases.)

Completion — The changing of the state of a schedulable from executing to
blocked-for-release-event. Each completion corresponds to a release. A realtime
thread is deemed to complete its most recent release when it terminates.

Deadline — A time before which a schedulable should complete. The ith deadline
is associated with the ith release event and a deadline miss occurs when the ith
completion would occur after the ith deadline.

Deadline Monitoring — The process by which the implementation responds to
deadline misses. When a deadline miss occurs for a schedulable object, the

RTSJ 2.0 (Draft 57) 89

6 Scheduling

deadline miss handler, if any, for that schedulable is released. This behaves
as if there were an asynchronous event associated with the schedulable, to
which the miss handler was bound, and which was fired when the deadline miss
occurred.

Periodic, Sporadic, and Aperiodic — Adjectives applied to schedulables which
describe the temporal relationship between consecutive release events. Let Ri

denote the time at which a schedulable has had the ith release event occur.
Ignoring the effect of release jitter:

1. a schedulable is periodic when there exists a value T > 0 such that for all
i, Ri+1 −Ri = T , where T is called the period;

2. a schedulable that is not periodic is said to be aperiodic; and
3. an aperiodic schedulable is said to be sporadic when there is a known

value T > 0 such that for all i, Ri+1 − Ri >= T . T is then called the
minimum interarrival time (MIT).

Cost — The maximum amount of CPU time that a schedulable is allowed between
a release and its associated completion.

Current CPU Consumption — The amount of CPU time that the schedulable
has consumed since its last release.

Cost Overrun — The time at which a schedulable’s current CPU consumption
becomes greater than, or equal to, its cost.

Cost Monitoring — The process by which the implementation tracks CPU con-
sumption and responds to cost overruns. When a cost overrun occurs for a
schedulable, its cost overrun handler, if any, is released. This behaves as if
there were an asynchronous event associated with the schedulable, to which
the overrun handler was bound, and which is fired when a cost overrun occurs.

Cost Enforcement — The process by which the implementation ensures that the
CPU consumption of a schedulable is no more than the value of the cost
parameter in its associated ReleaseParameters. (Cost enforcement is an
optional facility in an implementation of the RTSJ.)

Base Priority — The priority assigned to a task, either in its associated Priori-
tyParameters object or by Thread.setPriority; the base priority of a Java
thread is the priority returned by its getPriority method.

Enforced Priority — A priority below the idle priority, which ensures the sched-
ulable has no execution eligibility.

Active Priority — The execution eligibility criterion for the priority-based sched-
ulers. It is the maximum of the base (or enforced priority) and any priority a
task has acquired due to the action of priority inversion avoidance algorithms
(see the Synchronization Chapter).

Processing Group — A collection of tasks whose combined execution has further
execution time constraints which the scheduler uses to govern the group’s

90 RTSJ 2.0 (Draft 57)

Semantics 6.2

execution eligibility.
Base Scheduler —An instance of the FirstInFirstOutScheduler class as defined

in this specification. This is the initial default scheduler.
Round-Robin Scheduler — An instance of the RoundRobinScheduler class as

defined in this specification. It is specified to execute in tandem with the base
scheduler in a predictable fashion.

Processor — A logical processing element that is capable of physically executing a
single thread of control at any point in time. Hence, multicore platforms have
multiple processors, platforms that support hyperthreading also have more
than one processor. It is assumed that all processors are capable of executing
the same instruction sets.

Affinity — A set of processors on which the global scheduling of a schedulable can
be supported.

Idle Task — A notional system or VM-provided task that consumes all CPU time
not used by other tasks. It may be an actual process or thread, or it may be
a power-saving mode that halts or slows the CPU, or it may be an artificial
construction. For the purposes of this specification, it has a priority below that
of all nonblocked tasks and above that of tasks blocked due to cost overrun.
Details of its implementation are not specified here.

6.2 Semantics
Scheduling semantics determines when each task runs. Both The Java Virtual
Machine Specification[6] and The Java Language Specification[5] are silent on the
semantics for scheduling; only the semantics for synchronization is provided. Since
scheduling is central to realtime programming, a detailed semantic, applicable
across all available scheduler algorithms, is defined below, along with definitions
of the required scheduling algorithms. Semantics that apply to particular classes,
constructors, methods, and fields can be found in the class description and the
constructor, method, and field detail sections.

6.2.1 Schedulers
There are four basic requirements for schedulers.

1. A scheduler may only change the execution eligibility of the schedulables which
it manages and only in accordance with its scheduling algorithm.

2. Each scheduler provided for application code by an RTSJ implementation must
have documentation describing its semantics including at least the following:
the algorithm used to determine eligibility, what schedulables may be scheduled
by it, the subclasses of Scheduler and SchedulingParameters used to control

RTSJ 2.0 (Draft 57) 91

6 Scheduling

the scheduler, and any other classes needed by the scheduler.
3. Every implementation must provide a round-robin scheduler and a first in first

out scheduler using priorities above the ten (1–10) conventional Java priorities
as documented below.

4. Tasks with a conventional Java priority (1–10) must be scheduled such that
when two or more threads run at the same priority, one thread cannot block
another indefinitely or violate the requirements dictated by java.lang.Thread.

5. Tasks with a conventional Java priority must be scheduled using some sort of
fair scheduler such that higher-priority Java tasks cannot starve lower-priority
Java tasks indefinitely.

The scheduler can be changed independently of the SchedulingParameters and
vice versa only when the Schedulable in question is descheduled. Rescheduling
will throw an IllegalSchedulableStateException when called on a Schedulable
scheduling parameters that are inconsistent with its scheduler. Trying to add a
handler with SchedulingParameters that do not match its scheduler to an event
will also result in an IllegalSchedulableStateException being thrown.

6.2.1.1 Parameter Values

A scheduler uses the values contained in the different parameter objects associated
with a schedulable to control the behavior of the schedulable. The scheduler deter-
mines what values are valid for the schedulables it manages, which defaults apply and
how changes to parameter values are acted upon by the scheduler. Invalid parameter
values result in exceptions, as documented in the relevant classes and methods.

1. The default values for the priority schedulers are as follows.
(a) Scheduling parameters are copied from the creating schedulable when

possible; when the creating schedulable does not have scheduling parame-
ters, the default is an instance of the default parameters for the prevailing
scheduler when the schedulable starts.

(b) The default for release depend on the type of schedulable:
i. for instance of RealtimeThread the default is an instance of Back-

groundParameters with default values (see AperiodicParameters),
and

ii. for instance of AsyncBaseEventHandler the default is an instance of
aperiodic parameters with default values (see AperiodicParameters).

(c) Memory parameters default to null which signifies that memory allocation
by the schedulable is not constrained by the scheduler.

(d) The default scheduling parameter values for parameter objects created by
a schedulable controlled by the base scheduler are given by the following
table (see FirstInFirstOutScheduler).

92 RTSJ 2.0 (Draft 57)

Semantics 6.2

Attribute Default Value
Priority parameters
priority norm priority
Importance parameters
importance No default.

A value must be supplied.

2. All numeric or RelativeTime attributes in parameter values must be greater
than or equal to zero.

3. Values of period must be greater than zero.
4. Changes to scheduling, release, memory, and processing group parameters,

either by methods on the schedulables bound to the parameters or by altering
the parameter objects themselves, potentially modify the behavior of the
scheduler with regard to those schedulables. When such changes in behavior
take effect depends on the parameter in question, and the type of schedulable,
as described below.

5. When changes to a parameter type—scheduling, release, memory, and process-
ing group—take effect depends on the parameter type.
(a) Changes to scheduling parameters take effect immediately except when

constrained by priority inversion avoidance algorithms.
(b) Changes to release parameters depend on the parameter being changed,

the type of release parameter object, and the type of schedulable.
i. Changes to the deadline and the deadline miss handler take effect at

each release event as follows: when the ith release event occurred at
a time ti, then the ith deadline is the time ti + Di, where Di is the
value of the deadline stored in the schedulable’s release parameters
object at the time ti. When a deadline miss occurs then it is the
deadline miss handler that was installed in the schedulable’s release
parameters at time ti that is released.

ii. Changes to cost and the cost overrun handler take effect immediately.
iii. Changes to the period and start time values in PeriodicParameters

objects are described in “Release of a Realtime Thread” below.
iv. Changes to the additional values in ReleaseParameters objects and

SporadicParameters are described, respectively, in “General Release
Control” and “Sporadic Release Control”, below.

v. Changes to the type of release parameters object generally take effect
after completion, except as documented in the following sections.

(c) Changes to memory parameters take effect immediately.
(d) Changes to processing group parameters take effect as described in “Pro-

cessing Groups” below.
(e) Changes to the scheduler responsible for a schedulable object take effect

RTSJ 2.0 (Draft 57) 93

6 Scheduling

at completion.
(f) Changes to cost enforcement state, i.e., enabling or disabling cost enforce-

ment on a processing group or release parameters object associated with
one or more schedulables, take effect at the next release of the associated
ProcessingGroup or associated Schedulable, respectively.

6.2.1.2 Release Control

Schedulables are released in response to the occurrence of events, such as starting
a realtime thread, calling the release method of a realtime thread, or firing the
asynchronous event associated with an asynchronous event handler. The occurrence
of these events, each of which is a potential release event, is termed an arrival, and
the time that they occur is termed the arrival time. The only difference between a
periodic and an aperiodic event is the regularity of the arrival times.

A scheduler behaves effectively as if it maintained a queue, called the arrival time
queue, for each schedulable object. This queue maintains information related to each
release event, including any parameters passed with the release mechanism, from its
“arrival” time until the associated release completes, or another release event occurs,
whichever is later. When an arrival is accepted into the arrival time queue, then it is
a release event and the time of the release event is the arrival time. The initial size
of this queue is an attribute of the schedulable’s aperiodic parameters, and is set
when an aperiodic parameter object is first associated with the schedulable. Over
time, the queue may become full and its behavior in this situation is determined by
the queue overflow policy specified in the schedulable’s aperiodic parameters. The
enumeration class QueueOverflowPolicy defines four overflow policies.

Policy Action on Overflow
IGNORE Silently ignore the arrival. The arrival is not accepted,

no release event occurs, and, when the arrival was caused
programmatically, such as by invoking fire on an asyn-
chronous event, the caller is not informed that the arrival
has been ignored.

EXCEPT Throw an ArrivalTimeQueueOverflowException. The ar-
rival is not accepted, and no release event occurs, but when
the arrival was caused programmatically, the caller will have
ArrivalTimeQueueOverflowException thrown.

94 RTSJ 2.0 (Draft 57)

Semantics 6.2

REPLACE The arrival replaces the latest release in the queue, when
there is one, but no new release event occurs. When the
completion associated with the last release event in the
queue has not yet occurred, and the deadline has not been
missed, the release event time for that release event is re-
placed with the arrival time of the new arrival and any
associated parameters overwritten. This will alter the dead-
line for that release event. When the deadline has already
been missed or the queue length is zero, the behavior of the
REPLACE policy is equivalent to the IGNORE policy.

SAVE Behave effectively as if the queue were expanded as nec-
essary to accommodate the new arrival. This expansion
is permanent. The arrival is accepted and a release event
occurs.

DISABLE No queuing takes place. All incoming events increment the
pending fire or release count. I may only be used where
there is no payload and the release parameters are not
sporadic.

Changes to the queue overflow policy take effect immediately. When an arrival
occurs, and the queue is full, the policy applied is the policy as defined at that time.

6.2.1.2.1 Sporadic Release Control

“Sporadic Release Control” is a special case of “Release Control,” where the arrival
time or execution time may be additionaly regulated. Sporadic parameters include
a minimum interarrival time (MIT) which characterizes the expected frequency of
releases. When an arrival is accepted, the implementation behaves as if it calculates
the earliest time at which the next arrival could be accepted, by adding the current
MIT to the arrival time of this accepted arrival. The scheduler guarantees that each
sporadic schedulable it manages, is released at most once in any MIT.

Two mechanisms are specified for enforcing this rule: arrival-Time regulation and
release-time regulation. Arrival-time regulation controls the work-load by considering
the time between arrivals. When a new arrival occurs earlier than the expected next
arrival time then a MIT violation has occurred, and the scheduler acts to prevent
a release from occurring that would break the “one release per MIT” guarantee.
Release-time regulation controls when events are released. Under this policy all
arrivals that can be queued under the current QueueOverflowPolicy are accepted,
but the scheduler behaves effectively as if released schedulable objects were further

RTSJ 2.0 (Draft 57) 95

6 Scheduling

constrained by a scheduling policy that restricts releases to at most one release per
MIT. As described in the following tables, three types of arrival-time regulation and
one type of release-time regulation are supported.

Arrival-Time Regulation
Policy Action on Violation

IGNORE Silently ignore the violating arrival. The arrival is not
accepted, no release event occurs, and, when the arrival
was caused programmatically (such as by invoking fire on
an asynchronous event), the caller is not informed that the
arrival has been ignored.

EXCEPT Throw a MITViolationException. The arrival is not ac-
cepted, and no release event occurs, but when the arrival
was caused programmatically, the caller will have MITVio-
lationException thrown.

REPLACE The arrival is not accepted and no release event occurs.
When the completion associated with the last release event
in the queue has not yet occurred, and the deadline has not
been missed, then the release event time for that release
event is replaced with the arrival time of the new arrival and
any associated parameters overwritten. This will alter the
deadline for that release event. When the completion associ-
ated with the last release event has occurred, or the deadline
has already been missed, the behavior of the REPLACE
policy is equivalent to the IGNORE policy.

Release-Time Regulation
Policy Action on Violation
SAVE The arrival time is delayed until after the current MIT

interval. This policy is only able to delay the effective
release of a schedulable. The deadline of each release event
is always set relative to its arrival time. This policy might
not schedule the effective release of an asynchronous event
handler until after its deadline has passed. In this case, the
deadline miss handler is released at the deadline time even
though the related asynchronous event has not yet reached
its effective release. Once an arrival is queued, the SAVE
policy makes no direct use of the next expected arrival time,
but it maintains the value in case the MIT violation policy
is changed from SAVE to one of the arrival-time regulation
policies.

96 RTSJ 2.0 (Draft 57)

Semantics 6.2

The effective release time of a release event i is the earliest time that the handler
can be released in response to that release event. It is determined for each release
event based on the MIT policy in force at the release event time.

1. For IGNORE, EXCEPT and REPLACE the effective release time is the release
event time.

2. For SAVE the effective release time of release event i is the effective release
time of release event i-1 plus the current value of the MIT.

The scheduler will delay the release associated with the release event at the head of
the arrival time queue until the current time is greater than or equal to the effective
release time of that release event.

Changes to minimum interarrival time and the MIT violation policy take effect
immediately, but only affect the next expected arrival time, and effective release
time, for release events that occur after the change.

6.2.1.2.2 Releasing a Realtime Thread

The repeated release of a realtime thread is achieved by executing in a loop
and invoking the RealtimeThread.waitForNextRelease1 methods, or its interrupt-
ible equivalent RealtimeThread.waitForNextReleaseInterruptible) within that
loop. For simplicity, unless otherwise stated, the semantics in this section apply to
both forms of this method.

1. A realtime thread’s release characteristics are determined by the following:
(a) the invocation of the realtime thread’s start method and the value of its

phasing policy parameter (if applicable);
(b) the action of the RealtimeThread methods waitForNextRelease, sched-

ule, and deschedule;
(c) the occurrence of deadline misses and whether or not a miss handler is

installed; and
(d) whether the passing of time generates periodic release events or calls to

the release method generates aperiodic release events.
2. The initial release event depends on the type of release parameters given the

realtime thread:
(a) for a realtime thread with periodic parameters, the initial release event

occurs in response to the invocation of its start method in accordance
with the start time specified in its release parameters and its assigned
phasing policy—see PeriodicParameters and PhasingPolicy;

(b) For a realtime thread with aperiodic parameters, the initial release event
occurs immediately in response to the invocation of its start method.

1The method RealtimeThread.waitForNextPeriod has been replaced by Realtime-
Thread.waitForNextRelease as of RTSJ 2.0. The same goes for its interruptible equivalent.

RTSJ 2.0 (Draft 57) 97

6 Scheduling

3. Changes to the start time in a realtime thread’s PeriodicParameters object
only have an effect on its initial release time. Consequently, when a Periodic-
Parameters object is bound to multiple realtime threads, a change in the start
time may affect all, some or none, of those threads, depending on whether or
not start has been invoked on them.

4. When subsequent release events occur also depends on the type of release
parameters given to the realtime thread:
(a) for periodic realtime threads, each period (and hence each release) falls

due, except as described below (in 6d), at regular intervals such that when
the ith release event occurred at a time ti, the i+ 1 release event occurs at
the time ti + Ti, where Ti is the value of the period stored in the realtime
thread’s PeriodicParameters object at the time ti;

(b) for aperiodic realtime threads, a release occurs with each call of the release
method, except as described below (in 6d); and

(c) for sporadic realtime threads, a release occurs with each call of the release
method, except, as described below (in 6d), when additional regulation is
required to enforce MIT as defined in Sporadic Release Control below.

5. Each release of an aperiodic realtime thread is an arrival.
(a) When the thread has release parameters of type ReleaseParameters,

then the arrival may become a release event for the thread according to
the semantics given in “General Release Control” below.

(b) When the thread has release parameters of type SporadicParameters,
then the arrival may become a release event for the thread according to
the semantics given in “Sporadic Release Control” below.

6. The implementation should behave effectively as if the following state variables
were added to a realtime thread’s state,
boolean deschedule,
integer pendingReleases,
integer missCount, and
boolean lastReturn;

and manipulated by the actions as described below.
(a) Initially

deschedule = false,
pendingReleases = 0,
missCount = 0, and
lastReturn = true.

(b) The function of the deschedule method depends on the current state of
the realtime thread.
i. When current state is a blocked state, either blocked-for-release-event

or blocked-for-missed-release, it sets the value of deschedule to true
and sets the thread’s state to descheduled.

98 RTSJ 2.0 (Draft 57)

Semantics 6.2

ii. When the current state is not a blocked state, it just sets the value
of deschedule to true.

(c) The function of the reschedule method also depends on the current state
of the realtime thread.
i. When the realtime thread is in the descheduled state, it sets the value

of deschedule to false, sets the values of pendingReleases and
missCount to zero, changes the thread’s state to blocked-for-release-
event, and tells the cost monitoring and enforcement system to reset
for this thread.

ii. When the realtime thread is not in the Descheduled state, it just sets
the value of deschedule to false.

(d) A realtime thread that is in the descheduled state will not receive any
further release events until after it has been rescheduled by a call to
reschedule; this means that no deadline misses can occur.

(e) What happens when a release event occurs depends on the current state.
i. When the state of the realtime thread is descheduled, do nothing.
ii. When the state is blocked-for-release-event, i.e., it is waiting in wait-

ForNextRelease, increment the value of pendingReleases, inform
cost monitoring and enforcement that the next release event has
occurred, and notify the thread to make it eligible for execution;

iii. Otherwise, when the thread is in a release, increment the value of
pendingReleases, and inform cost monitoring and enforcement that
the next release event has occurred.

(f) On each deadline miss, one of two things happen:
i. when the realtime thread has a deadline miss handler, the value of

deschedule is set to true, the handler is atomically released with
its fireCount increased by the value of missCount + 1, and zero for
missCount;

ii. otherwise, one is added to the missCount value.
(g) When the waitForNextRelease method is invoked by the current realtime

thread there are three possible behaviors depending on the value of
missCount and lastReturn.
i. When missCount is zero, any pending parameter changes are applied,

cost monitoring and enforcement are informed of completion, and then
the thread waits while deschedule is true, or pendingReleases is
zero. Then the lastReturn value is set to true, pendingReleases
is decremented, and true is returned.

ii. When missCount is greater than zero and the lastReturn value is
false, completion occurs: the missCount value is decremented; then
any pending parameter changes are applied, pendingReleases is

RTSJ 2.0 (Draft 57) 99

6 Scheduling

decremented, cost monitoring and enforcement is informed that the
realtime thread has completed, and false is returned;

iii. Otherwise, when missCount is greater than zero and the lastRe-
turn value is true, the missCount value is decremented and the
lastReturn value is set to false and false is returned.

7. An invocation of the RealtimeThread.waitForNextRelease method with
release parameters, where ReleaseParameters.isRousable returns true, be-
haves as described above with the following differences.
(a) When the invocation commences with an instance of AsynchronouslyIn-

terruptedException (AIE) is pending on the realtime thread, then the
invocation immediately completes abruptly by throwing that pending in-
stance as an InterruptedException. When this occurs, the most recent
release has not completed. When the pending instance is the generic AIE
instance, then the interrupt state of the realtime thread is cleared.

(b) What happens when an instance of AIE becomes pending on a realtime
thread is dependent on the state of the thread.
i. When the thread is descheduled, the AIE remains pending until the

realtime thread is no longer descheduled. The associated reschedule
acts as a release event. Execution then continues as in 7c where
the time value used as tint is the time at which the schedulable was
rescheduled.

ii. When it is blocked-for-release-event, then this acts as a release event.
Execution then continues as in 7c, where the time value used as tint

is the time at which the AIE becomes pending.
(c) i. The realtime thread is made eligible for execution.

ii. Upon execution, the invocation completes abruptly by throwing the
pending AIE instance as an InterruptedException. When the
pending instance is the generic AIE instance, the interrupt state of
the realtime thread is cleared.

iii. The deadline associated with this release is the time tint+Dint, where
Dint is the value of the deadline stored in the realtime thread’s release
parameters object at the time tint.

iv. The next release time for the realtime thread will be tint+Tint, where
Tint is the value of the period stored in the realtime thread’s release
parameters object at the time tint.

v. Cost monitoring and enforcement is informed of the release event.
When the thrown AIE instance is caught, the AIE becomes pending again (as
per the usual semantics for AIE) until it is explicitly cleared.

8. Changes to release parameter types are treated as a pseudo RESTART of the
realtime thread and

100 RTSJ 2.0 (Draft 57)

Semantics 6.2

(a) any old pending releases are cleared,
(b) any old arrival queue is flushed,
(c) any outstanding call to deschedule is cleared, and
(d) any outstanding deadline misses are cleared.

9. The effect of the change on the thread falls into one of four main cases.
(a) When the realtime thread is not waiting for the next release event and is

not descheduled,
i. there is no effect until the end of current release, and
ii. when the change occurs, it is a pseudo restart of the thread, i.e., when

the new parameters are aperiodic, the release is immediate and when
the parameters are periodic, the periodic start time algorithm is used.

(b) When the realtime thread is not waiting for the next release event, but
there is an outstanding deschedule,
i. there is an immediate “schedule” of the thread,
ii. there is no further effect until end of current release, and
iii. when change occurs, it is a pseudo restart of the thread, i.e., when

the new parameters are aperiodic, the release is immediate, and when
the new parameters are periodic, the periodic start time algorithm is
used.

(c) When the realtime thread state is blocked-for-release-event, i.e., it is wait-
ing in waitForNextRelease, and the release parameter type is changed,
i. from Periodic to Aperiodic, at the next periodic release event occurs,

the thread becomes aperiodic with an immediate release, or
ii. from Aperiodic to Periodic, there is an immediate pseudo restart of

the thread using the periodic start time algorithm.
(d) When the realtime thread state is descheduled and the of release parame-

ters is changed,
i. the change is from Periodic to Aperiodic, there is an immediate
“schedule” of the thread, and when the next periodic release event
occurs, the thread becomes aperiodic with an immediate release, or

ii. the change is from Aperiodic to Periodic, there is an immediate
“schedule” of the thread and there is an immediate pseudo restart of
the thread using the periodic start time algorithm.

6.2.1.2.3 UML Diagrams for Realtime Thread Releases

The three UML diagrams in Figures 6.1, 6.2, and 6.3, are provided to illustrate
the foregoing rules for releasing realtime threads. The first two figures are for a
thread without a deadline miss handler. The first is a UML sequence diagram of
some examples of Realtime Thread releases. The second is a UML state chart of the

RTSJ 2.0 (Draft 57) 101

6 Scheduling

Figure 6.1: Sequence Diagram of Some Example Realtime Thread Releases

pendingReleases = 1
missCount = 0
lastReturn = false

pendingReleases = 0
missCount = 0
lastReturn = true

pendingReleases = 0
missCount = 0
lastReturn = true

pendingReleases = 1
missCount = 0
lastReturn = true

pendingReleases = 1
missCount = 0
lastReturn = false

pendingReleases = 0
missCount = 0
lastReturn = false

pendingReleases = 1
missCount = 0
lastReturn = false

pendingReleases = 0
missCount = 0
lastReturn = false

pendingReleases = 1
missCount = 1
lastReturn = true

pendingReleases = 1
missCount = 0
lastReturn = false

pendingReleases = 0
missCount = 0
lastReturn = true

pendingReleases = 1
missCount = 1
lastReturn = false

pendingReleases = 0
missCount = 0
lastReturn = false

pendingReleases = 0
missCount = 1
lastReturn = true

pendingReleases = 0
missCount = 0
lastReturn = true

pendingReleases = 1
missCount = 0
lastReturn = true

pendingReleases = 0
missCount = 0
lastReturn = true

:Other:RealtimeThread

deadline

deadline

deadline

wFNR

wFNR <- true
release

wFNR

wFNR <- false

wFNR <- false

wFNR <-true

wFNR

deadline

release

deadline

wFNR <- false

release

wFNR <- true

release

wFNR

release

start

102 RTSJ 2.0 (Draft 57)

Semantics 6.2

Figure 6.2: A State Chart for a Realtime Thread without a Deadline Miss Handler

Blocked for Missed Release

missCount > 0
pendingReleases > 0
in wFNR()
* re lease
 increments pendingReleases
* deschedule()
 sets deschedule

Handle Miss

* re lease
 increments pendingReleases
* deadline miss
 increments missCount
* deschedule()
 sets deschedule
* reschedule()
 clears deschedule

Missed Release

* re lease
 increments pendingReleases
* deadline miss
 increments missCount
* deschedule()
 sets deschedule
* reschedule()
 clears deschedule

Blocked for Normal Release

missCount == 0
* re lease
 increments pendingReleases
* deschedule()
 sets deschedule

Normal Release

* re lease
 increments pendingReleases
* deadline miss
 increments missCount
* deschedule()
 sets deschedule
* reschedule()
 clears deschedule

Descheduled

deschedule == true
in wFNR()
* reschedule()
 clears deschedule

Initial

pendingReleases == 0
missCount == 0
deschedule == false

[missCount > 0]
decrement pendingReleases

decrement missCount
wFNR() returns false

[deschedule == true]

wFNR() called
[missCount > 0]

wFNR() called
[missCount > 0]

wFNR() called
[missCount > 0]
decrement missCount
returns false

[pendingReleases > 0]
decrement pendingReleases
wFNR() returns true

wFNR() called
[missCount == 0]

[deschedule == true]

[deschedule == false]
pendingReleases = 0

missCount = 0

start()

init ial

RTSJ 2.0 (Draft 57) 103

6 Scheduling

Figure 6.3: A State Chart for a Realtime Thread with a Deadline Miss Handler

Blocked for Normal Release

descheduled == false
* re lease
 increments pendingReleases
* deschedule()
 sets deschedule

Normal Release

* re lease
 increments pendingReleases
* deadline miss
 releases miss handler
 sets deschedule
* deschedule()
 sets deschedule
* schedule()
 clears deschedule

Descheduled

pendingReleases == 0
descheduled == true

Initial

pendingReleases == 0
descheduled == true

wFNR() called when
deschedule == true

blocks

release causes
wFNR() to return truewFNR() called when

deschedule == false

deschedule == true

reschedule()
(clear deschedule)

start()

init ial

release process for a realtime thread. The third is a UML state chart of the release
process for a realtime thread with a deadline miss handler.

In Figure 6.1, a yellow background marks the execution of a normal release, an
orange background marks the execution of a miss handler, and a red background
marks the execution of a missed release. Both the miss handler and all missed
releases are eligible to run as soon as the previous release is finished. A normal
release, which encounters a deadline miss during its execution, is not complete until
its miss handler completes.

In the other two figures, a yellow background marks releases and a pink background
marks blocked states. There are three release states: normal release, miss handler,
and missed release. They can only be left by a call to waitForNextRelease or its

104 RTSJ 2.0 (Draft 57)

Semantics 6.2

equivalent. The miss handler state is part of a normal release that misses its deadline
during the release. There are two blocked-for-release-event states: blocked for normal
release and blocked for missed release. It is only in these states that descheduling
can occur, because only completion occurs upon their entry. In addition, the blocked
for missed release is a ephemeral state, since the deadline miss has already occurred
before the state is entered, so state is left immediately. It is there to enable all
actions that occur on completion.

6.2.1.2.4 Releasing an Asynchronous Event Handlers

Asynchronous event handlers can be associated with one or more asynchronous
events. When an asynchronous event is fired, all handlers associated with it are
released, according to the semantics below.

1. Each firing of an associated asynchronous event is an arrival. Unless the handler
has release parameters of type SporadicParameters, the arrival becomes a
release event for the handler in strict accordance with the semantics given in
“General Release Control” above. When the handler has release parameters of
type SporadicParameters, the arrival becomes a release event for the handler
in strict accordance with the semantics given in “Sporadic Release Control”
above.

2. For each release event that occurs for a handler, an entry is made in the
arrival-time queue and the handler’s fireCount is incremented by one.

3. Initially, a handler is considered to be blocked-for-release-event and its fire-
Count is zero.

4. Releases of a handler are serialized by having its handleAsyncEvent method
invoked repeatedly while its fireCount is greater than zero:
(a) before invoking handleAsyncEvent, the fireCount is decremented and

the front entry (when still present) removed from the arrival-time queue;
(b) each invocation of handleAsyncEvent, in this way, is a release;
(c) the return from handleAsyncEvent is the completion of a release; and
(d) processing of any exceptions thrown by handleAsyncEvent occurs prior

to completion.
5. The deadline for a release is relative to the release event time and determined

at the release event time according to the value of the deadline contained
in the handler’s release parameters. This value does not change, except as
described previously for handlers using a REPLACE policy for MIT violation
or arrival-time queue overflow.

6. The application code can directly modify the fireCount.
(a) The getAndDecrementPendingFireCount method decreases the fire-

Count by one (when it is greater than zero), and returns the old value.

RTSJ 2.0 (Draft 57) 105

6 Scheduling

This removes the front entry from the arrival-time queue but otherwise
has no effect on the scheduling of the current schedulable, nor the handler
itself. Any data parameter passed with the associated fire request is lost.

(b) The getAndClearPendingFireCount method is functionally equivalent to
invoking getAndDecrementPendingFireCount until it returns zero, and
returning the original fireCount value. Any data parameters passed with
the associated fire requests are lost.

7. The scheduler may delay the invocation of handleAsyncEvent to ensure that
the effective release time honors any restrictions imposed by the MIT violation
policy, when applicable, of that release event.

8. Cost monitoring and enforcement for an asynchronous event handler interacts
with release events and completions as previously defined with the added
requirement that at the completion of handleAsyncEvent, when the fireCount
is now zero, the cost monitoring and enforcement system is told to reset for
this handler.

9. The value of ReleaseParameters.isRousable controls whether a call to
Schedulable.interrupt causes a premature release or only affects a running
schedulable.
(a) When interrupt is called on an instance of Schedulable and the schedul-

able is running, the interrupt is made pending and as soon as AI code is
entered, an AIE is thrown.

(b) Depending on the value of the isRousable property, start will prematurely
complete, i.e., start user code, or simply wait for the start time to occur.

(c) Depending on the value of the isRousable property, the next release of
a firable handler, i.e., an enabled instance of AsyncBaseEventHandler
which is attached to an instance of AsyncBaseEvent, will occur immedi-
ately or not, but in both cases an AIE will be pending until the next AI
method.

6.2.1.3 Dispatching

The execution scheduling semantics described in this section are defined in terms of
a conceptual model that contains a set of queues of schedulables that are eligible for
execution. There is, conceptually, one queue for each scheduler eligibility on each
processor. No implementation structures are necessarily implied by the use of this
conceptual model. It is assumed that no time elapses during operations described
using this model, and therefore no simultaneous operations are possible.

The RTSJ dispatching model specifies its dispatching rules in terms of task priority
for priority schedulers, but other schedulers should act similarly with respect to their
own scheduler eligibility levels.

1. A Schedulable can become a running schedulable only when it is ready and

106 RTSJ 2.0 (Draft 57)

Semantics 6.2

one of the processors in its requested affinity is available.
2. When two schedulables have different active priorities and request the same

processor, the schedulable with the higher active priority will always execute
in preference to the schedulable with the lower value when both are eligible for
execution.

3. Processors are allocated to schedulables based on each schedulable’s active
priority and their associated affinity.

4. Schedulable dispatching is the process by which one ready schedulable is
selected for execution on a processor. This selection is done at certain points
during the execution of a schedulable called schedulable dispatching points.

5. A schedulable reaches a schedulable dispatching point whenever it becomes
blocked, when it terminates, or when a higher priority schedulable becomes
ready for execution on its processor. That is, a schedulable that is executing
will continue to execute until it either blocks, terminates or is preempted by a
higher-priority schedulable.

6. The dispatching policy is specified in terms of ready queues and schedulable
states. The ready queues are purely conceptual; there is no requirement that
such lists physically exist in an implementation. A ready queue is an ordered
list of ready schedulable objects. The first position in a queue is called the
head of the queue, and the last position is called the tail of the queue.

7. A schedulable is ready when it is in a ready queue, or when it is running. Each
processor has one ready queue for each priority value. At any instant, each
ready queue of a processor contains exactly the set of schedulables of that
priority that are ready for execution on that processor, but are not running on
any processor; that is, those schedulables that are ready, are not running on
any processor, and can be executed using that processor.

8. Each processor has one running schedulable, which is the schedulable currently
being executed by that processor. Whenever a schedulable running on a
processor reaches a schedulable dispatching point, a new schedulable object
is selected to run on that processor. The schedulable selected is the one at
the head of the highest priority nonempty ready queue for that processor; this
schedulable is then removed from all ready queues to which it belongs.

9. In a multiprocessor system, a schedulable can be on the ready queues of more
than one processor. At the extreme, when several processors share the same set
of ready schedulables, the contents of their ready queues are identical, and so
they can be viewed as sharing one ready queue, and can be implemented that
way. Thus, the dispatching model covers multiprocessors where dispatching
is implemented using a single ready queue, as well as those with separate
dispatching domains.

10. The dispatching mechanism must enable the preemption of the execution of

RTSJ 2.0 (Draft 57) 107

6 Scheduling

schedulables and Java threads with a bounded delay at a point not governed
by the preempted object. The bound on this delay may be implementation-
defined, and could be the time to the next point in execution that the heap is
in a consistent state or some similar restriction. The implementation should
document this bound.

11. A schedulable that is preempted by a higher priority schedulable is placed in
the queue for its active priority, at a position determined by the implementation.
The implementation must document the algorithm used for such placement. It
is recommended that a preempted schedulable be placed at the front of the
appropriate queue.

12. A realtime thread that performs a yield() is placed at the tail of the queue
(dictated by its affinity) for its active priority level.

13. A blocked schedulable that becomes eligible for execution is added to the tail
of the queues (dictated by its affinity) for that priority. This behavior also
applies to the initial release of a schedulable.

14. A schedulable whose active priority is raised as a result of explicitly setting its
base priority (through the PriorityParameters setPriority() method, the
RealtimeThread setSchedulingParameters() method, or Thread’s setPri-
ority() method) is added to the tail of the queues (dictated by its affinity)
for its new priority level.

15. Queuing when priorities are adjusted by priority inversion avoidance algorithms
is governed by semantics specified in the Synchronization chapter.

6.2.1.4 Cost Monitoring and Cost Enforcement

The cost of a schedulable is defined by the value returned by invoking the getCost
method of the schedulable’s release parameters object. When a schedulable is initially
released, its current CPU consumption is zero, and as the schedulable executes, the
current CPU consumption increases. For cost monitoring, an implementation must
conform to the following requirements.

1. If, at any time, due to either execution of the schedulable or a change in the
schedulable’s cost, the current CPU consumption becomes greater than or
equal to the current cost of the schedulable, then a cost overrun is triggered.

2. The implementation is required to document the granularity at which the
current CPU consumption is updated.

3. When a cost overrun is triggered, the cost overrun handler associated with the
schedulable, if any, is released. No further action is taken.

4. The current CPU consumption is reset to zero when the schedulable is next
released (i.e. it moves from the blocked-for-release-event state to the eligible-
for-execution state).

108 RTSJ 2.0 (Draft 57)

Semantics 6.2

When cost enforcement is supported, an implementation must conform to the
following requirements.

1. When a cost overrun is triggered, in addition to releasing any cost overrun
handler, the following actions must be performed.
(a) When the most recent release of the schedulable is the ith release, and the

i+ 1 release event has not yet occurred, the following must hold.
i. When the state of the schedulable is either executing or eligible-for-

execution, the schedulable is placed into the state blocked-by-cost-
overrun. There may be a bounded delay between the time at which a
cost overrun occurs and the time at which the schedulable becomes
blocked-by-cost-overrun.

ii. Otherwise, the schedulable must have been blocked for a reason
other than blocked-by-cost-overrun. In this case, the state change to
blocked-by-cost-overrun is left pending; when the blocking condition
for the schedulable is removed, then its state changes to blocked-by-
cost-overrun. There may be a bounded delay between the time at
which the blocking condition is removed and the time at which the
schedulable becomes blocked-by-cost-overrun.

(b) When the most recent release of the schedulable is the ith release, and the
i+ 1 release event has occurred, the current CPU consumption is set to
zero, the schedulable remains in its current state, and the cost monitoring
system considers the most recent release to be the i+ 1 release.

2. When the ith release event occurs for a schedulable, the action taken depends
on the state of the schedulable.
(a) When the schedulable is blocked-by-cost-overrun then the cost monitoring

system considers the most recent release to be the ith release, the current
CPU consumption is set to zero and the schedulable is made eligible for
execution;

(b) When the schedulable is blocked for a reason other than blocked-by-cost-
overrun then
i. when there is a pending state change to blocked-by-cost-overrun then

the pending state change is removed, the cost monitoring system
considers the most recent release to be the ith release, the current
CPU consumption is set to zero, and the schedulable remains in its
current blocked state;

ii. otherwise, no cost monitoring action occurs.
(c) When the schedulable is not blocked, no cost monitoring action occurs.

3. When the ith release of a schedulable completes, and the cost monitoring system
considers the most recent release to be the ith release, then the current CPU
consumption is set to zero and the cost monitoring system considers the most

RTSJ 2.0 (Draft 57) 109

6 Scheduling

recent release to be the i + 1 release. Otherwise, no cost monitoring action
occurs.

4. Changes to the cost parameter take effect immediately.
(a) When the new cost is less than or equal to the current CPU consumption,

and the old cost was greater than the current CPU consumption, then a
cost overrun is triggered.

(b) When the new cost is greater than the current CPU consumption,
i. in the case that the schedulable is blocked-by-cost-overrun, the sched-

ulable is made eligible for execution;
ii. in the case that the schedulable is blocked for a reason other than

blocked-by-cost-overrun and there is a pending state change to blocked-
by-cost-overrun, the pending state change is removed;

iii. in all other cases, no cost monitoring action occurs.
5. When a schedulable changes state to blocked-by-cost-overrun, it must behave

as if its base priority has been reduced to the enforced priority. In other words,
unless its active priority has been modified by a priority inversion avoidance
algorithm as defined in this specification, it should not be scheduled on any
CPU. Upon moving out of this state, it will resume execution as if its base
priority had been restored to its configured base priority.

6. The state of the cost monitoring system for a schedulable can be reset by
the scheduler (see 6.2.1.2.2 in the Release of a Realtime Thread section,
below). When the most recent release of the schedulable is considered to be
the mth release and the most recent release event for the schedulable was the
nth release event (where n > m), a reset causes the cost monitoring system to
consider the most recent release to be the nth release, and to zero the current
CPU consumption.

6.2.2 Priority Schedulers
This specification defines a class of scheduler that are priority preemptive. Their
semantics assumes a uniprocessor or shared memory multiprocessor execution envi-
ronment. Two subclasses are defined: the base scheduler and a round-robin scheduler.

The semantics for the base scheduler is priority preemptive with run to
completion semantics, also known as first-in-first-out (FIFO) semantics: FirstIn-
FirstOutScheduler. The base scheduler supports the execution of all schedulables.
When a schedulable managed by the base scheduler is scheduled, it will run either
until it blocks (as on a monitor or for some I/O operation), voluntarily relinquishes
the CPU (as for sleep), or is preempted by a higher priority task.

The round-robin scheduler is a fixed-quantum, fixed-priority, priority-preemptive
scheduler that interacts predictably with the base scheduler: RoundRobinScheduler.
The time at which a quantum expires may be calculated either from the last task

110 RTSJ 2.0 (Draft 57)

Semantics 6.2

switch or on a heartbeat. It uses the PriorityParameters class for the configuration
of schedulable priorities. It may not be present on all systems, but if it is present
then it will obey the semantics specified here. When a schedulable managed by the
round-robin scheduler is scheduled, it will run no longer than until it blocks (as on
a monitor or for some I/O operation), it voluntarily relinquishes the CPU (as for
sleep), or it is preempted by a higher priority task, as with the base scheduler, but
also yields when its quantum has expired.

The scheduler is not responsible for ensuring that a release, such as an event
handler, will complete within the quantum. A release which would run longer than
its quantum will be rescheduled at the end of that quantum, when another task with
the same priority is ready to run, even if it has not completed. When this is not the
desired behavior, the FirstInFirstOutScheduler should be used instead.

Both schedulers share the same base class: PriorityScheduler.

6.2.2.1 Priorities

Not only the presence or absence of a time quantum, but also the semantics for
scheduling eligibility differ between the base (FIFO) and round-robin schedulers.
Both schedulers use a numerical priority value to determine scheduling eligibility.
A higher value means a higher scheduler eligibility and a lower one means a lower
scheduler eligibility. Although the values themselves have the same relative meaning
between the two schedulers, the details of their semantics vary.

6.2.2.1.1 First-In-First-Out-Scheduler

The base scheduler is a priority scheduler with the following requirements.
1. The base scheduler must support at least 28 distinct values (realtime pri-

orities) that can be stored in an instance of PriorityParameters in addi-
tion to the values 1 through 10 required to support the priorities defined by
java.lang.Thread.

2. The realtime priority values must be greater than 10, and they must include
all integers from the base scheduler’s getMinPriority() value to its getMax-
Priority() value inclusive.

3. Higher priority values in an instance of PriorityParameters have a higher
execution eligibility.

4. The 10 priorities defined for java.lang.Thread must effectively have lower
execution eligibility than the realtime priorities.

5. When the round-robin scheduler is present, the base scheduler must support
at least one priority value numerically greater than the maximum allowable
round-robin priority.

RTSJ 2.0 (Draft 57) 111

6 Scheduling

6. For realtime scheduling, the base priority of each Schedulable under the
control of the base scheduler must be from the range of realtime priorities. A
Schedulable with a priority in the java.lang.Thread range will be scheduled
as if it were an instance of java.lang.Thread.

7. Assignment of any of the realtime priority values to any Schedulable controlled
by the base priority scheduler is legal. It is the responsibility of application
logic to make rational priority assignments.

8. The base scheduler does not use the importance value in the ImportancePa-
rameters subclass of PriorityParameters.

9. Calling the java.lang.Thread.setPriority on a thread can only be used to
set the thread’s priority to a conventional Java priority (1–10).

10. For schedulables managed by the base scheduler, the implementation must not
change the execution eligibility for any reason other than
(a) the implementation of a priority inversion avoidance algorithm requires it,

or
(b) as a result of a program’s request to change the priority parameters

associated with one or more schedulables; e.g., by changing a value in a
scheduling parameter object that is used by one or more schedulables, or
by using setSchedulingParameters() to give a schedulable a different
SchedulingParameters value.

11. Use of Thread.setPriority(), or any of the methods defined for schedula-
bles, or any of the methods defined for parameter objects must not affect
the correctness of the priority inversion avoidance algorithms controlled by
PriorityCeilingEmulation and PriorityInheritance—see Chapter7.

12. When schedulable A, managed by the base scheduler, creates Java thread B,
then the initial base priority of B is the minimum of the priority value returned
by the getMaxPriority method of B’s java.lang.ThreadGroup object and
the priority of A.

13. PriorityScheduler.getNormPriority() shall be set to

1 ((PriorityScheduler.getMaxPriority() -
2 PriorityScheduler.getMinPriority()) / 3) +
3 PriorityScheduler.getMinPriority()

14. Hardware priorities, where supported, have values above the base scheduler’s
priority range (see Section 12.2.4).

6.2.2.1.2 The Round-Robin Scheduler

Priorities in the round-robin scheduler are as in the base scheduler, and priority
values are numerically equivalent between the two. Schedulables managed by the

112 RTSJ 2.0 (Draft 57)

Semantics 6.2

round-robin scheduler behave as if they are scheduled from the same FIFO queue as
schedulables managed by the base scheduler of the same numeric priority, except
that they will consume no more than one quantum of execution time before being
moved to the tail of the queue. Implementations are permitted to use a single, shared
queue for this purpose.

If the round-robin scheduler is present, its priorities will have the same properties
as the base scheduler, except for the following.

1. The round-robin scheduler must support at least one priority, and may support
an arbitrarily large number of priorities.

2. All round-robin priorities must be greater than 10, and they must include
all integers from the round-robin scheduler’s getMinPriority() value to its
getMaxPriority() value, inclusive.

3. The round-robin scheduler does not use the importance value in the Impor-
tanceParameters subclass of PriorityParameters.

4. RoundRobinScheduler.getNormPriority() shall be set to

1 ((RoundRobinScheduler.getMaxPriority() -
2 RoundRobinScheduler.getMinPriority()) / 3) +
3 RoundRobinScheduler.getMinPriority()

The round-robin scheduler may provide priorities strictly lower than that of the
base scheduler or a set of priorities partially or entirely overlapping with the priorities
provided by the base scheduler.

6.2.3 Associating Schedulables with Schedulers
The Scheduler associated with a Schedulable at the time it is started is derived from
its configuration and the configuration of the task (an instance of Thread or Sched-
ulable) that started it. The start time of a RealtimeThread is the time at which its
RealtimeThread.start() method is invoked, and the start time of an event handler
is the time at which it is attached to an event with AsyncBaseEvent.addHandler().
For the following discussion, let si be the instance of Schedulable being started,
parent be the task from which it is started, ns be some arbitrary scheduler, and
sg be the SchedulingGroup instance associated with si. The Scheduler for si is
determined as follows and in the order stated.

1. When Scheduler.setScheduler(ns) has been used to explicitly configure a
scheduler for si, that scheduler will be the scheduler associated with si.

2. When parent is an instance of Schedulable and the scheduler associated with
parent is an instance of the class returned by sg.getScheduler(), then the
scheduler associated with si will be the scheduler associated with parent.

3. When parent is not an instance of Schedulable (i.e., it is a Java Thread)

RTSJ 2.0 (Draft 57) 113

6 Scheduling

but is currently scheduled with a realtime Scheduler and that scheduler is
an instance of the class returned by sg.getScheduler(), then si will use the
scheduler currently associated with parent.

4. When the default scheduler is an instance of the class returned by
sg.getScheduler(), then si will use the default scheduler.

5. When none of these conditions hold, a scheduler cannot be determined for si
and an IllegalStateException will be thrown.

Schedulables must always have a compatible Scheduler and SchedulingPar-
ameters any time these are explicitly configured. This means that appropriate
configuration objects must be passed in at construction time, and that all later
changes must be compatible; if both the Scheduler and SchedulingParameters
must be changed in such a way that neither is compatible with the current configu-
ration, setScheduler may be called on the Schedulable with both a scheduler and
compatible parameters passed at the same time.

6.2.4 Managing Groups of Schedulables
Conventional Java provides the class ThreadGroup to manage groups of threads.
Only minimal functionality is provided: limiting priority, setting daemon status, and
interrupting a group of threads at once. RTSJ extends this concept in two ways:
limiting CPU affinity on an instance of ThreadGroup through the Affinity class
and providing subclasses for managing Schedulables.

6.2.4.1 Scheduling Groups

The SchedulingGroup subclass of ThreadGroup provides a means of constraining
the possible scheduling parameters and scheduler of tasks. The setMaxPriority
method on ThreadGroup only pertains to tasks scheduled in the conventional Java
range (1–10), and not to tasks scheduled with a realtime scheduler. To ensure that
this works and that conventional thread groups must not need to be scope aware, an
implementation must enforce several restrictions:

1. only tasks in a scheduling group may use a realtime scheduler,
2. instances of Schedulable may only be created in a scheduling group,
3. the root ThreadGroup instance must be an instance of SchedulingGroup,
4. the ThreadGroup instance of the initial thread must be an instance of Schedu-

lingGroup,
5. an instance of SchedulingGroup may not have a parent that is not an instance

of SchedulingGroup, and
6. all children of a SchedulingGroup allocated in a ScopedMemory must be in-

stances of SchedulingGroup.

114 RTSJ 2.0 (Draft 57)

Semantics 6.2

Furthermore, the enumeration methods on a scheduling group are aware of scoped
memory and the referential integrity restrictions discussed in Chapter 11, Alternative
Memory Areas. The enumeration methods of SchedulingGroup will not return
references to any descendants allocated in a ScopedMemory to which references may
not be made from the current allocation context. That is, if a newly allocated object
in the current allocation context could not safely hold a reference to a descendant of
the ScopedMemory, that descendant will not be included in the array returned by
enumerate(). For processing such SchedulingGroups, a visitor must be used.

The maximum priority and scheduler restrictions on SchedulingGroup and
ThreadGroup apply only to the base priority of a task belonging to that group.
Priority inversion avoidance algorithms (see Chapter 7, Synchronization) may cause
a task to temporarily obtain a priority notionally higher than its maximum base
priority as specified in its associated instance of ThreadGroup.

Changing the maximum eligibility allowed to tasks in a SchedulingGroup (via the
SchedulingGroup.setMaxEligibility(SchedulingParameters) method) takes ef-
fect immediately, and will do the following.

1. For any task t in the affected SchedulingGroup that is associated with a
SchedulingParameters not allowable under the new eligibility restriction, set
the SchedulingParameters associated with t to the SchedulingParameters
currently being set by setMaxEligibility().

2. For any SchedulingGroup child sg of the affected SchedulingGroup that has
a maximum eligibility not allowed under the new eligibility restriction, set the
maximum eligibility of sg to the SchedulingParameters currently being set
by setMaxEligibility(). Note that this will recursively effect the tasks and
SchedulingGroup children in sg.

6.2.4.2 Processing Groups

A processing group is defined by an instance of the ProcessingGroup subclass of
SchedulingGroup and each schedulable that is bound to that parameter object is
called a member of that processing group. A processing group instance acts as a
proxy for its members, but enforcement does have an effect on the execution of
member threads. As a subclass of ThreadGroup, SchedulingGroup instances are
members of the thread group hierarchy of thread groups in the system. Since a
SchedulingGroup may have another SchedulingGroup instance as its ancestor, a
task might be in more than one scheduling group, and hence can be in more than
one processing group.

1. The deadline of a processing group is defined by the value returned by invoking
the getDeadline method of the processing group object.

2. A deadline miss for the processing group is triggered when any member of the
processing group consumes CPU time at a time greater than the deadline for

RTSJ 2.0 (Draft 57) 115

6 Scheduling

the most recent release of the processing group.
3. When a processing group misses a deadline:

(a) when the processing group has a miss handler, it is released for execution,
(b) otherwise, the processing group has no miss handler, no action is taken.

4. The cost of a processing group is defined by the value returned by invoking
the getCost method of the processing group object.

5. When a processing group is initially released, its current CPU consumption is
zero and as the members of the processing group execute, the current CPU
consumption increases. The current CPU consumption is set to zero in response
to certain actions as described below.

6. Whenever, due to either execution of the members of the processing group or
a change in the group’s cost, the current CPU consumption becomes greater
than or equal to the current cost of the processing group, then a cost overrun
is triggered. The implementation is required to document the granularity at
which the current CPU consumption is updated.

7. When a cost underrun handler has been set, it is released at the end of any
cost period, where the minimal cost has not been consumed by the tasks in
the group.

8. When the affinity of the group contains more than one processor, the granularity
enforced may be as large as the base granularity times the number of processors
in the group’s affinity.

9. When a cost overrun is triggered, the cost overrun handler associated with the
processing group, if any, is released.

10. When more than one processing group monitoring a given task or set of tasks
reach their limits at the same time, all corresponding handlers are released in
an unspecified order.

11. Any group entering enforcement between a given group and the root enforces
that group.

12. When cost enforcement is supported, enabled, and triggered, the processing
group enters the enforced state. For each member of the processing group:
(a) the schedulable is placed into the enforced state; and
(b) when a schedulable is in the enforced state, the base scheduler schedules

that schedulable effectively as if it has a base priority lower than that of
a notional idle task.

13. When the release event occurs for a processing group, the action taken depends
on the state of the processing group.
(a) When the processing group is not in the enforced state, the current CPU

consumption for the group is set to zero.
(b) Otherwise, the processing group is in the enforced state. It is removed

from the enforced state, the current CPU consumption of the group is

116 RTSJ 2.0 (Draft 57)

Semantics 6.2

set to zero, and each member of the group is removed from the enforced
state.

14. Changes to the cost, minimum and maximum, take effect immediately.
(a) When the new cost is less than or equal to the current CPU consumption,

and the old cost was greater than the current CPU consumption, a cost
overrun is triggered.

(b) When the new cost is greater than the current CPU consumption there
are two case:
i. when the processing group is enforced, then the processing group

behaves as defined in semantic 13;
ii. otherwise, no cost monitoring and enforcement action occurs.

15. Changes to other parameters take place as follows:
(a) changes to start have no effect;
(b) changes to period take effect at each release, so the next period is set

based on the current value of the processing group’s period;
(c) changes to deadline take effect at each release, so the next deadline is

set based on the current value of the processing group’s deadline;
(d) changes to OverrunHandler take effect at each release, so the over-

runHandler is set based on the current value of the processing group’s
overrunHandler;

(e) changes to MissHandler take effect at each release, so the missHandler
is set based on the current value of the processing group’s missHandler;
and

(f) changes to UnderrunHandler take effect at each release, so the under-
runHandler is set based on the current value of the processing group’s
underrunHandler.

16. Changes to the membership of the processing group take effect immediately.
17. The start time for the processing group may be relative or absolute.

(a) When the start time is absolute, the processing group behaves effectively
as if the initial release time were the start time.

(b) When the start time is relative, the initial release time is computed relative
to the time that the processing group is constructed.

Note that until a processing group starts (i.e., its start time has been reached) it
will perform no cost monitoring or enforcement on the Schedulables that it contains.
Once a processing group is started, it behaves effectively as if it runs continuously
until the defining ProcessingGroup object is freed. The start time does not affect
limits placed on the group that are inherited from ThreadGroup or SchedulingGroup,
such as affinity and scheduling parameters.

RTSJ 2.0 (Draft 57) 117

6 Scheduling BoundRealtimeExecutor

6.3 javax.realtime

6.3.1 Interfaces
6.3.1.1 BoundRealtimeExecutor

public interface BoundRealtimeExecutor

Description
All objects that encapsulate execution. This type includes Schedulable and
javax.realtime.device.InterruptServiceRoutine. It is used by Affinity
to remove the need to have a reference into the javax.realtime.device package.

Available since RTSJ 2.0

6.3.1.1.1 Methods

getAffinity

Signature
public javax.realtime.Affinity
getAffinity()

Description
Determine the affinity set instance associated with task.

Returns
The associated affinity.

setAffinity(Affinity)

Signature
public void
setAffinity(Affinity set)

118 RTSJ 2.0 (Draft 57)

Schedulable javax.realtime 6.3

throws IllegalArgumentException,
ProcessorAffinityException,
NullPointerException

Description
Set the processor affinity of a task to set with immediate effect.

Parameters
set—is the processor affinity

Throws
IllegalArgumentException—when the intersection of set the affinity of any

ThreadGroup instance containing task is empty.
ProcessorAffinityException—is thrown when the runtime fails to set the affinity

for platform-specific reasons.
NullPointerException—when set is null.

6.3.1.2 BoundSchedulable

public interface BoundSchedulable

Interfaces
javax.realtime.Schedulable
javax.realtime.BoundRealtimeExecutor

Description
A marker interface to provide a type safe reference to all schedulables that are
bound to a single underlying thread. A RealtimeThread is by definition bound.

Available since RTSJ 2.0

6.3.1.3 Schedulable

public interface Schedulable

Interfaces
Runnable
javax.realtime.Timable

RTSJ 2.0 (Draft 57) 119

6 Scheduling Schedulable

Description
Handlers and other objects can be dispatched by a Scheduler when they provide
a run() method and the methods defined below. The Scheduler uses this
information to create a suitable context to execute the run() method.

6.3.1.3.1 Methods

getMemoryParameters

Signature
public javax.realtime.MemoryParameters
getMemoryParameters()

Description
Gets a reference to the MemoryParameters object for this schedulable.

Returns
a reference to the current MemoryParameters object.

setMemoryParameters(MemoryParameters)

Signature
public javax.realtime.Schedulable
setMemoryParameters(MemoryParameters memory)

Description
Sets the memory parameters associated with this instance of Schedulable.

This change becomes effective at the next allocation; on multiprocessor
systems, there may be some delay due to synchronization between processors.

Parameters
memory—A MemoryParameters object which will become the memory parameters

associated with this after the method call. When null, the default value is
governed by the associated scheduler; a new object is created when the default
value is not null. (See PriorityScheduler.)

Throws

120 RTSJ 2.0 (Draft 57)

Schedulable javax.realtime 6.3

IllegalArgumentException—when memory is not compatible with the schedul-
able’s scheduler. Also when this schedulable may not use the heap and memory
is located in heap memory.

IllegalAssignmentError—when the schedulable cannot hold a reference to mem-
ory, or when memory cannot hold a reference to this schedulable instance.

Returns
this

Available since RTSJ 2.0 returns itself

getReleaseParameters

Signature
public javax.realtime.ReleaseParameters
getReleaseParameters()

Description
Gets a reference to the ReleaseParameters object for this schedulable.

Returns
a reference to the current ReleaseParameters object.

setReleaseParameters(ReleaseParameters)

Signature
public javax.realtime.Schedulable
setReleaseParameters(ReleaseParameters release)

Description
Sets the release parameters associated with this instance of Schedulable.

This change becomes effective under conditions determined by the scheduler
controlling the schedulable. For instance, the change may be immediate or it may
be delayed until the next release of the schedulable. The different properties of
the release parameters may take effect at different times. See the documentation
for the scheduler for details.

Parameters

RTSJ 2.0 (Draft 57) 121

6 Scheduling Schedulable

release—A ReleaseParameters object which will become the release parameters
associated with this after the method call, and take effect as determined by
the associated scheduler. When null, the default value is governed by the
associated scheduler; a new object is created when the default value is not
null. (See PriorityScheduler.)

Throws
IllegalArgumentException—when release is not compatible with the associated

scheduler. Also when this schedulable may not use the heap and release is
located in heap memory.

IllegalAssignmentError—when this object cannot hold a reference to release
or release cannot hold a reference to this.

IllegalSchedulableStateException—when the task is running and the new
release parameters are not compatible with the current scheduler.

Returns
this

Available since RTSJ 2.0 returns itself

getScheduler

Signature
public javax.realtime.Scheduler
getScheduler()

Description
Gets a reference to the Scheduler object for this schedulable.

Returns
a reference to the associated Scheduler object.

setScheduler(Scheduler)

Signature
public javax.realtime.Schedulable
setScheduler(Scheduler scheduler)
throws SecurityException,

IllegalSchedulableStateException

Description

122 RTSJ 2.0 (Draft 57)

Schedulable javax.realtime 6.3

Sets the reference to the Scheduler object. The timing of the change must be
agreed between the scheduler currently associated with this schedulable, and
scheduler. If the Schedulable is running, its associated SchedulingParamet-
ers (if any) must be compatible with scheduler.

Parameters
scheduler—A reference to the scheduler that will manage execution of this sched-

ulable. Null is not a permissible value.
Throws

IllegalArgumentException—when scheduler is null, or the schedulable’s ex-
isting parameter values are not compatible with scheduler. Also when this
schedulable may not use the heap and scheduler is located in heap memory.

IllegalAssignmentError—when the schedulable cannot hold a reference to sched-
uler or the current Schedulable is running and its associated Scheduling-
Parameters are incompatible with scheduler.

SecurityException—when the caller is not permitted to set the scheduler for this
schedulable.

IllegalSchedulableStateException—when scheduler has scheduling or release
parameters that are not compatible with the new scheduler and this schedulable
is running.

Returns
this

Available since RTSJ 2.0 returns itself

setScheduler(Scheduler, SchedulingParameters, ReleasePar-
ameters, MemoryParameters)

Signature
public javax.realtime.Schedulable
setScheduler(Scheduler scheduler,

SchedulingParameters scheduling,
ReleaseParameters release,
MemoryParameters memoryParameters)

Description
Sets the scheduler and associated parameter objects. The timing of the change
must be agreed between the scheduler currently associated with this schedulable,
and scheduler.

RTSJ 2.0 (Draft 57) 123

6 Scheduling Schedulable

Parameters
scheduler—A reference to the scheduler that will manage the execution of this

schedulable. Null is not a permissible value.
scheduling—A reference to the SchedulingParameters which will be associated

with this. When null, the default value is governed by scheduler; a new
object is created when the default value is not null. (See PriorityScheduler.)

release—A reference to the ReleaseParameters which will be associated with
this. When null, the default value is governed by scheduler; a new object
is created when the default value is not null. (See PriorityScheduler.)

memoryParameters—A reference to the MemoryParameters which will be associated
with this. When null, the default value is governed by scheduler; a new
object is created when the default value is not null. (See PriorityScheduler.)

Throws
IllegalArgumentException—when scheduler is null or the parameter values

are not compatible with scheduler. Also thrown when this schedulable may
not use the heap and scheduler, scheduling release, memoryParameters,
or group is located in heap memory.

IllegalAssignmentError—when this object cannot hold references to all the
parameter objects or the parameters cannot hold references to this.

SecurityException—when the caller is not permitted to set the scheduler for this
schedulable.

Returns
this

Available since RTSJ 2.0

getSchedulingParameters

Signature
public javax.realtime.SchedulingParameters
getSchedulingParameters()

Description
Gets a reference to the SchedulingParameters object for this schedulable.

Returns
A reference to the current SchedulingParameters object.

124 RTSJ 2.0 (Draft 57)

Schedulable javax.realtime 6.3

setSchedulingParameters(SchedulingParameters)

Signature
public javax.realtime.Schedulable
setSchedulingParameters(SchedulingParameters scheduling)
throws IllegalSchedulableStateException,

IllegalAssignmentError,
IllegalArgumentException

Description
Sets the scheduling parameters associated with this instance of Schedulable.

This change becomes effective under conditions determined by the scheduler
controlling the schedulable. For instance, the change may be immediate or it
may be delayed until the next release of the schedulable. See the documentation
for the scheduler for details.

Parameters
scheduling—A reference to the SchedulingParameters object. When null, the

default value is governed by the associated scheduler; a new object is created
when the default value is not null. (See PriorityScheduler.)

Throws
IllegalArgumentException—when scheduling is not compatible with the as-

sociated scheduler. Also when this schedulable may not use the heap and
scheduling is located in heap memory.

IllegalAssignmentError—when this object cannot hold a reference to schedul-
ing or scheduling cannot hold a reference to this.

IllegalSchedulableStateException—when the task is active and the new
scheduling parameters are not compatible with the current scheduler.

Returns
this

Available since RTSJ 2.0 returns itself

getSchedulingGroup

Signature
public javax.realtime.SchedulingGroup
getSchedulingGroup()

Description

RTSJ 2.0 (Draft 57) 125

6 Scheduling Schedulable

Gets a reference to the SchedulingGroup instance of this schedulable.

Returns
a reference to the current SchedulingGroup object.
Available since RTSJ 2.0

getConfigurationParameters

Signature
public javax.realtime.ConfigurationParameters
getConfigurationParameters()

Description
Gets a reference to the ConfigurationParameters object for this schedulable.

Returns
a reference to the associated ConfigurationParameters object.
Available since RTSJ 2.0

getMinConsumption(RelativeTime)

Signature
public javax.realtime.RelativeTime
getMinConsumption(RelativeTime dest)

Description
Determines the minimum CPU consumption for this schedulable in any single
release. When this method is called on the current schedulable, the CPU con-
sumption of the current release is not considered. When dest is null, returns the
minimum consumption in a RelativeTime instance from the current allocation
context. When dest is not null, returns the minimum consumption in dest

Parameters
dest—When not null, the object in which to return the result.

Returns
the minimum time consumed in any release.
Available since RTSJ 2.0

126 RTSJ 2.0 (Draft 57)

Schedulable javax.realtime 6.3

getMinConsumption

Signature
public javax.realtime.RelativeTime
getMinConsumption()

Description
Equivalent to getMinConsumption(null).

Returns
the minimum time consumed in any release.
Available since RTSJ 2.0

getMaxConsumption(RelativeTime)

Signature
public javax.realtime.RelativeTime
getMaxConsumption(RelativeTime dest)

Description
Determines the maximum CPU consumption for this schedulable in any single
release. When this method is called on the current schedulable, the CPU con-
sumption of the current release is not considered. When dest is null, returns the
maximum consumption in a RelativeTime instance from the current allocation
context. When dest is not null, returns the maximum consumption in dest

Parameters
dest—When not null, the object in which to return the result.

Returns
the maximum time consumed in any release.
Available since RTSJ 2.0

getMaxConsumption

Signature
public javax.realtime.RelativeTime
getMaxConsumption()

RTSJ 2.0 (Draft 57) 127

6 Scheduling Schedulable

Description
Equivalent to getMaxConsumption(null).

Returns
the maximum time consumed in any release.
Available since RTSJ 2.0

setDaemon(boolean)

Signature
public void
setDaemon(boolean on)

Description
Marks this schedulable as either a daemon or a user task. A realtime virtual
machine exits when the only tasks running are all daemons. This method must
be called before the task is attached to any event or started. Once attached or
started, it cannot be changed.

Parameters
on—When true, marks this event handler as a daemon handler.

Throws
IllegalThreadStateException—when this schedulable is active.
SecurityException—when the current schedulable cannot modify this event han-

dler.
Available since RTSJ 2.0

isDaemon

Signature
public boolean
isDaemon()

Description
Tests if this event handler is a daemon handler.

Returns
true when this event handler is a daemon handler; false otherwise.

128 RTSJ 2.0 (Draft 57)

Schedulable javax.realtime 6.3

Available since RTSJ 2.0

mayUseHeap

Signature
public boolean
mayUseHeap()

Description
Determines whether or not this schedulable may use the heap.

Returns
true only when this Schedulable may allocate on the heap and may enter the

Heap.
Available since RTSJ 2.0

interrupt

Signature
public void
interrupt()
throws IllegalSchedulableStateException

Description
Makes the generic AsynchronouslyInterruptedException pending for this,
and sets the interrupted state to true. As with Thread.interrupt(), blocking
operations that are interruptible are interrupted. When this.isRousable() is
true causes an early release. In any case, AsynchronouslyInterruptedExcep-
tion is thrown once a method is entered that implements AsynchronouslyIn-
terruptedException.

Behaves as if Thread.interrupt() were called on the implementation thread
underlying this Schedulable.

Throws
IllegalSchedulableStateException—when this is not currently releasable, i.e.,

is disabled, not firable, its start method has not been called, or it has terminated.
Available since RTSJ 2.0

RTSJ 2.0 (Draft 57) 129

6 Scheduling MinimumInterarrivalPolicy

isInterrupted

Signature
public boolean
isInterrupted()

Description
Determines whether or not any AsynchronouslyInterruptedException is pend-
ing.

Returns
true when and only when the generic AsynchronouslyInterruptedException is

pending.
Available since RTSJ 2.0

awaken

Signature
public void
awaken()
throws IllegalStateException

Description
Provides a means for a Clock to end a sleep.

Throws
IllegalStateException—when called from user code.
Available since RTSJ 2.0

6.3.2 Enumerations
6.3.2.1 MinimumInterarrivalPolicy

public enum MinimumInterarrivalPolicy
Inheritance
java.lang.Object

130 RTSJ 2.0 (Draft 57)

MinimumInterarrivalPolicy javax.realtime 6.3

java.lang.Enum<MinimumInterarrivalPolicy>
MinimumInterarrivalPolicy

Description
Defines the set of policies for handling interarrival time violations in Sporadic-
Parameters. Each policy governs every instance of Schedulable which has
SporadicParameters with that minimum interarrival time policy.

Available since RTSJ 2.0

6.3.2.1.1 Enumeration Constants

EXCEPT

public static final EXCEPT

Description
Represents the "EXCEPT" policy for minimum interarrival time. Under this
policy, when an arrival time of a release occurs at a time less than the last
release time plus its minimum interarrival time, the fire() method shall throw
a preallocated instance of MITViolationException.

IGNORE

public static final IGNORE

Description
Represents the "IGNORE" policy for minimum interarrival time. Under this
policy, when an arrival time of a release occurs at a time less than the last release
time plus its minimum interarrival time, the new arrival time is ignored.

REPLACE

public static final REPLACE

Description

RTSJ 2.0 (Draft 57) 131

6 Scheduling MinimumInterarrivalPolicy

Represents the "REPLACE" policy for minimum interarrival time. Under this
policy, when an arrival time of a release occurs at a time less than the last release
time plus its minimum interarrival time, the information for this arrival replaces
a previous arrival. For cases when the previous event has already been released or
the event queue has a length of zero, the arrival is ignored as with the "IGNORE"
policy.

SAVE

public static final SAVE

Description
Represents the "SAVE" policy for minimum interarrival time. Under this policy,
when an arrival time of a release occurs at a time less than the last release time
plus its minimum interarrival time, the new release is queued until the last release
time plus its minimum interarrival time is reached.

6.3.2.1.2 Methods

values

Signature
public static javax.realtime.MinimumInterarrivalPolicy[]
values()

Description
Gets all enumeration constants.

valueOf(String)

Signature
public static javax.realtime.MinimumInterarrivalPolicy
valueOf(String name)

Description
Gets enumeration constants corresponding to name.

132 RTSJ 2.0 (Draft 57)

QueueOverflowPolicy javax.realtime 6.3

value

Signature
public java.lang.String
value()

Description
Determines the string corresponding to this value.

Returns
the corresponding string.

value(String)

Signature
public static javax.realtime.MinimumInterarrivalPolicy
value(String value)

Description
Converts a string into a policy type.

Parameters
value—is the string to convert.

Returns
the corresponding policy type.

6.3.2.2 QueueOverflowPolicy

public enum QueueOverflowPolicy
Inheritance
java.lang.Object
java.lang.Enum<QueueOverflowPolicy>
QueueOverflowPolicy

Description
Defines the set of policies for handling overflow on event queues used by Re-
leaseParameters. An event queue holds a number of event arrival times with
any respective payload provided with the event. A reference to the event itself
is only held when it happens to be the payload, e.g., for an AsyncObjectEvent
associated with a Timer.

RTSJ 2.0 (Draft 57) 133

6 Scheduling QueueOverflowPolicy

Available since RTSJ 2.0

6.3.2.2.1 Enumeration Constants

DISABLE

public static final DISABLE

Description
Represents the "DISABLE" policy which means, when an arrival occurs, no
queuing takes place, thus no overflow can happen. This policy is for instances of
ActiveEvent with no payload and instances of RealtimeThread with Periodic-
Parameters. In contrast to IGNORE, all incoming events increment the pending
fire or release count, respectively. For this reason, it may not be used with an
event handler that supports an event payload or any instance of Schedulable
with SporadicParameters. This policy is also the default for PeriodicParam-
eters. Instances of RealtimeThread with null release parameters have this
policy implicitly, as they do not have an event queue either.

EXCEPT

public static final EXCEPT

Description
Represents the "EXCEPT" policy which means, when an arrival occurs and its
event time and payload should be queued but the queue already holds a number
of event times and payloads equal to the initial queue length, the fire() method
shall throw an ArrivalTimeQueueOverflowException. When fire is used within
a Timer, the exception is ignored and the fire does nothing, i.e., it acts the same
as “IGNORE”.

IGNORE

public static final IGNORE

Description

134 RTSJ 2.0 (Draft 57)

QueueOverflowPolicy javax.realtime 6.3

Represents the "IGNORE" policy which means, when an arrival occurs and its
event time and payload should be queued, but the queue already holds a number
of event times and payloads equal to the initial queue length, the arrival is ignored.

REPLACE

public static final REPLACE

Description
Represents the "REPLACE" policy which means, when an arrival occurs and
should be queued but the queue already holds a number of event times and
payloads equal to the initial queue length, the information for this arrival replaces
a previous arrival. When the queue length is zero, the behavior is the same as
the "IGNORE" policy.

SAVE

public static final SAVE

Description
Represents the "SAVE" policy which means, when an arrival occurs and should
be queued but the queue is full, the queue is lengthened and the arrival time and
payload are saved. This policy does not update the"initial queue length" as it
alters the actual queue length. Since the SAVE policy grows the arrival time queue
as necessary, for the SAVE policy the initial queue length is only an optimization.
It is also the default for AperiodicParameters.

6.3.2.2.2 Methods

values

Signature
public static javax.realtime.QueueOverflowPolicy[]
values()

Description
Gets all enumeration constants.

RTSJ 2.0 (Draft 57) 135

6 Scheduling Affinity

valueOf(String)

Signature
public static javax.realtime.QueueOverflowPolicy
valueOf(String name)

Description

Gets enumeration constants corresponding to name.

value

Signature
public java.lang.String
value()

Description

Determines the string corresponding to this value.

Returns
the corresponding string.

value(String)

Signature
public static javax.realtime.QueueOverflowPolicy
value(String value)

Description

Converts a string into a policy type.

Parameters
value—is the string to convert.

Returns
the corresponding policy type.

136 RTSJ 2.0 (Draft 57)

Affinity javax.realtime 6.3

6.3.3 Classes
6.3.3.1 Affinity

public class Affinity
Inheritance
java.lang.Object
Affinity

Description
This is the API for all processor-affinity-related aspects of the RTSJ. It includes
a factory that generates Affinity objects, and methods that control the CPU
affinity used by java.lang.ThreadGroup to control the affinity of all its tasks.
With it, the affinity of every task in the JVM can be controlled.

An affinity is a set of processors that can be associated with certain types
of tasks. Each task (java.lang.Thread and BoundRealtimeExecutor) can be
associated with an affinity. Groups of these can be assigned an affinity through
their java.lang.ThreadGroup.

Each implementation supports an array of predefined affinities. They can
be used either to reflect the scheduling arrangement of the underlying OS or
they can be used by the system designer to impose defaults for groups of task.
A program is only allowed to dynamically create new affinities with cardinality
of one. This restriction reflects the concern that not all operating systems will
support multiprocessor affinities.

The processor membership of an affinity is immutable. The tasks associations
of an affinity are mutable. The processor affinity of a task can be changed by
static methods in this class. The internal representation of a set of processors
in an Affinity instance is not specified, but the representation that is used to
communicate with this class is a BitSet where each bit corresponds to a logical
processor ID. The relationship between logical and physical processors is beyond
the scope of this specification, and may change.

The affinity factory only generates usable Affinity instances; i.e., affinities
that (at least when they are created) can be used with BoundRealtimeExecutor.
setAffinity(Affinity), SchedulingGroup.setAffinity(Affinity), and
set(Affinity, Thread). The factory cannot create an affinity with more than
one processor member, but such affinities are supported. They may be internally
created by the RTSJ runtime at startup time.

The set of affinities created at startup (the predefined set) is visible through
the getPredefinedAffinities(Affinity[]) method. The affinity factory may
be used to create affinities with a single processor member at any time. This

RTSJ 2.0 (Draft 57) 137

6 Scheduling Affinity

operation only supports processor members that are available to the JVM at the
time of creation.

External changes to the set of processors available to the RTSJ runtime is
likely to cause serious trouble ranging from violation of assumptions underlying
schedulability analysis to freezing the entire RTSJ runtime, so when a system is
capable of such manipulation it should not exercise it on RTSJ processes.

Tasks are subject to both their own processor affinity and that of their thread
group. Their processor affinity is governed by the intersection of the thread
group’s affinity and the task’s affinity. The intersection of a thread group’s
affinity with the schedulable’s affinity must contain at least one entry. Trying
to set a task’s affinity outside its thread group always fails. Trying to set the
affinity of a thread group that does not intersect with the thread group of its
tasks will also fail.

Ordinarily, an execution context inherits its creator’s affinity, but
• Java threads do not inherit affinity from Schedulables,
• instances of AsyncBaseEventHandler that are not bound do not inherit

affinity, and
• Schedulables do not inherit affinity from Java threads.

When a task does not inherit its creator’s affinity, its initial affinity is set to all
processors and is thus only limited by its thread group.

There is no public constructor for this class. All instances must be created by
the factory method (generate).

Available since RTSJ 2.0

6.3.3.1.1 Methods

getPredefinedAffinitiesCount

Signature
public static final int
getPredefinedAffinitiesCount()

Description
Determines the minimum array size required to store references to all the prede-
fined processor affinities.

Returns

138 RTSJ 2.0 (Draft 57)

Affinity javax.realtime 6.3

the minimum array size required to store references to all the predefined affinities.

getPredefinedAffinities

Signature
public static final javax.realtime.Affinity[]
getPredefinedAffinities()

Description
Equivalent to invoking getPredefinedAffinitySets(null).

Returns
an array of the predefined affinities.

getPredefinedAffinities(Affinity)

Signature
public static final javax.realtime.Affinity[]
getPredefinedAffinities(javax.realtime.Affinity[] dest)

Description
Determines what affinities are predefined by the Java runtime.

Parameters
dest—The destination array, or null.

Throws
IllegalArgumentException—when dest is not large enough.

Returns
dest or a newly created array when dest is null, populated with references to the

predefined affinities. When dest has excess entries, those entries are filled with
null.

isSetAffinitySupported

Signature
public static final boolean
isSetAffinitySupported()

Description

RTSJ 2.0 (Draft 57) 139

6 Scheduling Affinity

Determines whether or not affinity control is supported.

Returns
true when the following methods are supported:

• BoundRealtimeExecutor.setAffinity(Affinity),
• SchedulingGroup.setAffinity(Affinity), and
• set(Affinity, Thread).

generate(BitSet)

Signature
public static final javax.realtime.Affinity
generate(BitSet set)

Description
Determines the Affinity corresponding to a BitSet, where each bit in set repre-
sents a CPU.

Platforms that support specific affinities will register those Affinity instances
with Affinity. They appear in the arrays returned by getPredefinedAffini-
ties() and getPredefinedAffinities(Affinity[]).

Parameters
set—The BitSet to convert into an Affinity.

Throws
NullPointerException—when set is null.
IllegalArgumentException—when set does not refer to a valid set of processors,

where “valid” is defined as the bitset from a predefined affinity set, or a
bitset of cardinality one containing a processor from the set returned by
getAvailableProcessors(). The definition of “valid set of processors” is
system dependent; however, every set consisting of one valid processor makes
up a valid bit set, and every bit set corresponding to a predefined affinity set
is valid.

Returns
the resulting Affinity.

getAvailableProcessors

Signature

140 RTSJ 2.0 (Draft 57)

Affinity javax.realtime 6.3

public static final java.util.BitSet
getAvailableProcessors()

Description
This method is equivalent to getAvailableProcessors(BitSet) with a null
argument.

Returns
the set of processors available to the program.

getAvailableProcessors(BitSet)

Signature
public static final java.util.BitSet
getAvailableProcessors(BitSet dest)

Description
In systems where the set of processors available to a process is dynamic (e.g.,
because of system management operations or because of fault tolerance capabili-
ties), the set of available processors shall reflect the processsors that are allocated
to the RTSJ runtime and are currently available to execute tasks.

Parameters
dest—When dest is non-null, use dest as the returned value. When it is null,

create a new BitSet.
Returns
a BitSet representing the set of processors currently valid for use in the bitset

argument to generate(BitSet).

isAffinityChangeNotificationSupported

Signature
public static final boolean
isAffinityChangeNotificationSupported()

Description
Determines whether or not the system can trigger an event for notifying the
application when the set of available CPUs changes.

Returns

RTSJ 2.0 (Draft 57) 141

6 Scheduling Affinity

true when change notification is supported. (See setProcessorAddedE-
vent(AsyncEvent) and setProcessorRemovedEvent(AsyncEvent).)

getProcessorAddedEvent

Signature
public static javax.realtime.AsyncEvent
getProcessorAddedEvent()

Description

Gets the event used for CPU addition notification.

Returns
the async event that will be fired when a processor is added to the set available to

the JVM. Returns null when change notification is not supported, or when no
async event has been designated.

setProcessorAddedEvent(AsyncEvent)

Signature
public static void
setProcessorAddedEvent(AsyncEvent event)
throws UnsupportedOperationException,

IllegalArgumentException

Description

Sets the AsyncEvent that will be fired when a processor is added to the set
available to the JVM.

Parameters
event—The async event to fire in case an added processor is detected, or null to

cause no async event to be called in case an added processor is detected.
Throws

UnsupportedOperationException—when change notification is not supported.
IllegalArgumentException—when event is not in immortal memory.

142 RTSJ 2.0 (Draft 57)

Affinity javax.realtime 6.3

getProcessorRemovedEvent

Signature
public static javax.realtime.AsyncEvent
getProcessorRemovedEvent()

Description
Gets the event used for CPU removal notification.

Returns
the async event that will be fired when a processor is removed from the set available

to the JVM. Returns null when change notification is not supported, or when
no async event has been designated.

setProcessorRemovedEvent(AsyncEvent)

Signature
public static void
setProcessorRemovedEvent(AsyncEvent event)

Description
Sets the AsyncEvent that will be fired when a processor is removed from the set
available to the JVM.

Parameters
event—Called when a processor is removed.

Throws
UnsupportedOperationException—when change notification is not supported.
IllegalArgumentException—when event is not null or in immortal memory.

get(Thread)

Signature
public static final javax.realtime.Affinity
get(Thread thread)

Description
Determines the affinity set instance associated with thread.

Parameters

RTSJ 2.0 (Draft 57) 143

6 Scheduling Affinity

thread—A Java thread, or one of its subclasses (including RealtimeThread).
Returns
the associated affinity set.

set(Affinity, Thread)

Signature
public static final void
set(Affinity set,

Thread thread)
throws ProcessorAffinityException

Description
Sets the processor affinity of a Java thread or RealtimeThread to set with
immediate effect.

Parameters
set—The new processor affinity set for thread
thread—The thread or realtime thread.

Throws
IllegalArgumentException—when the intersection of set and the affinity of any

ThreadGroup instance containing thread is empty.
ProcessorAffinityException—when the runtime fails to set the affinity for

platform-specific reasons.
NullPointerException—when set or thread is null.

getProcessors

Signature
public final java.util.BitSet
getProcessors()

Description
Obtains a BitSet representing the processor affinity set for this Affinity.

Returns
a newly created BitSet representing this Affinity.

144 RTSJ 2.0 (Draft 57)

Affinity javax.realtime 6.3

getProcessors(BitSet)

Signature
public final java.util.BitSet
getProcessors(BitSet dest)

Description
Determines the set of CPUs representing the processor affinity of this Affinity.

Parameters
dest—Set dest to the BitSet value. When dest is null, create a new BitSet in

the current allocation context.
Returns
a BitSet representing the processor affinity set of this Affinity.

isProcessorInSet(int)

Signature
public final boolean
isProcessorInSet(int processorId)

Description
Asks whether a processor is included in this affinity set.

Parameters
processorId—A number identifying a single CPU in a multiprocessor system.

Returns
true when and only when processorNumber is represented in this affinity set.

getProcessorCount

Signature
public int
getProcessorCount()

Description
Determines the number of CPUs in this affinity

Returns
the number of CPUs.

RTSJ 2.0 (Draft 57) 145

6 Scheduling AperiodicParameters

6.3.3.2 AperiodicParameters

public class AperiodicParameters

Inheritance
java.lang.Object
ReleaseParameters
AperiodicParameters

Description
When a reference to an AperiodicParameters object is given as a parameter
to a schedulable’s constructor or passed as an argument to one of the sched-
ulable’s setter methods, the AperiodicParameters object becomes the release
parameters object bound to that schedulable. Changes to the values in the
AperiodicParameters object affect that schedulable. When bound to more than
one schedulable, changes to the values in the AperiodicParameters object affect
all of the associated objects. Note that this is a one-to-many relationship and
not a many-to-many.

Only changes to an AperiodicParameters object caused by methods on that
object cause the change to propagate to all schedulables using the object. For
instance, calling setCost on an AperiodicParameters object will make the
change, then notify the scheduler that the parameter object has changed. At that
point the object is reconsidered for every schedulable that uses it. Invoking a
method on the RelativeTime object that is the cost for this object may change
the cost but it does not pass the change to the scheduler at that time. That
change must not change the behavior of the schedulables that use the parameter
object until a setter method on the AperiodicParameters object is invoked,
the parameter object is used in setReleaseParameters(), or it is used in a
constructor for a schedulable.

The implementation must use modified copy semantics for each HighResolu-
tionTime parameter value. The value of each time object should be treated as if
it were copied at the time it is passed to the parameter object, but the object
reference must also be retained. For instance, the value returned by getCost()
must be the same object passed in by setCost(), but any changes made to the time
value of the cost must not take effect in the associated AperiodicParameters
instance unless they are passed to the parameter object again, e.g. with a new
invocation of setCost.

Correct initiation of the deadline miss and cost overrun handlers requires
that the underlying system know the arrival time of each aperiodic task. For an
instance of RealtimeThread the arrival time is the time at which the start() is

146 RTSJ 2.0 (Draft 57)

AperiodicParameters javax.realtime 6.3

invoked. For other instances of Schedulable, the required behavior may force
the implementation to act effectively as if it maintained a queue of arrival times.

When the release parameters for a RealtimeThread are set to an instance of
this class or one of its subclasses, the thread does not start executing code until
the RealtimeThread.release() method is called.

The following table gives the default values for the constructors parameters.

Table 6.3: AperiodicParameters Default Values
Attribute Value

cost new RelativeTime(0,0)
deadline new RelativeTime(Long.MAX_VALUE, 999999)
overrunHandler None
missHandler None
rousable false
Arrival time queue size 0
Queue overflow policy SAVE

Caution: This class is explicitly unsafe for multithreading when being changed.
Code that mutates instances of this class should synchronize at a higher level.

6.3.3.2.1 Constructors

AperiodicParameters(RelativeTime, RelativeTime, Async-
EventHandler, AsyncEventHandler, boolean)

Signature
public
AperiodicParameters(RelativeTime cost,

RelativeTime deadline,
AsyncEventHandler overrunHandler,
AsyncEventHandler missHandler,
boolean rousable)

Description

RTSJ 2.0 (Draft 57) 147

6 Scheduling AperiodicParameters

Creates an AperiodicParameters object.

Available since RTSJ 2.0

Parameters
cost—Processing time per invocation. On implementations which can measure the

amount of time a schedulable object is executed, this value is the maximum
amount of time a schedulable receives. On implementations which cannot
measure execution time, it is not possible to determine when any particu-
lar object exceeds cost. When null, the default value is a new instance of
RelativeTime(0,0).

deadline—The latest permissible completion time measured from the release time
of the associated invocation of the schedulable. When null, the default value
is a new instance of RelativeTime(Long.MAX_VALUE, 999999).

overrunHandler—This handler is invoked when an invocation of the schedulable
exceeds cost. Not required for minimum implementation. When null, the
default value is no overrun handler.

missHandler—This handler is invoked when the run() method of the schedulable
object is still executing after the deadline has passed. When null, the default
value is no miss handler.

rousable—determines whether or not an instance of Schedulable can be prema-
turely released by a thread interrupt.

Throws
IllegalArgumentException—when the time value of cost is less than zero, or

the time value of deadline is less than or equal to zero.
IllegalAssignmentError—when cost, deadline, overrunHandler or missHan-

dler cannot be stored in this.

AperiodicParameters(RelativeTime, RelativeTime, Async-
EventHandler, AsyncEventHandler)

Signature
public
AperiodicParameters(RelativeTime cost,

RelativeTime deadline,
AsyncEventHandler overrunHandler,
AsyncEventHandler missHandler)

Description

148 RTSJ 2.0 (Draft 57)

AperiodicParameters javax.realtime 6.3

Equivalent to AperiodicParameters(RelativeTime, RelativeTime, Async-
EventHandler, AsyncEventHandler, boolean) with the argument list (cost,
deadline, overrunHandler, missHandler, false).

Parameters
cost—Processing time per invocation. On implementations that support cost

enforcement, this value is the maximum amount of time a schedulable receives.
On implementations which do not support cost enforcement, it is not possible
to determine when any particular object exceeds cost. When null, the default
value is a new instance of RelativeTime(0,0).

deadline—The latest permissible completion time measured from the release time
of the associated invocation of the schedulable. When null, the default value
is a new instance of RelativeTime(Long.MAX_VALUE, 999999).

overrunHandler—This handler is invoked when an invocation of the schedulable
exceeds cost. Not required for minimum implementation. When null, the
default value is no overrun handler.

missHandler—This handler is invoked when the run() method of the schedulable
object is still executing after the deadline has passed. When null, the default
value is no miss handler.

Throws
IllegalArgumentException—when the time value of cost is less than zero, or

the time value of deadline is less than or equal to zero.
IllegalAssignmentError—when cost, deadline, overrunHandler or missHan-

dler cannot be stored in this.

AperiodicParameters(RelativeTime, AsyncEventHandler,
boolean)

Signature
public
AperiodicParameters(RelativeTime deadline,

AsyncEventHandler missHandler,
boolean rousable)

Description
Equivalent to AperiodicParameters(RelativeTime, RelativeTime, Async-
EventHandler, AsyncEventHandler, boolean) with the argument list (null,
deadline, null, missHandler, rousable).

RTSJ 2.0 (Draft 57) 149

6 Scheduling AperiodicParameters

Available since RTSJ 2.0

AperiodicParameters(RelativeTime)

Signature
public
AperiodicParameters(RelativeTime deadline)

Description
Equivalent to AperiodicParameters(RelativeTime, RelativeTime, Async-
EventHandler, AsyncEventHandler, boolean) with the argument list (null,
deadline, null, null, false).

Available since RTSJ 2.0

AperiodicParameters

Signature
public
AperiodicParameters()

Description
Equivalent to AperiodicParameters(RelativeTime, RelativeTime, Async-
EventHandler, AsyncEventHandler, boolean) with the argument list (null,
null, null, null, false).

Available since RTSJ 1.0.1

6.3.3.2.2 Methods

setDeadline(RelativeTime)

Signature

150 RTSJ 2.0 (Draft 57)

BackgroundParameters javax.realtime 6.3

public javax.realtime.AperiodicParameters
setDeadline(RelativeTime deadline)

Description
Sets the deadline value.

When this parameter object is associated with any schedulable object, either by
being passed through the schedulable’s constructor or being set with a method such
as RealtimeThread.setReleaseParameters(ReleaseParameters), the dead-
line of those schedulables is altered as specified by each schedulable’s respective
scheduler.

Parameters
deadline—The latest permissible completion time measured from the release time

of the associated invocation of the schedulable. When deadline is null, the
deadline is set to a new instance of RelativeTime(Long.MAX_VALUE, 999999).

Throws
IllegalArgumentException—when the time value of deadline is less than or

equal to zero, or when the new value of this deadline is incompatible with the
scheduler for any associated schedulable.

IllegalAssignmentError—when deadline cannot be stored in this.
Returns
this

Available since RTSJ 2.0 returns itself

6.3.3.3 BackgroundParameters

public class BackgroundParameters
Inheritance
java.lang.Object
ReleaseParameters
BackgroundParameters

Description
Parameters for realtime threads that are only released once. A thread using
this release parameters may not use RealtimeThread.waitForNextRelease()
or have its RealtimeThread.release() methods called. Calling these methods
results in an IllegalThreadStateException. Event handlers may not use this
type of ReleaseParameters.

RTSJ 2.0 (Draft 57) 151

6 Scheduling BackgroundParameters

Available since RTSJ 2.0

6.3.3.3.1 Constructors

BackgroundParameters(RelativeTime, RelativeTime, Async-
EventHandler, AsyncEventHandler)

Signature
public
BackgroundParameters(RelativeTime cost,

RelativeTime deadline,
AsyncEventHandler overrunHandler,
AsyncEventHandler missHandler)

Description
A constructor for both cost and deadline monitoring.

Caution: This class is explicitly unsafe for multithreading when being changed.
Code that mutates instances of this class should synchronize at a higher level.
Parameters
cost—The maximum cost for the initial release
deadline—The deadline for the initial release
overrunHandler—The handler to call on cost overrun.
missHandler—The handler to call on deadline miss.

Throws
IllegalArgumentException—when the time value of cost is less than zero, or

the time value of deadline is less than or equal to zero, or the chronograph
associated with the cost or deadline parameters is not an instance of Clock.

IllegalAssignmentError—when cost, deadline, overrunHandler, or missHandler
cannot be stored in this.

BackgroundParameters(RelativeTime, AsyncEventHand-
ler)

Signature

152 RTSJ 2.0 (Draft 57)

FirstInFirstOutScheduler javax.realtime 6.3

public
BackgroundParameters(RelativeTime deadline,

AsyncEventHandler missHandler)

Description
A constructor for deadline monitoring. Equivalent to BackgroundParameters(null,
deadline, null, missHandler)

BackgroundParameters

Signature
public
BackgroundParameters()

Description
A constructor for not having any restrictions on, or monitoring of, scheduling.
Equivalent to BackgroundParameters(null, null, null, null, false)

6.3.3.4 FirstInFirstOutScheduler

public class FirstInFirstOutScheduler

Inheritance
java.lang.Object
Scheduler
PriorityScheduler
FirstInFirstOutScheduler

Description
A version of PriorityScheduler where once a thread is scheduled at a given
priority, it runs until it is blocked or is preempted by a higher priority thread.
When preempted, it remains the next thread ready for its priority. This is the
default scheduler for realtime tasks. It represents the required (by the RTSJ)
priority-based scheduler. The default instance is the base scheduler which does
fixed priority, preemptive scheduling.

This scheduler, like all schedulers, governs the default values for scheduling-
related parameters in its client schedulables. The defaults are as follows:

RTSJ 2.0 (Draft 57) 153

6 Scheduling FirstInFirstOutScheduler

Table 6.4: FirstInFirstOut Default PriorityParameter Values
Attribute Default Value

Priority norm priority

The system contains one instance of the FirstInFirstOutScheduler which
is the system’s base scheduler and is returned by FirstInFirstOutScheduler.
instance(). The instance returned by the instance() method is the base
scheduler and is returned by Scheduler.getDefaultScheduler() unless the
default scheduler is reset with Scheduler.setDefaultScheduler(Scheduler).

Available since RTSJ 2.0

6.3.3.4.1 Methods

instance

Signature
public static javax.realtime.FirstInFirstOutScheduler
instance()

Description
Obtains a reference to the distinguished instance of PriorityScheduler which
is the system’s base scheduler.

Returns
a reference to the distinguished instance PriorityScheduler.

getMaxPriority

Signature
public int
getMaxPriority()

Description

154 RTSJ 2.0 (Draft 57)

FirstInFirstOutScheduler javax.realtime 6.3

Obtains the maximum priority available for a schedulable managed by this
scheduler.

Returns
the value of the maximum priority.

getMinPriority

Signature
public int
getMinPriority()

Description
Obtains the minimum priority available for a schedulable managed by this
scheduler.

Returns
the minimum priority used by this scheduler.

getNormPriority

Signature
public int
getNormPriority()

Description
Obtains the normal priority available for a schedulable managed by this scheduler.

Returns
the value of the normal priority.

getPolicyName

Signature
public java.lang.String
getPolicyName()

Description
Obtains the policy name of this.

RTSJ 2.0 (Draft 57) 155

6 Scheduling ImportanceParameters

Returns
the policy name (Fixed Priority First In First Out) as a string.

reschedule(Thread, int)

Signature
public void
reschedule(Thread thread,

int priority)

Description
Promotes a java.lang.Thread to realtime priority under this scheduler. The
affected thread will be scheduled as if it were a RealtimeThread of the given
priority. This does not make the affected thread a RealtimeThread, however,
and it will not have access to facilities reserved for instances of RealtimeThread.

Parameters
thread—The thread to promote to realtime scheduling.
priority—An integer priority equivalent to a priority set via PriorityParameters

on a RealtimeThread.
Throws

IllegalArgumentException—when priority is not between getMinPriority()
and getMaxPriority(), inclusive.

6.3.3.5 ImportanceParameters

public class ImportanceParameters
Inheritance
java.lang.Object
SchedulingParameters
PriorityParameters
ImportanceParameters

Description
Importance is an additional scheduling metric that may be used by some priority-
based scheduling algorithms during overload conditions to differentiate execution
order among threads of the same priority.

In some realtime systems an external physical process determines the period
of many threads. When rate-monotonic priority assignment is used to assign

156 RTSJ 2.0 (Draft 57)

ImportanceParameters javax.realtime 6.3

priorities, many of the threads in the system may have the same priority because
their periods are the same. However, it is conceivable that some threads may be
more important than others and in an overload situation importance can help the
scheduler decide which threads to execute first. The base scheduling algorithm
represented by PriorityScheduler must not consider importance.

6.3.3.5.1 Constructors

ImportanceParameters(int, int)

Signature
public
ImportanceParameters(int priority,

int importance)

Description
Creates an instance of ImportanceParameters.

Parameters
priority—The priority value assigned to schedulables that use this parameter in-

stance. This value is used in place of the value passed to Thread.setPriority.
importance—The importance value assigned to schedulable objects that use this

parameter instance.

6.3.3.5.2 Methods

getImportance

Signature
public int
getImportance()

Description
Gets the importance value.

RTSJ 2.0 (Draft 57) 157

6 Scheduling ImportanceParameters

Returns
the value of importance for the associated instances of Schedulable.

setImportance(int)

Signature
public javax.realtime.ImportanceParameters
setImportance(int importance)

Description
Sets the importance value. When this parameter object is associ-
ated with any schedulable, either by being passed through the sched-
ulable’s constructor or set with a method such as RealtimeThread.
setSchedulingParameters(SchedulingParameters), the importance of those
schedulables is altered at a moment controlled by the schedulers for the respective
schedulables.

Parameters
importance—The value to which importance is set.

Throws
IllegalArgumentException—when the given importance value is incompatible

with the scheduler for any of the schedulables which are presently using this
parameter object.

Returns
this

Available since RTSJ 2.0 returns itself

toString

Signature
public java.lang.String
toString()

Description
Prints the value of the priority and importance values of the associated instance
of Schedulable

158 RTSJ 2.0 (Draft 57)

PeriodicParameters javax.realtime 6.3

6.3.3.6 PeriodicParameters

public class PeriodicParameters
Inheritance
java.lang.Object
ReleaseParameters
PeriodicParameters

Description
This release parameter indicates that the schedulable is released on a regular
basis. For an AsyncEventHandler, this means the handler is either released by a
periodic timer or the associated event occurs periodically. For a RealtimeThread,
this means the RealtimeThread.waitForNextRelease method will unblock the
associated realtime thread at the start of each period.

When a reference to a PeriodicParameters object is given as a parameter to
a schedulable’s constructor or passed as an argument to one of the schedulable’s
setter methods, the PeriodicParameters object becomes the release parameters
object bound to that schedulable. Changes to the values in the PeriodicPa-
rameters object affect that schedulable object. When bound to more than one
schedulable then changes to the values in the PeriodicParameters object affect
all of the associated objects. Note that this is a one-to-many relationship and
not a many-to-many.

Only a change to a PeriodicParameters object caused by methods on that
object cause the change to be propagate to all schedulable objects using that
parameter object. For instance, calling setCost on a PeriodicParameters
object will make the change, then notify the scheduler that the parameter object
has changed. At that point the object is reconsidered for every SO that uses
it. Invoking a method on a RelativeTime object that is the cost for this object
changes the cost value but does not pass the change to the scheduler at that time.
That change must not change the behavior of the SOs that use the parameter
object until a setter method on the PeriodicParameters object is invoked,
the parameter object is used in setReleaseParameters(), or it is used in a
constructor for an SO.

Periodic parameters use HighResolutionTime values for period and start
time. Since these times are expressed as a HighResolutionTime values, these
values use accurate timers with nanosecond granularity. The actual resolution
available and even the quantity the timers measure depend on the clock associated
with each time value.

The implementation must use modified copy semantics for each HighResolu-
tionTime parameter value. The value of each time object should be treated as if

RTSJ 2.0 (Draft 57) 159

6 Scheduling PeriodicParameters

it were copied at the time it is passed to the parameter object, but the object
reference must also be retained. For instance, the value returned by getCost()
must be the same object passed in by setCost(), but any changes made to the
time value of the cost must not take effect in the associated PeriodicParameters
instance unless they are passed to the parameter object again, e.g. with a new
invocation of setCost.

The following table gives the default parameter values for the constructors.

Table 6.5: PeriodicParameter Default Values
Attribute Default Value

start new RelativeTime(0,0)
period No default. A value must be sup-

plied
cost new RelativeTime(0,0)
deadline new RelativeTime(period)
overrunHandler None
missHandler None
EventQueueOverflowPolicy QueueOverflowPolicy.DISABLE

Periodic release parameters are strictly informational when they are applied
to async event handlers. They must be used for any feasibility analysis, but
release of the async event handler is not entirely controlled by the scheduler.

Caution: This class is explicitly unsafe for multithreading when being changed.
Code that mutates instances of this class should synchronize at a higher level.

6.3.3.6.1 Constructors

PeriodicParameters(HighResolutionTime, RelativeTime,
RelativeTime, RelativeTime, AsyncEventHandler, AsyncEv-
entHandler, boolean)

Signature
public
PeriodicParameters(javax.realtime.HighResolutionTime<?> start,

RelativeTime period,

160 RTSJ 2.0 (Draft 57)

PeriodicParameters javax.realtime 6.3

RelativeTime cost,
RelativeTime deadline,
AsyncEventHandler overrunHandler,
AsyncEventHandler missHandler,
boolean rousable)

Description

Creates a PeriodicParameters object with attributes set to the specified values.

Available since RTSJ 2.0

Parameters
start—Time at which the first release begins (i.e. the realtime thread becomes

eligible for execution.) When a RelativeTime, this time is relative to the first
time the thread becomes activated (that is, when start() is called). When an
AbsoluteTime, then the first release is the maximum of the start parameter
and the time of the call to the associated RealtimeThread.start() method
(modified according to any phasing policy). When null, the default value is a
new instance of RelativeTime(0,0).

period—The period is the interval between successive releases. There is no default
value. When period is null an exception is thrown.

cost—Processing time per release. On implementations which can measure the
amount of time a schedulable is executed, this value is the maximum amount
of time a schedulable receives per release. When null, the default value is a
new instance of RelativeTime(0,0).

deadline—The latest permissible completion time measured from the release time
of the associated invocation of the schedulable. When null, the default value is
new instance of RelativeTime(period).

overrunHandler—This handler is invoked when an invocation of the schedulable
exceeds cost in the given release. Implementations may ignore this parameter.
When null, the default value is no overrun handler.

missHandler—This handler is invoked when the run() method of the schedulable
is still executing after the deadline has passed. When null, the default value is
no deadline miss handler.

rousable—When true, an interrupt will cause an early release, otherwise not.
Throws

IllegalArgumentException—when the period is null or its time value is not
greater than zero, or when the time value of cost is less than zero, or when the
time value of deadline is not greater than zero, or when the clock associated

RTSJ 2.0 (Draft 57) 161

6 Scheduling PeriodicParameters

with the cost is not the realtime clock, or when the clocks associated with the
deadline and period parameters are not the same.

IllegalAssignmentError—when start period, cost, deadline, overrunHan-
dler or missHandler cannot be stored in this.

PeriodicParameters(HighResolutionTime, RelativeTime,
RelativeTime, RelativeTime, AsyncEventHandler, AsyncEv-
entHandler)

Signature
public
PeriodicParameters(javax.realtime.HighResolutionTime<?> start,

RelativeTime period,
RelativeTime cost,
RelativeTime deadline,
AsyncEventHandler overrunHandler,
AsyncEventHandler missHandler)

Description
Equivalent to PeriodicParameters(HighResolutionTime, RelativeTime,
RelativeTime, RelativeTime, AsyncEventHandler, AsyncEventHand-
ler, boolean) with the argument list (start, period, cost, deadline,
overrunHandler, missHandler, false);

PeriodicParameters(HighResolutionTime, RelativeTime,
RelativeTime, AsyncEventHandler, boolean)

Signature
public
PeriodicParameters(javax.realtime.HighResolutionTime<?> start,

RelativeTime period,
RelativeTime deadline,
AsyncEventHandler missHandler,
boolean rousable)

Description

162 RTSJ 2.0 (Draft 57)

PeriodicParameters javax.realtime 6.3

Equivalent to PeriodicParameters(HighResolutionTime, RelativeTime,
RelativeTime, RelativeTime, AsyncEventHandler, AsyncEventHandler,
boolean) with the argument list (start, period, deadline, null, null,
missHandler, rousable);

Available since RTSJ 2.0

PeriodicParameters(HighResolutionTime, RelativeTime)

Signature
public
PeriodicParameters(javax.realtime.HighResolutionTime<?> start,

RelativeTime period)

Description
Equivalent to PeriodicParameters(HighResolutionTime, RelativeTime,
RelativeTime, RelativeTime, AsyncEventHandler, AsyncEventHandler,
boolean) with the argument list (start, period, null, null, null, null,
false);

Available since RTSJ 1.0.1

PeriodicParameters(RelativeTime)

Signature
public
PeriodicParameters(RelativeTime period)

Description
Creates a PeriodicParameters object with the specified period and all other
attributes set to their default values. This constructor has the same effect
as invoking PeriodicParameters(null, period, null, null, null, null,
false)

Available since RTSJ 1.0.1

RTSJ 2.0 (Draft 57) 163

6 Scheduling PeriodicParameters

6.3.3.6.2 Methods

getPeriod

Signature
public javax.realtime.RelativeTime
getPeriod()

Description
Determines the current value of period.

Returns
the object last used to set the period containing the current value of period.

getPeriod(RelativeTime)

Signature
public javax.realtime.RelativeTime
getPeriod(RelativeTime value)

Description
Determines the current value of period.

Returns
value or, when null, the last object used to set the period, set to the current value

of period.
Available since RTSJ 2.0

getStart

Signature
public javax.realtime.HighResolutionTime<?>
getStart()

Description
Determines the time used to start an instance of Schedulable, which is not
necessarily the time at which it actually started.

164 RTSJ 2.0 (Draft 57)

PeriodicParameters javax.realtime 6.3

Returns
the object last used to set the start containing the current value of start.

setDeadline(RelativeTime)

Signature
public javax.realtime.PeriodicParameters
setDeadline(RelativeTime deadline)

Description
Sets the deadline value.

When this parameter object is associated with any schedulable object (by
being passed through the schedulable’s constructor or set with a method such as
RealtimeThread.setReleaseParameters(ReleaseParameters)) the deadline
of those schedulables is altered as specified by each schedulable’s respective
scheduler.

Parameters
deadline—The latest permissible completion time measured from the release time

of the associated invocation of the schedulable. When deadline is null, the
deadline is set to a new instance of RelativeTime equal to period.

Throws
IllegalArgumentException—when the time value of deadline is less than or

equal to zero, or when the new value of this deadline is incompatible with the
scheduler for any associated schedulable.

IllegalAssignmentError—when deadline cannot be stored in this.
Returns
this

Available since RTSJ 2.0 returns itself

setPeriod(RelativeTime)

Signature
public javax.realtime.PeriodicParameters
setPeriod(RelativeTime period)

Description
Sets the period.

RTSJ 2.0 (Draft 57) 165

6 Scheduling PeriodicParameters

Parameters
period—The value to which period is set.

Throws
IllegalArgumentException—when the given period is null or its time value is

not greater than zero. Also when period is incompatible with the scheduler
for any associated schedulable or when an associated AsyncBaseEventHandler
is associated with a Timer whose period does not match period.

IllegalAssignmentError—when period cannot be stored in this.
Returns
this
Available since RTSJ 2.0 returns itself

setStart(HighResolutionTime)

Signature
public javax.realtime.PeriodicParameters
setStart(javax.realtime.HighResolutionTime<?> start)

Description
Sets the start time.

The effect of changing the start time for any schedulables associated with this
parameter object is determined by the scheduler associated with each schedulable.

Note that an instance of PeriodicParameters may be shared by several
schedulables. A change to the start time may take effect on a subset of these
schedulables. That leaves the start time returned by getStart unreliable as a
way to determine the start time of a schedulable.

Parameters
start—The new start time. When null, the default value is a new instance of

RelativeTime(0,0).
Throws

IllegalArgumentException—when the given start time is incompatible with the
scheduler for any of the schedulable objects which are presently using this
parameter object.

IllegalAssignmentError—when start cannot be stored in this.
Returns
this
Available since RTSJ 2.0 returns itself

166 RTSJ 2.0 (Draft 57)

PriorityParameters javax.realtime 6.3

6.3.3.7 PriorityParameters

public class PriorityParameters

Inheritance
java.lang.Object
SchedulingParameters
PriorityParameters

Description
Instances of this class should be assigned to schedulables that are managed by
schedulers which use a single integer to determine execution order. The base
scheduler required by this specification and represented by the class Priori-
tyScheduler is such a scheduler.

6.3.3.7.1 Constructors

PriorityParameters(int)

Signature
public
PriorityParameters(int priority)

Description
Creates an instance of PriorityParameters with the given priority.

Parameters
priority—The priority assigned to schedulables that use this parameter instance.

6.3.3.7.2 Methods

isCompatible(Class)

Signature

RTSJ 2.0 (Draft 57) 167

6 Scheduling PriorityParameters

public boolean
isCompatible(java.lang.Class<javax.realtime.Scheduler> type)

Description
Determines whether this scheduling parameters can be used by tasks scheduled
by instances of type.

Parameters
type—It is the type of scheduler to check against

Returns
true when and only when this can be used with type as the scheduler.
Available since RTSJ 2.0

getPriority

Signature
public int
getPriority()

Description
Gets the priority value.

Returns
the priority.

setPriority(int)

Signature
public javax.realtime.PriorityParameters
setPriority(int priority)

Description
Sets the priority value. When this parameter object is associ-
ated with any schedulable (by being passed through the schedul-
able’s constructor or set with a method such as RealtimeThread.
setSchedulingParameters(SchedulingParameters)) the base priority of those
schedulables is altered as specified by each schedulable’s scheduler.

Parameters

168 RTSJ 2.0 (Draft 57)

PriorityScheduler javax.realtime 6.3

priority—The value to which priority is set.
Throws

IllegalArgumentException—when the given priority value is incompatible with
the scheduler for any of the schedulables which are presently using this param-
eter object.

Returns
this

toString

Signature
public java.lang.String
toString()

Description
Converts the priority value to a string.

Returns
a string representing the value of priority.

6.3.3.8 PriorityScheduler

public abstract class PriorityScheduler
Inheritance
java.lang.Object
Scheduler
PriorityScheduler

Description
Class which represents the required (by the RTSJ) priority-based schedulers. The
default instance is the base scheduler which uses a fixed priority, first-in-first-out,
preemptive scheduling algorithm.

This scheduler, like all schedulers, governs the default values for scheduling-
related parameters in its client schedulables. The defaults are as follows:

Note that the system contains one instance of the PriorityScheduler which
is the system’s base scheduler and is returned by FirstInFirstOutScheduler.
instance(). It may, however, contain instances of subclasses of PrioritySched-
uler created through this class’ protected constructor. The instance returned

RTSJ 2.0 (Draft 57) 169

6 Scheduling PriorityScheduler

Table 6.6: PriorityScheduler Default PriorityParameter Values
Attribute Default Value

Priority norm priority

by the FirstInFirstOutScheduler.instance() method, the base scheduler, is
returned by Scheduler.getDefaultScheduler() unless the default scheduler is
changed with Scheduler.setDefaultScheduler(Scheduler).

6.3.3.8.1 Constructors

PriorityScheduler

Signature
protected
PriorityScheduler()

Description
Constructs an instance of PriorityScheduler. Applications will likely not need
any instance other than the default instance.

6.3.3.8.2 Methods

getPolicyName

Signature
public java.lang.String
getPolicyName()

Description
Gets the policy name of this.

Returns

170 RTSJ 2.0 (Draft 57)

PriorityScheduler javax.realtime 6.3

the policy name (Fixed Priority) as a string.

getMaxPriority

Signature
public abstract int
getMaxPriority()

Description
Gets the maximum priority available for a schedulable managed by this scheduler.

Returns
the value of the maximum priority.

getMinPriority

Signature
public abstract int
getMinPriority()

Description
Gets the minimum priority available for a schedulable managed by this scheduler.

Returns
the minimum priority used by this scheduler.

getNormPriority

Signature
public abstract int
getNormPriority()

Description
Gets the normal priority available for a schedulable managed by this scheduler.

Returns
the value of the normal priority.

RTSJ 2.0 (Draft 57) 171

6 Scheduling ProcessingGroup

reschedule(Thread, int)

Signature
public abstract void
reschedule(Thread thread,

int priority)

Description
Promotes a java.lang.Thread to realtime priority under this scheduler. The
affected thread will be scheduled as if it were a RealtimeThread of the given
priority. This does not make the affected thread a RealtimeThread, however,
and it will not have access to facilities reserved for instances of RealtimeThread.

Parameters
thread—The thread to promote to realtime scheduling.
priority—An integer priority equivalent to a priority set via PriorityParameters

on a RealtimeThread.
Throws

IllegalArgumentException—when priority is not between getMinPriority()
and getMaxPriority(), inclusive.

Available since RTSJ 2.0

6.3.3.9 ProcessingGroup

public class ProcessingGroup
Inheritance
java.lang.Object
java.lang.ThreadGroup
SchedulingGroup
ProcessingGroup

Description
A descendant class of ThreadGroup for handling tasks (instances of Schedulable
and java.lang.Thread) as a group. As with ThreadGroup and Scheduling-
Group, instances of ProcessingGroup can be nested. A processing group can
contain all group types, i.e., instance of all three classes. The cost of the group,
including all tasks in its subgroups, can be both tracked and limited over a given
period, by bounding the execution demands of those tasks.

172 RTSJ 2.0 (Draft 57)

ProcessingGroup javax.realtime 6.3

A processing group has an associated affinity. The precision of cost monitoring
is dependent on the number of processors in the thread group. In the worst case, it
is the base precision times the number of processors in the processing group. The
default affinity is that which was inherited from the parent SchedulingGroup.

For all tasks with a reference to an instance of ProcessingGroup p, no more
than p.cost will be allocated to the execution of these tasks on the processors
associated with its processing group in each interval of time given by p.period
after the time indicated by p.start. No execution of the tasks will be allowed
on any processor other than these processors.

For each running task in a processing group, there must always be at least one
processor in the intersection between a task object’s affinity and its processing
group’s affinity regardless of the group’s monitoring state.

Logically, a ProcessingGroup represents a virtual server. This server has a
start time, a period, a cost (budget), and a deadline. The server can only logically
execute when
• (a) it has not consumed more execution time in its current release than the

cost (budget) parameter,
• (b) one of its associated tasks is executable and is the most eligible of the

executable tasks.
When the server is logically executable, the associated tasks are executed.

When the cost has been consumed, any overrunHandler is released, and the
server is not eligible for logical execution until the period is finished. At this
point, its allocated cost (budget) is replenished. When the server is logically
executable when its deadline expires, any associated missHandler is released.
When the server is logically executable when its next release time occurs, any
associated underrunHandler is released.

The deadline and cost parameters of all the associated schedulable objects
have the same impact as they would if the objects were not bound to a processing
group.

Processing group parameters use HighResolutionTime values for cost, dead-
line, period and start time. Since those times are expressed as a HighReso-
lutionTime, the values use accurate timers with nanosecond granularity. The
actual resolution available and even the quantity it measures depends on the
clock associated with each time value.

When a reference to a ProcessingGroup object is given as a parameter to a
schedulable’s constructor or passed as an argument to one of the schedulable’s
setter methods, the ProcessingGroup object becomes the processing group
parameter object bound to that schedulable object. Changes to the values in the
ProcessingGroup object affect that schedulable object. When bound to more
than one schedulable then changes to the values in the ProcessingGroup object

RTSJ 2.0 (Draft 57) 173

6 Scheduling ProcessingGroup

affect all of the associated objects. Note that this is a one-to-many relationship
and not a many-to-many.

The implementation must use copy semantics for each HighResolutionTime
parameter value. The value of each time object should be copied at the time it is
passed to the parameter object, and the object reference must not be retained.
Only changes to a ProcessingGroup object caused by methods on that object
are immediately visible to the scheduler. For instance, invoking setPeriod()
on a ProcessingGroup object will make the change, then notify the scheduler
that the parameter object has changed. At that point the scheduler’s view of
the processing group parameters object is updated. Invoking a method on the
RelativeTime object that affects the period for this object may change the period
but it does not pass the change to the scheduler at that time. That new value for
period must not change the behavior of the SOs that use the parameter object
until a setter method on the ProcessingGroup object is invoked or the object is
used in a constructor for an SO.

The following table gives the default parameter values for the constructors.

Table 6.7: ProcessingGroup Default Values
Attribute Default Value

start new RelativeTime(0,0)
period No default. A value must be sup-

plied
cost No default. A value must be sup-

plied
deadline new RelativeTime(period)
minimum null, no minimum
overrunHandler None
missHandler None
underrunHandler None

Caution: This class is explicitly unsafe in multithreaded situations when it
is being changed. No synchronization is done. It is assumed that users of this
class who are mutating instances will be doing their own synchronization at a
higher level.

Caution: The cost parameter time should be considered to be measured
against the target platform.

Available since RTSJ 2.0

174 RTSJ 2.0 (Draft 57)

ProcessingGroup javax.realtime 6.3

6.3.3.9.1 Constructors

ProcessingGroup(SchedulingGroup, String, HighResolution-
Time, RelativeTime, RelativeTime, AsyncEventHandler,
RelativeTime, AsyncEventHandler)

Signature
public
ProcessingGroup(SchedulingGroup parent,

String name,
javax.realtime.HighResolutionTime<?> start,
RelativeTime period,
RelativeTime cost,
AsyncEventHandler overrun,
RelativeTime minimum,
AsyncEventHandler underrun)

Description
Creates a ProcessingGroup

Parameters
parent—The parent SchedulingGroup of this ProcessingGroup.
name—A string identifier for this group.
start—The time when monitoring should begin.
period—An amount of time for cost and overrun monitoring and for cost enforce-

ment.
cost—The maximum total execution time of all tasks in the group during a given

period.
overrun—It is called when the the total execution of all tasks in the group exceeds

cost for a given period.
minimum—The least amount of processing time that should be avaiable for all the

tasks in this group together.
underrun—A handler to be called at the end of period when the total processing

time of all tasks was less than minimum in the last period.

ProcessingGroup(SchedulingGroup, String, HighResolution-
Time, RelativeTime, RelativeTime, AsyncEventHandler)

RTSJ 2.0 (Draft 57) 175

6 Scheduling ProcessingGroup

Signature
public
ProcessingGroup(SchedulingGroup parent,

String name,
javax.realtime.HighResolutionTime<?> start,
RelativeTime period,
RelativeTime cost,
AsyncEventHandler overrun)

Description
Equivalent to ProcessingGroup(SchedulingGroup, String, HighResolu-
tionTime, RelativeTime, RelativeTime, AsyncEventHandler, Relative-
Time, AsyncEventHandler) with the argument list (parent, name, start,
period, cost, overrun, null, null).

ProcessingGroup(String, HighResolutionTime, Relative-
Time, RelativeTime, AsyncEventHandler)

Signature
public
ProcessingGroup(String name,

javax.realtime.HighResolutionTime<?> start,
RelativeTime period,
RelativeTime cost,
AsyncEventHandler overrun)

Description
Equivalent to ProcessingGroup(SchedulingGroup, String, HighReso-
lutionTime, RelativeTime, RelativeTime, AsyncEventHandler, Re-
lativeTime, AsyncEventHandler) with the argument list (Scheduler.
currentSchedulable().getSchedulingGroup(), name, start, period,
cost, overrun, null, null).

6.3.3.9.2 Methods

176 RTSJ 2.0 (Draft 57)

ProcessingGroup javax.realtime 6.3

getEffectiveStart(AbsoluteTime)

Signature
public javax.realtime.AbsoluteTime
getEffectiveStart(AbsoluteTime dest)

Description
Obtains the actual time of the group’s start as recorded by the system. When
the start time is absolute, that is the effective start time; otherwise, the effective
start is computed relative to the time that the processing group is constructed.

Parameters
dest—A time value to fill.

Returns
either, a new instance of AbsoluteTime, when dest is null, or dest otherwise. In

either case, its value is the time at which this group actually started.

getEffectiveStart

Signature
public javax.realtime.AbsoluteTime
getEffectiveStart()

Description
Obtains the actual time of the group’s start as recorded by the system.

Equivalent to getEffectiveStart(AbsoluteTime) where dest is set to null.

Returns
a reference to a new instance of AbsoluteTime that represents the time at which

this group started.

getPeriod(RelativeTime)

Signature
public javax.realtime.RelativeTime
getPeriod(RelativeTime dest)

Description
Gets the value of period in the provided RelativeTime object.

RTSJ 2.0 (Draft 57) 177

6 Scheduling ProcessingGroup

Parameters
dest—An instance of RelativeTime which will be set to the currently configured

period. If dest is null, a new RelativeTime will be created in the current
allocation context.

Returns
a reference to dest, or a newly created object if dest is null.

getPeriod

Signature
public javax.realtime.RelativeTime
getPeriod()

Description
Gets the value of period.

Equivalent to getPeriod(null).
Returns
a reference to a newly allocated instance of RelativeTime that represents the value

of period.

setPeriod(RelativeTime)

Signature
public javax.realtime.ProcessingGroup
setPeriod(RelativeTime period)
throws IllegalArgumentException,

IllegalAssignmentError

Description
Sets the value of period.

Parameters
period—The new value for period. There is no default value. When period is

null an exception is thrown.
Throws

IllegalArgumentException—when period is null, or its time value is not greater
than zero. When the implementation does not support processing group
deadline less than period, and period is not equal to the current value of the
processing group’s deadline, the deadline is set to a clone of period created in
the same memory area as period.

178 RTSJ 2.0 (Draft 57)

ProcessingGroup javax.realtime 6.3

Returns
this

getMaximumCost(RelativeTime)

Signature
public javax.realtime.RelativeTime
getMaximumCost(RelativeTime dest)

Description
Gets the value of cost in the provided RelativeTime object.

Parameters
dest—An instance of RelativeTime which will be set to the currently configured

cost. If dest is null, a new RelativeTime will be created in the current
allocation context.

Returns
a reference to dest, or a newly created object if dest is null.

getMaximumCost

Signature
public javax.realtime.RelativeTime
getMaximumCost()

Description
Gets the value of cost.

Equivalent to getMaximumCost(null).

Returns
a reference to a newly allocated object containing the value of cost.

setMaximumCost(RelativeTime)

Signature
public javax.realtime.ProcessingGroup
setMaximumCost(RelativeTime cost)
throws IllegalArgumentException,

IllegalAssignmentError

RTSJ 2.0 (Draft 57) 179

6 Scheduling ProcessingGroup

Description
Sets the value of cost.

Parameters
cost—The new value for cost. When null, an exception is thrown.

Throws
IllegalArgumentException—when cost is null or its time value is less than zero.

Returns
this

getMinimumCost(RelativeTime)

Signature
public javax.realtime.RelativeTime
getMinimumCost(RelativeTime dest)

Description
Gets the value of minimum and returns it in the provided RelativeTime object.

Parameters
dest—An instance of RelativeTime which will be set to the currently configured

minimum. If dest is null, a new RelativeTime will be created in the current
allocation context.

Returns
a reference to dest, or a newly created object if dest is null.

getMinimumCost

Signature
public javax.realtime.RelativeTime
getMinimumCost()

Description
Gets the value of minimum and returns it in a newly allocated object.

Equivalent to getMinimumCost(null).

Returns
a reference to the value of minimum.

180 RTSJ 2.0 (Draft 57)

ProcessingGroup javax.realtime 6.3

setMinimumCost(RelativeTime)

Signature
public javax.realtime.ProcessingGroup
setMinimumCost(RelativeTime cost)
throws IllegalArgumentException,

IllegalAssignmentError

Description
Sets the value of minimum.

Parameters
cost—The new value for minimum. When null, an exception is thrown.

Throws
IllegalArgumentException—when minimum is null or its time value is less than

zero.
Returns
this

getCostUnderrunHandler

Signature
public javax.realtime.AsyncEventHandler
getCostUnderrunHandler()

Description
Gets the cost underrun handler.

Returns
a reference to an instance of AsyncEventHandler that is cost overrun handler of

this.

setCostUnderrunHandler(AsyncEventHandler)

Signature
public javax.realtime.ProcessingGroup
setCostUnderrunHandler(AsyncEventHandler handler)
throws IllegalAssignmentError

Description

RTSJ 2.0 (Draft 57) 181

6 Scheduling ProcessingGroup

Sets the cost underrun handler.

Parameters
handler—This handler is invoked when the run() method of the schedulables

attempts to execute for more than cost time units in any period. When null,
no handler is attached, and any previous handler is removed.

Throws
IllegalAssignmentError—when handler cannot be stored in this.

Returns
this

getCostOverrunHandler

Signature
public javax.realtime.AsyncEventHandler
getCostOverrunHandler()

Description
Gets the cost overrun handler.

Returns
a reference to an instance of AsyncEventHandler that is cost overrun handler of

this.

setCostOverrunHandler(AsyncEventHandler)

Signature
public javax.realtime.ProcessingGroup
setCostOverrunHandler(AsyncEventHandler handler)
throws IllegalAssignmentError

Description
Sets the cost overrun handler.

Parameters
handler—This handler is invoked when the run() method of the schedulables

attempts to execute for more than cost time units in any period. When null,
no handler is attached, and any previous handler is removed.

Throws
IllegalAssignmentError—when handler cannot be stored in this.

182 RTSJ 2.0 (Draft 57)

ProcessingGroup javax.realtime 6.3

Returns
this

enforcingCost

Signature
public boolean
enforcingCost()

Description
Determines whether or not cost is being enforced for releases.

Returns
true when enforcing code.

enforceCost

Signature
public void
enforceCost()
throws UnsupportedOperationException

Description
Starts cost enforcement at next release, when supported. Subsequent invocations
have no effect.

Throws
UnsupportedOperationException—when cost enforcement is not supported.

getCurrentCost(RelativeTime)

Signature
public javax.realtime.RelativeTime
getCurrentCost(RelativeTime dest)

Description
Gets the cost used in the current period so far.

Parameters

RTSJ 2.0 (Draft 57) 183

6 Scheduling ProcessingGroup

dest—The instance to use for returning the time. If dest is null, the result will be
returned in a newly allocated object.

Returns
dest containing the cost of the current period

getLastCost(RelativeTime)

Signature
public javax.realtime.RelativeTime
getLastCost(RelativeTime dest)

Description
Gets the total cost used in the last period.

Parameters
dest—It is the instance to use for returning the time. If dest is null, the result

will be returned in a newly allocated object.
Returns
dest containing the cost of the last period

getGranularity

Signature
public long
getGranularity()

Description
Determines the measurement granularity of cost monitoring and cost enforcement.

Returns
the granularity in nanoseconds.
See Section setGranularity

setGranularity(long)

Signature
public javax.realtime.ProcessingGroup
setGranularity(long nanos)

184 RTSJ 2.0 (Draft 57)

ReleaseParameters javax.realtime 6.3

throws IllegalArgumentException

Description
Sets the measurement granularity of cost monitoring and cost enforcement. The
system provides a lower bound for this. When nanos is below this lower bound,
granularity silently is set to the lower bound. In general, the lower bound is the
precision of the realtime clock.

Note that the ganularity applies to a single processor. When a processing group
spans more than one processor, the precision of cost monitoring or enforcement
is this ganularity times the number of active processors. This is because more
than one task could be running at the same time and cost can be measured at
most once per the elapse of this ganularity.

Parameters
nanos—the new granularity in nanoseconds.

Throws
IllegalArgumentException—when nanos is less than one.

Returns
this

6.3.3.10 ReleaseParameters

public abstract class ReleaseParameters
Inheritance
java.lang.Object
ReleaseParameters

Interfaces
Cloneable
Serializable

Description
The top-level class for release characteristics used by Schedulable. When a
reference to a ReleaseParameters object is given as a parameter to a constructor
of a schedulable, the ReleaseParameters object becomes bound to the object
being created. Changes to the values in the ReleaseParameters object affect the
constructed object. When given to more than one constructor, then changes to
the values in the ReleaseParameters object affect all of the associated objects.
Note that this is a one-to-many relationship and not a many-to-many.

RTSJ 2.0 (Draft 57) 185

6 Scheduling ReleaseParameters

Only changes to an ReleaseParameters object caused by methods on that
object cause the change to propagate to all schedulables using the object. For
instance, invoking setDeadline on a ReleaseParameters instance will make the
change, and then notify the scheduler that the object has been changed. At that
point the object is reconsidered for every SO that uses it. Invoking a method on
the RelativeTime object that is the deadline for this object may change the time
value but it does not pass the new time value to the scheduler at that time. Even
though the changed time value is referenced by ReleaseParameters objects, it
will not change the behavior of the SOs that use the parameter object until a
setter method on the ReleaseParameters object is invoked, the parameter object
is used in setReleaseParameters(), or the object is used in a constructor for a
schedulable.

Release parameters use HighResolutionTime values for cost, and deadline.
Since the times are expressed as HighResolutionTime values, these values use
accurate timers with nanosecond granularity. The actual precision available and
even the quantity the timers measure depend on the clock associated with each
time value.

The implementation must use modified copy semantics for each HighResolu-
tionTime parameter value. The value of each time object should be treated as
when it were copied at the time it is passed to the parameter object, but the object
reference must also be retained. For instance, the value returned by getCost()
must be the same object passed in by setCost(), but any changes made to the
time value of the cost must not take effect in the associated ReleaseParameters
instance unless they are passed to the parameter object again, e.g. with a new
invocation of setCost.

The following table gives the default parameter values for the constructors.

Table 6.8: ReleaseParameter Default Values
Attribute Default Value

cost new RelativeTime(0,0)
deadline no default
overrunHandler None
missHandler None
rousable false
initial event queue length 0

Caution: This class is explicitly unsafe for multithreading when being changed.
Code that mutates instances of this class should synchronize at a higher level.

186 RTSJ 2.0 (Draft 57)

ReleaseParameters javax.realtime 6.3

6.3.3.10.1 Constructors

ReleaseParameters(RelativeTime, RelativeTime, AsyncEv-
entHandler, AsyncEventHandler)

Signature
protected
ReleaseParameters(RelativeTime cost,

RelativeTime deadline,
AsyncEventHandler overrunHandler,
AsyncEventHandler missHandler)

Description
Creates a new instance of ReleaseParameters with the given parameter values.

Parameters
cost—Processing time units per release. On implementations which can measure

the amount of time a schedulable object is executed, when null, the default
value is a new instance of RelativeTime(0, 0).

deadline—The latest permissible completion time measured from the release time
of the associated invocation of the schedulable. There is no default for deadline
in this class. The default must be determined by the subclasses.

overrunHandler—This handler is invoked when an invocation of the schedulable
exceeds cost. In the minimum implementation overrunHandler is ignored.
When null, no application event handler is executed on cost overrun.

missHandler—This handler is invoked when the run() method of the schedulable is
still executing after the deadline has passed. When null, no application event
handler is executed on the miss deadline condition.

Throws
IllegalArgumentException—when the time value of cost is less than zero, or

the time value of deadline is less than or equal to zero, or the chronograph
associated with the cost or deadline parameters is not an instance of Clock.

IllegalAssignmentError—when cost, deadline, overrunHandler, or missHandler
cannot be stored in this.

ReleaseParameters

RTSJ 2.0 (Draft 57) 187

6 Scheduling ReleaseParameters

Signature
protected
ReleaseParameters()

Description
Equivalent to ReleaseParameters(RelativeTime, RelativeTime, AsyncEv-
entHandler, AsyncEventHandler) with the argument list (null, null, null,
null).

6.3.3.10.2 Methods

clone

Signature
public java.lang.Object
clone()

Description
Obtains a clone of this. This method should behave effectively as when it
constructed a new object with clones of the high-resolution time values of this.
• The new object is in the current allocation context.
• clone does not copy any associations from this and it does not implicitly

bind the new object to a SO.
• The new object has clones of all high-resolution time values (deep copy).
• References to event handlers are copied (shallow copy.)

Available since RTSJ 1.0.1

getCost

Signature
public javax.realtime.RelativeTime
getCost()

Description

188 RTSJ 2.0 (Draft 57)

ReleaseParameters javax.realtime 6.3

Determines the current value of cost.

Returns
the object last used to set the cost containing the current value of cost.

getCost(RelativeTime)

Signature
public javax.realtime.RelativeTime
getCost(RelativeTime value)

Description
Determines the current value of cost.

Parameters
value—The parameter in which to return the cost.

Returns
value or, when null, the last object used to set the cost, set to the current value

of cost.
Available since RTSJ 2.0

getCostOverrunHandler

Signature
public javax.realtime.AsyncEventHandler
getCostOverrunHandler()

Description
Gets a reference to the cost overrun handler.

Returns
a reference to the associated cost overrun handler.

getDeadline

Signature
public javax.realtime.RelativeTime
getDeadline()

RTSJ 2.0 (Draft 57) 189

6 Scheduling ReleaseParameters

Description
Determines the current value of deadline.

Returns
the object last used to set the deadline containing the current value of deadline.

getDeadline(RelativeTime)

Signature
public javax.realtime.RelativeTime
getDeadline(RelativeTime value)

Description
Determines the current value of deadline.

Parameters
value—The parameter in which to return the deadline.

Returns
value or, when null, the last object used to set the deadline, set to the current

value of deadline.

Available since RTSJ 2.0

getDeadlineMissHandler

Signature
public javax.realtime.AsyncEventHandler
getDeadlineMissHandler()

Description
Gets a reference to the deadline miss handler.

Returns
a reference to the deadline miss handler.

setCost(RelativeTime)

Signature

190 RTSJ 2.0 (Draft 57)

ReleaseParameters javax.realtime 6.3

public javax.realtime.ReleaseParameters
setCost(RelativeTime cost)

Description
Sets the cost value.

When this parameter object is associated with any schedulable object (by
being passed through the schedulable’s constructor or set with a method such
as RealtimeThread.setReleaseParameters(ReleaseParameters)) the cost of
those schedulables is altered as specified by each schedulable’s respective scheduler.

Parameters
cost—Processing time units per release. On implementations which can measure

the amount of time a schedulable is executed, this value is the maximum
amount of time a schedulable receives per release. On implementations which
cannot measure execution time, it is not possible to determine when any
particular object exceeds cost. When null, the default value is a new instance
of RelativeTime(0,0).

Throws
IllegalArgumentException—when the time value of cost is less than zero, or

the clock associated with the cost parameters is not the realtime clock.
IllegalAssignmentError—when cost cannot be stored in this.

Returns
this

Available since RTSJ 2.0 returns itself

setCostOverrunHandler(AsyncEventHandler)

Signature
public javax.realtime.ReleaseParameters
setCostOverrunHandler(AsyncEventHandler handler)
throws UnsupportedOperationException,

IllegalAssignmentError

Description
Sets the cost overrun handler.

When this parameter object is associated with any schedulable object (by
being passed through the schedulable’s constructor or set with a method such as

RTSJ 2.0 (Draft 57) 191

6 Scheduling ReleaseParameters

RealtimeThread.setReleaseParameters(ReleaseParameters)) the cost over-
run handler of those schedulables is altered as specified by each schedulable’s
respective scheduler.

Parameters
handler—This handler is invoked when an invocation of the schedulable attempts

to exceed cost time units in a release. A null value of handler signifies that
no cost overrun handler should be used.

Throws
IllegalAssignmentError—when handler cannot be stored in this.
UnsupportedOperationException—when cost enforcement is not supported.

Returns
this

Available since RTSJ 2.0 returns itself

setDeadline(RelativeTime)

Signature
public javax.realtime.ReleaseParameters
setDeadline(RelativeTime deadline)

Description
Sets the deadline value.

When this parameter object is associated with any schedulable object (by
being passed through the schedulable’s constructor or set with a method such as
RealtimeThread.setReleaseParameters(ReleaseParameters)) the deadline
of those schedulables is altered as specified by each schedulable’s respective
scheduler.

Parameters
deadline—The latest permissible completion time measured from the release time

of the associated invocation of the schedulable. The default value of the
deadline must be controlled by the classes that extend ReleaseParameters.

Throws
IllegalArgumentException—when deadline is null, the time value of dead-

line is less than or equal to zero, or when the new value of this deadline is
incompatible with the scheduler for any associated schedulable.

IllegalAssignmentError—when deadline cannot be stored in this.
Returns

192 RTSJ 2.0 (Draft 57)

ReleaseParameters javax.realtime 6.3

this

Available since RTSJ 2.0 returns itself

setDeadlineMissHandler(AsyncEventHandler)

Signature
public javax.realtime.ReleaseParameters
setDeadlineMissHandler(AsyncEventHandler handler)

Description
Sets the deadline miss handler.

When this parameter object is associated with any schedulable object (by
being passed through the schedulable’s constructor or set with a method such as
RealtimeThread.setReleaseParameters(ReleaseParameters)) the deadline
miss handler of those schedulables is altered as specified by each schedulable’s
respective scheduler.

Parameters
handler—This handler is invoked when any release of the schedulable fails to

complete before the deadline passes. A null value of handler signifies that
no deadline miss handler should be used.

Throws
IllegalAssignmentError—when handler cannot be stored in this.

Returns
this

Available since RTSJ 2.0 returns itself

isRousable

Signature
public boolean
isRousable()

Description
Determines whether or not a thread interrupt will cause instances of Schedulable
associated with an instance of this class to be prematurely released.

RTSJ 2.0 (Draft 57) 193

6 Scheduling ReleaseParameters

Note that the rousable state has no effect on instances of RealtimeThread
which have an instance of BackgroundParameters for ReleaseParameters or
on ordinary event handlers, i.e., those which do not extend ActiveEvent. In the
former case, there are no releases to interrupt and, in the case, the handler does
not have a ActiveEventDispatcher to release it.

Returns
true when rousable and false when not.
Available since RTSJ 2.0

setRousable(boolean)

Signature
public javax.realtime.ReleaseParameters
setRousable(boolean value)

Description
Dictates whether or not a thread interrupt will cause instances of Schedulable
associated with an instance of this class to be prematurely released.

Parameters
value—When rousable, true and false when not.

Returns
this

Available since RTSJ 2.0

enforcingCost

Signature
public boolean
enforcingCost()

Description
Determines whether or not cost is being enforced for releases.

Returns
true when enforcing code.
Available since RTSJ 2.0

194 RTSJ 2.0 (Draft 57)

ReleaseParameters javax.realtime 6.3

enforceCost(boolean)

Signature
public void
enforceCost(boolean value)
throws UnsupportedOperationException

Description
Sets cost enforcement.

Parameters
value—true when enforcing code.

Throws
UnsupportedOperationException—when cost enforcement is not supported on

this platform.

Available since RTSJ 2.0

getEventQueueOverflowPolicy

Signature
public javax.realtime.QueueOverflowPolicy
getEventQueueOverflowPolicy()

Description
Gets the behavior of the arrival time queue in the event of an overflow.

Returns
the behavior of the arrival time queue.

Available since RTSJ 2.0

setEventQueueOverflowPolicy(QueueOverflowPolicy)

Signature
public javax.realtime.ReleaseParameters
setEventQueueOverflowPolicy(QueueOverflowPolicy policy)

Description

RTSJ 2.0 (Draft 57) 195

6 Scheduling ReleaseParameters

Sets the policy for the arrival time queue for when the insertion of a new element
would make the queue size greater than the initial size given in this.

Parameters
policy—A queue overflow policy to use for handlers associated with this.

Returns
this

Available since RTSJ 2.0

getInitialQueueLength

Signature
public int
getInitialQueueLength()

Description
Gets the initial number of elements the event queue can hold. This returns the
initial queue length currently associated with this parameter object. When the
overflow policy is SAVE the initial queue length may not be related to the current
queue lengths of schedulables associated with this parameter object.

Returns
the initial length of the queue.
Available since RTSJ 2.0 replaces the subclasse method AperiodicParameters.
getInitialArrivalTimeQueueLength().

setInitialQueueLength(int)

Signature
public javax.realtime.ReleaseParameters
setInitialQueueLength(int initial)

Description
Sets the initial number of elements the arrival time queue can hold without
lengthening the queue. The initial length of an arrival queue is set when the
schedulable using the queue is constructed, after that time changes in the initial
queue length are ignored. The queue may have a length of zero, i.e., any event,
along with its arrival time, received during a previous release is lost.

196 RTSJ 2.0 (Draft 57)

RoundRobinScheduler javax.realtime 6.3

Parameters
initial—The initial length of the queue.

Throws
IllegalArgumentException—when initial is less than zero.

Returns
this

Available since RTSJ 2.0 replaces the subclass method AperiodicParameters.
setInitialArrivalTimeQueueLength(int).

6.3.3.11 RoundRobinScheduler

public class RoundRobinScheduler

Inheritance
java.lang.Object
Scheduler
PriorityScheduler
RoundRobinScheduler

Description
Class which represents a priority-based round-robin scheduler.

The default instance of this scheduler (returned by instance()) represents
the RTSJ-specified round-robin scheduler.

Available since RTSJ 2.0

6.3.3.11.1 Methods

instance

Signature
public static javax.realtime.RoundRobinScheduler
instance()

Description

RTSJ 2.0 (Draft 57) 197

6 Scheduling RoundRobinScheduler

Gets a reference to the distinguished instance of RoundRobinScheduler which is
the RTSJ-specified round-robin scheduler.

Throws
UnsupportedOperationException—if this platform has no default round-robin

scheduler.
Returns
a reference to the distinguished instance of RoundRobinScheduler

setQuantum(RelativeTime)

Signature
public javax.realtime.RoundRobinScheduler
setQuantum(RelativeTime quantum)
throws UnsupportedOperationException,

IllegalArgumentException

Description
Sets the quantum of this instance of RoundRobinScheduler. This takes effect at
the end of the current quantum.

Parameters
quantum—The new quantum to use. Copy semantics are used for this argument,

and future changes to quantum will not affect this scheduler unless it is again
passed to setQuantum().

Throws
UnsupportedOperationException—if this scheduler’s quantum is not configurable

at runtime.
IllegalArgumentException—if the provided quantum is null, less than zero, or

not appropriate for this platform.
Returns
this

getQuantum

Signature
public javax.realtime.RelativeTime
getQuantum()

198 RTSJ 2.0 (Draft 57)

RoundRobinScheduler javax.realtime 6.3

Description
Gets the quantum of this instance of RoundRobinScheduler.

Returns
a newly-allocated RelativeTime containing the currently-configured quantum of

this scheduler.

getQuantum(RelativeTime)

Signature
public javax.realtime.RelativeTime
getQuantum(RelativeTime dest)

Description
Gets the quantum of this instance of RoundRobinScheduler.

Parameters
dest—A time object in which to hold the quantum. When dest is null, a new

RelativeTime instance is allocated to hold the returned value.
Returns
the currently-configured quantum of this scheduler.

getMaxPriority

Signature
public int
getMaxPriority()

Description
Gets the maximum priority available for a schedulable managed by this scheduler.

Returns
the value of the maximum priority.

getMinPriority

Signature
public int
getMinPriority()

RTSJ 2.0 (Draft 57) 199

6 Scheduling RoundRobinScheduler

Description
Gets the minimum priority available for a schedulable managed by this scheduler.

Returns
the minimum priority used by this scheduler.

getNormPriority

Signature
public int
getNormPriority()

Description
Gets the normal priority available for a schedulable managed by this scheduler.

Returns
the value of the normal priority.

getPolicyName

Signature
public java.lang.String
getPolicyName()

Description
Gets the policy name of this.

Returns
the policy name (Fixed Priority Round Robin) as a string.

reschedule(Thread, int)

Signature
public void
reschedule(Thread thread,

int priority)

Description

200 RTSJ 2.0 (Draft 57)

Scheduler javax.realtime 6.3

Promotes a java.lang.Thread to realtime priority under this scheduler. The
affected thread will be scheduled as if it were a RealtimeThread of the given
priority. This does not make the affected thread a RealtimeThread, so it will
not have access to facilities reserved for instances of RealtimeThread.

The method Thread.setPriority(int) can be used to reschedule back to
the conventional Java priority levels.

Parameters
thread—The thread to promote to realtime scheduling.
priority—An integer priority equivalent to a priority set via PriorityParameters

on a RealtimeThread.
Throws

IllegalArgumentException—when thread is null or priority is not between
getMinPriority() and getMaxPriority(), inclusive.

6.3.3.12 Scheduler

public abstract class Scheduler
Inheritance
java.lang.Object
Scheduler

Description
An instance of Scheduler manages the execution of schedulables.

Subclasses of Scheduler are used for alternative scheduling policies and
should define an instance() class method to return the default instance of
the subclass. The name of the subclass should be descriptive of the policy,
allowing applications to deduce the policy available for the scheduler obtained
via Scheduler.getDefaultScheduler (e.g., EDFScheduler).

6.3.3.12.1 Constructors

Scheduler

Signature

RTSJ 2.0 (Draft 57) 201

6 Scheduling Scheduler

protected
Scheduler()

Description
Creates an instance of Scheduler.

6.3.3.12.2 Methods

getDefaultScheduler

Signature
public static javax.realtime.Scheduler
getDefaultScheduler()

Description
Gets a reference to the default scheduler.

Returns
a reference to the default scheduler.

setDefaultScheduler(Scheduler)

Signature
public static void
setDefaultScheduler(Scheduler scheduler)

Description
Sets the default scheduler. This is the scheduler given to instances of schedulables
when they are constructed by a Java thread. The default scheduler is set to the
required PriorityScheduler at startup.

Parameters
scheduler—The Scheduler that becomes the default scheduler assigned to new

schedulables created by Java threads. When null nothing happens.
Throws

SecurityException—when the caller is not permitted to set the default scheduler.

202 RTSJ 2.0 (Draft 57)

Scheduler javax.realtime 6.3

inSchedulableExecutionContext

Signature
public static boolean
inSchedulableExecutionContext()

Description
Determines whether the current calling context is a Schedulable: Realtime-
Thread or AsyncBaseEventHandler.

Returns
true when yes and false otherwise.

Available since RTSJ 2.0

currentSchedulable

Signature
public static javax.realtime.Schedulable
currentSchedulable()

Description
Gets the current execution context when called from a Schedulable execution
context.

Throws
ClassCastException—when the caller is not a Schedulable

Returns
the current Schedulable.

Available since RTSJ 2.0

getPolicyName

Signature
public abstract java.lang.String
getPolicyName()

Description

RTSJ 2.0 (Draft 57) 203

6 Scheduling SchedulingGroup

Gets a string representing the policy of this. The string value need not be
interned, but it must be created in a memory area that does not cause an illegal
assignment error when stored in the current allocation context and does not cause
a MemoryAccessError when accessed.

Returns
a String object which is the name of the scheduling policy used by this.

6.3.3.13 SchedulingGroup

public class SchedulingGroup

Inheritance
java.lang.Object
java.lang.ThreadGroup
SchedulingGroup

Description
An enhanced ThreadGroup in which a Schedulable may be started. Limits for
what realtime scheduler and scheduling parameters can be enforced on all tasks in
this group. A normal ThreadGroup may not contain an instance of Schedulable,
but may contain other instances of SchedulingGroup to form a hierarchy. Every
task is in some instance of ThreadGroup and every instance of Schedulable is
in some instance of SchedulingGroup.

Available since RTSJ 2.0

6.3.3.13.1 Constructors

SchedulingGroup(SchedulingGroup, String)

Signature
public
SchedulingGroup(SchedulingGroup parent,

String name)

204 RTSJ 2.0 (Draft 57)

SchedulingGroup javax.realtime 6.3

Description

Creates a new scheduling group.

Parameters
parent—The parent group of the new group
name—The name of the new group

Throws
IllegalStateException—when the parent ThreadGroup instance is not an in-

stance of SchedulingGroup.
IllegalAssignmentError—when the parent ThreadGroup instance is not

assignable to this.

SchedulingGroup(String)

Signature
public
SchedulingGroup(String name)
throws IllegalStateException,

IllegalAssignmentError

Description

Creates a new group with the current ThreadGroup instance as its parent, so
long as it is an instance of SchedulingGroup.

Parameters
name—The name of the new group

Throws
IllegalStateException—when the parent ThreadGroup instance is not an in-

stance of SchedulingGroup.
IllegalAssignmentError—when the parent ThreadGroup instance is not

assignable to this.

6.3.3.13.2 Methods

RTSJ 2.0 (Draft 57) 205

6 Scheduling SchedulingGroup

getMaxEligibility

Signature
public javax.realtime.SchedulingParameters
getMaxEligibility()

Description
Finds the upper bound on scheduling eligibility that tasks in this group may
have. For example, when it is an instance of PriorityParameters, it gives the
maximum base priority any task in this group.

Returns
the scheduling parameter instance denoting the upper bound on the scheduling

eligibility of threads in this group, null when no such bound has been specified.

setMaxEligibility(SchedulingParameters)

Signature
public javax.realtime.SchedulingGroup
setMaxEligibility(SchedulingParameters parameters)
throws IllegalStateException

Description
Sets the upper bound on scheduling eligibility that tasks in this group may
have. For example, when it is an instance of PriorityParameters, it sets the
maximum base priority any task in this group may have. When a task in the
group has a higher eligibility than specified in parameters, the task’s eligibility
is silently set to the max specified in parameters.

When the new eligibility is higher than that of any parent’s eligibility, then
eligibility is set to the minimum of those priorities. When a child of this Sched-
ulingGroup has a higher max eligibility than specified in parameters, its max
eligibility is silently set to the max specified in parameters as if setMaxEligi-
bility were invoked on it recursively.

When a task in this SchedulingGroup or a child of this SchedulingGroup has
previously had its maximum eligibility reduced by a call to this method, setting
a higher maximum eligibility via this method will not automatically reraise its
eligibility.

Parameters
parameters—The SchedulingParameter instance denoting the new upper bound

on the scheduling eligibility of threads in this group.

206 RTSJ 2.0 (Draft 57)

SchedulingGroup javax.realtime 6.3

Throws
IllegalStateException—when parameters are not consistent with the scheduler

type.
IllegalArgumentException—when parameters is a higher eligibility than the max

eligibility enforced by a SchedulingParameters above this in the hierarchy.
Returns
this

getScheduler

Signature
public java.lang.Class<javax.realtime.Scheduler>
getScheduler()

Description
Finds the type of scheduler tasks in this group may use. The scheduler
of each thread must be an instance of the type returned. The default is
class<Scheduler>, but it may be set to any subtype.

Returns
the scheduler type

setScheduler(Class)

Signature
public javax.realtime.SchedulingGroup
setScheduler(java.lang.Class<javax.realtime.Scheduler> type)

Description
Limits the schedulers that may be used for tasks in this group.

Parameters
type—The type of scheduler of which the schedulers of all tasks must be instances.

Throws
IllegalStateException—when a thread in the group has a scheduler that is

not an instance of type or getMaxEligibility returns parameters that are
inconsistent with the scheduler type.

Returns
this

RTSJ 2.0 (Draft 57) 207

6 Scheduling SchedulingGroup

getAffinity

Signature
public javax.realtime.Affinity
getAffinity()

Description
Determines the affinity set instance associated with this group.

Returns
The associated affinity set.

setAffinity(Affinity)

Signature
public void
setAffinity(Affinity set)
throws IllegalArgumentException,

ProcessorAffinityException,
NullPointerException

Description
Sets the processor affinity of this group to set with immediate effect.

Parameters
set—The processor affinity set

Throws
IllegalArgumentException—when the intersection of set and the affinity of any

task in group is empty, or when the disjunction of set and the affinity of any
ThreadGroup containing group is not empty.

ProcessorAffinityException—when the runtime fails to set the affinity for
platform-specific reasons or group contains more than one processor.

NullPointerException—when set is null.

visitChildren(Consumer)

Signature
public void
visitChildren(java.util.function.Consumer<java.lang.ThreadGroup> visitor)

208 RTSJ 2.0 (Draft 57)

SchedulingParameters javax.realtime 6.3

throws ForEachTerminationException

Description

Performs some operation on all the children of the current group. The traversal
of the children continues as long as visitor does not throw a ForEachTermi-
nationException. Thus the traversal can be prematurely ended by visitor
throwing this exception, e.g., when a particular element is found.

Parameters
visitor—The function to be called on each child thread group.

Throws
ForEachTerminationException—when the traversal ends prematurely.

6.3.3.14 SchedulingParameters

public abstract class SchedulingParameters

Inheritance
java.lang.Object
SchedulingParameters

Interfaces
Cloneable
Serializable

Description

Subclasses of SchedulingParameters (PriorityParameters, ImportancePa-
rameters, and any others defined for particular schedulers) provide the pa-
rameters to be used by the Scheduler. Changes to the values in a parameters
object affects the scheduling behavior of all the Schedulable objects to which it
is bound.

Caution: This class is explicitly unsafe for multithreading when being changed.
Code that mutates instances of this class should synchronize at a higher level.

6.3.3.14.1 Constructors

RTSJ 2.0 (Draft 57) 209

6 Scheduling SchedulingParameters

SchedulingParameters

Signature
protected
SchedulingParameters()

Description
Creates a new instance of SchedulingParameters.

Available since RTSJ 1.0.1

6.3.3.14.2 Methods

clone

Signature
public java.lang.Object
clone()

Description
Creates a clone of this. This method should behave effectively as if it constructed
a new object with clones of the high-resolution time values of this.
• The new object is in the current allocation context.
• clone does not copy any associations from this and it does not implicitly

bind the new object to a SO.
• The new object has clones of all high-resolution time values (deep copy).
• References to event handlers are copied (shallow copy.)

Available since RTSJ 1.0.1

isCompatible(Class)

Signature
public boolean
isCompatible(java.lang.Class<javax.realtime.Scheduler> type)

210 RTSJ 2.0 (Draft 57)

SporadicParameters javax.realtime 6.3

Description
Determines whether this scheduling parameters can be used by tasks scheduled
by instances of type.

Parameters
type—It is the type of scheduler to check against

Returns
true when and only when this can be used with type as the scheduler.

Available since RTSJ 2.0

6.3.3.15 SporadicParameters

public class SporadicParameters

Inheritance
java.lang.Object
ReleaseParameters
AperiodicParameters
SporadicParameters

Description
A notice to the scheduler that the associated schedulable will be released aperi-
odically but with a minimum time between releases.

When a reference to a SporadicParameters object is given as a parameter to
a schedulable’s constructor or passed as an argument to one of the schedulable’s
setter methods, the SporadicParameters object becomes the release parameters
object bound to that schedulable. Changes to the values in the SporadicPa-
rameters object affect that schedulable object. When bound to more than one
schedulable then changes to the values in the SporadicParameters object affect
all of the associated objects. Note that this is a one-to-many relationship and
not a many-to-many.

The implementation must use modified copy semantics for each HighReso-
lutionTime parameter value. The value of each time object should be treated
as when it were copied at the time it is passed to the parameter object, but the
object reference must also be retained. Only changes to a SporadicParameters
object caused by methods on that object cause the change to propagate to all
schedulables using the parameter object. For instance, calling setCost on a
SporadicParameters object will make the change, then notify the scheduler that
the parameter object has changed. At that point the object is reconsidered for

RTSJ 2.0 (Draft 57) 211

6 Scheduling SporadicParameters

every SO that uses it. Invoking a method on the RelativeTime object that is
the cost for this object may change the cost but it does not pass the change to
the scheduler at that time. That change must not change the behavior of the SOs
that use the parameter object until a setter method on the SporadicParameters
object is invoked, the parameter object is used in setReleaseParameters(), or
the object is used in a constructor for an SO.

The following table gives the default parameter values for the constructors.

Table 6.9: SporadicParameters Default Values
Attribute Value

minInterarrival time No default. A value must be sup-
plied

cost new RelativeTime(0,0)
deadline new RelativeTime(mit)
overrunHandler None
missHandler None
rousable false
MIT violation policy SAVE
Arrival queue overflow policy SAVE
Initial arrival queue length 0

This class enables the application to specify one of four arrival behaviors
defined by MinimumInterarrivalPolicy. Each behavior indicates what to do
when an arrival occurs that is closer in time to the previous arrival than the value
given in this class as minimum interarrival time. They also specify what to do
when, for any reason, the queue overflows, and what the initial size of the queue
should be.

Caution: This class is explicitly unsafe for multithreading when being changed.
Code that mutates instances of this class should synchronize at a higher level.

6.3.3.15.1 Constructors

SporadicParameters(RelativeTime, RelativeTime, Relative-
Time, AsyncEventHandler, AsyncEventHandler, boolean)

212 RTSJ 2.0 (Draft 57)

SporadicParameters javax.realtime 6.3

Signature
public
SporadicParameters(RelativeTime minInterarrival,

RelativeTime cost,
RelativeTime deadline,
AsyncEventHandler overrunHandler,
AsyncEventHandler missHandler,
boolean rousable)

Description
Creates a SporadicParameters object.

Available since RTSJ 2.0

Parameters
minInterarrival—The release times of the schedulable will occur no closer than

this interval. This time object is treated as if it were copied. Changes to
minInterarrival will not affect the SporadicParameters object. There is no
default value. When minInterarrival is null an illegal argument exception
is thrown.

cost—Processing time per release. On implementations which can measure the
amount of time a schedulable is executed, this value is the maximum amount
of time a schedulable receives per release. When null, the default value is a
new instance of RelativeTime(0,0).

deadline—The latest permissible completion time measured from the release time
of the associated invocation of the schedulable. When null, the default value is
a new instance of minInterarrival: new RelativeTime(minInterarrival).

overrunHandler—This handler is invoked when an invocation of the schedulable
exceeds cost. Not required for minimum implementation. When null no
overrun handler will be used.

missHandler—This handler is invoked when the run() method of the schedulable
is still executing after the deadline has passed. When null, no deadline miss
handler will be used.

rousable—Determines whether or not an instance of Schedulable can be prema-
turely released by a thread interrupt.

Throws
IllegalArgumentException—when minInterarrival is null or its time value is

not greater than zero, or the time value of cost is less than zero, or the time
value of deadline is not greater than zero, or when the chronograph associated
with deadline and minInterarrival parameters are not identical or not an

RTSJ 2.0 (Draft 57) 213

6 Scheduling SporadicParameters

instance of Clock.
IllegalAssignmentError—when minInterarrival, cost, deadline, overrun-

Handler or missHandler cannot be stored in this.

SporadicParameters(RelativeTime, RelativeTime, Relative-
Time, AsyncEventHandler, AsyncEventHandler)

Signature
public
SporadicParameters(RelativeTime minInterarrival,

RelativeTime cost,
RelativeTime deadline,
AsyncEventHandler overrunHandler,
AsyncEventHandler missHandler)

Description
Equivalent to SporadicParameters(RelativeTime, RelativeTime, Rela-
tiveTime, AsyncEventHandler, AsyncEventHandler, boolean) with an ar-
gument list of (minInterarrival, cost, deadline, overrunHandler, mis-
sHandler, false).

SporadicParameters(RelativeTime, RelativeTime, AsyncEv-
entHandler, boolean)

Signature
public
SporadicParameters(RelativeTime minInterarrival,

RelativeTime deadline,
AsyncEventHandler missHandler,
boolean rousable)

Description
Equivalent to SporadicParameters(RelativeTime, RelativeTime, Rela-
tiveTime, AsyncEventHandler, AsyncEventHandler, boolean) with an ar-
gument list of (minInterarrival, null, deadline, null, missHandler,
rousable).

214 RTSJ 2.0 (Draft 57)

SporadicParameters javax.realtime 6.3

Available since RTSJ 2.0

SporadicParameters(RelativeTime)

Signature
public
SporadicParameters(RelativeTime minInterarrival)

Description
Equivalent to SporadicParameters(RelativeTime, RelativeTime, Rela-
tiveTime, AsyncEventHandler, AsyncEventHandler, boolean) with an ar-
gument list of (minInterarrival, null, null, null, null, false).

Available since RTSJ 1.0.1

6.3.3.15.2 Methods

getMinimumInterarrival

Signature
public javax.realtime.RelativeTime
getMinimumInterarrival()

Description
Determines the current value of minimal interarrival.

Returns
the object last used to set the minimal interarrival containing the current value of

minimal interarrival.

getMinimumInterarrival(RelativeTime)

Signature
public javax.realtime.RelativeTime
getMinimumInterarrival(RelativeTime value)

RTSJ 2.0 (Draft 57) 215

6 Scheduling SporadicParameters

Description
Determines the current value of minimum interarrival.

Returns
value or, when null, the last object used to set the minimal interarrival, set to

the current value of minimal interarrival.
Available since RTSJ 2.0

setMinimumInterarrival(RelativeTime)

Signature
public javax.realtime.SporadicParameters
setMinimumInterarrival(RelativeTime minimum)

Description
Sets the minimum interarrival time.

Parameters
minimum—The release times of the schedulable will occur no closer than this interval.

Throws
IllegalArgumentException—when minimum is null or its time value is not greater

than zero.
IllegalAssignmentError—when minimum cannot be stored in this.

Returns
this

Available since RTSJ 2.0 returns itself

setMinimumInterarrivalPolicy(MinimumInterarrivalPolicy)

Signature
public javax.realtime.SporadicParameters
setMinimumInterarrivalPolicy(MinimumInterarrivalPolicy policy)

Description
Sets the policy for handling the arrival time queue when the new arrival time is
closer to the previous arrival time than the minimum interarrival time given in
this.

216 RTSJ 2.0 (Draft 57)

javax.realtime 6.4

Parameters
policy—The current policy for MIT violations.
Available since RTSJ 2.0

getMinimumInterarrivalPolicy

Signature
public javax.realtime.MinimumInterarrivalPolicy
getMinimumInterarrivalPolicy()

Description
Gets the arrival time queue policy for handling minimal interarrival time under-
flow.

Returns
the minimum interarrival time violation behavior as a string.

Available since RTSJ 2.0

setEventQueueOverflowPolicy(QueueOverflowPolicy)

Signature
public javax.realtime.SporadicParameters
setEventQueueOverflowPolicy(QueueOverflowPolicy policy)
throws IllegalArgumentException

Description
Sets the policy for the arrival time queue for when the insertion of a new element
would make the queue size greater than the initial size given in this.

Parameters
policy—The new overflow policy to use.

Throws
IllegalArgumentException—when policy is QueueOverflowPolicy.DISABLE.

Returns
this

RTSJ 2.0 (Draft 57) 217

6 Scheduling

6.4 Rationale

As specified, the required semantics of this section establish a scheduling policy
that is very similar to the scheduling policies found on the vast majority of realtime
operating systems and kernels in commercial use today. The semantics for the base
scheduler accommodate existing practice, which is a stated goal of the effort.

There is an important division between priority schedulers that force periodic con-
text switching between tasks at the same priority, and those that do not cause these
context switches. By not specifying time slicing[1] behavior this specification calls for
the latter type of priority scheduler as the base scheduler: FirstInFirstOutSched-
uler. The specification supplies a second scheduler, RoundRobinScheduler, for
cases where time slicing behavior is desired. In POSIX terms, SCHED_FIFO meets
the RTSJ requirements for the base scheduler, and SCHED_RR meets the requirements
for the round-robin scheduler.

Although a system may not implement the first release (start) of a schedulable
as unblocking that schedulable, under the base scheduler those semantics apply; i.e.,
the schedulable is added to the tail of the queue for its active priority.

Some research shows that, given a set of reasonable common assumptions, 32
distinct priority levels are a reasonable choice for close-to-optimal scheduling efficiency
when using the rate-monotonic priority assignment algorithm on a single processor
system (256 priority levels provide better efficiency). This specification requires at
least 28 distinct priority levels as a compromise noting that implementations of this
specification will exist on systems with logic executing outside of the Java Virtual
Machine and may need priorities above, below, or both for system activities.

The default behavior for implementations that support cost monitoring and
enforcement is that a schedulable receives no more than cost units of CPU time
during each release. The programmer must explicitly change the cost attribute to
override the scheduler. The RTSJ allows schedulables to self suspend during a release,
in addition to that which might be necessary to acquire a lock. These self suspensions
must be time bounded.

Any self suspension which is not time bounded may undermine the cost enforce-
ment model specified in this document, as it may result in a schedulable suspending
beyond its next release event. This can result in more time being allocated than any
associated schedulability analysis might assume. See Dos Santos and Wellings for a
full discussion on the problem [4].

Cost enforcement may be deferred while the overrun schedulable holds locks
that are out of application control, such as locks used to protect garbage collection.
Applications should include the resulting jitter in any analysis that depends on cost
enforcement.

218 RTSJ 2.0 (Draft 57)

Rationale 6.4

6.4.1 SchedulingGroup and ProcessingGroup
The SchedulingGroup and ProcessingGroup classes were added in RTSJ 2.0 both to
support the notion of a subsystem constrained by the greater system configuration and
to generalize the existing notion of cost monitoring and enforcement for schedulables
to groups of schedulables. In addition, they provide a way to enable Java threads to
be elevated to realtime scheduling priorities in a controlled fashion.

A combination of security manager policy and the SchedulingGroup hierarchy
may be used to constrain the maximum priority directly configurable by an entire
subsystem. To achieve this, a SchedulingGroup with an appropriate maximum
priority must be created, the security manager must be configured to disallow threads
in that SchedulingGroup from accessing their parent SchedulingGroup, and all
threads for the subsystem must be created in that SchedulingGroup. This tactic
may even be used recursively. Similar practice can be used with ProcessingGroup to
constrain the maximum execution time allowable to a subsystem, or other properties
configurable in a processing group.

As previously mentioned, a motivation for adding SchedulingGroup as a subclass
of ThreadGroup is to clarify the relationship between Java threads and realtime
schedulers. In order to obtain realtime priorities, a Java thread must belong to
a SchedulingGroup. Its access to realtime scheduling is then restricted (with the
exception of priority inversion avoidance protocols, which ignore such restrictions)
by the configuration of its SchedulingGroup. This enables Java threads to obtain
realtime priorities in a controlled and predictable fashion. Likewise, realtime threads
(but not necessarily other schedulables) may obtain nonrealtime conventional Java
priorities by calling Thread.setPriority() on their RealtimeThread object. To
start a realtime thread with a nonrealtime priority, this call must be made prior to
the time at which the realtime thread is started.

A ProcessingGroup can also be used to apply cost monitoring and enforcement
to a collection of standard Java threads. However, note that placing a Java thread
directly in a ProcessingGroup, which is an instance of SchedulingGroup, may allow
it to obtain realtime priorities. This can be avoided by placing the Java threads
in a Java ThreadGroup which is in turn the child of an appropriately-configured
ProcessingGroup and applying security manager restrictions.

6.4.2 Multiprocessor Support
The support that the RTSJ provides for multiprocessor systems is primarily con-
strained by the support it can expect from the underlying operating system. The
following have had the most impact on the level of support that has been specified.

1. The notion of processor affinity is common across operating systems and has
become the accepted way to specify the constraints on which processor a thread

RTSJ 2.0 (Draft 57) 219

6 Scheduling

can execute. In some sense, processor affinities can be viewed as additional
release or scheduling parameters. However, to add them to the parameter
classes requires the support to be distributed throughout the specification with
a proliferation of new constructor methods. To avoid this, support is grouped
together within the Affinity class. The class also provides the addition of
processor affinity support to Java threads without modifying the thread object’s
visible API.

2. The range of processors on which global scheduling is possible is dictated by
the operating system. For SMP architectures, global scheduling across all
processors in the system is typically supported. However, an application and
an operator can constrain threads and processes to execute only within a subset
of the processors. As the number of processors increase, the scalability of
global scheduling is called into question. Hence, for (Nonuniform Memory
Access (NUMA) architectures some partitioning of the processors is likely to
be performed by the OS. Hence, global scheduling across all processors will
not be possible on these systems. For these reasons, the RTSJ supports an
array of predefined affinities. These are implementation-defined. They can be
used either to reflect the scheduling arrangement of the underlying OS or they
can be used by the system designer to impose defaults for, say, Java threads,
extraheap realtime schedulables etc. A program is only allowed to dynamically
create new affinities with cardinality of one. This restriction reflects the concern
that not all operating systems will support multiprocessor affinities.

3. Many OSs give system operators command-level dynamic control over the set
of processors allocated to a processes. Consequently, the realtime JVM has no
control over whether processors are dynamically added or removed from its OS
process. Predictability is a prime concern of the RTSJ. Clearly, dynamic changes
to the allocated processors will have a dramatic, and possibly catastrophic,
effect on the ability of the program to meet timing requirements. Hence, the
RTSJ assumes that the processor set allocated to the RTSJ process does not
change during its execution. A system that is capable of such manipulations
should not exercise it on RTSJ processes.

4. The reason the expert group decided not to add affinities to scheduling parame-
ters is that ASEH do not have a single server thread, hence forcing a particular
affinity would complicate the implementation.

6.4.3 Impact of Clock Granularity
All time-triggered computation can suffer from release jitter. This is defined to be the
variation in the actual time the computation becomes available for execution from
its scheduled release time. The amount of release jitter depends on two factors. The
first is the granularity of the clock/timer used to trigger the release. For example, a

220 RTSJ 2.0 (Draft 57)

Rationale 6.4

periodic event handler that is due to be released at absolute time T will actually
be release at time T + δ. δ is the difference between T and the first time the timer
clock advances to T0, where T0 >= T . The upper bound of δ is the value returned
from calling the getResolution method of the associated clock. It is for this reason
that the implementation of release times for periodic activities must use absolute
rather than relative time values, in order to avoid the drift accumulating.

The second contribution to release jitter is also related to the clock/timer. It
is the duration of interval between T0 being signaled by the clock/timer and the
time this event is noticed by the underlying operating system or platform (perhaps
because interrupts have been disabled). A compliant implementation of SCJ should
document the maximum value of δ for the realtime clock.

6.4.4 Deadline Miss Detection
Although RTSJ supports deadline miss detection, it is important to understand the
intrinsic limitations of the facility. The SCJ facility is supported using a time-
triggered event. All time-triggered computation can suffer from release jitter. Hence,
any deadline miss handler may not be released until sometime after the deadline has
expired. The handlers actual execution will depend on its priority relative to other
schedulables.

A related limitation is that a deadline can be missed but not detected. This can
occur when the deadline has been set at a smaller granularity than the detecting
timer. Consider an absolute deadline of D. Suppose that the next absolute time that
the timer can recognize is D + δ. When the associate thread finishes after D but
before D+ δ, it will have missed its deadline, but this miss will have been undetected.

A third limitation is due to the inherent race condition that is present when
checking for deadline misses. A deadline miss is defined to occur when a schedulable
has not completed the computation associated with its release before its deadline.
This completion event is signaled in the application code by the return of the
handleAsyncEvent method or a call to waitForNextRelease etc. When this occurs,
the infrastructure reschedules/cancels the timing event that signals the miss of a
deadline. This is clearly a race condition. The timer event could fire between the
last statement the completion event and the rescheduling/canceling of the timer
event. Hence a deadline miss could be signaled when arguably the application had
performed all of its computation.

RTSJ 2.0 (Draft 57) 221

6 Scheduling

222 RTSJ 2.0 (Draft 57)

Chapter 7

Synchronization

One of the strengths of Java is its language support for multithreading. This requires
synchronization. In a realtime system, there are additional requirements on this
synchronization. Therefore this specification not only tightens the semantics of the
synchronization declarations, but it also provides addition classes that specifically
manage synchronization.

This specification strengthens the semantics of Java synchronized code by
mandating monitor execution eligibility control, commonly referred to as priority
inversion control. The MonitorControl class is defined as the superclass of all such
execution eligibility control algorithms. Its subclasses PriorityInheritance and
PriorityCeilingEmulation avoid unbounded priority inversions, which would be
unacceptable in realtime systems.

The classes described below provide two main services.
1. They enable the setting of a priority inversion control policy either as the

default or for specific objects.
2. They also provide wait-free communication between schedulables (especially

instances of Schedulable, whose mayUseHeap is false) and regular Java
threads.

These classes establish a framework for priority inversion management that applies
to priority-oriented schedulers in general, and a specific set of requirements for the
base priority scheduler. The wait-free queue classes provide safe, concurrent access
to data shared between instances of schedulable objects without heap access and
schedulable objects subject to garbage collection delays.

7.1 Definitions
Scheduling Eligibility Inversion — When a more important task is blocked by

a less important task. This is usually caused by synchronization, where a

223

7 Synchronization

more important task must wait for a less important task to release a required
resource, which can in turn be blocked by a task of intermediate importance.
The classical example is priority inversion in a system with a priority-based
scheduler.

Governed by — An object A that has been assigned (either by default or via an
explicit method call) to the MonitorControlPolicy α is said to be governed
by α.

Active Priority — The priority of a task used for scheduling at any given time. It
is the maximum of the tasks’s current base priority and any priority boosting
due to priority inversion avoidance mechanisms. The base priority can be
temporarily reduced by cost enforcement.

7.2 Semantics
Synchronization semantics has two main aspects: monitor control and scheduling.
The first determines which inversion avoidance is to use. The second determines how
it is done. Since only priority-based schedulers are defined in the RTSJ, the semantics
is only completely defined for priority-based schedulers.

7.2.1 Monitor Control
The specification provides for two monitor control policies with the following seman-
tics.

1. The initial default monitor control policy shall be PriorityInheritance. The
default policy can be altered by using the setMonitorControl() method.

2. Notwithstanding the preceding rule, an RTSJ implementation may allow the
program to establish a different initial default monitor control policy at JVM
startup. The program can query the initial default monitor control policy via
the method RealtimeSystem.getInitialMonitorControl.

3. The PriorityCeilingEmulation monitor control policy is also required.
4. An implementation that provides any additional MonitorControl subclasses

must document their effects, particularly with respect to priority inversion
control.

5. An object’s monitor control policy affects each task that attempts to lock the
object; i.e., regular Java threads as well as schedulables.

6. When a task enters synchronized code, the target object’s monitor control
policy must be supported by the thread schedulable’s scheduler; otherwise
an IllegalSchedulableStateException is thrown. An implementation that
defines a new MonitorControl subclass must document which schedulers, if
any, do not support this policy.

224 RTSJ 2.0 (Draft 57)

Semantics 7.2

7. Since priorities in the interrupt priority range must be implemented by masking
hardware interrupts, a thread which enters a monitor with an interrupt priority
as its ceiling will cause the corresponding hardware interrupts to be masked
until the monitor is exited.

7.2.2 Priority Schedulers
The two schedulers provided by the RTSJ must both handle synchronization in
the same way. All tasks governed by these schedulers are subject to the following
semantics when they synchronize on objects governed by monitor control policies
defined in this section.

1. Each task has a base priority and an active priority. A task that holds a lock
on a PCE-governed object also has a ceiling priority.

2. The base priority for a task is limited by the maximum priority of its scheduling
groups’ maximum scheduling parameters.

3. The active priority for a task is independent of its scheduling groups.
4. The base priority for a task t is initially the priority that t has when it is

created. The base priority is updated (immediately) as an effect of invoking
any of the following methods:
(a) pparam.setPriority(prio), where t is a schedulable with pparams as

its SchedulingParameters and pparams is an instance of PriorityPar-
ameters or one of its subclasses, where the new base priority is prio;

(b) t.setSchedulingParameters(pparams), where t is a schedulable and
pparams is an instance of PriorityParameters, where the new base
priority is pparams.getPriority();

(c) t.setPriority(prio), where t is a schedulable object the new base
priority is prio, and when it is a Java thread the new base priority is the
lesser of prio and the maximum priority for t’s thread group; and

(d) sg.setMaxEligibility(pparams), where sg is in t’s SchedulingGroup
hierarchy and the priority of pparams is less than the current base priority
of t, where the new base priority is the priority specified in pparams as a
result of setting the task’s scheduling parameters to pparams.

5. When the task t does not hold any locks, its active priority is the same as its
base priority. In such a situation, modification of the priority of t through an
invocation of any of the above priority-setting methods for t causes t to be
placed at the tail of its relevant queue (ready, blocked on a particular object,
etc.) at its new priority when the new priority is higher than the old priority,
and at the beginning otherwise.

6. When task t holds one or more locks, then t has a set of priority sources.
The active priority for t at any point in time is the maximum of the priorities
associated with all of these sources. The priority sources resulting from the

RTSJ 2.0 (Draft 57) 225

7 Synchronization

monitor control policies defined in this section, and their associated priorities
for a schedulable t, are as follows:
(a) Source t itself

Associated Priority The base priority for t
Note This may have been changed (either syn-

chronously or asynchronously) while t has been
holding its lock(s).

(b) Source Each object locked by t and governed by a
PriorityCeilingEmulation policy

Associated Priority The maximum value ceil, where ceil is the
ceiling of a PriorityCeilingEmulation policy
governing an object locked by t.

Note This value is also referred to as the ceiling pri-
ority for t.

(c) Source Each task attempting to synchronize on an ob-
ject locked by t and governed by a Priority-
Inheritance policy

Associated Priority The maximum active priority over all such
threads and schedulables

Note This rule accounts for recursive priority inheri-
tance.

(d) Source Each task attempting to synchronize on an ob-
ject locked by t and governed by a Priority-
CeilingEmulation policy.

Associated Priority The maximum active priority over all such
threads and schedulables

Note This rule, which in effect allows a Priority-
CeilingEmulation lock to behave like a Prior-
ityInheritance lock, helps avoid unbounded
priority inversions that could otherwise occur in
the presence of nested synchronizations involv-
ing a mix of PriorityCeilingEmulation and
PriorityInheritance policies.

7. The addition of a priority source for t either leaves t’s active priority unchanged,
or increases it. When t’s active priority is unchanged, t’s status in its relevant
queue(s), e.g., blocked waiting for some object, is not affected. When t’s active
priority is increased, t is placed at the tail of the relevant queue(s) at its new
active priority level.

8. The removal of a priority source for t either leaves t’s active priority unchanged,
or decreases it. When t’s active priority is unchanged, then t’s status in its
relevant queue, e.g., blocked waiting for some object, is not affected. When t’s

226 RTSJ 2.0 (Draft 57)

Semantics 7.2

active priority is decreased and t is either ready or running, then t must be
placed at the head of the ready queue at its new active priority level, When
t’s active priority is decreased and t is blocked, then t is queued at the end of
the queue for the new priority when it becomes unblocked.

The above rules have four main consequences.

1. A thread or schedulable t’s priority sources from 6b are added and removed
synchronously; i.e., they are established based on t’s entering or leaving
synchronized code. However, priority sources from 6a, 6c, and 6d may be
added and removed asynchronously, as an effect of actions by other threads or
schedulables.

2. A task holding only one lock, when it releases this lock, has its active priority
set to its base priority.

3. A task’s active priority is never less than its base priority.
4. When a task blocks at a call of obj.wait(), it releases the lock on obj and

hence relinquishes the priority source(s) based on obj’s monitor control policy.
The task will be queued at a new active priority that reflects the loss of these
priority sources.

When modifying the active priority of a task, the active priority may exceed
the priority range of the task’s scheduler. For example, a thread scheduled on the
standard Java scheduler may be assigned a priority greater than 10, or a thread
scheduled on the round robin scheduler may be assigned a priority greater than the
round robin maximum priority but within the default scheduler priority range. In
both cases, the task will be rescheduled on the default scheduler until its active
priority is once again within the range schedulable on its associated scheduler. A
task scheduled on the round robin scheduler, however, need not be moved to the
default scheduler while its active priority remains within the allowable range for the
round robin scheduler. Any scheduler not defined in this standard must specify the
behavior of tasks associated with it with respect to these priority-based monitor
control policies.

Since base priorities may be shared (i.e., the same PriorityParameters object
may be associated with multiple schedulables), a given base priority may be the
active priority for some but not all of its associated schedulables. It is a consequence
of other rules that, when a thread or schedulable t attempts to synchronize on
an object obj governed by a PriorityCeilingEmulation policy with ceiling ceil,
then t’s active priority may exceed ceil but t’s base priority must not. In contrast,
once t has successfully synchronized on obj, then t’s base priority may also exceed
obj’s monitor control policy’s ceiling. Note that either or both of t’s base priority
and obj’s monitor control policy may have been dynamically modified.

RTSJ 2.0 (Draft 57) 227

7 Synchronization

7.2.3 Additional Schedulers
Schedulers based on criteria other than priority, for example, deadline in a deadline
first scheduler, must consider how synchronization is handled to avoid scheduling
eligibility inversion. Such a scheduler must conform to the following semantics for
tasks managed by that scheduler when they synchronize on objects with the monitor
control policies defined above.

1. An implementation that defines a new Scheduler subclass must document
which (if any) monitor control policies the new scheduler does not support.

2. An implementation must document how, if at all, the semantics of synchro-
nization differ from the rules defined for the default PriorityInheritance
instance and for the PriorityCeilingEmulation policy. It must supply docu-
mentation for the behavior of the new scheduler with priority inheritance and
priority ceiling emulation protocol equivalent to the semantics for the default
priority scheduler found in the previous section.

3. The new Scheduler subclass must conform to the sematics for parameter
values, release control, dispatching, and cost monitoring described in Section
6.2.1.

228 RTSJ 2.0 (Draft 57)

MonitorControl javax.realtime 7.3

7.3 javax.realtime

7.3.1 Classes
7.3.1.1 MonitorControl

public abstract class MonitorControl
Inheritance
java.lang.Object
MonitorControl

Description
Abstract superclass for all monitor control policy objects.

7.3.1.1.1 Constructors

MonitorControl

Signature
protected
MonitorControl()

Description
Invoked from subclass constructors.

7.3.1.1.2 Methods

getMonitorControl(Object)

Signature
public static javax.realtime.MonitorControl
getMonitorControl(Object obj)

RTSJ 2.0 (Draft 57) 229

7 Synchronization MonitorControl

Description
Gets the monitor control policy of the given instance of Object.

Parameters
obj—The object being queried.

Throws
IllegalArgumentException—when obj is null.

Returns
the monitor control policy of the obj parameter.

getMonitorControl

Signature
public static javax.realtime.MonitorControl
getMonitorControl()

Description
Gets the current default monitor control policy.

Returns
the default monitor control policy object.

setMonitorControl(MonitorControl)

Signature
public static javax.realtime.MonitorControl
setMonitorControl(MonitorControl policy)
throws IllegalArgumentException,

UnsupportedOperationException,
IllegalStateException

Description
Sets the default monitor control policy. This policy does not affect the monitor
control policy of any already created object, it will, however, govern any object
whose creation happens after the method completes, until either
1. a new “per-object” policy is set for that object, thereby altering the monitor

control policy for a single object without changing the default policy, or
2. a new default policy is set.

230 RTSJ 2.0 (Draft 57)

MonitorControl javax.realtime 7.3

Like the per-object method (see setMonitorControl(Object, MonitorCon-
trol), the setting of the default monitor control policy occurs immediately,
but may not be visible on all processors of a multicore system simultaneously.

Parameters
policy—The new monitor control policy. When null, the default MonitorControl

policy is not changed.
Throws

SecurityException—when the caller is not permitted to alter the default monitor
control policy.

IllegalArgumentException—when policy is not in immortal memory.
UnsupportedOperationException—when policy is not a supported monitor con-

trol policy.
Returns
the default MonitorControl policy in effect on completion.
Available since RTSJ 1.0.1 The return type is changed from void to MonitorCon-
trol.

setMonitorControl(Object, MonitorControl)

Signature
public static javax.realtime.MonitorControl
setMonitorControl(Object obj,

MonitorControl policy)

Description
Immediately sets policy as the monitor control policy for obj.

Monitor control policy changes on a monitor that is actively contended may
lead to queued or enqueuing tasks following either the old or new policy in an
unpredictable fashion. Tasks enqueued after the monitor is released after a policy
change will follow the new policy.

A thread or schedulable that is queued for the lock associated with obj, or
is in obj’s wait set, is not rechecked (e.g., for a CeilingViolationException)
under policy, either as part of the execution of setMonitorControl or when it
is awakened to (re)acquire the lock.

The thread or schedulable invoking setMonitorControl must already hold
the lock on obj.

Parameters

RTSJ 2.0 (Draft 57) 231

7 Synchronization PriorityCeilingEmulation

obj—The object that will be governed by the new policy.
policy—The new policy for the object. When null nothing will happen.

Throws
IllegalArgumentException—when obj is null or policy is not in immortal

memory.
UnsupportedOperationException—when policy is not a supported monitor con-

trol policy.
IllegalMonitorStateException—when the caller does not hold a lock on obj.

Returns
the current MonitorControl policy for obj, which will be replaced.

Available since RTSJ 1.0.1 The return type has been changed from void to
MonitorControl.

7.3.1.2 PriorityCeilingEmulation

public class PriorityCeilingEmulation

Inheritance
java.lang.Object
MonitorControl
PriorityCeilingEmulation

Description

Monitor control class specifying the use of the priority ceiling emulation protocol
(also known as the "highest lockers" protocol). Each PriorityCeilingEmulation
instance is immutable; it has an associated ceiling, initialized at construction and
queryable but not updatable thereafter.

When a thread or schedulable synchronizes on a target object governed by
a PriorityCeilingEmulation policy, then the target object becomes a priority
source for the thread or schedulable object. When the object is unlocked, it
ceases serving as a priority source for the thread or schedulable. The practical
effect of this rule is that the thread or schedulable’s active priority is boosted
to the policy’s ceiling when the object is locked, and is reset when the object is
unlocked. The value that it is reset to may or may not be the same as the active
priority it held when the object was locked; this depends on other factors (e.g.
whether the thread or schedulable’s base priority was changed in the interim).

232 RTSJ 2.0 (Draft 57)

PriorityCeilingEmulation javax.realtime 7.3

The implementation must perform the following checks when a thread or
schedulable t attempts to synchronize on a target object governed by a Priori-
tyCeilingEmulation policy with ceiling ceil:
• t’s base priority does not exceed ceil
• t’s ceiling priority (when t is holding any other PriorityCeilingEmulation

locks) does not exceed ceil.
Thus for any object targetObj that will be governed by priority ceil-
ing emulation, the programmer needs to provide (via MonitorControl.
setMonitorControl(Object, MonitorControl)) a PriorityCeilingEmula-
tion policy whose ceiling is at least as high as the maximum of the following
values:
• the highest base priority of any thread or schedulable that could synchronize

on targetObj
• the maximum ceiling priority value that any thread or schedulable object

could have when it attempts to synchronize on targetObj.
More formally,
• when a thread or schedulable t, whose base priority is p1, attempts to

synchronize on an object governed by a PriorityCeilingEmulation policy
with ceiling p2, where p1 > p2, then a CeilingViolationException is
thrown in t; likewise, a CeilingViolationException is thrown in t when
t is holding a PriorityCeilingEmulation lock and has a ceiling priority
exceeding p2.

The values of p1 and p2 are passed to the constructor for the exception and may
be queried by an exception handler.

A consequence of the above rule is that a thread or schedulable may nest
synchronizations on PriorityCeilingEmulation-governed objects as long as
the ceiling for the inner lock is not less than the ceiling for the outer lock.

The possibility of nested synchronizations on objects governed by a mix of
PriorityInheritance and PriorityCeilingEmulation policies requires one
other piece of behavior in order to avoid unbounded priority inversions. When a
thread or schedulable holds a PriorityInheritance lock, then any Priority-
CeilingEmulation lock that it either holds or attempts to acquire will exhibit
priority inheritance characteristics. This rule is captured above in the definition
of priority sources (4.d).

When a thread or schedulable t attempts to synchronize on a Priority-
CeilingEmulation-governed object with ceiling ceil, then ceil must be within
the priority range allowed by t’s scheduler; otherwise, an IllegalSchedula-
bleStateException is thrown. Note that this does not prevent a regular Java
thread from synchronizing on an object governed by a PriorityCeilingEmula-
tion policy with a ceiling higher than 10.

RTSJ 2.0 (Draft 57) 233

7 Synchronization PriorityCeilingEmulation

The priority ceiling for an object obj can be modified by invoking
MonitorControl.setMonitorControl(obj, newPCE) where newPCE’s ceiling
has the desired value.

See also MonitorControl PriorityInheritance, and CeilingViolationEx-
ception.

7.3.1.2.1 Methods

instance(int)

Signature
public static javax.realtime.PriorityCeilingEmulation
instance(int ceiling)

Description
Creates a PriorityCeilingEmulation object with the specified ceiling. This
object is in ImmortalMemory. All invocations with the same ceiling value return
a reference to the same object.

Parameters
ceiling—Priority ceiling value.

Throws
IllegalArgumentException—when ceiling is out of the range of permit-

ted priority values (e.g., less than PriorityScheduler.instance().
getMinPriority() or greater than PriorityScheduler.instance().
getMaxPriority() for the base scheduler).

Available since RTSJ 1.0.1

getCeiling

Signature
public int
getCeiling()

Description
Gets the priority ceiling for this PriorityCeilingEmulation object.

234 RTSJ 2.0 (Draft 57)

PriorityInheritance javax.realtime 7.3

Returns
the priority ceiling.

Available since RTSJ 1.0.1

getMaxCeiling

Signature
public static javax.realtime.PriorityCeilingEmulation
getMaxCeiling()

Description
Gets a PriorityCeilingEmulation object whose ceiling is PriorityScheduler.
instance().getMaxPriority(). This method returns a reference to a Priori-
tyCeilingEmulation object allocated in immortal memory. All invocations of
this method return a reference to the same object.

Returns
a PriorityCeilingEmulation object whose ceiling is PriorityScheduler.

instance().getMaxPriority().

Available since RTSJ 1.0.1

7.3.1.3 PriorityInheritance

public class PriorityInheritance

Inheritance
java.lang.Object
MonitorControl
PriorityInheritance

Description
Singleton class specifying use of the priority inheritance protocol. When a thread
or schedulable t1 attempts to enter code that is synchronized on an object obj
governed by this protocol, and obj is currently locked by a lower-priority thread
or schedulable t2, then
1. When t1’s active priority does not exceed the maximum priority allowed

by t2’s scheduler, then t1 becomes a priority source for t2; t1 ceases to

RTSJ 2.0 (Draft 57) 235

7 Synchronization WaitFreeReadQueue

serve as a priority source for t2 when either t2 releases the lock on obj, or
t1 ceases attempting to synchronize on obj (e.g., when t1 incurs an ATC).

2. Otherwise (i.e., t1’s active priority exceeds the maximum priority allowed
by t2’s scheduler), an IllegalSchedulableStateException is thrown in
t1.

Note on the second rule, throwing the exception in t1, rather than in t2,
ensures that the exception is synchronous.

See also MonitorControl and PriorityCeilingEmulation

7.3.1.3.1 Methods

instance

Signature
public static javax.realtime.PriorityInheritance
instance()

Description
Obtains a reference to the singleton PriorityInheritance.

This is the default MonitorControl policy in effect at system startup.
The PriorityInheritance instance shall be allocated in ImmortalMemory.

7.3.1.4 WaitFreeReadQueue

public class WaitFreeReadQueue<T>

Inheritance
java.lang.Object
WaitFreeReadQueue<T>

Description
A queue that can be non-blocking for consumers. The WaitFreeReadQueue class
is intended for single-reader multiple-writer communication, although it may also
be used (with care) for multiple readers. A reader is generally an instance of
Schedulable which may not use the heap, and the writers are generally regular
Java threads or heap-using instances of Schedulable. Communication is through

236 RTSJ 2.0 (Draft 57)

WaitFreeReadQueue javax.realtime 7.3

a bounded buffer of Objects that is managed first-in-first-out. The principal
methods for this class are write and read.
• The write method appends a new element onto the queue. It is synchronized,

and blocks when the queue is full. It may be called by more than one writer,
in which case, the different callers will write to different elements of the
queue.
• The read method removes the oldest element from the queue. It is not
synchronized and does not block; it will return null when the queue is
empty. Multiple reader threads or schedulables are permitted, but when
two or more intend to read from the same WaitFreeWriteQueue they will
need to arrange explicit synchronization.

For convenience, and to avoid requiring a reader to poll until the queue is non-
empty, this class also supports instances that can be accessed by a reader that
blocks on queue empty. To obtain this behavior, the reader needs to invoke the
waitForData() method on a queue that has been constructed with a notify
parameter set to true.

WaitFreeReadQueue is one of the classes enabling instances of Schedulable
that may not use the heap and conventional Java threads to synchronize on an
object without the risk of that Schedulable instance incurring Garbage Collector
latency due to priority inversion avoidance management.

Incompatibility with V1.0: Three exceptions previously thrown by the con-
structor have been deleted. These are
• java.lang.IllegalAccessException,
• java.lang.ClassNotFoundException, and
• java.lang.InstantiationException.

These exceptions were in error. Their deletion may cause compile-time errors in
code using the previous constructor. The repair is to remove the exceptions from
the catch clause around the constructor invocation.

7.3.1.4.1 Constructors

WaitFreeReadQueue(Runnable, Runnable, int, Memory-
Area, boolean)

Signature
public
WaitFreeReadQueue(Runnable writer,

RTSJ 2.0 (Draft 57) 237

7 Synchronization WaitFreeReadQueue

Runnable reader,
int maximum,
MemoryArea memory,
boolean notify)

throws IllegalArgumentException,
MemoryScopeException,
InaccessibleAreaException

Description
Constructs a queue containing up to maximum elements in memory. The queue
has an unsynchronized and nonblocking read() method and a synchronized and
blocking write() method.

The writer and reader parameters, when non-null, are checked to insure that
they are compatible with the MemoryArea specified by memory (when non-null.)
When memory is null and both Runnables are non-null, the constructor will
select the nearest common scoped parent memory area, or when there is no such
scope it will use immortal memory. When all three parameters are null, the
queue will be allocated in immortal memory.

reader and writer are not necessarily the only instances of Schedule that
will access the queue; moreover, there is no check that they actually access the
queue at all.

Note that the wait free queue’s internal queue is allocated in memory, but the
memory area of the wait free queue instance itself is determined by the current
allocation context.

Parameters
writer—An instance of Runnable or null.
reader—An instance of Runnable or null.
maximum—The maximum number of elements in the queue.
memory—The MemoryArea in which internal elements are allocated.
notify—A flag that establishes whether a reader is notified when the queue becomes

non-empty.
Throws

IllegalArgumentException—when an argument holds an invalid value. The
writer argument must be null, a reference to a Thread, or a reference to
a schedulable (a RealtimeThread, or an AsyncEventHandler.) The reader
argument must be null, a reference to a Thread, or a reference to a schedulable.
The maximum argument must be greater than zero.

InaccessibleAreaException—when memory is a scoped memory that is not on
the caller’s scope stack.

238 RTSJ 2.0 (Draft 57)

WaitFreeReadQueue javax.realtime 7.3

MemoryScopeException—when either reader or writer is non-null and the memory
argument is not compatible with reader and writer with respect to the
assignment and access rules for memory areas.

WaitFreeReadQueue(Runnable, Runnable, int, Memory-
Area)

Signature
public
WaitFreeReadQueue(Runnable writer,

Runnable reader,
int maximum,
MemoryArea memory)

throws IllegalArgumentException,
MemoryScopeException,
InaccessibleAreaException

Description

Constructs a queue containing up to maximum elements in memory. The queue
has an unsynchronized and nonblocking read() method and a synchronized and
blocking write() method.

Equivalent to WaitFreeReadQueue(writer, reader, maximum, memory,
false)

WaitFreeReadQueue(int, MemoryArea, boolean)

Signature
public
WaitFreeReadQueue(int maximum,

MemoryArea memory,
boolean notify)

throws IllegalArgumentException,
InaccessibleAreaException

Description

RTSJ 2.0 (Draft 57) 239

7 Synchronization WaitFreeReadQueue

Constructs a queue containing up to maximum elements in memory. The queue
has an unsynchronized and nonblocking read() method and a synchronized and
blocking write() method.

Equivalent to WaitFreeReadQueue(null, null, maximum, memory, no-
tify)

Available since RTSJ 1.0.1

WaitFreeReadQueue(int, boolean)

Signature
public
WaitFreeReadQueue(int maximum,

boolean notify)
throws IllegalArgumentException

Description
Constructs a queue containing up to maximum elements in immortal memory. The
queue has an unsynchronized and nonblocking read() method and a synchronized
and blocking write() method.

Equivalent to WaitFreeReadQueue(null, null, maximum, null, notify)

Available since RTSJ 1.0.1

7.3.1.4.2 Methods

clear

Signature
public void
clear()

Description
Sets this to empty.

Note, this method needs to be used with care. Invoking clear concurrently
with read or write can lead to unexpected results.

240 RTSJ 2.0 (Draft 57)

WaitFreeReadQueue javax.realtime 7.3

isEmpty

Signature
public boolean
isEmpty()

Description
Queries the queue to determine if this is empty.

Note: This method needs to be used with care since the state of the queue
may change while the method is in progress or after it has returned.

Returns
true when this is empty; false when this is not empty.

isFull

Signature
public boolean
isFull()

Description
Queries the system to determine if this is full.

Note: This method needs to be used with care since the state of the queue
may change while the method is in progress or after it has returned.

Returns
true when this is full; false when this is not full.

read

Signature
public T
read()

Description
Reads the least recently inserted element from the queue and returns it as the
result, unless the queue is empty. When the queue is empty, null is returned.

Returns
the instance of T read, or else null when this is empty.

RTSJ 2.0 (Draft 57) 241

7 Synchronization WaitFreeReadQueue

size

Signature
public int
size()

Description
Queries the queue to determine the number of elements in this.

Note: This method needs to be used with care since the state of the queue
may change while the method is in progress or after it has returned.

Returns
the number of positions in this occupied by elements that have been written but

not yet read.

waitForData

Signature
public void
waitForData()
throws UnsupportedOperationException,

InterruptedException

Description
When this is empty block until a writer inserts an element.

Note: When there is a single reader and no asynchronous invocation of clear,
then it is safe to invoke read after waitForData and know that read will find
the queue non-empty.

Implementation note, to avoid reader and writer synchronizing on the same
object, the reader should not be notified directly by a writer. (This is the issue
that the non-wait queue classes are intended to solve).

Throws
UnsupportedOperationException—when this has not been constructed with

notify set to true.
InterruptedException—when the thread is interrupted by interrupt() or

AsynchronouslyInterruptedException.fire() during the time between call-
ing this method and returning from it.

Available since RTSJ 1.0.1 InterruptedException was added to the throws clause.

242 RTSJ 2.0 (Draft 57)

WaitFreeWriteQueue javax.realtime 7.3

write(T)

Signature
public synchronized void
write(T value)
throws MemoryScopeException,

InterruptedException

Description
A synchronized and blocking write. This call blocks on queue full and will wait
until there is space in the queue.

Parameters
value—The java.lang.Object that is placed in the queue.

Throws
InterruptedException—when the thread is interrupted by interrupt() or

AsynchronouslyInterruptedException.fire() during the time between call-
ing this method and returning from it.

MemoryScopeException—when a memory access error or illegal assignment error
would occur while storing object in the queue.

Available since RTSJ 1.0.1 The return type is changed to void since it always
returned true, and InterruptedException was added to the throws clause.

7.3.1.5 WaitFreeWriteQueue

public class WaitFreeWriteQueue<T>
Inheritance
java.lang.Object
WaitFreeWriteQueue<T>

Description
A queue that can be non-blocking for producers. The WaitFreeWriteQueue
class is intended for single-writer multiple-reader communication, although it
may also be used (with care) for multiple writers. A writer is generally an
instance Schedulable which may not use the heap, and the readers are generally
conventional Java threads or instances of Schedulable which use the heap.
Communication is through a bounded buffer of Objects that is managed first-in-
first-out. The principal methods for this class are write and read.

RTSJ 2.0 (Draft 57) 243

7 Synchronization WaitFreeWriteQueue

• The write method appends a new element onto the queue. It is not
synchronized, and does not block when the queue is full (it returns false
instead). Multiple writer threads or schedulables are permitted, but when
two or more threads intend to write to the same WaitFreeWriteQueue they
will need to arrange explicit synchronization.
• The read method removes the oldest element from the queue. It is syn-
chronized, and will block when the queue is empty. It may be called by
more than one reader, in which case the different callers will read different
elements from the queue.

WaitFreeWriteQueue is one of the classes enabling schedulables which may
not use the heap and regular Java threads to synchronize on an object without
the risk of the schedulable incurring Garbage Collector latency due to priority
inversion avoidance management.

Incompatibility with V1.0: Three exceptions previously thrown by the con-
structor have been deleted from the throws clause. These are
• java.lang.IllegalAccessException,
• java.lang.ClassNotFoundException, and
• java.lang.InstantiationException.
Including these exceptions on the throws clause was an error. Their deletion

may cause compile-time errors in code using the previous constructor. The
repair is to remove the exceptions from the catch clause around the constructor
invocation.

7.3.1.5.1 Constructors

WaitFreeWriteQueue(Runnable, Runnable, int, Memory-
Area)

Signature
public
WaitFreeWriteQueue(Runnable writer,

Runnable reader,
int maximum,
MemoryArea memory)

throws IllegalArgumentException,
MemoryScopeException,
InaccessibleAreaException

244 RTSJ 2.0 (Draft 57)

WaitFreeWriteQueue javax.realtime 7.3

Description
Constructs a queue in memory with an unsynchronized and nonblocking write()
method and a synchronized and blocking read() method.

The writer and reader parameters, when non-null, are checked to insure that
they are compatible with the MemoryArea specified by memory (when non-null.)
When memory is null and both Runnables are non-null, the constructor will
select the nearest common scoped parent memory area, or when there is no such
scope it will use immortal memory. When all three parameters are null, the
queue will be allocated in immortal memory.

reader and writer are not necessarily the only threads or schedulables that
will access the queues; moreover, there is no check that they actually access the
queue at all.

Note, the wait free queue’s internal queue is allocated in memory, but the
memory area of the wait free queue instance itself is determined by the current
allocation context.

Parameters
writer—An instance of Schedulable or null.
reader—An instance of Schedulable or null.
maximum—The maximum number of elements in the queue.
memory—The MemoryArea in which this and internal elements are allocated.

Throws
IllegalArgumentException—when an argument holds an invalid value. The

writer argument must be null, a reference to a Thread, or a reference to
a schedulable (a RealtimeThread, or an AsyncEventHandler.) The reader
argument must be null, a reference to a Thread, or a reference to a schedulable.
The maximum argument must be greater than zero.

MemoryScopeException—when either reader or writer is non-null and the memory
argument is not compatible with reader and writer with respect to the
assignment and access rules for memory areas.

InaccessibleAreaException—when memory is a scoped memory that is not on
the caller’s scope stack.

WaitFreeWriteQueue(int, MemoryArea)

Signature
public

RTSJ 2.0 (Draft 57) 245

7 Synchronization WaitFreeWriteQueue

WaitFreeWriteQueue(int maximum,
MemoryArea memory)

throws IllegalArgumentException,
InaccessibleAreaException

Description
Constructs a queue containing up to maximum elements in memory. The queue
has an unsynchronized and nonblocking write() method and a synchronized and
blocking read() method.

Equivalent to WaitFreeWriteQueue(null,null,maximum, memory)

Available since RTSJ 1.0.1

WaitFreeWriteQueue(int)

Signature
public
WaitFreeWriteQueue(int maximum)
throws IllegalArgumentException

Description
Constructs a queue containing up to maximum elements in immortal memory.
The queue has an unsynchronized and nonblocking write() method and a
synchronized and blocking read() method.

Equivalent to WaitFreeWriteQueue(null,null,mximum, null)

Available since RTSJ 1.0.1

7.3.1.5.2 Methods

clear

Signature
public void
clear()

246 RTSJ 2.0 (Draft 57)

WaitFreeWriteQueue javax.realtime 7.3

Description
Sets this to empty.

isEmpty

Signature
public boolean
isEmpty()

Description
Queries the system to determine if this is empty.

Note, this method needs to be used with care since the state of the queue
may change while the method is in progress or after it has returned.

Returns
true, when this is empty; false, when this is not empty.

isFull

Signature
public boolean
isFull()

Description
Queries the system to determine if this is full.

Note, this method needs to be used with care since the state of the queue
may change while the method is in progress or after it has returned.

Returns
true, when this is full; false, when this is not full.

read

Signature
public synchronized T
read()
throws InterruptedException

Description

RTSJ 2.0 (Draft 57) 247

7 Synchronization WaitFreeWriteQueue

A synchronized and possibly blocking operation on the queue.

Throws
InterruptedException—when the thread is interrupted by interrupt() or

AsynchronouslyInterruptedException.fire() during the time between call-
ing this method and returning from it.

Returns
the T least recently written to the queue. When this is empty, the calling schedulable

blocks until an element is inserted; when it is resumed, read removes and
returns the element.

Available since RTSJ 1.0.1 Throws InterruptedException

size

Signature
public int
size()

Description
Queries the queue to determine the number of elements in this.

Note, this method needs to be used with care since the state of the queue
may change while the method is in progress or after it has returned.

Returns
the number of positions in this occupied by elements that have been written but

not yet read.

force(T)

Signature
public boolean
force(T value)
throws MemoryScopeException,

IllegalArgumentException

Description
Unconditionally inserts value into this, either in a vacant position or else
overwriting the most recently inserted element. The boolean result reflects

248 RTSJ 2.0 (Draft 57)

javax.realtime 7.4

whether, at the time that force() returns, the position at which value was
inserted was vacant (false) or occupied (true).

Parameters
value—An instance of T to insert.

Throws
MemoryScopeException—when a memory access error or illegal assignment error

would occur while storing value in the queue.
IllegalArgumentException—when value is null.

Returns
true when value has overwritten an element that was occupied when the function

returns; false otherwise (it has been inserted into a position that was vacant
when the function returns)

write(T)

Signature
public boolean
write(T value)
throws MemoryScopeException,

IllegalArgumentException

Description
Inserts value into this when this is non-full and otherwise has no effect on
this; the boolean result reflects whether value has been inserted. When the
queue was empty and one or more threads or schedulables were waiting to read,
then one will be awakened after the write. The choice of which to awaken depends
on the involved scheduler(s).

Parameters
value—An instance of T to insert.

Throws
MemoryScopeException—when a memory access error or illegal assignment error

would occur while storing value in the queue.
IllegalArgumentException—when value is null.

Returns
true when the queue was non-full; false otherwise.

RTSJ 2.0 (Draft 57) 249

7 Synchronization

7.4 Rationale
Java’s rules for synchronized code provide a means for mutual exclusion but do
not prevent unbounded priority inversions and thus are insufficient for realtime
applications. This specification strengthens the semantics for synchronized code by
mandating priority inversion control, in particular by furnishing classes for priority
inheritance and priority ceiling emulation. Priority inheritance is more widely
implemented in realtime operating systems and thus is the initial default mechanism
in this specification.

Priority ceiling emulation is also a useful protocol. It is necessary for blocking out
interrupts in interrupt service routines and simplifies scheduling analysis for single
core systems. Since it can easily be implemented in user space, it is required as well.

Since the same object may be accessed from synchronized code by both a sched-
ulable which may not use the heap and an arbitrary thread or schedulable which
may, unwanted dependencies may result. To avoid this problem, this specification
provides three wait-free queue classes as an alternative means for safe, concurrent
data accesses without priority inversion.

250 RTSJ 2.0 (Draft 57)

Chapter 8

Asynchrony

One of the most important aspects of this specification is its support for asynchronous
control flow. Mechanisms are provided for both starting a task asynchronously and
interrupting the execution of a thread or other task. This specifications provides
mechanisms that
• bind the execution of program logic to the occurrence of internal and external

events;
• enable asynchronous transfer of control; and
• facilitate the asynchronous termination of realtime threads.

The first of these is provided by asynchronous event handling. Using this, an
application can define some computation that is executed every time an event is
“fired,” either from a clock or from some signal. The second is Asynchronous Transfer
of Control (ATC), which provides a means of stopping some calculation prematurely.
ATC may also be used to terminate a realtime thread safely.

Events and Event Handling
Asynchronous event handling is represented by the classes AsyncBaseEvent (AE),
AsyncBaseEventHandler (AEH) and AbstractBoundAsyncEventHandler, along
with their subclasses. An AE is an object used to direct event occurrences to
asynchronous event handlers. An event occurrence may be initiated by application
logic, by mechanisms internal to the RTSJ implementation (see the handlers in
PeriodicParameters), or by some external input such as a clock, a signal, or an
interrupt.

An asynchronous event occurrence is initiated in program logic by the invocation
of the fire method of an AE. The fire method dispatches all handlers associated
with its event. This means that dispatching occurs in the execution context of the
caller.

An asynchronous event that is initiated from an external source has additional

251

8 Asynchrony

requirements and hence additional API features. These features are captured by the
ActiveEvent interface. Since external events do not have a full execution context of
their own, this category of events must provide an alternate execution context. In
order to give the programmer control over this execution context, the specification
defines the abstract class ActiveEventDispatcher to provide execution context for
dispatching.

By convention, subclasses provide a trigger method for initiating dispatching.
Triggering simply informs this execution context to start dispatching. The trigger
method is not defined in ActiveEventDispatcher, since some classes need a trigger
method with an argument and others do not. The types of ActiveEvent supported
are described in subsequent chapters.

Any variety of AEH may be associated with any variety of AE. The event actually
delivered depends on the combination of the two. The table 8.1 illustrates this.

Table 8.1: Event to Handler Matrix
Types AsyncEvent AsyncLongEvent AsyncObjectEvent
AsyncEventHandler Nothing Nothing Nothing
AsyncLongEventHandler Event Id Payload Event Id
AsyncObjectEventHandler Event Object Event Object Payload

Memory assignment rules apply to the payload passed to AsyncObjectEvent-
Handler.

An AEH is a schedulable embodying code that is released for execution in
response to the occurrence of an associated event. Each AEH behaves as if it
is executed by a RealtimeThread except that it is not permitted to use the
waitForNextRelease() method. There is not necessarily a separate realtime
thread for each AEH, but the server realtime thread (returned by currentReal-
timeThread()) remains constant during each execution of the handleAsyncEvent()
method. The implication of this is that calls to Thread.currentThread(),
RealtimeThread.currentRealtimeThread(), and access to thread-local storage
may have unpredictable results from release to release.

The default manner in which the implementation selects a realtime thread to
release a given AEH at a given release is defined by BlockableReleaseRunner,
but the user can override this default by defining a new subclass of its abstract
superclass, ReleaseRunner. The interface BoundAsyncBaseEventHandler is used
to mark subclasses of AsyncBaseEventHandler, such as BoundAsyncEventHandler,
which have a dedicated realtime server thread. Such a server thread is associated
with one and only one bound AEH for the lifetime of that AEH.

252 RTSJ 2.0 (Draft 57)

Definitions 8.1

Asynchronous Transfer of Control
The interrupt() method in java.lang.Thread provides rudimentary asynchronous
communication by setting a pollable and resettable flag in the target thread, and by
throwing a synchronous exception when the target thread is blocked at an invocation
of wait(), sleep(), join(), or an operation that throws InterruptException.
This specification generalizes the notion of interrupt to all Tasks, offering a more
comprehensive asynchronous execution control facility without requiring polling. For
RealtimeThreads, the effect of Thread.interrupt() must be extended by adding
an overridden version in RealtimeThread.

This new mechanism, called Asynchronous Transfer of Control (ATC), is based on
throwing and propagating an exception that, though asynchronous, is deferred where
necessary in order to avoid data structure corruption. The main elements of ATC are
embodied in the class AsynchronouslyInterruptedException, its subclass Timed,
the interface Interruptible, and in the semantics of the interrupt method in
Schedulable.

A method indicates its eligibility for asynchronous interruption by including the
checked exception AsynchronouslyInterruptedException in its throws clause. If
a schedulable is asynchronously interrupted while executing such a method, then an
AIE will be delivered as soon as the schedulable is outside of a section in which ATC
is deferred. Several idioms are available for handling an AIE, giving the programmer
the choice of using catch clauses and a low-level mechanism with specific control
over propagation, or a higher-level facility that enables specifying the interruptible
code, the handler, and the result retrieval as separate methods.

8.1 Definitions
Asynchronous Event (AE) — An instance of one of the subclasses of the javax.

realtime.AsyncBaseEvent class.
Asynchronous Event Handler (AEH) — An instance of one of the subclasses

of the AsyncBaseEventHandler class.
Bound Asynchronous Event Handler (Bound AEH) — An instance of one

of the subclasses of the BoundAsyncBaseEventHandler class.
Asynchronously Interrupted Exception (AIE) — An instance of the javax.

realtime.AsynchronouslyInterruptedException class (a subclass of java.
lang.InterruptedException).

Asynchronously Interruptible Method (AI-Method) — A method or con-
structor that includes AsynchronouslyInterruptedException explicitly
(that is, not a subclass of AsynchronouslyInterruptedException) in its
throws clause.

RTSJ 2.0 (Draft 57) 253

8 Asynchrony

Asynchronous Transfer of Control (ATC) — A nonlocal transfer of program
control in a task initiated from outside that task.

ATC-Deferred Section — A synchronized statement, a static initializer or any
method or constructor without AsynchronouslyInterruptedException in its
throws clause. As specified in the introduction to Chapter 8 in Java Language
Specification, a synchronized method is equivalent to a non-synchronized method
with the body of the method contained in a synchronized statement. Thus,
a synchronized AI method behaves like an AI method containing only an
ATC-deferred statement.

Bounded Execution Time — As a particular task or schedulable may not be
scheduled on a CPU for an arbitrarily long period of time, bounds on the
responsiveness of a given task or schedulable are defined in terms of execution
time during which that task is scheduled on a CPU and executing. Time during
which a task is blocked, either voluntarily, pending acquisition of a resource,
or due to a higher-priority task executing on the CPUs available to it, is not
considered execution time.

Firable Asynchronous Event Handler — An instance of AsyncBaseEvent-
Handler is firable whenever there is an agent that can release it. This includes
cases when the AsyncBaseEventHandler is
1. a miss handler or overrun handler of a RealtimeThread instance that has

been started but not yet terminated;
2. a handler associated with an AsyncBaseEvent that can be fired; or
3. a miss handler or overrun handler for an instance of AsyncBaseEvent-

Handler that is firable.
Interruptible Blocking Methods — The RTSJ and standard Java methods that

are explicitly interruptible by an AsynchronouslyInterruptedException (AIE).
The interruptible blocking methods comprise
• HighResolutionTime.waitForObject(),
• Object.wait(),
• Thread.sleep(),
• RealtimeThread.sleep(),
• Thread.join(),
• ScopedMemory.join(),
• ScopedMemory.joinAndEnter(),
• RealtimeThread.waitForNextRelease(),
• WaitFreeWriteQueue.read(),
• WaitFreeReadQueue.waitForData(),
• WaitFreeReadQueue.write(),
• WaitFreeDequeue.blockingRead(),
• WaitFreeDequeue.blockingWrite()

254 RTSJ 2.0 (Draft 57)

Semantics 8.2

and their overloaded forms. Furthermore, the method waitForNextRelease in
RealtimeThread is interruptible when the thread’s release parameters isRous-
able method returns true. Similarly instances of AsyncBaseEventHandlers
are released early when their release parameters isRousable method returns
true.

Lexical Scope — The textual region within programming block, such as a construc-
tor, method, or statement, excluding the code within any class declarations,
and the code within any class instance creation expressions for anonymous
classes, contained therein. The lexical scope of a construct does not include
the bodies of any methods or constructors that this code invokes.

8.2 Semantics
Basic event types are passive: they are not directly associated with a thread of control.
They are intended to be fired programmatically. Handling external events, such
as clocks (see Chapter 10) and happenings (see Chapter 12), requires an execution
context. The ActiveEvent interface is provided to mark these and provide additional
execution semantics. Figure 8.1 illustrates the event hierarchy.

Figure 8.1: The Event Class Hierarchy
Visibility
+ = publ ic
= protected
~ = package

javax.realtime::PeriodicTimer

...

javax.realtime::OneShotTimer

...

javax.realtime::ActiveEvent
<< in te r f ace>>

+isActive() : boolean
+isRunning() : boolean
+enable()
+disable()
+star t ()
+start(boolean disable)
+stop()

javax.realtime::Timer
Timer(HighResolutionTime,
 AsyncBaseEventHandler,
 TimeDispatcher)
+getDispatcher() : TimeDispatcher
...

javax.realtime::AsyncBaseEvent
< < a b s t r a c t > >

+isRunning() : boolean
+enable()
+disable()
+boolean hasHandlers() : boolean
+handledBy(AsyncBaseEventHandler) : boolean
+addHandler(AsyncBaseEventHandler)
+setHandler(AsyncBaseEventHandler)
+removeHandler(AsyncBaseEventHandler)
+createReleaseParameters() : ReleaseParameters

javax.realtime::AsyncObjectEvent

+fire(Object value)

javax.realtime::AsyncEvent

+f i re()

javax.realtime::POSIXRealtimeSignal

+isPOSIXRealtimeSignal() : boolean
+getId(String name): int
+get(String name): POSIXRealtimeSignal
+get(int id): POSIXRealtimeSignal
+getId() : int
+getName() : String
+getDispatcher() : POSIXRealtimeSignalDispatcher
+send(long, long) : boolean
...

javax.realtime::POSIXSignal

+isPOSIXSignal() : boolean
+getId(String name): int
+get(String name): POSIXSignal
+get(int id): POSIXSignal
+getProcessId(): long
+getId() : int
+getName() : String
+getDispatcher() : POSIXSignalDispatcher
+send(long) : boolean
...

javax.realtime::Happening
+Happening(String name)
+Happening(String, HappeningDispatcher)
+isHappening(String name) : boolean
+getHappening(String name): int
+createId(String name): int
+getId(String name): int
+get(String name): Happening
+get(int id): Happening
+trigger(int id)
+getId(): int
+getName() : String
+tr igger()
+getDispatcher() : HappeningDispatcher
...

javax.realtime::AsyncLongEvent

+fire(long value)

RTSJ 2.0 (Draft 57) 255

8 Asynchrony

8.2.1 Asynchronous Events and their Handlers

This following points give the basic semantics for asynchronous events and their
handlers. Semantics that apply to particular classes, constructors, methods, and
fields are provided in the class description and the constructor, method, and field
specifications.

1. When an asynchronous event occurs, either by program logic or by the triggering
of a happening, and the event is enabled, its attached handlers, i.e., all AEHs
that have been added to the AE by the execution of addHandler(), are released
for execution.
(a) Every occurrence of an event increments the fireCount in each attached

handler.
(b) Handlers may elect to execute logic for each occurrence of the event or

not.
2. When interrupt is called on an AEH whose rousable state is true, i.e., its

release parameters isRousable method returns true, that AEH will be released
independently of all other AEH attached to any common AE.

3. The release of attached handlers occurs in execution eligibility order, i.e, priority
order, from highest to lowest, with the default PriorityScheduler, and at
the active priority of the schedulable that invoked the fire method. The
release of handlers resulting from a happening or a timer must begin within a
bounded time (ignoring time consumed by unrelated activities in the system).
This worst-case response interval must be documented for some reference
architecture.

4. The release of attached handlers is an atomic operation with respect to adding
and removing handlers.

5. The logical release of an attached handler may occur before the previous release
has completed.

6. Releasing an AEH is accomplished through the handler’s instance of Re-
leaseRunner as depicted in Figure 8.2.

7. Each handler has an application configurable, handler type dependent queue for
holding events that have been released before a previous release has completed.

8. The overflow policy of a handler’s queue is also application configurable.
9. A deadline may be associated with each logical release of an attached handler.

The deadline is relative to the occurrence of the associated event.
10. AEs and AEHs may be created and used by any program logic within the

constraints of the memory assignment rules.
11. More than one AEH may be added to an AE. However, adding an AEH to an

AE has no effect if the AEH is already attached to the AE.
12. The same AEH may be added to more than one AE.
13. By default all AEHs are daemons: the daemon status is set by their constructors.

256 RTSJ 2.0 (Draft 57)

Semantics 8.2

An AEH can be set to have a non daemon status after it has been created and
before it has been attached to an AE.

14. The object returned by currentRealtimeThread() while an AEH is running
shall behave with respect to memory access and assignment rules as if it were
allocated in the same memory area as the AEH.

15. System-related termination activity (such as execution of finalizers for scoped
objects in scopes that become unreferenced) triggered when an AEH becomes
unfirable is not subject to cost enforcement or deadline miss detection.

16. AEs and AEHs behave effectively as if changes to an AEH’s fireability are
contained in synchronized blocks, and the AEH holds that lock while it is in
the process of becoming unfirable.

Figure 8.2: Releasing an AysncEventHandler

 Note:

 fire count is incremented at
 release and decremented just
 before handleAsyncEvent

:ReleaseRunner :ReleaseThread:AsyncEventHandler:AsyncEvent

wai t

wai t

handleAE

run

noti fy

release
release

release

run

handleAsyncEvent

not i fy

release
fire

AsyncBaseEvent provides two basic states: enabled and disabled. In the enabled
state, fire causes all associated handlers to be dispatched, whereas fire does nothing
when the event is disabled. Figure 8.3 illustrates this state space.

RTSJ 2.0 (Draft 57) 257

8 Asynchrony

Figure 8.3: States of a Simple AsyncBaseEvent

DisabledEnabled

disable

new

enable

8.2.2 Active Events and Dispatching
Active events refine the semantics of AsyncBaseEventHandler with the addition of
execution semantics to support second level interrupt handling. The fire method of
an event runs in the Java execution context of the caller. For events that represent
external signals, whether a certain time is reached or something has occurred, there
may not be a Java execution context for it, or at least that context is limited out
of necessity, and often needs to have a very short duration of execution. Thus
dispatching an unlimited number of handlers in that context is not acceptable. This
dispatching requires an additional execution context for releasing handlers.

In order to be able to distinguish between events that are caused to be fired by an
outside mechanism from those that are fired from another thread, the former extend
the ActiveEvent interface. Each class implementing ActiveEvent must provide its
own trigger method for initiating the handler release by releasing another execution
context. Since the trigger methods may vary in the number of their arguments
depending on the type of event, they are not provided by the ActiveEvent class.
Each trigger method must act as if it calls the fire method on its event and then
terminates. Hence, trigger has the same functional behavior as fire, but runs in a
separate execution context.

This extra execution context is exposed to the user as an ActiveEventDispatcher.
There is an active event dispatcher for each kind of active event. The programmer
does not need to write a dispatcher, but just creates the one of the corresponding
type. The programmer determines the priority and the affinity of a dispatcher, as
well as the mapping between dispatchers and events.

Each event has a single dispatcher, but a dispatcher may serve many events. As
with fire, the dispatcher releases handlers in reverse priority order, i.e., from highest
to lowest. This enables the programmer to control the number of these execution
contexts and still optimize how handlers are released.

258 RTSJ 2.0 (Draft 57)

Semantics 8.2

The state space of an ActiveEvent is an extension of the state space for an
AsyncBaseEvent depicted in Figure 8.3. ActiveEvent adds the notion of active and
inactive on top of enabled and disabled, as depicted in Figure 8.4. Note that the
enabled-disabled distinction only splits the active state. The inactive state is by
definition disabled.

Figure 8.4: States of an ActiveEvent

Active
Inactive

Disabled
Active

Disabled
Active

Enabled

stop
-> t rue

stop
-> false

stop -> false

startDisabled
-> IllegalStateException

start
-> IllegalStateException

start

startDisabled

enable

disable

new

8.2.3 Termination

An RTSJ program terminates when and only when
1. all nondaemon threads, either regular Java threads or realtime threads, are

terminated;
2. the fireCounts of all nondaemon instances of AsyncBaseEventHandler are

zero and all of their releases are completed; and
3. there are no nondaemon instances of AsyncBaseEventHandler attached to a

firable instance of ActiveEvent.
Bound and unbound AEH are treated alike. As with conventional Java, daemon
tasks, including service threads such as a dispatcher’s thread or the threads used to
run unbound AEH, do not hinder termination.

RTSJ 2.0 (Draft 57) 259

8 Asynchrony

8.2.4 Asynchronous Transfer of Control
Asynchronously interrupting a schedulable consists of the following activities.

1. Generation of an asynchronous interrupt exception — this is the event in the
underlying system that makes the AIE available to the program.

2. Delivery of the asynchronous interrupt exception to the target schedulable—
this is the action that invokes the search for and execution of an appropriate
handler.

Between the generation of an AIE and its delivery, the exception is held pending.
The AIE remains pending, even after delivery, until it is cleared by the program
logic using the AsynchronouslyInterruptedException.clear() or when Asyn-
chronouslyInterruptedException.doInterruptible completes. Simply catching
the exception does not change its pending state.

The following eight points define the semantics of ATC. Semantics that apply
to particular classes, constructors, methods, and fields will be found in their detail
sections, respectively.

1. An AIE is generated for a given schedulable when the fire() method is
called on an AIE for which the schedulable object is executing within the
doInterruptible method or the Schedulable.interrupt() method is called;
the latter is also effectively called when an AIE is generated by internal
virtual machine mechanisms (such as an interrupted I/O operation) that are
asynchronous to the execution of the program logic which is the target of the
AIE. An AIE becomes pending upon generation and remains pending until
explicitly cleared or replaced by another AIE.

2. An AIE is delivered to a schedulable when it is executing in a method declared
to throw AIE, except in an ATC-deferred section as defined below.
(a) The generation of an AIE through the fire() mechanism behaves as if it

sets an asynchronously-interrupted status in the schedulable.
i. When the schedulable is blocked within an interruptible blocking

method or invokes an interruptible blocking method when this
asynchronously-interrupted status is set, the invocation immedi-
ately completes by throwing the pending AIE and clearing the
asynchronously-interrupted status.

ii. When a pending AIE is explicitly cleared then the asynchronously-
interrupted status is also cleared.

(b) Blocking methods which are declared to throw java.lang.IOException
but are not declared to throw java.io.InterruptedException (for ex-
ample, blocking methods in java.io.*) must be prevented from blocking
indefinitely when invoked from a method with AsynchronouslyInterrup-
tedException in its throws clause. When an AIE is generated and the
target schedulable’s control is blocked inside one of these methods with

260 RTSJ 2.0 (Draft 57)

Semantics 8.2

an AI-method on the call stack, the implementation may either unblock
the blocked call, raise java.lang.InterruptedIOException on behalf
of the call, or allow the call to complete normally if the implementation
determines that the call would unblock within a bounded period of time
defined by the implementation.

(c) When an AI-method is attempting to acquire an object lock when an
associated AIE is generated, the attempt to acquire the lock is abandoned.

(d) When control is in the lexical scope of an ATC-deferred section when
an AIE (targeted at the executing schedulable) is generated, the AIE
is not delivered until the first subsequent attempt to transfer control to
code that is not ATC deferred. At that point, control is transferred to
the catch or finally clause of the nearest dynamically-enclosing try
statement that i) has a handler for the generated AIE (that is a handler
naming the AIE’s class or any of its superclasses, or a finally clause)
and ii) is in an ATC-deferred section. Intervening handlers and finally
clauses that are not in ATC-deferred sections are not executed, but object
locks are released.
See Section 11.3 of The Java Language Specification second edition for an
explanation of the terms: dynamically enclosing and handler. The RTSJ
uses those JLS definitions unaltered. Note that if synchronized code is
abandoned as a result of this control transfer, the associated locks are
released.

3. Constructors are allowed to include AsynchronouslyInterruptedException
in their throws clause and if they do will be asynchronously interruptible under
the same conditions as AI methods.

4. Native methods that include AsynchronouslyInterruptedException in their
throws clause have implementation-specific behavior.

5. An implementation must deliver the transfer of control in a schedulable that
is subject to asynchronous interruption (in an AI-method but not in a syn-
chronized block) within a bounded execution time of that schedulable. This
worst-case response interval must be documented for some reference architec-
ture.

6. Instances of the Timed class have a logically associated timer. When the timer
fires, the schedulable executing the instance’s doInterruptible method must
have the AIE generated within a bounded execution time of the schedulable.
This worst-case response interval must be documented for some reference
architecture.

7. An AIE only has the semantics defined here when it originates with the
AsynchronouslyInterruptedException.fire() method, the Schedulable.
interrupt() method or from within the realtime VM. If an AIE is thrown

RTSJ 2.0 (Draft 57) 261

8 Asynchrony

from program logic using the Java throw statement, it uses the same semantics
as throwing any other instance of a subclass of Exception, it is processed as a
normal exception, and has no effect on the pending state of any AIE, and no
effect on the firing of the AIE concerned.

8. The Schedulable.interrupt() method is a special case of ATC.
(a) it causes the target task to throw a generic AIE and has the behaviors

defined for Thread.interrupt(). This is the only interaction between
the ATC mechanism and the conventional interrupt() mechanism.

(b) An AEH that is waiting for a release and is rousable will release immedi-
ately as per Section 6.2.1.2.4 above with the generic AIE pending when it
is interrupted.

(c) A RealtimeThread blocked in waitForNextRelease that is rousable will
immediately return as per Section 6.2.1.2.2 with the generic AIE pending
when it is interrupted.

8.2.4.1 Extending Conventional Java Interrupts

The RTSJ’s approach to ATC is designed to follow the above principles. It is
based on exceptions and is an extension of the current Java language rules for
java.lang.Thread.interrupt(). In summary, ATC works as follows.

When so is an instance of a schedulable and the interrupt() method is called
on the schedulable associated with that object, then the following holds.

1. When control is in an ATC-deferred section, then the AIE remains in a pending
state. Execution continues normally until the first attempt to return to an AI
method or invoke an AI method or exit a synchronized block within an AI
method. Then ATC follows option 2 as appropriate.

2. When control is not in an ATC-deferred section, then control is transferred to
the catch or finally clause of the nearest dynamically-enclosing try statement
that is in an ATC-deferred section and has a handler for the generated AIE,
i.e., is a handler naming the AIE’s class or any of its superclasses, or a finally
clause. Intervening handlers and finally clauses that are not in ATC-deferred
sections are not executed, but objects locks are released. See section 11.3 of
The Java Language Specification [5] for an explanation of the terms dynamically
enclosing and handlers. The RTSJ uses those definitions unaltered.

3. When control is in an interruptible blocking method, the schedulable object
is awakened and the generated AIE (which is a subclass of InterruptedEx-
ception) is thrown with regular Java semantics (the AIE is still marked as
pending). ATC then follows option 1 or 2 as appropriate.

4. When control is transferred from an ATC-deferred section to an AI method
through the action of propagating an exception while an AIE is pending, when
the transition to the AI-method occurs, the thrown exception is discarded and

262 RTSJ 2.0 (Draft 57)

Semantics 8.2

replaced by the pending AIE.

8.2.4.2 Nesting AsynchronouslyInterruptedExceptions

An AIE may be generated while another AIE is pending. Because AI code blocks are
nested by method invocation (a stack-based nesting) there is a natural precedence
among active instances of AIE. Let AIE0 be the AIE raised when the Schedul-
able.interrupt() method is invoked and AIEi (i = 1, ..., n, for n unique instances
of AIE) be the AIE generated when AIE.fire() is invoked. In the following, the
phrase “a frame deeper on the stack than this frame” refers to a stack frame further
from stack base. The phrase “a frame shallower on the stack than this frame” refers
to a stack frame nearer to the stack base.

1. When the current AIE is an AIE0 and the new AIE is an AIEx associated
with any frame on the stack, the new AIE (AIEx) is discarded.

2. When the current AIE is an AIEx and the new AIE is an AIE0, the current
AIE (AIEx) is replaced by the new AIE (AIE0).

3. When the current AIE is an AIEx and the new AIE is an AIEy from a frame
deeper on the stack, the new AIE (AIEy) is discarded.

4. When the current AIE is an AIEx and the new AIE is an AIEy from a frame
shallower on the stack, the current AIE (AIEx) is replaced by the new AIE
(AIEy).

5. When the current AIE is an AIE0 and the new AIE is an AIE0, or when
the current AIE is an AIEx and the new AIE is an AIEx, the new AIE is
discarded.

When clear() is called on a pending AIE or that AIE is superseded by another,
the first AIE’s pending state is cleared. Clearing a nonpending AIE (with the
clear() method) has no effect.

RTSJ 2.0 (Draft 57) 263

8 Asynchrony ActiveEvent

8.3 javax.realtime

8.3.1 Interfaces
8.3.1.1 ActiveEvent

public interface ActiveEvent<T extends Releasable<T, D>, D extends Ac-
tiveEventDispatcher<D, T>>

Interfaces
javax.realtime.Releasable

Description
This is the interface for defining the active event system. Classes implementing
ActiveEvent are used to connect events that take place outside the Java virtual
machine to RTSJ activities.

When an event takes place outside the Java virtual machine, some event-
specific code within the Java virtual machine executes. That code notifies the
ActiveEvent infrastructure of this event by calling a trigger method in the
event.

An instance of this class holds a reference to its dispatcher. When
ActiveEvent.isActive is true, the dispatcher must also hold a reference to the
instance. For this reason, whenever an active event instance is active, it is also a
execution context, so that this reference can be safely held during this time. Only
the active event instance must be assignable to its dispatcher instance under the
memory assignment rules, but not visa versa.

Available since RTSJ 2.0

8.3.1.1.1 Methods

isActive

Signature
public boolean
isActive()

Description

264 RTSJ 2.0 (Draft 57)

ActiveEvent javax.realtime 8.3

Determines the activation state of this event, i.e., it has been started but not yet
stopped again.

Returns
true when active, false otherwise.

isRunning

Signature
public boolean
isRunning()

Description
Determines the running state of this event, i.e., it is both active and enabled.

Returns
true when active and enabled, false otherwise.

start

Signature
public void
start()
throws IllegalStateException

Description
Starts this active event.

Throws
IllegalStateException—when this event has already been started.

start(boolean)

Signature
public void
start(boolean disabled)
throws IllegalStateException

Description
Starts this active event.

RTSJ 2.0 (Draft 57) 265

8 Asynchrony ActiveEvent

Parameters
disabled—True for starting in a disabled state.

Throws
IllegalStateException—when this event has already been started.

stop

Signature
public boolean
stop()
throws IllegalStateException

Description
Stops this active event.

Throws
IllegalStateException—when this event is not running.

Returns
the previous enabled state.

enable

Signature
public void
enable()

Description
Changes the state of the event so that associated handlers are released on fire.
Each subclass provides a fire method as a means of dispatching its handlers when
requested. This method enables that request mechanism.

disable

Signature
public void
disable()

Description

266 RTSJ 2.0 (Draft 57)

Interruptible javax.realtime 8.3

Changes the state of the event so that associated handlers are skipped on fire.
Each subclass provides a fire method as a means of dispatching its handlers when
requested. This method disables that request mechanism.

8.3.1.2 BoundAsyncBaseEventHandler

public interface BoundAsyncBaseEventHandler

Interfaces
javax.realtime.BoundSchedulable

Description

A marker interface for all schedulables that are bound to a single thread of
control. It is required to enable references to all bound handlers. A thread is
bound to a handler of this type when it is first attached to an event. Thus
security checks for thread use can be done when AsyncBaseEvent.addHandler
and AsyncBaseEvent.setHandler are called.

Available since RTSJ 2.0

8.3.1.3 Interruptible

public interface Interruptible

Description

Interruptible is an interface implemented by classes that will be used as argu-
ments on the methodsdoInterruptible() of AsynchronouslyInterruptedEx-
ception and its subclasses. doInterruptible() invokes the implementations of
the methods in this interface.

8.3.1.3.1 Methods

RTSJ 2.0 (Draft 57) 267

8 Asynchrony Releasable

run(AsynchronouslyInterruptedException)

Signature
public void
run(AsynchronouslyInterruptedException exception)
throws AsynchronouslyInterruptedException

Description
The main piece of code that is executed when an implementation is given to
doInterruptible(). When a class is created that implements this interface, for
example through an anonymous inner class, it must include the throws clause to
make the method interruptible.

Parameters
exception—The AIE object whose doInterruptible method is calling the run

method. Used to invoke methods on AsynchronouslyInterruptedException
from within the run() method.

interruptAction(AsynchronouslyInterruptedException)

Signature
public void
interruptAction(AsynchronouslyInterruptedException exception)

Description
This method is called by the system when the run() method is interrupted. By
using this, the program logic can determine when the run() method completed
normally or had its control asynchronously transferred to its caller.

Parameters
exception—The currently pending AIE. Used to invoke methods on Asynchron-

ouslyInterruptedException from within the interruptAction() method.

8.3.1.4 Releasable

public interface Releasable<T extends Releasable<T, D>, D extends Ac-
tiveEventDispatcher<D, T>>
Description

A base interface for everything that has a dispatcher.

268 RTSJ 2.0 (Draft 57)

ActiveEventDispatcher javax.realtime 8.3

Available since RTSJ 2.0

8.3.1.4.1 Methods

getDispatcher

Signature
public D extends javax.realtime.ActiveEventDispatcher<D, T>
getDispatcher()

Description
Obtains the dispatcher for this.

Returns
that dispatcher.

8.3.2 Classes
8.3.2.1 ActiveEventDispatcher

public abstract class ActiveEventDispatcher<D extends ActiveEventDispatcher<D,
T>, T extends Releasable<T, D>>
Inheritance
java.lang.Object
ActiveEventDispatcher<D extends ActiveEventDispatcher<D, T>, T extends
Releasable<T, D>>

Interfaces
javax.realtime.BoundRealtimeExecutor

Description
Provides a means of dispatching a set of ActiveEvents. It acts as if it contains a
daemon RealtimeThread to perform this task. The priority of this thread can be
specified when a dispatcher object is created. The default dispatcher runs at the
highest realtime priority on the base scheduler. Dispatchers do not maintain a
queue of pending event.

Application code cannot extend this class.

RTSJ 2.0 (Draft 57) 269

8 Asynchrony ActiveEventDispatcher

Available since RTSJ 2.0

8.3.2.1.1 Constructors

ActiveEventDispatcher(SchedulingParameters, Scheduling-
Group)

Signature
protected
ActiveEventDispatcher(SchedulingParameters schedule,

SchedulingGroup group)

Description
Creates a new dispatcher.

Parameters
schedule—Provides scheduling information to the new object.
group—The SchedulingGroup of the thread of this dispatcher.

ActiveEventDispatcher(SchedulingParameters)

Signature
protected
ActiveEventDispatcher(SchedulingParameters schedule)

Description
Creates a new dispatcher.

Parameters
schedule—Provides scheduling information to the new object.

8.3.2.1.2 Methods

270 RTSJ 2.0 (Draft 57)

ActiveEventDispatcher javax.realtime 8.3

getSchedulingParameters

Signature
public javax.realtime.SchedulingParameters
getSchedulingParameters()

Description
Determines how the thread associated with this dispatcher is scheduled.

Returns
the scheduling parameters of the dispatcher thread.

getSchedulingGroup

Signature
public javax.realtime.SchedulingGroup
getSchedulingGroup()

Description
Determines in which group the thread associated with this dispatcher is.

Returns
the scheduling group of the dispatcher thread.

register(T)

Signature
public abstract void
register(T event)
throws RegistrationException,

IllegalStateException,
IllegalArgumentException

Description
Registers an active event with this dispatcher.

Parameters
event—The event to register

Throws
RegistrationException—when event is already registered.

RTSJ 2.0 (Draft 57) 271

8 Asynchrony ActiveEventDispatcher

IllegalStateException—when this object has been destroyed.
IllegalArgumentException—when event is not stopped.

deregister(T)

Signature
public abstract void
deregister(T event)
throws DeregistrationException,

IllegalStateException,
IllegalArgumentException

Description
Deregisters an active event from this dispatcher.

Parameters
event—The event to deregister

Throws
DeregistrationException—when event is already registered.
IllegalStateException—when this object has been destroyed.
IllegalArgumentException—when event is not stopped.

getAffinity

Signature
public javax.realtime.Affinity
getAffinity()

Description
Determine the affinity set instance associated with task.

Returns
The associated affinity.

setAffinity(Affinity)

Signature
public void
setAffinity(Affinity set)

272 RTSJ 2.0 (Draft 57)

AsyncBaseEvent javax.realtime 8.3

throws IllegalArgumentException,
ProcessorAffinityException,
NullPointerException

Description
Set the processor affinity of a task to set with immediate effect.

Parameters
set—is the processor affinity

Throws
IllegalArgumentException—when the intersection of set the affinity of any

ThreadGroup instance containing task is empty.
ProcessorAffinityException—is thrown when the runtime fails to set the affinity

for platform-specific reasons.
NullPointerException—when set is null.

destroy

Signature
public abstract void
destroy()
throws IllegalStateException

Description
Makes the dispatcher unusable.

Throws
IllegalStateException—when called on a dispatcher that has one or more regis-

tered objects.

8.3.2.2 AsyncBaseEvent

public abstract class AsyncBaseEvent

Inheritance
java.lang.Object
AsyncBaseEvent

Description

RTSJ 2.0 (Draft 57) 273

8 Asynchrony AsyncBaseEvent

This is the base class for all asynchronous events, where asynchronous is in regards
to running code, not external time. This class unifies the original AsyncEvent
with AsyncLongEvent and AsyncObjectEvent.

Note that when this class is collected, all its handlers are automatically
removed as if setHandler was called with a null parameter.

Available since RTSJ 2.0

8.3.2.2.1 Methods

isRunning

Signature
public boolean
isRunning()

Description
Determines the firing state (releasing or skipping) of this event, i.e., whether it is
enabled or disabled.

Returns
true when releasing, false when skipping.
Available since RTSJ 2.0 Inherited by AyncEvent

handledBy(AsyncBaseEventHandler)

Signature
public boolean
handledBy(AsyncBaseEventHandler handler)

Description
Determines whether or not the handler given as the parameter is associated with
this.

Parameters
handler—The handler to be tested to determine if it is associated with this.

Returns

274 RTSJ 2.0 (Draft 57)

AsyncBaseEvent javax.realtime 8.3

true when the parameter is associated with this. False when handler is null or
the parameters is not associated with this.

Available since RTSJ 2.0 Inherited by AyncEvent

enable

Signature
public void
enable()

Description
Changes the state of the event so that associated handlers are released on fire.
Each subclass provides a fire method as means of dispatching its handlers when
requested. This method enables that request mechanism.

Available since RTSJ 2.0 Inherited by AyncEvent

disable

Signature
public void
disable()

Description
Changes the state of the event so that associated handlers are skipped on fire.
Each subclass provides a fire method as means of dispatching its handlers when
requested. This method disables that request mechanism.

Available since RTSJ 2.0 Inherited by AyncEvent

addHandler(AsyncBaseEventHandler)

Signature
public void
addHandler(AsyncBaseEventHandler handler)

Description

RTSJ 2.0 (Draft 57) 275

8 Asynchrony AsyncBaseEvent

Adds a handler to the set of handlers associated with this event. An instance of
AsyncBaseEvent may have more than one associated handler. However, adding
a handler to an event has no effect when the handler is already attached to the
event.

The execution of this method is atomic with respect to the execution of the
fire() method.

Note that there is an implicit reference to the handler stored in this. The
assignment must be valid under any applicable memory assignment rules.

Parameters
handler—The new handler to add to the list of handlers already associated with

this. When handler is already associated with the event, the call has no effect.
Throws

IllegalArgumentException—when handler is null or the handler has Period-
icParameters. Only the subclass PeriodicTimer is allowed to have handlers
with PeriodicParameters.

IllegalAssignmentError—when this AsyncBaseEvent cannot hold a reference to
handler.

IllegalStateException—when the configured Scheduler and SchedulingPar-
ameters for handler are not compatible with one another.

ScopedCycleException—when handler has an explicit initial scoped memory area
that has already been entered from a memory area other than the area where
handler was allocated.

Available since RTSJ 2.0 Inherited by AyncEvent

setHandler(AsyncBaseEventHandler)

Signature
public void
setHandler(AsyncBaseEventHandler handler)

Description
Associates a new handler with this event and removes all existing handlers. The
execution of this method is atomic with respect to the execution of the fire()
method.

Parameters
handler—The instance of AsyncBaseEventHandler to be associated with this.

When handler is null then no handler will be associated with this,

276 RTSJ 2.0 (Draft 57)

AsyncBaseEvent javax.realtime 8.3

i.e., it behaves effectively as if setHandler(null) invokes removeHan-
dler(AsyncBaseEventHandler) for each associated handler.

Throws
IllegalArgumentException—when handler has PeriodicParameters. Only the

subclass PeriodicTimer is allowed to have handlers with PeriodicParame-
ters.

IllegalAssignmentError—when this AsyncBaseEvent cannot hold a reference to
handler.

Available since RTSJ 2.0 Inherited by AyncEvent

removeHandler(AsyncBaseEventHandler)

Signature
public void
removeHandler(AsyncBaseEventHandler handler)

Description
Removes a handler from the set associated with this event. The execution of this
method is atomic with respect to the execution of the fire() method.

A removed handler continues to execute until its fireCount becomes zero and
it completes.

When handler has a scoped non-default initial memory area and execution
of this method causes handler to become unfirable, this method shall not return
until all related finalization has completed.

Parameters
handler—The handler to be disassociated from this. When null nothing happens.

When the handler is not already associated with this then nothing happens.
Available since RTSJ 2.0 Inherited by AyncEvent

hasHandlers

Signature
public boolean
hasHandlers()

Description
Determines whether or not this event has any handlers.

RTSJ 2.0 (Draft 57) 277

8 Asynchrony AsyncBaseEventHandler

Returns
true when and only when at least one handler is associated with this event.
Available since RTSJ 2.0 Inherited by AyncEvent

createReleaseParameters

Signature
public javax.realtime.ReleaseParameters
createReleaseParameters()

Description
Creates a ReleaseParameters object appropriate to the release characteristics
of this event. The default is the most pessimistic: AperiodicParameters. This
is typically called by code that is setting up a handler for this event that will
fill in the parts of the release parameters for which it has values, e.g., cost. The
returned ReleaseParameters object is not bound to the event. Any changes in
the event’s release parameters are not reflected in previously returned objects.

When an event returns PeriodicParameters, there is no requirement for an
implementation to check that the handler is released periodically.

Returns
a new ReleaseParameters object.

8.3.2.3 AsyncBaseEventHandler

public abstract class AsyncBaseEventHandler
Inheritance
java.lang.Object
AsyncBaseEventHandler

Interfaces
javax.realtime.Schedulable

Description
This is the base class for all asynchronous event handlers, where asynchronous is in
regards to running code, not external time. This class unifies the original Async-
EventHandler with AsyncLongEventHandler and AsyncObjectEventHandler.

Available since RTSJ 2.0

278 RTSJ 2.0 (Draft 57)

AsyncBaseEventHandler javax.realtime 8.3

8.3.2.3.1 Methods

getCurrentConsumption(RelativeTime)

Signature
public static javax.realtime.RelativeTime
getCurrentConsumption(RelativeTime dest)
throws IllegalStateException

Description
Determines the CPU consumption for this release. When dest is null, returns
the CPU consumption in an otherwise unused RelativeTime instance in the
current execution context. Otherwise, when dest is not null, returns the CPU
consumption in dest

Parameters
dest—When not null, the object in which to return the result.

Throws
IllegalStateException—when the caller is not a Schedulable.

Returns
the time consumed in the current release.

Available since RTSJ 2.0 Inherited by AyncEventHandler

getCurrentConsumption

Signature
public static javax.realtime.RelativeTime
getCurrentConsumption()

Description
Equivalent to getCurrentConsumption(null).

Returns
the time consumed in the current release.

Available since RTSJ 2.0 Inherited by AyncEventHandler

RTSJ 2.0 (Draft 57) 279

8 Asynchrony AsyncBaseEventHandler

getPendingFireCount

Signature
protected abstract int
getPendingFireCount()

Description
This is an accessor method for fireCount. The fireCount field nominally holds
the number of times associated instances of AsyncEvent have occurred that
have not had the method handleAsyncEvent() invoked. It is incremented and
decremented by the implementation of the RTSJ. The application logic may
manipulate the value in this field for application-specific reasons.

Returns
the value held by fireCount.

getAndClearPendingFireCount

Signature
protected abstract int
getAndClearPendingFireCount()

Description
This is an accessor method for fireCount. This method atomically sets the value
of fireCount to zero and returns the value from before it was set to zero. This
may be used by handlers for which the logic can accommodate multiple releases
in a single execution.

The general form for using this is

public void handleAsyncEvent()
{

int numberOfReleases = getAndClearPendingFireCount();
<handle the events>

}

The effect of a call to getAndClearPendingFireCount on the scheduling of this
AEH depends on the semantics of the scheduler controlling this AEH.

Returns
the value held by fireCount prior to setting the value to zero.

280 RTSJ 2.0 (Draft 57)

AsyncBaseEventHandler javax.realtime 8.3

getAndDecrementPendingFireCount

Signature
protected abstract int
getAndDecrementPendingFireCount()

Description
This is an accessor method for fireCount. This method atomically decrements,
by one, the value of fireCount (when it is greater than zero) and returns the value
from before the decrement. This method can be used in the handleAsyncEvent()
method to handle multiple releases:

public void handleAsyncEvent()
{

<setup>
do
{

<handle the event>
}

while(getAndDecrementPendingFireCount() > 0);
}

This construction is necessary only in cases where a handler wishes to avoid
the setup costs, since the framework guarantees that handleAsyncEvent() will
be invoked whenever the fireCount is greater than zero. The effect of a call to
getAndDecrementPendingFireCount on the scheduling of this AEH depends on
the semantics of the scheduler controlling this AEH.

Returns
the value held by fireCount prior to decrementing it by one.

getMemoryArea

Signature
public javax.realtime.MemoryArea
getMemoryArea()

Description

RTSJ 2.0 (Draft 57) 281

8 Asynchrony AsyncBaseEventHandler

This is an accessor method for the initial instance of MemoryArea associated with
this.

Returns
the instance of MemoryArea which was passed as the area parameter when this

was created (or the default value when area was allowed to default.

getMemoryParameters

Signature
public javax.realtime.MemoryParameters
getMemoryParameters()

Description
Gets a reference to the MemoryParameters object for this schedulable.

Returns
a reference to the current MemoryParameters object.

getReleaseParameters

Signature
public javax.realtime.ReleaseParameters
getReleaseParameters()

Description
Gets a reference to the ReleaseParameters object for this schedulable.

Returns
a reference to the current ReleaseParameters object.

getScheduler

Signature
public javax.realtime.Scheduler
getScheduler()

Description
Gets a reference to the Scheduler object for this schedulable.

282 RTSJ 2.0 (Draft 57)

AsyncBaseEventHandler javax.realtime 8.3

Returns
a reference to the associated Scheduler object.

getSchedulingParameters

Signature
public javax.realtime.SchedulingParameters
getSchedulingParameters()

Description
Gets a reference to the SchedulingParameters object for this schedulable.

Returns
A reference to the current SchedulingParameters object.

getSchedulingGroup

Signature
public javax.realtime.SchedulingGroup
getSchedulingGroup()

Description
Gets a reference to the SchedulingGroup instance of this schedulable.

Returns
a reference to the current SchedulingGroup object.
Available since RTSJ 2.0

getConfigurationParameters

Signature
public javax.realtime.ConfigurationParameters
getConfigurationParameters()

Description
Gets a reference to the ConfigurationParameters object for this schedulable.

Returns
a reference to the associated ConfigurationParameters object.

RTSJ 2.0 (Draft 57) 283

8 Asynchrony AsyncBaseEventHandler

Available since RTSJ 2.0

setMemoryParameters(MemoryParameters)

Signature
public javax.realtime.AsyncBaseEventHandler
setMemoryParameters(MemoryParameters memory)

Description
Sets the memory parameters associated with this instance of Schedulable.

This change becomes effective at the next allocation; on multiprocessor
systems, there may be some delay due to synchronization between processors.

Parameters
memory—A MemoryParameters object which will become the memory parameters

associated with this after the method call. When null, the default value is
governed by the associated scheduler; a new object is created when the default
value is not null. (See PriorityScheduler.)

Throws
IllegalArgumentException—when memory is not compatible with the schedul-

able’s scheduler. Also when this schedulable may not use the heap and memory
is located in heap memory.

IllegalAssignmentError—when the schedulable cannot hold a reference to mem-
ory, or when memory cannot hold a reference to this schedulable instance.

Returns
this

Available since RTSJ 2.0 returns itself

setReleaseParameters(ReleaseParameters)

Signature
public javax.realtime.AsyncBaseEventHandler
setReleaseParameters(ReleaseParameters release)

Description
Sets the release parameters associated with this instance of Schedulable.

This change becomes effective under conditions determined by the scheduler
controlling the schedulable. For instance, the change may be immediate or it may

284 RTSJ 2.0 (Draft 57)

AsyncBaseEventHandler javax.realtime 8.3

be delayed until the next release of the schedulable. The different properties of
the release parameters may take effect at different times. See the documentation
for the scheduler for details.

Parameters
release—A ReleaseParameters object which will become the release parameters

associated with this after the method call, and take effect as determined by
the associated scheduler. When null, the default value is governed by the
associated scheduler; a new object is created when the default value is not
null. (See PriorityScheduler.)

Throws
IllegalArgumentException—when release is not compatible with the associated

scheduler. Also when this schedulable may not use the heap and release is
located in heap memory.

IllegalAssignmentError—when this object cannot hold a reference to release
or release cannot hold a reference to this.

IllegalSchedulableStateException—when the task is running and the new
release parameters are not compatible with the current scheduler.

Returns
this

Available since RTSJ 2.0 returns itself

setScheduler(Scheduler)

Signature
public javax.realtime.AsyncBaseEventHandler
setScheduler(Scheduler scheduler)

Description
Sets the reference to the Scheduler object. The timing of the change must be
agreed between the scheduler currently associated with this schedulable, and
scheduler. If the Schedulable is running, its associated SchedulingParamet-
ers (if any) must be compatible with scheduler.

For an instance of AsyncBaseEventHandler, the Schedulable is running for
the purpose of setting the scheduler when it is attached to an AsyncEvent, even
when AsyncBaseEvent.isRunning() would return false for that event.

Parameters

RTSJ 2.0 (Draft 57) 285

8 Asynchrony AsyncBaseEventHandler

scheduler—A reference to the scheduler that will manage execution of this sched-
ulable. Null is not a permissible value.

Throws
IllegalArgumentException—when scheduler is null, or the schedulable’s ex-

isting parameter values are not compatible with scheduler. Also when this
schedulable may not use the heap and scheduler is located in heap memory.

IllegalAssignmentError—when the schedulable cannot hold a reference to sched-
uler or the current Schedulable is running and its associated Scheduling-
Parameters are incompatible with scheduler.

SecurityException—when the caller is not permitted to set the scheduler for this
schedulable.

IllegalSchedulableStateException—when scheduler has scheduling or release
parameters that are not compatible with the new scheduler and this schedulable
is running.

Returns
this

Available since RTSJ 2.0 returns itself

setScheduler(Scheduler, SchedulingParameters, ReleasePar-
ameters, MemoryParameters)

Signature
public javax.realtime.AsyncBaseEventHandler
setScheduler(Scheduler scheduler,

SchedulingParameters scheduling,
ReleaseParameters release,
MemoryParameters memoryParameters)

Description
Sets the scheduler and associated parameter objects. The timing of the change
must be agreed between the scheduler currently associated with this schedulable,
and scheduler.

Parameters
scheduler—A reference to the scheduler that will manage the execution of this

schedulable. Null is not a permissible value.
scheduling—A reference to the SchedulingParameters which will be associated

with this. When null, the default value is governed by scheduler; a new
object is created when the default value is not null. (See PriorityScheduler.)

286 RTSJ 2.0 (Draft 57)

AsyncBaseEventHandler javax.realtime 8.3

release—A reference to the ReleaseParameters which will be associated with
this. When null, the default value is governed by scheduler; a new object
is created when the default value is not null. (See PriorityScheduler.)

memoryParameters—A reference to the MemoryParameters which will be associated
with this. When null, the default value is governed by scheduler; a new
object is created when the default value is not null. (See PriorityScheduler.)

Throws
IllegalArgumentException—when scheduler is null or the parameter values

are not compatible with scheduler. Also thrown when this schedulable may
not use the heap and scheduler, scheduling release, memoryParameters,
or group is located in heap memory.

IllegalAssignmentError—when this object cannot hold references to all the
parameter objects or the parameters cannot hold references to this.

SecurityException—when the caller is not permitted to set the scheduler for this
schedulable.

Returns
this

Available since RTSJ 2.0

setSchedulingParameters(SchedulingParameters)

Signature
public javax.realtime.AsyncBaseEventHandler
setSchedulingParameters(SchedulingParameters scheduling)

Description
Sets the scheduling parameters associated with this instance of Schedulable.

This change becomes effective under conditions determined by the scheduler
controlling the schedulable. For instance, the change may be immediate or it
may be delayed until the next release of the schedulable. See the documentation
for the scheduler for details.

Parameters
scheduling—A reference to the SchedulingParameters object. When null, the

default value is governed by the associated scheduler; a new object is created
when the default value is not null. (See PriorityScheduler.)

Throws

RTSJ 2.0 (Draft 57) 287

8 Asynchrony AsyncBaseEventHandler

IllegalArgumentException—when scheduling is not compatible with the as-
sociated scheduler. Also when this schedulable may not use the heap and
scheduling is located in heap memory.

IllegalAssignmentError—when this object cannot hold a reference to schedul-
ing or scheduling cannot hold a reference to this.

IllegalSchedulableStateException—when the task is active and the new
scheduling parameters are not compatible with the current scheduler.

Returns
this

Available since RTSJ 2.0 returns itself

setDaemon(boolean)

Signature
public final void
setDaemon(boolean on)

Description
Marks this schedulable as either a daemon or a user task. A realtime virtual
machine exits when the only tasks running are all daemons. This method must
be called before the task is attached to any event or started. Once attached or
started, it cannot be changed.

Parameters
on—When true, marks this event handler as a daemon handler.

Throws
IllegalThreadStateException—when this schedulable is active.
SecurityException—when the current schedulable cannot modify this event han-

dler.
Available since RTSJ 2.0

isDaemon

Signature
public final boolean
isDaemon()

288 RTSJ 2.0 (Draft 57)

AsyncBaseEventHandler javax.realtime 8.3

Description
Tests if this event handler is a daemon handler.

Returns
true when this event handler is a daemon handler; false otherwise.

Available since RTSJ 2.0

getDispatcher

Signature
public javax.realtime.TimeDispatcher
getDispatcher()

Description
Gets the dispatcher associated with this Timable.

See Section Timable.getDispatcher()

getQueueLength

Signature
public int
getQueueLength()

Description
Finds the current length of the event queue. The event queue holds the time and
payload of all released events that are still outstanding. The queue may have a
length of zero.

Returns
the queue length.

Available since RTSJ 2.0 Inherited by AyncEventHandler

getMinConsumption(RelativeTime)

Signature

RTSJ 2.0 (Draft 57) 289

8 Asynchrony AsyncBaseEventHandler

public javax.realtime.RelativeTime
getMinConsumption(RelativeTime dest)

Description
Determines the minimum CPU consumption of all completed releases. When dest
is null, returns the CPU consumption in an otherwise unused RelativeTime
instance in the current execution context. Otherwise, when dest is not null,
returns the CPU consumption in dest

Parameters
dest—When not null, the object in which to return the result.

Returns
the minimum time consumed in any release.

getMinConsumption

Signature
public javax.realtime.RelativeTime
getMinConsumption()

Description
Same as getMinConsumption(RelativeTime) with a null argument.

Returns
the minimum time consumed in any release.

getMaxConsumption(RelativeTime)

Signature
public javax.realtime.RelativeTime
getMaxConsumption(RelativeTime dest)

Description
Determines the maximum CPU consumption of all completed releases. When dest
is null, returns the CPU consumption in an otherwise unused RelativeTime
instance in the current execution context. Otherwise, when dest is not null,
returns the CPU consumption in dest.

Parameters
dest—When not null, the object in which to return the result.

290 RTSJ 2.0 (Draft 57)

AsyncBaseEventHandler javax.realtime 8.3

Returns
the maximum time consumed in any release.

getMaxConsumption

Signature
public javax.realtime.RelativeTime
getMaxConsumption()

Description
Same as getMaxConsumption(RelativeTime) with a null argument.

Returns
the maximum time consumed in any release.

mayUseHeap

Signature
public boolean
mayUseHeap()

Description
Determines whether or not this schedulable may use the heap.

Returns
true only when this Schedulable may allocate on the heap and may enter the

Heap.

isInterrupted

Signature
public boolean
isInterrupted()

Description
Determines whether or not any AsynchronouslyInterruptedException is pend-
ing.

Returns

RTSJ 2.0 (Draft 57) 291

8 Asynchrony AsyncBaseEventHandler

true when and only when the generic AsynchronouslyInterruptedException is
pending.

Available since RTSJ 2.0

interrupt

Signature
public void
interrupt()

Description
Makes the generic AsynchronouslyInterruptedException pending for this,
and sets the interrupted state to true. As with Thread.interrupt(), blocking
operations that are interruptible are interrupted. When this.isRousable() is
true causes an early release. In any case, AsynchronouslyInterruptedExcep-
tion is thrown once a method is entered that implements AsynchronouslyIn-
terruptedException.

Behaves as if Thread.interrupt() were called on the implementation thread
underlying this Schedulable.

Throws
IllegalSchedulableStateException—when this is not currently releasable, i.e.,

is disabled, not firable, its start method has not been called, or it has terminated.
Available since RTSJ 2.0

isRousable

Signature
public boolean
isRousable()

Description
Determines whether or not it is possible for an interruptible to prematurely
release the handler.

Returns
true when it is possible, otherwise false.
Available since RTSJ 2.0 Inherited by AyncEventHandler

292 RTSJ 2.0 (Draft 57)

AsyncBaseEventHandler javax.realtime 8.3

setRousable(boolean)

Signature
public javax.realtime.AsyncBaseEventHandler
setRousable(boolean value)

Description
Sets a state indicating whether or not a interrupt can prematurely release this
handler.

Parameters
value—The new value of the wake by interrupt state.

Returns
this

Available since RTSJ 2.0 Inherited by AyncEventHandler

awaken

Signature
public final void
awaken()

Description
Use internally to indicate a sleep period has ended.

See Section Schedulable.awaken()

run

Signature
public abstract void
run()

Description
This method is only to be used by the infrastructure, and should not be called
by the application.

The handleAsyncEvent() family of methods provides the equivalent function-
ality to Runnable.run() for asynchronous event handlers, including execution

RTSJ 2.0 (Draft 57) 293

8 Asynchrony AsyncEvent

of the logic argument passed to this object’s constructor. Applications should
override that method or provide a logic object for the default implementation
to invoke.

8.3.2.4 AsyncEvent

public class AsyncEvent

Inheritance
java.lang.Object
AsyncBaseEvent
AsyncEvent

Description
An asynchronous event can have a set of handlers associated with it, and when
the event occurs, the fireCount of each handler is incremented, and the handlers
are released (see AsyncEventHandler).

Available since RTSJ 2.0 extends AsyncBaseEvent

8.3.2.4.1 Constructors

AsyncEvent

Signature
public
AsyncEvent()

Description
Creates a new AsyncEvent object.

8.3.2.4.2 Methods

294 RTSJ 2.0 (Draft 57)

AsyncEventHandler javax.realtime 8.3

fire

Signature
public void
fire()

Description
When enabled, release the asynchronous events associated with this instance
of AsyncEvent. When no handlers are attached or this object is disabled the
method does nothing, i.e., it skips the release.
• When the instance of AsyncEvent has more than one instance of Async-

EventHandler with release parameters object of type AperiodicParame-
ters attached and the execution of AsyncEvent.fire() introduces the
requirement to throw at least one type of exception, then all instances of
AsyncEventHandler not affected by the exception are handled normally
• When the instance of AsyncEvent has more than one instance of Async-

EventHandler with release parameters object of type SporadicParame-
ters attached and the execution of AsyncEvent.fire() introduces the
simultaneous requirement to throw more than one type of exception or
error then MITViolationException has precedence over ArrivalTime-
QueueOverflowException.

Throws
MITViolationException—under the base priority scheduler’s semantics when there

is a handler associated with this event that has its MIT violated by the call
to fire (and it has set the minimum interarrival time violation behavior to
MITViolationExcept). Only the handlers which do not have their MITs violated
are released in this situation.

ArrivalTimeQueueOverflowException—when the queue of release information,
arrival time and payload, overflows. Only the handlers which do not cause this
exception to be thrown are released in this situation. When fire is called from
the infrastructure, such as for an ActiveEvent, this exception is ignored.

8.3.2.5 AsyncEventHandler

public class AsyncEventHandler

Inheritance
java.lang.Object

RTSJ 2.0 (Draft 57) 295

8 Asynchrony AsyncEventHandler

AsyncBaseEventHandler
AsyncEventHandler

Description
An asynchronous event handler encapsulates code that is released after an instance
of AsyncEvent to which it is attached occurs.

It is guaranteed that multiple releases of an event handler will be serial-
ized. It is also guaranteed that (unless the handler explicitly chooses oth-
erwise) for each release of the handler, there will be one execution of the
AsyncEventHandler.handleAsyncEvent() method. Control over the number of
calls to AsyncEventHandler.handleAsyncEvent() is given by methods which
manipulate a fireCount. These may be called by the application via sub-classing
and overriding AsyncEventHandler.handleAsyncEvent().

Instances of AsyncEventHandler with a release parameter of type Sporadic-
Parameters or AperiodicParameters have a list of release times which corre-
spond to the occurrence times of instances of AsyncEvent to which they are
attached. The minimum interarrival time specified in SporadicParameters is
enforced when a release time is added to the list. Unless the handler explicitly
chooses otherwise, there will be one execution of the code in AsyncEventHandler.
handleAsyncEvent() for each entry in the list.

The deadline and the time each release event causes the AEH to become
eligible for execution are properties of the scheduler that controls the AEH. For
the base scheduler, the deadline for each release event is relative to its fire time,
and the release takes place at fire time but execution eligibility may be deferred
when the queue’s MIT violation policy is SAVE.

Handlers may do almost anything a realtime thread can do. They may run for a
long or short time, and they may block. (Note, blocked handlers may hold system
resources.) A handler may not use the RealtimeThread.waitForNextRelease
method.

Normally, handlers are bound to an execution context dynamically when the
instances of AsyncEvents to which they are bound occur. This can introduce a
(small) time penalty. For critical handlers that cannot afford the expense, and
where this penalty is a problem, BoundAsyncEventHandlers can be used.

The scheduler for an asynchronous event handler is inherited from the task
that created it. When created from a task that is not an instance of Schedulable,
the scheduler is the current default scheduler.

The semantics for memory areas that were defined for realtime threads apply
in the same way to instances of AsyncEventHandler They may inherit a scope
stack when they are created, and the single parent rule applies to the use of
memory scopes for instances of AsyncEventHandler just as it does in realtime
threads.

296 RTSJ 2.0 (Draft 57)

AsyncEventHandler javax.realtime 8.3

Available since RTSJ 2.0 extends AsyncBaseEventHandler

8.3.2.5.1 Constructors

AsyncEventHandler(SchedulingParameters, ReleaseParam-
eters, MemoryParameters, MemoryArea, ReleaseRunner,
Runnable)

Signature
public
AsyncEventHandler(SchedulingParameters scheduling,

ReleaseParameters release,
MemoryParameters memory,
MemoryArea area,
ReleaseRunner runner,
Runnable logic)

Description

Creates a handler with the given scheduling, release, memory, group, and config-
uration parameters to run the given logic.

Available since RTSJ 2.0

Parameters
scheduling—Parameter for scheduling the new handler (and possibly other in-

stances of Schedulable). When scheduling is null and the creator is an
instance of Schedulable, SchedulingParameters is a clone of the creator’s
value created in the same memory area as this. When scheduling is null and
the creator is a task that is not an instance of Schedulable, the contents and
type of the new SchedulingParameters object are governed by the associated
scheduler.

release—Parameter for scheduling the new handler (and possibly other instances
of Schedulable). When release is null the new AsyncEventHandler will
use a clone of the default ReleaseParameters for the associated scheduler
created in the memory area that contains the AsyncEventHandler object.

RTSJ 2.0 (Draft 57) 297

8 Asynchrony AsyncEventHandler

memory—Parameter for scheduling the new handler (and possibly other instances of
Schedulable). When memory is null, the new AsyncEventHandler receives
null value for its memory parameters, and the amount or rate of memory
allocation for the new handler is unrestricted.

area—The initial memory area of this handler.
runner—A pool of realtime threads to provide an execution context for this handler.
logic—The Runnable object whose run() method will serve as the logic for the new

AsyncEventHandler. When logic is null, the handleAsyncEvent() method
in the new object will serve as its logic.

AsyncEventHandler(SchedulingParameters, ReleaseParam-
eters, MemoryParameters, MemoryArea, Runnable)

Signature
public
AsyncEventHandler(SchedulingParameters scheduling,

ReleaseParameters release,
MemoryParameters memory,
MemoryArea area,
Runnable logic)

Description
Calling this constructor is equivalent to calling AsyncEventHand-
ler(SchedulingParameters, ReleaseParameters, MemoryParameters,
MemoryArea, ReleaseRunner, Runnable) with arguments (scheduling,
release, memory, area, null, logic).

Available since RTSJ 2.0

AsyncEventHandler(SchedulingParameters, ReleaseParam-
eters, Runnable)

Signature
public
AsyncEventHandler(SchedulingParameters scheduling,

ReleaseParameters release,
Runnable logic)

298 RTSJ 2.0 (Draft 57)

AsyncEventHandler javax.realtime 8.3

Description
Calling this constructor is equivalent to calling AsyncEventHand-
ler(SchedulingParameters, ReleaseParameters, MemoryParameters,
MemoryArea, ReleaseRunner, Runnable) with arguments (scheduling,
release, null, null, null, logic).

Available since RTSJ 2.0

AsyncEventHandler(SchedulingParameters, ReleaseParam-
eters)

Signature
public
AsyncEventHandler(SchedulingParameters scheduling,

ReleaseParameters release)

Description
Calling this constructor is equivalent to calling AsyncEventHand-
ler(SchedulingParameters, ReleaseParameters, MemoryParameters,
MemoryArea, ReleaseRunner, Runnable) with arguments (scheduling,
release, null, null, null, null)

Available since RTSJ 2.0

AsyncEventHandler(Runnable)

Signature
public
AsyncEventHandler(Runnable logic)

Description
Calling this constructor is equivalent to calling AsyncEventHand-
ler(SchedulingParameters, ReleaseParameters, MemoryParameters,
MemoryArea, ReleaseRunner, Runnable) with arguments (null, null,
null, null, null, logic).

RTSJ 2.0 (Draft 57) 299

8 Asynchrony AsyncEventHandler

AsyncEventHandler

Signature
public
AsyncEventHandler()

Description
Creates an instance of AsyncEventHandler with default values for all parameters.

See Section AsyncEventHandler(SchedulingParameters, ReleaseParameters, Memo-
ryParameters, MemoryArea, ReleaseRunner, Runnable)

8.3.2.5.2 Methods

handleAsyncEvent

Signature
public void
handleAsyncEvent()

Description
This method holds the logic which is to be executed when any AsyncEvent with
which this handler is associated is fired. This method will be invoked repeatedly
while fireCount is greater than zero.

The default implementation of this method invokes the run method of any
non-null logic instance passed to the constructor of this handler.

This AEH acts as a source of "reference" for its initial memory area while it is
released.

All throwables from (or propagated through) handleAsyncEvent are caught,
a stack trace is printed and execution continues as if handleAsyncEvent had
returned normally.

run

Signature

300 RTSJ 2.0 (Draft 57)

AsyncEventHandler javax.realtime 8.3

public final void
run()

Description
This method is only to be used by the infrastructure, and should not be called
by the application.

The handleAsyncEvent() family of methods provides the equivalent function-
ality to Runnable.run() for asynchronous event handlers, including execution
of the logic argument passed to this object’s constructor. Applications should
override that method or provide a logic object for the default implementation
to invoke.

getPendingFireCount

Signature
protected synchronized int
getPendingFireCount()

Description
This is an accessor method for fireCount. The fireCount field nominally holds
the number of times associated instances of AsyncEvent have occurred that
have not had the method handleAsyncEvent() invoked. It is incremented and
decremented by the implementation of the RTSJ. The application logic may
manipulate the value in this field for application-specific reasons.

Returns
the value held by fireCount.

getAndDecrementPendingFireCount

Signature
protected synchronized int
getAndDecrementPendingFireCount()

Description
This is an accessor method for fireCount. This method atomically decrements,
by one, the value of fireCount (when it is greater than zero) and returns the value
from before the decrement. This method can be used in the handleAsyncEvent()
method to handle multiple releases:

RTSJ 2.0 (Draft 57) 301

8 Asynchrony AsyncEventHandler

public void handleAsyncEvent()
{

<setup>
do
{

<handle the event>
}

while(getAndDecrementPendingFireCount() > 0);
}

This construction is necessary only in cases where a handler wishes to avoid
the setup costs, since the framework guarantees that handleAsyncEvent() will
be invoked whenever the fireCount is greater than zero. The effect of a call to
getAndDecrementPendingFireCount on the scheduling of this AEH depends on
the semantics of the scheduler controlling this AEH.

Returns
the value held by fireCount prior to decrementing it by one.

getAndClearPendingFireCount

Signature
protected synchronized int
getAndClearPendingFireCount()

Description
This is an accessor method for fireCount. This method atomically sets the value
of fireCount to zero and returns the value from before it was set to zero. This
may be used by handlers for which the logic can accommodate multiple releases
in a single execution.

The general form for using this is

public void handleAsyncEvent()
{

int numberOfReleases = getAndClearPendingFireCount();
<handle the events>

}

302 RTSJ 2.0 (Draft 57)

AsyncLongEvent javax.realtime 8.3

The effect of a call to getAndClearPendingFireCount on the scheduling of this
AEH depends on the semantics of the scheduler controlling this AEH.

Returns
the value held by fireCount prior to setting the value to zero.

8.3.2.6 AsyncLongEvent

public class AsyncLongEvent

Inheritance
java.lang.Object
AsyncBaseEvent
AsyncLongEvent

Description
A new type of event that carries a long as a payload.

See Section AsyncEvent

Available since RTSJ 2.0

8.3.2.6.1 Constructors

AsyncLongEvent

Signature
public
AsyncLongEvent()

Description
Creates a new AsyncLongEvent object.

RTSJ 2.0 (Draft 57) 303

8 Asynchrony AsyncLongEvent

8.3.2.6.2 Methods

fire(long)

Signature
public void
fire(long value)
throws MITViolationException,

EventQueueOverflowException

Description
When enabled, releases the handlers associated with this instance of AsyncLong-
Event with the long passed by fire(long). When no handlers are attached or
this object is disabled the method does nothing, i.e., it skips the release.
• When the instance of AsyncLongEvent is associated with more than one

instance of AsyncLongEventHandler with release parameters object of type
AperiodicParameters and the execution of fire(long) introduces the
requirement to throw at least one type of exception, then all instances of
AsyncLongEventHandler not affected by the exception are handled normally.
• When this instance of AsyncLongEvent is associated with more than one

instance of AsyncLongEventHandler with release parameters object of type
SporadicParameters and the execution of fire(long) introduces the si-
multaneous requirement to throw more than one type of exception or
error, then MITViolationException has precedence over ArrivalTime-
QueueOverflowException.

Parameters
value—The payload passed to the event.

Throws
MITViolationException—under the base priority scheduler’s semantics, when

there is a handler associated with this event that has its MIT violated by the
call to fire (and it has set the minimum inter-arrival time violation behavior
to MITViolationExcept). Only the handlers which do not have their MITs
violated are released in this situation.

EventQueueOverflowException—when the queue of release information, arrival
time and payload, overflows. Only the handlers which do not cause this
exception to be thrown are released in this situation. When fire is called from
the infrastructure, such as for an ActiveEvent, this exception is ignored.

304 RTSJ 2.0 (Draft 57)

AsyncLongEventHandler javax.realtime 8.3

8.3.2.7 AsyncLongEventHandler

public class AsyncLongEventHandler

Inheritance
java.lang.Object
AsyncBaseEventHandler
AsyncLongEventHandler

Description
A version of AsyncBaseEventHandler that carries a long value as paylaod.

Available since RTSJ 2.0

8.3.2.7.1 Constructors

AsyncLongEventHandler(SchedulingParameters, Release-
Parameters, MemoryParameters, MemoryArea, ReleaseRun-
ner, LongConsumer)

Signature
public
AsyncLongEventHandler(SchedulingParameters scheduling,

ReleaseParameters release,
MemoryParameters memory,
MemoryArea area,
ReleaseRunner runner,
LongConsumer logic)

throws IllegalArgumentException

Description
Creates an asynchronous event handler that receives a Long payload with each
fire.

Parameters

RTSJ 2.0 (Draft 57) 305

8 Asynchrony AsyncLongEventHandler

scheduling—Parameter for scheduling the new handler (and possibly other in-
stances of Schedulable). When scheduling is null and the creator is an
instance of Schedulable, SchedulingParameters is a clone of the creator’s
value created in the same memory area as this. When scheduling is null and
the creator is a task that is not an instance of Schedulable, the contents and
type of the new SchedulingParameters object are governed by the associated
scheduler.

release—Parameter for scheduling the new handler (and possibly other instances
of Schedulable). When release is null the new AsyncEventHandler will
use a clone of the default ReleaseParameters for the associated scheduler
created in the memory area that contains the AsyncEventHandler object.

memory—Parameter for scheduling the new handler (and possibly other instances of
Schedulable). When memory is null, the new AsyncEventHandler receives
null value for its memory parameters, and the amount or rate of memory
allocation for the new handler is unrestricted.

area—The initial memory area of this handler.
runner—Logic to be executed by handleAsyncEvent
logic—The logic to run for each fire. When logic is null, the han-

dleAsyncEvent() method in the new object will serve as its logic.
Throws

IllegalArgumentException—when the event queue overflow policy is
QueueOverflowPolicy.DISABLE.

AsyncLongEventHandler(SchedulingParameters, Release-
Parameters, LongConsumer)

Signature
public
AsyncLongEventHandler(SchedulingParameters scheduling,

ReleaseParameters release,
LongConsumer logic)

throws IllegalArgumentException

Description
Calling this constructor is equivalent to calling AsyncLongEventHand-
ler(SchedulingParameters, ReleaseParameters, MemoryParameters,
MemoryArea, ReleaseRunner, LongConsumer) with arguments (scheduling,
release, null, null, null, logic).

306 RTSJ 2.0 (Draft 57)

AsyncLongEventHandler javax.realtime 8.3

AsyncLongEventHandler(SchedulingParameters, Release-
Parameters)

Signature
public
AsyncLongEventHandler(SchedulingParameters scheduling,

ReleaseParameters release)
throws IllegalArgumentException

Description
Calling this constructor is equivalent to calling AsyncLongEventHand-
ler(SchedulingParameters, ReleaseParameters, MemoryParameters,
MemoryArea, ReleaseRunner, LongConsumer) with arguments (scheduling,
release, null, null, null, null)

AsyncLongEventHandler(LongConsumer)

Signature
public
AsyncLongEventHandler(LongConsumer logic)

Description
Calling this constructor is equivalent to calling AsyncLongEventHand-
ler(SchedulingParameters, ReleaseParameters, MemoryParameters,
MemoryArea, ReleaseRunner, LongConsumer) with arguments (null, null,
null, null, null, null, logic).

AsyncLongEventHandler

Signature
public
AsyncLongEventHandler()

Description
Creates an instance of AsyncLongEventHandler (ALEH) with default values for
all parameters.

RTSJ 2.0 (Draft 57) 307

8 Asynchrony AsyncLongEventHandler

See Section AsyncLongEventHandler(SchedulingParameters, ReleaseParameters,
MemoryParameters, MemoryArea, ReleaseRunner, LongConsumer)

8.3.2.7.2 Methods

handleAsyncEvent(long)

Signature
public void
handleAsyncEvent(long payload)

Description
This method holds the logic which is to be executed when any AsyncEvent with
which this handler is associated is fired. This method will be invoked repeatedly
while fireCount is greater than zero.

This ALEH is a source of reference for its initial memory area while this
ALEH is released.

All throwables from (or propagated through) handleAsyncEvent are caught,
a stack trace is printed and execution continues as if handleAsyncEvent had
returned normally.

Parameters
payload—It is the long value associated with a fire.

peekPending

Signature
public long
peekPending()
throws IllegalStateException

Description
Determines the next value queued for handling.

Throws
IllegalStateException—when the fire count is zero.

Returns

308 RTSJ 2.0 (Draft 57)

AsyncLongEventHandler javax.realtime 8.3

the long value at the head of the queue of longs to be passed to han-
dleAsyncEvent(long).

run

Signature
public final void
run()

Description
This method is only to be used by the infrastructure, and should not be called
by the application.

The handleAsyncEvent() family of methods provides the equivalent function-
ality to Runnable.run() for asynchronous event handlers, including execution
of the logic argument passed to this object’s constructor. Applications should
override that method or provide a logic object for the default implementation
to invoke.

getPendingFireCount

Signature
protected synchronized int
getPendingFireCount()

Description
This is an accessor method for fireCount. The fireCount field nominally holds
the number of times associated instances of AsyncEvent have occurred that
have not had the method handleAsyncEvent() invoked. It is incremented and
decremented by the implementation of the RTSJ. The application logic may
manipulate the value in this field for application-specific reasons.

Returns
the value held by fireCount.

getAndDecrementPendingFireCount

Signature

RTSJ 2.0 (Draft 57) 309

8 Asynchrony AsyncLongEventHandler

protected synchronized int
getAndDecrementPendingFireCount()

Description
This is an accessor method for fireCount. This method atomically decrements,
by one, the value of fireCount (when it is greater than zero) and returns the value
from before the decrement. This method can be used in the handleAsyncEvent()
method to handle multiple releases:

public void handleAsyncEvent()
{

<setup>
do
{

<handle the event>
}

while(getAndDecrementPendingFireCount() > 0);
}

This construction is necessary only in cases where a handler wishes to avoid
the setup costs, since the framework guarantees that handleAsyncEvent() will
be invoked whenever the fireCount is greater than zero. The effect of a call to
getAndDecrementPendingFireCount on the scheduling of this AEH depends on
the semantics of the scheduler controlling this AEH.

Returns
the value held by fireCount prior to decrementing it by one.

getAndClearPendingFireCount

Signature
protected synchronized int
getAndClearPendingFireCount()

Description
This is an accessor method for fireCount. This method atomically sets the value
of fireCount to zero and returns the value from before it was set to zero. This

310 RTSJ 2.0 (Draft 57)

AsyncObjectEvent javax.realtime 8.3

may be used by handlers for which the logic can accommodate multiple releases
in a single execution.

The general form for using this is

public void handleAsyncEvent()
{

int numberOfReleases = getAndClearPendingFireCount();
<handle the events>

}

The effect of a call to getAndClearPendingFireCount on the scheduling of this
AEH depends on the semantics of the scheduler controlling this AEH.

Returns
the value held by fireCount prior to setting the value to zero.

8.3.2.8 AsyncObjectEvent

public class AsyncObjectEvent<P>

Inheritance
java.lang.Object
AsyncBaseEvent
AsyncObjectEvent<P>

Description

A new type of event that carries an object as a payload.

See Section AsyncEvent

Available since RTSJ 2.0

8.3.2.8.1 Constructors

RTSJ 2.0 (Draft 57) 311

8 Asynchrony AsyncObjectEvent

AsyncObjectEvent

Signature
public
AsyncObjectEvent()

Description
Creates a new AsyncObjectEvent instance.

8.3.2.8.2 Methods

fire(P)

Signature
public void
fire(P value)
throws MITViolationException,

EventQueueOverflowException,
IllegalAssignmentError

Description
When enabled, fires this instance of AsyncObjectEvent. The asynchronous event
handlers associated with this event will be released with the object passed by
fire. When no handlers are attached or this object is disabled the method does
nothing, i.e., it skips the release.
• When the instance of AsyncObjectEvent is associated with more than

one instance of AsyncObjectEventHandler with release parameters object
of type AperiodicParameters and the execution of fire introduces the
requirement to throw at least one type of exception, then all instances
of AsyncObjectEventHandler not affected by the exception are handled
normally.
• When this instance of AsyncObjectEvent is associated with more than
one instance of AsyncObjectEventHandler with release parameters ob-
ject of type SporadicParameters and the execution of fire introduces
the simultaneous requirement to throw more than one type of exception
or error, then MITViolationException has precedence over ArrivalTime-
QueueOverflowException.

312 RTSJ 2.0 (Draft 57)

AsyncObjectEventHandler javax.realtime 8.3

Parameters
value—The payload passed to the event.

Throws
MITViolationException—under the base priority scheduler’s semantics when there

is a handler associated with this event that has its MIT violated by the call
to fire (and it has set the minimum inter-arrival time violation behavior to
MITViolationExcept). Only the handlers which do not have their MITs violated
are released in this situation.

ArrivalTimeQueueOverflowException—when the queue of releases information,
arrival time and payload, overflows. Only the handlers which do not cause this
exception to be thrown are released in this situation. When fire is called from
the infrastructure, such as for an ActiveEvent, this exception is ignored.

IllegalAssignmentError—when P is not assignable the event queue of one of the
associated handlers.

8.3.2.9 AsyncObjectEventHandler

public abstract class AsyncObjectEventHandler<P>
Inheritance
java.lang.Object
AsyncBaseEventHandler
AsyncObjectEventHandler<P>

Description
A version of AsyncBaseEventHandler that carries an Object value as paylaod.

Available since RTSJ 2.0

8.3.2.9.1 Constructors

AsyncObjectEventHandler(SchedulingParameters, Release-
Parameters, MemoryParameters, MemoryArea, ReleaseRun-
ner, Consumer)

Signature

RTSJ 2.0 (Draft 57) 313

8 Asynchrony AsyncObjectEventHandler

public
AsyncObjectEventHandler(SchedulingParameters scheduling,

ReleaseParameters release,
MemoryParameters memory,
MemoryArea area,
ReleaseRunner runner,
java.util.function.Consumer<P> logic)

throws IllegalArgumentException

Description
Creates an asynchronous event handler that receives a Long payload with each
fire.

Parameters
scheduling—Parameter for scheduling the new handler (and possibly other in-

stances of Schedulable). When scheduling is null and the creator is an
instance of Schedulable, SchedulingParameters is a clone of the creator’s
value created in the same memory area as this. When scheduling is null and
the creator is a task that is not an instance of Schedulable, the contents and
type of the new SchedulingParameters object are governed by the associated
scheduler.

release—Parameter for scheduling the new handler (and possibly other instances
of Schedulable). When release is null the new AsyncEventHandler will
use a clone of the default ReleaseParameters for the associated scheduler
created in the memory area that contains the AsyncEventHandler object.

memory—Parameter for scheduling the new handler (and possibly other instances of
Schedulable). When memory is null, the new AsyncEventHandler receives
null value for its memory parameters, and the amount or rate of memory
allocation for the new handler is unrestricted.

area—The initial memory area of this handler.
runner—Logic to be executed by handleAsyncEvent
logic—The logic to run for each fire. When logic is null, the handleAsyncEvent

method in the new object will serve as its logic.
Throws

IllegalArgumentException—when the event queue overflow policy is
QueueOverflowPolicy.DISABLE.

AsyncObjectEventHandler(SchedulingParameters, Release-
Parameters, Consumer)

314 RTSJ 2.0 (Draft 57)

AsyncObjectEventHandler javax.realtime 8.3

Signature
public
AsyncObjectEventHandler(SchedulingParameters scheduling,

ReleaseParameters release,
java.util.function.Consumer<P> logic)

throws IllegalArgumentException

Description
Calling this constructor is equivalent to calling AsyncObjectEventHand-
ler(SchedulingParameters, ReleaseParameters, MemoryParameters,
MemoryArea, ReleaseRunner, Consumer) with arguments (scheduling,
release, null, null, null, logic).

AsyncObjectEventHandler(SchedulingParameters, Release-
Parameters)

Signature
public
AsyncObjectEventHandler(SchedulingParameters scheduling,

ReleaseParameters release)
throws IllegalArgumentException

Description
Calling this constructor is equivalent to calling AsyncObjectEventHand-
ler(SchedulingParameters, ReleaseParameters, MemoryParameters,
MemoryArea, ReleaseRunner, Consumer) with arguments (scheduling,
release, null, null, null, null)

AsyncObjectEventHandler(Consumer)

Signature
public
AsyncObjectEventHandler(java.util.function.Consumer<P> logic)

Description

RTSJ 2.0 (Draft 57) 315

8 Asynchrony AsyncObjectEventHandler

Calling this constructor is equivalent to calling AsyncObjectEventHand-
ler(SchedulingParameters, ReleaseParameters, MemoryParameters,
MemoryArea, ReleaseRunner, Consumer) with arguments (null, null,
null, null, null, null, logic).

Parameters
logic—It is the function to call on the object received.

AsyncObjectEventHandler

Signature
public
AsyncObjectEventHandler()

Description
Creates an instance of AsyncObjectEventHandler (AOEH) with default values
for all parameters.

See Section AsyncObjectEventHandler(SchedulingParameters, ReleaseParameters,
MemoryParameters, MemoryArea, ReleaseRunner, Consumer)

8.3.2.9.2 Methods

handleAsyncEvent(P)

Signature
public void
handleAsyncEvent(P value)

Description
This method holds the logic which is to be executed when any AsyncEvent with
which this handler is associated is fired. This method will be invoked repeatedly
while fireCount is greater than zero.

The default implementation of this method invokes the run method of any
non-null logic instance passed to the constructor of this handler.

This AOEH is a source of reference for its initial memory area while this
AOEH is released.

316 RTSJ 2.0 (Draft 57)

AsyncObjectEventHandler javax.realtime 8.3

All throwables from (or propagated through) handleAsyncEvent(P) are
caught, a stack trace is printed and execution continues as if han-
dleAsyncEvent(P) had returned normally.

peekPending

Signature
public P
peekPending()
throws IllegalStateException

Description

Determines the next value queued for handling.

Throws
IllegalStateException—when the fire count is zero.

Returns
the object reference at the head of the queue of object references to be passed to

handleAsyncEvent}.

run

Signature
public final void
run()

Description

This method is only to be used by the infrastructure, and should not be called
by the application.

The handleAsyncEvent() family of methods provides the equivalent function-
ality to Runnable.run() for asynchronous event handlers, including execution
of the logic argument passed to this object’s constructor. Applications should
override that method or provide a logic object for the default implementation
to invoke.

RTSJ 2.0 (Draft 57) 317

8 Asynchrony AsyncObjectEventHandler

getPendingFireCount

Signature
protected synchronized int
getPendingFireCount()

Description
This is an accessor method for fireCount. The fireCount field nominally holds
the number of times associated instances of AsyncEvent have occurred that
have not had the method handleAsyncEvent() invoked. It is incremented and
decremented by the implementation of the RTSJ. The application logic may
manipulate the value in this field for application-specific reasons.

Returns
the value held by fireCount.

getAndDecrementPendingFireCount

Signature
protected synchronized int
getAndDecrementPendingFireCount()

Description
This is an accessor method for fireCount. This method atomically decrements,
by one, the value of fireCount (when it is greater than zero) and returns the value
from before the decrement. This method can be used in the handleAsyncEvent()
method to handle multiple releases:

public void handleAsyncEvent()
{

<setup>
do
{

<handle the event>
}

while(getAndDecrementPendingFireCount() > 0);
}

318 RTSJ 2.0 (Draft 57)

BlockableReleaseRunner javax.realtime 8.3

This construction is necessary only in cases where a handler wishes to avoid
the setup costs, since the framework guarantees that handleAsyncEvent() will
be invoked whenever the fireCount is greater than zero. The effect of a call to
getAndDecrementPendingFireCount on the scheduling of this AEH depends on
the semantics of the scheduler controlling this AEH.

Returns
the value held by fireCount prior to decrementing it by one.

getAndClearPendingFireCount

Signature
protected synchronized int
getAndClearPendingFireCount()

Description
This is an accessor method for fireCount. This method atomically sets the value
of fireCount to zero and returns the value from before it was set to zero. This
may be used by handlers for which the logic can accommodate multiple releases
in a single execution.

The general form for using this is

public void handleAsyncEvent()
{

int numberOfReleases = getAndClearPendingFireCount();
<handle the events>

}

The effect of a call to getAndClearPendingFireCount on the scheduling of this
AEH depends on the semantics of the scheduler controlling this AEH.

Returns
the value held by fireCount prior to setting the value to zero.

8.3.2.10 BlockableReleaseRunner

public class BlockableReleaseRunner

RTSJ 2.0 (Draft 57) 319

8 Asynchrony BlockableReleaseRunner

Inheritance
java.lang.Object
ReleaseRunner
BlockableReleaseRunner

Description
The default ReleaseRunner that can manage handlers that suspend themselves
(for example by calling the Object.wait() method. It maintains a pool of threads
to run releases. It guarantees that at least min(no. handlers, no. avail-
able CPUs + fraction of no. handlers) are available for running releases,
where the default fraction is defined by the constant DEFAULT_LOADING_FACTOR.
For systems with many AsyncBaseEventHandler instances, there can be signifi-
cantly fewer threads to run releases of those handlers in the system.

Available since RTSJ 2.0

8.3.2.10.1 Fields

DEFAULT_LOADING_FACTOR

public static final DEFAULT_LOADING_FACTOR

Description
The value of loading used by the argumentless constructor.

8.3.2.10.2 Constructors

BlockableReleaseRunner(SchedulingGroup, float)

Signature
public
BlockableReleaseRunner(SchedulingGroup group,

float loading)

Description

320 RTSJ 2.0 (Draft 57)

BlockableReleaseRunner javax.realtime 8.3

Create a release runner which maintains a pool of threads to run releases of Async-
BaseEventHandler instances. The threads in the pool all run in a given Schedu-
lingGroup instance. The thread pool size is determined by the number of CPUs
available to group, and the loading, such that at least min(no. handlers,
no. available CPUs + (loading * no. handlers) are available for run-
ning releases.

Parameters
group—for the pool threads.
loading—is a factor between 0.0 and 1.0 for deciding the number of threads in the

pool.

BlockableReleaseRunner

Signature
public
BlockableReleaseRunner()

Description
Same as BlockableReleaseRunner(SchedulingGroup, float) with arguments
(@code new SchedulingGroup("Default Release Runner"), 0.3f}.

8.3.2.10.3 Methods

release(AsyncBaseEventHandler)

Signature
protected final void
release(AsyncBaseEventHandler handler)

Description
Finds a thread and has it call the AsyncBaseEventHandler.run() method. Care
should be exercised when implementing this method, since it adds to both the
latency and jitter of releasing events.

Parameters
handler—The handler to be released.

RTSJ 2.0 (Draft 57) 321

8 Asynchrony BoundAsyncEventHandler

attach(AsyncBaseEventHandler)

Signature
protected final void
attach(AsyncBaseEventHandler handler)
throws IllegalStateException

Description
Attach a handler from this runner, so it will be released. Adjusts the number of
threads for running handlers accordingly.

Parameters
handler—to be removed.

detach(AsyncBaseEventHandler)

Signature
protected final void
detach(AsyncBaseEventHandler handler)
throws IllegalStateException

Description
Detach a handler from this runner, so it will no longer be released. Adjusts the
number of threads for running handlers accordingly.

Parameters
handler—to be detached.

8.3.2.11 BoundAsyncEventHandler

public class BoundAsyncEventHandler
Inheritance
java.lang.Object
AsyncBaseEventHandler
AsyncEventHandler
BoundAsyncEventHandler

Interfaces
javax.realtime.BoundAsyncBaseEventHandler

Description

322 RTSJ 2.0 (Draft 57)

BoundAsyncEventHandler javax.realtime 8.3

A bound asynchronous event handler is an instance of AsyncEventHandler that
is permanently bound to a dedicated realtime thread. Bound asynchronous event
handlers are for use in situations where the added timeliness is worth the overhead
of dedicating an individual realtime thread to the handler. Individual server
realtime threads can only be dedicated to a single bound event handler.

8.3.2.11.1 Constructors

BoundAsyncEventHandler(SchedulingParameters, Release-
Parameters, MemoryParameters, MemoryArea, Scheduling-
Group, ConfigurationParameters, Runnable)

Signature
public
BoundAsyncEventHandler(SchedulingParameters scheduling,

ReleaseParameters release,
MemoryParameters memory,
MemoryArea area,
SchedulingGroup group,
ConfigurationParameters config,
Runnable logic)

Description
Creates an instance of BoundAsyncEventHandler (BAEH) with the specified
parameters. The newly-created handler inherits the affinity of its creator.

Available since RTSJ 2.0

Parameters
scheduling—A SchedulingParameters object which will be associated with the

constructed instance. When null, and the creator is not an instance of Sched-
ulable, a SchedulingParameters object is created which has the default
SchedulingParameters for the scheduler associated with the current thread.
When null, and the creator is a schedulable object, the SchedulingParamet-
ers are inherited from the current schedulable (a new SchedulingParameters
object is cloned).

RTSJ 2.0 (Draft 57) 323

8 Asynchrony BoundAsyncEventHandler

release—A ReleaseParameters object which will be associated with the con-
structed instance. When null, this will have default ReleaseParameters for
the BAEH’s scheduler.

memory—A MemoryParameters object which will be associated with the constructed
instance. When null, this will have no MemoryParameters and the handler
can access the heap.

area—The MemoryArea for this. When null, the memory area will be that of the
current thread/schedulable.

group—A SchedulingGroup object which will be associated with the constructed
instance. When null, this will not be associated with any scheduling group.

config—The ConfigurationParameters associated with this (and possibly other
instances of Schedulable. When config is null, this BoundAsyncEven-
tHandler will reserve no space for preallocated exceptions and implementation-
specific values will be set to their implementation-defined defaults.

logic—The Runnable object whose run() method is executed by
AsyncEventHandler.handleAsyncEvent(). When null, the default
handleAsyncEvent() method invokes nothing.

Throws
IllegalArgumentException—when mayUseHeap in memory is true and logic, any

parameter object, or this is in heap memory. Also when noheap is true and
area is heap memory.

IllegalAssignmentError—when the new AsyncEventHandler instance cannot
hold a reference to non-null values of scheduling release memory and group,
or when those parameters cannot hold a reference to the new AsyncEventHand-
ler. Also when the new AsyncEventHandler instance cannot hold a reference
to non-null values of area and logic.

BoundAsyncEventHandler(SchedulingParameters, Release-
Parameters, Runnable)

Signature
public
BoundAsyncEventHandler(SchedulingParameters scheduling,

ReleaseParameters release,
Runnable logic)

Description

324 RTSJ 2.0 (Draft 57)

BoundAsyncEventHandler javax.realtime 8.3

Creates an instance of BoundAsyncEventHandler with the specified parameters.
The newly-created handler inherits the affinity of its creator.

Equivalent to BoundAsyncEventHandler(scheduling, release, null, null, null,
null, logic)

Available since RTSJ 2.0

BoundAsyncEventHandler(SchedulingParameters, Release-
Parameters)

Signature
public
BoundAsyncEventHandler(SchedulingParameters scheduling,

ReleaseParameters release)

Description
Creates an instance of BoundAsyncEventHandler with the specified parameters.
The newly-created handler inherits the affinity of its creator.

Equivalent to BoundAsyncEventHandler(scheduling, release, null,
null, null, null, null)

Available since RTSJ 2.0

BoundAsyncEventHandler(Runnable)

Signature
public
BoundAsyncEventHandler(Runnable logic)

Description
Creates an instance of BoundAsyncEventHandler with the specified parameters.
The newly-created handler inherits the affinity of its creator.

Equivalent to BoundAsyncEventHandler(null, null, null, null, null,
null, logic)

Available since RTSJ 2.0

RTSJ 2.0 (Draft 57) 325

8 Asynchrony BoundAsyncEventHandler

BoundAsyncEventHandler

Signature
public
BoundAsyncEventHandler()

Description
Creates an instance of BoundAsyncEventHandler. The newly-created handler
inherits the affinity of its creator.

Equivalent to BoundAsyncEventHandler(null, null, null, null, null,
null, null)

8.3.2.11.2 Methods

getAffinity

Signature
public javax.realtime.Affinity
getAffinity()

Description
Determine the affinity set instance associated with task.

Returns
The associated affinity.
Available since RTSJ 2.0

setAffinity(Affinity)

Signature
public void
setAffinity(Affinity set)
throws IllegalArgumentException,

ProcessorAffinityException,
NullPointerException

326 RTSJ 2.0 (Draft 57)

BoundAsyncLongEventHandler javax.realtime 8.3

Description
Set the processor affinity of a task to set with immediate effect.

Parameters
set—is the processor affinity
Available since RTSJ 2.0

8.3.2.12 BoundAsyncLongEventHandler

public class BoundAsyncLongEventHandler

Inheritance
java.lang.Object
AsyncBaseEventHandler
AsyncLongEventHandler
BoundAsyncLongEventHandler

Interfaces
javax.realtime.BoundAsyncBaseEventHandler

Description
A bound asynchronous event handler is an instance of AsyncLongEventHandler
that is permanently bound to a dedicated realtime thread. Bound asynchronous
long event handlers are for use in situations where the added timeliness is worth
the overhead of dedicating an individual realtime thread to the handler. Individual
server realtime threads can only be dedicated to a single bound event handler.

Available since RTSJ 2.0

8.3.2.12.1 Constructors

BoundAsyncLongEventHandler(SchedulingParameters, Re-
leaseParameters, MemoryParameters, MemoryArea, Sched-
ulingGroup, ConfigurationParameters, LongConsumer)

Signature

RTSJ 2.0 (Draft 57) 327

8 Asynchrony BoundAsyncLongEventHandler

public
BoundAsyncLongEventHandler(SchedulingParameters scheduling,

ReleaseParameters release,
MemoryParameters memory,
MemoryArea area,
SchedulingGroup group,
ConfigurationParameters config,
LongConsumer logic)

Description
Creates an instance of BoundAsyncLongEventHandler which specifies all possible
parameters. The newly-created handler inherits the affinity of its creator.

Parameters
scheduling—A SchedulingParameters object which will be associated with the

constructed instance. When null, and the creator is not an instance of Sched-
ulable, a SchedulingParameters object is created which has the default
SchedulingParameters for the scheduler associated with the current thread.
When null, and the creator is a schedulable object, the SchedulingParamet-
ers are inherited from the current schedulable (a new SchedulingParameters
object is cloned).

release—A ReleaseParameters object which will be associated with the con-
structed instance. When null, this will have default ReleaseParameters for
the BAEH’s scheduler.

memory—A MemoryParameters object which will be associated with the constructed
instance. When null, this will have no MemoryParameters and the handler
can access the heap.

area—The MemoryArea for this. When null, the memory area will be that of the
current thread/schedulable.

group—A SchedulingGroup object which will be associated with the constructed
instance. When null, this will not be associated with any scheduling group.

config—The ConfigurationParameters associated with this, and possibly other
instances of Schedulable. When config is null, this BoundAsyncEven-
tHandler will reserve no space for preallocated exceptions and implementation-
specific values will be set to their implementation-defined defaults.

logic—The LongConsumer object whose accept() method is executed by
AsyncLongEventHandler.handleAsyncEvent(long). When null, the default
handleAsyncEvent(long) method invokes nothing.

Throws
IllegalArgumentException—when mayUseHeap in memory is true and logic, any

328 RTSJ 2.0 (Draft 57)

BoundAsyncLongEventHandler javax.realtime 8.3

parameter object, or this is in heap memory. Also when noheap is true and
area is heap memory.

IllegalAssignmentError—when the new AsyncEventHandler instance cannot
hold a reference to non-null values of scheduling release memory and group,
or when those parameters cannot hold a reference to the new AsyncEventHand-
ler. Also when the new AsyncEventHandler instance cannot hold a reference
to non-null values of area and logic.

BoundAsyncLongEventHandler(SchedulingParameters, Re-
leaseParameters, LongConsumer)

Signature
public
BoundAsyncLongEventHandler(SchedulingParameters scheduling,

ReleaseParameters release,
LongConsumer logic)

Description

Creates an instance of BoundAsyncLongEventHandler. This constructor is equiv-
alent to BoundAsyncLongEventHandler(scheduling, release, null, null,
null, null, logic)

BoundAsyncLongEventHandler(SchedulingParameters, Re-
leaseParameters)

Signature
public
BoundAsyncLongEventHandler(SchedulingParameters scheduling,

ReleaseParameters release)

Description

Creates an instance of BoundAsyncLongEventHandler. Calling this constructor
is equivalent to calling BoundAsyncLongEventHandler(scheduling, release,
null, null, null, null, null)

RTSJ 2.0 (Draft 57) 329

8 Asynchrony BoundAsyncLongEventHandler

BoundAsyncLongEventHandler(LongConsumer)

Signature
public
BoundAsyncLongEventHandler(LongConsumer logic)

Description
Creates an instance of BoundAsyncLongEventHandler. Calling this constructor is
equivalent to calling BoundAsyncLongEventHandler(null, null, null, null,
null, null, logic)

BoundAsyncLongEventHandler

Signature
public
BoundAsyncLongEventHandler()

Description
Creates an instance of BoundAsyncLongEventHandler using default values. Call-
ing this constructor is equivalent to calling BoundAsyncLongEventHandler(null,
null, null, null, null, null, null)

8.3.2.12.2 Methods

getAffinity

Signature
public javax.realtime.Affinity
getAffinity()

Description
Determine the affinity set instance associated with task.

Returns
The associated affinity.

330 RTSJ 2.0 (Draft 57)

BoundAsyncObjectEventHandler javax.realtime 8.3

setAffinity(Affinity)

Signature
public void
setAffinity(Affinity set)
throws IllegalArgumentException,

ProcessorAffinityException,
NullPointerException

Description
Set the processor affinity of a task to set with immediate effect.

Parameters
set—is the processor affinity

Throws
IllegalArgumentException—when the intersection of set the affinity of any

ThreadGroup instance containing task is empty.
ProcessorAffinityException—is thrown when the runtime fails to set the affinity

for platform-specific reasons.
NullPointerException—when set is null.

8.3.2.13 BoundAsyncObjectEventHandler

public class BoundAsyncObjectEventHandler<P>
Inheritance
java.lang.Object
AsyncBaseEventHandler
AsyncObjectEventHandler<P>
BoundAsyncObjectEventHandler<P>

Interfaces
javax.realtime.BoundAsyncBaseEventHandler

Description
A bound asynchronous event handler is an instance of AsyncObjectEventHandler
that is permanently bound to a dedicated realtime thread. Bound asynchronous
object event handlers are for use in situations where the added timeliness is
worth the overhead of dedicating an individual realtime thread to the handler.
Individual server realtime threads can only be dedicated to a single bound event
handler.

RTSJ 2.0 (Draft 57) 331

8 Asynchrony BoundAsyncObjectEventHandler

Available since RTSJ 2.0

8.3.2.13.1 Constructors

BoundAsyncObjectEventHandler(SchedulingParameters,
ReleaseParameters, MemoryParameters, MemoryArea, Pro-
cessingGroup, ConfigurationParameters, Consumer)

Signature
public
BoundAsyncObjectEventHandler(SchedulingParameters scheduling,

ReleaseParameters release,
MemoryParameters memory,
MemoryArea area,
ProcessingGroup group,
ConfigurationParameters config,
java.util.function.Consumer<P> logic)

Description
Creates an instance of BoundAsyncObjectEventHandler which specifies all pos-
sible parameters. The newly-created handler inherits the affinity of its creator.

Parameters
scheduling—A SchedulingParameters object which will be associated with the

constructed instance. When null, and the creator is not an instance of Sched-
ulable, a SchedulingParameters object is created which has the default
SchedulingParameters for the scheduler associated with the current thread.
When null, and the creator is a schedulable object, the SchedulingParamet-
ers are inherited from the current schedulable (a new SchedulingParameters
object is cloned).

release—A ReleaseParameters object which will be associated with the con-
structed instance. When null, this will have default ReleaseParameters for
the BAEH’s scheduler.

memory—A MemoryParameters object which will be associated with the constructed
instance. When null, this will have no MemoryParameters and the handler
can access the heap.

332 RTSJ 2.0 (Draft 57)

BoundAsyncObjectEventHandler javax.realtime 8.3

area—The MemoryArea for this. When null, the memory area will be that of the
current thread/schedulable.

group—A SchedulingGroup object which will be associated with the constructed
instance. When null, this will not be associated with any scheduling group.

config—The ConfigurationParameters associated with this, and possibly other
instances of Schedulable. When config is null, this BoundAsyncEven-
tHandler will reserve no space for preallocated exceptions and implementation-
specific values will be set to their implementation-defined defaults.

logic—The Consumer object whose accept() method is executed by
AsyncObjectEventHandler.handleAsyncEvent. When null, the default han-
dleAsyncEvent method invokes nothing.

Throws
IllegalArgumentException—when mayUseHeap in memory is true and logic, any

parameter object, or this is in heap memory. Also when noheap is true and
area is heap memory.

IllegalAssignmentError—when the new AsyncEventHandler instance cannot
hold a reference to non-null values of scheduling release memory and group,
or when those parameters cannot hold a reference to the new AsyncEventHand-
ler. Also when the new AsyncEventHandler instance cannot hold a reference
to non-null values of area and logic.

BoundAsyncObjectEventHandler(SchedulingParameters,
ReleaseParameters, Consumer)

Signature
public
BoundAsyncObjectEventHandler(SchedulingParameters scheduling,

ReleaseParameters release,
java.util.function.Consumer<P> logic)

Description
Creates an instance of BoundAsyncObjectEventHandler. This constructor is
equivalent to BoundAsyncObjectEventHandler(scheduling, release, null,
null, null, null, logic)

BoundAsyncObjectEventHandler(SchedulingParameters,
ReleaseParameters)

RTSJ 2.0 (Draft 57) 333

8 Asynchrony BoundAsyncObjectEventHandler

Signature
public
BoundAsyncObjectEventHandler(SchedulingParameters scheduling,

ReleaseParameters release)

Description
Creates an instance of BoundAsyncObjectEventHandler. Calling this construc-
tor is equivalent to calling BoundAsyncObjectEventHandler(scheduling, re-
lease, null, null, null, null, null)

BoundAsyncObjectEventHandler(Consumer)

Signature
public
BoundAsyncObjectEventHandler(java.util.function.Consumer<P> logic)

Description
Creates an instance of BoundAsyncObjectEventHandler. Calling this constructor
is equivalent to calling BoundAsyncObjectEventHandler(null, null, null,
null, null, null, logic)

BoundAsyncObjectEventHandler

Signature
public
BoundAsyncObjectEventHandler()

Description
Creates an instance of BoundAsyncObjectEventHandler using default values.
This constructor is equivalent to BoundAsyncObjectEventHandler(null, null,
null, null, null, null, null)

8.3.2.13.2 Methods

334 RTSJ 2.0 (Draft 57)

ReleaseRunner javax.realtime 8.3

getAffinity

Signature
public javax.realtime.Affinity
getAffinity()

Description
Determine the affinity set instance associated with task.

Returns
The associated affinity.

setAffinity(Affinity)

Signature
public void
setAffinity(Affinity set)
throws IllegalArgumentException,

ProcessorAffinityException,
NullPointerException

Description
Set the processor affinity of a task to set with immediate effect.

Parameters
set—is the processor affinity

Throws
IllegalArgumentException—when the intersection of set the affinity of any

ThreadGroup instance containing task is empty.
ProcessorAffinityException—is thrown when the runtime fails to set the affinity

for platform-specific reasons.
NullPointerException—when set is null.

8.3.2.14 ReleaseRunner

public abstract class ReleaseRunner
Inheritance
java.lang.Object

RTSJ 2.0 (Draft 57) 335

8 Asynchrony ReleaseRunner

ReleaseRunner

Description
Manages a pool of threads to execute asynchronous event handler releases. The
implementer is responsible for maintaining the pool of threads and ensuring they
all have at least the desired ConfigurationParameters, SchedulingGroup, and
Affinity.

The other parameters for instances of Schedulable can either be set for each
release or be configurable for the pool. In the latter case, one should not be able
to associate a handler with the runner that has an incompatible parameter set.
These other parameters are SchedulingParameters, ReleaseParameters, and
MemoryParameters, as well as the MemoryArea in which the release should take
place.

The default release runner, BlockableReleaseRunner, sets these other param-
eters on the releasing thread at each release. Since there may be a performance
penalty for doing this, an application can define its own release runners for
commonly occuring cases of these parameters. It is then up to the application to
ensure that handlers are matched to the correct release runner.

Available since RTSJ 2.0

8.3.2.14.1 Constructors

ReleaseRunner

Signature
protected
ReleaseRunner()

Description
Enables creating a subclass of this class.

8.3.2.14.2 Methods

336 RTSJ 2.0 (Draft 57)

ReleaseRunner javax.realtime 8.3

release(AsyncBaseEventHandler)

Signature
protected abstract void
release(AsyncBaseEventHandler handler)

Description
Finds a thread and has it call the AsyncBaseEventHandler.run() method. Care
should be exercised when implementing this method, since it adds to both the
latency and jitter of releasing events.

Parameters
handler—The handler to be released.

attach(AsyncBaseEventHandler)

Signature
protected abstract void
attach(AsyncBaseEventHandler handler)
throws IllegalStateException

Description
Notifies this runner that the handler is now associated with it.

This method should only be called from the infrastructure.

Parameters
handler—The handler to be attached

Throws
IllegalStateException—when handler is already attached.

detach(AsyncBaseEventHandler)

Signature
protected abstract void
detach(AsyncBaseEventHandler handler)
throws IllegalStateException

Description
Notifies this runner that the handler is no longer associated with it.

This method should only be called from the infrastructure.

RTSJ 2.0 (Draft 57) 337

8 Asynchrony Timed

Parameters
handler—The handler to be removed

Throws
IllegalStateException—when handler is not attached.

getDefaultRunner

Signature
public static javax.realtime.ReleaseRunner
getDefaultRunner()

Description
Gets the system default release runner.

Returns
a general runner to be used when none is set.

setDefaultRunner(ReleaseRunner)

Signature
public static void
setDefaultRunner(ReleaseRunner runner)

Description
Sets the system default release runner.

Parameters
runner—The runner to be used when none is set. When null, the default release

runner is set to the original system default.

8.3.3 Exceptions
8.3.3.1 Timed

public class Timed
Inheritance
java.lang.Object
java.lang.Throwable

338 RTSJ 2.0 (Draft 57)

Timed javax.realtime 8.3

java.lang.Exception
java.lang.InterruptedException
AsynchronouslyInterruptedException
Timed

Description
Creates a scope in a Schedulable object which will be asynchronously interrupted
at the expiration of a timer. This timer will begin measuring time at some point
between the time doInterruptible is invoked and the time when the run()
method of the Interruptible object is invoked. Each call of doInterruptible
on an instance of Timed will restart the timer for the amount of time given in the
constructor or the most recent invocation of resetTime(). The timer is cancelled
when it has not expired before the doInterruptible method has finished.

All memory use of an instance of Timed occurs during construction or the first
invocation of doInterruptible. Subsequent invocations of doInterruptible
do not allocate memory.

When the timer fires, the resulting AIE will be generated for the schedulable
within a bounded execution time of the targeted schedulable.

Typical usage: new Timed(T).doInterruptible(interruptible);

8.3.3.1.1 Constructors

Timed(HighResolutionTime)

Signature
public
Timed(javax.realtime.HighResolutionTime<?> time)
throws IllegalArgumentException,

UnsupportedOperationException

Description
Creates an instance of Timed with a timer set to time. When the time is in
the past the AsynchronouslyInterruptedException mechanism is activated
immediately after or when the doInterruptible method is called.

Parameters

RTSJ 2.0 (Draft 57) 339

8 Asynchrony Timed

time—When time is a RelativeTime value, it is the interval of time between
the invocation of doInterruptible and the time when the schedulable is
asynchronously interrupted. When time is an AbsoluteTime value, the timer
asynchronously interrupts at this time (assuming the timer has not been
cancelled).

Throws
IllegalArgumentException—when time is null.
UnsupportedOperationException—when time is not based on a Clock.

8.3.3.1.2 Methods

doInterruptible(Interruptible)

Signature
public boolean
doInterruptible(Interruptible logic)

Description
Executes a time-out method by starting the timer and executing the run()
method of the given Interruptible object.

Parameters
logic—An instance of an Interruptible whose run() method will be called.

Throws
IllegalArgumentException—when logic is null.
IllegalThreadStateException—null

Returns
true, when the method call completed normally, and false, when another call to

doInterruptible has not completed.

resetTime(HighResolutionTime)

Signature
public void
resetTime(javax.realtime.HighResolutionTime<?> time)

Description

340 RTSJ 2.0 (Draft 57)

Rationale 8.4

Sets the time-out for the next invocation of doInterruptible.

Parameters
time—This can be an absolute time or a relative time. When null or not based

on a Clock, the time-out is not changed.

restart(HighResolutionTime)

Signature
public void
restart(javax.realtime.HighResolutionTime<?> time)

Description
Resets the timeout. When this Timed instance is executing, it adjusts the timeout
to time and restarts the timer. When the instance is not executing, it adjusts
the timeout for the next invocation.

Parameters
time—The new timeout.

Throws
IllegalArgumentException—when time is null or a relative time less than zero.
UnsupportedOperationException—when time is not based on a Clock

Available since RTSJ 2.0

8.4 Rationale
The design of the asynchronous event handling facilities was intended to provide the
necessary functionality while allowing efficient implementations and catering for a
variety of realtime applications. In particular, in some realtime systems there may be
a large number of potential events and event handlers (numbering in the thousands
or perhaps even the tens of thousands), although at any given time only a small
number will be used. Thus it would not be appropriate to dedicate a realtime thread
to each event handler. The RTSJ addresses this issue by allowing the programmer
to specify an event handler either as not bound to a specific realtime thread (the
class AsyncBaseEventHandler) or alternatively as bound to a dedicated realtime
thread (the interface BoundAsyncBaseEventHandler). The RTSJ does not define at
what point an unbound event handler is bound to a realtime thread for its execution.
Events are dataless: the fire method does not pass any data to the handler. This
was intentional in the interest of simplicity and efficiency.

RTSJ 2.0 (Draft 57) 341

8 Asynchrony

The ability to trigger an ATC in a schedulable is necessary in many kinds of
realtime applications but must be designed carefully in order to minimize the risks
of problems such as data structure corruption and deadlock. There is, invariably,
a tension between the desire to cause an ATC to be immediate, and the desire to
ensure that certain sections of code are executed to completion.

One basic decision was to allow ATC in a method only if the method explicitly
permits this. The default of no ATC is reasonable, since legacy code might be written
expecting no ATC, and asynchronously aborting the execution of such a method
could lead to unpredictable results. Since the natural way to model ATC is with
an exception (AsynchronouslyInterruptedException), the way that a method
indicates its susceptibility to ATC is by including AsynchronouslyInterruptedEx-
ception in its throws clause. Causing this exception to be thrown in a schedule s
as an effect of calling s.interrupt() was a natural extension of the semantics of
interrupt as currently defined by java.lang.Thread.

One ATC-deferred section is synchronized code. This is a context that needs
to be executed completely in order to ensure a program operates correctly. If
synchronized code were aborted, a shared object could be left in an inconsistent
state. Note that by making synchronized code ATC-deferred, this specification avoids
the problems that caused Thread.stop() to be deprecated and that have made the
use of Thread.destroy(), (now also deprecated in Java 1.5) prone to deadlock. If
synchronized code calls an AI-method and an associated AIE is generated, then if
no appropriate handler is present in the synchronized code, the AIE will propagate
through the code.

Constructors and finally clauses are subject to interruption if the program
indicates so. However, if a constructor is aborted, an object might be only partially
initialized. If the execution of a finally clause in an AI-method is aborted, needed
cleanup code might not be performed. Indeed, a finally clause in an aborted
AI-method will not be executed at all if the abort occurs before its execution begins.
It is the programmer’s responsibility to ensure that executing these constructs either
does not induce unwanted ATC latency (if ATCs are not allowed) or does not produce
undesirable results (if ATCs are allowed).

A potential problem with using the exception mechanism to model ATC is
that a method with a “catch-all” handler (for example a catch clause identifying
Exception or even Throwable as the exception class) can inadvertently intercept an
exception intended for a caller. This problem is avoided by having special semantics
for catching an AIE. Even though a catch clause may catch an AIE, the exception
will be propagated unless the handler invokes the happened method from AIE. Thus,
if a schedulable is asynchronously interrupted while in a try block that has a handler
such as

catch (Throwable e) return;

342 RTSJ 2.0 (Draft 57)

Rationale 8.4

the AIE will remain pending and will be thrown next time control enters or
returns to an AI method.

This specification does not provide a special mechanism for terminating a realtime
thread; ATC can be used to achieve this effect. This means that, by default, a
realtime thread cannot be asynchronously terminated; to support asynchronous
termination it needs to enter methods that are AI enabled at frequent intervals.
Allowing termination as the default would have been questionable, bringing the same
insecurities that are found in Thread.stop() and Thread.destroy().

RTSJ 2.0 (Draft 57) 343

8 Asynchrony

344 RTSJ 2.0 (Draft 57)

Chapter 9

Time

Realtime systems must be able to handle both very short time durations and very long
ones. They also need to distinguish between relative time—a duration of time—and
absolute time. Simply using a primitive integral value, such as int or long, does not
provide the necessary range. Floating point primitive values, such as float and double,
do not provide the necessary precision. Nor do they provide any type safety. This
specification addresses this by requiring three time classes: HighResolutionTime,
AbsoluteTime, and RelativeTime, where HighResolutionTime is the parent class
of the other two.

Instances of HighResolutionTime may not be created, as the class exists to
provide a common parent type for the other two classes. An instance of AbsoluteTime
encapsulates an absolute time. An instance of RelativeTime encapsulates a point
in time that is relative to some other absolute time value, which can be used to
describe a time duration.

All methods returning a time object come in both allocating and nonallocating
forms. The classes
• enable describing a point in time with up to nanosecond accuracy and precision
(actual accuracy and precision is dependent on the precision of the underlying
system),
• enable the distinction between absolute points in time, and times relative to

some starting point or a time duration, and
• provide simple arithmetic operations for using them.

All time handling is based on these classes.

9.1 Definitions
Time Object — An instance of AbsoluteTime or RelativeTime. A time object is

always associated with some Chronograph. By default, it is associated with

345

9 Time

the realtime clock.
Realtime Epoch — The time at which the realtime clock began ticking, defined

by fiat as January 1, 1970 00:00:00 UTC.
Epoch — The date and time relative to which times on a RTSJ Chronograph c are

determined. The epoch for a chronograph is defined in terms of the Realtime
Epoch, and is represented as the time elapsed on the realtime clock since the
realtime Epoch at the time that c would have returned a time stamp of 0 ms
and 0 ns.

Time Value Representation — A compound format composed of 64 bits of mil-
lisecond timing, and 32 bits of nanoseconds within a millisecond. The mil-
lisecond constituent uses the 64 bits of a Java long while the nanosecond
constituent uses the 32 bits of a Java int.

Normalized (Canonical) Time Value — Unique values for the millisecond and
nanosecond components of a point in time, including the case of 0 milliseconds
or 0 nanoseconds, and a negative time value, according to the following four
constraints:
1. when both millisecond and nanosecond components are nonzero, they

have the same sign;
2. the algebraic time values of the time object is the algebraic sum of the

two components;
3. the millisecond component represents the algebraic number of milliseconds

in the time object, within a range of [−263, 263 − 1]; and
4. the nanosecond component represents the algebraic number of nanoseconds

within a millisecond in the time object, that is [−106 + 1, 106 − 1].
Instances of HighResolutionTime classes always hold a normalized form of
a time value. Values that cannot be normalized are not valid; for example,
(MAX_LONG milliseconds, MAX_INT nanoseconds) cannot be normalized and is
an illegal value.
The following table has examples of normalized representations.

9.2 Semantics
The points below define the general semantics of the time classes. Semantics specific
to particular classes, constructors, methods, and fields are in the class description
and the constructor, method, and field detail sections.

1. All time objects must maintain nanosecond precision and report their values
in terms of millisecond and nanosecond constituents.

2. Time objects can be constructed from other time objects, from millisecond/-
nanosecond values, from a java.util.Date, or obtained as a result of invoca-
tions of methods on instances of the Chronograph interface.

346 RTSJ 2.0 (Draft 57)

Semantics 9.2

Table 9.1: Examples of Normalized Times
time in ns millis nanos
2000000 2 0
1999999 1 999999
1000001 1 1

1 0 1
0 0 0
-1 0 -1

-999999 0 -999999
-1000000 -1 0
-1000001 -1 -1

3. Time objects maintain and report time values in normalized form, but the
normalized form is not required for input parameter values. This enables
computation to be performed individually with the constituent time parts,
using the full signed range and restrictions of the underlying type.
(a) Normalization is accomplished upon method invocation by methods that

accept a time object represented with individual component parts, and
executed as if the following hold.
i. The nanosecond parameter value, which may be negative, is alge-

braically added to the scaled millisecond parameter value. The sign
of the result provides the sign for any nonzero resulting component.

ii. The absolute of the result is then partitioned, giving the number
of integral milliseconds for the millisecond component, while the
remaining fractional part provides the number of nanoseconds for the
nanosecond component.

iii. The resulting components are then represented, and reported when
necessary, with the above computed sign.

(b) Normalization is also performed on the result of operations by methods
that perform time object addition and subtraction. Operations are exe-
cuted using the appropriate arithmetic precision. If the final result of an
operation can be represented in normalized form, then the operation must
not throw arithmetic exceptions while producing intermediate results.

(c) The results of time objects operations and the normalization of results
of operations performed with millis and nanos, individually as Java long
and Java int types respectively, are not always equivalent. This is due
to the possibility of overflow for nanos values outside of the normalized
nanosecond range, that is [−106 + 1, 106− 1], when performing operations
as int types, while the same values could be handled with no overflow in
time object operations.

RTSJ 2.0 (Draft 57) 347

9 Time

(d) When invoking setter methods that take as a parameter only one of the
two time value components, the other component has implicitly the value
of 0.

4. Although logically a negative time may represent time before the Epoch or
a negative time interval involved in time operations, an Exception may be
thrown if a negative absolute time or a negative time interval is given as a
parameter to methods. In general, the time values accepted by a method may
be a subset of the full time values range, and depend on the method.

5. A time object is always associated with a Chronograph. By default it is
associated with the realtime clock. Chronographs are involved both in the
setting as well as the usage of time objects, for example in comparisons.

6. Methods are provided to facilitate the handling of time objects generically via
the HighResolutionTime class. These methods enable converting, according
to a Chronograph, between AbsoluteTime objects and RelativeTime objects.
These methods also enable changing the Chronograph association of a time
object. Note that the conversions depend on the time at which they are
performed. The semantics of these operations are listed in the following table:

Table 9.2: Semantics of Time Conversion

Chronograph association & conversion returned/updated object
this has chronograph_a & ms,ns
an_absolute.absolute(chronograph_a) chronograph_a

ms,ns
an_absolute.absolute(chronograph_b) chronograph_b

ms,ns
an_absolute.absolute(null) realtime_clock

ms,ns
an_absolute.relative(chronograph_a) chronograph_a

chronograph_a.getTime().subtract(ms,ns)
an_absolute.relative(chronograph_b) chronograph_b

chronograph_b.getTime().subtract(ms,ns)
an_absolute.relative(null) realtime_clock

realtime_clock.getTime().subtract(ms,ns)
a_relative.relative(chronograph_a) chronograph_a

ms,ns
a_relative.relative(chronograph_b) chronograph_b

ms,ns
a_relative.relative(null) realtime_clock

ms,ns
a_relative.absolute(chronograph_a) chronograph_a

chronograph_a.getTime().add(ms,ns)
a_relative.absolute(clock_b) chronograph_b

chronograph_b.getTime().add(ms,ns)
a_relative.absolute(null) realtime_clock

realtime_clock.getTime().add(ms,ns)

7. Time objects must implement the Comparable interface.

348 RTSJ 2.0 (Draft 57)

AbsoluteTime javax.realtime 9.3

9.3 javax.realtime

9.3.1 Classes
9.3.1.1 AbsoluteTime

public class AbsoluteTime
Inheritance
java.lang.Object
HighResolutionTime<AbsoluteTime>
AbsoluteTime

Description
An object that represents a specific point in time given by milliseconds plus
nanoseconds past some point in time fixed by its Chronograph. For the default
realtime clock, the fixed point is the Epoch (January 1, 1970, 00:00:00 GMT).
The correctness of the Epoch as a time base depends on the realtime clock
synchronization with an external world time reference. This representation was
designed to be compatible with the standard Java representation of an absolute
time in the java.util.Date class.

A time object in normalized form represents negative time when both compo-
nents are nonzero and negative, or one is nonzero and negative and the other is
zero. For add and subtract negative values behave as they do in arithmetic.

Caution: This class is explicitly unsafe for multithreading when being changed.
Code that mutates instances of this class should synchronize at a higher level.

9.3.1.1.1 Constructors

AbsoluteTime(long, int, Chronograph)

Signature
public
AbsoluteTime(long millis,

int nanos,
Chronograph chronograph)

RTSJ 2.0 (Draft 57) 349

9 Time AbsoluteTime

throws IllegalArgumentException

Description
Constructs an AbsoluteTime object with time millisecond and nanosecond com-
ponents past the epoch for Chronograph.

The value of the AbsoluteTime instance is based on the parameter millis
plus the parameter nanos. The construction is subject to millis and nanos
parameters normalization. When, after normalization, the time object is neg-
ative, the time represented by this is time before this chronograph’s epoch.
The chronograph association is made with the Chronograph parameter. When
Chronograph is null the association is made with the default realtime clock.

Note that the start of a chronograph’s epoch is an attribute of the chronograph.
It is defined as the Epoch (00:00:00 GMT on Jan 1, 1970) for the default realtime
clock, but other classes of chronograph may define other epochs.

Available since RTSJ 2.0

Parameters
millis—The desired value for the millisecond component of this. The actual

value is the result of parameter normalization.
nanos—The desired value for the nanosecond component of this. The actual value

is the result of parameter normalization.
chronograph—Provides the time reference for the newly constructed object. The

realtime clock is used when this argument is null.
Throws

IllegalArgumentException—when there is an overflow in the millisecond compo-
nent when normalizing.

AbsoluteTime(long, int)

Signature
public
AbsoluteTime(long millis,

int nanos)
throws IllegalArgumentException

Description
Equivalent to AbsoluteTime(long, int, Chronograph) with the argument list
(millis, nanos, null)

350 RTSJ 2.0 (Draft 57)

AbsoluteTime javax.realtime 9.3

Parameters
millis—The desired value for the millisecond component of this. The actual

value is the result of parameter normalization.
nanos—The desired value for the nanosecond component of this. The actual value

is the result of parameter normalization.
Throws

IllegalArgumentException—when there is an overflow in the millisecond compo-
nent when normalizing.

AbsoluteTime(Date, Chronograph)

Signature
public
AbsoluteTime(Date date,

Chronograph chronograph)
throws IllegalArgumentException

Description
Equivalent to AbsoluteTime(long, int, Chronograph) with the argument list
(date.getTime(), 0, chronograph).

Warning: While the date is used to set the milliseconds component of the
new AbsoluteTime object (with nanoseconds component set to 0), the new object
represents the date only when the Chronograph parameter has an epoch equal
to Epoch.

The time reference is given by the Chronograph parameter. When Chrono-
graph is null the association is made with the default realtime clock.

Available since RTSJ 2.0

Parameters
date—The java.util.Date representation of the time past the epoch.
chronograph—Provides the time reference for the newly constructed object.

Throws
IllegalArgumentException—when the date parameter is null.

AbsoluteTime(Date)

Signature

RTSJ 2.0 (Draft 57) 351

9 Time AbsoluteTime

public
AbsoluteTime(Date date)
throws IllegalArgumentException

Description
Equivalent to AbsoluteTime(long, int, Chronograph) with the argument list
(date.getTime(), 0, null).

Parameters
date—The java.util.Date representation of the time past the epoch.

Throws
IllegalArgumentException—when the date parameter is null.

AbsoluteTime(AbsoluteTime)

Signature
public
AbsoluteTime(AbsoluteTime time)
throws IllegalArgumentException

Description
Equivalent to AbsoluteTime(long, int, Chronograph) with the argu-
ment list (time.getMilliseconds(), time.getNanoseconds(), time.
getChronograph()).

Parameters
time—The AbsoluteTime object which is the source for the copy.

Throws
IllegalArgumentException—when the time parameter is null.

AbsoluteTime(Chronograph)

Signature
public
AbsoluteTime(Chronograph chronograph)

Description

352 RTSJ 2.0 (Draft 57)

AbsoluteTime javax.realtime 9.3

Equivalent to AbsoluteTime(long, int, Chronograph) with the argument list
(0, 0, chronograph).

Available since RTSJ 2.0

Parameters
chronograph—Provides the time reference for the newly constructed object.

AbsoluteTime

Signature
public
AbsoluteTime()

Description
Equivalent to AbsoluteTime(long, int, Chronograph) with the argument list
(0, 0, null).

9.3.1.1.2 Methods

absolute(Chronograph)

Signature
public javax.realtime.AbsoluteTime
absolute(Chronograph chronograph)

Description
Creates a copy of this modified when necessary to have the specified chronograph
association. A new object is allocated for the result. This method is the
implementation of the abstract method of the HighResolutionTime base class.
No conversion into AbsoluteTime is needed in this case. The result is associated
with the Chronograph passed as a parameter. When Chronograph is null, the
association is made with the default realtime clock.

Parameters
chronograph—It is used only as the new time reference associated with the result,

since no conversion is needed.

RTSJ 2.0 (Draft 57) 353

9 Time AbsoluteTime

Returns
The copy of this in a newly allocated AbsoluteTime object, associated with the

Chronograph parameter.

Available since RTSJ 2.0

absolute(Chronograph, AbsoluteTime)

Signature
public javax.realtime.AbsoluteTime
absolute(Chronograph chronograph,

AbsoluteTime dest)

Description
Copies this into dest, when necessary modified to have the specified chronograph
association. A new object is allocated for the result. This method is the
implementation of the abstract method of the HighResolutionTime base class.
No conversion into AbsoluteTime is needed in this case. The result is associated
with the Chronograph passed as a parameter. When Chronograph is null, the
association is made with the default realtime clock.

Parameters
chronograph—It is used only as the new time reference associated with the result,

since no conversion is needed.
dest—the instance to fill.

Returns
The copy of this in a newly allocated AbsoluteTime object, associated with the

Chronograph parameter.

Available since RTSJ 2.0

relative(Chronograph)

Signature
public javax.realtime.RelativeTime
relative(Chronograph chronograph)

Description

354 RTSJ 2.0 (Draft 57)

AbsoluteTime javax.realtime 9.3

Converts the time of this to a relative time, using the given instance of Chrono-
graph to determine the current time. The calculation is the current time indicated
by the given instance of Chronograph subtracted from the time given by this.
When Chronograph is null, the default realtime clock is assumed. A destination
object is allocated to return the result. The time reference of the result is given
by the Chronograph passed as a parameter.

Parameters
chronograph—The instance of Chronograph used to convert the time of this into

relative time, and the new chronograph association for the result.
Throws

ArithmeticException—when the result does not fit in the normalized format.
Returns
the RelativeTime conversion in a newly allocated object, associated with the

Chronograph parameter.
Available since RTSJ 2.0

relative(Chronograph, RelativeTime)

Signature
public javax.realtime.RelativeTime
relative(Chronograph chronograph,

RelativeTime dest)

Description
Converts the time of this to a relative time, using the given instance of Chrono-
graph to determine the current time. The calculation is the current time indicated
by the given instance of Chronograph subtracted from the time given by this.
When Chronograph is null, the default realtime clock is assumed. When dest is
not null, the result is placed in it and returned. Otherwise, a new object is allo-
cated for the result. The time reference of the result is given by the Chronograph
passed as a parameter.

Parameters
chronograph—The instance of Chronograph used to convert the time of this into

relative time, and the new chronograph association for the result.
dest—When dest is not null, the result is placed in it and returned.

Throws
ArithmeticException—when the result does not fit in the normalized format.

RTSJ 2.0 (Draft 57) 355

9 Time AbsoluteTime

Returns
the RelativeTime conversion in dest when dest is not null, otherwise the result

is returned in a newly allocated object, associated with the Chronograph
parameter.

add(long, int)

Signature
public javax.realtime.AbsoluteTime
add(long millis,

int nanos)
throws ArithmeticException

Description
Creates a new object representing the result of adding millis and nanos to
the values from this and normalizing the result. The result will have the same
chronograph association as this.

Parameters
millis—The number of milliseconds to be added to this.
nanos—The number of nanoseconds to be added to this.

Throws
ArithmeticException—when the result does not fit in the normalized format.

Returns
a new AbsoluteTime object whose time is the normalization of this plus millis

and nanos.

add(long, int, AbsoluteTime)

Signature
public javax.realtime.AbsoluteTime
add(long millis,

int nanos,
AbsoluteTime dest)

throws ArithmeticException

Description
Returns an object containing the value resulting from adding millis and nanos
to the values from this and normalizing the result. When dest is not null, the

356 RTSJ 2.0 (Draft 57)

AbsoluteTime javax.realtime 9.3

result is placed in it and returned. Otherwise, a new object is allocated for the
result. The result will have the same chronograph association as this, and the
chronograph association with dest is ignored.

Parameters
millis—The number of milliseconds to be added to this.
nanos—The number of nanoseconds to be added to this.
dest—When dest is not null, the result is placed in it and returned.

Throws
ArithmeticException—when the result does not fit in the normalized format.

Returns
the result of the normalization of this plus millis and nanos in dest when dest

is not null, otherwise the result is returned in a newly allocated object.

add(RelativeTime)

Signature
public javax.realtime.AbsoluteTime
add(RelativeTime time)
throws ArithmeticException,

IllegalArgumentException

Description
Creates a new instance of AbsoluteTime representing the result of adding time
to the value of this and normalizing the result. The Chronograph associated
with this and the Chronograph associated with the time parameter must be
the same, and such association is used for the result.

Parameters
time—The time to add to this.

Throws
IllegalArgumentException—when the Chronograph associated with this and

the Chronograph associated with the time parameter are different, or when
the time parameter is null.

ArithmeticException—when the result does not fit in the normalized format.

Returns
a new AbsoluteTime object whose time is the normalization of this plus the

parameter time.

RTSJ 2.0 (Draft 57) 357

9 Time AbsoluteTime

add(RelativeTime, AbsoluteTime)

Signature
public javax.realtime.AbsoluteTime
add(RelativeTime time,

AbsoluteTime dest)
throws ArithmeticException,

IllegalArgumentException

Description
Returns an object containing the value resulting from adding time to the value
of this and normalizing the result. When dest is not null, the result is placed
in it and returned. Otherwise, a new object is allocated for the result. The
Chronograph associated with this and the Chronograph associated with the
time parameter must be the same, and such association is used for the result.
The Chronograph associated with the dest parameter is ignored.

Parameters
time—The time to add to this.
dest—When dest is not null, the result is placed in it and returned.

Throws
IllegalArgumentException—when the Chronograph associated with this and

the Chronograph associated with the time parameter are different, or when
the time parameter is null.

ArithmeticException—when the result does not fit in the normalized format.
Returns
the result of the normalization of this plus the RelativeTime parameter time

in dest when dest is not null, otherwise the result is returned in a newly
allocated object.

getDate

Signature
public java.util.Date
getDate()
throws UnsupportedOperationException

Description
Converts the time given by this to a Date format. Note that Date represents
time as milliseconds so the nanoseconds of this will be lost.

358 RTSJ 2.0 (Draft 57)

AbsoluteTime javax.realtime 9.3

Throws
UnsupportedOperationException—when the Chronograph associated with this

does not have the concept of date.

Returns
a newly allocated Date object with a value of the time past the Epoch represented

by this.

set(Date)

Signature
public javax.realtime.AbsoluteTime
set(Date date)
throws IllegalArgumentException

Description
Changes the time represented by this to that given by the parameter. Note that
Date represents time as milliseconds so the nanoseconds of this will be set to 0.
The chronograph association is implicitly made with the default realtime clock.

Parameters
date—A reference to a Date which will become the time represented by this after

the completion of this method.
Throws

IllegalArgumentException—when the parameter date is null.

Returns
this

Available since RTSJ 2.0 returns itself

subtract(AbsoluteTime)

Signature
public javax.realtime.RelativeTime
subtract(AbsoluteTime time)
throws IllegalArgumentException,

ArithmeticException

Description

RTSJ 2.0 (Draft 57) 359

9 Time AbsoluteTime

Creates a new instance of RelativeTime representing the result of subtracting
time from the value of this and normalizing the result. The Chronograph
associated with this and the Chronograph associated with the time parameter
must be the same, and such association is used for the result.

Parameters
time—The time to subtract from this.

Throws
IllegalArgumentException—when the Chronograph associated with this and

the Chronograph associated with the time parameter are different, or when
the time parameter is null.

ArithmeticException—when the result does not fit in the normalized format.
Returns
a new RelativeTime object whose time is the normalization of this minus the

AbsoluteTime parameter time.

subtract(AbsoluteTime, RelativeTime)

Signature
public javax.realtime.RelativeTime
subtract(AbsoluteTime time,

RelativeTime dest)
throws IllegalArgumentException,

ArithmeticException

Description
Returns an object containing the value resulting from subtracting time from the
value of this and normalizing the result. When dest is not null, the result is
placed there and returned. Otherwise, a new object is allocated for the result.
The Chronograph associated with this and the Chronograph associated with
the time parameter must be the same, and such association is used for the result.
The Chronograph associated with the dest parameter is ignored.

Parameters
time—The time to subtract from this.
dest—When dest is not null, the result is placed in it and returned.

Throws
IllegalArgumentException—when the Chronograph associated with this and

the Chronograph associated with the time parameter are different, or when
the time parameter is null.

360 RTSJ 2.0 (Draft 57)

AbsoluteTime javax.realtime 9.3

ArithmeticException—when the result does not fit in the normalized format.

Returns
the result of the normalization of this minus the AbsoluteTime parameter time

in dest when dest is not null, otherwise the result is returned in a newly
allocated object.

subtract(RelativeTime)

Signature
public javax.realtime.AbsoluteTime
subtract(RelativeTime time)
throws IllegalArgumentException,

ArithmeticException

Description
Creates a new instance of AbsoluteTime representing the result of subtracting
time from the value of this and normalizing the result. The Chronograph
associated with this and the Chronograph associated with the time parameter
must be the same, and such association is used for the result.

Parameters
time—The time to subtract from this.

Throws
IllegalArgumentException—when the Chronograph associated with this and

the Chronograph associated with the time parameter are different, or when
the time parameter is null.

ArithmeticException—when the result does not fit in the normalized format.

Returns
a new AbsoluteTime object whose time is the normalization of this minus the

parameter time.

subtract(RelativeTime, AbsoluteTime)

Signature
public javax.realtime.AbsoluteTime
subtract(RelativeTime time,

AbsoluteTime dest)

RTSJ 2.0 (Draft 57) 361

9 Time AbsoluteTime

throws IllegalArgumentException,
ArithmeticException

Description

Returns an object containing the value resulting from subtracting time from the
value of this and normalizing the result. When dest is not null, the result is
placed there and returned. Otherwise, a new object is allocated for the result.
The Chronograph associated with this and the Chronograph associated with
the time parameter must be the same, and such association is used for the result.
The Chronograph associated with the dest parameter is ignored.

Parameters
time—The time to subtract from this.
dest—When dest is not null, the result is placed there and returned.

Throws
IllegalArgumentException—when the Chronograph associated with this and

the Chronograph associated with the time parameter are different, or when
the time parameter is null.

ArithmeticException—when the result does not fit in the normalized format.

Returns
the result of the normalization of this minus the RelativeTime parameter time

in dest when dest is not null, otherwise the result is returned in a newly
allocated object.

toString

Signature
public java.lang.String
toString()

Description

Creates a printable string of the time given by this.
The string shall be a decimal representation of the milliseconds and nanosecond

values; formatted as follows "(2251 ms, 750000 ns)"

Returns
a String object converted from the time given by this.

362 RTSJ 2.0 (Draft 57)

HighResolutionTime javax.realtime 9.3

9.3.1.2 HighResolutionTime

public abstract class HighResolutionTime<T extends HighResolutionTime<T>>
Inheritance
java.lang.Object
HighResolutionTime<T extends HighResolutionTime<T>>

Interfaces
Comparable
Cloneable

Description
Class HighResolutionTime is the base class for AbsoluteTime and Relative-
Time. It can be used to express time with nanosecond resolution. This class is
never used directly; it is abstract and has no public constructor. Instead, one
of its subclasses AbsoluteTime or RelativeTime should be used. When an API
is defined that has a HighResolutionTime as a parameter, it can take either an
absolute or a relative time and will do something appropriate.

Caution: This class is explicitly unsafe for multithreading when being changed.
Code that mutates instances of this class should synchronize at a higher level.

9.3.1.2.1 Methods

waitForObject(Object, HighResolutionTime)

Signature
public static boolean
waitForObject(Object target,

javax.realtime.HighResolutionTime<?> time)
throws InterruptedException,

IllegalMonitorStateException,
IllegalArgumentException,
UnsupportedOperationException

Description
Behaves like target.wait() but with the enhancement that it waits with a
precision of HighResolutionTime and returns true when the associated notify

RTSJ 2.0 (Draft 57) 363

9 Time HighResolutionTime

was received, false when timeout occured. As for target.wait(), there is the
possibility of spurious wakeup behavior.

The wait time may be relative or absolute, and it is controlled by the clock
associated with it. When the wait time is relative, then the calling thread is
blocked waiting on target for the amount of time given by time, and measured
by the associated clock. When the wait time is absolute, then the calling thread
is blocked waiting on target until the indicated time value is reached by the
associated clock.

Parameters
target—The object for which to wait. The current thread must have a lock on the

object.
time—The time for which to wait. When it is RelativeTime(0,0) then wait

indefinitely. When it is null then wait indefinitely.
Throws

InterruptedException—when this schedulable is interrupted by RealtimeThread.
interrupt or AsynchronouslyInterruptedException.fire while it is wait-
ing.

IllegalArgumentException—when time represents a relative time less than zero.
IllegalMonitorStateException—when target is not locked by the caller.
UnsupportedOperationException—when the wait operation is not supported us-

ing the clock associated with time.
Returns
true when the notify was received before the timeout; false otherwise.
Available since RTSJ 2.0 updated to add a return value.

equals(T)

Signature
public boolean
equals(T time)

Description
Proves if the argument time has the same type and values as this.

Equality includes Chronograph association.

Parameters
time—Value to be compared with this.

Returns

364 RTSJ 2.0 (Draft 57)

HighResolutionTime javax.realtime 9.3

true when the parameter time is of the same type and has the same values as
this, as well as the same Chronograph association.

Available since RTSJ 2.0

getClock

Signature
public final javax.realtime.Clock
getClock()
throws UnsupportedOperationException

Description

Gets the reference to the clock associated with this.

Throws
UnsupportedOperationException—when the time is based on a Chronograph that

is not a Clock.

Returns
a reference to the clock associated with this.

Available since RTSJ 1.0.1

getChronograph

Signature
public final javax.realtime.Chronograph
getChronograph()

Description

Gets a reference to the Chronograph associated with this.

Returns
a reference to the Chronograph associated with this.

Available since RTSJ 2.0

RTSJ 2.0 (Draft 57) 365

9 Time HighResolutionTime

getMilliseconds

Signature
public final long
getMilliseconds()

Description
Gets the milliseconds component of this.

Returns
the milliseconds component of the time represented by this.

getNanoseconds

Signature
public final int
getNanoseconds()

Description
Gets the nanoseconds component of this.

Returns
the nanoseconds component of the time represented by this.

set(T)

Signature
public T extends javax.realtime.HighResolutionTime<T>
set(T time)

Description
Changes the value represented by this to that of the given time. The Chrono-
graph associated with this is set to be the Chronograph associated with the
time parameter.

Parameters
time—The new value for this.

Throws
IllegalArgumentException—when the parameter time is null.

366 RTSJ 2.0 (Draft 57)

HighResolutionTime javax.realtime 9.3

ClassCastException—when the type of this and the type of the parameter time
are not the same.

Returns
this

Available since RTSJ 1.0.1 The description of the method in 1.0 was erroneous.

Available since RTSJ 2.0 returns itself

set(long)

Signature
public T extends javax.realtime.HighResolutionTime<T>
set(long millis)

Description
Sets the millisecond component of this to the given argument, and the nanosec-
ond component of this to 0. This method is equivalent to set(millis, 0).

Parameters
millis—This value shall be the value of the millisecond component of this at the

completion of the call.
Returns
this

Available since RTSJ 2.0 returns itself

set(long, int)

Signature
public T extends javax.realtime.HighResolutionTime<T>
set(long millis,

int nanos)
throws IllegalArgumentException

Description
Sets the millisecond and nanosecond components of this. The setting is subject
to parameter normalization. When after normalization the time is negative then
the time represented by this is set to a negative value, but note that negative

RTSJ 2.0 (Draft 57) 367

9 Time HighResolutionTime

times are not supported everywhere. For instance, a negative relative time is an
invalid value for a periodic thread’s period.

Parameters
millis—The desired value for the millisecond component of this at the completion

of the call. The actual value is the result of parameter normalization.
nanos—The desired value for the nanosecond component of this at the completion

of the call. The actual value is the result of parameter normalization.
Throws

IllegalArgumentException—when there is an overflow in the millisecond compo-
nent while normalizing.

Returns
this

Available since RTSJ 2.0 returns itself

hashCode

Signature
public int
hashCode()

Description
Returns a hash code for this object in accordance with the general contract of
Object.hashCode. Time objects that are equal, as defined by equals, have the
same hash code.

Returns
the hashcode value for this instance.

clone

Signature
public java.lang.Object
clone()

Description
Returns a clone of this. This method should behave effectively as when it
constructed a new object with the visible values of this. The new object is
created in the current allocation context.

368 RTSJ 2.0 (Draft 57)

HighResolutionTime javax.realtime 9.3

Available since RTSJ 1.0.1

compareTo(T)

Signature
public int
compareTo(T time)

Description
Compares this HighResolutionTime with the specified HighResolutionTime
time.

Parameters
time—To be compared with the time of this.

Throws
ClassCastException—when the time parameter is not of the same class as this.
IllegalArgumentException—when the time parameter is not associated with the

same chronograph as this, or when the time parameter is null.

Returns
a negative integer, zero, or a positive integer as this object is less than, equal to, or

greater than time.

Available since RTSJ 2.0

equals(Object)

Signature
public boolean
equals(Object object)

Description
Determined whether or not the argument object has the same type and values
as this.

Equality includes Chronograph association.

Parameters
object—Value to be compared with this.

Returns

RTSJ 2.0 (Draft 57) 369

9 Time HighResolutionTime

true when the parameter object is of the same type and has the same values as
this, as well as the same Chronograph association.

absolute(Chronograph, AbsoluteTime)

Signature
public abstract javax.realtime.AbsoluteTime
absolute(Chronograph chronograph,

AbsoluteTime dest)

Description
Converts the time of this to an absolute time, using the given instance of
Chronograph to determine the current time when necessary. When Chronograph
is null the default realtime clock is assumed. When dest is not null, the result is
placed in it and returned. Otherwise, a new object is allocated for the result. The
chronograph association of the result is the Chronograph passed as a parameter.
See the subclass comments for more specific information.

Parameters
chronograph—The instance of Chronograph used to convert the time of this into

absolute time, and the new chronograph association for the result.
dest—When dest is not null, the result is placed in it and returned.

Returns
the AbsoluteTime conversion in dest when dest is not null, otherwise the result

is returned in a newly allocated object. It is associated with the Chronograph
parameter.

absolute(Chronograph)

Signature
public abstract javax.realtime.AbsoluteTime
absolute(Chronograph chronograph)

Description
Converts the time of this to an absolute time, using the given instance of
Chronograph to determine the current time when necessary. When Chronograph
is null the realtime clock is assumed.

A destination object is allocated to return the result. The chronograph
association of the result is the Chronograph passed as a parameter. See the
subclass comments for more specific information.

370 RTSJ 2.0 (Draft 57)

HighResolutionTime javax.realtime 9.3

Parameters
chronograph—The instance of Chronograph used to convert the time of this into

absolute time, and the new chronograph association for the result.
Returns
the AbsoluteTime conversion in a newly allocated object, associated with the

Chronograph parameter.

relative(Chronograph, RelativeTime)

Signature
public abstract javax.realtime.RelativeTime
relative(Chronograph chronograph,

RelativeTime dest)

Description
Converts the time of this to a relative time, using the given instance of Chrono-
graph to determine the current time when necessary. When Chronograph is
null the realtime clock is assumed. When dest is not null, the result is placed
there and returned. Otherwise, a new object is allocated for the result. The
chronograph association of the result is the Chronograph passed as a parameter.
See the subclass comments for more specific information.

Parameters
chronograph—The instance of Chronograph used to convert the time of this into

relative time, and the new chronograph association for the result.
dest—When dest is not null, the result is placed in it and returned.

Returns
the RelativeTime conversion in dest when dest is not null, otherwise the result

is returned in a newly allocated object.

Available since RTSJ 2.0

relative(Chronograph)

Signature
public abstract javax.realtime.RelativeTime
relative(Chronograph chronograph)

Description

RTSJ 2.0 (Draft 57) 371

9 Time RelativeTime

Converts the time of this to a relative time, using the given instance of Chrono-
graph to determine the current time when necessary. When Chronograph is null
the realtime clock is assumed. A destination object is allocated to return the
result. The chronograph association of the result is the Chronograph passed as a
parameter. See the subclass comments for more specific information.

Parameters
chronograph—The instance of Chronograph used to convert the time of this into

relative time, and the new chronograph association for the result.
Returns
the RelativeTime conversion in a newly allocated object, associated with the

Chronograph parameter.

Available since RTSJ 2.0

9.3.1.3 RelativeTime

public class RelativeTime

Inheritance
java.lang.Object
HighResolutionTime<RelativeTime>
RelativeTime

Description
An object that represents a time interval milliseconds/103 + nanoseconds/109

seconds long. It generally is used to represent a time relative to now.
The time interval is kept in normalized form. The range goes from [(-

263) milliseconds + (-106+1) nanoseconds] to [(263-1) milliseconds + (106-1)
nanoseconds].

A negative interval relative to now represents time in the past. For add and
subtract, negative values behave as they do in arithmetic.

Caution: This class is explicitly unsafe for multithreading when being changed.
Code that mutates instances of this class should synchronize at a higher level.

9.3.1.3.1 Constructors

372 RTSJ 2.0 (Draft 57)

RelativeTime javax.realtime 9.3

RelativeTime(long, int, Chronograph)

Signature
public
RelativeTime(long millis,

int nanos,
Chronograph chronograph)

throws IllegalArgumentException

Description
Constructs a RelativeTime object representing an interval based on the param-
eter millis plus the parameter nanos. The construction is subject to millis
and nanos parameter normalization. When there is an overflow in the millisec-
ond component when normalizing then an IllegalArgumentException will be
thrown.

The chronograph association is made with the chronograph parameter. When
chronograph is null the association is made with the default realtime clock.

Available since RTSJ 2.0

Parameters
millis—The desired value for the millisecond component of this. The actual

value is the result of parameter normalization.
nanos—The desired value for the nanosecond component of this. The actual value

is the result of parameter normalization.
chronograph—The time reference of the newly constructed object. Defaults to the

realtime clock when null.
Throws

IllegalArgumentException—when there is an overflow in the millisecond compo-
nent when normalizing.

RelativeTime(long, int)

Signature
public
RelativeTime(long millis,

int nanos)

RTSJ 2.0 (Draft 57) 373

9 Time RelativeTime

throws IllegalArgumentException

Description
Equivalent to RelativeTime(long, int, Chronograph) with argument list
(millis, nanos, null).

Parameters
millis—The desired value for the millisecond component of this. The actual

value is the result of parameter normalization.
nanos—The desired value for the nanosecond component of this. The actual value

is the result of parameter normalization.
Throws

IllegalArgumentException—when there is an overflow in the millisecond compo-
nent when normalizing.

RelativeTime(RelativeTime)

Signature
public
RelativeTime(RelativeTime time)

Description
Equivalent to RelativeTime(long, int, Chronograph) with argu-
ment list (time.getMilliseconds(), time.getNanoseconds(), time.
getChronograph()).

Parameters
time—The RelativeTime object which is the source for the copy.

RelativeTime(Chronograph)

Signature
public
RelativeTime(Chronograph chronograph)

Description
Equivalent to RelativeTime(long, int, Chronograph) with argument list (0,
0, chronograph).

374 RTSJ 2.0 (Draft 57)

RelativeTime javax.realtime 9.3

Available since RTSJ 2.0

Parameters
chronograph—The time reference for the newly constructed object.

RelativeTime

Signature
public
RelativeTime()

Description
Equivalent to RelativeTime(long, int, Chronograph) with argument list (0,
0, null).

9.3.1.3.2 Methods

absolute(Chronograph)

Signature
public javax.realtime.AbsoluteTime
absolute(Chronograph chronograph)

Description
Converts the time of this to an absolute time, using the given instance of
Chronograph to determine the current time when necessary. When Chronograph
is null the realtime clock is assumed.

A destination object is allocated to return the result. The chronograph
association of the result is the Chronograph passed as a parameter. See the
subclass comments for more specific information.

Available since RTSJ 2.0

See Section HighResolutionTime.absolute(Chronograph)

RTSJ 2.0 (Draft 57) 375

9 Time RelativeTime

absolute(Chronograph, AbsoluteTime)

Signature
public javax.realtime.AbsoluteTime
absolute(Chronograph chronograph,

AbsoluteTime dest)

Description
Converts the time of this to an absolute time, using the given instance of
Chronograph to determine the current time when necessary. When Chronograph
is null the default realtime clock is assumed. When dest is not null, the result is
placed in it and returned. Otherwise, a new object is allocated for the result. The
chronograph association of the result is the Chronograph passed as a parameter.
See the subclass comments for more specific information.

Available since RTSJ 2.0

See Section HighResolutionTime.absolute(Chronograph, AbsoluteTime)

relative(Chronograph)

Signature
public javax.realtime.RelativeTime
relative(Chronograph chronograph)

Description
Converts the time of this to a relative time, using the given instance of Chrono-
graph to determine the current time when necessary. When Chronograph is null
the realtime clock is assumed. A destination object is allocated to return the
result. The chronograph association of the result is the Chronograph passed as a
parameter. See the subclass comments for more specific information.

Available since RTSJ 2.0

See Section HighResolutionTime.relative(Chronograph)

relative(Chronograph, RelativeTime)

Signature

376 RTSJ 2.0 (Draft 57)

RelativeTime javax.realtime 9.3

public javax.realtime.RelativeTime
relative(Chronograph chronograph,

RelativeTime dest)

Description
Converts the time of this to a relative time, using the given instance of Chrono-
graph to determine the current time when necessary. When Chronograph is
null the realtime clock is assumed. When dest is not null, the result is placed
there and returned. Otherwise, a new object is allocated for the result. The
chronograph association of the result is the Chronograph passed as a parameter.
See the subclass comments for more specific information.

Available since RTSJ 2.0

See Section HighResolutionTime.relative(Chronograph, RelativeTime)

add(long, int)

Signature
public javax.realtime.RelativeTime
add(long millis,

int nanos)
throws ArithmeticException

Description
Creates a new object representing the result of adding millis and nanos to
the values from this and normalizing the result. The result will have the same
chronograph association as this. An ArithmeticException is when the result
does not fit in the normalized format.

Parameters
millis—The number of milliseconds to be added to this.
nanos—The number of nanoseconds to be added to this.

Throws
ArithmeticException—when the result does not fit in the normalized format.

Returns
a new RelativeTime object whose time is the normalization of this plus millis

and nanos.

RTSJ 2.0 (Draft 57) 377

9 Time RelativeTime

add(long, int, RelativeTime)

Signature
public javax.realtime.RelativeTime
add(long millis,

int nanos,
RelativeTime dest)

throws ArithmeticException

Description
Returns an object containing the value resulting from adding millis and nanos
to the values from this and normalizing the result. When dest is not null, the
result is placed there and returned. Otherwise, a new object is allocated for the
result. The result will have the same chronograph association as this, and the
chronograph association with dest is ignored.

Parameters
millis—The number of milliseconds to be added to this.
nanos—The number of nanoseconds to be added to this.
dest—When dest is not null, the result is placed there and returned.

Throws
ArithmeticException—when the result does not fit in the normalized format.

Returns
the result of the normalization of this plus millis and nanos in dest when dest

is not null, otherwise the result is returned in a newly allocated object.

add(RelativeTime)

Signature
public javax.realtime.RelativeTime
add(RelativeTime time)
throws IllegalArgumentException,

ArithmeticException

Description
Creates a new instance of RelativeTime representing the result of adding time
to the value of this and normalizing the result.

The chronograph associated with this and the clock associated with the
time parameter are expected to be the same, and such association is used for the
result.

378 RTSJ 2.0 (Draft 57)

RelativeTime javax.realtime 9.3

Parameters
time—The time to add to this.

Throws
IllegalArgumentException—when the Chronograph associated with this and

the Chronograph associated with the time parameter are different, or when
the time parameter is null.

ArithmeticException—when the result does not fit in the normalized format.

Returns
a new RelativeTime object whose time is the normalization of this plus the

parameter time.

add(RelativeTime, RelativeTime)

Signature
public javax.realtime.RelativeTime
add(RelativeTime time,

RelativeTime dest)
throws IllegalArgumentException,

ArithmeticException

Description
Returns an object containing the value resulting from adding time to the value
of this and normalizing the result. When dest is not null, the result is placed
there and returned. Otherwise, a new object is allocated for the result.

The Chronograph associated with this and the Chronograph associated with
the time parameter are expected to be the same, and such association is used for
the result.

The Chronograph associated with the dest parameter is ignored.

Parameters
time—The time to add to this.
dest—When dest is not null, the result is placed there and returned.

Throws
IllegalArgumentException—when the Chronograph associated with this and

the Chronograph associated with the time parameter are different, or when
the time parameter is null.

ArithmeticException—when the result does not fit in the normalized format.

Returns

RTSJ 2.0 (Draft 57) 379

9 Time RelativeTime

the result of the normalization of this plus the RelativeTime parameter time
in dest when dest is not null, otherwise the result is returned in a newly
allocated object.

subtract(RelativeTime)

Signature
public javax.realtime.RelativeTime
subtract(RelativeTime time)
throws IllegalArgumentException,

ArithmeticException

Description
Creates a new instance of RelativeTime representing the result of subtracting
time from the value of this and normalizing the result.

The Chronograph associated with this and the Chronograph associated with
the time parameter are expected to be the same, and such association is used for
the result.

Parameters
time—The time to subtract from this.

Throws
IllegalArgumentException—when the Chronograph associated with this and

the Chronograph associated with the time parameter are different, or when
the time parameter is null.

ArithmeticException—when the result does not fit in the normalized format.
Returns
a new RelativeTime object whose time is the normalization of this minus the

parameter time.

subtract(RelativeTime, RelativeTime)

Signature
public javax.realtime.RelativeTime
subtract(RelativeTime time,

RelativeTime dest)
throws IllegalArgumentException,

ArithmeticException

380 RTSJ 2.0 (Draft 57)

RelativeTime javax.realtime 9.3

Description
Returns an object containing the value resulting from subtracting the value of
time from the value of this and normalizing the result. When dest is not null,
the result is placed there and returned. Otherwise, a new object is allocated for
the result.

The Chronograph associated with this and the Chronograph associated with
the time parameter are expected to be the same, and such association is used for
the result.

The Chronograph associated with the dest parameter is ignored.

Parameters
time—The time to subtract from this.
dest—When dest is not null, the result is placed there and returned. Otherwise,

a new object is allocated for the result.
Throws

IllegalArgumentException—when the Chronograph associated with this and
the Chronograph associated with the time parameter are different, or when
the time parameter is null.

ArithmeticException—when the result does not fit in the normalized format.

Returns
the result of the normalization of this minus the RelativeTime parameter time

in dest when dest is not null, otherwise the result is returned in a newly
allocated object.

scale(int)

Signature
public javax.realtime.RelativeTime
scale(int factor)

Description
Changes the length of this relative time by multiplying it by factor.

Parameters
factor—Value by which to increase the time interval.

Returns
a new object with value of this scaled by factor.

Available since RTSJ 2.0

RTSJ 2.0 (Draft 57) 381

9 Time RelativeTime

scale(int, RelativeTime)

Signature
public javax.realtime.RelativeTime
scale(int factor,

RelativeTime time)

Description
Sets time to the value of this time multiplied by factor.

Parameters
factor—Value by which to increase the time in this.
time—Where to store the result.

Returns
time with the value of this scaled by factor

Available since RTSJ 2.0

compareToZero

Signature
public int
compareToZero()

Description
Compares this to relative time zero returning the result of the comparison.
Equivalent to constantZero.compareTo(this)

Returns
negative when this is less than zero, 0, when it is equal to zero and a positive

when this is greater than zero.
Available since RTSJ 2.0

compareTo(RelativeTime)

Signature
public int
compareTo(RelativeTime time)

382 RTSJ 2.0 (Draft 57)

Rationale 9.4

Description
Compares this HighResolutionTime with the specified HighResolutionTime
time.

Parameters
time—To be compared with the time of this.

Throws
ClassCastException—when the time parameter is not of the same class as this.
IllegalArgumentException—when the time parameter is not associated with the

same chronograph as this, or when the time parameter is null.
Returns
a negative integer, zero, or a positive integer as this object is less than, equal to, or

greater than time.
Available since RTSJ 2.0

toString

Signature
public java.lang.String
toString()

Description
Creates a printable string of the time given by this.

The string shall be a decimal representation of the milliseconds and nanosecond
values; formatted as follows "(2251 ms, 750000 ns)"

Returns
a String object converted from the time given by this.

9.4 Rationale
Time is the essence of realtime systems, and a method of expressing absolute time
with sub-millisecond precision is an absolute minimum requirement. Expressing time
in terms of nanoseconds has precedent and allows the implementation to provide
time-based services, such as timers, using whatever precision it is capable of while
the application requirements are expressed to an arbitrary level of precision.

The standard Java java.util.Date class uses milliseconds as its basic unit
in order to provide sufficient range for a wide variety of applications. Realtime

RTSJ 2.0 (Draft 57) 383

9 Time

programming generally requires finer resolution, and nanosecond resolution is fine
enough for most purposes, but even a 64 bit realtime clock based in nanoseconds
would have insufficient range in some situations, so a compound format composed of
64 bits of millisecond timing, and 32 bits of nanoseconds within a millisecond, was
chosen.

The expression of millisecond and nanosecond constituents is consistent with
other Java interfaces.

The expression of relative times allows for time-based metaphors such as deadline-
based periodic scheduling where the cost of the task is expressed as a relative time and
deadlines are usually represented as times relative to the beginning of the period.

384 RTSJ 2.0 (Draft 57)

Chapter 10

Clocks and Timers

In order to reason about time, the RTSJ needs not only to be able to express times
and calculate with them, but it also needs to be able to determine the current time
and allow actions to be performed when a given time is reached. For this purpose,
the specification defines one interface and four classes: Chronograph, Clock, Timer,
PeriodicTimer, and OneShotTimer.

A chronograph is used to measure time, whereas a clock is used to both measure
time and react to its passage: a clock can get the current time and it can trigger
timing events. At least one instance of the abstract Clock class, which implements
Chronograph, is provided by the implementation, the system realtime clock, and this
instance is made available as a singleton. The creation and use of other clocks and
chronographs are discussed later (see Section 10.2.2).

The Timer classes provide the means of executing code at a particular point in
time or repeatedly at a given interval. Timer is an abstract class and consequently
only its subclasses can be instantiated. The Timer class provides the interface and
underlying implementation for both one-shot and periodic timers. Instances of
OneShotTimer and PeriodicTimer can be created and rescheduled specifying the
initial firing time either as an AbsoluteTime or as a RelativeTime, to be considered
from the application of the start command. The PhasingPolicy class defines the
relationship between a PeriodicTimer’s start time and its first release time when
the start time is in the past.

By attaching an AsyncBaseEventHandler to a Timer, the program can cause
the release of the handler at a given time or after a given interval. An instance
of OneShotTimer describes an event that is to be triggered at most once, unless
restarted after expiration. It may be used as the source for time-outs and watchdog
timing. An instance of PeriodicTimer fires on a periodic schedule. The period for
a PeriodicTimer is always specified as a RelativeTime.

385

10 Clocks and Timers

10.1 Definitions

Timing Mechanism — Something capable of representing and following the
progress of time, by means of time values.

Chronograph — A passive timing mechanism, which can only provide the current
time.

Clock — An active timing mechanism, which can both provide the current time
and cause some action when a particular time is reached. All clocks are, by
definition, chronographs, but not necessarily vice versa.

Monotonically Increasing Timing Mechanism — A timing mechanism whose
time values never decrease. Monotonicity is a Boolean property, while time
synchronization, uniformity, and accuracy are characteristics that depend on
agreed tolerances. All monotonic clocks referenced in this specification are
monotonically increasing timing mechanisms.

Time Synchronization — A relation between two timing mechanisms. Two
chronographs are synchronized when the difference between their time values
is less than some specified offset. Synchronization in general degrades with
time, and may be lost, given a specified offset.

Accuracy — The agreement between a chronograph and the true value that it
measures, e.g., absolute wall clock time.

Resolution — The minimal time value interval that can be represented by the
clock model.

Precision — The smallest tick size that a particular chronograph will observe.
Uniformity — In this context, the measurement of the progress of time at a

consistent rate, with a tolerance on the variability. Uniformity is affected by
two other factors, jitter and stability.

Jitter — The distribution of the differences between when events are actually
fired or noticed by the software and when they should have really occurred
according to time in the real-world. Jitter might be caused by short-term and
noncumulative small time variation due to noise sources, such as thermal noise.

Stability — The resistance to jitter, in this case temporal jitter. Lack of stability
can account for large and often cumulative variations, due to such occurrences
such as supply voltage and temperature change.

Drift — The rate of change of the cumulative variation between two timing mecha-
nisms.

Counting Time — The time accumulated by a Timer, while active, when created
or rescheduled using a RelativeTime to specify the initial firing or skipping
time. Counting Time is zeroed at the beginning of an activation and when
rescheduled, while active, before the initial firing or skipping of an activation.

386 RTSJ 2.0 (Draft 57)

Semantics 10.2

10.2 Semantics
The semantics of chronographs, clocks and timers are not simply functional. Temporal
attributes dominate their behavior; therefore, the interaction between classes is
critical to the overall understanding of the API. The class descriptions as well as their
constructor, method, and field documentation given later provide detailed semantics
to support the overall behavior.

10.2.1 Clock Model
Clocks and chronographs are backed by a physical means of measuring time. In
practice, each one is driven by an oscillator that has susceptible variation due to its
environment. There is always some difference between the desired frequency and
the actual frequency of the oscillator, which is a major reason of synchronization
loss. The RTSJ Clock model must take this variability into account and therefore
establishes several invariants and expectations that can be relied upon by RTSJ
applications and in turn must be provided by RTSJ implementations.

1. The resolution of the RTSJ Clock model is 1 nanosecond. This is the smallest
unit of time that can be represented by a chronograph or timer via HighReso-
lutionTime and its subclasses.

2. The accuracy of RTSJ definable chronographs and clocks is outside the scope
of this specification. Accuracy is heavily dependent on hardware capabilities
and platform characteristics. RTSJ providers and system integrators should
characterize accuracy where possible.

3. The precision of RTSJ definable clock and chronograph (and, by proxy, the
precision of the timers associated with clocks) are defined in terms of nanosec-
onds per observable tick, and provided to the application programmer via the
various precision setters on Clock and Chronograph.

4. The realtime clock shall be monotonically increasing, and other clocks and
chronographs should be monotonically increasing as well.

5. Time values returned by a chronograph should not be assumed to be comparable
to the time values from another chronograph unless the user has platform-
specific knowledge that the chronographs are compatible, except under specific
circumstances described below.

6. The system or any other realtime clock is not necessarily synchronized with the
external world, and the correctness of the epoch as a time base depends on such
synchronization. It is as uniform and accurate as allowed by the underlying
hardware.

If two Chronograph objects are both referenced to real time and return a value
from getEpochOffset(), then time values from those Chronographs can be compared
by applying their respective corrections. As documented in the getEpochOffset()

RTSJ 2.0 (Draft 57) 387

10 Clocks and Timers

method, its return value represents the offset of the associated Chronograph from the
realtime clock Epoch. However, the results of any such comparison must be treated
with caution as the accuracy of the two Chronograph objects may be different.

The RTSJ Clock model is designed for maximum utility and predictability on
monotonically increasing timing mechanisms. Clocks that do not have this prop-
erty may display certain inconsistencies in the event of reverse discontinuities. In
particular, any the following may occur.

1. When a OneShotTimer is set on a nonmonotonic Clock, that clock experiences
a reverse discontinuity, and that timer has already fired, but the reverse
discontinuity would cause its expiry time to occur again, the timer will not fire
again.

2. When a PeriodicTimer is set on a nonmonotonic Clock, that clock experiences
a reverse discontinuity, and that timer has already fired for time T but the
reverse discontinuity would cause time T to occur again, the handler for time
T will not be released again for time T . This may mean that the elapsed
wall clock time between two firings of the PeriodicTimer exceeds the period
without the release of an associated miss handler or other detection, as the next
firing will happen when the clock reaches T + P , where P is the period of the
timer.

3. When a Timer is set on a nonmonotonic Clock and that clock experiences a
reverse discontinuity while that timer is scheduled for release at time T , but
the reverse discontinuity causes time T to be “pushed back” with respect to
wall clock time, the Timer will not fire until time T is reached on the clock
and the elapsed wall clock time to T will be of longer duration than it was
when the timer was set.

Forward or reverse discontinuities on a Clock may cause races for Timer releases
occurring very close to the time of the discontinuity. Therefore, the default realtime
clock should increment as consistently as possible under the design constraints of
the system.

10.2.2 Clocks and Timables
A Clock is the basic mechanism of measuring time and triggering events based on
the passage of time. A Timer can request a signal from the clock when a given
time is reached. That signal should come as closed to the actual time requested as
possible. A schedulable also uses a clock to implement the realtime sleep methods.
Each clock instance shall be capable of reporting the achievable resolution of timers
based on that clock. Each implementation shall have a default clock that is used
whenever no other clock is specified. An application can also define additional clocks.

A Timer uses a clock to measure time, which informs the timer’s TimeDispatcher
when the time has elapsed (relative time) or has been reached (absolute time). The

388 RTSJ 2.0 (Draft 57)

Semantics 10.2

TimeDispatcher causes the release of any AsyncEventHandler associated with the
Timer. In the context of a Timer, triggering is the action that is performed by a
TimeDispatcher that informs the Timer that it is time to fire or skip, where skip
causes the normal action of fire not to be carried out.

A Timer is active when it has been started and not stopped since last started and
it has a time in the future at which it is expected to fire or skip, else it is not active.

In the context of a Timer, enabling causes the Timer to fire when it is triggered,
while disabling causes the Timer to skip when it is triggered. Enabling and disabling
act as a mask over firing.

The behavior of a OneShotTimer is that of a Timer that does not automatically
reschedule its triggering after an initial triggering, regardless of whether it fires or
skips, i.e., is active but disabled when triggered. It is specified using an initial firing
time.

The behavior of a PeriodicTimer is that of a Timer that automatically resched-
ules after each triggering, regardless of whether the triggering results in a fire or a
skip due to being disabled when triggered. It is specified using an initial firing time
and an interval or period used for the self-rescheduling.

A Clock can also be used to regulate pauses in execution of any Schedulable
through a realtime sleep method, hence timers and schedulables are classified as
timables under the Timable interface.

Both OneShotTimer and PeriodTimer are given an initial firing time. A Perio-
dicTimer receives two clock references, within two HighResolutionTimer objects,
which must be to the same clock. Thus the specification of the initial firing time and
the interval or period must refer to the same clock.

A Timer is an ActiveEvent. This means that is has an associated dispatcher
called TimeDispatcher. As with other active events, the application can either use
the default dispatcher or create a new one with its own priority and affinity. A
schedulable can also have a TimeDispatcher to manage sleeping.

At any given time, a timable, Timer or Schedulable, has at most one clock
associated with it, on which the measurement of time for blocking is based. Each
clock maintains a list of times, called alarms, that are provided to it from timables.
The clock is armed with the next alarm. When that time arrives, the clock signals
the TimeDispatcher associated with the alarm to signal its timable that the time
has arrived.

In the case of a timer, the dispatcher triggers the timer thereby indicating it
should fire or skip. In the case of a schedulable, the dispatcher triggers the schedulable
to wake up from its sleep. Figure 10.1 illustrates how a timer interacts with an
application-defined clock and Figure 10.2 depicts the same for using realtime sleep
in a schedulable.

In each case, an external schedulable, depicted on the right, initializes the objects

RTSJ 2.0 (Draft 57) 389

10 Clocks and Timers

Figure 10.1: Sequence Diagram for Using a Timer

Caption

Initiator

Internal Object

:AsynchronousAlarm

:Clock

:RealtimeThread

Dispatching
Timers

loop

(16) release handlers

:TimeDispatcher :PeriodicTimer :Schedulable

(15) +f i re()

(6)
~setTime(startTime)

(13)
~removeAlarm(alarm)

(11)
~tr igger(alarm)

alarm
+new(timable,dispatcher)

periodic

// for use in HighResolutionTime values, e.g., interval
clock

dispatcher

#arm(mill is, nanos)
(8)

#a larm()
(9)

(14)
~next.tr igger()

4
+star t ()

(5)
~register(this)

Execute trigger logic
(10)

~tr igger()

~addAlarm(alarm) (7)

2
+new()

(12) ~f i re()

+star t ()

+ n e w

(13a)
~addAlarm(alarm)

1
+new(priority) // optional

3
 +new(start,interval,dispatcher)

involved. A TimeDispatcher and a Clock are created. These are used when creating
the Timable as illustrated with step one and two respectively in both diagrams. A
developer can always use a pre-existing clock or dispatcher instead of creating new
ones.

Each timable acts as if it had an internal object, depicted as an instance of Alarm,
to manage the relationship between a timable and its dispatcher and clock. Alarm is
shown simply to illustrate this relationship. It is created, as shown in step three in
both diagrams, when the timable is created and it represents the next alarm that
the timable should receive: either a fire for a time, or a wake up call for a realtime
sleep on a schedulable.

At step four, the two sequences diverge. The application starts a timer with the
start method, but a thread must call a realtime sleep method. In both cases, step
four sets the timing in motion.

Steps (5) through (8) set up the time interval. When initiating the trigger for the
first time, step (5) registers the timable with its dispatcher. Later starts or sleeps
skip this step. Then the time is set in the alarm and the alarm is added to the clock.

When the new alarm is the next alarm to be triggered, the clock arranges to
signal that time as in step (8). When the alarm is added anywhere else in the clock

390 RTSJ 2.0 (Draft 57)

Semantics 10.2

Figure 10.2: Sequence Diagram for Realtime Sleep

(16) thread continues

Caption

Initiator

Internal Object

:SynchronousAlarm

:Clock

:RealtimeThread

:TimeDispatcher :RealtimeThread :Schedulable

(15) wakeup()

+new(timable,dispatcher)

(6)
~setTime(sleepEndTime)

(13)
~removeAlarm(alarm)

+star t ()
thread

alarm

(11)
~tr igger(alarm)

dispatcher

// for use in HighResolutionTime values. e.g., duration
clock

#arm(mill is, nanos)
(8)

#a larm()
(9)

(14)
~next.tr igger()

(when next present)

+sleep(duration)

4(5)
~register(this)

Execute trigger logic
(10)

~tr igger()

~addAlarm(alarm) (7)

2
+new()

(12) ~f i re()

+star t ()

+ n e w 1
+new(priority) // optional

3
+new(dispatcher)

queue, step (8) is delayed until the removal of an alarm causes the added alarm to
reach the top of the queue.

When the alarm time is reached, step (9), the clock triggers the alarm by calling
trigger on the alarm event, step (10). This in turn triggers the dispatcher, step (11).
This is an asynchronous call that causes the dispatcher’s thread to take over control
from the clocks interrupt handler.

In step (12), the dispatcher thread removes the alarm from the clock queue,
possibly causing a new alarm to become active. In the periodic thread case, the
alarm is rescheduled by incrementing the time in the alarm by the interval and
adding it back into the queue. In all other cases, no new alarm is set.

In step (13) any subsequent alarms that were scheduled are also kicked off. The
Clock queue is a two dimensional queue that is organized by the time of the alarm
and, within any given time, the priority order, highest to lowest, of the dispatchers
associated with the alarms. The trigger in step (10) always goes to the alarm with
the highest priority dispatcher.

Finally in step (14), the dispatcher fires the alarm which results its timable being
fired or woken-up. In the case of a timer, this causes all its handlers to be released
or, in the case of a schedulable, a sleep being woken up; this is marked as (15) in the

RTSJ 2.0 (Draft 57) 391

10 Clocks and Timers

diagrams.
Clocks and TimeDispatchers may be shared among as many timables as the

needs of the application dictate. Different dispatchers can be used with a given clock
and a dispatcher can service different clocks. The dispatcher should be chosen based
on its priority and affinity, whereas a clock should be chosen based on the temporal
reference, where the temporal reference may or may not be associated with clock
time. For instance, one could use a clock to represent the rotation of a shaft.

10.2.3 Timers
A timer must be associated with a clock. That clock acts as if it provides an interrupt
to each of its timers at the next instance of time at which the timer should do
something. In other words, a clock fires its timer at a requested time. Timers can be
modeled as counters, or as comparators.

10.2.3.1 Counter Model

In the timer model, a timer can be viewed as if every clock interrupt increments a
count up to the firing count, initially given by either an instance of RelativeTime or
computed as the difference between an instance of AbsoluteTime and a semantically
specified “now” (using the same clock).

1. start is understood as defining “now” and start counting, stop is understood
as stop counting. start after stop may be understood as start counting again
from where stopped, or start from scratch after resetting the count.

2. In both cases, a delay is introduced.
3. An RTSJ Timer, when using the counter model, resets the count when it is

restarted after being stopped.
4. When a Timer is created or rescheduled using a RelativeTime to specify

the initial alarm time, the RTSJ keeps the specified initial trigger time as a
RelativeTime and behaves according to the counter model.

10.2.3.2 Comparator Model

In the comparator model, a timer can be viewed as if every clock interrupt forces a
comparison between an absolute time and a firing time, initially given either as an
instance of AbsoluteTime or computed as the sum of an instance of RelativeTime
and a semantically specified “now” (using the same clock).

1. In this model, start is understood as start comparing, and possibly the first
start is understood as defining “now”. stop is understood as stop comparing.
start after stop may be understood as start comparing again.

2. In this case, no delay is introduced.

392 RTSJ 2.0 (Draft 57)

Semantics 10.2

3. When a Timer is created or rescheduled using an AbsoluteTime to specify the
initial triggering time, the RTSJ keeps the specified initial firing time as an
AbsoluteTime and uses the comparator model.

10.2.3.3 Triggering

A clock signals to the associated timable that its alarm time has been reached
by triggering the dispatcher associated with the timable. This trigger causes the
dispatcher to fire the associated timer. When the timer is active, it releases its
handlers and is said to be fired. When the timer is inactive, nothing happens and
it is said to be skipped. A stopped timer is never triggered. For this it must be
running.

10.2.3.4 Behavior of Timers

There are two kinds of timers defined: OneShotTimer and PeriodicTimer. As their
names imply, the first is used to mark a single time interval and the second is to
mark a regularly repeating time interval.

The OneShotTimer class shall ensure that each instance is fired at most once at
the time specified unless restarted after expiration.

The PeriodicTimer class shall enable the period of a timer to be expressed in
terms of a RelativeTime. The initial firing of a PeriodicTimer occurs in response
to the invocation of its start method, in accordance with the start time passed to its
constructor. The PhasingPolicy class defines the relationship between the timer’s
start time and its first firing when the start time is in the past. This initial firing or
skipping, may be rescheduled by a call to the reschedule method, in accordance
with the time passed to that method.

Given an instance of PeriodicTimer, let S be the effective time, as an absolute
time, at which the initial firing or skipping of a PeriodicTimer is scheduled to occur:

1. when the start, or reschedule, time was given as an absolute time, A, and that
time is in the future when the timer is made active, then S equals A, otherwise

2. when the absolute time has passed when the timer is made active, then S
depends on the phasing mode of that instance of PeriodicTimer.

The firings of a PeriodicTimer are scheduled to occur according to S + nT , for
n = 0, 1, 2, ... where S is as just specified, and T is the interval of the periodic timer.

For all timers, when the start or reschedule time is given as a relative time, R, S
equals the time at which the counting time, started when the timer was made active,
equals R. The transition to not-active by this timer causes the counting time to
reset, effectively preventing this kind of timer from firing immediately, unless given a
time value of 0.

RTSJ 2.0 (Draft 57) 393

10 Clocks and Timers

When in a not-active state a Timer retains the parameters given at construction
time or the parameters it had at de-activation time. Those are the parameters that
will be used upon invocation of start while in that state, unless the parameters are
explicitly changed before that, using reschedule and setInterval as appropriate.

When a Timer object is allocated in a scoped memory area, then it will increment
the reference count associated with that area. Such a reference count will only be
decremented when the Timer object is destroyed. (See semantics in the Memory
chapter for details.) A Timer object will not fire before its due time.

The states of a Timer are essentially the same as for an ActiveEvent as depicted
in Figure 8.4. The main difference is that the time used for the next fire may be
either an absolute time or a relative time. Figure 10.3 reflects this difference in a
UML state diagram.

10.2.3.5 Phasing

Phasing comes into play only when a periodic timer (with period T) starts after its
initial time. This can happen when an absolute start time (A) is specified and the
start method is called after that time. It is used to determine the effective start time
S:

1. S is the next multiple of A+ nT , when phasing is ADJUST_FORWARD,
2. S is the most recent multiple of A+ nT , when phasing is ADJUST_BACKWARD,
3. S is “now,” when phasing is ADJUST_TO_START, and
4. S is undefined and an exception it thrown when phasing is STRICT_PHASING.

The default phasing is ADJUST_TO_START.

394 RTSJ 2.0 (Draft 57)

AsyncTimable javax.realtime 10.3

Figure 10.3: States of a Timer1

Inactive
Disabled Enabled DisabledActive

Absolute Time

RelativeTime

Active
Enabled
Absolute

Active
Disabled
Absolute

Inactive
Disabled
Absolute

Inactive
Disabled
Relative

Active
Disabled
Relative

Active
Enabled
Relative

reschedule
(relative time)

reschedule
(absolute time)

reschedule
(relative time)

reschedule
(absolute time)

new(absolute time)

stop
-> t rue

stop
-> false

stop -> false

startDisabled
-> IllegalStateException

start
-> IllegalStateException

start

startDisabled

enable

disable

new(relative time)

10.3 javax.realtime

10.3.1 Interfaces
10.3.1.1 AsyncTimable

public interface AsyncTimable

Interfaces
javax.realtime.Timable

Description
1Note that the semantics of the fire transition differ among the subclasses of Timer.

RTSJ 2.0 (Draft 57) 395

10 Clocks and Timers Chronograph

A common type for Timer and RealtimeThread to indicate that they can be
associated with a Clock and be suspended waiting for time events based on that
clock.

Available since RTSJ 2.0

10.3.1.1.1 Methods

fire

Signature
public void
fire()

Description

Called by the dispatcher associated with this to indicate that a time event has
occured.

10.3.1.2 Chronograph

public interface Chronograph

Description

The interface for all devices that support the measurement of time with great
accuracy.

Available since RTSJ 2.0

10.3.1.2.1 Methods

396 RTSJ 2.0 (Draft 57)

Chronograph javax.realtime 10.3

getEpochOffset

Signature
public javax.realtime.RelativeTime
getEpochOffset()
throws UnsupportedOperationException,

UninitializedStateException

Description

Determines the time on the UTC clock when this chronograph was zero.

Throws
UnsupportedOperationException—when the chronograph does not have the con-

cept of date.
UninitializedStateException—when UTC time is not yet available.

Returns
a newly allocated RelativeTime object in the current execution context with the

realtime clock as its chronograph and containing time when this chronograph
was zero.

getTime

Signature
public javax.realtime.AbsoluteTime
getTime()

Description

Determines the current time. This method returns an absolute time value
representing the chronograph’s notion of absolute time. For chronographs that
do not measure calendar time, this absolute time may not represent a wall clock
time.

Returns
a newly allocated instance of AbsoluteTime in the current allocation context,

representing the current time. The returned object has the chronograph from
this.

RTSJ 2.0 (Draft 57) 397

10 Clocks and Timers Chronograph

getTime(AbsoluteTime)

Signature
public javax.realtime.AbsoluteTime
getTime(AbsoluteTime dest)

Description
Obtains the current time. The time represented by the given AbsoluteTime is
changed at some time between the invocation of the method and the return of
the method. This method will return an absolute time value that represents
this chronographs’s notion of the absolute time. For chronographs that do not
measure calendar time, this absolute time may not represent a wall clock time.

Parameters
dest—The instance of AbsoluteTime object which will be updated in place.

Returns
the instance of AbsoluteTime passed as parameter, or a new object when dest is

null. The returned object represents the current time and is associated with
this chronograph.

getQueryPrecision

Signature
public javax.realtime.RelativeTime
getQueryPrecision()

Description
Obtains the precision with which time can be read, i.e., the nominal interval
between ticks. It is the same as calling getQueryPrecision(RelativeTime)
with null as an argument.

Returns
a newly allocated time value holding the read precision.

getQueryPrecision(RelativeTime)

Signature
public javax.realtime.RelativeTime
getQueryPrecision(RelativeTime dest)

398 RTSJ 2.0 (Draft 57)

Timable javax.realtime 10.3

Description
Obtains the precision with which time can be read, i.e., the nominal interval
between ticks.

Parameters
dest—The time object in which to return the results.

Returns
the read precision in dest, when dest is not null, or in a newly created object

otherwise.

10.3.1.3 Timable

public interface Timable

Interfaces
javax.realtime.Releasable

Description
A type for all classes that can use a Clock for timing, either for sleeping or for
being released at a given time.

Available since RTSJ 2.0

10.3.1.3.1 Methods

getDispatcher

Signature
public javax.realtime.TimeDispatcher
getDispatcher()

Description
Gets the dispatcher associated with this Timable.

RTSJ 2.0 (Draft 57) 399

10 Clocks and Timers Clock

10.3.2 Classes
10.3.2.1 Clock

public abstract class Clock

Inheritance
java.lang.Object
Clock

Interfaces
javax.realtime.Chronograph

Description

A clock marks the passing of time. It has a concept of now that can be queried
through Clock.getTime(), and it can have events queued on it which will be
fired when their appointed time is reached.

Note that while all Clock implementations use representations of time derived
from HighResolutionTime, which expresses its time in milliseconds and nanosec-
onds, a particular Clock may track time that is not delimited in seconds or not
related to wall clock time in any particular fashion (e.g., revolutions or event
detections). In this case, the Clock’s timebase should be mapped to milliseconds
and nanoseconds in a manner that is computationally appropriate.

10.3.2.1.1 Constructors

Clock

Signature
public
Clock()

Description

Constructor for the abstract class.

400 RTSJ 2.0 (Draft 57)

Clock javax.realtime 10.3

10.3.2.1.2 Methods

getRealtimeClock

Signature
public static javax.realtime.Clock
getRealtimeClock()

Description
There is always at least one clock object available: the system realtime clock.
This clock is monotonically increasing and does not need to start at the Epoch.
On a POSIX system, it is equivalent to @code CLOCK_MONOTONIC}. It is
the default Clock.

Returns
the singleton instance of the default Clock

setRealtimeClock(Clock)

Signature
public static void
setRealtimeClock(Clock clock)

Description
Sets the system default realtime clock.

Parameters
clock—To be used for the realtime clock. When null, the default realtime clock

is set to the original system default.

getUniversalClock

Signature
public static javax.realtime.Clock
getUniversalClock()
throws UnsupportedOperationException,

UninitializedStateException

RTSJ 2.0 (Draft 57) 401

10 Clocks and Timers Clock

Description
A means of obtaining the Universal Time, which has no summer or winter time.
Local time can be obtained by adding the appropriate time zone offset. Such a
time source is not available on all systems and may take a while to set up on
some systems which support it. It is not guarenteed to be monotonic.

Throws
UnsupportedOperationException—when the system does not support UTC.
UninitializedStateException—when UTC time is not yet available.

Returns
a Clock that tracts UTC, such as the POSIX CLOCK_REALTIME, when the timezone

is set to UTC.
Available since RTSJ 2.0

setUniversalClock(Clock)

Signature
public static void
setUniversalClock(Clock clock)

Description
Sets the system default universal clock.

Parameters
clock—To be used for the universal clock. When null, the default universal clock

is set to the original system default.
Available since RTSJ 2.0

getEpochOffset

Signature
public final javax.realtime.RelativeTime
getEpochOffset()
throws UnsupportedOperationException,

UninitializedStateException

Description
Determines the time on the UTC clock when this chronograph was zero.

402 RTSJ 2.0 (Draft 57)

Clock javax.realtime 10.3

Throws
UnsupportedOperationException—when the chronograph does not have the con-

cept of date.
UninitializedStateException—when UTC time is not yet available.
Available since RTSJ 1.0.1

getTime

Signature
public final javax.realtime.AbsoluteTime
getTime()

Description
Determines the current time. This method returns an absolute time value
representing the chronograph’s notion of absolute time. For chronographs that
do not measure calendar time, this absolute time may not represent a wall clock
time.

Returns
a newly allocated instance of AbsoluteTime in the current allocation context,

representing the current time. The returned object has the chronograph from
this.

getTime(AbsoluteTime)

Signature
public abstract javax.realtime.AbsoluteTime
getTime(AbsoluteTime dest)

Description
Obtains the current time. The time represented by the given AbsoluteTime is
changed at some time between the invocation of the method and the return of
the method. This method will return an absolute time value that represents
this chronographs’s notion of the absolute time. For chronographs that do not
measure calendar time, this absolute time may not represent a wall clock time.

Parameters
dest—The instance of AbsoluteTime object which will be updated in place.

Returns

RTSJ 2.0 (Draft 57) 403

10 Clocks and Timers Clock

the instance of AbsoluteTime passed as parameter, or a new object when dest is
null. The returned object represents the current time and is associated with
this chronograph.

Available since RTSJ 1.0.1 The return value is updated from void to AbsoluteTime.

Available since RTSJ 2.0 When dest is null, a new object is allocated, when not
chronograph is overwritten with this.

getQueryPrecision

Signature
public abstract javax.realtime.RelativeTime
getQueryPrecision()

Description
Obtains the precision with which time can be read, i.e., the nominal interval
between ticks. It is the same as calling getQueryPrecision(RelativeTime)
with null as an argument.

Returns
a newly allocated time value holding the read precision.
Available since RTSJ 2.0

getQueryPrecision(RelativeTime)

Signature
public abstract javax.realtime.RelativeTime
getQueryPrecision(RelativeTime dest)

Description
Obtains the precision with which time can be read, i.e., the nominal interval
between ticks.

Parameters
dest—The time object in which to return the results.

Returns
the read precision in dest, when dest is not null, or in a newly created object

otherwise.

404 RTSJ 2.0 (Draft 57)

Clock javax.realtime 10.3

Available since RTSJ 2.0

getDrivePrecision

Signature
public abstract javax.realtime.RelativeTime
getDrivePrecision()

Description

Gets the precision of the clock for driving events, the nominal interval be-
tween ticks that can trigger an event. It is the same as calling getDrivePreci-
sion(RelativeTime) with null as its argument.

Returns
a value representing the drive precision.

Available since RTSJ 2.0

getDrivePrecision(RelativeTime)

Signature
public abstract javax.realtime.RelativeTime
getDrivePrecision(RelativeTime dest)

Description

Gets the precision of the clock for driving events, the nominal interval between
ticks that can trigger an event. The result may be larger than that of getQuery-
Precision(RelativeTime).

Parameters
dest—To return the relative time value in dest. When dest is null, it allocates a

new RelativeTime instance to hold the returned value.
Returns
dest set to values representing the drive precision.

Available since RTSJ 2.0

RTSJ 2.0 (Draft 57) 405

10 Clocks and Timers Clock

triggerAlarm

Signature
protected final void
triggerAlarm()

Description
Code in the abstract base Clock is called by a subclass to signal that the time
of the next alarm has been reached. It will trigger a TimeDispatcher, which in
turn will cause a fire on an associated AsyncTimable

This method should be implemented with a runtime complexity not exceeding
O(1). Implementations exceeding this bound shall explicitly document the
complexity their implementation. Available since RTSJ 2.0

setAlarm(long, int)

Signature
protected abstract void
setAlarm(long milliseconds,

int nanoseconds)

Description
Implemented by subclasses to set the time for the next alarm. When there is an
alarm outstanding when called, the subclass must override the old time. This
should never be called from application or library code. It is intended to be called
only from the javax.realtime package.

Parameters
milliseconds—of the next alarm.
nanoseconds—of the next alarm.
Available since RTSJ 2.0

clearAlarm

Signature
protected abstract void
clearAlarm()

406 RTSJ 2.0 (Draft 57)

OneShotTimer javax.realtime 10.3

Description
Implemented by subclasses to cancel the current outstanding alarm.

Available since RTSJ 2.0

10.3.2.2 OneShotTimer

public class OneShotTimer
Inheritance
java.lang.Object
AsyncBaseEvent
AsyncEvent
Timer
OneShotTimer

Description
A timed AsyncEvent that is driven by a Clock. It will fire once, when the clock
time reaches the time-out time, unless restarted after expiration. When the timer
is disabled at the expiration of the indicated time, the firing is lost (skipped).
After expiration, the OneShotTimer becomes not-active and disabled. When the
clock time has already passed the time-out time, it will fire immediately after it
is started or after it is rescheduled while active.

Semantics details are described in the Timer pseudocode and compact graphic
representation of state transitions.

Caution: This class is explicitly unsafe for multithreading when being changed.
Code that mutates instances of this class should synchronize at a higher level.

10.3.2.2.1 Constructors

OneShotTimer(HighResolutionTime, TimeDispatcher)

Signature
public
OneShotTimer(javax.realtime.HighResolutionTime<?> time,

TimeDispatcher dispatcher)

RTSJ 2.0 (Draft 57) 407

10 Clocks and Timers OneShotTimer

throws IllegalArgumentException,
UnsupportedOperationException,
IllegalAssignmentError

Description
Creates an instance of OneShotTimer, based on the given clock, that will execute
its fire method according to the given time. The Clock association of the
parameter time is ignored.

Available since RTSJ 2.0

Parameters
time—The time used to determine when to fire the event. A time value of null is

equivalent to a RelativeTime of 0, and in this case the Timer fires immediately
upon a call to start().

dispatcher—The dispatcher used to interface between this timer and its associ-
ated clock. When null, the system default dispatcher is used.

Throws
IllegalArgumentException—when time is a RelativeTime instance less than

zero.
UnsupportedOperationException—when the Chronograph associated with time

is not a Clock.
IllegalAssignmentError—when this OneShotTimer cannot hold references to

time, handler, or clock.

OneShotTimer(HighResolutionTime, AsyncEventHandler)

Signature
public
OneShotTimer(javax.realtime.HighResolutionTime<?> time,

AsyncEventHandler handler)

Description
The equivalent of calling OneShotTimer(HighResolutionTime, Time-
Dispatcher) with arguments time, null followed by a call to
setHandler(handler).

Parameters
time—Time to release its handlers.
handler—Handler to be released.

408 RTSJ 2.0 (Draft 57)

PeriodicTimer javax.realtime 10.3

10.3.2.2.2 Methods

fire

Signature
public void
fire()

Description
This should not be called for application code, except for emulation. The fire
method is reserved for the use of the system. When this is enabled, it releases
all handlers and then calls Timer.stop(). When distabled, but active, it only
calls Timer.stop(). Otherwise it does nothing.

Available since RTSJ 2.0 moved here from Timer, since OneShotTimer and
PeriodicTimer have slightly different semantics.

10.3.2.3 PeriodicTimer

public class PeriodicTimer
Inheritance
java.lang.Object
AsyncBaseEvent
AsyncEvent
Timer
PeriodicTimer

Description
An AsyncEvent whose fire method is executed periodically according to the
given parameters. The clock associated with the Timer start time must be
identical to the the clock associated with the Timer interval

The first firing is at the beginning of the first interval.
When an interval greater than 0 is given, the timer will fire periodically. When

an interval of 0 is given, the PeriodicTimer will only fire once, unless restarted
after expiration, behaving like a OneShotTimer. In all cases, when the timer is
disabled when the firing time is reached, that particular firing is lost (skipped).
When enabled at a later time, it will fire at its next scheduled time.

RTSJ 2.0 (Draft 57) 409

10 Clocks and Timers PeriodicTimer

When the clock time has already passed the beginning of the first period, the
PeriodicTimer will first fire according to the PhasingPolicy.

Semantics details are described in the Timer pseudo-code and compact graphic
representation of state transitions.

Caution: This class is explicitly unsafe for multithreading when being changed.
Code that mutates instances of this class should synchronize at a higher level.

10.3.2.3.1 Constructors

PeriodicTimer(HighResolutionTime, RelativeTime, Time-
Dispatcher)

Signature
public
PeriodicTimer(javax.realtime.HighResolutionTime<?> start,

RelativeTime interval,
TimeDispatcher dispatcher)

throws IllegalArgumentException,
IllegalAssignmentError,
UnsupportedOperationException

Description
Creates a timer that executes its fire method periodically.

Available since RTSJ 2.0

Parameters
start—The time that specifies when the first interval begins, based on the clock

associated with it. The first firing of the timer is modified according to the
PhasingPolicy when the timer is started. A start value of null is equivalent
to a RelativeTime of 0.

interval—The period of the timer. Its usage is based on the clock specified by
the clock parameter. When interval is zero or null, the period is ignored
and the firing behavior of the PeriodicTimer is that of a OneShotTimer.

dispatcher—The dispatcher to use for triggering this event.
Throws

410 RTSJ 2.0 (Draft 57)

PeriodicTimer javax.realtime 10.3

IllegalArgumentException—when start or interval is a RelativeTime in-
stance with a value less than zero; or the clocks associated with start and
interval are not the identical.

IllegalAssignmentError—when this PeriodicTimer cannot hold references to
handler, clock and interval.

UnsupportedOperationException—when the Chronograph associated with time
is not a Clock.

PeriodicTimer(HighResolutionTime, RelativeTime, Async-
EventHandler)

Signature
public
PeriodicTimer(javax.realtime.HighResolutionTime<?> start,

RelativeTime interval,
AsyncEventHandler handler)

throws IllegalArgumentException,
IllegalAssignmentError

Description
Creates a timer that executes its fire method periodically. Equivalent to Period-
icTimer(start, interval, handler, null).

10.3.2.3.2 Methods

addHandler(AsyncBaseEventHandler)

Signature
public void
addHandler(AsyncBaseEventHandler handler)
throws IllegalArgumentException,

IllegalAssignmentError

Description

RTSJ 2.0 (Draft 57) 411

10 Clocks and Timers PeriodicTimer

Add a handler to the set of handlers associated with this event. It overrides
the method in AsyncBaseEvent to allow the use of handlers with PeriodicPa-
rameters, but these parameters must match the period of this timer, otherwise
IllegalArgumentException is thrown.

Parameters
handler—A new handler to add to the list of handlers already associated with

this. When handler is already associated with the event, the call has no
effect.

Throws
IllegalArgumentException—when handler is null or the handler has Period-

icParameters with a period that does not match the period of this.
IllegalAssignmentError—when this AsyncEvent cannot hold a reference to han-

dler.
Available since RTSJ 2.0

setHandler(AsyncBaseEventHandler)

Signature
public void
setHandler(AsyncBaseEventHandler handler)
throws IllegalArgumentException,

IllegalAssignmentError

Description
Associates a new handler with this event and removes all existing handlers.
It overrides the method in AsyncBaseEvent to allow the use of handlers with
PeriodicParameters, but these parameters must match the period of this timer,
otherwise IllegalArgumentException is thrown.

Parameters
handler—The instance of AsyncBaseEventHandler to be associated with this.

When handler is null, no handler will be associated with this, i.e., be-
have effectivelthe effect is as when setHandler(null) invokes removeHan-
dler(AsyncBaseEventHandler) for each associated handler.

Throws
IllegalArgumentException—when handler has PeriodicParameters with a pe-

riod that does not match the period of this.
IllegalAssignmentError—when this AsyncEvent cannot hold a reference to han-

dler.

412 RTSJ 2.0 (Draft 57)

PeriodicTimer javax.realtime 10.3

Available since RTSJ 2.0

start(PhasingPolicy)

Signature
public void
start(PhasingPolicy phasingPolicy)
throws LateStartException,

IllegalArgumentException

Description
Starts the timer with the specified PhasingPolicy.

Parameters
phasingPolicy—Determines what happens when the start is too late.

Throws
LateStartException—when this method is called after its absolute start time and

the phasingPolicy is PhasingPolicy.STRICT_PHASING.
IllegalArgumentException—when the start time of this timer is not an absolute

time, or phasingPolicy is null.
Available since RTSJ 2.0

start(boolean, PhasingPolicy)

Signature
public void
start(boolean disabled,

PhasingPolicy phasingPolicy)
throws LateStartException,

IllegalArgumentException

Description
Starts the timer with the specified PhasingPolicy and the specified disabled
state.

Parameters
disabled—It determines the mode of start: true for enabled and false for disabled

for consistency with Timer.start(boolean).

RTSJ 2.0 (Draft 57) 413

10 Clocks and Timers PeriodicTimer

phasingPolicy—It determines what happens when the start is too late.
Throws

LateStartException—when this method is called after its absolute start time and
the phasingPolicy is PhasingPolicy.STRICT_PHASING.

IllegalArgumentException—when the start time of this timer is not an absolute
time, or phasingPolicy is null.

Available since RTSJ 2.0

getClock

Signature
public javax.realtime.Clock
getClock()
throws IllegalStateException

Description
Each instance can only be associated with a single clock, which this method can
obtain.

Throws
IllegalStateException—when this has been destroyed.

Returns
the instance of Clock that is associated with this.

Available since RTSJ 1.0.1

createReleaseParameters

Signature
public javax.realtime.ReleaseParameters
createReleaseParameters()

Description
Creates a release parameters object with new objects containing copies of the
values corresponding to this timer. When the PeriodicTimer interval is greater
than 0, creates a PeriodicParameters object with a start time and period that
correspond to the next firing (or skipping) time, and interval, of this timer. When

414 RTSJ 2.0 (Draft 57)

PeriodicTimer javax.realtime 10.3

the interval is 0, creates an AperiodicParameters object, since in this case the
timer behaves like a OneShotTimer.

When this timer is active, then the start time is the next firing (or skipping)
time returned as an AbsoluteTime. Otherwise, the start time is the initial firing
(or skipping) time, as set by the last call to Timer.reschedule, or when there
was no such call, by the constructor of this timer.

Throws
IllegalStateException—when this Timer has been destroyed.

Returns
a new release parameters object with new objects containing copies of the values

corresponding to this timer. When the interval is greater than zero, returns
a new instance of PeriodicParameters. When the interval is zero returns a
new instance of AperiodicParameters.

getFireTime

Signature
public javax.realtime.AbsoluteTime
getFireTime()
throws ArithmeticException,

IllegalStateException

Description
Gets the time at which this PeriodicTimer is next expected to fire or to skip.
When the PeriodicTimer is disabled, the returned time is that of the skipping
or firing. When the PeriodicTimer is not-active it throws IllegalStateExcep-
tion.

Throws
ArithmeticException—when the result does not fit in the normalized format.
IllegalStateException—when this Timer has been destroyed, or when it is not-

active.
Returns
the absolute time at which this is next expected to fire or to skip, in a newly

allocated AbsoluteTime object. When the timer has been created or re-
scheduled (see Timer.reschedule(HighResolutionTime)) using an instance
of RelativeTime for its time parameter, then it will return the sum of the
current time and the RelativeTime remaining time before the timer is expected
to fire/skip. Within a periodic timer activation, the returned time is associated

RTSJ 2.0 (Draft 57) 415

10 Clocks and Timers PeriodicTimer

with the start clock before the first fire (or skip) time, and associated with the
interval clock otherwise.

getFireTime(AbsoluteTime)

Signature
public javax.realtime.AbsoluteTime
getFireTime(AbsoluteTime dest)

Description
Gets the time at which this PeriodicTimer is next expected to fire or to skip.
When the PeriodicTimer is disabled, the returned time is that of the skipping.
When the PeriodicTimer is not-active it throws IllegalStateException.

Parameters
dest—The instance of AbsoluteTime which will be updated in place and returned.

The clock association of the dest parameter is ignored. When dest is null, a
new object is allocated for the result.

Throws
ArithmeticException—when the result does not fit in the normalized format.
IllegalStateException—when this Timer has been destroyed, or when it is not-

active.

Returns
the instance of AbsoluteTime passed as parameter, with time values representing

the absolute time at which this is expected to fire or to skip. When
the dest parameter is null, the result is returned in a newly allocated
object. When the timer has been created or re-scheduled (see Timer.
reschedule(HighResolutionTime)) using an instance of RelativeTime
for its time parameter then it will return the sum of the current time and
the RelativeTime remaining time before the timer is expected to fire/skip.
Within a periodic timer activation, the returned time is associated with the
start clock before the first fire (or skip) time, and associated with the interval
clock otherwise.

Available since RTSJ 1.0.1

getInterval

Signature

416 RTSJ 2.0 (Draft 57)

PeriodicTimer javax.realtime 10.3

public javax.realtime.RelativeTime
getInterval()

Description
Gets the interval of this Timer.

Throws
IllegalStateException—when this Timer has been destroyed.

Returns
the RelativeTime instance assigned as this periodic timer’s interval by the con-

structor or setInterval(RelativeTime).

setInterval(RelativeTime)

Signature
public javax.realtime.PeriodicTimer
setInterval(RelativeTime interval)

Description
Resets the interval value of this.

Parameters
interval—A RelativeTime object which is the interval used to reset this Timer.

A null interval is interpreted as RelativeTime(0,0).
The interval does not affect the first firing (or skipping) of a timer’s activation.
At each firing (or skipping), the next fire (or skip) time of an active periodic
timer is established based on the interval currently in use. Resetting the
interval of an active periodic timer only affects future fire (or skip) times
after the next.

Throws
IllegalArgumentException—when interval is a RelativeTime instance with a

value less than zero, or the clock associated with interval is different to the
clock associated with this.

IllegalAssignmentError—when this PeriodicTimer cannot hold a reference to
interval.

IllegalStateException—when this Timer has been destroyed.

Returns
this

RTSJ 2.0 (Draft 57) 417

10 Clocks and Timers TimeDispatcher

fire

Signature
public void
fire()

Description
This should not be called for application code, except for emulation. The fire
method is reserved for the use of the system. When this is enabled, it releases
all handlers and then reschedules itself for the next period without changing
state. When distabled, but active, it simply reschedules itself. Otherwise it does
nothing.

Available since RTSJ 2.0 moved here from Timer, since OneShotTimer and
PeriodicTimer have slightly different semantics.

10.3.2.4 TimeDispatcher

public class TimeDispatcher

Inheritance
java.lang.Object
ActiveEventDispatcher<TimeDispatcher, Timable>
TimeDispatcher

Description
A dispatcher for time events: Timer and RealtimeThread.sleep.

Available since RTSJ 2.0

10.3.2.4.1 Constructors

TimeDispatcher(SchedulingParameters, SchedulingGroup)

Signature

418 RTSJ 2.0 (Draft 57)

TimeDispatcher javax.realtime 10.3

public
TimeDispatcher(SchedulingParameters schedule,

SchedulingGroup group)

Description
Creates a new dispatcher, whose dispatching thread runs with the given scheduling
parameters.

Parameters
schedule—It gives the parameters for scheduling this dispatcher

TimeDispatcher(SchedulingParameters)

Signature
public
TimeDispatcher(SchedulingParameters schedule)

Description
Creates a new dispatcher, whose dispatching thread runs with the given scheduling
parameters.

Parameters
schedule—It gives the parameters for scheduling this dispatcher

10.3.2.4.2 Methods

setDefaultDispatcher(TimeDispatcher)

Signature
public static void
setDefaultDispatcher(TimeDispatcher dispatcher)

Description
Sets the system default time dispatcher.

Parameters
dispatcher—To be used when no dispatcher is provided. When null, the default

time dispatcher is set to the original system default.

RTSJ 2.0 (Draft 57) 419

10 Clocks and Timers TimeDispatcher

register(Timable)

Signature
public void
register(Timable target)
throws RegistrationException,

IllegalStateException,
IllegalArgumentException

Description

Registers a AsyncTimable with this dispatcher.

Parameters
target—To be registered

Throws
RegistrationException—when target is already registered.
IllegalStateException—when this object has been destroyed.
IllegalArgumentException—when target is not stopped.

deregister(Timable)

Signature
public void
deregister(Timable target)
throws DeregistrationException,

IllegalStateException,
IllegalArgumentException

Description

Deregisters a AsyncTimable from this dispatcher.

Parameters
target—to be deregistered

Throws
DeregistrationException—when target is not already registered.
IllegalStateException—when this object has been destroyed.
IllegalArgumentException—when target is not stopped.

420 RTSJ 2.0 (Draft 57)

Timer javax.realtime 10.3

destroy

Signature
public void
destroy()
throws IllegalStateException

Description
Releases all resources thereby making the dispatcher unusable.

Throws
IllegalStateException—when called on a dispatcher that has one or more regis-

tered AsyncTimable objects.

10.3.2.5 Timer

public abstract class Timer
Inheritance
java.lang.Object
AsyncBaseEvent
AsyncEvent
Timer

Interfaces
javax.realtime.AsyncTimable
javax.realtime.ActiveEvent

Description
A timer is a timed event that measures time according to a given Clock. This
class defines basic functionality available to all timers. Applications will generally
use either PeriodicTimer to create an event that is fired repeatedly at regular
intervals, or OneShotTimer for an event that just fires once at a specific time.
A timer is always associated with at least one Clock, which provides the basic
facilities of something that ticks along following some time line (realtime, CPU-
time, user-time, simulation-time, etc.). All timers are created disabled and do
nothing until start() is called.

10.3.2.5.1 Constructors

RTSJ 2.0 (Draft 57) 421

10 Clocks and Timers Timer

Timer(HighResolutionTime, TimeDispatcher)

Signature
protected
Timer(javax.realtime.HighResolutionTime<?> time,

TimeDispatcher dispatcher)
throws IllegalArgumentException,

UnsupportedOperationException,
IllegalAssignmentError

Description
Creates a timer that fires according to the given time based on the Clock
associated with time and is dispatched by the specified dispatcher.

Available since RTSJ 2.0

Parameters
time—The parameter used to determine when to fire the event. A time value of

null is equivalent to a RelativeTime of 0, and in this case the Timer fires
immediately upon a call to start().

dispatcher—The object used to interface between this timer and its associated
clock. When null, the system default dispatcher is used.

Throws
IllegalArgumentException—when time is a negative RelativeTime value.
UnsupportedOperationException—when time has a Chronograph is not a clock.
IllegalAssignmentError—when this Timer cannot hold references to handler

and clock.

Timer(HighResolutionTime)

Signature
protected
Timer(javax.realtime.HighResolutionTime<?> time)
throws IllegalArgumentException,

UnsupportedOperationException,
IllegalAssignmentError

Description

422 RTSJ 2.0 (Draft 57)

Timer javax.realtime 10.3

Creates a timer that fires according to the given time based on the Clock
associated with time and is dispatched by the system default dispatcher.

This is equivalent to Timer(time, null).
Available since RTSJ 2.0

Parameters
time—The parameter used to determine when to fire the event. A time value of

null is equivalent to a RelativeTime of 0, and in this case the Timer fires
immediately upon a call to start().

Throws
IllegalArgumentException—when time is a negative RelativeTime value.
UnsupportedOperationException—when time has a Chronograph is not a clock.
IllegalAssignmentError—when this Timer cannot hold references to handler

and clock.

Timer(HighResolutionTime, Clock, AsyncEventHandler)

Signature
protected
Timer(javax.realtime.HighResolutionTime<?> time,

Clock clock,
AsyncEventHandler handler)

throws IllegalArgumentException,
UnsupportedOperationException,
IllegalAssignmentError

Description
Creates a timer that fires according to the given time, which must be based on
the supplied Clock clock (if any), and is handled by the specified AsyncEvent-
Handler handler. The system default dispatcher will be used.

This constructor is slated for deprecation in a future release, and a constructor
that does not receive a Clock argument should be used in preference.

Parameters
time—The parameter used to determine when to fire the event. A time value of

null is equivalent to a RelativeTime of 0, and in this case the Timer fires
immediately upon a call to start().

clock—The clock on which to base this timer. When null, the clock associated
with time is used.

RTSJ 2.0 (Draft 57) 423

10 Clocks and Timers Timer

handler—The default handler to use for this event. When null, no handler is
associated with the timer and nothing will happen when this event fires unless
a handler is subsequently associated with the timer using the addHandler()
or setHandler() method.

Throws
IllegalArgumentException—when time is a negative RelativeTime value or the

supplied clock is not the Clock associated with time.
UnsupportedOperationException—when time has a Chronograph that is not an

instance of Clock.
IllegalAssignmentError—when this Timer cannot hold references to handler

and clock.

10.3.2.5.2 Methods

getClock

Signature
public javax.realtime.Clock
getClock()
throws IllegalStateException

Description
Obtains the instance of Clock on which this timer is based.

Throws
IllegalStateException—when this Timer has been destroyed.

Returns
the instance of Clock associated with this Timer.

getStart

Signature
public javax.realtime.HighResolutionTime<?>
getStart()

Description

424 RTSJ 2.0 (Draft 57)

Timer javax.realtime 10.3

Gets the start time of this Timer. Note that the start time uses copy semantics,
so changes made to the value returned by this method do not affect the start
time of this Timer.

Returns
a reference to the time (or start) parameter used when constructing this Timer,

ensuring the content has the original values.
Available since RTSJ 2.0

getEffectiveStartTime

Signature
public javax.realtime.AbsoluteTime
getEffectiveStartTime()
throws IllegalStateException,

ArithmeticException

Description
Returns a newly-created time representing the time when the timer actually
started, or when the timer has been rescheduled, the effective start time after the
reschedule.

Throws
IllegalStateException—when the timer is not active or has been destroyed.
ArithmeticException—when the result does not fit in the normalized format.

Returns
the time this actually started.
Available since RTSJ 2.0

getEffectiveStartTime(AbsoluteTime)

Signature
public javax.realtime.AbsoluteTime
getEffectiveStartTime(AbsoluteTime dest)
throws IllegalStateException,

ArithmeticException

Description

RTSJ 2.0 (Draft 57) 425

10 Clocks and Timers Timer

Updates dest to represent the time when the timer actually started, or when the
timer has been rescheduled, the effective start time after the reschedule. When
dest is null, behaves as if getEffectiveStartTime() had been called.

Parameters
dest—An object used to store the time this actually started.

Throws
IllegalStateException—when the timer is not active or has been destroyed.
ArithmeticException—when the result does not fit in the normalized format.

Returns
the time when the timer actually started, or when it has been rescheduled, the

effective start time after the reschedule.
Available since RTSJ 2.0

getLastReleaseTime

Signature
public final javax.realtime.AbsoluteTime
getLastReleaseTime()

Description
Gets the last release time of this timer.

Throws
IllegalStateException—when this timer has not been released since it was last

started.
Returns
a reference to a newly-created AbsoluteTime object representing this timer’s last

release time. When the timer has not been released since it was last started,
throws an exception.

Available since RTSJ 2.0

getLastReleaseTime(AbsoluteTime)

Signature
public javax.realtime.AbsoluteTime
getLastReleaseTime(AbsoluteTime dest)

426 RTSJ 2.0 (Draft 57)

Timer javax.realtime 10.3

Description
Gets the last release time of this timer in the object provided.

Parameters
dest—An object used to return the results

Returns
When dest is null, returns a reference to a newly-created AbsoluteTime object

representing this timer’s last release time. When dest is not null, sets dest to
this timer’s last release time. When the timer has not been released, returns
null.

Available since RTSJ 2.0

getFireTime

Signature
public javax.realtime.AbsoluteTime
getFireTime()
throws IllegalStateException,

ArithmeticException

Description
Gets the time at which this Timer is expected to fire. When the Timer is disabled,
the returned time is that of the skipping or the firing. When the Timer is
not-active, it throws IllegalStateException.

Throws
ArithmeticException—when the result does not fit in the normalized format.
IllegalStateException—when this Timer has been destroyed, or when it is not-

active.

Returns
the absolute time at which this is expected to fire (release handlers or skip), in

a newly allocated AbsoluteTime object. When the timer has been created
or re-scheduled (see Timer.reschedule) using an instance of RelativeTime
for its time parameter, then it will return the sum of the current time and
the RelativeTime remaining time before the timer is expected to fire/skip.
The clock association of the returned time is the clock on which this timer is
based.

RTSJ 2.0 (Draft 57) 427

10 Clocks and Timers Timer

getFireTime(AbsoluteTime)

Signature
public javax.realtime.AbsoluteTime
getFireTime(AbsoluteTime dest)
throws IllegalStateException,

ArithmeticException

Description
Gets the time at which this Timer is expected to fire. When the Timer is disabled,
the returned time is that of the skipping or the firing. When the Timer is
not-active it throws IllegalStateException.

Parameters
dest—The instance of AbsoluteTime which will be updated in place and returned.

The clock association of the dest parameter is ignored. When dest is null, a
new object is allocated for the result.

Throws
ArithmeticException—when the result does not fit in the normalized format.
IllegalStateException—when this Timer has been destroyed, or when it is not-

active.
Returns
the instance of AbsoluteTime passed as parameter, with time values representing

the absolute time at which this is expected to fire (release its handlers or
skip). When the dest parameter is null, the result is returned in a newly
allocated object. When the timer has been created or rescheduled (see Timer.
reschedule) using an instance of RelativeTime for its time parameter then
it will return the sum of the current time and the RelativeTime remaining
time before the timer is expected to fire. The clock association of the returned
time is the clock on which this timer is based.

Available since RTSJ 1.0.1

getDispatcher

Signature
public javax.realtime.TimeDispatcher
getDispatcher()

Description

428 RTSJ 2.0 (Draft 57)

Timer javax.realtime 10.3

Gets the dispatcher associated with this Timable.

Returns
null
Available since RTSJ 2.0

isActive

Signature
public boolean
isActive()

Description
Determines the activation state of this happening, i.e., it has been started.

Returns
true when active, false otherwise.
Available since RTSJ 2.0

isRunning

Signature
public boolean
isRunning()
throws IllegalStateException

Description
Determines if this is active and is enabled such that when the given time occurs
it will fire the event. Given the Timer current state it answers the question "Is
firing expected?".

Throws
IllegalStateException—when this Timer has been destroyed.

Returns
true when the timer is active and enabled; otherwise false, when the timer has

either not been started, it has been started but it is disabled, or it has been
started and is now stopped.

RTSJ 2.0 (Draft 57) 429

10 Clocks and Timers Timer

handledBy(AsyncEventHandler)

Signature
public boolean
handledBy(AsyncEventHandler handler)
throws IllegalStateException

Description

Replaced by AsyncBaseEvent.handledBy(AsyncBaseEventHandler)

Parameters
handler—An event handler to be added to the Timer

Throws
IllegalStateException—when this Timer has been destroyed.

Returns
true when handler is associated with this, otherwise false.

Available since RTSJ 1.0.1

createReleaseParameters

Signature
public javax.realtime.ReleaseParameters
createReleaseParameters()
throws IllegalStateException

Description

Creates a ReleaseParameters object appropriate to the timing characteristics
of this event. The default is the most pessimistic: AperiodicParameters. This
is typically called by code that is setting up a handler for this event that will fill
in the parts of the release parameters for which it has values, e.g. cost.

Throws
IllegalStateException—when this Timer has been destroyed.

Returns
a newly created ReleaseParameters object.

430 RTSJ 2.0 (Draft 57)

Timer javax.realtime 10.3

enable

Signature
public void
enable()
throws IllegalStateException

Description
Re-enables this timer after it has been disabled. (See Timer.disable().) When
the Timer is already enabled, this method does nothing. When the Timer is
not-active, this method does nothing.

Throws
IllegalStateException—when this Timer has been destroyed.

disable

Signature
public void
disable()
throws IllegalStateException

Description
Disables this timer, preventing it from firing. It may subsequently be re-enabled.
When the timer is disabled when its fire time occurs, then it will not release its
handlers. However, a disabled timer created using an instance of RelativeTime
for its time parameter continues to count while it is disabled, and no changes
take place in a disabled timer created using an instance of AbsoluteTime. In
both cases the potential firing is simply masked, or skipped. When the timer is
subsequently re-enabled before its fire time or(?) it is enabled when its fire time
occurs, then it will fire. It is important to note that this method does not delay
the time before a possible firing. For example, when the timer is set to fire at
time 42 and the disable() is called at time 30 and enable() is called at time
40 the firing will occur at time 42 (not time 52). These semantics imply also that
firings are not queued. Using the above example, when enable was called at time
43 no firing will occur, since at time 42 this was disabled. When the Timer is
already disabled, whether it is active or inactive, this method does nothing.

Throws
IllegalStateException—when this Timer has been destroyed.

RTSJ 2.0 (Draft 57) 431

10 Clocks and Timers Timer

start

Signature
public void
start()
throws IllegalStateException

Description
Starts this timer. A timer starts measuring time from when it is started; this
method makes the timer active and enabled.

Throws
IllegalStateException—when this Timer has been destroyed, or when this timer

is already active.

start(boolean)

Signature
public void
start(boolean disabled)
throws IllegalStateException

Description
Starts this timer. A timer starts measuring time from when it is started. When
disabled is true starts the timer making it active in a disabled state. When
disabled is false this method behaves like the start() method.

Parameters
disabled—When true, the timer will be active but disabled after it is started.

When false this method behaves like the start() method.
Throws

IllegalStateException—when this Timer has been destroyed, or when this timer
is active.

Available since RTSJ 1.0.1

stop

Signature

432 RTSJ 2.0 (Draft 57)

Timer javax.realtime 10.3

public boolean
stop()
throws IllegalStateException

Description
Stops a timer when it is active and changes its state to inactive and disabled.

Throws
IllegalStateException—when this Timer has been destroyed.

Returns
true when this was enabled and false otherwise.

reschedule(HighResolutionTime)

Signature
public void
reschedule(javax.realtime.HighResolutionTime<?> time)
throws IllegalStateException,

IllegalArgumentException

Description
Changes the scheduled time for this event. This method can take either an
AbsoluteTime or a RelativeTime for its argument, and the Timer will behave
as if created using that type for its time parameter. The rescheduling will take
place between the invocation and the return of the method.

Note that while the scheduled time is changed as described above, the
rescheduling itself is applied only on the first firing (or on the first skipping
when disabled) of a timer’s activation. When reschedule is invoked after the
current activation timer’s firing, then the rescheduled time will be effective
only upon the next start or startDisabled command (which may need to be
preceded by a stop command).

When reschedule is invoked with a RelativeTime time on an active timer
before its first firing/skipping, then the rescheduled firing/skipping time is relative
to the time of invocation.

Parameters
time—The time to reschedule for this event firing. When time is null, the previous

time is still the time used for the Timer firing.
Throws

IllegalArgumentException—when time is a negative RelativeTime value.

RTSJ 2.0 (Draft 57) 433

10 Clocks and Timers

IllegalStateException—when this Timer has been destroyed.

10.4 Rationale
Clocks differ because of monotonicity, synchronization, jitter, stability, accuracy,
precision, and resolution. There are many possible subclasses of clocks: realtime
clocks, user time clocks, simulation time clocks, wall clocks.

The idea of using multiple clocks may at first seem strange, but it enables the
developer to accommodated systems with different resources. For instance, most
systems have an on board clock, which is provided as the default clock through the
operation system. This clock is the natural clock to use for the RTSJ default clock,
but this clock may not be stable or accurate enough for a given application. The
clock API can be used to provide a second realtime clock that is based on an external
clock source which can provide the needed accuracy and stability. For example, this
could be taken from an external board with a hardware oscillator, a timing circuit
that can generate an interrupt, and a small battery. A more exotic example would
be to associate a clock with an object that rotates, where one degree is a second, a
minute, or an hour depending on the rotation speed and accuracy needed, so long
as the clock can trigger something at some fraction of a turn. Without a triggering
mechanism, it could still be a chronograph.

The importance of the use of one-shot timers for time-out behavior and the
vagaries in the execution of code prior to starting the timer for short time-outs
dictate that the triggering of the timer should be guaranteed. The problem is
exacerbated for periodic timers, where the importance of the periodic triggering
outweighs the precision of the start time. In such cases, it is also convenient to allow,
for example, a relative time of zero to be used as the start time.

Clock resolution is a complicated topic, and clock implementations may have
differing precision for different purposes. For example, a clock for interacting with
humans need much less precision than for controlling the opening and closing of
values on an internal combustion engine. In this case, their relationship to wall clock
time may vary as well.

The precision of time returned by a hardware clock device when queried may be
greater than the precision at which that device can supply interrupts. (Consider, for
example, a high precision off-chip realtime clock device connected via a shared serial
bus.) A different device may provide pulse-per-second interrupts of very high precision,
but be unable to interrupt on any other interval. The RTSJ Clock class provides
two representation of precision: getDrivePrecision() and getQueryPrecision
inherited from Chronograph. Clocks should behave as if their tick (setAlarm())
precision is the same as returned by getResolution().

434 RTSJ 2.0 (Draft 57)

Chapter 11

Alternative Memory Areas

Conventional Java uses a single heap for storing all objects. The thread stacks
hold only primitive objects and references to objects. This is fine for desktop and
server systems, where there are no realtime, locality, or isolation requirements. Even
for most realtime systems, a single heap is usually also sufficient when used in
conjunction with a deterministic garbage collector. For all other situations, this
specification defines classes directly related to memory and memory management.
These classes provide a more generalized means of memory management than is
available in a conventional Java VM.

In conventional Java, all of the memory needed for the allocation of an object is
taken from a garbage-collected heap. The RTSJ generalizes the concept of a heap
to that of a memory area. A memory area consists of two components: a Java
object that manages the memory area and the allocation area, which is the actual
region of memory from which objects are allocated. Every thread and schedulable
has a current allocation context. This context is the memory area which manages
the allocation area used when the thread or schedulable requests memory allocation
using the Java new operator.

There are three types of memory area, distinguished by object lifetime semantics,
defined by the RTSJ.
• Heap memory—the Java heap. Unreachable objects are collected by a garbage

collector. Individual schedulables can specify their rate of allocation of objects
on the heap.
• Immortal memory—an area defined by the JVM in which allocated objects

might never be collected. Access to the memory area must be independent of
garbage collection activity. Individual schedulables can specify the maximum
amount of memory they need in immortal memory.
• Scoped memory—multiple areas that can be created by the application; objects

are collected in scoped memory when there are no schedulables currently active
in that area and it is not pinned. These allow objects with well-defined lifetimes

435

11 Alternative Memory Areas

to be created and efficiently collected in an easily-identified group.
Given that objects can now be created in multiple memory areas, it is necessary

to ensure that an object cannot reference another object that might be collected at
an earlier time. For example, an object in immortal memory (that is never collected)
must not be allowed to reference an object in scoped memory. This is because the
scoped memory object will be collected when the scope is not pinned and there is no
schedulable active in its associated allocation area, rendering the immortal object’s
reference to the scoped memory object invalid. For this reason, the RTSJ defines some
memory assignment rules that are checked by the JVM on every object assignment.
If the program violates the memory assignment rules, an exception is thrown.

Physical Memory
In embedded systems it is often the case that multiple directly addressable memory
types are available to the application. For example, SRAM, DRAM, and Flash
memory may all fall within the processor address space. Moreover, as the JVM
implementer may require the VM to be portable between systems within the same
processor family, the VM itself may not have detailed knowledge of the underlying
memory architecture. The RTSJ therefore provides a framework with which the
embedded systems integrator can define memory characteristics and specify ranges
of physical addresses that support those memory characteristics. These physical
memory regions can be allocated as either immortal or scoped memory areas.

Stacked Memory
RTSJ 2.0, adds a new type of scoped memory called stacked memory. Stacked memory
enables systems to maintain predictable memory performance over a long period of
time while still releasing memory at runtime. The older scoped memory interfaces
left sufficient ambiguity in the specification that the user may not have been able
to sufficiently characterize internal and external fragmentation upon creating or
destroying scoped memory areas. The StackedMemory class provides a safe interface
for creating and releasing scopes with a set of rules under which the VM must
guarantee fragmentation-free behavior with predictable memory overhead. These
guarantees are provided by constraining the order in which an application may enter
StackedMemory areas, as well as the manner in which they may be arranged on the
scope stack. These constraints are enforced by the implementation.

Summary
In summary, the classes and interfaces defined in this chapter enable

1. the definition of regions of memory outside of the conventional Java heap;

436 RTSJ 2.0 (Draft 57)

Definitions 11.1

2. the definition of regions of scoped memory, that is, memory regions with a
limited lifetime;

3. the definition of regions of memory containing objects whose lifetime matches
that of the application;

4. the definition of regions of memory mapped to specific physical addresses with
specific virtual memory characteristics;

5. the specification of maximum memory area consumption and maximum alloca-
tion rates for individual schedulables;

6. the programmer to query information characterizing the behavior of the garbage
collection algorithm, and to some limited ability, alter the behavior of that
algorithm.

11.1 Definitions
Allocation Context — An abstraction representing memory from which a new

object can be allocated. In conventional Java, this is the Java heap. The
MemoryArea class is the base class representing all allocation contexts in the
RTSJ, of which the heap (represented by HeapMemory) is just one type.

Current Allocation Context — The memory area which will be used when object
allocation is requested in the currently active thread of control.

Allocation Area — The area of memory that is managed by a MemoryArea from
which objects are allocated. The allocation area for an extraheap memory area
is logically and physically separate from the Java heap.

Backing Store — A range of memory addresses from which the allocation area of
a MemoryArea is drawn.

Explicit Initial Memory Area — A memory area given to a constructor of a
Schedulable type, when it is created.

Execution Context — A memory area upon which execution is dependent. This
includes areas in which a Schedulable or ActiveEvent is allocated. In order
to prevent references from becoming invalid, the memory associated with an
execution context may not be reclaimed. The following conditions cause a
memory area to be an execution context:
1. it contains a Thread instance that has been started but have not

terminated (including the RealtimeThread instances contained by
ActiveEventDispatcher instances),

2. it contains an ActiveEvent instance that is active,
3. it contains a firable asynchronous event handler1,
4. it is on the scope stack inherited by one of the schedulable or event types

listed above from the schedulable that created it, or
1Defined in Section 8.1

RTSJ 2.0 (Draft 57) 437

11 Alternative Memory Areas

5. it is on the scope stack of an active schedulable beyond its inherited stack.
Default Initial Memory Area — The initial memory area for a schedulable is

default when it is the memory area in which the schedulable was created.
Memory Assignment Rules — The rules for when a reference to an object may

be saved in another object. In general, an object created in a memory area may
only be stored in the current memory area or a more deeply nested memory
area (scoped memory). For these rules, instances of @code HeapMemory and
ImmortalMemory are equivalent.

Portal — A location for storing a reference to an object allocated in an instance
of ScopedMemory settable on that instance. A portal can be used to pass
information between instances of Schedulable executing in a given area.

Perennial Memory — all memory areas whose contents can be unexceptionally
referenced. In other words, any memory area can store a reference to an object
stored in one of these areas. This includes all concrete memory areas in the core
package. Only memory areas of this type can be a root for a scoped memory.

Primordial Scope — An imaginary scope used as the parent for an instance of
ScopedMemory which is in use and has been entered directly from a perennial
scope. It is used distinguish between instances of ScopedMemory area that
has no parent because it is not active on any scope stack and one that has
no parent because it is the first ScopedMemory area on a scope stack. Hence,
there is no memory area that corresponds to the primordial scope.

Scope Stack — A sequence of the memory areas an instance of Schedulable has
entered, in order of entry, where the first entered is the bottom of the stack
and the last entered is the top.

Realtime Task — Any task except instances of java.lang.Thread. Instances
of Realtime, AsynchronousBaseEventHandler, InterruptServiceRoutine,
and Dispatcher are all realtime tasks.

11.2 Semantics

The classes MemoryArea, HeapMemory, and ImmortalMemory are part of the base
module and the semantics below that apply to those modules must be fulfilled by
all RTSJ implementations. The rest of the features described here belong to the
Alternative Memory Areas Module introduced in Section 3.2.2.3 and are only required
for implementations that include that module. The following lists define the general
semantics of the classes of this section. Semantics of particular classes, constructors,
methods, and fields are detailed further on, in the sections describing those classes,
constructors, methods, and fields.

438 RTSJ 2.0 (Draft 57)

Semantics 11.2

11.2.1 Allocation Execution Time
The following two requirements apply to allocation in any memory area, including
the heap.

1. All nondeprecated MemoryArea classes are required to have allocation times
linear in the size of the object being allocated. Ignoring performance variations
due to hardware caches or similar optimizations and ignoring the execution
time of any static initializers, the linear time attribute requires the execution
time of new to be bounded by a polynomial, f(n), where n is the size of the
object and for all n > 0, f(n) ≤ Cn for some constant C.

2. The execution time of object constructors and time spent in class loading and
static initialization are not governed by the bounds on object allocation in
this specification, but setting default initial values for fields in the instance (as
specified in The Java Virtual Machine Specification, Second Edition, section
2.5.1, “Each class variable, instance variable, and array component is initialized
with a default value when it is created.”) is considered part of object allocation
and included in the time bound.

11.2.2 Allocation Context
The following requirements apply to the allocation context represented by a memory
area.

1. A memory area is represented by an instance of a subclass of the MemoryArea
class. When a memory area, m, is entered by calling m.enter (or another
method from the family of enter-like methods defined in MemoryArea or its
subclasses), m becomes the allocation context of the current schedulable object.
When control returns from the enter method, the allocation context is restored
to the value it had immediately before enter was called.

2. When a memory area, m, is entered by calling m’s executeInArea method,
m becomes the current allocation context of the current schedulable. When
control returns from the executeInArea method, the allocation context is
restored to the value it had before executeInArea was called.

3. The initial allocation context for a schedulable is the memory area that was
designated the initial memory area when the schedulable was constructed.
This initial allocation context becomes the current allocation context for that
schedulable when the schedulable object first becomes eligible for execution.
For instances of AsyncBaseEventHandler, the initial allocation context is the
same on each release; for realtime threads, in releases subsequent to the first,
the allocation context is the same as it was when the realtime thread became
blocked-for-release-event.

4. All object allocation through the new keyword will use the current allocation

RTSJ 2.0 (Draft 57) 439

11 Alternative Memory Areas

context, but note that allocation can be performed in a specific memory area
using the newInstance and newArray methods on MemoryArea.

5. Instances of schedulables behave as if they stored their memory area context
in a structure called the scope stack. This structure is manipulated by the
instantiation of a schedulable, and the following methods from MemoryArea
and its subclasses: all the enter and joinAndEnter methods, executeInArea,
and both newInstance methods. See the semantics in Maintaining the Scope
Stack for details.

6. The scope stack is accessible through a set of static methods on Realtime-
Thread. These methods enable outer allocation contexts to be accessed by
their index number. Memory areas on a scope stack may be referred to as
inner or outer relative to other entries in that scope stack. An “outer scope”
is further from the current allocation context on the current scope stack and
has a lower index.

7. The executeInArea, newInstance and newArray methods, when invoked on
an instance of ScopedMemory require that instance to be an outer allocation
context on the current schedulable object’s current scope stack.

8. An instance of ScopedMemory is said to be in use if it has a positive reference
count as defined by semantic 1 below.

11.2.3 The Parent Scope

The following requirements apply to a scope’s parent.
1. Instances of ScopedMemory have special semantics, including a definition of

parent. If a ScopedMemory object is neither in use nor the initial memory area
for a schedulable, it has no parent scope.
(a) When a ScopedMemory object becomes in use, its parent is the nearest

ScopedMemory object outside it on the current scope stack. If there is no
outside ScopedMemory object in the current scope stack, the parent is the
primordial scope which is not actually a memory area, but only a marker
that constrains the parentage of ScopedMemory objects.

(b) At construction of a schedulable, if the initial memory area has no parent,
the initial memory area is assigned the parent it will have when the
schedulable is in execution. This rule determines the initial memory area’s
parent until the schedulable object is de-allocated or, in the case of a
RealtimeThread, it completes execution.

2. Instances of ScopedMemory must satisfy the single parent rule, which requires
that each scoped memory has a unique parent as defined in semantic 1.

440 RTSJ 2.0 (Draft 57)

Semantics 11.2

11.2.4 Memory Areas and Schedulables
The following requirements govern the relationship between memory and execution.

1. Pushing a scoped memory onto a scope stack is always subject to the single
parent rule.

2. Each schedulable has a default initial memory area which is that object’s
initial allocation context. The default initial memory area is the current
allocation context in effect during execution of the schedulable’s constructor,
but a schedulable may supply constructors with an explicit initial memory area
that override the default.

3. A Java thread cannot have a scope stack; consequently it can only be created
and execute within heap or immortal memory. The thread starts execution
with its allocation context set to the memory area containing the Thread
object. An attempt to create a Java thread in a scoped memory area throws
IllegalAssignmentError.

4. A Java thread may use executeInArea, and the newInstance and newArray
methods from the ImmortalMemory and HeapMemory classes. These methods
enable it to execute with an immortal current allocation context, but semantic
of item 3 above applies even during execution of these methods.

11.2.5 Scoped Memory Reference Counting
The following requirements apply to references to scoped memory.

1. Each instance of the class ScopedMemory, or its subclasses, must maintain a
reference count which is greater than zero when and only when it is an execution
context or more exactly, the reference count is the number of causes for a given
memory area to be an execution context.

2. Each instance of the PinnableMemory class must support a pinned count. This
count is incremented for each call of the pin method and decremented for each
call of the unpin method. The count is always greater than or equal to zero
(that is, calling the unpin method has no effect if the count equals zero).

3. When the reference count for an instance of the class ScopedMemory is ready
to be decremented from one to zero and the pinned count (if present) is
equal to zero, all unfinalized objects within that area are considered ready for
finalization.
(a) When after the finalizers for all such unfinalized objects in the scoped

memory area run to completion, the reference count for the memory area
is still ready to be decremented to zero, and the pinned count is still equal
to zero, any newly created unfinalized objects are considered ready for
finalization and the process is repeated until no new objects are created or
the scoped memory’s reference count is no longer ready to be decremented

RTSJ 2.0 (Draft 57) 441

11 Alternative Memory Areas

from one to zero.
(b) When the scope contains no unfinalized objects and its reference count is

ready to be decremented from one to zero and the pinned count is equal
to zero, any asynchronous event in the scope is no longer treated as a
source of fireability for asynchronous event handlers.

(c) When that action causes object creation in the scope, the finalization
process resumes from the beginning;

(d) When the reference count is no longer ready to be decremented to zero,
the finalization process terminates.

(e) Otherwise, the reference count is decremented to zero and the memory
scope is emptied of all objects.

(f) The process of scope finalization starts when the scope’s reference count
is about to go to zero with a zero pin count and continues until the scope
is emptied or the process is terminated because the reference count is no
longer about to go to zero.

4. When the pinned count is ready to go to zero and the reference count is zero,
all unfinalized objects within that area are considered ready for finalization,
and the same semantics as 3 above applies.

5. The RTSJ implementation must behave effectively as if during the finalization
process the schedulable executing the finalization of a scope holds a synchronized
lock that must also be acquired
(a) to increase the reference count when entering the scope,
(b) to increase the reference count during startup for a thread with the

finalizing scope as its explicit initial memory area, and
(c) to increase the reference count while making firable an asynchronous event

handler with the scope as its explicit initial memory area.
6. Although the steps in scope finalization are ordered, no order is specified

for finalization of objects or for disarming fireability of asynchronous event
handlers. The objects may be processed in any order or concurrently, but at no
time may a scope’s reference count be reduced to zero while it has one or more
child scopes. This semantic is a special case of the finalization implementation
specified in The Java Language Specification, second edition, section 12.6.1.

7. Finalization may start when all unfinalized objects in the scope are ready for
finalization. Finalizers are executed with the current allocation context set to
the finalizing scope and are executed by the schedulable in control of the scope
when its reference count is ready to be decremented from one to zero. If finalizers
are executed because a realtime thread terminates or an AsyncEventHandler
becomes unfirable, that realtime thread or AsyncEventHandler is considered
in control of the scope and must execute the finalizers.

8. From the time objects in a scope are deleted until the portal on the scope

442 RTSJ 2.0 (Draft 57)

Semantics 11.2

is successfully set to a reference value (not null) with setPortal, the value
returned by getPortal on that scoped memory object must be null.

11.2.6 Immortal Memory

The following requirements apply to immortal memory.
1. Objects created in any immortal memory area are unexceptionally referencable

from all Java threads, and all schedulables, and the allocation and use of objects
in immortal memory is never subject to garbage collection delays.

2. An implementation may execute finalizers for immortal objects when it deter-
mines that the application has terminated. Finalizers will be executed by a
thread or schedulable whose current allocation context is not scoped memory.
Regardless of any call to runFinalizersOnExit, except as required to support
the base Java platform, the system need not execute finalizers for immortal
objects that remain unfinalized when the JVM begins termination.

3. Class objects, the associated static memory, and interned Strings behave
effectively as if they were allocated in immortal memory with respect to
memory reference and assignment rules, and preemption delays by schedulables
which may not access the heap.

4. Static initializers are executed effectively as if the current thread performed
ImmortalMemory.instance().executeInArea(r) where r is a Runnable that
executes the <clinit> method of the class being initialized.

11.2.7 Maintaining Referential Integrity

The following rules apply to references to objects in scoped memory.
1. Memory assignment rules placed on reference assignments prevent the creation

of dangling references, and thus maintain the referential integrity of the Java
runtime. The restrictions are listed in the following table. Both Immortal-
Memory and HeapMemory are types of PerennialMemory. All subclasses of
ScopedMemory and PerennialMemory are equivalent to their respective base
class for the purposes of this table.

2. An implementation must ensure that the above checks are performed for each
assignment statement before the statement is executed, either by runtime
checks or by static analysis of the application logic. Checks for operations on
local variables are not required because a potentially invalid reference would
be captured by the other checks before it reached a local variable.

RTSJ 2.0 (Draft 57) 443

11 Alternative Memory Areas

Table 11.1: Memory Area Referencing Restrictions
Stored in
Area

Reference
to Object
in Heap

Reference
to Object in
Immortal

Reference to Object
in Scoped

null

Perennial-
Memory

Permit Permit Forbid Permit

Scoped-
Memory

Permit Permit Permit from same or less
deeply nested scope

Permit

Local
Variable

Permit Permit Permit Permit

11.2.8 Object Initialization
The current allocation context in a constructor for an object is the memory area in
which the object is allocated. For new, this is the current allocation context when
new was called. For members of the m.newInstance family, the current allocation
context is memory area m.

11.2.9 Maintaining the Scope Stack
This section describes maintenance of a data structure that is called the scope stack.
Implementations are not required to use a stack or implement the algorithms given
here. It is only required that an implementation behave with respect to the ordering
and accessibility of memory scopes effectively as if it implemented these algorithms.
The scope stack is implicitly visible through the memory assignment rules, and the
stack is explicitly visible through the static method getOuterMemoryArea(int) on
RealtimeThread.

Four operations affect the scope stack: the enter methods defined in MemoryArea
and its subclasses, instantiation of a new Schedulable, the executeInArea method
in MemoryArea, and the new instance methods in MemoryArea.

1. The memory area at the top of a schedulable object’s scope stack is the
schedulable’s current allocation context.

2. For an instance of Schedulable, n4, created by task t, the scope stack of nt is
determined by both t and nt:
(a) when nt is created in a heap or immortal memory area, nt is created with

a scope stack containing only that heap or immortal memory area,
(b) when the allocation area of t is a ScopedMemory instance, nt acquires a

copy of the scope stack associated with t at the time nt is constructed,
including all entries from up to and including the memory area containing
nt; and

444 RTSJ 2.0 (Draft 57)

Semantics 11.2

(c) when nt has an explicit initial memory area, ima, then ima is pushed
on nt’s newly-created scope stack, e.g., a task executing with the scope
stack A → B → C creates a new Schedulable instance s with initial
memory area D which is not currently in use, s gets the scope stack
A→ B → C → D.

3. When a memory area, ma is entered by calling a ma.enter method, ma is
pushed onto the scope stack of the current schedulable object and becomes its
allocation context. When control returns from the enter method, the allocation
context is popped from the scope stack

4. When a memory area, ma, is entered by calling ma’s executeInArea method or
one of the ma.newInstance methods, the scope stack before the method call
is preserved and replaced with a scope stack constructed as follows:
(a) when ma is a scoped memory area, the new scope stack is a copy of the

schedulable’s previous scope stack up to and including ma, and
(b) when ma is not a scoped memory area, the new scope stack includes only

ma.
When control returns from the executeInArea method, the scope stack is
restored to the value it had before ma.executeInArea or ma.newInstance was
called.

For the purposes of these algorithms, stacks grow up. One should also note that
the representative algorithms ignore important issues like freeing objects in scopes.

1. In every case, objects in a scoped memory area are eligible to be freed when
the reference count for the area is zero after finalizers for that scope are run.

2. Informally, any objects in a scoped memory area must be freed and their
finalizers run before the reference count for the memory area is incremented
from zero to one.

11.2.10 The enter Method
For ma.enter(logic):

1 push ma on the scope stack belonging to the current schedulable
2 -- which may throw ScopedCycleException
3 execute logic.run method
4 pop ma from the scope stack

11.2.11 The executeInArea or newInstance Methods
For ma.executeInArea(logic), ma.newInstance(), or ma.newArray():

1 when ma is an instance of PerennialMemory,

RTSJ 2.0 (Draft 57) 445

11 Alternative Memory Areas

2 start a new scope stack containing only ma.
3 make the new scope stack the scope stack for the current
4 schedulable.
5 else if ma is in the scope stack for the current schedulable,
6 start a new scope stack containing ma and all
7 scopes below ma on the scope stack.
8 make the new scope stack the scope stack for the current
9 schedulable.
10 else
11 throw InaccessibleAreaException, execute logic.run,
12 or construct the object.
13 restore the previous scope stack for the current

schedulable.
14 discard the new scope stack.
15 end

11.2.12 Constructor Methods for Schedulables
For construction of a schedulable in memory area cma with initial memory area of
ima:

1 if cma is an instance of PerennialMemory,
2 create a new scope stack containing cma.
3 else
4 start a new scope stack containing the entire
5 current scope stack.
6
7 if ima != cma
8 push ima on the new scope stack
9 -- which may throw ScopedCycleException.

The above pseudocode illustrates a straightforward implementation of this specifi-
cation’s semantics, but any implementation that behaves effectively like this one with
respect to reference count values of zero and one is permissible. An implementation
may be eager or lazy in maintenance of its reference count provided that it correctly
implements the semantics for reference counts of zero and one.

11.2.13 The Single Parent Rule
Every push of a scoped memory type on a scope stack must obey the single parent
rule. This enforces the invariant that every scoped memory area has no more than
one parent.

The parent of a scoped memory area is identified by the following rules:
1. when the memory area is not currently on any scope stack, it has no parent;

446 RTSJ 2.0 (Draft 57)

Semantics 11.2

2. when the memory area is the first scoped memory area on a scope stack,
i.e., it was entered from an instance of a PerennialMemory, its parent is the
primordial scope,

3. otherwise, the parent is the first scoped memory area outside it on the scope
stack, i.e., the scope from which this scope was entered.

Only scoped memory areas are visible to the single parent rule.
The operational effect of the single parent rule is that when a scoped memory

area has a parent, the only legal change to that value is to null, i.e.,“no parent.”
Thus an ordering imposed by the first assignments of parents of a series of nested
scoped memory areas is the only nesting order allowed until control leaves the scopes;
then a new nesting order is possible. Thus, a schedulable attempting to enter a scope
can only do so by entering in the established nesting order.

11.2.14 Scope Tree Maintenance
The single parent rule is enforced effectively as if there were a tree with the primordial
scope at its root, and other nodes corresponding to every scoped memory area
currently on any schedulable’s or interrupt service routine’s memory area stack.

Each scoped memory has a reference to its parent memory area, ma.parent.
The parent reference may indicate a specific scoped memory area, no parent, or the
primordial parent.

When a scoped memory area is the explicit initial memory area of a schedulable
or an interrupt service routine that has not terminated, it is referred to as reserved.
A reserved area with a reference and pin count of zero does not have any objects
allocated in it, but it is in a scope stack as long as the schedulable or interrupt
service routine is active. Since it is possible for more than one schedulable to have
the same explicit initial memory area, the memory area must behave as if a reference
count for reservation is also maintained.

11.2.14.1 Pushing a MemoryArea onto the Scope Stack

The following procedure could be used to maintain the scope tree and ensure that
push operations on a schedulable’s or ISR’s memory area stack does not violate the
single parent rule.

1 preconditions
2
3 ma.parent is set to the correct parent (either a scoped
4 memory area or the primordial scope) or to null (no parent).
5
6 t.scopeStack is the scope stack of the current schedulable or

ISR

RTSJ 2.0 (Draft 57) 447

11 Alternative Memory Areas

7
8 Action
9
10 if ma is scoped,
11 parent = findFirstScope(t.scopeStack).
12 if ma.parent == null
13 ma.parent = parent.
14 else if ma.parent != parent
15 throw ScopedCycleException.
16 else
17 t.scopeStack.push(ma).

findFirstScope is a convenience function that looks down the scope stack for
the next entry that is a reference to an instance of ScopedMemoryArea.

1 findFirstScope(scopeStack)
2 {
3 for s = top of scope stack to bottom of scope stack
4 {
5 if s is an instance of scopedMemory
6 return s.
7 }
8 return primordial scope.
9 }

11.2.14.2 Popping a MemoryArea off the Scope Stack

1 ma = t.scopeStack.pop.
2 if ma is scoped
3 if !(ma.in_use || (ma.reserve_count > 0))
4 ma.parent = null.

11.2.14.3 Reservation Management

Reservation management is separate from managing the scope stack for a schedulable
or ISR. When a realtime thread with an explicit initial scoped memory area (EISMA)
is created, an ASEH with an EISMA is added to an ASE, or an InterruptSer-
viceRoutine is registered with an interrupt, the following happens atomically with
respect to other tasks in the VM:

1 ma = t.eisma // explicit initial scoped memory area
2
3 if (ma.parent == null),

448 RTSJ 2.0 (Draft 57)

Semantics 11.2

4 ma.parent = findFirstScope(t.scopeStack)
5 ma.reserve_count++. // should now be equal one
6 else if (ma == findFirstScope(t.scopeStack)),
7 ma.reserve_count++. // should now be greater than zero
8 else
9 throw ScopedCycleException.

When a realtime thread with an EISMA terminates, an ASEH is removed from
an ASE, or an InterruptServiceRoutine is unregistered, the following happens
atomically with respect to other tasks in the VM:

1 ma = t.eisma // explicit initial scoped memory area
2
3 ma.reserve_count--.
4 if ((ma.reserve_count == 0) &&
5 (ma.enter_count == 0) &&
6 (ma.pin_count == 0))
7 ma.parent = null.

11.2.15 Physical Memory
Physical memory provides a means of allocating Java objects in specific areas of a
system’s physical address space. This is accomplished by creating a memory area
that resides in the desired address range. The memory area can be any of the memory
areas defined by this specification other than heap. A physical memory area is not
type distinct from a normal memory area; it is just created by a different means.

1. Physical immortal memory—an immortal memory area that can be created
by the application such that the associated allocation areas have specified
physical and virtual memory characteristics. For example, the application
could specify that the physical characteristics of the backing store should be
Static RAM (SRAM) and that it should be mapped by the JVM into virtual
memory that is never paged out to disk.

2. Physical scoped memory—a scoped memory area, that can be created by the
application such that the associated backing store has specified physical and
virtual memory characteristics.

This physical memory model is based on two constraints.
1. Java objects can only be allocated in a memory area when the physical allocation

area supports the Java Memory Model (JMM) without the JVM having to
perform any operation additional to those that it performs when accessing the
main RAM for the host machine.
(a) No extra compiler or JVM interactions shall be required. Hence memory

regions (such as EEPROM) that potentially require special hardware

RTSJ 2.0 (Draft 57) 449

11 Alternative Memory Areas

instructions to perform write operations cannot be used as the backing
store for physical memory areas.

(b) Similarly, nonvolatile memory cannot be used, as object lifetimes in such
an area may be longer than the lifetime of the VM.

Although memory having such characteristics incompatible with the JMM
are prohibited from being used as backing stores for object allocation, they
can contain objects of primitive Java types and be accessed via the RTSJ Raw
Memory facilities (see Section 12.2.1).

2. Any API must delegate detailed knowledge of the memory architecture to the
programmer/integrator of the specific embedded system to be implemented.
The model assumes that the programmer is aware of the memory map, either
through some native operating system interface2 or from some property file
read at program initialization time.

The RTSJ defines a physical memory factory, which maintains a mapping between
physical memory characteristics and the associated physical addresses of memory
that support those characteristics. The physical memory factory has no knowledge
of the meaning of the physical characteristics. It only provides a look-up service and
keeps track of which physical memory has been associated with a physical memory
range by the application. The physical memory factory does, however, have detailed
knowledge of the types of virtual memory it can support. It advertises this knowledge
to the application. For example, it knows if the VM can lock memory pages into
memory to ensure that they are never swapped out to disk. The application can then
request that the physical memory manager create an association between physical
memory with certain characteristics and a virtual memory type (for example, SRAM
that is permanently resident in memory).

11.2.16 Stacked Memory
Open issue 11.2.1 (elb)

Work in rules for StackedMemory from call 2016-12-19
End of issue 11.2.1

A StackedMemory area represents both an allocation area providing Scoped-
Memory semantics and an explicit backing store from which the allocation area is
drawn. The backing store may be further subdivided into additional allocation areas
and backing stores. Such divisions behave as if new allocation areas are allocated
contiguously from the bottom of the container, while new backing stores are allocated

2For example, the Advanced Configuration and Power Interface (ACPI) specification is an open
standard for device configuration and power management by the operating system. The ACPI
defines platform-independent interfaces for hardware discovery, configuration, power management
and monitoring. See http://www.acpi.info/

450 RTSJ 2.0 (Draft 57)

http://www.acpi.info/

Semantics 11.2

contiguously from the top, with allocation areas and backing stores meeting when
the outer backing store is completely occupied.

StackedMemory backing stores are explicitly created and sized, and have well-
defined lifetimes similar to objects in a ScopedMemory area. A StackedMemory object
can be created as either a host, which has its own backing store, or a guest, which draws
its allocation area directly from its parent’s backing store. When a StackedMemory
object is created in an allocation context other than StackedMemory, it is necessarily
a host and is called a root StackedMemory. In this case, its backing store is drawn
from a notional global backing store. A root StackedMemory’s backing store will be
freed under the same conditions as other host StackedMemory backing stores, but
applications should not assume that the implementation provides any guarantees
with respect to fragmentation, should this occurs. When a StackedMemory object is
created in another StackedMemory’s allocation context, it may be created as either a
host or guest, as illustrated in Figure 11.1. When it is created as a host, its backing
store is drawn from its parent area’s backing store, and its allocation area is created
in the newly-divided backing store. When it is created as a guest, its allocation area
is created in its parent’s backing store.

Object lifetimes for objects allocated in StackedMemory allocation contexts are
the same as those in ScopedMemory allocation contexts. When a StackedMemory
object itself is finalized, its allocation area is returned to the backing store from which
it was drawn, and in the case of host StackedMemory areas, the associated backing
store is also returned to the parent’s backing store. Additionally, the allocation area of
a StackedMemory can be resized under certain conditions. These semantics allow the
memory represented by a root StackedMemory backing store to be partitioned and re-
partitioned as the application requires without danger of fragmentation and without
requiring memory allocation external to the container to track the partitioning.

In order to preserve the fragmentation-free nature of this contract, certain rules
are enforced by the infrastructure. Those rules are

1. a nonroot StackedMemory area can only be entered by a schedulable when
its allocation context is the same as the allocation context in which that
StackedMemory area’s object was created;

2. a StackedMemory area may have at most one direct child in the scope stack
that is a guest StackedMemory area;

3. a guest StackedMemory area may not have a direct child area that is a host
StackedMemory area;

4. a host StackedMemory object cannot be created from another StackedMemory
allocation context unless its backing store is allocated from that area’s backing
store; and

5. a StackedMemory’s allocation area cannot be resized if there are unfinalized
guest StackedMemory allocation areas placed after it in the same backing store.

RTSJ 2.0 (Draft 57) 451

11 Alternative Memory Areas

Figure 11.1: Manipulation of StackedMemory Areas

Root Allocation

Area

Root Allocation

Area

Root Allocation

Area

Host Allocation

Area

Host Allocation

Area

Host Backing Store

Taken from Root

Host Backing Store

Taken from RootAlloc. Area

Guest

Backing Store

Root(b)

(c)

(a)

F
re

e

Root Backing Store

Figure 11.1 graphically depicts the behavior of StackedMemory backing stores
and allocation areas for a root StackedMemory as well as one host and one guest
child StackedMemory under that root. A code fragment that could create the stack
topology in Figure 11.1 is as follows. Assume that this fragment executes in an
allocation context other than a StackedMemory, and that zero overhead is required
for memory area creation. An implementation may require a constant amount of
overhead, drawn from the backing store, for each StackedMemory area created in the
store.

1 // Create a StackedMemory with a 10 kB backing store and
2 // 2 kB allocation area
3 rootArea = new StackedMemory(2048, 10240); // (a)
4 rootArea.enter(new Runnable()
5 {
6 public void run()
7 {
8 // Create a host area with a 6 kB backing store and
9 // 2 kB allocation area

10 hostArea = new StackedMemory(2048, 6144); // (b)
11 // Create a guest area with a 2 kB allocation area
12 guestArea = new StackedMemory(1536); // (c)
13 }
14 });

Commented points (a), (b), and (c) correspond to their respective subfigures in
Figure 11.1. At point (a), a root StackedMemory has been created with its 10 kB
backing store drawn from the notional global store. It contains a 2 kB allocation
area, which is then entered. With that allocation area as the current allocation

452 RTSJ 2.0 (Draft 57)

Semantics 11.2

context, a new host StackedMemory is created at (b), reserving 6 kB of the root
StackedMemory’s backing store for its own use and creating a second 2 kB allocation
area within that reservation. A new guest StackedMemory is then created at (c) in
the root area (without entering the host child), occupying 1.5 kB of the remaining
free 2 kB of the backing store in the root area. At this point, the root area’s backing
store is almost entirely occupied, with one 2 kB allocation area, one 1.5 kB store,
and a 6 kB host area backing store reservation, and 512 B of free backing store
in between. The host StackedMemory created at (b) has 4 kB of its backing store
remaining unoccupied in its reservation, which could be allocated to additional host
or guest StackedMemory areas beneath it in the stack.

RTSJ 2.0 (Draft 57) 453

11 Alternative Memory Areas EnclosedType

11.3 javax.realtime

11.3.1 Enumerations
11.3.1.1 EnclosedType

public enum EnclosedType

Inheritance
java.lang.Object
java.lang.Enum<EnclosedType>
EnclosedType

Description
Represents type size classes for deciding how large a lambda is. This size is
dependent on what variables the lambda expression contains in its closure, i.e., it
encloses. It is used by the reserveLambda methods in SizeEstimator.

Available since RTSJ 2.0

11.3.1.1.1 Enumeration Constants

BOOLEAN

public static final BOOLEAN

Description
Represents a Java boolean.

BYTE

public static final BYTE

Description
Represents a Java byte.

454 RTSJ 2.0 (Draft 57)

EnclosedType javax.realtime 11.3

CHAR

public static final CHAR

Description
Represents a Java char.

SHORT

public static final SHORT

Description
Represents a Java short.

INT

public static final INT

Description
Represents a Java int.

FLOAT

public static final FLOAT

Description
Represents a Java float.

LONG

public static final LONG

Description
Represents a Java long.

DOUBLE

public static final DOUBLE

Description
Represents a Java double.

RTSJ 2.0 (Draft 57) 455

11 Alternative Memory Areas HeapMemory

REFERENCE

public static final REFERENCE

Description
Represents a reference to any object.

11.3.1.1.2 Methods

values

Signature
public static javax.realtime.EnclosedType[]
values()

Description
Gets all enumeration constants.

valueOf(String)

Signature
public static javax.realtime.EnclosedType
valueOf(String name)

Description
Gets enumeration constants corresponding to name.

11.3.2 Classes
11.3.2.1 HeapMemory

public class HeapMemory
Inheritance
java.lang.Object
MemoryArea

456 RTSJ 2.0 (Draft 57)

HeapMemory javax.realtime 11.3

PerennialMemory
HeapMemory

Description
The HeapMemory class is a singleton object that allows logic with a non-heap
allocation context to allocate objects in the Java heap.

11.3.2.1.1 Methods

enter

Signature
public void
enter()

Description
Associates this memory area with the current schedulable for the duration of
the execution of the run() method of the instance of Runnable given in the
constructor. During this period of execution, this memory area becomes the
default allocation context until another default allocation context is selected
(using enter, or executeInArea) or the enter method exits.

Throws
IllegalSchedulableStateException—when the caller context in not an instance

of Schedulable.
IllegalArgumentException—when the caller is a schedulable and a null value

for logic was supplied when the memory area was constructed.
MemoryAccessError—when caller is a schedulable which may not use the heap.

enter(Runnable)

Signature
public void
enter(Runnable logic)

Description

RTSJ 2.0 (Draft 57) 457

11 Alternative Memory Areas HeapMemory

Associates this memory area with the current schedulable for the duration of
the execution of the run() method of the given Runnable. During this period of
execution, this memory area becomes the default allocation context until another
default allocation context is selected (using enter, or executeInArea) or the
enter method exits.

Parameters
logic—The Runnable object whose run() method should be invoked.

Throws
MemoryAccessError—when caller is a schedulable which may not use the heap.
IllegalSchedulableStateException—when the caller context is not an instance

of Schedulable.
IllegalArgumentException—when the caller is a schedulable and logic is null.

instance

Signature
public static javax.realtime.HeapMemory
instance()

Description
Returns a reference to the singleton instance of HeapMemory representing the Java
heap. The singleton instance of this class shall be allocated in the ImmortalMemory
area.

Returns
the singleton HeapMemory object.

executeInArea(Runnable)

Signature
public void
executeInArea(Runnable logic)

Description
Executes the run method from the logic parameter using heap as the current
allocation context. For a schedulable, this saves the current scope stack and
replaces it with one consisting only of the HeapMemory instance; restoring the
original scope stack upon completion.

458 RTSJ 2.0 (Draft 57)

HeapMemory javax.realtime 11.3

Parameters
logic—The runnable object whose run() method should be executed.

Throws
IllegalArgumentException—when logic is null.
MemoryAccessError—when caller is a schedulable which may not use the heap.

newArray(Class, int)

Signature
public java.lang.Object
newArray(java.lang.Class<?> type,

int number)

Description
Allocates an array of the given type in this memory area. This method may be
concurrently used by multiple threads.

Parameters
type—The class of the elements of the new array. To create an array of a primitive

type use a type such as Integer.TYPE (which would call for an array of the
primitive int type.)

number—The number of elements in the new array.
Throws

MemoryAccessError—when caller is a schedulable which may not use the heap.
IllegalArgumentException—when number is less than zero, type is null, or type

is java.lang.Void.TYPE.
OutOfMemoryError—when space in the memory area is exhausted.

Returns
a new array of class type, of number elements.

newInstance(Class)

Signature
public T
newInstance(java.lang.Class<T> type)
throws IllegalAccessException,

InstantiationException

Description

RTSJ 2.0 (Draft 57) 459

11 Alternative Memory Areas HeapMemory

Allocates an object in this memory area. This method may be concurrently used
by multiple threads.

Parameters
type—The class of which to create a new instance.

Throws
MemoryAccessError—when caller is a schedulable which may not use the heap.
IllegalAccessException—The class or initializer is inaccessible.
IllegalArgumentException—when type is null.
ExceptionInInitializerError—when an unexpected exception has occurred in

a static initializer.
OutOfMemoryError—when space in the memory area is exhausted.
InstantiationException—when the specified class object could not be instanti-

ated. Possible causes are it is an interface, it is abstract, or it is an array.

Returns
a new instance of class type.

newInstance(Constructor, Object)

Signature
public T
newInstance(java.lang.reflect.Constructor<T> c,

java.lang.Object[] args)
throws IllegalAccessException,

InstantiationException,
InvocationTargetException

Description
Allocates an object in this memory area. This method may be concurrently used
by multiple threads.

Parameters
c—The constructor for the new instance.
args—An array of arguments to pass to the constructor.

Throws
MemoryAccessError—when caller is a schedulable which may not use the heap.
IllegalAccessException—when the class or initializer is inaccessible under Java

access control.

460 RTSJ 2.0 (Draft 57)

ImmortalMemory javax.realtime 11.3

InstantiationException—when the specified class object could not be instanti-
ated. Possible causes are it is an interface, it is abstract, it is an array.

OutOfMemoryError—when space in the memory area is exhausted.
IllegalArgumentException—when c is null, or the args array does not contain

the number of arguments required by c. A null value of args is treated like
an array of length 0.

InvocationTargetException—when the underlying constructor throws an excep-
tion.

Returns
a new instance of the object constructed by c.

visitNestedMemory(Consumer)

Signature
public void
visitNestedMemory(java.util.function.Consumer<javax.realtime.MemoryArea> visitor)
throws IllegalArgumentException,

ForEachTerminationException

Description
Visits each scoped memory area whose parent is the primordial scope and was
created in heap memory.

Parameters
visitor—invokes the consume method for each member of the set of scoped memory

areas that was created in this immortal memory area and has the primordial
scope as its parent.

Throws
IllegalArgumentException—when visitor is null.
ForEachTerminationException—when the traversal ends prematurely.

11.3.2.2 ImmortalMemory

public class ImmortalMemory
Inheritance
java.lang.Object
MemoryArea

RTSJ 2.0 (Draft 57) 461

11 Alternative Memory Areas ImmortalMemory

PerennialMemory
ImmortalMemory

Description
ImmortalMemory is a memory resource that is unexceptionally available to all
schedulables and Java threads for use and allocation.

An immortal object may not contain references to any form of scoped
memory, e.g., javax.realtime.memory.LTMemory, javax.realtime.memory.
StackedMemory, or javax.realtime.memory.PinnableMemory.

Objects in immortal memory have the same states with respect to finalization
as objects in the standard Java heap, but there is no assurance that immortal
objects will be finalized even when the JVM is terminated.

Methods from ImmortalMemory should be overridden only by methods that
use super.

11.3.2.2.1 Methods

instance

Signature
public static javax.realtime.ImmortalMemory
instance()

Description
Returns a pointer to the singleton ImmortalMemory object.

Returns
The singleton ImmortalMemory object.

executeInArea(Runnable)

Signature
public void
executeInArea(Runnable logic)

Description

462 RTSJ 2.0 (Draft 57)

MemoryArea javax.realtime 11.3

Executes the run method from the logic parameter using this memory area as
the current allocation context. For a schedulable, this saves the current scope
stack and replaces it with one consisting only of the ImmortalMemory instance;
restoring the original scope stack upon completion.

Parameters
logic—The runnable object whose run() method should be executed.

Throws
IllegalArgumentException—when logic is null.

visitNestedMemory(Consumer)

Signature
public void
visitNestedMemory(java.util.function.Consumer<javax.realtime.MemoryArea> visitor)

Description
Visits each scoped memory area whose parent is the primordial scope and was
created in this memory area.

Parameters
visitor—invokes the consume method for each member of the set of scoped memory

areas that was created in this immortal memory area and has the primordial
scope as its parent.

Throws
IllegalArgumentException—when visitor is null.
ForEachTerminationException—when the traversal ends prematurely.

11.3.2.3 MemoryArea

public abstract class MemoryArea
Inheritance
java.lang.Object
MemoryArea

Description
MemoryArea is the abstract base class of all classes dealing with the representations
of allocatable memory areas, including the immortal memory area, physical
memory and scoped memory areas. This is an abstract class, but no method in

RTSJ 2.0 (Draft 57) 463

11 Alternative Memory Areas MemoryArea

this class is abstract. An application should not subclass MemoryArea without
complete knowledge of its implementation details.

11.3.2.3.1 Constructors

MemoryArea(long, Runnable)

Signature
protected
MemoryArea(long size,

Runnable logic)
throws IllegalArgumentException,

OutOfMemoryError,
IllegalAssignmentError

Description
Creates an instance of MemoryArea.

Parameters
size—The size of MemoryArea to allocate, in bytes.
logic—A runnable, whose run() method will be called whenever enter() is called.

When logic is null, this constructor is equivalent to MemoryArea(long size).
Throws

IllegalArgumentException—when the size parameter is less than zero.
OutOfMemoryError—when there is insufficient memory for the MemoryArea object

or for the backing memory.
IllegalAssignmentError—when storing logic in this would violate the assign-

ment rules.

MemoryArea(SizeEstimator, Runnable)

Signature
protected
MemoryArea(SizeEstimator size,

Runnable logic)

464 RTSJ 2.0 (Draft 57)

MemoryArea javax.realtime 11.3

throws IllegalArgumentException,
OutOfMemoryError,
IllegalAssignmentError

Description
Equivalent to MemoryArea(long, Runnable) with the argument list (size.
getEstimate(), logic).

Parameters
size—A SizeEstimator object which indicates the amount of memory required

by this MemoryArea.
logic—A runnable, whose run() method will be called whenever enter() is

called. When logic is null, this constructor is equivalent to Memory-
Area(SizeEstimator size).

Throws
IllegalArgumentException—when size is null or size.getEstimate() is neg-

ative.
OutOfMemoryError—when there is insufficient memory for the MemoryArea object

or for the backing memory.
IllegalAssignmentError—when storing logic in this would violate the assign-

ment rules.

MemoryArea(long)

Signature
protected
MemoryArea(long size)
throws IllegalArgumentException,

OutOfMemoryError

Description
Equivalent to MemoryArea(long, Runnable) with the argument list (size,
null).

Parameters
size—The size of MemoryArea to allocate, in bytes.

Throws
IllegalArgumentException—when size is less than zero.

RTSJ 2.0 (Draft 57) 465

11 Alternative Memory Areas MemoryArea

OutOfMemoryError—when there is insufficient memory for the MemoryArea object
or for the backing memory.

MemoryArea(SizeEstimator)

Signature
protected
MemoryArea(SizeEstimator size)
throws IllegalArgumentException,

OutOfMemoryError

Description
Equivalent to MemoryArea(long, Runnable) with the argument list (size.
getEstimate(), null).

Parameters
size—A SizeEstimator object which indicates the amount of memory required

by this MemoryArea.
Throws

IllegalArgumentException—when the size parameter is null, or size.
getEstimate() is negative.

OutOfMemoryError—when there is insufficient memory for the MemoryArea object
or for the backing memory.

11.3.2.3.2 Methods

enter

Signature
public void
enter()
throws IllegalArgumentException,

OutOfMemoryError,
IllegalAssignmentError,
MemoryAccessError

466 RTSJ 2.0 (Draft 57)

MemoryArea javax.realtime 11.3

Description
Associates this memory area with the current schedulable for the duration of
the execution of the run() method of the instance of Runnable given in the
constructor. During this period of execution, this memory area becomes the
default allocation context until another default allocation context is selected
(using enter, or executeInArea) or the enter method exits.

Throws
IllegalSchedulableStateException—when the caller context is not an instance

of Schedulable.
IllegalArgumentException—when the caller is a schedulable and a null value

for logic was supplied when the memory area was constructed.
ThrowBoundaryError—Thrown when the JVM needs to propagate an exception

allocated in this scope to (or through) the memory area of the caller. Storing
a reference to that exception would cause an IllegalAssignmentError, so
the JVM cannot be permitted to deliver the exception. The ThrowBound-
aryError instance is preallocated by the VM to avoid cascading creation of
ThrowBoundaryError.

MemoryAccessError—when caller is a schedulable that may not use the heap and
this memory area’s logic value is allocated in heap memory.

enter(Runnable)

Signature
public void
enter(Runnable logic)

Description
Associates this memory area with the current schedulable for the duration of
the execution of the run() method of the given Runnable. During this period of
execution, this memory area becomes the default allocation context until another
default allocation context is selected (using enter, or executeInArea) or the
enter method exits.

Parameters
logic—The Runnable object whose run() method should be invoked.

Throws
IllegalSchedulableStateException—when the caller context is not an instance

of Schedulable.
IllegalArgumentException—when the caller is a schedulable and logic is null.

RTSJ 2.0 (Draft 57) 467

11 Alternative Memory Areas MemoryArea

ThrowBoundaryError—Thrown when the JVM needs to propagate an exception
allocated in this scope to (or through) the memory area of the caller. Storing
a reference to that exception would cause an IllegalAssignmentError, so
the JVM cannot be permitted to deliver the exception. The ThrowBound-
aryError instance is preallocated by the VM to avoid cascading creation of
ThrowBoundaryError.

enter(Supplier)

Signature
public T
enter(java.util.function.Supplier<T> logic)

Description
Same as enter(Runnable) except that the executed method is called get and
an object is returned.

Parameters
logic—The object whose get method will be executed.

Returns
a result from the computation.
Available since RTSJ 2.0

enter(BooleanSupplier)

Signature
public boolean
enter(BooleanSupplier logic)

Description
Same as enter(Runnable) except that the executed method is called get and a
boolean is returned.

Parameters
logic—The object whose get method will be executed.

Returns
a result from the computation.
Available since RTSJ 2.0

468 RTSJ 2.0 (Draft 57)

MemoryArea javax.realtime 11.3

enter(IntSupplier)

Signature
public int
enter(IntSupplier logic)

Description
Same as enter(Runnable) except that the executed method is called get and
an int is returned.

Parameters
logic—The object whose get method will be executed.

Returns
a result from the computation.
Available since RTSJ 2.0

enter(LongSupplier)

Signature
public long
enter(LongSupplier logic)

Description
Same as enter(Runnable) except that the executed method is called get and a
long is returned.

Parameters
logic—The object whose get method will be executed.

Returns
a result from the computation.
Available since RTSJ 2.0

enter(DoubleSupplier)

Signature
public double
enter(DoubleSupplier logic)

RTSJ 2.0 (Draft 57) 469

11 Alternative Memory Areas MemoryArea

Description
Same as enter(Runnable) except that the executed method is called get and a
double is returned.

Parameters
logic—The object whose get method will be executed.

Returns
a result from the computation.
Available since RTSJ 2.0

getMemoryArea(Object)

Signature
public static javax.realtime.MemoryArea
getMemoryArea(Object object)

Description
Gets the MemoryArea in which the given object is located.

Throws
IllegalArgumentException—when the value of object is null.

Returns
the instance of MemoryArea from which object was allocated.

memoryConsumed

Signature
public long
memoryConsumed()

Description
For memory areas where memory is freed under program control this returns
an exact count, in bytes, of the memory currently used by the system for the
allocated objects. For memory areas (such as heap) where the definition of "used"
is imprecise, this returns the best value it can generate in constant time.

Returns
the amount of memory consumed in bytes.

470 RTSJ 2.0 (Draft 57)

MemoryArea javax.realtime 11.3

memoryRemaining

Signature
public long
memoryRemaining()

Description
An approximation of the total amount of memory currently available for future
allocated objects, measured in bytes.

Returns
the amount of remaining memory in bytes.

newArray(Class, int)

Signature
public java.lang.Object
newArray(java.lang.Class<?> type,

int number)
throws IllegalArgumentException,

OutOfMemoryError,
SecurityException

Description
Allocates an array of the given type in this memory area. This method may be
concurrently used by multiple threads.

Parameters
type—The class of the elements of the new array. To create an array of a primitive

type use a type such as Integer.TYPE (which would call for an array of the
primitive int type.)

number—The number of elements in the new array.
Throws

IllegalArgumentException—when number is less than zero, type is null, or type
is java.lang.Void.TYPE.

OutOfMemoryError—when space in the memory area is exhausted.
SecurityException—when the caller does not have permission to create a new

instance.
Returns
a new array of class type, of number elements.

RTSJ 2.0 (Draft 57) 471

11 Alternative Memory Areas MemoryArea

newArrayInArea(Object, Class, int)

Signature
public java.lang.Object
newArrayInArea(Object object,

java.lang.Class<?> type,
int size)

Description
A helper method to create an array of type type in the memory area containing
object.

Parameters
object—is the reference for determining the area in which to allocate the array.
type—is the type of the array element for the returned array.
size—is the size of the array to return.

Returns
a new array of element type with size elements.
Available since RTSJ 2.0

newInstance(Class)

Signature
public T
newInstance(java.lang.Class<T> type)
throws IllegalAccessException,

IllegalArgumentException,
InstantiationException,
OutOfMemoryError,
ExceptionInInitializerError,
SecurityException

Description
Allocates an object in this memory area. This method may be concurrently used
by multiple threads.

Parameters
type—The class of which to create a new instance.

Throws

472 RTSJ 2.0 (Draft 57)

MemoryArea javax.realtime 11.3

IllegalAccessException—The class or initializer is inaccessible.
IllegalArgumentException—when type is null.
InstantiationException—when the specified class object could not be instanti-

ated. Possible causes are it is an interface, it is abstract, or it is an array.
ConstructorCheckedException—a checked exception was thrown by the construc-

tor.
OutOfMemoryError—when space in the memory area is exhausted.
ExceptionInInitializerError—when an unexpected exception has occurred in

a static initializer.
SecurityException—when the caller does not have permission to create a new

instance.

Returns
a new instance of class type.

newInstance(Constructor, Object)

Signature
public T
newInstance(java.lang.reflect.Constructor<T> c,

java.lang.Object[] args)
throws ExceptionInInitializerError,

IllegalAccessException,
IllegalArgumentException,
InstantiationException,
InvocationTargetException,
OutOfMemoryError,
SecurityException

Description
Allocates an object in this memory area. This method may be concurrently used
by multiple threads.

Parameters
c—The constructor for the new instance.
args—An array of arguments to pass to the constructor.

Throws
ExceptionInInitializerError—when an unexpected exception has occurred in

a static initializer

RTSJ 2.0 (Draft 57) 473

11 Alternative Memory Areas MemoryArea

IllegalAccessException—when the class or initializer is inaccessible under Java
access control.

IllegalArgumentException—when c is null, or the args array does not contain
the number of arguments required by c. A null value of args is treated like
an array of length 0.

InstantiationException—when the specified class object could not be instanti-
ated. Possible causes are it is an interface, it is abstract, it is an array.

InvocationTargetException—when the underlying constructor throws an excep-
tion.

OutOfMemoryError—when space in the memory area is exhausted.
SecurityException—when the caller does not have permission to create a new

instance.

Returns
a new instance of the object constructed by c.

size

Signature
public long
size()

Description
Queries the size of the memory area. The returned value is the current size.
Current size may be larger than initial size for those areas that are allowed to
grow.

Returns
the size of the memory area in bytes.

executeInArea(Runnable)

Signature
public void
executeInArea(Runnable logic)
throws IllegalArgumentException

Description

474 RTSJ 2.0 (Draft 57)

MemoryArea javax.realtime 11.3

Executes the run() method from the logic parameter using this memory area as
the current allocation context. The effect of executeInArea on the scope stack
is specified in the subclasses of MemoryArea.

Parameters
logic—The runnable object whose run() method should be executed.

Throws
IllegalArgumentException—when logic is null.

executeInArea(Supplier)

Signature
public T
executeInArea(java.util.function.Supplier<T> logic)

Description
Same as executeInArea(Runnable) except that the executed method is called
get and an object is returned.

Parameters
logic—The object whose get method will be executed.

Returns
a result from the computation.
Available since RTSJ 2.0

executeInArea(BooleanSupplier)

Signature
public boolean
executeInArea(BooleanSupplier logic)

Description
Same as executeInArea(Runnable) except that the executed method is called
get and a boolean is returned.

Parameters
logic—The object whose get method will be executed.

Returns
a result from the computation.

RTSJ 2.0 (Draft 57) 475

11 Alternative Memory Areas MemoryArea

Available since RTSJ 2.0

executeInArea(IntSupplier)

Signature
public int
executeInArea(IntSupplier logic)

Description

Same as executeInArea(Runnable) except that the executed method is called
get and an int is returned.

Parameters
logic—the object whose get method will be executed.

Returns
a result from the computation.

Available since RTSJ 2.0

executeInArea(LongSupplier)

Signature
public long
executeInArea(LongSupplier logic)

Description

Same as executeInArea(Runnable) except that the executed method is called
get and a long is returned.

Parameters
logic—The object whose get method will be executed.

Returns
a result from the computation.

Available since RTSJ 2.0

476 RTSJ 2.0 (Draft 57)

MemoryArea javax.realtime 11.3

executeInArea(DoubleSupplier)

Signature
public double
executeInArea(DoubleSupplier logic)

Description
Same as executeInArea(Runnable) except that the executed method is called
get and a double is returned.

Parameters
logic—The object whose get method will be executed.

Returns
a result from the computation.
Available since RTSJ 2.0

visitNestedMemory(Consumer)

Signature
public void
visitNestedMemory(java.util.function.Consumer<javax.realtime.MemoryArea> visitor)
throws IllegalArgumentException,

ForEachTerminationException

Description
A means of accessing all live nested memory areas contained in this mem-
ory area, even those to which no reference exits, such a javax.realtime.
memory.PinnableMemory that is pinned or another javax.realtime.memory.
ScopedMemory that contains a Schedulable. The set may be concurrently modi-
fied by other tasks, but the view seen by the visitor may not be updated to reflect
those changes. The following is guaranteed even when the set is disturbed by
other tasks:
• the visitor shall visit no member more than once,
• it shall visit only scopes that were a member of the set at some time during

the enumeration of the set, and
• it shall visit all the scopes that are not deleted during the execution of the
visitor.

Performs an action on all children scopes of this memory area, so long as the
visitor does not throw ForEachTerminationException. When that is thrown,

RTSJ 2.0 (Draft 57) 477

11 Alternative Memory Areas MemoryArea

the visit is terminated. A closure could be used to capture the last element
visited.

When execution of the visitor’s consume method is terminated abruptly by
throwing an exception, then execution of visitScopedChildren also terminates
abruptly by throwing the same exception.

Parameters
visitor—Determines the action to be performed on each of the children scopes.

Throws
IllegalArgumentException—when visitor is null.
ForEachTerminationException—when the traversal ends prematurely.
Available since RTSJ 2.0

mayHoldReferenceTo

Signature
public boolean
mayHoldReferenceTo()

Description
Determines whether an object A allocated in the memory area represented by
this can hold a reference to an object B allocated in the current memory area.

Returns
true when B can be assigned to a field of A, otherwise false.
Available since RTSJ 2.0

mayHoldReferenceTo(Object)

Signature
public boolean
mayHoldReferenceTo(Object value)

Description
Determines whether an object A allocated in the memory area represented by
this can hold a reference to the object value.

Parameters

478 RTSJ 2.0 (Draft 57)

MemoryParameters javax.realtime 11.3

value—The object to test.
Returns
true when value can be assigned to a field of A, otherwise false.

Available since RTSJ 2.0

11.3.2.4 MemoryParameters

public class MemoryParameters

Inheritance
java.lang.Object
MemoryParameters

Interfaces
Cloneable
Serializable

Description

Memory parameters can be given on the constructor of any Schedulable. They
provide limits on allocation. For garbage-collected objects, they provide the rate
of allocation, and for Immortal, the overall amount of allocation.

The limits in a MemoryParameters instance are enforced when a schedulable
creates a new object, e.g., uses the new operation. When a schedulable exceeds
its allocation or allocation rate limit, the error is handled as if the allocation
failed because of insufficient memory. The failed object allocation throws an
OutOfMemoryError.

A MemoryParameters object may be bound to more than one schedulable,
but that does not cause the memory budgets reflected by the parameter to be
shared among the schedulables that are associated with the parameter object.

As of RTSJ 2.0, instances of MemoryParameters are immutable.

Caution: This class is explicitly unsafe for multithreading when being changed.
Code that mutates instances of this class should synchronize at a higher level.

11.3.2.4.1 Fields

RTSJ 2.0 (Draft 57) 479

11 Alternative Memory Areas MemoryParameters

UNLIMITED

public static final UNLIMITED

Description
Specifies no maximum limit.

Available since RTSJ 2.0

UNREFERENCED

public static final UNREFERENCED

Description
Specifies that no reference is made to the given area. For allocation rate, this
means that no reference may be made to heap memory.

Available since RTSJ 2.0

11.3.2.4.2 Constructors

MemoryParameters(long, long, long)

Signature
public
MemoryParameters(long maxInitialArea,

long maxImmortal,
long allocationRate)

throws IllegalArgumentException

Description
Creates a MemoryParameters object with the given values and mayUseHeap
returns true.

Parameters

480 RTSJ 2.0 (Draft 57)

MemoryParameters javax.realtime 11.3

maxInitialArea—A limit on the amount of memory the schedulable may allo-
cate in its initial scoped memory area. Units are in bytes. When zero, no
allocation is allowed in the memory area. When the initial memory area is
not a ScopedMemory, this parameter has no effect. To specify no limit, use
UNLIMITED.

maxImmortal—A limit on the amount of memory the schedulable may allocate in
the immortal area. Units are in bytes. When zero, no allocation is allowed in
immortal. To specify no limit, use UNLIMITED.

allocationRate—A limit on the rate of allocation in the heap. Units are in bytes
per second of wall clock time. When allocationRate is zero, no allocation is
allowed in the heap. To specify no limit, use UNLIMITED. Measurement starts
when the schedulable is first released for execution; not when it is constructed.
Enforcement of the allocation rate is an implementation option. When the
implementation does not enforce allocation rate limits, it treats all positive
allocation rate limits as UNLIMITED. Setting this parameter to UNREFERENCED
is undefined unless the memory module is available.

Throws
IllegalArgumentException—when any value other than positive, zero, or UNREF-

ERENCED is passed as the value of maxInitialArea, maxImmortal, or alloca-
tionRate.

MemoryParameters(long, long)

Signature
public
MemoryParameters(long maxInitialArea,

long maxImmortal)

Description
Creates a MemoryParameters object with the given values and allocationRate
set to UNLIMITED. It has the same effect as MemoryParameters(maxInitialArea,
maxImmortal, UNLIMITED)

MemoryParameters(long)

Signature

RTSJ 2.0 (Draft 57) 481

11 Alternative Memory Areas MemoryParameters

public
MemoryParameters(long allocationRate)

Description
Creates a MemoryParameters object with the given values and allocationRate
set to UNREFERENCED. It has the same effect as MemoryParameters(UNLIMITED,
UNLIMITED, allocationRate)

Available since RTSJ 2.0

11.3.2.4.3 Methods

clone

Signature
public java.lang.Object
clone()

Description
Returns a clone of this. This method should behave effectively as if it constructed
a new object with the visible values of this.
• The new object is in the current allocation context.
• clone does not copy any associations from this and it does not implicitly

bind the new object to a SO.

Available since RTSJ 1.0.1

getAllocationRate

Signature
public long
getAllocationRate()

Description
Determines the limit on the rate of allocation in the heap. Units are in bytes per
second.

482 RTSJ 2.0 (Draft 57)

MemoryParameters javax.realtime 11.3

Returns
the allocation rate in bytes per second. When zero, no allocation is allowed in the

heap. When the returned value is UNLIMITED then the allocation rate on the
heap is uncontrolled. When the returned value is UNREFERENCED, not only is
no allocation allowed, but the heap may not be referenced at all.

getMaxImmortal

Signature
public long
getMaxImmortal()

Description

Gets the limit on the amount of memory the schedulable may allocate in the
immortal area. Units are in bytes.

Returns
the limit on immortal memory allocation. When zero, no allocation is allowed in

immortal memory. When the returned value is UNLIMITED then there is no
limit for allocation in immortal memory.

getMaxInitialArea

Signature
public long
getMaxInitialArea()

Description

Gets the limit on the amount of memory the schedulable may allocate in its
initial memory area, when initial is a scoped memory. Units are in bytes.

Returns
the allocation limit in the schedulable’s initial memory area. When zero, no

allocation is allowed in the initial memory area. When the returned value is
UNLIMITED then there is no limit for allocation in the initial memory area.

Available since RTSJ 2.0

RTSJ 2.0 (Draft 57) 483

11 Alternative Memory Areas MemoryParameters

mayUseHeap

Signature
public boolean
mayUseHeap()

Description
Determines whether or not this parameter object specifies that the heap may
be used. It is true when getAllocationRate is UNREFERENCED and the memory
module is available.

Returns
true when heap may be used and false otherwise.

Available since RTSJ 2.0

setAllocationRate(long)

Signature
public void
setAllocationRate(long allocationRate)

Description
Sets the limit on the rate of allocation in the heap.

Changes to this parameter take place at the next object allocation for each
associated schedulable, on an individual basis. Schedulables which are in current
violation of the newly configured value will simply receive an OutOfMemoryError
on violating allocations. Because this MemoryParameters may be associated
with more than one schedulable, on a multiprocessor system there may be some
implementation-defined delay before executing schedulables detect the parameter
changes.

Parameters
allocationRate—Units are in bytes per second of wall-clock time. When allo-

cationRate is zero, no allocation is allowed in the heap. To specify no limit,
use NO_MAX. Measurement starts when the schedulable starts; not when it is
constructed. Enforcement of the allocation rate is an implementation option.
When the implementation does not enforce allocation rate limits, it treats all
non-zero allocation rate limits as NO_MAX.

Throws

484 RTSJ 2.0 (Draft 57)

SizeEstimator javax.realtime 11.3

IllegalArgumentException—when any value other than positive, zero, or NO_MAX
is passed as the value of allocationRate.

Deprecated RTSJ 2.0

11.3.2.5 PerennialMemory

public abstract class PerennialMemory
Inheritance
java.lang.Object
MemoryArea
PerennialMemory

Description
A base class for all memory areas whose contents can be unexceptionally referenced.
In other words, any memory area can store a reference to an object stored in
one of these areas. This includes all concrete memory areas in the core package.
Only memory areas of this type can be a root for a scoped memory.

11.3.2.6 SizeEstimator

public class SizeEstimator
Inheritance
java.lang.Object
SizeEstimator

Description
This class maintains an estimate of the amount of memory required to store a
set of objects.

SizeEstimator is a floor on the amount of memory that should be allocated.
Many objects allocate other objects when they are constructed. SizeEstimator
only estimates the memory requirement of the object itself, it does not include
memory required for any objects allocated at construction time. When the
instance itself is allocated in several parts (when for instance the object and
its monitor are separate), the size estimate shall include the sum of the sizes
of all the parts that are allocated from the same memory area as the instance.
Alignment considerations, and possibly other order-dependent issues may cause

RTSJ 2.0 (Draft 57) 485

11 Alternative Memory Areas SizeEstimator

the allocator to leave a small amount of unusable space, consequently the size
estimate cannot be seen as more than a close estimate.

See Section MemoryArea.MemoryArea(SizeEstimator)

11.3.2.6.1 Constructors

SizeEstimator

Signature
public
SizeEstimator()

Description
Create an empty size estimator.

11.3.2.6.2 Methods

reserve(Class, int)

Signature
public void
reserve(java.lang.Class<?> c,

int number)

Description
Takes into account additional number instances of Class c when estimating the
size of the MemoryArea.

Parameters
c—The class to take into account.
number—The number of instances of c to estimate.

Throws
IllegalArgumentException—when c is null or number is negative.

486 RTSJ 2.0 (Draft 57)

SizeEstimator javax.realtime 11.3

Available since RTSJ 2.0 throws IllegalArgumentException also when number
is less than zero.

reserve(SizeEstimator, int)

Signature
public void
reserve(SizeEstimator estimator,

int number)

Description
Takes into account additional number of the estimations from instances of SizeEs-
timator size when estimating the size of the MemoryArea.

Parameters
estimator—The given instance of SizeEstimator.
number—The number of times to reserve the size denoted by estimator.

Throws
IllegalArgumentException—when estimator is null or number is less than zero.

Available since RTSJ 2.0 throws IllegalArgumentException also when number
is less than zero.

reserve(SizeEstimator)

Signature
public void
reserve(SizeEstimator size)

Description
Takes into account an additional estimation from the instance of SizeEstimator
size when estimating the size of the MemoryArea.

Parameters
size—The given instance of SizeEstimator.

Throws
IllegalArgumentException—when size is null.

RTSJ 2.0 (Draft 57) 487

11 Alternative Memory Areas SizeEstimator

reserveArray(int)

Signature
public void
reserveArray(int length)

Description
Takes into account an additional instance of an array of length reference values
when estimating the size of the MemoryArea.

Parameters
length—The number of entries in the array.

Throws
IllegalArgumentException—when length is negative.

Available since RTSJ 1.0.1

reserveArray(int, Class)

Signature
public void
reserveArray(int length,

java.lang.Class<?> type)

Description
Takes into account an additional instance of an array of length primitive values
when estimating the size of the MemoryArea.

Class values for the primitive types are available from the corresponding class
types; e.g., Byte.TYPE, Integer.TYPE, and Short.TYPE.

Parameters
length—The number of entries in the array.
type—The class representing a primitive type. The reservation will leave room for

an array of length of the primitive type corresponding to type.
Throws

IllegalArgumentException—when length is negative, or type does not represent
a primitive type.

Available since RTSJ 1.0.1

488 RTSJ 2.0 (Draft 57)

SizeEstimator javax.realtime 11.3

reserveLambda(EnclosedType, EnclosedType, Enclosed-
Type)

Signature
public void
reserveLambda(EnclosedType first,

EnclosedType second,
javax.realtime.EnclosedType[] others)

Description
Determines the size of a lambda with more than two variables in its closure and
add it to this size estimator.

Parameters
first—Type of first variable in closure.
second—Type of second variable in closure.
others—Types of additional variables in closure.
Available since RTSJ 2.0

reserveLambda(EnclosedType, EnclosedType)

Signature
public void
reserveLambda(EnclosedType first,

EnclosedType second)

Description
Determines the size of a lambda with two variables in its closure and add it to
this size estimator.

Parameters
first—Type of first variable in closure.
second—Type of second variable in closure.
Available since RTSJ 2.0

reserveLambda(EnclosedType)

Signature

RTSJ 2.0 (Draft 57) 489

11 Alternative Memory Areas SizeEstimator

public void
reserveLambda(EnclosedType first)

Description
Determines the size of a lambda with one variable in its closure and add it to
this size estimator.

Parameters
first—Type of first variable in closure.
Available since RTSJ 2.0

reserveLambda

Signature
public void
reserveLambda()

Description
Determines the size of a lambda with no closure and add it to this size estimator.

Available since RTSJ 2.0

getEstimate

Signature
public long
getEstimate()

Description
Gets an estimate of the number of bytes needed to store all the objects reserved.

Returns
the estimated size in bytes.

clear

Signature

490 RTSJ 2.0 (Draft 57)

SizeEstimator javax.realtime 11.3

public void
clear()

Description
Restores the estimate value to zero for reuse.

Available since rtsj 2.0

RTSJ 2.0 (Draft 57) 491

11 Alternative Memory Areas PhysicalMemorySelector.CachingBehavior

11.4 javax.realtime.memory

11.4.1 Interfaces
11.4.1.1 PhysicalMemoryCharacteristic

public interface PhysicalMemoryCharacteristic
Description

A tagging interface used to identify physical memory characteristics. Applications
can give names to regions of memory that are described by PhysicalMemoryRe-
gion. The names are defined by creating instances of this interface. For example,
final static PhysicalMemoryCharacteristic STATIC_RAM = ...;

Available since RTSJ 2.0

11.4.2 Enumerations
11.4.2.1 PhysicalMemorySelector.CachingBehavior

public enum PhysicalMemorySelector.CachingBehavior
Inheritance
java.lang.Object
java.lang.Enum<PhysicalMemorySelector.CachingBehavior>
PhysicalMemorySelector.CachingBehavior

Description
Marker for standard caching behaviors. Not all need be supported. For example,
a VM running in Kernel mode might only support DISABLED.

11.4.2.1.1 Enumeration Constants

DISABLED

public static final DISABLED

492 RTSJ 2.0 (Draft 57)

PhysicalMemorySelector.CachingBehavior javax.realtime.memory 11.4

Description
Represents direct mapping, i.e., caching disabled or not present.

WRITE_THROUGH

public static final WRITE_THROUGH

Description
Represents caching where writes are immediately written to cache and memory.

WRITE_BACK

public static final WRITE_BACK

Description
Represents caching where writes are immediately written to cache, but the write
to memory is delayed, such as until the cache line is flushed.

11.4.2.1.2 Methods

values

Signature
public static javax.realtime.memory.PhysicalMemorySelector.CachingBehavior[]
values()

Description
Gets all enumeration constants.

valueOf(String)

Signature
public static javax.realtime.memory.PhysicalMemorySelector.CachingBehavior
valueOf(String name)

Description
Gets enumeration constants corresponding to name.

RTSJ 2.0 (Draft 57) 493

11 Alternative Memory Areas PhysicalMemorySelector.PagingBehavior

11.4.2.2 PhysicalMemorySelector.PagingBehavior

public enum PhysicalMemorySelector.PagingBehavior
Inheritance
java.lang.Object
java.lang.Enum<PhysicalMemorySelector.PagingBehavior>
PhysicalMemorySelector.PagingBehavior

Description
Marker for standard paging behaviors. Not all need be supported. For example,
a VM running in Kernel mode might only support DIRECT.

11.4.2.2.1 Enumeration Constants

DIRECT

public static final DIRECT

Description
Represents when the page is always mapped with the same virtual address as its
physical address.

FIXED

public static final FIXED

Description
Represents when the page stays resident in memory, so the mapping does not
change.

SWAPPABLE

public static final SWAPPABLE

Description
Represents when the page may be swapped to disk; hence the mapping may
change and encounter delay when accessed while swapped out.

494 RTSJ 2.0 (Draft 57)

LTMemory javax.realtime.memory 11.4

11.4.2.2.2 Methods

values

Signature
public static javax.realtime.memory.PhysicalMemorySelector.PagingBehavior[]
values()

Description
Gets all enumeration constants.

valueOf(String)

Signature
public static javax.realtime.memory.PhysicalMemorySelector.PagingBehavior
valueOf(String name)

Description
Gets enumeration constants corresponding to name.

11.4.3 Classes
11.4.3.1 LTMemory

public class LTMemory
Inheritance
java.lang.Object
javax.realtime.MemoryArea
ScopedMemory
LTMemory

Description
LTMemory represents a memory area guaranteed by the system to have linear
time allocation when memory consumption from the memory area is less than
the memory area’s initial size. Execution time for allocation is allowed to vary
when memory consumption is between the initial size and the maximum size for

RTSJ 2.0 (Draft 57) 495

11 Alternative Memory Areas LTMemory

the area. Furthermore, the underlying system is not required to guarantee that
memory between initial and maximum will always be available.

The memory area described by a LTMemory instance does not exist in the Java
heap, and is not subject to garbage collection. Thus, it is safe to use a LTMemory
object as the initial memory area for a javax.realtime.Schedulable instance
which may not use the javax.realtime.HeapMemory or to enter the memory
area using the ScopedMemory.enter method within such an instance.

Enough memory must be committed by the completion of the constructor to
satisfy the initial memory requirement. (Committed means that this memory
must always be available for allocation). The initial memory allocation must
behave, with respect to successful allocation, as if it were contiguous; i.e., a
correct implementation must guarantee that any sequence of object allocations
that could ever succeed without exceeding a specified initial memory size will
always succeed without exceeding that initial memory size and succeed for any
instance of LTMemory with that initial memory size.

Creation of an LTMemory may fail with an javax.realtime.
StaticOutOfMemoryError if the current javax.realtime.Schedulable
has been configured with a ScopeParameters.getMaxGlobalBackingStore that
would be exceeded by said creation.

Note, to ensure that all requested memory is available set initial and maximum
to the same value.

Methods from LTMemory should be overridden only by methods that use
super.

See Section javax.realtime.MemoryArea

See Section ScopedMemory

See Section javax.realtime.Schedulable

Available since RTSJ 2.0 moved to this package.

11.4.3.1.1 Constructors

LTMemory(long, Runnable)

Signature

496 RTSJ 2.0 (Draft 57)

LTMemory javax.realtime.memory 11.4

public
LTMemory(long size,

Runnable logic)

Description
Create a scoped memory of the given size and with the give logic to run upon
entry when no other logic is given.

Available since RTSJ 1.0.1

Parameters
size—The size in bytes of the memory to allocate for this area. This memory must

be committed before the completion of the constructor.
logic—The run() of the given Runnable will be executed using this as its ini-

tial memory area. When logic is null, this constructor is equivalent to
LTMemory(long).

Throws
IllegalArgumentException—when size is less than zero.
javax.realtime.StaticOutOfMemoryError—when there is insufficient memory

for the LTMemory object or for the backing memory, or when the current
Schedulable would exceed its configured allowance of global backing store.

javax.realtime.IllegalAssignmentError—when storing logic in this would
violate the assignment rules.

LTMemory(SizeEstimator, Runnable)

Signature
public
LTMemory(SizeEstimator size,

Runnable logic)

Description
Equivalent to LTMemory(long, Runnable) with argument list (size.
getEstimate(), runnable).

Available since RTSJ 1.0.1

Parameters

RTSJ 2.0 (Draft 57) 497

11 Alternative Memory Areas LTMemory

size—An instance of javax.realtime.SizeEstimator used to give an estimate
of the initial size. This memory must be committed before the completion of
the constructor.

logic—The run() of the given Runnable will be executed using this as its ini-
tial memory area. When logic is null, this constructor is equivalent to
LTMemory(SizeEstimator).

Throws
IllegalArgumentException—when size is null.
javax.realtime.StaticOutOfMemoryError—when there is insufficient memory

for the LTMemory object or for the backing memory, or when the current
Schedulable would exceed its configured allowance of global backing store.

javax.realtime.IllegalAssignmentError—when storing logic in this would
violate the assignment rules.

LTMemory(long)

Signature
public
LTMemory(long size)

Description
Equivalent to LTMemory(long, Runnable) with the argument list ((size,
null).

Available since RTSJ 1.0.1

Parameters
size—The size in bytes of the memory to allocate for this area. This memory must

be committed before the completion of the constructor.
Throws

IllegalArgumentException—when size is less than zero.
javax.realtime.StaticOutOfMemoryError—when there is insufficient memory

for the LTMemory object or for the backing memory, or when the current
Schedulable would exceed its configured allowance of global backing store.

LTMemory(SizeEstimator)

498 RTSJ 2.0 (Draft 57)

MemoryGroup javax.realtime.memory 11.4

Signature
public
LTMemory(SizeEstimator size)

Description

Equivalent to LTMemory(long, Runnable) with argument list (size.
getEstimate(), null).

Available since RTSJ 1.0.1

Parameters
size—An instance of javax.realtime.SizeEstimator used to give an estimate

of the initial size. This memory must be committed before the completion of
the constructor.

Throws
IllegalArgumentException—when size is null.
javax.realtime.StaticOutOfMemoryError—when there is insufficient memory

for the LTMemory object or for the backing memory, or when the current
Schedulable would exceed its configured allowance of global backing store.

11.4.3.2 MemoryGroup

public class MemoryGroup

Inheritance
java.lang.Object
java.lang.ThreadGroup
javax.realtime.SchedulingGroup
MemoryGroup

Description

A group that limits the amount of memory available to a task. This just provides
a limit for the use of backingstore, but future implementations may also limit
other allocations. A nested memory group may not have a limit that exceeds
that of its parent.

Available since RTSJ 2.0

RTSJ 2.0 (Draft 57) 499

11 Alternative Memory Areas MemoryGroup

11.4.3.2.1 Constructors

MemoryGroup(SchedulingGroup, String)

Signature
public
MemoryGroup(SchedulingGroup parent,

String name)

Description
Creates a new group under parent named name.

MemoryGroup(String)

Signature
public
MemoryGroup(String name)
throws IllegalStateException,

IllegalAssignmentError

Description
Creates a new group under the current scheduling group named name. It is the
same as new MemoryGroup(null, name);

11.4.3.2.2 Methods

getMaxBackingStore

Signature
public long
getMaxBackingStore()

500 RTSJ 2.0 (Draft 57)

PhysicalMemoryFactory javax.realtime.memory 11.4

Description
Determines how much backing store can be used by tasks in this group.

Returns
the total amount available.

setMaxBackingStore(long)

Signature
public javax.realtime.memory.MemoryGroup
setMaxBackingStore(long value)

Description
Sets the max backing store of task in this group. When the limit is exceeded,
subsequent creations of LTMemory, PinnableMemory, and roots StackedMemory
will fail with an Error: javax.realtime.StaticOutOfMemoryError.

Parameters
value—The maximum backing store in bytes for tasks in this group

Returns
this object

11.4.3.3 PhysicalMemoryFactory

public class PhysicalMemoryFactory

Inheritance
java.lang.Object
PhysicalMemoryFactory

Description
A physical memory representation of memory ranges, in the form of Physi-
calMemoryRegion instances with physical memory characteristics in the form of
PhysicalMemoryCharacteristic instances for creating memory areas in those
ranges.

Each physical memory module can have one or more physical memory charac-
teristic. A physical memory characteristic can apply to many physical memory
modules. The range of physical addresses of modules shall not overlap. A memory
that spans more than one physical memory module may not be created.

RTSJ 2.0 (Draft 57) 501

11 Alternative Memory Areas PhysicalMemoryFactory

The PhysicalMemoryFactory determines the physical addresses from the
modules and keeps a relation between instances of PhysicalMemoryRegion and
Physical Memory Addresses. The range of physical addresses of modules shall not
overlap. A created memory area may not span more than one physical memory
module. To find a memory range that supports PMC A and PMC B, it uses set
intersection modules(A) ∩ modules(B)

Available since RTSJ 2.0

11.4.3.3.1 Constructors

PhysicalMemoryFactory

Signature
public
PhysicalMemoryFactory()

Description
Creates an empty factory, but when only one factory is required, uses getDefault
instead.

11.4.3.3.2 Methods

getDefault

Signature
public static javax.realtime.memory.PhysicalMemoryFactory
getDefault()

Description
Obtains the default physical memory factory.

Returns
the default factory.

502 RTSJ 2.0 (Draft 57)

PhysicalMemoryFactory javax.realtime.memory 11.4

associate(PhysicalMemoryCharacteristic, PhysicalMemo-
ryRegion)

Signature
public void
associate(PhysicalMemoryCharacteristic name,

PhysicalMemoryRegion module)
throws IllegalArgumentException,

RangeOutOfBoundsException

Description
Associates a programmer-defined name with a physical address range.

Parameters
name—The physical memory characteristic. e.g STATIC_RAM.
module—The object representing a range of contiguous physical addresses.

Throws
IllegalArgumentException—when either name or module is null.
RangeOutOfBoundsException—when module overlaps a previously associated

PhysicalMemoryRegion instance or cannot be mapped as Java object storage.

associate(PhysicalMemoryCharacteristic, PhysicalMemo-
ryRegion)

Signature
public void
associate(javax.realtime.memory.PhysicalMemoryCharacteristic[] names,

PhysicalMemoryRegion module)
throws IllegalArgumentException,

RangeOutOfBoundsException

Description
Associates an array of programmer-defined names with a physical address range.

Parameters
names—The array of physical memory characteristics. e.g { STATIC_RAM }.
module—The object representing a range of contiguous physical addresses.

Throws
IllegalArgumentException—when either names or module is null.

RTSJ 2.0 (Draft 57) 503

11 Alternative Memory Areas PhysicalMemoryFactory

RangeOutOfBoundsException—when module overlaps a previously associated
PhysicalMemoryRegion instance or cannot be mapped as Java object storage.

associate(PhysicalMemoryCharacteristic, PhysicalMemo-
ryRegion)

Signature
public static void
associate(PhysicalMemoryCharacteristic name,

javax.realtime.memory.PhysicalMemoryRegion[] modules)
throws IllegalArgumentException,

RangeOutOfBoundsException

Description
Associates a programmer-defined name with an array of physical address ranges.

Parameters
name—is the physical memory characteristic. e.g STATIC_RAM.
modules—is an array of objects each representing a range of contiguous physical

addresses.
Throws

IllegalArgumentException—when either name or modules is null.
RangeOutOfBoundsException—when module overlaps a previously associated

PhysicalMemoryRegion instance or cannot be mapped as Java object storage.

createImmortalMemory(PhysicalMemorySelector, long,
Runnable)

Signature
public javax.realtime.ImmortalMemory
createImmortalMemory(PhysicalMemorySelector selector,

long size,
Runnable logic)

throws SecurityException,
SizeOutOfBoundsException,
UnsupportedPhysicalMemoryException,
MemoryTypeConflictException,
IllegalArgumentException

504 RTSJ 2.0 (Draft 57)

PhysicalMemoryFactory javax.realtime.memory 11.4

Description
Instantiates a javax.realtime.ImmortalMemory object in a PhysicalMemoryRe-
gion, where the memory type matches the PhysicalMemoryCharacteristic
instances in selector and the virtual memory parameters of selector are
applied.

Parameters
selector—Used to choose the memory module and set the virtual mapping.
size—The size of memory to be taken out of the selected module.
logic—The logic to execute on entry (may be null).

Throws
SecurityException—when the application does not have permission to access

physical memory or the given range of memory.
javax.realtime.SizeOutOfBoundsException—when the implementation detects

that size extends beyond a physically addressable memory module.
javax.realtime.UnsupportedPhysicalMemoryException—when the underlying

hardware does not support the given type, or when no matching PhysicalMem-
oryCharacteristic has been registered with this PhysicalMemoryFactory.

MemoryTypeConflictException—when the specified base does not point to mem-
ory that matches the requested type, or when type specifies incompatible
memory attributes.

IllegalArgumentException—when size is less than zero.
Returns
the new memory area

createLTMemory(PhysicalMemorySelector, long, Runnable)

Signature
public javax.realtime.memory.PinnableMemory
createLTMemory(PhysicalMemorySelector selector,

long size,
Runnable logic)

throws SecurityException,
SizeOutOfBoundsException,
UnsupportedPhysicalMemoryException,
MemoryTypeConflictException,
IllegalArgumentException

RTSJ 2.0 (Draft 57) 505

11 Alternative Memory Areas PhysicalMemoryFactory

Description
Instantiates a LTMemory object in a PhysicalMemoryRegion, matching the Phys-
icalMemoryCharacteristic in selector with virtual memory parameters of
selector applied.

Parameters
selector—Used to choose the memory module and set the virtual mapping.
size—The size of memory to be taken out of the selected module.
logic—The logic to execute on entry (may be null).

Throws
SecurityException—when the application does not have permission to access

physical memory or the given range of memory.
javax.realtime.SizeOutOfBoundsException—when the implementation detects

that size extends beyond a physically addressable memory module.
javax.realtime.UnsupportedPhysicalMemoryException—when the underlying

hardware does not support the given type, or when no matching PhysicalMem-
oryCharacteristic has been registered with this PhysicalMemoryFactory.

MemoryTypeConflictException—when the specified base does not point to mem-
ory that matches the requested type, or when type specifies incompatible
memory attributes.

IllegalArgumentException—when size is less than zero.
Returns
the new memory area

createPinnableMemory(PhysicalMemorySelector, long, Run-
nable)

Signature
public javax.realtime.memory.PinnableMemory
createPinnableMemory(PhysicalMemorySelector selector,

long size,
Runnable logic)

throws SecurityException,
SizeOutOfBoundsException,
UnsupportedPhysicalMemoryException,
MemoryTypeConflictException,
IllegalArgumentException

Description

506 RTSJ 2.0 (Draft 57)

PhysicalMemoryFactory javax.realtime.memory 11.4

Instantiates a PinnableMemory object in a PhysicalMemoryRegion, matching the
PhysicalMemoryCharacteristic in selector with virtual memory parameters
of selector applied.

Parameters
selector—Used to choose the memory module and set the virtual mapping.
size—The size of memory to be taken out of the selected module.
logic—The logic to execute on entry (may be null).

Throws
SecurityException—when the application does not have permissions to access

physical memory or the given range of memory.
javax.realtime.SizeOutOfBoundsException—when the implementation detects

that size extends beyond a physically addressable memory module.
javax.realtime.UnsupportedPhysicalMemoryException—when the underlying

hardware does not support the given type, or when no matching PhysicalMem-
oryCharacteristic has been registered with this PhysicalMemoryFactory.

MemoryTypeConflictException—when the specified base does not point to mem-
ory that matches the requested type, or when type specifies incompatible
memory attributes.

IllegalArgumentException—when size is less than zero.

Returns
the new memory area

createStackedMemory(PhysicalMemorySelector, long, long,
Runnable)

Signature
public javax.realtime.memory.StackedMemory
createStackedMemory(PhysicalMemorySelector selector,

long scopeSize,
long backingSize,
Runnable logic)

throws SecurityException,
SizeOutOfBoundsException,
UnsupportedPhysicalMemoryException,
MemoryTypeConflictException,
IllegalArgumentException

Description

RTSJ 2.0 (Draft 57) 507

11 Alternative Memory Areas PhysicalMemoryRegion

Instantiates a StackedMemory object in a PhysicalMemoryRegion, matching the
PhysicalMemoryCharacteristic in selector with virtual memory parameters
of selector applied.

Parameters
selector—Used to choose the memory module and set the virtual mapping.
scopeSize—The size of the scope to be created.
backingSize—The size of the backing store to take out of the selected module.
logic—The logic to execute on entry (may be null).

Throws
SecurityException—when the application does not have permissions to access

physical memory or the given range of memory.
javax.realtime.SizeOutOfBoundsException—when the implementation detects

that size extends beyond a physically addressable memory module.
javax.realtime.UnsupportedPhysicalMemoryException—when the underlying

hardware does not support the given type, or when no matching PhysicalMem-
oryCharacteristic has been registered with this PhysicalMemoryFactory.

MemoryTypeConflictException—when the specified base does not point to mem-
ory that matches the requested type, or when type specifies incompatible
memory attributes.

IllegalArgumentException—when scopeSize or backingSize is less than zero.

Returns
the new memory area

11.4.3.4 PhysicalMemoryRegion

public class PhysicalMemoryRegion

Inheritance
java.lang.Object
PhysicalMemoryRegion

Description
Enables an application to define a range of physical memory addresses.

Available since RTSJ 2.0

508 RTSJ 2.0 (Draft 57)

PhysicalMemoryRegion javax.realtime.memory 11.4

11.4.3.4.1 Constructors

PhysicalMemoryRegion(long, long)

Signature
public
PhysicalMemoryRegion(long base,

long length)

Description
Creates an instance representing a range of contiguous physical memory.

Parameters
base—A physical address.
length—The size of contiguous memory from that base.

Throws
IllegalArgumentException—when length is less than or equal to zero, or when

base is less than zero or when this module overlaps with another memory
module.

javax.realtime.SizeOutOfBoundsException—when base + length is greater
than the physical address range of the processor.

11.4.3.4.2 Methods

getBase

Signature
public long
getBase()

Description
Gets the base address of the contiguous memory represented by this.

Returns
the base address

RTSJ 2.0 (Draft 57) 509

11 Alternative Memory Areas PhysicalMemorySelector

getLength

Signature
public long
getLength()

Description
Gets the length of the contiguous memory represented by this.

Returns
the length

11.4.3.5 PhysicalMemorySelector

public class PhysicalMemorySelector

Inheritance
java.lang.Object
PhysicalMemorySelector

Description
Provides characteristics both for physical memory, used to select a memory
range from a memory module, and for virtual memory to be used for setting the
characteristics of the mapped pages.

Available since RTSJ 2.0

11.4.3.5.1 Constructors

PhysicalMemorySelector(PhysicalMemoryCharacteristic,
PhysicalMemoryCharacteristic, CachingBehavior, PagingBe-
havior)

Signature

510 RTSJ 2.0 (Draft 57)

PhysicalMemorySelector javax.realtime.memory 11.4

public
PhysicalMemorySelector(javax.realtime.memory.PhysicalMemoryCharacteristic[] request,

javax.realtime.memory.PhysicalMemoryCharacteristic[] reject,
PhysicalMemorySelector.CachingBehavior caching,
PhysicalMemorySelector.PagingBehavior paging)

Description
Creates a selector object for obtaining physical memory objects. The arguments
are used to select the desired memory type.

Parameters
request—characteristics that are required
reject—characteristics that should apply to the object
caching—the required caching behavior
paging—the required paging behavior

11.4.3.5.2 Methods

getSupportedCachingBehavior

Signature
public static javax.realtime.memory.PhysicalMemorySelector.CachingBehavior[]
getSupportedCachingBehavior()

Description
Gets the caching behaviors that are supported by this JVM

Returns
an array of the supported caching behaviors.

getSupportedPagingBehavior

Signature
public static javax.realtime.memory.PhysicalMemorySelector.PagingBehavior[]
getSupportedPagingBehavior()

Description
Gets the paging behaviors that are supported by this JVM

RTSJ 2.0 (Draft 57) 511

11 Alternative Memory Areas PhysicalMemorySelector

Returns
an array of the supported paging behaviors.

getRequestSet

Signature
public javax.realtime.memory.PhysicalMemoryCharacteristic[]
getRequestSet()

Description
A getter for the PhysicalMemoryCharacteristic list to be requested

Returns
the PhysicalMemoryCharacteristic list

getRejectSet

Signature
public javax.realtime.memory.PhysicalMemoryCharacteristic[]
getRejectSet()

Description
A getter for the PhysicalMemoryCharacteristic list to be excluded

Returns
the PysicalMemoryCharacteristic list

getCachingBehavior

Signature
public javax.realtime.memory.PhysicalMemorySelector.CachingBehavior
getCachingBehavior()

Description
A getter for the CachingBehavior to be requested

Returns
the CachingBehavior

512 RTSJ 2.0 (Draft 57)

PinnableMemory javax.realtime.memory 11.4

getPagingBehavior

Signature
public javax.realtime.memory.PhysicalMemorySelector.PagingBehavior
getPagingBehavior()

Description
A getter for the PagingBehavior to be requested

Returns
the PagingBehavior

11.4.3.6 PinnableMemory

public class PinnableMemory

Inheritance
java.lang.Object
javax.realtime.MemoryArea
ScopedMemory
PinnableMemory

Description
This class is for passing information between different threads as in the producer
consumer pattern. One thread can enter an empty PinnableMemory, allocate
some data structure, put a reference in the portal, pin the scope, exit it, and then
pass it to another thread for further processing or consumption. Once the last
thread is done, the memory can be unpinned, causing its contents to be freed.

Creation of a PinnableMemory may fail with an javax.realtime.
StaticOutOfMemoryError if the current javax.realtime.Schedulable has
been configured with a ScopeParameters.getMaxGlobalBackingStore that
would be exceeded by said creation.

Available since RTSJ 2.0

11.4.3.6.1 Constructors

RTSJ 2.0 (Draft 57) 513

11 Alternative Memory Areas PinnableMemory

PinnableMemory(long)

Signature
public
PinnableMemory(long size)
throws IllegalArgumentException,

StaticOutOfMemoryError

Description
Creates a scoped memory of fixed size that can be held open when no javax.
realtime.Schedulable has it on its scoped memory stack.

Parameters
size—The number of bytes in the memory area.

Throws
IllegalArgumentException—when size is less than zero.
javax.realtime.StaticOutOfMemoryError—when there is insufficient memory

for the PinnalbeMemory object or for its backing memory, or when the current
Schedulable would exceed its configured allowance of global backing store.

PinnableMemory(SizeEstimator)

Signature
public
PinnableMemory(SizeEstimator size)
throws IllegalArgumentException,

StaticOutOfMemoryError

Description
Equivalent to PinnableMemory(long) with size.getEstimate() as its argu-
ment.

Parameters
size—An estimator for determining the number of bytes in the memory area.

Throws
IllegalArgumentException—when size is null.
javax.realtime.StaticOutOfMemoryError—when there is insufficient memory

for the PinnalbeMemory object or for its backing memory, or when the current
Schedulable would exceed its configured allowance of global backing store.

514 RTSJ 2.0 (Draft 57)

PinnableMemory javax.realtime.memory 11.4

11.4.3.6.2 Methods

pin

Signature
public void
pin()
throws IllegalStateException

Description
Prevents the contents from being freed.

unpin

Signature
public void
unpin()
throws IllegalStateException

Description
Allows the contents to be freed the next time no javax.realtime.Schedulable
is active within the scope.

Throws
IllegalStateException—when schedulable does not have this memory area as

its current memory area.

isPinned

Signature
public boolean
isPinned()

Description
Determines whether the scope may be cleared on last exit.

Returns
true when yes, otherwise false.

RTSJ 2.0 (Draft 57) 515

11 Alternative Memory Areas PinnableMemory

getPinCount

Signature
public int
getPinCount()

Description
Finds out how many times the scope has been pinned, but not unpinned.

Returns
the number of outstanding pins.

joinPinned

Signature
public void
joinPinned()
throws InterruptedException

Description
Waits until the scope has been cleared and then pins it.

Throws
InterruptedException—when this schedulable is interrupted by

javax.realtime.Schedulable.interrupt() or javax.realtime.
AsynchronouslyInterruptedException.fire() while waiting for the
reference count to go to zero.

joinPinned(HighResolutionTime)

Signature
public void
joinPinned(javax.realtime.HighResolutionTime<T> limit)
throws InterruptedException

Description
Waits until the scope has been cleared and then pins it, within a specified time
frame.

Parameters

516 RTSJ 2.0 (Draft 57)

PinnableMemory javax.realtime.memory 11.4

limit—The maximum time to wait.
Throws

InterruptedException—when this schedulable is interrupted by
javax.realtime.Schedulable.interrupt() or javax.realtime.
AsynchronouslyInterruptedException.fire() while waiting for the
reference count to go to zero.

joinPinnedAndEnter(Runnable)

Signature
public void
joinPinnedAndEnter(Runnable logic)
throws InterruptedException,

ScopedCycleException

Description
Waits until the scope has been cleared, then pins it and enters it.

Parameters
logic—The logic to execute upon entry.

Throws
InterruptedException—when this schedulable is interrupted by

javax.realtime.Schedulable.interrupt() or javax.realtime.
AsynchronouslyInterruptedException.fire() while waiting for the
reference count to go to zero.

ScopedCycleException—when the caller is a schedulable and this invocation would
break the single parent rule.

joinPinnedAndEnter(Runnable, HighResolutionTime)

Signature
public void
joinPinnedAndEnter(Runnable logic,

javax.realtime.HighResolutionTime<T> limit)
throws InterruptedException,

ScopedCycleException

Description
Wait until the scope has been cleared, then pins it and enters it, within a specified
time frame.

RTSJ 2.0 (Draft 57) 517

11 Alternative Memory Areas PinnableMemory

Parameters
logic—The logic to execute upon entry.
limit—The maximum time to wait.

Throws
InterruptedException—when this schedulable is interrupted by

javax.realtime.Schedulable.interrupt() or javax.realtime.
AsynchronouslyInterruptedException.fire() while waiting for the
reference count to go to zero.

ScopedCycleException—when the caller is a schedulable and this invocation would
break the single parent rule.

joinPinnedAndEnter

Signature
public void
joinPinnedAndEnter()
throws InterruptedException,

IllegalSchedulableStateException,
ThrowBoundaryError,
ScopedCycleException,
MemoryAccessError

Description
Waits until the scope has been cleared, then pins it and enters it.

Throws
ThrowBoundaryError—Thrown when the JVM needs to propagate an exception

allocated in this scope to (or through) the memory area of the caller.
Storing a reference to that exception would cause an javax.realtime.
IllegalAssignmentError, so the JVM cannot be permitted to deliver the
exception. The javax.realtime.ThrowBoundaryError is allocated in the
current allocation context and contains information about the exception it
replaces.

ScopedCycleException—when the caller is a schedulable and this invocation would
break the single parent rule.

InterruptedException—when this schedulable is interrupted by
javax.realtime.Schedulable.interrupt() or javax.realtime.
AsynchronouslyInterruptedException.fire() while waiting for the
reference count to go to zero.

518 RTSJ 2.0 (Draft 57)

PinnableMemory javax.realtime.memory 11.4

IllegalSchedulableStateException—when the caller is a Java thread, or when
this method is invoked during finalization of objects in scoped memory and
entering this scoped memory area would force deletion of the SO that triggered
finalization. This would include the scope containing the SO, and the scope (if
any) containing the scope containing the SO.

MemoryAccessError—when calling schedulable may not use the heap and this
memory area’s logic value is allocated in heap memory.

joinPinnedAndEnter(HighResolutionTime)

Signature
public void
joinPinnedAndEnter(javax.realtime.HighResolutionTime<T> limit)
throws InterruptedException,

IllegalSchedulableStateException,
IllegalArgumentException,
UnsupportedOperationException,
ThrowBoundaryError,
ScopedCycleException,
MemoryAccessError

Description
Waits until the scope has been cleared, then pins it and enters it, within a
specified time frame.

Parameters
limit—The maximum time to wait.

Throws
ThrowBoundaryError—Thrown when the JVM needs to propagate an exception

allocated in this scope to (or through) the memory area of the caller.
Storing a reference to that exception would cause an javax.realtime.
IllegalAssignmentError, so the JVM cannot be permitted to deliver the
exception. The javax.realtime.ThrowBoundaryError is allocated in the
current allocation context and contains information about the exception it
replaces.

ScopedCycleException—when the caller is a schedulable and this invocation would
break the single parent rule.

InterruptedException—when this schedulable is interrupted by
javax.realtime.Schedulable.interrupt() or javax.realtime.

RTSJ 2.0 (Draft 57) 519

11 Alternative Memory Areas ScopeParameters

AsynchronouslyInterruptedException.fire() while waiting for the
reference count to go to zero.

IllegalSchedulableStateException—when the caller is a Java thread, or when
this method is invoked during finalization of objects in scoped memory and
entering this scoped memory area would force deletion of the SO that triggered
finalization. This would include the scope containing the SO, and the scope (if
any) containing the scope containing the SO.

IllegalArgumentException—when the caller is a schedulable, and time is null
or no non-null logic value was supplied to the memory area’s constructor.

MemoryAccessError—when calling schedulable may not use the heap and this
memory area’s logic value is allocated in heap memory.

UnsupportedOperationException—when the wait operation is not supported us-
ing the clock associated with time.

11.4.3.7 ScopeParameters

public class ScopeParameters

Inheritance
java.lang.Object
javax.realtime.MemoryParameters
ScopeParameters

Description
Extends memory parameters to provide limits for scoped memory.

See Section javax.realtime.MemoryParameters

Available since RTSJ 2.0

11.4.3.7.1 Constructors

ScopeParameters(long, long, long, long, long, long)

Signature

520 RTSJ 2.0 (Draft 57)

ScopeParameters javax.realtime.memory 11.4

public
ScopeParameters(long maxInitialArea,

long maxImmortal,
long allocationRate,
long maxContainingArea,
long maxInitialBackingStore,
long maxGlobalBackingStore)

throws IllegalArgumentException

Description
Creates a ScopeParameters instance with the given values that can allow access
to any ScopedMemory

Open issue 11.4.1
I don’t like that memory is returned to the maxGlobalBackingStore limit if

scopes are freed. This seems dangerous in the face of (possibly malicious) external
fragmentation of the global backing store. –elb
End of issue 11.4.1
Parameters
maxInitialArea—A limit on the amount of memory the schedulable may allo-

cate in its initial scoped memory area. Units are in bytes. When zero, no
allocation is allowed in the memory area. When the initial memory area is
not a ScopedMemory, this parameter has no effect. To specify no limit, use
UNLIMITED.

maxImmortal—A limit on the amount of memory the schedulable may allocate in
the immortal area. Units are in bytes. When zero, no allocation allowed in
immortal. To specify no limit, use UNLIMITED.

allocationRate—A limit on the rate of allocation in the heap. Units are in bytes
per second of wall clock time. When allocationRate is zero, no allocation is
allowed in the heap. To specify no limit, use UNLIMITED. Measurement starts
when the schedulable is first released for execution; not when it is constructed.
Enforcement of the allocation rate is an implementation option. When the
implementation does not enforce allocation rate limits, it treats all positive
allocation rate limits as UNLIMITED.

maxContainingArea—A limit on the amount of memory the schedulable may
allocate in memory area where it was created. Units are in bytes. When zero,
no allocation is allowed in the memory area. When the containing memory
area is not a ScopedMemory, this parameter has no effect. To specify no limit,
use UNLIMITED.

maxInitialBackingStore—A limit on the amount of backing store this task may

RTSJ 2.0 (Draft 57) 521

11 Alternative Memory Areas ScopeParameters

allocate from backing store of its inital memory area when that memory area is
an instance of StackedMemory, in bytes. When zero, no allocation is allowed
in that backing store. Backing store that is returned to the area backing store
is subtracted from the limit. To specify no limit, use UNLIMITED.

maxGlobalBackingStore—A limit on the amount of backing store this task may
allocate from the global backing store to scoped memory areas in bytes. When
zero, no allocation is allowed in the memory area. Backing store that is returned
to the global backing store is subtracted from the limit. To specify no limit,
use UNLIMITED.

Throws
IllegalArgumentException—when any value other than positive, zero, or javax.

realtime.MemoryParameters.UNREFERENCED is passed as the value of max-
InitialArea, maxImmortal, allocationRate, maxBackingStore, or maxCon-
tainingArea.

ScopeParameters(long, long, long, long)

Signature
public
ScopeParameters(long maxInitialArea,

long maxImmortal,
long maxContainingArea,
long maxInitialBackingStore)

throws IllegalArgumentException

Description
Same as ScopeParameters(maxInitialArea, maxImmortal,
MemoryParameters.UNLIMITED, maxContainingArea, maxInitialBack-
ingStore, 0). This constructor disallows root StackedMemory and LTMemory
allocation.

ScopeParameters(long, long, long)

Signature
public
ScopeParameters(long maxInitialArea,

long maxImmortal,

522 RTSJ 2.0 (Draft 57)

ScopeParameters javax.realtime.memory 11.4

long maxContainingArea)
throws IllegalArgumentException

Description

Same as ScopeParameters(maxInitialArea, maxImmortal,
MemoryParameters.UNREFERENCED, maxGlobalBackingStore, 0, 0). This
constructor disallows host StackedMemory and LTMemory allocation.

11.4.3.7.2 Methods

getMaxGlobalBackingStore

Signature
public long
getMaxGlobalBackingStore()

Description

Determines the limit on backing store for this task from the global pool.

Returns
the limit on backing store.

getMaxInitialBackingStore

Signature
public long
getMaxInitialBackingStore()

Description

Determines the limit on backing store for this task from its parent StackedMemory.

Returns
the limit on backing store.

RTSJ 2.0 (Draft 57) 523

11 Alternative Memory Areas ScopedMemory

getMaxContainingArea

Signature
public long
getMaxContainingArea()

Description
Determines the limit on allocation in the area where the task was created.

Returns
the limit on allocation in the area where the task was created.

11.4.3.8 ScopedMemory

public abstract class ScopedMemory

Inheritance
java.lang.Object
javax.realtime.MemoryArea
ScopedMemory

Description
ScopedMemory is the abstract base class of all classes dealing with representations
of memory spaces which have a limited lifetime. In general, objects allocated in
scoped memory are freed when, and only when, no schedulable object has access
to the objects in the scoped memory.

A ScopedMemory area is a connection to a particular region of memory and
reflects the current status of that memory. The object does not necessarily contain
direct references to the region of memory. That is implementation dependent.

When a ScopedMemory area is instantiated, the object itself is allocated
from the current memory allocation context, but the memory space that object
represents (its backing store) is allocated from memory that is not otherwise
directly visible to Java code; e.g., it might be allocated with the C malloc
function. This backing store behaves effectively as if it were allocated when the
associated scoped memory object is constructed and freed at that scoped memory
object’s finalization.

The ScopedMemory.enter method of ScopedMemory is one mechanism used
to make a memory area the current allocation context. The other mechanism
for activating a memory area is making it the initial memory area for a realtime

524 RTSJ 2.0 (Draft 57)

ScopedMemory javax.realtime.memory 11.4

thread or async event handler. Entry into the scope is accomplished, for example,
by calling the method:

public void enter(Runnable logic)

where logic is an instance of Runnable whose run() method represents the
entry point of the code that will run in the new scope. Exit from the scope
occurs between the time the runnable.run() method completes and the time
control returns from the enter method. By default, allocations of objects within
runnable.run() are taken from the backing store of the ScopedMemory.

ScopedMemory is an abstract class, but all specified methods include imple-
mentations. The responsibilities of MemoryArea, ScopedMemory and the classes
that extend ScopedMemory are not specified. Application code should not extend
ScopedMemory without detailed knowledge of its implementation. since RTSJ
2.0, moved from javax.realtime.

11.4.3.8.1 Methods

enter

Signature
public void
enter()
throws ScopedCycleException,

ThrowBoundaryError,
IllegalSchedulableStateException,
IllegalArgumentException,
MemoryAccessError

Description
Associates this memory area with the current schedulable for the duration of
the execution of the run() method of the instance of Runnable given in the
constructor. During this period of execution, this memory area becomes the
default allocation context until another default allocation context is selected
(using enter, or executeInArea) or the enter method exits.

RTSJ 2.0 (Draft 57) 525

11 Alternative Memory Areas ScopedMemory

Throws
ScopedCycleException—when this invocation would break the single parent rule.
ThrowBoundaryError—Thrown when the JVM needs to propagate an exception

allocated in this scope to (or through) the memory area of the caller.
Storing a reference to that exception would cause an javax.realtime.
IllegalAssignmentError, so the JVM cannot be permitted to deliver the
exception. The javax.realtime.ThrowBoundaryError is allocated in the
current allocation context and contains information about the exception it
replaces.

IllegalSchedulableStateException—when the execution context is not an in-
stance of javax.realtime.Schedulable or when this method is invoked during
finalization of objects in scoped memory and entering this scoped memory area
would force deletion of the execution context that triggered finalization. This
would include the scope containing the execution context, and the scope (if
any) containing the scope containing execution context.

IllegalArgumentException—when the caller is a schedulable and a null value
for logic was supplied when the memory area was constructed.

MemoryAccessError—when caller is a schedulable that may not use the heap and
this memory area’s logic value is allocated in heap memory.

enter(Runnable)

Signature
public void
enter(Runnable logic)
throws ScopedCycleException,

ThrowBoundaryError,
IllegalSchedulableStateException,
IllegalArgumentException

Description
Associates this memory area with the current schedulable for the duration of
the execution of the run() method of the given Runnable. During this period of
execution, this memory area becomes the default allocation context until another
default allocation context is selected (using enter, or executeInArea) or the
enter method exits.

Parameters
logic—The Runnable object whose run() method should be invoked.

Throws

526 RTSJ 2.0 (Draft 57)

ScopedMemory javax.realtime.memory 11.4

ScopedCycleException—when this invocation would break the single parent rule.
ThrowBoundaryError—when the JVM needs to propagate an exception allocated in

this scope to (or through) the memory area of the caller. Storing a reference to
that exception would cause an javax.realtime.IllegalAssignmentError, so
the JVM cannot be permitted to deliver the exception. The javax.realtime.
ThrowBoundaryError is allocated in the current allocation context and contains
information about the exception it replaces.

IllegalSchedulableStateException—when the execution context is not an in-
stance of javax.realtime.Schedulable or when this method is invoked during
finalization of objects in scoped memory and entering this scoped memory
area would force deletion of the task that triggered finalization. This would
include the scope containing the task, and the scope (if any) containing the
scope containing task.

IllegalArgumentException—when the caller is a schedulable and logic is null.

enter(Supplier)

Signature
public T
enter(java.util.function.Supplier<T> logic)
throws ScopedCycleException,

ThrowBoundaryError,
IllegalSchedulableStateException,
IllegalArgumentException

Description
Same as enter(Runnable) except that the executed method is called get and
an object is returned.

Parameters
logic—The object whose get method will be executed.

Returns
a result from the computation.

enter(BooleanSupplier)

Signature
public boolean
enter(BooleanSupplier logic)

RTSJ 2.0 (Draft 57) 527

11 Alternative Memory Areas ScopedMemory

throws ScopedCycleException,
ThrowBoundaryError,
IllegalSchedulableStateException,
IllegalArgumentException

Description
Same as enter(Runnable) except that the executed method is called get and a
boolean is returned.

Parameters
logic—the object whose get method will be executed.

Returns
a result from the computation.

enter(IntSupplier)

Signature
public int
enter(IntSupplier logic)
throws ScopedCycleException,

ThrowBoundaryError,
IllegalSchedulableStateException,
IllegalArgumentException

Description
Same as enter(Runnable) except that the executed method is called get and
an int is returned.

Parameters
logic—the object whose get method will be executed.

Returns
a result from the computation.

enter(LongSupplier)

Signature
public long
enter(LongSupplier logic)

528 RTSJ 2.0 (Draft 57)

ScopedMemory javax.realtime.memory 11.4

throws ScopedCycleException,
ThrowBoundaryError,
IllegalSchedulableStateException,
IllegalArgumentException

Description
Same as enter(Runnable) except that the executed method is called get and a
long is returned.

Parameters
logic—the object whose get method will be executed.

Returns
a result from the computation.

enter(DoubleSupplier)

Signature
public double
enter(DoubleSupplier logic)
throws ScopedCycleException,

ThrowBoundaryError,
IllegalSchedulableStateException,
IllegalArgumentException

Description
Same as enter(Runnable) except that the executed method is called get and a
double is returned.

Parameters
logic—the object whose get method will be executed.

Returns
a result from the computation.

executeInArea(Runnable)

Signature
public void
executeInArea(Runnable logic)

RTSJ 2.0 (Draft 57) 529

11 Alternative Memory Areas ScopedMemory

throws IllegalSchedulableStateException,
IllegalArgumentException,
InaccessibleAreaException

Description
Executes the run method from the logic parameter using this memory area as
the current allocation context. This method behaves as if it moves the allocation
context down the scope stack to the occurrence of this.

Parameters
logic—The runnable object whose run() method should be executed.

Throws
IllegalSchedulableStateException—when the execution context is not an in-

stance of javax.realtime.Schedulable.
InaccessibleAreaException—when the memory area is not in the schedulable’s

scope stack.
IllegalArgumentException—when the execution context is an instance of javax.

realtime.Schedulable schedulable and logic is null.

executeInArea(Supplier)

Signature
public T
executeInArea(java.util.function.Supplier<T> logic)
throws IllegalSchedulableStateException,

IllegalArgumentException,
InaccessibleAreaException

Description
Same as executeInArea(Runnable) except that the executed method is called
get and an object is returned.

Parameters
logic—the object whose get method will be executed.

Returns
a result from the computation.

executeInArea(BooleanSupplier)

Signature

530 RTSJ 2.0 (Draft 57)

ScopedMemory javax.realtime.memory 11.4

public boolean
executeInArea(BooleanSupplier logic)
throws IllegalSchedulableStateException,

IllegalArgumentException,
InaccessibleAreaException

Description
Same as executeInArea(Runnable) except that the executed method is called
get and a boolean is returned.

Parameters
logic—the object whose get method will be executed.

Returns
a result from the computation.

executeInArea(IntSupplier)

Signature
public int
executeInArea(IntSupplier logic)
throws IllegalSchedulableStateException,

IllegalArgumentException,
InaccessibleAreaException

Description
Same as executeInArea(Runnable) except that the executed method is called
get and an int is returned.

Parameters
logic—the object whose get method will be executed.

Returns
a result from the computation.

executeInArea(LongSupplier)

Signature
public long
executeInArea(LongSupplier logic)

RTSJ 2.0 (Draft 57) 531

11 Alternative Memory Areas ScopedMemory

throws IllegalSchedulableStateException,
IllegalArgumentException,
InaccessibleAreaException

Description
Same as executeInArea(Runnable) except that the executed method is called
get and a long is returned.

Parameters
logic—the object whose get method will be executed.

Returns
a result from the computation.

executeInArea(DoubleSupplier)

Signature
public double
executeInArea(DoubleSupplier logic)
throws IllegalSchedulableStateException,

IllegalArgumentException,
InaccessibleAreaException

Description
Same as executeInArea(Runnable) except that the executed method is called
get and a double is returned.

Parameters
logic—the object whose get method will be executed.

Returns
a result from the computation.

getPortal

Signature
public java.lang.Object
getPortal()
throws IllegalAssignmentError,

IllegalSchedulableStateException

Description

532 RTSJ 2.0 (Draft 57)

ScopedMemory javax.realtime.memory 11.4

Returns a reference to the portal object in this instance of ScopedMemory.
Assignment rules are enforced on the value returned by getPortal as if the

return value were first stored in an object allocated in the current allocation
context, then moved to its final destination.

Throws
javax.realtime.IllegalAssignmentError—when a reference to the portal object

cannot be stored in the caller’s allocation context; that is, when the object is
allocated in a more deeply nested scoped memory than the current allocation
context or not on the caller’s scope stack.

IllegalSchedulableStateException—when the execution context is not an in-
stance of javax.realtime.Schedulable.

Returns
a reference to the portal object or null when there is no portal object. The portal

value is always set to null when the contents of the memory are deleted.

getReferenceCount

Signature
public int
getReferenceCount()

Description
Returns the reference count of this ScopedMemory.

Note that a reference count of zero reliably means that the scope is not
referenced, but other reference counts are subject to artifacts of lazy/eager
maintenance by the implementation.

Returns
the reference count of this ScopedMemory.

join

Signature
public void
join()
throws InterruptedException

Description

RTSJ 2.0 (Draft 57) 533

11 Alternative Memory Areas ScopedMemory

Waits until the reference count of this ScopedMemory goes down to zero. Returns
immediately when the memory is unreferenced.

Throws
InterruptedException—when this schedulable is interrupted by

javax.realtime.RealtimeThread.interrupt() or javax.realtime.
AsynchronouslyInterruptedException.fire() while waiting for the
reference count to go to zero.

IllegalSchedulableStateException—when the execution context is not an in-
stance of javax.realtime.Schedulable.

join(HighResolutionTime)

Signature
public void
join(javax.realtime.HighResolutionTime<?> time)
throws InterruptedException

Description
Waits at most until the time designated by the time parameter for the reference
count of this ScopedMemory to drop to zero. Returns immediately when the
memory area is unreferenced.

Since the time is expressed as a javax.realtime.HighResolutionTime, this
method is an accurate timer with nanosecond granularity. The actual resolution
of the timer and even the quantity it measures depends on the clock associated
with time. The delay time may be relative or absolute. When relative, then the
delay is the amount of time given by time, and measured by its associated clock.
When absolute, then the delay is until the indicated value is reached by the clock.
When the given absolute time is less than or equal to the current value of the
clock, the call to join returns immediately.

Parameters
time—When this time is an absolute time, the wait is bounded by that point in

time. When the time is a relative time (or a member of the RationalTime
subclass of RelativeTime) the wait is bounded by a the specified interval from
some time between the time join is called and the time it starts waiting for
the reference count to reach zero.

Throws
InterruptedException—when this schedulable is interrupted by

javax.realtime.RealtimeThread.interrupt() or javax.realtime.

534 RTSJ 2.0 (Draft 57)

ScopedMemory javax.realtime.memory 11.4

AsynchronouslyInterruptedException.fire() while waiting for the
reference count to go to zero.

IllegalSchedulableStateException—when the execution context is not an in-
stance of javax.realtime.Schedulable.

IllegalArgumentException—when the execution context is a schedulable and
time is null.

UnsupportedOperationException—when the wait operation is not supported us-
ing the clock associated with time.

joinAndEnter

Signature
public void
joinAndEnter()
throws InterruptedException

Description
In the error-free case, joinAndEnter combines join();enter(); such that no
enter() from another schedulable can intervene between the two method invoca-
tions. The resulting method will wait for the reference count on this ScopedMemory
to reach zero, then enters the ScopedMemory and executes the run method from
logic passed in the constructor. When no instance of Runnable was passed to
the memory area’s constructor, the method throws IllegalArgumentException
immediately.

When multiple threads are waiting in joinAndEnter family methods for a
memory area, at most one of them will be released each time the reference count
goes to zero.

Note that although joinAndEnter guarantees that the reference count is zero
when the schedulable is released for entry, it does not guarantee that the reference
count will remain one for any length of time. A subsequent enter could raise
the reference count to two.

Throws
InterruptedException—when this schedulable is interrupted by

javax.realtime.RealtimeThread.interrupt() or javax.realtime.
AsynchronouslyInterruptedException.fire() while waiting for the
reference count to go to zero.

IllegalSchedulableStateException—when the execution context is not an in-
stance of javax.realtime.Schedulable or when this method is invoked during
finalization of objects in scoped memory and entering this scoped memory

RTSJ 2.0 (Draft 57) 535

11 Alternative Memory Areas ScopedMemory

area would force deletion of the task that triggered finalization. This would
include the scope containing the task, and the scope (if any) containing the
scope containing the task.

ThrowBoundaryError—when the JVM needs to propagate an exception allocated in
this scope to (or through) the memory area of the caller. Storing a reference to
that exception would cause an javax.realtime.IllegalAssignmentError, so
the JVM cannot be permitted to deliver the exception. The javax.realtime.
ThrowBoundaryError is allocated in the current allocation context and contains
information about the exception it replaces.

javax.realtime.ScopedCycleException—when this invocation would break the
single parent rule.

IllegalArgumentException—when the execution context is a schedulable and no
non-null logic value was supplied to the memory area’s constructor.

MemoryAccessError—when caller is a non-heap schedulable and this memory area’s
logic value is allocated in heap memory.

joinAndEnter(HighResolutionTime)

Signature
public void
joinAndEnter(javax.realtime.HighResolutionTime<?> time)
throws InterruptedException

Description
In the error-free case, joinAndEnter combines join();enter(); such that no
enter() from another schedulable can intervene between the two method invoca-
tions. The resulting method will wait for the reference count on this ScopedMemory
to reach zero, or for the current time to reach the designated time, then enter the
ScopedMemory and execute the run method from Runnable object passed to the
constructor. When no instance of Runnable was passed to the memory area’s
constructor, the method throws IllegalArgumentException immediately.

When multiple threads are waiting in joinAndEnter family methods for a
memory area, at most one of them will be released each time the reference count
goes to zero.

Since the time is expressed as a javax.realtime.HighResolutionTime, this
method has an accurate timer with nanosecond granularity. The actual resolution
of the timer and even the quantity it measures depends on the clock associated
with time. The delay time may be relative or absolute. When relative, then
the calling thread is blocked for at most the amount of time given by time, and

536 RTSJ 2.0 (Draft 57)

ScopedMemory javax.realtime.memory 11.4

measured by its associated clock. When absolute, then the time delay is until
the indicated value is reached by the clock. When the given absolute time is less
than or equal to the current value of the clock, the call to joinAndEnter behaves
effectively like enter.

Note that expiration of time may cause control to enter the memory area
before its reference count has gone to zero.

Parameters
time—The time that bounds the wait.

Throws
ThrowBoundaryError—when the JVM needs to propagate an exception allocated in

this scope to (or through) the memory area of the caller. Storing a reference to
that exception would cause an javax.realtime.IllegalAssignmentError, so
the JVM cannot be permitted to deliver the exception. The javax.realtime.
ThrowBoundaryError is allocated in the current allocation context and contains
information about the exception it replaces.

InterruptedException—when this schedulable is interrupted by
javax.realtime.RealtimeThread.interrupt() or javax.realtime.
AsynchronouslyInterruptedException.fire() while waiting for the
reference count to go to zero.

IllegalSchedulableStateException—when the execution context is not an in-
stance of javax.realtime.Schedulable or when this method is invoked during
finalization of objects in scoped memory and entering this scoped memory
area would force deletion of the task that triggered finalization. This would
include the scope containing the task, and the scope (if any) containing the
scope containing the task.

javax.realtime.ScopedCycleException—when the execution context is a sched-
ulable and this invocation would break the single parent rule.

IllegalArgumentException—when the execution context is a schedulable, and
time is null or no non-null logic value was supplied to the memory area’s
constructor.

UnsupportedOperationException—when the wait operation is not supported us-
ing the clock associated with time.

MemoryAccessError—when calling schedulable may not use the heap and this
memory area’s logic value is allocated in heap memory.

joinAndEnter(Runnable)

Signature

RTSJ 2.0 (Draft 57) 537

11 Alternative Memory Areas ScopedMemory

public void
joinAndEnter(Runnable logic)
throws InterruptedException

Description
In the error-free case, joinAndEnter combines join();enter(); such that no
enter() from another schedulable can intervene between the two method invoca-
tions. The resulting method will wait for the reference count on this ScopedMemory
to reach zero, then enter the ScopedMemory and execute the run method from
logic

When logic is null, the method throws IllegalArgumentException imme-
diately.

When multiple threads are waiting in joinAndEnter family methods for a
memory area, at most one of them will be released each time the reference count
goes to zero.

Note that although joinAndEnter guarantees that the reference count is zero
when the schedulable is released for entry, it does not guarantee that the reference
count will remain one for any length of time. A subsequent enter could raise
the reference count to two.

Parameters
logic—The Runnable object which contains the code to execute.

Throws
InterruptedException—when this schedulable is interrupted by

javax.realtime.RealtimeThread.interrupt() or javax.realtime.
AsynchronouslyInterruptedException.fire() while waiting for the
reference count to go to zero.

IllegalSchedulableStateException—when the execution context is not an in-
stance of javax.realtime.Schedulable or when this method is invoked during
finalization of objects in scoped memory and entering this scoped memory
area would force deletion of the task that triggered finalization. This would
include the scope containing the task, and the scope (if any) containing the
scope containing the task.

ThrowBoundaryError—thrown when the JVM needs to propagate an exception
allocated in this scope to (or through) the memory area of the caller.
Storing a reference to that exception would cause an javax.realtime.
IllegalAssignmentError, so the JVM cannot be permitted to deliver the
exception. The javax.realtime.ThrowBoundaryError is allocated in the
current allocation context and contains information about the exception it
replaces.

538 RTSJ 2.0 (Draft 57)

ScopedMemory javax.realtime.memory 11.4

javax.realtime.ScopedCycleException—when this invocation would break the
single parent rule.

IllegalArgumentException—when the execution context is a schedulable and
logic is null.

joinAndEnter(Supplier)

Signature
public T
joinAndEnter(java.util.function.Supplier<T> logic)

Description
Same as joinAndEnter(Runnable) except that the executed method is called
get and an object is returned.

Parameters
logic—The object whose get method will be executed.

Returns
a result from the computation.

Available since RTSJ 2.0

joinAndEnter(BooleanSupplier)

Signature
public boolean
joinAndEnter(BooleanSupplier logic)

Description
Same as joinAndEnter(Runnable) except that the executed method is called
get and a boolean is returned.

Parameters
logic—The object whose get method will be executed.

Returns
a result from the computation.

Available since RTSJ 2.0

RTSJ 2.0 (Draft 57) 539

11 Alternative Memory Areas ScopedMemory

joinAndEnter(IntSupplier)

Signature
public int
joinAndEnter(IntSupplier logic)

Description
Same as joinAndEnter(Runnable) except that the executed method is called
get and an int is returned.

Parameters
logic—The object whose get method will be executed.

Returns
a result from the computation.
Available since RTSJ 2.0

joinAndEnter(LongSupplier)

Signature
public long
joinAndEnter(LongSupplier logic)

Description
Same as joinAndEnter(Runnable) except that the executed method is called
get and a long is returned.

Parameters
logic—The object whose get method will be executed.

Returns
a result from the computation.
Available since RTSJ 2.0

joinAndEnter(DoubleSupplier)

Signature
public double
joinAndEnter(DoubleSupplier logic)

540 RTSJ 2.0 (Draft 57)

ScopedMemory javax.realtime.memory 11.4

Description
Same as joinAndEnter(Runnable) except that the executed method is called
get and a double is returned.

Parameters
logic—The object whose get method will be executed.

Returns
a result from the computation.

Available since RTSJ 2.0

joinAndEnter(Runnable, HighResolutionTime)

Signature
public void
joinAndEnter(Runnable logic,

javax.realtime.HighResolutionTime<?> time)
throws InterruptedException

Description
In the error-free case, joinAndEnter combines join();enter(); such that no
enter() from another schedulable can intervene between the two method invoca-
tions. The resulting method will wait for the reference count on this ScopedMemory
to reach zero, or for the current time to reach the designated time, then enter
the ScopedMemory and execute the run method from logic.

Since the time is expressed as a javax.realtime.HighResolutionTime, this
method is an accurate timer with nanosecond granularity. The actual resolution
of the timer and even the quantity it measures depends on the clock associated
with time. The delay time may be relative or absolute. When relative, then the
delay is the amount of time given by time, and measured by its associated clock.
When absolute, then the delay is until the indicated value is reached by the clock.
When the given absolute time is less than or equal to the current value of the
clock, the call to joinAndEnter behaves effectively like enter(Runnable).

The method throws IllegalArgumentException immediately when logic is
null.

When multiple threads are waiting in joinAndEnter family methods for a
memory area, at most one of them will be released each time the reference count
goes to zero.

Note that expiration of time may cause control to enter the memory area
before its reference count has gone to zero.

RTSJ 2.0 (Draft 57) 541

11 Alternative Memory Areas ScopedMemory

Parameters
logic—The Runnable object which contains the code to execute.
time—The time that bounds the wait.

Throws
InterruptedException—when this schedulable is interrupted by

javax.realtime.RealtimeThread.interrupt() or javax.realtime.
AsynchronouslyInterruptedException.fire() while waiting for the
reference count to go to zero.

IllegalSchedulableStateException—when the execution context is not an in-
stance of javax.realtime.Schedulable or when this method is invoked during
finalization of objects in scoped memory and entering this scoped memory
area would force deletion of the task that triggered finalization. This would
include the scope containing the task, and the scope (if any) containing the
scope containing the task.

ThrowBoundaryError—when the JVM needs to propagate an exception allocated in
this scope to (or through) the memory area of the caller. Storing a reference to
that exception would cause a javax.realtime.IllegalAssignmentError, so
the JVM cannot be permitted to deliver the exception. The javax.realtime.
ThrowBoundaryError is preallocated and saves information about the exception
it replaces.

javax.realtime.ScopedCycleException—when the execution context is a sched-
ulable and this invocation would break the single parent rule.

IllegalArgumentException—when the execution context is a schedulable and
time or logic is null.

UnsupportedOperationException—when the wait operation is not supported us-
ing the clock associated with time.

joinAndEnter(Supplier, HighResolutionTime)

Signature
public P
joinAndEnter(java.util.function.Supplier<P> logic,

javax.realtime.HighResolutionTime<?> time)

Description
Same as joinAndEnter(Runnable, HighResolutionTime) except that the exe-
cuted method is called get and an object is returned.

Parameters

542 RTSJ 2.0 (Draft 57)

ScopedMemory javax.realtime.memory 11.4

logic—The object whose get method will be executed.
Returns
a result from the computation.
Available since RTSJ 2.0

joinAndEnter(BooleanSupplier, HighResolutionTime)

Signature
public boolean
joinAndEnter(BooleanSupplier logic,

javax.realtime.HighResolutionTime<?> time)

Description
Same as joinAndEnter(Runnable, HighResolutionTime) except that the exe-
cuted method is called get and a boolean is returned.

Parameters
logic—The object whose get method will be executed.

Returns
a result from the computation.
Available since RTSJ 2.0

joinAndEnter(IntSupplier, HighResolutionTime)

Signature
public int
joinAndEnter(IntSupplier logic,

javax.realtime.HighResolutionTime<?> time)

Description
Same as joinAndEnter(Runnable, HighResolutionTime) except that the exe-
cuted method is called get and an int is returned.

Parameters
logic—The object whose get method will be executed.

Returns
a result from the computation.
Available since RTSJ 2.0

RTSJ 2.0 (Draft 57) 543

11 Alternative Memory Areas ScopedMemory

joinAndEnter(LongSupplier, HighResolutionTime)

Signature
public long
joinAndEnter(LongSupplier logic,

javax.realtime.HighResolutionTime<?> time)

Description
Same as joinAndEnter(Runnable, HighResolutionTime) except that the exe-
cuted method is called get and a long is returned.

Parameters
logic—The object whose get method will be executed.

Returns
a result from the computation.

Available since RTSJ 2.0

joinAndEnter(DoubleSupplier, HighResolutionTime)

Signature
public double
joinAndEnter(DoubleSupplier logic,

javax.realtime.HighResolutionTime<?> time)

Description
Same as joinAndEnter(Runnable, HighResolutionTime) except that the exe-
cuted method is called get and a double is returned.

Parameters
logic—The object whose get method will be executed.

Returns
a result from the computation.

Available since RTSJ 2.0

visitNestedMemory(Consumer)

Signature

544 RTSJ 2.0 (Draft 57)

ScopedMemory javax.realtime.memory 11.4

public void
visitNestedMemory(java.util.function.Consumer<javax.realtime.MemoryArea> visitor)
throws IllegalArgumentException,

ForEachTerminationException

Description
A means of accessing all live nested memory areas contained in this mem-
ory area, even those to which no reference exits, such a javax.realtime.
memory.PinnableMemory that is pinned or another javax.realtime.memory.
ScopedMemory that contains a Schedulable. The set may be concurrently modi-
fied by other tasks, but the view seen by the visitor may not be updated to reflect
those changes. The following is guaranteed even when the set is disturbed by
other tasks:
• the visitor shall visit no member more than once,
• it shall visit only scopes that were a member of the set at some time during

the enumeration of the set, and
• it shall visit all the scopes that are not deleted during the execution of the
visitor.

Performs an action on all children scopes of this memory area, so long as the
visitor does not throw ForEachTerminationException. When that is thrown,
the visit is terminated. A closure could be used to capture the last element
visited.

When execution of the visitor’s consume method is terminated abruptly by
throwing an exception, then execution of visitScopedChildren also terminates
abruptly by throwing the same exception.

Parameters
visitor—Determines the action to be performed on each of the children scopes.

Throws
IllegalArgumentException—when visitor is null.
javax.realtime.ForEachTerminationException—null

newArray(Class, int)

Signature
public java.lang.Object
newArray(java.lang.Class<?> type,

int number)

Description

RTSJ 2.0 (Draft 57) 545

11 Alternative Memory Areas ScopedMemory

Allocates an array of the given type in this memory area. This method may be
concurrently used by multiple threads.

Parameters
type—The class of the elements of the new array. To create an array of a primitive

type use a type such as Integer.TYPE (which would call for an array of the
primitive int type.)

number—The number of elements in the new array.
Throws

IllegalArgumentException—when number is less than zero, type is null, or type
is java.lang.Void.TYPE.

javax.realtime.StaticOutOfMemoryError—null
IllegalSchedulableStateException—when the execution context is not an in-

stance of javax.realtime.Schedulable.
InaccessibleAreaException—when the memory area is not in the schedulable’s

scope stack.
Returns
a new array of class type, of number elements.

newInstance(Class)

Signature
public T
newInstance(java.lang.Class<T> type)
throws IllegalAccessException,

IllegalArgumentException,
ExceptionInInitializerError,
StaticOutOfMemoryError,
InstantiationException,
IllegalSchedulableStateException,
InaccessibleAreaException

Description
Allocates an object in this memory area. This method may be concurrently used
by multiple threads.

Parameters
type—The class of which to create a new instance.

Throws
IllegalAccessException—The class or initializer is inaccessible.

546 RTSJ 2.0 (Draft 57)

ScopedMemory javax.realtime.memory 11.4

IllegalArgumentException—when type is null.
ExceptionInInitializerError—when an unexpected exception has occurred in

a static initializer.
javax.realtime.StaticOutOfMemoryError—null
InstantiationException—when the specified class object could not be instanti-

ated. Possible causes are it is an interface, it is abstract, or it is an array.
IllegalSchedulableStateException—when the execution context is not an in-

stance of javax.realtime.Schedulable.
InaccessibleAreaException—when the memory area is not in the schedulable’s

scope stack.
Returns
a new instance of class type.

newInstance(Constructor, Object)

Signature
public T
newInstance(java.lang.reflect.Constructor<T> c,

java.lang.Object[] args)
throws IllegalAccessException,

InstantiationException,
InvocationTargetException

Description
Allocates an object in this memory area. This method may be concurrently used
by multiple threads.

Parameters
c—T The constructor for the new instance.
args—An array of arguments to pass to the constructor.

Throws
IllegalAccessException—when the class or initializer is inaccessible under Java

access control.
InstantiationException—when the specified class object could not be instanti-

ated. Possible causes are it is an interface, it is abstract, it is an array.
javax.realtime.StaticOutOfMemoryError—null
IllegalArgumentException—when c is null, or the args array does not contain

the number of arguments required by c. A null value of args is treated like
an array of length 0.

RTSJ 2.0 (Draft 57) 547

11 Alternative Memory Areas ScopedMemory

IllegalSchedulableStateException—when the execution context is not an in-
stance of javax.realtime.Schedulable.

InvocationTargetException—when the underlying constructor throws an excep-
tion.

InaccessibleAreaException—when the memory area is not in the schedulable’s
scope stack.

Returns
a new instance of the object constructed by c.

setPortal(Object)

Signature
public void
setPortal(Object object)
throws IllegalSchedulableStateException,

IllegalAssignmentError,
InaccessibleAreaException

Description
Sets the portal object of the memory area represented by this instance of Scoped-
Memory to the given object. The object must have been allocated in this Scoped-
Memory instance.

Parameters
object—The object which will become the portal for this. When null the previous

portal object remains the portal object for this or when there was no previous
portal object then there is still no portal object for this.

Throws
IllegalSchedulableStateException—when the execution context is not an in-

stance of javax.realtime.Schedulable.
IllegalAssignmentError—when the execution context is an instance of javax.

realtime.Schedulable, and object is not allocated in this scoped memory
instance and not null.

InaccessibleAreaException—when the execution context is a schedulable, this
memory area is not in the caller’s scope stack and object is not null.

backingStoreSize

Signature

548 RTSJ 2.0 (Draft 57)

ScopedMemory javax.realtime.memory 11.4

public long
backingStoreSize()

Description
Determines the total amount of backing store for this scoped memory and its
children.

Returns
the total amount of backing store.
Available since RTSJ 2.0

backingStoreRemaining

Signature
public long
backingStoreRemaining()

Description
Determines the remaining amount of backing store available to this scoped
memory and its children.

Returns
the total amount of backing store.
Available since RTSJ 2.0

backingStoreConsumed

Signature
public long
backingStoreConsumed()

Description
Determines the amount of backing store consumed by this scoped memory and
its children.

Returns
the total amount of backing store.
Available since RTSJ 2.0

RTSJ 2.0 (Draft 57) 549

11 Alternative Memory Areas StackedMemory

toString

Signature
public java.lang.String
toString()

Description
Returns a user-friendly representation of this ScopedMemory of the form <class-
name>@<num> where <class-name> is the name of the class, e.g. javax.realtime.
memory.ScopedMemory, and <num> is a number that uniquely identifies this scoped
memory area.

Returns
the string representation

11.4.3.9 StackedMemory

public class StackedMemory

Inheritance
java.lang.Object
javax.realtime.MemoryArea
ScopedMemory
StackedMemory

Description
StackedMemory implements a scoped memory allocation area and backing store
management system. It is designed to allow for safe, fragmentation-free manage-
ment of scoped allocation with certain strong guarantees provided by the virtual
machine and runtime libraries.

Each StackedMemory instance represents a single object allocation area and
additional memory associated with it in the form of a backing store. The backing
store associated with a StackedMemory is a fixed-size memory area allocated
at or before instantiation of the StackedMemory. The object allocation area is
taken from the associated backing store, and the backing store may be further
subdivided into additional StackedMemory allocation areas or backing stores by
instantiating additional StackedMemory objects.

When a StackedMemory is created with a backing store, the backing store
may be taken from a notional global backing store, in which case it is effectively
immortal, or it may be taken from the enclosing StackedMemory’s backing store

550 RTSJ 2.0 (Draft 57)

StackedMemory javax.realtime.memory 11.4

when the scope in which it is created is also a StackedMemory. In this case it
is returned to its enclosing scope’s backing store when the object is finalized.
Implementations should return the space occupied by backing stores taken from
the global backing store when their associated StackedMemory object is finalized.

These backing store semantics divide instances of StackedMemory into two
categories:
• host — this denotes a StackedMemory with an object allocation area created
in a new backing store, allocated either from the global store or from a
parent StackedMemory’s backing store, and
• guest — this in turn indicates a StackedMemory with an object allocation
area taken directly from a parent StackedMemory’s backing store without
creating a sub-store.

In addition, there is one distinguished status for StackedMemory object: root.
A root StackedMemory is a host StackedMemory created with a backing store
drawn directly from the global backing store, created in an allocation context of
some type other than StackedMemory.

javax.realtime.StaticOutOfMemoryError if the current javax.
realtime.Schedulable is configured with a limit on ScopeParameters.
maxGlobalBackingStore and creation of the root StackedMemory would exceed
that limit.

Creation of a StackedMemory is subject to additional restrictions if the cur-
rent Schedulable is configured with an explicit initial memory area of type
StackedMemory. In this case, the following rules apply:
• Construction of a root StackedMemory will fail and throw a Stati-

cOutOfMemoryError regardless of the value of the Schedulable’s
ScopeParameters.maxGlobalBackingStore.
• Construction of a StackedMemory from a current allocation context that is

not the Schedulable’s explicit initial memory area or one of its descendents
in the scope stack will fail and throw StaticOutOfMemoryError.
• A maximum of ScopeParameters.maxInitialBackingStore bytes may be

allocated directly from the backing store of the Schedulable’s explicit initial
memory area over the lifetime of the Schedulable. Any operation that
would exceed this limit (whether by resizing the allocation area of the
explicit initial memory area or a guest area in the same backing store, or by
allocating a new StackedMemory with the explicit initial memory area as the
current allocation context) will fail and throw a StaticOutOfMemoryError.

Allocations from a StackedMemory object allocation area are guaranteed to
run in time linear in the size of the allocation. All memory for the backing store
must be reserved at object construction time.

StackedMemory memory areas have two additional stacking constraints in

RTSJ 2.0 (Draft 57) 551

11 Alternative Memory Areas StackedMemory

addition to the single parent rule, designed to enable fragmentation-free manipu-
lation:
• a StackedMemory that is created when another StackedMemory is the current

allocation context can only be entered from the same allocation context in
which it was created, and
• a guest StackedMemory cannot be created from a StackedMemory that cur-
rently has another child area that is also a guest StackedMemory, i.e., a
StackedMemory can have at most one direct child that is a guest Stacked-
Memory.

The StackedMemory constructor semantics also enforce the property that
a StackedMemory cannot be created from another StackedMemory allocation
context unless it is allocated from that context’s backing store as either a host or
guest area.

The backing store of a StackedMemory behaves as if any StackedMemory
object allocation areas are at the “bottom” of the backing store, while the backing
stores for enclosed StackedMemory areas are taken from the “top” of the backing
store.

There may be an implementation-specific memory overhead for creating a
backing store of a given size. This means that creating a StackedMemory with
a backing store of exactly the remaining available backing store of the current
StackedMemory may fail with an javax.realtime.StaticOutOfMemoryError.
This overhead must be bounded by a constant.

Available since RTSJ 2.0

11.4.3.9.1 Constructors

StackedMemory(long, long, Runnable)

Signature
public
StackedMemory(long scopeSize,

long backingSize,
Runnable logic)

Description

552 RTSJ 2.0 (Draft 57)

StackedMemory javax.realtime.memory 11.4

Creates a host StackedMemory with an object allocation area and backing store
of the specified sizes, bound to the specified Runnable. The backing store is
allocated from the currently active memory area when it is also a StackedMemory,
and the global backing store otherwise. The object allocation area is allocated
from the backing store.

Parameters
scopeSize—Size of the allocation area within the backing store.
backingSize—Size of the total backing store.
logic—Runnable to be entered using this as its current memory area when

enter() is called.
Throws

IllegalArgumentException—when either scopeSize or backingSize is less than
zero, or when scopeSize is too large to be allocated from a backing store of
size backingSize.

javax.realtime.StaticOutOfMemoryError—when there is insufficient memory
available to reserve the requested backing store.

StackedMemory(SizeEstimator, SizeEstimator, Runnable)

Signature
public
StackedMemory(SizeEstimator scopeSize,

SizeEstimator backingSize,
Runnable logic)

Description

Equivalent to StackedMemory(long, long, Runnable) with argument list
(scopeSize.getEstimate(), backingSize.getEstimate(), runnable).

Parameters
scopeSize—SizeEstimator indicating the size of the object allocation area within

the backing store.
backingSize—SizeEstimator indicating the size of the total backing store.
logic—Runnable to be entered using this as its current memory area when

enter() is called.
Throws

RTSJ 2.0 (Draft 57) 553

11 Alternative Memory Areas StackedMemory

IllegalArgumentException—when either scopeSize or backingSize is null, or
when scopeSize.getEstimate() is too large to be allocated from a backing
store of size backingSize.getEstimate().

javax.realtime.StaticOutOfMemoryError—when there is insufficient memory
available to reserve the requested backing store.

StackedMemory(long, long)

Signature
public
StackedMemory(long scopeSize,

long backingSize)

Description
Equivalent to StackedMemory(long, long, Runnable) with argument list
(scopeSize, backingSize, null).

Parameters
scopeSize—Size of the allocation area within the backing store.
backingSize—Size of the total backing store.

Throws
IllegalArgumentException—when either scopeSize or backingSize is less than

zero, or when scopeSize is too large to be allocated from a backing store of
size backingSize.

javax.realtime.StaticOutOfMemoryError—when there is insufficient memory
available to reserve the requested backing store.

StackedMemory(SizeEstimator, SizeEstimator)

Signature
public
StackedMemory(SizeEstimator scopeSize,

SizeEstimator backingSize)

Description
Equivalent to StackedMemory(long, long, Runnable) with argument list
(scopeSize.getEstimate(), backingSize.getEstimate(), null).

554 RTSJ 2.0 (Draft 57)

StackedMemory javax.realtime.memory 11.4

Parameters
scopeSize—SizeEstimator indicating the size of the object allocation area within

the backing store.
backingSize—SizeEstimator indicating the size of the total backing store.

Throws
IllegalArgumentException—when either scopeSize or backingSize is null, or

when scopeSize.getEstimate() is too large to be allocated from a backing
store of size. backingSize.getEstimate().

javax.realtime.StaticOutOfMemoryError—when there is insufficient memory
available to reserve the requested backing store.

StackedMemory(long, Runnable)

Signature
public
StackedMemory(long scopeSize,

Runnable logic)

Description

Create a guest StackedMemory with an object allocation area of the specified
size, bound to the specified Runnable. The object allocation area is drawn from
the same backing store as the parent scope’s object allocation area. The parent
scope must be a StackedMemory.

Parameters
scopeSize—Size of the allocation area within the backing store.
logic—Runnable to be entered using this as its current memory area when

enter() is called.
Throws

IllegalStateException—when the parent memory area is not a StackedMemory,
or when the parent StackedMemory already has a child that is also a guest
StackedMemory.

IllegalArgumentException—when scopeSize is less than zero.
javax.realtime.StaticOutOfMemoryError—when there is insufficient memory

available in the backing store of the parent StackedMemory’s object allocation
area to reserve the requested object allocation area.

RTSJ 2.0 (Draft 57) 555

11 Alternative Memory Areas StackedMemory

StackedMemory(SizeEstimator, Runnable)

Signature
public
StackedMemory(SizeEstimator scopeSize,

Runnable logic)

Description
Equivalent to StackedMemory(long, Runnable) with argument list (scopeSize.
getEstimate(), runnable).

Parameters
scopeSize—SizeEstimator indicating the size of the object allocation area within

the backing store.
logic—Runnable to be entered using this as its current memory area when

enter() is called.
Throws

IllegalStateException—when the parent memory area is not a StackedMemory,
or when the parent StackedMemory already has a child that is also a guest
StackedMemory.

IllegalArgumentException—when scopeSize is null.
javax.realtime.StaticOutOfMemoryError—when there is insufficient memory

available in the backing store of the parent StackedMemory’s object allocation
area to reserve the requested object allocation area.

StackedMemory(long)

Signature
public
StackedMemory(long scopeSize)

Description
Equivalent to StackedMemory(long, Runnable) with argument list (scopeSize,
null).

Parameters
scopeSize—Size of the allocation area within the backing store.

Throws

556 RTSJ 2.0 (Draft 57)

StackedMemory javax.realtime.memory 11.4

IllegalStateException—when the parent memory area is not a StackedMemory,
or when the parent StackedMemory already has a child that is also a guest
StackedMemory.

IllegalArgumentException—when scopeSize is less than zero.
javax.realtime.StaticOutOfMemoryError—when there is insufficient memory

available in the backing store of the parent StackedMemory’s object allocation
area to reserve the requested object allocation area.

StackedMemory(SizeEstimator)

Signature
public
StackedMemory(SizeEstimator scopeSize)

Description
Equivalent to StackedMemory(long, Runnable) with argument list (scopeSize.
getEstimate(), null).

Parameters
scopeSize—SizeEstimator indicating the size of the object allocation area within

the backing store.
Throws

IllegalStateException—when the parent memory area is not a StackedMemory,
or when the parent StackedMemory already has a child that is also a guest
StackedMemory.

IllegalArgumentException—when scopeSize is null.
javax.realtime.StaticOutOfMemoryError—when there is insufficient memory

available in the backing store of the parent StackedMemory’s object allocation
area to reserve the requested object allocation area.

11.4.3.9.2 Methods

resize(long)

Signature

RTSJ 2.0 (Draft 57) 557

11 Alternative Memory Areas StackedMemory

public void
resize(long scopeSize)

Description
Changes the size of the object allocation area for this scope. This method may
be used to either grow or shrink the allocation area when there are no objects
allocated in the scope and no Schedulable object has this area as its current
allocation context. It may be used to shrink the allocation area down to the size
of its current usage when the calling Schedulable object is the only object that
has this area on its scope stack and there are no guest StackedMemory object
allocation areas created after this area in the same backing store but not yet
finalized.

Parameters
scopeSize—The new allocation area size for this scope.

Throws
IllegalStateException—when the caller is not permitted to perform the re-

quested adjustment or there are additional guest StackedMemory allocation
areas after this one in the backing store.

javax.realtime.StaticOutOfMemoryError—when the remaining backing store is
insufficient for the requested adjustment.

getMaximumSize

Signature
public long
getMaximumSize()

Description
Gets the maximum size this memory area can attain. The value returned by
this function is the maximum size that can currently be passed to resize(long)
without triggering an OutOfMemoryException.

Returns
the maximum size attainable.

enter

Signature

558 RTSJ 2.0 (Draft 57)

StackedMemory javax.realtime.memory 11.4

public void
enter()

Description
Associates this memory area with the current Schedulable object for the duration
of the run() method of the instance of Runnable given in this object’s constructor.
During this period of execution, this memory area becomes the default allocation
context until another default allocation context is selected.

This method may only be called from the memory area in which this scope
was created.

Throws
IllegalStateException—when the currently active memory area is a Stacked-

Memory and is not the area in which this scope was created, or the current
memory area is not a StackedMemory and this StackedMemory is not a root
area.

ThrowBoundaryError—Thrown when the JVM needs to propagate an exception
allocated in this scope to (or through) the memory area of the caller.
Storing a reference to that exception would cause an javax.realtime.
IllegalAssignmentError, so the JVM cannot be permitted to deliver the
exception. The javax.realtime.ThrowBoundaryError is allocated in the
current allocation context and contains information about the exception it
replaces.

IllegalSchedulableStateException—when the execution context is not an in-
stance of javax.realtime.Schedulable or when this method is invoked during
finalization of objects in scoped memory and entering this scoped memory area
would force deletion of the execution context that triggered finalization. This
would include the scope containing the execution context, and the scope (if
any) containing the scope containing execution context.

MemoryAccessError—when caller is a schedulable that may not use the heap and
this memory area’s logic value is allocated in heap memory.

See Section ScopedMemory.enter()

enter(Runnable)

Signature
public void
enter(Runnable logic)

RTSJ 2.0 (Draft 57) 559

11 Alternative Memory Areas StackedMemory

Description
Associates this memory area with the current Schedulable object for the duration
of the run() method of the given Runnable. During this period of execution,
this memory area becomes the default allocation context until another default
allocation context is selected.

This method may only be called from the memory area in which this scope
was created.

Throws
IllegalStateException—when the currently active memory area is a Stacked-

Memory and is not the area in which this scope was created, or the current
memory area is not a StackedMemory and this StackedMemory is not a root
area.

ThrowBoundaryError—when the JVM needs to propagate an exception allocated in
this scope to (or through) the memory area of the caller. Storing a reference to
that exception would cause an javax.realtime.IllegalAssignmentError, so
the JVM cannot be permitted to deliver the exception. The javax.realtime.
ThrowBoundaryError is allocated in the current allocation context and contains
information about the exception it replaces.

IllegalSchedulableStateException—when the execution context is not an in-
stance of javax.realtime.Schedulable or when this method is invoked during
finalization of objects in scoped memory and entering this scoped memory
area would force deletion of the task that triggered finalization. This would
include the scope containing the task, and the scope (if any) containing the
scope containing task.

MemoryAccessError—null
See Section ScopedMemory.enter(Runnable)

joinAndEnter

Signature
public void
joinAndEnter()

Description
In the error-free case, joinAndEnter combines join();enter(); such that no
enter() from another schedulable can intervene between the two method invoca-
tions. The resulting method will wait for the reference count on this ScopedMemory
to reach zero, then enters the ScopedMemory and executes the run method from

560 RTSJ 2.0 (Draft 57)

StackedMemory javax.realtime.memory 11.4

logic passed in the constructor. When no instance of Runnable was passed to
the memory area’s constructor, the method throws IllegalArgumentException
immediately.

When multiple threads are waiting in joinAndEnter family methods for a
memory area, at most one of them will be released each time the reference count
goes to zero.

Note that although joinAndEnter guarantees that the reference count is zero
when the schedulable is released for entry, it does not guarantee that the reference
count will remain one for any length of time. A subsequent enter could raise
the reference count to two.

Throws
InterruptedException—when this schedulable is interrupted by

javax.realtime.RealtimeThread.interrupt() or javax.realtime.
AsynchronouslyInterruptedException.fire() while waiting for the
reference count to go to zero.

IllegalSchedulableStateException—when the execution context is not an in-
stance of javax.realtime.Schedulable or when this method is invoked during
finalization of objects in scoped memory and entering this scoped memory
area would force deletion of the task that triggered finalization. This would
include the scope containing the task, and the scope (if any) containing the
scope containing the task.

ThrowBoundaryError—when the JVM needs to propagate an exception allocated in
this scope to (or through) the memory area of the caller. Storing a reference to
that exception would cause an javax.realtime.IllegalAssignmentError, so
the JVM cannot be permitted to deliver the exception. The javax.realtime.
ThrowBoundaryError is allocated in the current allocation context and contains
information about the exception it replaces.

javax.realtime.ScopedCycleException—when this invocation would break the
single parent rule.

IllegalArgumentException—when the execution context is a schedulable and no
non-null logic value was supplied to the memory area’s constructor.

MemoryAccessError—when caller is a non-heap schedulable and this memory area’s
logic value is allocated in heap memory.

joinAndEnter(HighResolutionTime)

Signature
public void
joinAndEnter(javax.realtime.HighResolutionTime<?> time)

RTSJ 2.0 (Draft 57) 561

11 Alternative Memory Areas StackedMemory

throws InterruptedException

Description
In the error-free case, joinAndEnter combines join();enter(); such that no
enter() from another schedulable can intervene between the two method invoca-
tions. The resulting method will wait for the reference count on this ScopedMemory
to reach zero, or for the current time to reach the designated time, then enter the
ScopedMemory and execute the run method from Runnable object passed to the
constructor. When no instance of Runnable was passed to the memory area’s
constructor, the method throws IllegalArgumentException immediately.

When multiple threads are waiting in joinAndEnter family methods for a
memory area, at most one of them will be released each time the reference count
goes to zero.

Since the time is expressed as a javax.realtime.HighResolutionTime, this
method has an accurate timer with nanosecond granularity. The actual resolution
of the timer and even the quantity it measures depends on the clock associated
with time. The delay time may be relative or absolute. When relative, then
the calling thread is blocked for at most the amount of time given by time, and
measured by its associated clock. When absolute, then the time delay is until
the indicated value is reached by the clock. When the given absolute time is less
than or equal to the current value of the clock, the call to joinAndEnter behaves
effectively like enter.

Note that expiration of time may cause control to enter the memory area
before its reference count has gone to zero.

Parameters
time—The time that bounds the wait.

Throws
ThrowBoundaryError—when the JVM needs to propagate an exception allocated in

this scope to (or through) the memory area of the caller. Storing a reference to
that exception would cause an javax.realtime.IllegalAssignmentError, so
the JVM cannot be permitted to deliver the exception. The javax.realtime.
ThrowBoundaryError is allocated in the current allocation context and contains
information about the exception it replaces.

InterruptedException—when this schedulable is interrupted by
javax.realtime.RealtimeThread.interrupt() or javax.realtime.
AsynchronouslyInterruptedException.fire() while waiting for the
reference count to go to zero.

IllegalSchedulableStateException—when the execution context is not an in-
stance of javax.realtime.Schedulable or when this method is invoked during
finalization of objects in scoped memory and entering this scoped memory

562 RTSJ 2.0 (Draft 57)

StackedMemory javax.realtime.memory 11.4

area would force deletion of the task that triggered finalization. This would
include the scope containing the task, and the scope (if any) containing the
scope containing the task.

javax.realtime.ScopedCycleException—when the execution context is a sched-
ulable and this invocation would break the single parent rule.

IllegalArgumentException—when the execution context is a schedulable, and
time is null or no non-null logic value was supplied to the memory area’s
constructor.

UnsupportedOperationException—when the wait operation is not supported us-
ing the clock associated with time.

MemoryAccessError—when calling schedulable may not use the heap and this
memory area’s logic value is allocated in heap memory.

joinAndEnter(Runnable)

Signature
public void
joinAndEnter(Runnable logic)
throws InterruptedException

Description
In the error-free case, joinAndEnter combines join();enter(); such that no
enter() from another schedulable can intervene between the two method invoca-
tions. The resulting method will wait for the reference count on this ScopedMemory
to reach zero, then enter the ScopedMemory and execute the run method from
logic

When logic is null, the method throws IllegalArgumentException imme-
diately.

When multiple threads are waiting in joinAndEnter family methods for a
memory area, at most one of them will be released each time the reference count
goes to zero.

Note that although joinAndEnter guarantees that the reference count is zero
when the schedulable is released for entry, it does not guarantee that the reference
count will remain one for any length of time. A subsequent enter could raise
the reference count to two.

Parameters
logic—The Runnable object which contains the code to execute.

Throws

RTSJ 2.0 (Draft 57) 563

11 Alternative Memory Areas StackedMemory

InterruptedException—when this schedulable is interrupted by
javax.realtime.RealtimeThread.interrupt() or javax.realtime.
AsynchronouslyInterruptedException.fire() while waiting for the
reference count to go to zero.

IllegalSchedulableStateException—when the execution context is not an in-
stance of javax.realtime.Schedulable or when this method is invoked during
finalization of objects in scoped memory and entering this scoped memory
area would force deletion of the task that triggered finalization. This would
include the scope containing the task, and the scope (if any) containing the
scope containing the task.

ThrowBoundaryError—thrown when the JVM needs to propagate an exception
allocated in this scope to (or through) the memory area of the caller.
Storing a reference to that exception would cause an javax.realtime.
IllegalAssignmentError, so the JVM cannot be permitted to deliver the
exception. The javax.realtime.ThrowBoundaryError is allocated in the
current allocation context and contains information about the exception it
replaces.

javax.realtime.ScopedCycleException—when this invocation would break the
single parent rule.

IllegalArgumentException—when the execution context is a schedulable and
logic is null.

joinAndEnter(Runnable, HighResolutionTime)

Signature
public void
joinAndEnter(Runnable logic,

javax.realtime.HighResolutionTime<?> time)
throws InterruptedException

Description
In the error-free case, joinAndEnter combines join();enter(); such that no
enter() from another schedulable can intervene between the two method invoca-
tions. The resulting method will wait for the reference count on this ScopedMemory
to reach zero, or for the current time to reach the designated time, then enter
the ScopedMemory and execute the run method from logic.

Since the time is expressed as a javax.realtime.HighResolutionTime, this
method is an accurate timer with nanosecond granularity. The actual resolution
of the timer and even the quantity it measures depends on the clock associated

564 RTSJ 2.0 (Draft 57)

javax.realtime.memory 11.5

with time. The delay time may be relative or absolute. When relative, then the
delay is the amount of time given by time, and measured by its associated clock.
When absolute, then the delay is until the indicated value is reached by the clock.
When the given absolute time is less than or equal to the current value of the
clock, the call to joinAndEnter behaves effectively like enter(Runnable).

The method throws IllegalArgumentException immediately when logic is
null.

When multiple threads are waiting in joinAndEnter family methods for a
memory area, at most one of them will be released each time the reference count
goes to zero.

Note that expiration of time may cause control to enter the memory area
before its reference count has gone to zero.

Parameters
logic—The Runnable object which contains the code to execute.
time—The time that bounds the wait.

Throws
InterruptedException—when this schedulable is interrupted by

javax.realtime.RealtimeThread.interrupt() or javax.realtime.
AsynchronouslyInterruptedException.fire() while waiting for the
reference count to go to zero.

IllegalSchedulableStateException—when the execution context is not an in-
stance of javax.realtime.Schedulable or when this method is invoked during
finalization of objects in scoped memory and entering this scoped memory
area would force deletion of the task that triggered finalization. This would
include the scope containing the task, and the scope (if any) containing the
scope containing the task.

ThrowBoundaryError—when the JVM needs to propagate an exception allocated in
this scope to (or through) the memory area of the caller. Storing a reference to
that exception would cause a javax.realtime.IllegalAssignmentError, so
the JVM cannot be permitted to deliver the exception. The javax.realtime.
ThrowBoundaryError is preallocated and saves information about the exception
it replaces.

javax.realtime.ScopedCycleException—when the execution context is a sched-
ulable and this invocation would break the single parent rule.

IllegalArgumentException—when the execution context is a schedulable and
time or logic is null.

UnsupportedOperationException—when the wait operation is not supported us-
ing the clock associated with time.

RTSJ 2.0 (Draft 57) 565

11 Alternative Memory Areas

11.5 The Rationale

11.5.1 The Scoped Memory Model
Languages that employ automatic reclamation of blocks of memory allocated in what
is conventionally called the heap by program logic also typically use an algorithm
called a garbage collector. Garbage collection algorithms and implementations vary
in the amount of indeterminacy they add to the execution of program logic. Rather
than require a garbage collector, and require it to meet realtime constraints that
would necessarily be a compromise, this specification constructs alternative systems
for “safe” management of memory. The scoped and immortal memory areas allow
program logic to allocate objects in a Java-like style, ignore the reclamation of those
objects, and not incur the latency of the implemented garbage collection algorithm.

The term scope stack might mislead a reader to infer that it contains only scoped
memory areas. This is incorrect. Although the scope stack may contain scoped
memory references, it may also contain heap and immortal memory areas. Also,
although the scope stack’s behavior is specified as a stack, an implementation is free
to use any data structure that preserves the stack semantics.

This specification does not specifically address the lifetime of objects allocated
in immortal memory areas. If they were reclaimed while they were still referenced,
the referential integrity of the JVM would be compromised which is not permissible.
Recovering immortal objects only at the termination of the application, or never
recovering them under any circumstances is consistent with this specification.

When a scoped memory area is used by both heap and extraheap tasks, there
could be cases where a finalizer executed in extraheap context could attempt to use
a heap reference left by a heap-using task. The code in the finalizer would throw
a memory access error. If that exception is not caught in the finalizer, it will be
handled by the implementation so finalization will continue undisturbed, but the
problem in finalizer that caused the illegal memory access could be hard to locate.
So, catch clauses in finalizers for objects allocated in scoped memory are even more
useful than they are for normal finalizers.

Support for explicit initial scoped memory areas (EISMAs) for schedulables has
repercussions.

1. The EISMA’s parent is set when its realtime thread is constructed or its ASEH
becomes firable, but its reference count is not incremented until the thread
is started or the asynchronous event handler is released. This lets a scope
with a zero reference count have a parent. This may cause unexpected scoped
cycle exceptions. The most surprising are from the joinAndEnter family of
methods.

2. Any action that makes an event handler not firable must block until all the
resulting finalization completes.

566 RTSJ 2.0 (Draft 57)

The Rationale 11.5

3. Any action that makes an event handler firable must block until any ongoing
finalization of its EISMA completes.

Since an EISMA is only entered upon release and exited at the completion of
release, the handler of the release can generally run finalization. A thread collecting
the event that triggers the handler will not have any effect on EISMA finalization.
Only another execution context can prevent finalization by the handler at release
end.

11.5.2 The Physical Memory Model

Embedded systems may have many different types of directly addressable memory
available to them. Each type has its own characteristics [2] that determine whether
it is

1. volatile – whether it maintains its state when the power is turned off,
2. writable – whether it can be written at all, written once or written many times

and whether writing is under program control,
3. synchronous or asynchronous – whether the memory is synchronized with the

system bus,
4. erasable at the byte level – if the memory can be overwritten, whether this

is done at the byte level or whether whole sectors of the memory need to be
erased,

5. fast to access – both for reading and writing.
Examples include the following [2].

1. Dynamic Random Access Memory (DRAM) and Static Random Access Memory
(SRAM) – these are volatile memory types that are usually writable at the
byte level. There are no limits on the number of times the memory contents
can be written. From the embedded systems designer’s view point, the main
differences between the two are their access times and their cost per byte. SRAM
has faster access times and is more expensive. Both DRAM and SRAM are
examples of asynchronous memory, SDRAM and SSRAM are their synchronized
counterparts. Another important difference is that DRAM requires periodic
refresh operations, which may interfere with execution time determinism.

2. Read-Only Memory (for example, Erasable Programmable Read-Only Memory
(EPROM)) – these are nonvolatile memory types that once initialized with
data can not be overwritten by the program (without recourse to some external
effect, usually ultraviolet light as in EPROM). They are fast to access and cost
less per byte than DRAM.

3. Hybrid Memory (for example, Electrically Erasable Programmable Read-Only
Memory (EEPROM), and Flash) – these have some properties of both random
access and read-only memory.

RTSJ 2.0 (Draft 57) 567

11 Alternative Memory Areas

(a) EEPROM – this is nonvolatile memory that is writable at the byte level.
However, there are typically limits on how many time the same location
can be overwritten. EEPROMs are expensive to manufacture, fast to read
but slow to write.

(b) FLASH memory – this is nonvolatile memory that is writable at the
sector level. Like EEPROM there are limits on how many times the same
location can be overwritten and they are fast to read but slow to write.
Flash memory is cheaper to manufacture than EEPROM.

Some embedded systems may have multiple types of random-access memory, and
multiple ways of accessing memory. For instance, there may be a small amount of
very fast RAM on the processor chip, memory that is on the same board as the
processor, memory that may be added and removed from the system dynamically,
memory that is accessed across a bus, access to memory that is mediated by a cache,
access where the cache is partially disabled so all stores are “write through”, memory
that is demand paged, and other types of memory and memory-access attributes
only limited by physics and the imagination of electrical engineers. Some of these
memory types will have no impact on the programmer, others will.

Individual computers are often targeted at a particular application domain. This
domain will often dictate the cost and performance requirements, and therefore,
the memory type used. Some embedded systems are highly optimized and need to
explore different options in memory to meet their performance requirements. Here
are five example scenarios.

1. Ninety percent of performance-critical memory access is to a set of objects that
could fit in a half the total memory.

2. The system enables the locking of a small amount of data in the cache, and a
small number of pages in the translation look-aside buffer (TLB). A few very
frequently accessed objects are to be locked in the cache and a larger number of
objects that have jitter requirements can be TLB-locked to avoid TLB faults.

3. The boards accept added memory on daughter boards, but that memory is
not accessible to DMA from the disk and network controllers and it cannot
be used for video buffers. Better performance is obtained if one ensures that
all data that might interact with disk, network, or video is not stored on the
daughter board.

4. Improved video performance can be obtained by using an array as a video buffer.
This will only be effective if a physically contiguous, unpagable, DMA-accessible
block of RAM is used for the buffer and all stores forced to write through the
cache. Of course, such an approach is dependent on the way the JVM lays out
arrays in memory, and it breaks the JVM abstraction by depending on that
layout.

5. The system has banks of SRAM and saves power by automatically putting

568 RTSJ 2.0 (Draft 57)

The Rationale 11.5

them to “sleep” whenever they stay unused for 100ms or so. To exploit this,
the objects used by each phase of this program can be collected in a separate
bank of this special memory.

To be clear, few embedded systems are this aggressive in their hardware opti-
mization. The majority of embedded systems have only ROM, RAM, and maybe
flash memory. Configuration-controlled memory attributes (such as page locking,
and TLB behavior) are more common.

As well as having different types of memory, many computers map input and
output devices so that their registers can be accessed as if they were resident within the
computer memory (see Section 12.2.1). Hence, some parts of the processor’s address
space map to real memory and other parts map to device registers. Logically, even a
device’s memory can be considered part of the memory hierarchy, even where the
device’s interface is accessed through special assembly instructions. Multiprocessor
systems add a further dimension to the problem of memory access. Memory may be
local to a CPU, tightly shared between CPUs, or remotely accessible from the CPU
(but with a delay).

Traditionally, Java programmers are not concerned with these low-level issues;
they program at a higher level of abstraction and assume the JVM makes judicious
use of the underlying resources provided by the execution platform3. Embedded
systems programmers cannot afford this luxury. Consequently, any Java environment
that wishes to facilitate the programming of embedded systems must enable the
programmer to exercise more control over memory.

11.5.2.1 The Original Physical Memory Framework

The RTSJ 1.0.x supported three ways to allocate objects that can be placed in
particular types of memory.

1. ImmortalPhysicalMemory allocates immortal objects in memory with specified
characteristics.

2. LTPhysicalMemory allocates scoped memory objects in a memory with specified
characteristics using a linear time memory allocation algorithm.

3. VTPhysicalMemory allocates scoped memory objects in memory with specified
characteristics using an algorithm that may be worse than linear time but
could offer extra services (such as extensibility).

The only difference between the physical memory classes and the corresponding
standard memory classes is that the ordinary memory classes give access to normal
system RAM and the physical memory classes offer access to particular types of
memory.

3This is reflected by the OS support provided. For example, most POSIX systems only offer
programs a choice of demand paged or page-locked memory.

RTSJ 2.0 (Draft 57) 569

11 Alternative Memory Areas

Originally, the RTSJ supported access to physical memory via a memory manager
and one or more memory filters. The goal of the memory manager was to provide a
single interface with which the programmer could interact to access memory with
a particular characteristic. A memory filter provided access to a particular type of
physical memory. Memory filters could be dynamically added and removed from the
system, and there could only be a single filter for each memory type. The memory
manager was unaware of the physical addresses of each type of memory. This was
encapsulated by the filters. The filters also know the virtual memory characteristics
that had been allocated to their memory type. For example, whether the memory is
readable or writable.

In theory, any developer could create a new physical memory filter and register it
with the Physical Memory Model (PMM). However, the programming of filters is
difficult for the following reasons.

1. Physical memory type filters include a memory allocation function that must
respond to allocation requests with whether a requested range of physical
memory is free and, when it is not, the physical address of the next free
physical memory of the requested type. This is complex because requests for
compound types of physical memory must find a free segment that satisfies all
attributes of the compound type.

2. The Java runtime must continue to behave correctly under the Java memory
model when using physical memory. This is not a problem when a memory
type behaves like the system’s normal RAM with respect to the properties
addressed by the memory model, or is more restricted than normal RAM.
For instance, write-through cache is more restricted than copy-back cache.
When a new memory type does not obey the memory model using the same
instruction sequences as normal RAM, the memory filter must cooperate with
the interpreter, the JIT, and any ahead-of-time compilation to modify those
instruction sequences when accessing the new type of memory. That task
is difficult for someone who can easily modify the Java runtime and nearly
impossible for anyone else.

3. The physical memory filters where passed as type Object to physical memory
type constructors, so no type checking supported proper usage.

Hence, the utility of the physical memory filter framework at Version 1.0.2 is
questionable, and hence is replaced in 2.0 with a simpler, factory-based framework.

11.5.2.2 The RTSJ 2.0 Physical Memory Framework

The main problem with the 1.0.x framework is that it placed too great a burden on
the JVM implementer. Even for embedded systems, the JVM implementer requires
the VM to be portable between systems within the same processor family. Therefore,
the JVM cannot have detailed knowledge of the underlying memory architecture.

570 RTSJ 2.0 (Draft 57)

The Rationale 11.5

It is only concerned with the standard RAM provided to it by the host operating
system.

The design of 2.0 model is based on two constraints.
1. Java objects can only be allocated in a memory area if the physical backing

store supports the Java Memory Model without the JVM having to perform
any operation in addition to those that it performs when accessing as the main
RAM for the host machine. No extra compiler or JVM interactions shall be
required. Hence memory types (such as EEPROM), which potentially require
special hardware instructions to perform write operations, cannot be used as
the backing store for physical memory areas. Similarly, nonvolatile memory
could be used, but any objects stored therein may contain references to objects
in volatile memory. Although these memory types are prohibited from being
used as backing stores, they contain objects of primitive Java types and can be
accessed via the RTSJ Raw Memory facilities (see Section 12.2.1).

2. Any API must delegate detailed knowledge of the memory architecture to the
programmer of the specific embedded system to be implemented. There is less
requirement for portability here, as embedded systems are usually optimized
for their host environment. The model assumes that the programmer is aware
of the memory map, either through some native operating system interface4 or
from some property file read at program initialization time.

When accessing physical memory, there are two main considerations:
1. the characteristics of the required physical memory, and
2. how that memory is to be mapped into the virtual memory of the application.

The program must identify (and inform the RTSJ’s physical memory manager of) the
physical memory characteristics and the range of physical addresses those charac-
teristic apply to. For example, that there is SRAM between physical address range
0x100000000 and 0xA0000000.

The physical memory manager supports options for mapping physical memory
into the virtual memory of the application. Examples include whether the range is
to be permanently resident in memory and whether data is written to the cache and
the main memory simultaneously, i.e., a write through caching. By default, memory
is subject to paging or swapping.

Given the required physical memory characteristics, the programmer creates a
PhysicalMemoryRegion for accessing this memory and registers it with a Physi-
calMemoryFactory. This factory can then be used with new constructors on the
physical memory classes. For example,

4For example, the Advanced Configuration and Power Interface (ACPI) specification is an open
standard for device configuration and power management by the operating system. The ACPI
defines platform-independent interfaces for hardware discovery, configuration, power management
and monitoring. See http://www.acpi.info/

RTSJ 2.0 (Draft 57) 571

11 Alternative Memory Areas

1 PhysicalMemoryCharacteristic sram = new
PhysicalMemoryCharacteristic(){};

2 PhysicalMemoryCharacteristic[] characteristics =
3 new PhysicalMemoryCharacteristic[]{ sram };
4 PhysicalMemorySelector selector =
5 new PhysicalMemorySelector(null, null, WRITE_THROUGH, FIXED);
6 MemoryArea memory = factory.createImmortalMemory(selectors,

size, logic);

Use of this factory enables the programmer to specify the allocation of the backing
store in a particular type of memory with particular memory characteristics. The
selector is used to locate an area in physical memory with the required physical
memory characteristics and to direct its mapping into the virtual address space.

Hence, once physical memory regions have been created and registered, physical
memory areas can be created and objects can be allocated within those memory
regions using the usual RTSJ mechanisms for changing the allocation context of the
new operator.

11.5.2.3 An example

Consider an example of a system that has a SRAM physical memory module config-
ured at a physical base address of 0x10000000 and of length 0x20000000. Another
module (base address of 0xA0000000 and of length 0x10000000) also supports SRAM,
but this module has been configured so that it saves power by sleeping when not in
use. The following subsections illustrate how the embedded programmer informs the
PMM about the structure during the program’s initialization phase, and how the
memory may be subsequently used after this. The example assumes that the PMM
supports the virtual memory characteristics defined above.

11.5.2.3.1 Program Initialization

For simplicity, the example requires that the address of the memory modules are
known, rather than being read from a property file. The program needs to have a
class that implements the PhysicalMemoryCharacteristic. In this simple example,
this is empty.

1 public class SRAMType implements PhysicalMemoryCharacteristic {}

The initialization method must now create instances of the PhysicalMemory-
Region class to represent the physical memory modules needed.

1 PhysicalMemoryRegion staticRam =

572 RTSJ 2.0 (Draft 57)

The Rationale 11.5

2 new PhysicalMemoryRegion(0x10000000L, 0x100000000L);
3 PhysicalMemoryRegion staticSleepableRam =
4 new PhysicalMemoryRegion(0xA0000000L, 0x100000000L);

It then creates names for the characteristics that the program wants to associate
with each memory module.

1 PhysicalMemoryCharacteristic STATIC_RAM = new MyMemoryType();
2 PhysicalMemoryCharacteristic AUTO_SLEEPABLE = new MyMemoryType();

It then informs the PMM of the appropriate associations:

1 PhysicalMemoryFactory factory = PhysicalMemoryFactory.getDefault
();

2 factory.associate(STATIC_RAM, staticRam);
3 factory.associate(STATIC_RAM, staticSleepableRam);
4 factory.associate(AUTO_SLEEPABLE, staticSleepableRam);

Once this is done, the program can create a selector with the required properties. In
this case, some SRAM must be auto sleepable.

1 PhysicalMemoryCharacteristic [] PMC =
2 new PhysicalMemoryCharacteristic[2];
3 PMC[0] = STATIC_RAM;
4 PMC[1] = AUTO_SLEEPABLE;
5
6 PhysicalMemorySelector selector =
7 new PhysicalMemorySelectory(PMC, null, DISABLED, FIXED);

If the program had just asked for SRAM then either of the memory modules could
satisfy the request.

The initialization is now complete, and the programmer can use the memory for
storing objects, as shown below.

11.5.2.3.2 Using Physical Memory

Once the programmer has configured the JVM so that it is aware of the physical
memory modules, and the programmer names for characteristics of those memory
modules, using the physical memory is straight forward. Here is an example.

1 ImmortalMemory IM = factory.createImmortalMemory(selector, 0
x1000);

2 IM.enter(new Runnable()
3 {

RTSJ 2.0 (Draft 57) 573

11 Alternative Memory Areas

4 public void run()
5 {
6 // The code executing here is running with its allocation
7 // context set to a physical immortal memory area that is
8 // mapped to RAM which is auto sleepable.
9 // Any objects created will be placed in that

10 // part of physical memory.
11 }
12 });

The physical memory factory keeps track of previously allocated memory and is able
to determine whether memory is available with the appropriate characteristics. Of
course, the physical memory factory has no knowledge of what these names mean; it
is merely providing a look-up service.

574 RTSJ 2.0 (Draft 57)

Chapter 12

Devices and Triggering

Interacting with the external environment in a timely manner is an important
requirement for realtime, embedded systems. From an embedded systems’ perspective,
all interactions with the physical world are performed by input and output devices.
Hence, the problem is one of controlling and monitoring of devices. This is an
area insufficiently addressed by other Java standards. A conventional Java Virtual
Machine is not designed to support device access and interrupt handling. Programs
that need this functionality must resort to code written in another language and
called via the Java Native Interface (JNI). This specification addresses the problem
by providing APIs for interrupt handling and direct memory access without resorting
to JNI.

In contrast to earlier versions of this specification, version 2.0 has extended the
goals of the device interfaces to be type safe and user extensible, so that the user
can define new devices without changing the underlying virtual machine.

There are at least four execution (runtime) environments for the RTSJ:
1. on a realtime operating system where the Java application runs in user mode;
2. on a realtime operating system where the Java application runs in a context

with a user space device driver;
3. as a “kernel module” incorporated into a realtime kernel where both kernel

and application run in supervisor mode; and
4. as part of an embedded device where the Java application runs stand-alone on

a hardware machine.
In execution environment 1, interaction with the embedded environment is usually

via operating system calls using Java’s connection-oriented APIs. The Java program
will typically have no direct access to the I/O devices. Although some limited access
to physical memory may be provided, it is unlikely that interrupts can be directly
handled. However, asynchronous interaction with the environment is still possible,
for example, via POSIX signals.

In execution environments 2, 3, and 4, the Java program may be able to directly

575

12 Devices and Triggering

access devices and handle interrupts.
A device can be anything from a simple set of registers wired to sensors and

actuators to a full processor performing some fixed task. The interface to a device
is usually through a set of device registers. Depending on the I/O architecture of
the processor, the programmer can either access these registers via predetermined
memory location (called memory mapped I/O) or via special assembler instructions
(called port-mapped I/O).

A computer system with processing devices can be considered to be a collection
of parallel threads. The device ‘thread’ can communicate and synchronize with the
tasks executing inside the main processor either by having the main processor poll
registers of the device or via a signal from the device. This signal is usually referred
to as an interrupt. All high-level models of device programming must provide [3]

1. facilities for representing, addressing and manipulating device registers; and
2. a suitable representation of interrupts (if interrupts are to be handled).
Version 1.0 of the RTSJ went some way towards supporting this model through the

notion of happenings and the raw memory access facilities. Unfortunately, happenings
were under defined and the mechanisms for physical and raw memory were overly
complex with no clear delineation of the separations of concerns between application
developers and JVM implementors.

Version 2.0 has significantly enhanced the support for happenings, and has pro-
vided a clearer separation between physical and raw memory. The interfaces for
Happening, Timer, and Signal, as well as the new RealtimeSignal, are now unified
under ActiveEvent. This means that Happening, Signal, and RealtimeSignal,
like Timer are now subclasses of AsyncBaseEvent. As described in Chapter 8, Ac-
tiveEvent provides a common light-weight means of notifying that its event has
occurred. Unlike fire(), where dispatching of the associated handlers is done in
context of the caller, an ActiveEvent separates this notification that the event
occurred, its triggering, from the dispatching by providing its own execution context
for the dispatching. As with Timer, each class has its own ActiveEventDispatcher:
HappeningDispatcher, TimeDispatcher, SignalDispatcher, and RealtimeSig-
nalDispatcher.

12.1 Definitions
Direct Memory Access (DMA) — A data transfer directly to memory without

CPU intervention, as in DMA controller.
DMA Controller — A device that can move data in memory without using the

CPU.
Happening —An event that takes place outside the Java runtime environment. The

triggers for happenings depend on the external environment, but happenings

576 RTSJ 2.0 (Draft 57)

Semantics 12.2

might include signals and interrupts.
Interrupt Service Routine (ISR) — A special task that is executed when an

interrupt happens. This code runs above the normal priorites and can only be
interrupted by another interrupt.

Raw Memory — A means of mapping memory locations, such as device registers,
into java objects for direct access from Java code without using JNI. The
memory to map can be in an arbirary address space.

Raw Memory Region — An address space for Raw Memory.
Stride — The distance between two memory locations. Adjacent memory locations

have a stride of one. Stride is messured as units of the memory location size.
For example, the stride between two bytes that are adjacent and two integers
that are adjacent is both one, but the actual address offsets are one and four
bytes respectively.

Open issue 12.1.1 (elb)
Check consistency with the JMM.

End of issue 12.1.1

12.2 Semantics
The classes in this Chapter are part of the Device Module introduced in Section
3.2.2.3 and are only required in implementations that include that module. There are
several aspects of the API for supporting devices. Raw Memory provides the means
of accessing the I/O register of a device. Direct Memory Access (DMA) support
provide a means of transferring data using a DMA controller. Active events and
dispatchers support releasing event handlers based on external events. Interrupt
service routines and application-defined clocks are for linking external events to the
internal active events.

12.2.1 Raw Memory
Raw Memory provides means of accessing particular physical memory addresses as
variables of Java’s primitive data types, and thereby provides an application with
direct access to physical memory, for example, for memory-mapped I/O.

Java objects or references therefore cannot be stored in raw memory. The following
specifies the RTSJ’s facilities for raw memory access.

1. Each area of memory supporting raw memory access is identified by a subclass
of RawMemoryRegion.
(a) The raw memory region RawMemoryFactory.MEMORY_MAPPED_REGION fa-

cilitates access to memory locations that are outside the main memory

RTSJ 2.0 (Draft 57) 577

12 Devices and Triggering

Figure 12.1: Raw Memory Interface

Visibility
+ = publ ic
= protected
~ = package

javax.realtime::RawMemory
<< in te r f ace>>

javax.realtime::RawLong
<< in te r f ace>>

javax.realtime::RawLongReader
<< in te r f ace>>

+getLong():long
+getLong(int offset):long
+get(int offset, long[] v):int
+get(int offset, long[] v,
 int start, int count):int
+address():long

javax.realtime::RawLongWriter
<< in te r f ace>>

+setLong(long v)
+setLong(int offset, long v)
+set(int offset, long[] v):int
+set(int offset, long[] v,
 int start, int count):int
+address():long

javax.realtime::RawInt
<< in te r f ace>>

javax.realtime::RawIntReader
<< in te r f ace>>

+getInt() : int
+getInt(int offset): int
+get(int offset, int[] v): int
+get(int offset, int[] v,
 int start, int count):int
+address():long

javax.realtime::RawIntWriter
<< in te r f ace>>

+setInt(int v)
+setInt(int offset, int v)
+set(int offset, int[] v):int
+set(int offset, int[] v,
 int start, int count):int
+address():long

javax.realtime::RawShort
<< in te r f ace>>

javax.realtime::RawShortReader
<< in te r f ace>>

+getShort():short
+getShort(int offset):short
+get(int offset, short[] v):int
+get(int offset, short[] v,
 int start, int count):int
+address():long

javax.realtime::RawShortWriter
<< in te r f ace>>

+setShort(short v)
+setShort(int offset, short v)
+set(int offset, short[] v):int
+set(int offset, short[] v,
 int start, int count):int
+address():long

javax.realtime::RawByteReader
<< in te r f ace>>

+getByte():byte
+getByte(int offset):byte
+get(int offset, byte[] v): int
+get(int offset, byte[] v,
 int start, int count):int
+address():long

javax.realtime::RawByte
<< in te r f ace>>

javax.realtime::RawByteWriter
<< in te r f ace>>

+setByte(byte v)
+setByte(int offset, byte v)
+set(int offset, byte[] v):int
+set(int offset, byte[] v,
 int start, int count):int
+address():long

javax.realtime::RawDouble
<< in te r f ace>>

javax.realtime::RawDoubleReader
<< in te r f ace>>

+get():double
+getDouble(int offset):double
+get(int offset, double[] v): int
+get(int offset, double[] v,
 int start, int count): int
+address():long

javax.realtime::RawDoubleWriter
<< in te r f ace>>

+setDouble(double v)
+setDouble(int offset, double data)
+set(int offset, double[] v): int
+set(int offset, double[] v,
 int start, int count): int
+address():long

javax.realtime::RawFloatReader
<< in te r f ace>>

+getFloat():f loat
+getFloat(int offset):float
+get(int offset, f loat[] v): int
+get(int offset, f loat[] v,
 int start, int count): int
+address():long

javax.realtime::RawFloat
<< in te r f ace>>

javax.realtime::RawFloatWriter
<< in te r f ace>>

+setFloat(float v)
+setFloat(int offset, float data)
+set(int offset, f loat[] v): int
+set(int offset, f loat[] v,
 int start, int count): int
+address():long

578 RTSJ 2.0 (Draft 57)

Semantics 12.2

used by the JVM. It is used to access input and output device registers
when such registers are memory mapped.

(b) The raw memory region RawMemoryFactory.IO_PORT_MAPPED_REGION
facilitates access to locations that are outside the main memory used by
the JVM. It is used to access input and output device registers when such
registers are port-based and can only be accessed by special hardware
instructions.

(c) The application developer can define and register additional regions to
support things like emulated access to devices or access to a bus over a
bus controller.

2. Access to raw memory is controlled by implementation-defined objects, called
accessor objects. These implement specification-defined interfaces (e.g., Raw-
Byte, RawShort, RawInt, etc.) and are created by implementation-defined
factory objects. Each factory implements the RawMemoryRegionFactory inter-
face, and is identified by its RawMemoryRegion.

3. The RawMemoryFactory class defines the application programmer’s interface
to the raw memory facilities.

4. The RawMemoryRegionFactory interface defines the interface that all factories
must support for creating accessor objects.

12.2.1.1 Raw Memory Region

Raw memory is designed to support arbitrary I/O address spaces. The simplest of
which is through the processor address space and is accessible via standard memory
access instructions, such as load and store. This provides access to memory mapped
I/O devices, but there are other address spaces as well. Each of these address spaces
is referred to as a Raw Memory Region.

There are two raw memory regions that can be supported generically. Memory
mapped I/O is one. The other is port mapped I/O. The most common instance is
the I/O space provided by Intel x86 compatible processors through their in and out
instructions. The memory mapped I/O raw memory region must be supported by
all implementations, but the port mapped I/O raw memory region must only be
supported on processors that have the necessary I/O instructions.

All other raw memory regions are optional and may be provided by a system
integrator or an application developer. The API provides an interface, RawMemory-
RegionFactory, that can be implemented to provide a means of creating accessor
objects for that region. These additional regions can be anything from an I/O space
provided by a memory mapped device, using memory mapped I/O to implement it,
to a purely synthetic I/O space to emulate hardware that has not yet been built.

Each raw memory region is identified by its raw memory region object.
These “types” are defined by instances of RawMemoryRegion: RawMemoryFactory.

RTSJ 2.0 (Draft 57) 579

12 Devices and Triggering

Figure 12.2: Event Classes
Visibility
+ = publ ic
= protected
~ = package

javax.realtime::PeriodicTimer

...

javax.realtime::OneShotTimer

...

javax.realtime::ActiveEvent
<< in te r f ace>>

+isActive() : boolean
+isRunning() : boolean
+enable()
+disable()
+star t ()
+start(boolean disable)
+stop()

javax.realtime::Timer
Timer(HighResolutionTime,
 AsyncBaseEventHandler,
 TimeDispatcher)
+getDispatcher() : TimeDispatcher
...

javax.realtime::AsyncBaseEvent
< < a b s t r a c t > >

+isRunning() : boolean
+enable()
+disable()
+boolean hasHandlers() : boolean
+handledBy(AsyncBaseEventHandler) : boolean
+addHandler(AsyncBaseEventHandler)
+setHandler(AsyncBaseEventHandler)
+removeHandler(AsyncBaseEventHandler)
+createReleaseParameters() : ReleaseParameters

javax.realtime::AsyncObjectEvent

+fire(Object value)

javax.realtime::AsyncEvent

+f i re()

javax.realtime::POSIXRealtimeSignal

+isPOSIXRealtimeSignal() : boolean
+getId(String name): int
+get(String name): POSIXRealtimeSignal
+get(int id): POSIXRealtimeSignal
+getId() : int
+getName() : String
+getDispatcher() : POSIXRealtimeSignalDispatcher
+send(long, long) : boolean
...

javax.realtime::POSIXSignal

+isPOSIXSignal() : boolean
+getId(String name): int
+get(String name): POSIXSignal
+get(int id): POSIXSignal
+getProcessId(): long
+getId() : int
+getName() : String
+getDispatcher() : POSIXSignalDispatcher
+send(long) : boolean
...

javax.realtime::Happening
+Happening(String name)
+Happening(String, HappeningDispatcher)
+isHappening(String name) : boolean
+getHappening(String name): int
+createId(String name): int
+getId(String name): int
+get(String name): Happening
+get(int id): Happening
+trigger(int id)
+getId(): int
+getName() : String
+tr igger()
+getDispatcher() : HappeningDispatcher
...

javax.realtime::AsyncLongEvent

+fire(long value)

MEMORY_MAPPED_REGION for memory mapped devices and RawMemoryFactory.
IO_PORT_MAPPED_REGION for port mapped devices for processors that have
instructions for reading from and writing to an I/O bus directly. The instances
are used to get accessors of a region instead of using a RawMemoryRegionFactory
directly.

12.2.1.2 Raw Memory Factory

In order to support a variety of device address spaces efficiently, raw memory objects
are created using the factory methods provided by RawMemoryFactory. This factory
provides static methods to get accessors for a region via a region’s type. Regions
created during runtime can be provided by registering their factory with the main raw
memory factory, so the application code only needs to have a reference to the object
identifying the required region. For instance, one could create an I2C raw memory
region by implementing a factory for it using a memory mapped I2C controller.

580 RTSJ 2.0 (Draft 57)

Semantics 12.2

12.2.1.3 Stride

Since the word size of devices do not always match the word size of the memory or
I/O bus, the interface provides for the notion of stride. Stride defines the distance
between elements in a raw memory area. Normally elements of a memory area are
mapped sequentially, without any space between the elements. This is a stride of
one. A stride of two, means that every other element in physical memory is mapped
into the raw memory area.

For example, it is often easier to map a 16 bit device into a 32 bit system by
mapping the 16 bit registers at 32 bit intervals. This enables 16 bit accesses to the
device to be atomic on 32 bit addressed systems, even when the bus always does 32
bit transfers. One can create a RawShort area with a stride of two. Then the area
can be accessed as if the registers where contiguous.

Since stride is designed to support mapping devices that have a smaller word size
than the host machine, the implementation is allowed to assume that the padding
between values is “do not care” data, and can be overwritten arbitrarily.

12.2.2 Direct Memory Access Support
Many embedded systems provide a means of moving data without direct involvement
of the main processor. This is typically programmed with a special device called a
DMA controller. DMA controllers are treated specially since they are central to bulk
transfer in device drivers. The data to be transferred is not in device registers, but
in normal RAM. Java already provides an API for managing this kind of memory
in java.nio. The DMA API defined here provides a seamless means of integrating
those features into a device driver for DMA.

There are various architectures for DMA controllers, each requiring its own
programming paradigm, so only common low level support is provided by this
specification. Raw memory can be used to program the DMA controller, but there
needs to be a means of representing bulk data. The java.nio.ByteBuffer provides
just such a representation. The only difference is that the restrictions on the memory
behind byte buffer objects are different than for other java.nio mechanisms.

These differences are covered with a special byte buffer factory: DirectMem-
oryBufferFactory. An instance of this factory can produce direct byte buffers
within a given memory range. This range can be chosen by the programmer to be
within the range of a given DMA controller. The factory also provides methods for
getting the start address of a buffer’s memory and checking if a buffer’s memory is
within a given range. These addresses should be compatible with DMA controllers
in the system, though for controllers with a smaller address space than the processor,
the DMA address may have fixed offset from the processor physical address. The
DirectMemoryBufferFactory class also provides static methods for ensuring that

RTSJ 2.0 (Draft 57) 581

12 Devices and Triggering

Java-generated changes to DMA-mapped memory buffers are visible to native code,
and vice versa.

12.2.3 External Triggering
It is not enough to be able to read from and write to devices; many applications need
a means of being interrupted when an event happens. This specification provides
a two-level interrupt mechanism. For predefined interfaces, such as POSIX signals,
the first level handling is provided by the virtual machine and asynchronous events
provide the second level event handling. For external events and additional clocks,
where the programmer needs to be able to define new instances and provide for their
triggering, additional classes are provided to manage both the first level and the
second level handling. In all cases, the user can control the priority and affinity of
the dispatching between the first level and second level handing.

Figure 12.3: Happening State Transition Diagram

Init iator

Internal Object

Caption :RealtimeThread

Dispatching
Happening

loop

(7) release handlers

:HappeningDispatcher :Happening :SchedulableObject

happening

dispatcher
thread

~trigger(happening)

4
+star t ()

~register(this)

Execute trigger logic

(5)+Happening:trigger(id)

2
new() // create interrupt service routine

(6) +f i re()

+star t ()

+new() 1
+new(schedule) // optional

3
+new(name, dispatcher)

12.2.3.1 Happenings

Whereas in previous versions of this specification, happenings were represented as a
String, as of 2.0 they have become an object in their own right. This makes it easier

582 RTSJ 2.0 (Draft 57)

Semantics 12.2

to properly type methods that use them and for the user to define new happening
for an application without the need to change the JVM. Furthermore, indirection is
minimized by making the new Happening class a subclass of AsyncEvent.

Since a Happening needs to be triggerrable from an external event, such as an
interrupt, the Happening class also implements ActiveEvent. As with other active
events, Happening has its own dispatcher class: HappeningDispatcher. There is a
default happening dispatcher that is used when none is provided at creation time,
otherwise, the programmer can provide one to change the priority and affinity of
dispatching.

Normally, happenings are triggered either from an InterruptServiceRoutine or
from JNI code. For the later, the interface provides a means of linking a happening
by name. This enables native code to get a handle for triggering a happening without
having a direct reference. The given name must follow the Java naming conventions.
A happening name defined outside of this specification should not begin with java
or javax.

Figure 12.3 illustrates the sequence of actions necessary for defining and using
a Happening. When using an application-defined dispatcher, it must be created
first (1). When using an InterruptServiceRoutine to trigger the happening, it
may be created before (2) or after the happening is create. After creating the
happening (3), the happening must be started to be registered with its dispatcher
to be triggered from native code. Of course, the JVM must have direct access to
an interrupt, either by being directly bound in the kernel or by some other means,
such as a system call, for setting up user-space device drivers. Only after both an
InterruptServiceRoutine is registered and a Happening with the same name is
started, can that happening be triggered (6–8).

There are three main differences between this mechanism and the string-based
API.

1. The Happening class is now a first-class entity, rather than being buried in the
implementation and identified only by a String object.

2. They include the Happening.trigger(int) method that enables a happening
to be explicitly triggered by Java code, and at the implementation’s option,
also include a native code function that permits native application code to
trigger the happening.

3. Finally, Happening is a subclass of AsyncEvent, just as Timer, instead of being
attached to an AsyncEvent.

RTSJ 2.0 (Draft 57) 583

12 Devices and Triggering

Figure 12.4: Interrupt servicing

loop

Interrupt

:RealtimeThread:InterruptServiceRoutine

InterruptHandling

id5
+Happening:getID(name) // as needed

5
+Happening:trigger(id)

3
setUpLinkage

4
handle

2
register(interruptId)

isr

1
new()

12.2.4 Interrupt Service Routines
In Java-based systems, JNI is typically used to transfer control between the as-
sembler/C interrupt service routine (ISR) and the program. RTSJ 2.0 supports the
possibility of the ISR being written in Java code. This is clearly an area where
it is difficult to maintain the portability goal of Java. Furthermore, not all RTSJ
deployments can support InterruptServiceRoutine. A JVM that runs in user
space does not generally have access to interrupts.

The JVM must either be standalone, running in a kernel module, or running in
a special I/O partition on a partitioning OS where interrupts are passed through
using some virtualization technique. Hence, JVM support for ISR is not required for
RTSJ compliance.

Interrupt handling is necessarily machine dependent. However, the RTSJ provides
an abstract model that can be implemented on top of all architectures.

The following semantic model shall be supported by the RTSJ.
1. An occurrence of an interrupt consists of its generation and delivery.
2. Generation of the interrupt is the mechanism in the underlying hardware or

system that makes the interrupt available to the Java program.
3. Delivery is the action that invokes an interrupt service routine (ISR) in response

584 RTSJ 2.0 (Draft 57)

Semantics 12.2

to the occurrence of the interrupt. This may be performed by the JVM or
the application native code linked with the JVM, or directly by the hardware
interrupt mechanism.

4. Between generation and delivery, the interrupt is pending.
5. Some or all interrupt occurrences may be inhibited. While an interrupt oc-

currence is inhibited, all occurrences of that interrupt shall be prevented from
being delivered. Whether such occurrences remain pending or are lost is imple-
mentation defined, but it is expected that the implementation shall make a
best effort to avoid losing pending interrupts.

6. Certain implementation-defined interrupts are reserved. Reserved interrupts
are either interrupts for which application-defined ISRs are not supported, or
those that already have ISRs by some other implementation-defined means.
For example, a clock interrupt, which is used for internal time keeping by the
JVM, is a reserved interrupt.

7. An application-defined ISR can be registered with one or more nonreserved
interrupts. Registering an ISR for an interrupt shall implicitly deregister any
already registered ISR for that interrupt. Any daisy-chaining of interrupt
handlers shall be performed explicitly by the application interrupt handlers.

8. While an ISR is registered to an interrupt, the handle method shall be called
once for each delivery of that interrupt. For locking out further interrupts
during interrupt handling, the handle method must be synchronized with a
priority high enough to lock out the requisite interrupts. This synchronization
uses priority ceiling emulation to inhibit the corresponding interrupt (and all
lower priority interrupts). The default allocation context of the handle method
is the memory area passed during construction.

9. Any exception propagated from the handle method shall be caught by the
JVM and ignored.

10. Code running in the context of an ISR may only attempt to acquire a lock that
has priority ceiling emulation as its monitor control policy. The behavior is
undefined, when an ISR attempts to acquire a lock that has a monitor control
policy other than priority ceiling emulation.

11. An ISR object may be allocated in any memory area that does not move the
handler. This includes immortal and scoped memory, but might not include
heap memory on all systems.

12. As long as the ISR is registered, the memory area containing it is an execution
context and thus may not be released.

The model assumes that

1. the processor has a (logical) interrupt controller that monitors a number of
interrupt lines;

2. the interrupt controller may associate each interrupt line with a particular

RTSJ 2.0 (Draft 57) 585

12 Devices and Triggering

interrupt priority;
3. associated with the interrupt lines is a (logical) interrupt vector that contains

the addresses of the ISRs;
4. the processor has instructions that enable interrupts from a particular line to

be disabled or masked irrespective of the device attached or its type;
5. disabling interrupts from a specific line should disable the interrupts from lines

associated with lower priorities;
6. a device can be connected to an arbitrary interrupt line;
7. when an interrupt is signaled on an interrupt line by a device, the processor

uses the identity of the interrupt line to index into the interrupt vector and
jumps to the address of the ISR; the hardware automatically disables further
interrupts (either of the same priority and lower or, possibly, all interrupts);

8. on return from the ISR, interrupts are automatically re-enabled.
For each of the interrupts, the RTSJ has an associated hardware priority that

can be used to set the ceiling of an ISR object. The RTSJ virtual machine may use
this to disable the interrupts from the associated interrupt line and lower priority
interrupts, when it is executing a synchronized method of the interrupt-handling
object. On a multicore system, the situation is more complex, since there may be
other cores available to handle other interrupts, even at lower priorities, and some
other locking mechanism may be necessary as well.

Though synchronization is not required in general, it is required to enforce visibility
of changes made to any variables shared between some normal Schedulable and a
handle method. For the handle method, this may be done automatically by the
hardware interrupt handling mechanism or it may require added support from the
realtime Java virtual machine. However, for clarity of the model, RTSJ recommends
that the handle method should be defined as synchronized.

Support for interrupt handling is encapsulated in the InterruptServiceRoutine
abstract class that has two main methods. The first is the final register method
that will register an instance of the class with the system so that the appropriate
interrupt vector can be initialized. The second is the abstract handle method that
provides the code to be executed in response to the interrupt occurring. An individual
real-time JVM may place restrictions of the code that can be written in this method.
The process is illustrated in Figure 12.4, and is described below.

1. The ISR is created by some application real-time thread.
2. The created ISR is registered with the JVM, the interrupt id is passed as a

parameter.
3. As part of the registration process, some internal interface is used to set up

the code that will set the underlying interrupt vectors to some C/assembler
code that will provide the necessary linkage to allow the callback to the Java
handler.

586 RTSJ 2.0 (Draft 57)

Semantics 12.2

4. When the interrupt occurs, the handler is called.
In order to integrate further the interrupt handling with the Java application,

the handle method may trigger a happening or fire an event.
Typically an implementation of the RTSJ that supports first-level interrupt han-

dling will document the following items.
1. For each interrupt, its identifying integer value, the priority at which the

interrupt occurs and whether it can be inhibited or not, and the effects of
registering ISRs to non inhibitable interrupts (if this is permitted).

2. Which runtime stack the handle method uses when it executes.
3. Any implementation-specific or hardware-specific activity that happens before

the handle method is invoked, e.g., reading device registers or acknowledging
devices.

4. The state (inhibited/uninhibited) of the nonreserved interrupts when the
program starts; if some interrupts are uninhibited, what the mechanism is that
a program can use to protect itself before it can register the corresponding ISR.

5. The treatment of interrupt occurrences that are generated while the interrupt
is inhibited, i.e., whether one or more occurrences are held for later delivery or
all are lost.

6. Whether predefined or implementation-defined exceptions are raised as a result
of the occurrence of any interrupt (for example, a hardware trap resulting
from a segmentation error), and the mapping between the interrupt and the
predefined exceptions.

7. On a multiprocessor, the rules governing the delivery of an interrupt occurrence
to a particular processor. For example, whether execution of the handle method
may spin if the lock of the associated object is held by another processor.

RTSJ 2.0 (Draft 57) 587

12 Devices and Triggering DirectMemoryByteBuffer

12.3 javax.realtime.device

12.3.1 Interfaces
12.3.1.1 DirectMemoryByteBuffer

public interface DirectMemoryByteBuffer

Description
An interface that can be implemented by a subclass of ByteBuffer for supporting
DMA.

Available since RTSJ 2.0

12.3.1.1.1 Methods

isReadOnly

Signature
public boolean
isReadOnly()

Description
Determines whether or not one can write to the buffer.

Returns
true when and only when the buffer is read only.

duplicate

Signature
public javax.realtime.device.DirectMemoryByteBuffer
duplicate()

Description

588 RTSJ 2.0 (Draft 57)

DirectMemoryByteBuffer javax.realtime.device 12.3

Creates a new memory buffer pointing to the same underlying memory. The
content of the new buffer will remain the same. Changes to this buffer’s content
will be visible in the new buffer and vice versa. Initially the two buffers’ position,
limit, and mark values will be the same, but independent of one another. Changes
to one will not be reflected in the other.

Returns
the new memory buffer

get

Signature
public byte
get()

Description

Obtains the byte at the current position and then increments the position.

Returns
the byte at the old position.

get(int)

Signature
public byte
get(int index)
throws IndexOutOfBoundsException

Description

Obtains the byte at index.

Throws
IndexOutOfBoundsException—when index is negative or not smaller than the

buffer’s limit.

Returns
the byte at index.

RTSJ 2.0 (Draft 57) 589

12 Devices and Triggering DirectMemoryByteBuffer

getChar

Signature
public char
getChar()

Description
Obtains the char at the current position and then increments the position.

Returns
the char at the old position.

getChar(int)

Signature
public char
getChar(int arg0)
throws IndexOutOfBoundsException

Description
Obtains the char at index.

Throws
IndexOutOfBoundsException—when index is negative or not smaller than the

buffer’s limit.
Returns
the char at index.

getDouble

Signature
public double
getDouble()

Description
Obtains the double at the current position and then increments the position.

Returns
the double at the old position.

590 RTSJ 2.0 (Draft 57)

DirectMemoryByteBuffer javax.realtime.device 12.3

getDouble(int)

Signature
public double
getDouble(int arg0)

Description
Obtains the double at index.

Throws
IndexOutOfBoundsException—when index is negative or not smaller than the

buffer’s limit.
Returns
the double at index.

getFloat

Signature
public float
getFloat()

Description
Obtains the float at the current position and then increments the position.

Returns
the float at the old position.

getFloat(int)

Signature
public float
getFloat(int arg0)

Description
Obtains the float at index.

Throws
IndexOutOfBoundsException—when index is negative or not smaller than the

buffer’s limit.
Returns
the float at index.

RTSJ 2.0 (Draft 57) 591

12 Devices and Triggering DirectMemoryByteBuffer

getInt

Signature
public int
getInt()

Description
Obtains the int at the current position and then increments the position.

Returns
the int at the old position.

getInt(int)

Signature
public int
getInt(int arg0)

Description
Obtains the int at index.

Throws
IndexOutOfBoundsException—when index is negative or not smaller than the

buffer’s limit.

Returns
the int at index.

getLong

Signature
public long
getLong()

Description
Obtains the long at the current position and then increments the position.

Returns
the long at the old position.

592 RTSJ 2.0 (Draft 57)

DirectMemoryByteBuffer javax.realtime.device 12.3

getLong(int)

Signature
public long
getLong(int arg0)

Description
Obtains the long at index.

Throws
IndexOutOfBoundsException—when index is negative or not smaller than the

buffer’s limit.
Returns
the long at index.

getShort

Signature
public short
getShort()

Description
Obtains the short at the current position and then increments the position.

Returns
the short at the old position.

getShort(int)

Signature
public short
getShort(int arg0)

Description
Obtains the short at index.

Throws
IndexOutOfBoundsException—when index is negative or not smaller than the

buffer’s limit.
Returns
the short at index.

RTSJ 2.0 (Draft 57) 593

12 Devices and Triggering DirectMemoryByteBuffer

put(byte)

Signature
public javax.realtime.device.DirectMemoryByteBuffer
put(byte value)
throws BufferOverflowException,

ReadOnlyBufferException

Description
Sets the byte at the current position to value and then increments the position
by one.

Throws
BufferOverflowException—when the current position is not smaller than its limit.
ReadOnlyBufferException—when this buffer is read only.

Returns
this

put(int, byte)

Signature
public javax.realtime.device.DirectMemoryByteBuffer
put(int index,

byte value)
throws BufferOverflowException,

ReadOnlyBufferException

Description
Sets the byte at the index to value.

Throws
BufferOverflowException—when index is negative or not smaller than the

buffer’s limit.
ReadOnlyBufferException—when this buffer is read only.

putChar(char)

Signature

594 RTSJ 2.0 (Draft 57)

DirectMemoryByteBuffer javax.realtime.device 12.3

public javax.realtime.device.DirectMemoryByteBuffer
putChar(char arg0)

Description
Sets the char at the current position to value and then increments the position
by one.

Throws
BufferOverflowException—when the current position is not smaller than its limit.
ReadOnlyBufferException—when this buffer is read only.

Returns
this

putChar(int, char)

Signature
public javax.realtime.device.DirectMemoryByteBuffer
putChar(int arg0,

char arg1)

Description
Sets the char at the index to value.

Throws
BufferOverflowException—when index is negative or not smaller than the

buffer’s limit.
ReadOnlyBufferException—when this buffer is read only.

putDouble(double)

Signature
public javax.realtime.device.DirectMemoryByteBuffer
putDouble(double arg0)

Description
Sets the double at the current position to value and then increments the position
by one.

Throws

RTSJ 2.0 (Draft 57) 595

12 Devices and Triggering DirectMemoryByteBuffer

BufferOverflowException—when the current position is not smaller than its limit.
ReadOnlyBufferException—when this buffer is read only.

Returns
this

putDouble(int, double)

Signature
public javax.realtime.device.DirectMemoryByteBuffer
putDouble(int arg0,

double arg1)

Description

Sets the double at the index to value.

Throws
BufferOverflowException—when index is negative or not smaller than the

buffer’s limit.
ReadOnlyBufferException—when this buffer is read only.

putFloat(float)

Signature
public javax.realtime.device.DirectMemoryByteBuffer
putFloat(float arg0)

Description

Sets the float at the current position to value and then increments the position
by one.

Throws
BufferOverflowException—when the current position is not smaller than its limit.
ReadOnlyBufferException—when this buffer is read only.

Returns
this

596 RTSJ 2.0 (Draft 57)

DirectMemoryByteBuffer javax.realtime.device 12.3

putFloat(int, float)

Signature
public javax.realtime.device.DirectMemoryByteBuffer
putFloat(int arg0,

float arg1)

Description
Sets the float at the index to value.

Throws
BufferOverflowException—when index is negative or not smaller than the

buffer’s limit.
ReadOnlyBufferException—when this buffer is read only.

putInt(int)

Signature
public javax.realtime.device.DirectMemoryByteBuffer
putInt(int arg0)

Description
Sets the int at the current position to value and then increments the position by
one.

Throws
BufferOverflowException—when the current position is not smaller than its limit.
ReadOnlyBufferException—when this buffer is read only.

Returns
this

putInt(int, int)

Signature
public javax.realtime.device.DirectMemoryByteBuffer
putInt(int arg0,

int arg1)

Description

RTSJ 2.0 (Draft 57) 597

12 Devices and Triggering DirectMemoryByteBuffer

Sets the int at the index to value.

Throws
BufferOverflowException—when index is negative or not smaller than the

buffer’s limit.
ReadOnlyBufferException—when this buffer is read only.

putLong(long)

Signature
public javax.realtime.device.DirectMemoryByteBuffer
putLong(long arg0)

Description
Sets the long at the current position to value and then increments the position
by one.

Throws
BufferOverflowException—when the current position is not smaller than its limit.
ReadOnlyBufferException—when this buffer is read only.

Returns
this

putLong(int, long)

Signature
public javax.realtime.device.DirectMemoryByteBuffer
putLong(int arg0,

long arg1)

Description
Sets the long at the index to value.

Throws
BufferOverflowException—when index is negative or not smaller than the

buffer’s limit.
ReadOnlyBufferException—when this buffer is read only.

598 RTSJ 2.0 (Draft 57)

DirectMemoryByteBuffer javax.realtime.device 12.3

putShort(short)

Signature
public javax.realtime.device.DirectMemoryByteBuffer
putShort(short arg0)

Description
Sets the short at the current position to value and then increments the position
by one.

Throws
BufferOverflowException—when the current position is not smaller than its limit.
ReadOnlyBufferException—when this buffer is read only.

Returns
this

putShort(int, short)

Signature
public javax.realtime.device.DirectMemoryByteBuffer
putShort(int arg0,

short arg1)

Description
Sets the short at the index to value.

Throws
BufferOverflowException—when index is negative or not smaller than the

buffer’s limit.
ReadOnlyBufferException—when this buffer is read only.

slice

Signature
public javax.realtime.device.DirectMemoryByteBuffer
slice()

Description

RTSJ 2.0 (Draft 57) 599

12 Devices and Triggering DirectMemoryByteBuffer

Creates a direct new byte buffer whose content is shared with a subsequence of
this buffer’s content.

The content of the new buffer will start at the current value of this buffer’s
position. Changes to the content of the new buffer will be visible in this new
buffer, and vice versa. The two buffers’ position, limit, and mark values are
independent or one another.

The new buffer’s position at start is zero, its capacity and its limit start at
the number of bytes remaining in this buffer, and its mark is initially undefined.

position

Signature
public int
position()

Description
Determines the reference position of this buffer.

Returns
the current position

position(int)

Signature
public javax.realtime.device.DirectMemoryByteBuffer
position(int position)
throws IllegalArgumentException

Description
Sets the reference position for this buffer. When the mark is defined and is larger
than the new position, the mark becomes undefined.

Parameters
position—The new current position, which must be a natural number no larger

than the current limit.
Throws

IllegalArgumentException—when the preconditions on position do not hold.
Returns
the buffer itself.

600 RTSJ 2.0 (Draft 57)

DirectMemoryByteBuffer javax.realtime.device 12.3

limit

Signature
public int
limit()

Description
Determines the buffers limit.

Returns
the limit.

limit(int)

Signature
public javax.realtime.device.DirectMemoryByteBuffer
limit(int limit)
throws IllegalArgumentException

Description
Sets this buffer’s limit. When the position is larger than the new limit, position
is set to the new limit. When the mark is defined and is larger than the new
limit, the mark becomes undefined.

Parameters
limit—The new limit value which must be a natural number no larger than this

buffer’s capacity
Throws

IllegalArgumentException—when the preconditions on limit do not hold.

Returns
the buffer itself

mark

Signature
public javax.realtime.device.DirectMemoryByteBuffer
mark()

Description

RTSJ 2.0 (Draft 57) 601

12 Devices and Triggering DirectMemoryByteBuffer

Sets this buffer’s mark to the current position.

Returns
the buffer itself.

reset

Signature
public javax.realtime.device.DirectMemoryByteBuffer
reset()
throws InvalidMarkException

Description
Resets this buffer’s position to the previously marked position leaving the mark
value unchanged.

Throws
InvalidMarkException—when the mark is undefined.

Returns
the buffer itself

flip

Signature
public javax.realtime.device.DirectMemoryByteBuffer
flip()
throws IllegalArgumentException

Description
Flips this buffer, i.e., the limit is set to the current position, then the position
is set to zero, and the mark becomes undefined. After a sequence of channel-read
or put operations, invoke this method to prepare for a sequence of channel-write
or relative get operations. Here is an example.
buf.put(magic); // Prepend header
in.read(buf); // Read data into rest of buffer
buf.flip(); // Flip buffer
out.write(buf); // Write header + data to channel

This method is often used in conjunction with the compact method when
transferring data from one place to another.

602 RTSJ 2.0 (Draft 57)

RawByte javax.realtime.device 12.3

Returns
the buffer itself.

remaining

Signature
public int
remaining()

Description
Determines number of elements remaining in the buffer.

Returns
the number of elements between the current position and the limit.

hasRemaining

Signature
public boolean
hasRemaining()

Description
Determines whether or not there are any elements between the current position
and the limit.

Returns
true when and only when there is at least one element between the current position

and the limit.

12.3.1.2 RawByte

public interface RawByte

Interfaces
javax.realtime.device.RawByteReader
javax.realtime.device.RawByteWriter

Description

RTSJ 2.0 (Draft 57) 603

12 Devices and Triggering RawByteReader

A marker for an object that can be used to access a single byte. Read and write
access to that byte is checked by the factory that creates the instance; therefore,
no access checking is provided by this interface, only bounds checking.

Available since RTSJ 2.0

12.3.1.3 RawByteReader

public interface RawByteReader

Interfaces
javax.realtime.device.RawMemory

Description
A marker for a byte accessor object encapsulating the protocol for reading bytes
from raw memory. A byte accessor can always access at least one byte. Each byte
is transferred in a single atomic operation. Groups of bytes may be transferred
together; however, this is not required.

Objects of this type are created with the method RawMemoryFactory.
createRawByteReader and RawMemoryFactory.createRawByte. Each object
references a range of elements in the RawMemoryRegion starting at the base ad-
dress provided to the factory method. The size provided to the factory method
determines the number of accessable elements.

Caching of the memory access is controlled by the factory that created this
object. If the memory is not cached, this method guarantees serialized access. In
other words, the memory access at the memory occurs in the same order as in
the program. Multiple writes to the same location may not be coalesced.

Available since RTSJ 2.0

12.3.1.3.1 Methods

getByte

Signature

604 RTSJ 2.0 (Draft 57)

RawByteReader javax.realtime.device 12.3

public byte
getByte()

Description
Gets the value at the first position referenced by this instance, i.e., the value at
its start address. This operation must be atomic with respect to all other raw
memory accesses to the address.

Returns
the value at the base address.

getByte(int)

Signature
public byte
getByte(int offset)
throws OffsetOutOfBoundsException

Description
Gets the value at the address: base address + offset ∗ stride ∗ element size in
bytes. When an exception is thrown, no data is transferred.

Parameters
offset—of byte in the memory region starting from the address specified in the

associated factory method.
Throws

OffsetOutOfBoundsException—when offset is negative or greater than or equal
to the number of elements in the raw memory region.

Returns
the value at the address specified.

get(int, byte)

Signature
public int
get(int offset,

byte[] values)
throws OffsetOutOfBoundsException,

NullPointerException

RTSJ 2.0 (Draft 57) 605

12 Devices and Triggering RawByteReader

Description
Fills values with elements from this instance, where the nth element is at the
address base address + (offset + n) ∗ stride ∗ element size in bytes. Only the
bytes in the intersection of the start and end of values and the base address and
the end of the memory region are transferred. When an exception is thrown, no
data is transferred.

Parameters
offset—of the first byte in the memory region to transfer.
values—The array to receive the bytes.

Throws
OffsetOutOfBoundsException—when offset is negative or greater than or equal

to the number of elements in the raw memory region.
NullPointerException—when values is null.

Returns
the number of elements actually transferred to values.

get(int, byte, int, int)

Signature
public int
get(int offset,

byte[] values,
int start,
int count)

throws OffsetOutOfBoundsException,
ArrayIndexOutOfBoundsException,
NullPointerException

Description
Fills values from index start with elements from this instance, where the nth

element is at the address: base address + (offset+n) ∗ stride ∗ element size in
bytes. The number of bytes transferred is the minimum of count, the size of
the memory region minus offset, and length of values minus start. When an
exception is thrown, no data is transferred.

Parameters
offset—of the first byte in the memory region to transfer.
values—The array to receive the bytes.
start—The first index in array to fill.

606 RTSJ 2.0 (Draft 57)

RawByteWriter javax.realtime.device 12.3

count—The maximum number of bytes to copy.
Throws

OffsetOutOfBoundsException—when offset is negative or either offset or off-
set + count is greater than or equal to the size of this raw memory area.

ArrayIndexOutOfBoundsException—when start is negative or either start or
start + count is greater than or equal to the size of values.

NullPointerException—when values is null or count is negative.

Returns
the number of bytes actually transferred.

12.3.1.4 RawByteWriter

public interface RawByteWriter

Interfaces
javax.realtime.device.RawMemory

Description
A marker for a byte accessor object encapsulating the protocol for writing bytes
to raw memory. A byte accessor can always access at least one byte. Each byte
is transferred in a single atomic operation. Groups of bytes may be transferred
together; however, this is not required.

Objects of this type are created with the method RawMemoryFactory.
createRawByteWriter and RawMemoryFactory.createRawByte. Each object
references a range of elements in the RawMemoryRegion starting at the base ad-
dress provided to the factory method. The size provided to the factory method
determines the number of elements accessable.

Caching of the memory access is controlled by the factory that created this
object. If the memory is not cached, this method guarantees serialized access. In
other words, the memory access at the memory occurs in the same order as in
the program. Multiple writes to the same location may not be coalesced.

Available since RTSJ 2.0

12.3.1.4.1 Methods

RTSJ 2.0 (Draft 57) 607

12 Devices and Triggering RawByteWriter

setByte(byte)

Signature
public void
setByte(byte value)

Description
Sets the value at the first position referenced by this instance, i.e., the value at
its start address. This operation must be atomic with respect to all other raw
memory accesses to the address.

Parameters
value—The new value for the element.

setByte(int, byte)

Signature
public void
setByte(int offset,

byte value)
throws OffsetOutOfBoundsException

Description
Sets the value of the nth element referenced by this instance, where n is offset
and the address is base address + offset ∗ size of Byte. This operation must be
atomic with respect to all other raw memory accesses to the address. When an
exception is thrown, no data is transferred.

Parameters
offset—of byte in the memory region.
value—The new value for the element.

Throws
OffsetOutOfBoundsException—when offset is negative or greater than or equal

to the number of elements in the raw memory region.

set(int, byte)

Signature

608 RTSJ 2.0 (Draft 57)

RawByteWriter javax.realtime.device 12.3

public int
set(int offset,

byte[] values)
throws OffsetOutOfBoundsException,

NullPointerException

Description
Copies from values to the memory region, from index start to elements where
the nth element is at the address: base address + (offset + n) ∗ stride ∗ element
size in bytes. Only the bytes in the intersection of values and the end of
the memory region are transferred. When an exception is thrown, no data is
transferred.

Parameters
offset—of first byte in the memory region to be set.
values—The source of the data to write.

Throws
OffsetOutOfBoundsException—when offset is negative or greater than or equal

to the number of elements in the raw memory region.
NullPointerException—when values is null.

Returns
the number of elements actually transferred to values.

set(int, byte, int, int)

Signature
public int
set(int offset,

byte[] values,
int start,
int count)

throws OffsetOutOfBoundsException,
ArrayIndexOutOfBoundsException,
NullPointerException

Description
Copies values to the memory region, where offset is first byte in the memory
region to write and start is the first index in values from which to read. The
number of bytes transferred is the minimum of count, the size of the memory

RTSJ 2.0 (Draft 57) 609

12 Devices and Triggering RawDoubleReader

region minus offset, and length of values minus start. When an exception is
thrown, no data is transferred.

Parameters
offset—of the first byte in the memory region to set.
values—The array from which to retrieve the bytes.
start—The first index in array to copy.
count—The maximum number of bytes to copy.

Throws
OffsetOutOfBoundsException—when offset is negative or either offset or off-

set + count is greater than or equal to the size of this raw memory area.
ArrayIndexOutOfBoundsException—when start is negative or either start or

start + count is greater than or equal to the size of values.
NullPointerException—when values is null.

Returns
the number of bytes actually transferred.

12.3.1.5 RawDouble

public interface RawDouble
Interfaces

javax.realtime.device.RawDoubleReader
javax.realtime.device.RawDoubleWriter

Description
A marker for an object that can be used to access a single double. Read and
write access to that double is checked by the factory that creates the instance;
therefore, no access checking is provided by this interface, only bounds checking.

Available since RTSJ 2.0

12.3.1.6 RawDoubleReader

public interface RawDoubleReader
Interfaces

610 RTSJ 2.0 (Draft 57)

RawDoubleReader javax.realtime.device 12.3

javax.realtime.device.RawMemory
Description

A marker for a double accessor object encapsulating the protocol for reading
doubles from raw memory. A double accessor can always access at least one
double. Each double is transferred in a single atomic operation. Groups of
doubles may be transferred together; however, this is not required.

Objects of this type are created with the method RawMemoryFactory.
createRawDoubleReader and RawMemoryFactory.createRawDouble. Each ob-
ject references a range of elements in the RawMemoryRegion starting at the base
address provided to the factory method. The size provided to the factory method
determines the number of accessable elements.

Caching of the memory access is controlled by the factory that created this
object. If the memory is not cached, this method guarantees serialized access. In
other words, the memory access at the memory occurs in the same order as in
the program. Multiple writes to the same location may not be coalesced.

Available since RTSJ 2.0

12.3.1.6.1 Methods

getDouble

Signature
public double
getDouble()

Description
Gets the value at the first position referenced by this instance, i.e., the value at
its start address. This operation must be atomic with respect to all other raw
memory accesses to the address.

Returns
the value at the base address.

getDouble(int)

Signature

RTSJ 2.0 (Draft 57) 611

12 Devices and Triggering RawDoubleReader

public double
getDouble(int offset)
throws OffsetOutOfBoundsException

Description
Gets the value at the address: base address + offset ∗ stride ∗ element size in
bytes. When an exception is thrown, no data is transferred.

Parameters
offset—of double in the memory region starting from the address specified in the

associated factory method.
Throws

OffsetOutOfBoundsException—when offset is negative or greater than or equal
to the number of elements in the raw memory region.

Returns
the value at the address specified.

get(int, double)

Signature
public int
get(int offset,

double[] values)
throws OffsetOutOfBoundsException,

NullPointerException

Description
Fills values with elements from this instance, where the nth element is at the
address base address + (offset + n) ∗ stride ∗ element size in bytes. Only the
doubles in the intersection of the start and end of values and the base address
and the end of the memory region are transferred. When an exception is thrown,
no data is transferred.

Parameters
offset—of the first double in the memory region to transfer.
values—The array to receive the doubles.

Throws
OffsetOutOfBoundsException—when offset is negative or greater than or equal

to the number of elements in the raw memory region.
NullPointerException—when values is null.

612 RTSJ 2.0 (Draft 57)

RawDoubleWriter javax.realtime.device 12.3

Returns
the number of elements actually transferred to values.

get(int, double, int, int)

Signature
public int
get(int offset,

double[] values,
int start,
int count)

throws OffsetOutOfBoundsException,
ArrayIndexOutOfBoundsException,
NullPointerException

Description

Fills values from index start with elements from this instance, where the nth

element is at the address: base address + (offset+n) ∗ stride ∗ element size in
bytes. The number of bytes transferred is the minimum of count, the size of
the memory region minus offset, and length of values minus start. When an
exception is thrown, no data is transferred.

Parameters
offset—of the first double in the memory region to transfer.
values—The array to receive the doubles.
start—The first index in array to fill.
count—The maximum number of doubles to copy.

Throws
OffsetOutOfBoundsException—when offset is negative or either offset or off-

set + count is greater than or equal to the size of this raw memory area.
ArrayIndexOutOfBoundsException—when start is negative or either start or

start + count is greater than or equal to the size of values.
NullPointerException—when values is null or count is negative.

Returns
the number of doubles actually transferred.

RTSJ 2.0 (Draft 57) 613

12 Devices and Triggering RawDoubleWriter

12.3.1.7 RawDoubleWriter

public interface RawDoubleWriter
Interfaces

javax.realtime.device.RawMemory
Description

A marker for a double accessor object encapsulating the protocol for writing
doubles to raw memory. A double accessor can always access at least one double.
Each double is transferred in a single atomic operation. Groups of doubles may
be transferred together; however, this is not required.

Objects of this type are created with the method RawMemoryFactory.
createRawDoubleWriter and RawMemoryFactory.createRawDouble. Each ob-
ject references a range of elements in the RawMemoryRegion starting at the base
address provided to the factory method. The size provided to the factory method
determines the number of elements accessable.

Caching of the memory access is controlled by the factory that created this
object. If the memory is not cached, this method guarantees serialized access. In
other words, the memory access at the memory occurs in the same order as in
the program. Multiple writes to the same location may not be coalesced.

Available since RTSJ 2.0

12.3.1.7.1 Methods

setDouble(double)

Signature
public void
setDouble(double value)

Description
Sets the value at the first position referenced by this instance, i.e., the value at
its start address. This operation must be atomic with respect to all other raw
memory accesses to the address.

Parameters

614 RTSJ 2.0 (Draft 57)

RawDoubleWriter javax.realtime.device 12.3

value—The new value for the element.

setDouble(int, double)

Signature
public void
setDouble(int offset,

double value)
throws OffsetOutOfBoundsException

Description
Sets the value of the nth element referenced by this instance, where n is offset
and the address is base address + offset ∗ size of Double. This operation must
be atomic with respect to all other raw memory accesses to the address. When
an exception is thrown, no data is transferred.

Parameters
offset—of double in the memory region.
value—The new value for the element.

Throws
OffsetOutOfBoundsException—when offset is negative or greater than or equal

to the number of elements in the raw memory region.

set(int, double)

Signature
public int
set(int offset,

double[] values)
throws OffsetOutOfBoundsException,

NullPointerException

Description
Copies from values to the memory region, from index start to elements where
the nth element is at the address: base address + (offset + n) ∗ stride ∗ element
size in bytes. Only the doubles in the intersection of values and the end of
the memory region are transferred. When an exception is thrown, no data is
transferred.

Parameters

RTSJ 2.0 (Draft 57) 615

12 Devices and Triggering RawDoubleWriter

offset—of first double in the memory region to be set.
values—The source of the data to write.

Throws
OffsetOutOfBoundsException—when offset is negative or greater than or equal

to the number of elements in the raw memory region.
NullPointerException—when values is null.

Returns
the number of elements actually transferred to values.

set(int, double, int, int)

Signature
public int
set(int offset,

double[] values,
int start,
int count)

throws OffsetOutOfBoundsException,
ArrayIndexOutOfBoundsException,
NullPointerException

Description
Copies values to the memory region, where offset is first double in the memory
region to write and start is the first index in values from which to read. The
number of bytes transferred is the minimum of count, the size of the memory
region minus offset, and length of values minus start. When an exception is
thrown, no data is transferred.

Parameters
offset—of the first double in the memory region to set.
values—The array from which to retrieve the doubles.
start—The first index in array to copy.
count—The maximum number of doubles to copy.

Throws
OffsetOutOfBoundsException—when offset is negative or either offset or off-

set + count is greater than or equal to the size of this raw memory area.
ArrayIndexOutOfBoundsException—when start is negative or either start or

start + count is greater than or equal to the size of values.
NullPointerException—when values is null.

616 RTSJ 2.0 (Draft 57)

RawFloatReader javax.realtime.device 12.3

Returns
the number of doubles actually transferred.

12.3.1.8 RawFloat

public interface RawFloat
Interfaces

javax.realtime.device.RawFloatReader
javax.realtime.device.RawFloatWriter

Description
A marker for an object that can be used to access a single float. Read and write
access to that float is checked by the factory that creates the instance; therefore,
no access checking is provided by this interface, only bounds checking.

Available since RTSJ 2.0

12.3.1.9 RawFloatReader

public interface RawFloatReader
Interfaces

javax.realtime.device.RawMemory
Description

A marker for a float accessor object encapsulating the protocol for reading floats
from raw memory. A float accessor can always access at least one float. Each float
is transferred in a single atomic operation. Groups of floats may be transferred
together; however, this is not required.

Objects of this type are created with the method RawMemoryFactory.
createRawFloatReader and RawMemoryFactory.createRawFloat. Each object
references a range of elements in the RawMemoryRegion starting at the base ad-
dress provided to the factory method. The size provided to the factory method
determines the number of accessable elements.

Caching of the memory access is controlled by the factory that created this
object. If the memory is not cached, this method guarantees serialized access. In
other words, the memory access at the memory occurs in the same order as in
the program. Multiple writes to the same location may not be coalesced.

RTSJ 2.0 (Draft 57) 617

12 Devices and Triggering RawFloatReader

Available since RTSJ 2.0

12.3.1.9.1 Methods

getFloat

Signature
public float
getFloat()

Description
Gets the value at the first position referenced by this instance, i.e., the value at
its start address. This operation must be atomic with respect to all other raw
memory accesses to the address.

Returns
the value at the base address.

getFloat(int)

Signature
public float
getFloat(int offset)
throws OffsetOutOfBoundsException

Description
Gets the value at the address: base address + offset ∗ stride ∗ element size in
bytes. When an exception is thrown, no data is transferred.

Parameters
offset—of float in the memory region starting from the address specified in the

associated factory method.
Throws

OffsetOutOfBoundsException—when offset is negative or greater than or equal
to the number of elements in the raw memory region.

Returns
the value at the address specified.

618 RTSJ 2.0 (Draft 57)

RawFloatReader javax.realtime.device 12.3

get(int, float)

Signature
public int
get(int offset,

float[] values)
throws OffsetOutOfBoundsException,

NullPointerException

Description
Fills values with elements from this instance, where the nth element is at the
address base address + (offset + n) ∗ stride ∗ element size in bytes. Only the
floats in the intersection of the start and end of values and the base address and
the end of the memory region are transferred. When an exception is thrown, no
data is transferred.

Parameters
offset—of the first float in the memory region to transfer.
values—The array to receive the floats.

Throws
OffsetOutOfBoundsException—when offset is negative or greater than or equal

to the number of elements in the raw memory region.
NullPointerException—when values is null.

Returns
the number of elements actually transferred to values.

get(int, float, int, int)

Signature
public int
get(int offset,

float[] values,
int start,
int count)

throws OffsetOutOfBoundsException,
ArrayIndexOutOfBoundsException,
NullPointerException

Description

RTSJ 2.0 (Draft 57) 619

12 Devices and Triggering RawFloatWriter

Fills values from index start with elements from this instance, where the nth

element is at the address: base address + (offset+n) ∗ stride ∗ element size in
bytes. The number of bytes transferred is the minimum of count, the size of
the memory region minus offset, and length of values minus start. When an
exception is thrown, no data is transferred.

Parameters
offset—of the first float in the memory region to transfer.
values—The array to receive the floats.
start—The first index in array to fill.
count—The maximum number of floats to copy.

Throws
OffsetOutOfBoundsException—when offset is negative or either offset or off-

set + count is greater than or equal to the size of this raw memory area.
ArrayIndexOutOfBoundsException—when start is negative or either start or

start + count is greater than or equal to the size of values.
NullPointerException—when values is null or count is negative.

Returns
the number of floats actually transferred.

12.3.1.10 RawFloatWriter

public interface RawFloatWriter
Interfaces

javax.realtime.device.RawMemory
Description

A marker for a float accessor object encapsulating the protocol for writing floats
to raw memory. A float accessor can always access at least one float. Each float
is transferred in a single atomic operation. Groups of floats may be transferred
together; however, this is not required.

Objects of this type are created with the method RawMemoryFactory.
createRawFloatWriter and RawMemoryFactory.createRawFloat. Each object
references a range of elements in the RawMemoryRegion starting at the base ad-
dress provided to the factory method. The size provided to the factory method
determines the number of elements accessable.

Caching of the memory access is controlled by the factory that created this
object. If the memory is not cached, this method guarantees serialized access. In

620 RTSJ 2.0 (Draft 57)

RawFloatWriter javax.realtime.device 12.3

other words, the memory access at the memory occurs in the same order as in
the program. Multiple writes to the same location may not be coalesced.

Available since RTSJ 2.0

12.3.1.10.1 Methods

setFloat(float)

Signature
public void
setFloat(float value)

Description
Sets the value at the first position referenced by this instance, i.e., the value at
its start address. This operation must be atomic with respect to all other raw
memory accesses to the address.

Parameters
value—The new value for the element.

setFloat(int, float)

Signature
public void
setFloat(int offset,

float value)
throws OffsetOutOfBoundsException

Description
Sets the value of the nth element referenced by this instance, where n is offset
and the address is base address + offset ∗ size of Float. This operation must
be atomic with respect to all other raw memory accesses to the address. When
an exception is thrown, no data is transferred.

Parameters
offset—of float in the memory region.
value—The new value for the element.

RTSJ 2.0 (Draft 57) 621

12 Devices and Triggering RawFloatWriter

Throws
OffsetOutOfBoundsException—when offset is negative or greater than or equal

to the number of elements in the raw memory region.

set(int, float)

Signature
public int
set(int offset,

float[] values)
throws OffsetOutOfBoundsException,

NullPointerException

Description
Copies from values to the memory region, from index start to elements where
the nth element is at the address: base address + (offset + n) ∗ stride ∗ element
size in bytes. Only the floats in the intersection of values and the end of
the memory region are transferred. When an exception is thrown, no data is
transferred.

Parameters
offset—of first float in the memory region to be set.
values—The source of the data to write.

Throws
OffsetOutOfBoundsException—when offset is negative or greater than or equal

to the number of elements in the raw memory region.
NullPointerException—when values is null.

Returns
the number of elements actually transferred to values.

set(int, float, int, int)

Signature
public int
set(int offset,

float[] values,
int start,
int count)

622 RTSJ 2.0 (Draft 57)

RawInt javax.realtime.device 12.3

throws OffsetOutOfBoundsException,
ArrayIndexOutOfBoundsException,
NullPointerException

Description
Copies values to the memory region, where offset is first float in the memory
region to write and start is the first index in values from which to read. The
number of bytes transferred is the minimum of count, the size of the memory
region minus offset, and length of values minus start. When an exception is
thrown, no data is transferred.

Parameters
offset—of the first float in the memory region to set.
values—The array from which to retrieve the floats.
start—The first index in array to copy.
count—The maximum number of floats to copy.

Throws
OffsetOutOfBoundsException—when offset is negative or either offset or off-

set + count is greater than or equal to the size of this raw memory area.
ArrayIndexOutOfBoundsException—when start is negative or either start or

start + count is greater than or equal to the size of values.
NullPointerException—when values is null.

Returns
the number of floats actually transferred.

12.3.1.11 RawInt

public interface RawInt
Interfaces

javax.realtime.device.RawIntReader
javax.realtime.device.RawIntWriter

Description
A marker for an object that can be used to access a single int. Read and write
access to that int is checked by the factory that creates the instance; therefore,
no access checking is provided by this interface, only bounds checking.

Available since RTSJ 2.0

RTSJ 2.0 (Draft 57) 623

12 Devices and Triggering RawIntReader

12.3.1.12 RawIntReader

public interface RawIntReader
Interfaces

javax.realtime.device.RawMemory
Description

A marker for a int accessor object encapsulating the protocol for reading ints
from raw memory. A int accessor can always access at least one int. Each int
is transferred in a single atomic operation. Groups of ints may be transferred
together; however, this is not required.

Objects of this type are created with the method RawMemoryFactory.
createRawIntReader and RawMemoryFactory.createRawInt. Each object ref-
erences a range of elements in the RawMemoryRegion starting at the base address
provided to the factory method. The size provided to the factory method deter-
mines the number of accessable elements.

Caching of the memory access is controlled by the factory that created this
object. If the memory is not cached, this method guarantees serialized access. In
other words, the memory access at the memory occurs in the same order as in
the program. Multiple writes to the same location may not be coalesced.

Available since RTSJ 2.0

12.3.1.12.1 Methods

getInt

Signature
public int
getInt()

Description
Gets the value at the first position referenced by this instance, i.e., the value at
its start address. This operation must be atomic with respect to all other raw
memory accesses to the address.

Returns

624 RTSJ 2.0 (Draft 57)

RawIntReader javax.realtime.device 12.3

the value at the base address.

getInt(int)

Signature
public int
getInt(int offset)
throws OffsetOutOfBoundsException

Description
Gets the value at the address: base address + offset ∗ stride ∗ element size in
bytes. When an exception is thrown, no data is transferred.

Parameters
offset—of int in the memory region starting from the address specified in the

associated factory method.
Throws

OffsetOutOfBoundsException—when offset is negative or greater than or equal
to the number of elements in the raw memory region.

Returns
the value at the address specified.

get(int, int)

Signature
public int
get(int offset,

int[] values)
throws OffsetOutOfBoundsException,

NullPointerException

Description
Fills values with elements from this instance, where the nth element is at the
address base address + (offset + n) ∗ stride ∗ element size in bytes. Only the
ints in the intersection of the start and end of values and the base address and
the end of the memory region are transferred. When an exception is thrown, no
data is transferred.

Parameters
offset—of the first int in the memory region to transfer.

RTSJ 2.0 (Draft 57) 625

12 Devices and Triggering RawIntReader

values—The array to receive the ints.
Throws

OffsetOutOfBoundsException—when offset is negative or greater than or equal
to the number of elements in the raw memory region.

NullPointerException—when values is null.
Returns
the number of elements actually transferred to values.

get(int, int, int, int)

Signature
public int
get(int offset,

int[] values,
int start,
int count)

throws OffsetOutOfBoundsException,
ArrayIndexOutOfBoundsException,
NullPointerException

Description
Fills values from index start with elements from this instance, where the nth

element is at the address: base address + (offset+n) ∗ stride ∗ element size in
bytes. The number of bytes transferred is the minimum of count, the size of
the memory region minus offset, and length of values minus start. When an
exception is thrown, no data is transferred.

Parameters
offset—of the first int in the memory region to transfer.
values—The array to receive the ints.
start—The first index in array to fill.
count—The maximum number of ints to copy.

Throws
OffsetOutOfBoundsException—when offset is negative or either offset or off-

set + count is greater than or equal to the size of this raw memory area.
ArrayIndexOutOfBoundsException—when start is negative or either start or

start + count is greater than or equal to the size of values.
NullPointerException—when values is null or count is negative.

Returns

626 RTSJ 2.0 (Draft 57)

RawIntWriter javax.realtime.device 12.3

the number of ints actually transferred.

12.3.1.13 RawIntWriter

public interface RawIntWriter

Interfaces
javax.realtime.device.RawMemory

Description
A marker for a int accessor object encapsulating the protocol for writing ints
to raw memory. A int accessor can always access at least one int. Each int
is transferred in a single atomic operation. Groups of ints may be transferred
together; however, this is not required.

Objects of this type are created with the method RawMemoryFactory.
createRawIntWriter and RawMemoryFactory.createRawInt. Each object ref-
erences a range of elements in the RawMemoryRegion starting at the base address
provided to the factory method. The size provided to the factory method deter-
mines the number of elements accessable.

Caching of the memory access is controlled by the factory that created this
object. If the memory is not cached, this method guarantees serialized access. In
other words, the memory access at the memory occurs in the same order as in
the program. Multiple writes to the same location may not be coalesced.

Available since RTSJ 2.0

12.3.1.13.1 Methods

setInt(int)

Signature
public void
setInt(int value)

Description

RTSJ 2.0 (Draft 57) 627

12 Devices and Triggering RawIntWriter

Sets the value at the first position referenced by this instance, i.e., the value at
its start address. This operation must be atomic with respect to all other raw
memory accesses to the address.

Parameters
value—The new value for the element.

setInt(int, int)

Signature
public void
setInt(int offset,

int value)
throws OffsetOutOfBoundsException

Description
Sets the value of the nth element referenced by this instance, where n is offset
and the address is base address + offset ∗ size of Int. This operation must be
atomic with respect to all other raw memory accesses to the address. When an
exception is thrown, no data is transferred.

Parameters
offset—of int in the memory region.
value—The new value for the element.

Throws
OffsetOutOfBoundsException—when offset is negative or greater than or equal

to the number of elements in the raw memory region.

set(int, int)

Signature
public int
set(int offset,

int[] values)
throws OffsetOutOfBoundsException,

NullPointerException

Description
Copies from values to the memory region, from index start to elements where
the nth element is at the address: base address + (offset + n) ∗ stride ∗ element size

628 RTSJ 2.0 (Draft 57)

RawIntWriter javax.realtime.device 12.3

in bytes. Only the ints in the intersection of values and the end of the memory
region are transferred. When an exception is thrown, no data is transferred.

Parameters
offset—of first int in the memory region to be set.
values—The source of the data to write.

Throws
OffsetOutOfBoundsException—when offset is negative or greater than or equal

to the number of elements in the raw memory region.
NullPointerException—when values is null.

Returns
the number of elements actually transferred to values.

set(int, int, int, int)

Signature
public int
set(int offset,

int[] values,
int start,
int count)

throws OffsetOutOfBoundsException,
ArrayIndexOutOfBoundsException,
NullPointerException

Description
Copies values to the memory region, where offset is first int in the memory
region to write and start is the first index in values from which to read. The
number of bytes transferred is the minimum of count, the size of the memory
region minus offset, and length of values minus start. When an exception is
thrown, no data is transferred.

Parameters
offset—of the first int in the memory region to set.
values—The array from which to retrieve the ints.
start—The first index in array to copy.
count—The maximum number of ints to copy.

Throws
OffsetOutOfBoundsException—when offset is negative or either offset or off-

set + count is greater than or equal to the size of this raw memory area.

RTSJ 2.0 (Draft 57) 629

12 Devices and Triggering RawLongReader

ArrayIndexOutOfBoundsException—when start is negative or either start or
start + count is greater than or equal to the size of values.

NullPointerException—when values is null.
Returns
the number of ints actually transferred.

12.3.1.14 RawLong

public interface RawLong
Interfaces

javax.realtime.device.RawLongReader
javax.realtime.device.RawLongWriter

Description
A marker for an object that can be used to access a single long. Read and write
access to that long is checked by the factory that creates the instance; therefore,
no access checking is provided by this interface, only bounds checking.

Available since RTSJ 2.0

12.3.1.15 RawLongReader

public interface RawLongReader
Interfaces

javax.realtime.device.RawMemory
Description

A marker for a long accessor object encapsulating the protocol for reading longs
from raw memory. A long accessor can always access at least one long. Each long
is transferred in a single atomic operation. Groups of longs may be transferred
together; however, this is not required.

Objects of this type are created with the method RawMemoryFactory.
createRawLongReader and RawMemoryFactory.createRawLong. Each object
references a range of elements in the RawMemoryRegion starting at the base ad-
dress provided to the factory method. The size provided to the factory method
determines the number of accessable elements.

630 RTSJ 2.0 (Draft 57)

RawLongReader javax.realtime.device 12.3

Caching of the memory access is controlled by the factory that created this
object. If the memory is not cached, this method guarantees serialized access. In
other words, the memory access at the memory occurs in the same order as in
the program. Multiple writes to the same location may not be coalesced.

Available since RTSJ 2.0

12.3.1.15.1 Methods

getLong

Signature
public long
getLong()

Description
Gets the value at the first position referenced by this instance, i.e., the value at
its start address. This operation must be atomic with respect to all other raw
memory accesses to the address.

Returns
the value at the base address.

getLong(int)

Signature
public long
getLong(int offset)
throws OffsetOutOfBoundsException

Description
Gets the value at the address: base address + offset ∗ stride ∗ element size in
bytes. When an exception is thrown, no data is transferred.

Parameters
offset—of long in the memory region starting from the address specified in the

associated factory method.
Throws

RTSJ 2.0 (Draft 57) 631

12 Devices and Triggering RawLongReader

OffsetOutOfBoundsException—when offset is negative or greater than or equal
to the number of elements in the raw memory region.

Returns
the value at the address specified.

get(int, long)

Signature
public int
get(int offset,

long[] values)
throws OffsetOutOfBoundsException,

NullPointerException

Description
Fills values with elements from this instance, where the nth element is at the
address base address + (offset + n) ∗ stride ∗ element size in bytes. Only the
longs in the intersection of the start and end of values and the base address and
the end of the memory region are transferred. When an exception is thrown, no
data is transferred.

Parameters
offset—of the first long in the memory region to transfer.
values—The array to receive the longs.

Throws
OffsetOutOfBoundsException—when offset is negative or greater than or equal

to the number of elements in the raw memory region.
NullPointerException—when values is null.

Returns
the number of elements actually transferred to values.

get(int, long, int, int)

Signature
public int
get(int offset,

long[] values,
int start,
int count)

632 RTSJ 2.0 (Draft 57)

RawLongWriter javax.realtime.device 12.3

throws OffsetOutOfBoundsException,
ArrayIndexOutOfBoundsException,
NullPointerException

Description
Fills values from index start with elements from this instance, where the nth

element is at the address: base address + (offset+n) ∗ stride ∗ element size in
bytes. The number of bytes transferred is the minimum of count, the size of
the memory region minus offset, and length of values minus start. When an
exception is thrown, no data is transferred.

Parameters
offset—of the first long in the memory region to transfer.
values—The array to receive the longs.
start—The first index in array to fill.
count—The maximum number of longs to copy.

Throws
OffsetOutOfBoundsException—when offset is negative or either offset or off-

set + count is greater than or equal to the size of this raw memory area.
ArrayIndexOutOfBoundsException—when start is negative or either start or

start + count is greater than or equal to the size of values.
NullPointerException—when values is null or count is negative.

Returns
the number of longs actually transferred.

12.3.1.16 RawLongWriter

public interface RawLongWriter
Interfaces

javax.realtime.device.RawMemory
Description

A marker for a long accessor object encapsulating the protocol for writing longs
to raw memory. A long accessor can always access at least one long. Each long
is transferred in a single atomic operation. Groups of longs may be transferred
together; however, this is not required.

Objects of this type are created with the method RawMemoryFactory.
createRawLongWriter and RawMemoryFactory.createRawLong. Each object

RTSJ 2.0 (Draft 57) 633

12 Devices and Triggering RawLongWriter

references a range of elements in the RawMemoryRegion starting at the base ad-
dress provided to the factory method. The size provided to the factory method
determines the number of elements accessable.

Caching of the memory access is controlled by the factory that created this
object. If the memory is not cached, this method guarantees serialized access. In
other words, the memory access at the memory occurs in the same order as in
the program. Multiple writes to the same location may not be coalesced.

Available since RTSJ 2.0

12.3.1.16.1 Methods

setLong(long)

Signature
public void
setLong(long value)

Description
Sets the value at the first position referenced by this instance, i.e., the value at
its start address. This operation must be atomic with respect to all other raw
memory accesses to the address.

Parameters
value—The new value for the element.

setLong(int, long)

Signature
public void
setLong(int offset,

long value)
throws OffsetOutOfBoundsException

Description
Sets the value of the nth element referenced by this instance, where n is offset
and the address is base address + offset ∗ size of Long. This operation must be

634 RTSJ 2.0 (Draft 57)

RawLongWriter javax.realtime.device 12.3

atomic with respect to all other raw memory accesses to the address. When an
exception is thrown, no data is transferred.

Parameters
offset—of long in the memory region.
value—The new value for the element.

Throws
OffsetOutOfBoundsException—when offset is negative or greater than or equal

to the number of elements in the raw memory region.

set(int, long)

Signature
public int
set(int offset,

long[] values)
throws OffsetOutOfBoundsException,

NullPointerException

Description
Copies from values to the memory region, from index start to elements where
the nth element is at the address: base address + (offset + n) ∗ stride ∗ element
size in bytes. Only the longs in the intersection of values and the end of
the memory region are transferred. When an exception is thrown, no data is
transferred.

Parameters
offset—of first long in the memory region to be set.
values—The source of the data to write.

Throws
OffsetOutOfBoundsException—when offset is negative or greater than or equal

to the number of elements in the raw memory region.
NullPointerException—when values is null.

Returns
the number of elements actually transferred to values.

set(int, long, int, int)

Signature

RTSJ 2.0 (Draft 57) 635

12 Devices and Triggering RawMemory

public int
set(int offset,

long[] values,
int start,
int count)

throws OffsetOutOfBoundsException,
ArrayIndexOutOfBoundsException,
NullPointerException

Description
Copies values to the memory region, where offset is first long in the memory
region to write and start is the first index in values from which to read. The
number of bytes transferred is the minimum of count, the size of the memory
region minus offset, and length of values minus start. When an exception is
thrown, no data is transferred.

Parameters
offset—of the first long in the memory region to set.
values—The array from which to retrieve the longs.
start—The first index in array to copy.
count—The maximum number of longs to copy.

Throws
OffsetOutOfBoundsException—when offset is negative or either offset or off-

set + count is greater than or equal to the size of this raw memory area.
ArrayIndexOutOfBoundsException—when start is negative or either start or

start + count is greater than or equal to the size of values.
NullPointerException—when values is null.

Returns
the number of longs actually transferred.

12.3.1.17 RawMemory

public interface RawMemory
Description

A marker for all raw memory accessor objects.

Available since RTSJ 2.0

636 RTSJ 2.0 (Draft 57)

RawMemory javax.realtime.device 12.3

12.3.1.17.1 Methods

getAddress

Signature
public long
getAddress()

Description
Gets the base physical address of this object.

Returns
the first physical address this raw memory object can access.

getSize

Signature
public int
getSize()

Description
Gets the number of bytes that this object spans.

Returns
the size of this raw memory.

getStride

Signature
public int
getStride()

Description
Gets the distance between elements in multiples of element size.

Returns
the span between elements of this raw memory.

RTSJ 2.0 (Draft 57) 637

12 Devices and Triggering RawMemoryRegionFactory

12.3.1.18 RawMemoryRegionFactory

public interface RawMemoryRegionFactory

Description
A class to give an application the ability to provide support for a RawMemoryRe-
gion that is not already provided by the standard. An instance of this call can
be registered with a RawMemoryFactory and provide the object that that factory
should return for with a given RawMemoryRegion. It is responsible for checking
all requests and throwing the proper exception when a request is invalid or the
requester is not authorized to make the request.

Available since RTSJ 2.0

12.3.1.18.1 Methods

getRegion

Signature
public javax.realtime.device.RawMemoryRegion
getRegion()

Description
Determines for what region this factory creates raw memory objects.

Returns
the region of this factory.

getName

Signature
public java.lang.String
getName()

Description

638 RTSJ 2.0 (Draft 57)

RawMemoryRegionFactory javax.realtime.device 12.3

Determines the name of the region for which this factory creates raw memory
objects.

Returns
the name of the region of this factory.

createRawByte(long, int, int)

Signature
public javax.realtime.device.RawByte
createRawByte(long base,

int count,
int stride)

throws SecurityException,
OffsetOutOfBoundsException,
SizeOutOfBoundsException,
UnsupportedRawMemoryRegionException,
MemoryTypeConflictException

Description
Creates an instance of a class that implements RawByte and accesses memory
of getRegion in the address range described by base, stride, and count. The
actual extent of the memory addressed by the object is stride ∗ size of RawByte
∗ count. The object is allocated in the current memory area of the calling thread.

Parameters
base—The starting physical address accessible through the returned instance.
count—The number of memory elements accessible through the returned instance.
stride—The distance to the next element in mulitple of element count, where a

value of 1 means the elements are adjacent in memory.
Throws

IllegalArgumentException—when base is negative, count is not greater than
zero, or stride is not greater than zero.

SecurityException—when the caller does not have permissions to access the given
memory region or the specified range of addresses.

OffsetOutOfBoundsException—when base is invalid.
SizeOutOfBoundsException—when the memory addressed by the object would

extend into an invalid range of memory.
MemoryTypeConflictException—when base does not point to memory that

matches the type served by this factory.

RTSJ 2.0 (Draft 57) 639

12 Devices and Triggering RawMemoryRegionFactory

Returns
an object that implements RawByte and supports access to the specified range in

the memory region.

Available since RTSJ 2.0

createRawByteReader(long, int, int)

Signature
public javax.realtime.device.RawByteReader
createRawByteReader(long base,

int count,
int stride)

throws SecurityException,
OffsetOutOfBoundsException,
SizeOutOfBoundsException,
UnsupportedRawMemoryRegionException,
MemoryTypeConflictException

Description
Creates an instance of a class that implements RawByteReader and accesses
memory of getRegion in the address range described by base, stride, and
count. The actual extent of the memory addressed by the object is stride ∗
size of RawByteReader ∗ count. The object is allocated in the current memory
area of the calling thread.

Parameters
base—The starting physical address accessible through the returned instance.
count—The number of memory elements accessible through the returned instance.
stride—The distance to the next element in mulitple of element count, where a

value of 1 means the elements are adjacent in memory.
Throws

IllegalArgumentException—when base is negative, count is not greater than
zero, or stride is not greater than zero.

SecurityException—when the caller does not have permissions to access the given
memory region or the specified range of addresses.

OffsetOutOfBoundsException—when base is invalid.
SizeOutOfBoundsException—when the memory addressed by the object would

extend into an invalid range of memory.

640 RTSJ 2.0 (Draft 57)

RawMemoryRegionFactory javax.realtime.device 12.3

MemoryTypeConflictException—when base does not point to memory that
matches the type served by this factory.

Returns
an object that implements RawByteReader and supports access to the specified

range in the memory region.

Available since RTSJ 2.0

createRawByteWriter(long, int, int)

Signature
public javax.realtime.device.RawByteWriter
createRawByteWriter(long base,

int count,
int stride)

throws SecurityException,
OffsetOutOfBoundsException,
SizeOutOfBoundsException,
UnsupportedRawMemoryRegionException,
MemoryTypeConflictException

Description
Creates an instance of a class that implements RawByteWriter and accesses
memory of getRegion in the address range described by base, stride, and
count. The actual extent of the memory addressed by the object is stride ∗
size of RawByteWriter ∗ count. The object is allocated in the current memory
area of the calling thread.

Parameters
base—The starting physical address accessible through the returned instance.
count—The number of memory elements accessible through the returned instance.
stride—The distance to the next element in mulitple of element count, where a

value of 1 means the elements are adjacent in memory.
Throws

IllegalArgumentException—when base is negative, count is not greater than
zero, or stride is not greater than zero.

SecurityException—when the caller does not have permissions to access the given
memory region or the specified range of addresses.

OffsetOutOfBoundsException—when base is invalid.

RTSJ 2.0 (Draft 57) 641

12 Devices and Triggering RawMemoryRegionFactory

SizeOutOfBoundsException—when the memory addressed by the object would
extend into an invalid range of memory.

MemoryTypeConflictException—when base does not point to memory that
matches the type served by this factory.

Returns
an object that implements RawByteWriter and supports access to the specified

range in the memory region.

Available since RTSJ 2.0

createRawShort(long, int, int)

Signature
public javax.realtime.device.RawShort
createRawShort(long base,

int count,
int stride)

throws SecurityException,
OffsetOutOfBoundsException,
SizeOutOfBoundsException,
UnsupportedRawMemoryRegionException,
MemoryTypeConflictException

Description
Creates an instance of a class that implements RawShort and accesses memory
of getRegion in the address range described by base, stride, and count. The
actual extent of the memory addressed by the object is stride ∗ size of RawShort
∗ count. The object is allocated in the current memory area of the calling thread.

Parameters
base—The starting physical address accessible through the returned instance.
count—The number of memory elements accessible through the returned instance.
stride—The distance to the next element in mulitple of element count, where a

value of 1 means the elements are adjacent in memory.
Throws

IllegalArgumentException—when base is negative, count is not greater than
zero, or stride is not greater than zero.

SecurityException—when the caller does not have permissions to access the given
memory region or the specified range of addresses.

642 RTSJ 2.0 (Draft 57)

RawMemoryRegionFactory javax.realtime.device 12.3

OffsetOutOfBoundsException—when base is invalid.
SizeOutOfBoundsException—when the memory addressed by the object would

extend into an invalid range of memory.
MemoryTypeConflictException—when base does not point to memory that

matches the type served by this factory.

Returns
an object that implements RawShort and supports access to the specified range in

the memory region.

Available since RTSJ 2.0

createRawShortReader(long, int, int)

Signature
public javax.realtime.device.RawShortReader
createRawShortReader(long base,

int count,
int stride)

throws SecurityException,
OffsetOutOfBoundsException,
SizeOutOfBoundsException,
UnsupportedRawMemoryRegionException,
MemoryTypeConflictException

Description
Creates an instance of a class that implements RawShortReader and accesses
memory of getRegion in the address range described by base, stride, and
count. The actual extent of the memory addressed by the object is stride ∗
size of RawShortReader ∗ count. The object is allocated in the current memory
area of the calling thread.

Parameters
base—The starting physical address accessible through the returned instance.
count—The number of memory elements accessible through the returned instance.
stride—The distance to the next element in mulitple of element count, where a

value of 1 means the elements are adjacent in memory.
Throws

IllegalArgumentException—when base is negative, count is not greater than
zero, or stride is not greater than zero.

RTSJ 2.0 (Draft 57) 643

12 Devices and Triggering RawMemoryRegionFactory

SecurityException—when the caller does not have permissions to access the given
memory region or the specified range of addresses.

OffsetOutOfBoundsException—when base is invalid.
SizeOutOfBoundsException—when the memory addressed by the object would

extend into an invalid range of memory.
MemoryTypeConflictException—when base does not point to memory that

matches the type served by this factory.
Returns
an object that implements RawShortReader and supports access to the specified

range in the memory region.
Available since RTSJ 2.0

createRawShortWriter(long, int, int)

Signature
public javax.realtime.device.RawShortWriter
createRawShortWriter(long base,

int count,
int stride)

throws SecurityException,
OffsetOutOfBoundsException,
SizeOutOfBoundsException,
UnsupportedRawMemoryRegionException,
MemoryTypeConflictException

Description
Creates an instance of a class that implements RawShortWriter and accesses
memory of getRegion in the address range described by base, stride, and
count. The actual extent of the memory addressed by the object is stride ∗
size of RawShortWriter ∗ count. The object is allocated in the current memory
area of the calling thread.

Parameters
base—The starting physical address accessible through the returned instance.
count—The number of memory elements accessible through the returned instance.
stride—The distance to the next element in mulitple of element count, where a

value of 1 means the elements are adjacent in memory.
Throws

644 RTSJ 2.0 (Draft 57)

RawMemoryRegionFactory javax.realtime.device 12.3

IllegalArgumentException—when base is negative, count is not greater than
zero, or stride is not greater than zero.

SecurityException—when the caller does not have permissions to access the given
memory region or the specified range of addresses.

OffsetOutOfBoundsException—when base is invalid.
SizeOutOfBoundsException—when the memory addressed by the object would

extend into an invalid range of memory.
MemoryTypeConflictException—when base does not point to memory that

matches the type served by this factory.
Returns
an object that implements RawShortWriter and supports access to the specified

range in the memory region.
Available since RTSJ 2.0

createRawInt(long, int, int)

Signature
public javax.realtime.device.RawInt
createRawInt(long base,

int count,
int stride)

throws SecurityException,
OffsetOutOfBoundsException,
SizeOutOfBoundsException,
UnsupportedRawMemoryRegionException,
MemoryTypeConflictException

Description
Creates an instance of a class that implements RawInt and accesses memory of
getRegion in the address range described by base, stride, and count. The
actual extent of the memory addressed by the object is stride ∗ size of RawInt ∗
count. The object is allocated in the current memory area of the calling thread.

Parameters
base—The starting physical address accessible through the returned instance.
count—The number of memory elements accessible through the returned instance.
stride—The distance to the next element in mulitple of element count, where a

value of 1 means the elements are adjacent in memory.

RTSJ 2.0 (Draft 57) 645

12 Devices and Triggering RawMemoryRegionFactory

Throws
IllegalArgumentException—when base is negative, count is not greater than

zero, or stride is not greater than zero.
SecurityException—when the caller does not have permissions to access the given

memory region or the specified range of addresses.
OffsetOutOfBoundsException—when base is invalid.
SizeOutOfBoundsException—when the memory addressed by the object would

extend into an invalid range of memory.
MemoryTypeConflictException—when base does not point to memory that

matches the type served by this factory.
Returns
an object that implements RawInt and supports access to the specified range in the

memory region.
Available since RTSJ 2.0

createRawIntReader(long, int, int)

Signature
public javax.realtime.device.RawIntReader
createRawIntReader(long base,

int count,
int stride)

throws SecurityException,
OffsetOutOfBoundsException,
SizeOutOfBoundsException,
UnsupportedRawMemoryRegionException,
MemoryTypeConflictException

Description
Creates an instance of a class that implements RawIntReader and accesses
memory of getRegion in the address range described by base, stride, and
count. The actual extent of the memory addressed by the object is stride ∗
size of RawIntReader ∗ count. The object is allocated in the current memory
area of the calling thread.

Parameters
base—The starting physical address accessible through the returned instance.
count—The number of memory elements accessible through the returned instance.

646 RTSJ 2.0 (Draft 57)

RawMemoryRegionFactory javax.realtime.device 12.3

stride—The distance to the next element in mulitple of element count, where a
value of 1 means the elements are adjacent in memory.

Throws
IllegalArgumentException—when base is negative, count is not greater than

zero, or stride is not greater than zero.
SecurityException—when the caller does not have permissions to access the given

memory region or the specified range of addresses.
OffsetOutOfBoundsException—when base is invalid.
SizeOutOfBoundsException—when the memory addressed by the object would

extend into an invalid range of memory.
MemoryTypeConflictException—when base does not point to memory that

matches the type served by this factory.

Returns
an object that implements RawIntReader and supports access to the specified range

in the memory region.

Available since RTSJ 2.0

createRawIntWriter(long, int, int)

Signature
public javax.realtime.device.RawIntWriter
createRawIntWriter(long base,

int count,
int stride)

throws SecurityException,
OffsetOutOfBoundsException,
SizeOutOfBoundsException,
UnsupportedRawMemoryRegionException,
MemoryTypeConflictException

Description
Creates an instance of a class that implements RawIntWriter and accesses
memory of getRegion in the address range described by base, stride, and
count. The actual extent of the memory addressed by the object is stride ∗
size of RawIntWriter ∗ count. The object is allocated in the current memory
area of the calling thread.

Parameters

RTSJ 2.0 (Draft 57) 647

12 Devices and Triggering RawMemoryRegionFactory

base—The starting physical address accessible through the returned instance.
count—The number of memory elements accessible through the returned instance.
stride—The distance to the next element in mulitple of element count, where a

value of 1 means the elements are adjacent in memory.
Throws

IllegalArgumentException—when base is negative, count is not greater than
zero, or stride is not greater than zero.

SecurityException—when the caller does not have permissions to access the given
memory region or the specified range of addresses.

OffsetOutOfBoundsException—when base is invalid.
SizeOutOfBoundsException—when the memory addressed by the object would

extend into an invalid range of memory.
MemoryTypeConflictException—when base does not point to memory that

matches the type served by this factory.

Returns
an object that implements RawIntWriter and supports access to the specified range

in the memory region.

Available since RTSJ 2.0

createRawLong(long, int, int)

Signature
public javax.realtime.device.RawLong
createRawLong(long base,

int count,
int stride)

throws SecurityException,
OffsetOutOfBoundsException,
SizeOutOfBoundsException,
UnsupportedRawMemoryRegionException,
MemoryTypeConflictException

Description
Creates an instance of a class that implements RawLong and accesses memory
of getRegion in the address range described by base, stride, and count. The
actual extent of the memory addressed by the object is stride ∗ size of RawLong
∗ count. The object is allocated in the current memory area of the calling thread.

648 RTSJ 2.0 (Draft 57)

RawMemoryRegionFactory javax.realtime.device 12.3

Parameters
base—The starting physical address accessible through the returned instance.
count—The number of memory elements accessible through the returned instance.
stride—The distance to the next element in mulitple of element count, where a

value of 1 means the elements are adjacent in memory.
Throws

IllegalArgumentException—when base is negative, count is not greater than
zero, or stride is not greater than zero.

SecurityException—when the caller does not have permissions to access the given
memory region or the specified range of addresses.

OffsetOutOfBoundsException—when base is invalid.
SizeOutOfBoundsException—when the memory addressed by the object would

extend into an invalid range of memory.
MemoryTypeConflictException—when base does not point to memory that

matches the type served by this factory.

Returns
an object that implements RawLong and supports access to the specified range in

the memory region.

Available since RTSJ 2.0

createRawLongReader(long, int, int)

Signature
public javax.realtime.device.RawLongReader
createRawLongReader(long base,

int count,
int stride)

throws SecurityException,
OffsetOutOfBoundsException,
SizeOutOfBoundsException,
UnsupportedRawMemoryRegionException,
MemoryTypeConflictException

Description
Creates an instance of a class that implements RawLongReader and accesses
memory of getRegion in the address range described by base, stride, and
count. The actual extent of the memory addressed by the object is stride ∗

RTSJ 2.0 (Draft 57) 649

12 Devices and Triggering RawMemoryRegionFactory

size of RawLongReader ∗ count. The object is allocated in the current memory
area of the calling thread.

Parameters
base—The starting physical address accessible through the returned instance.
count—The number of memory elements accessible through the returned instance.
stride—The distance to the next element in mulitple of element count, where a

value of 1 means the elements are adjacent in memory.
Throws

IllegalArgumentException—when base is negative, count is not greater than
zero, or stride is not greater than zero.

SecurityException—when the caller does not have permissions to access the given
memory region or the specified range of addresses.

OffsetOutOfBoundsException—when base is invalid.
SizeOutOfBoundsException—when the memory addressed by the object would

extend into an invalid range of memory.
MemoryTypeConflictException—when base does not point to memory that

matches the type served by this factory.

Returns
an object that implements RawLongReader and supports access to the specified

range in the memory region.

Available since RTSJ 2.0

createRawLongWriter(long, int, int)

Signature
public javax.realtime.device.RawLongWriter
createRawLongWriter(long base,

int count,
int stride)

throws SecurityException,
OffsetOutOfBoundsException,
SizeOutOfBoundsException,
UnsupportedRawMemoryRegionException,
MemoryTypeConflictException

Description

650 RTSJ 2.0 (Draft 57)

RawMemoryRegionFactory javax.realtime.device 12.3

Creates an instance of a class that implements RawLongWriter and accesses
memory of getRegion in the address range described by base, stride, and
count. The actual extent of the memory addressed by the object is stride ∗
size of RawLongWriter ∗ count. The object is allocated in the current memory
area of the calling thread.

Parameters
base—The starting physical address accessible through the returned instance.
count—The number of memory elements accessible through the returned instance.
stride—The distance to the next element in mulitple of element count, where a

value of 1 means the elements are adjacent in memory.
Throws

IllegalArgumentException—when base is negative, count is not greater than
zero, or stride is not greater than zero.

SecurityException—when the caller does not have permissions to access the given
memory region or the specified range of addresses.

OffsetOutOfBoundsException—when base is invalid.
SizeOutOfBoundsException—when the memory addressed by the object would

extend into an invalid range of memory.
MemoryTypeConflictException—when base does not point to memory that

matches the type served by this factory.

Returns
an object that implements RawLongWriter and supports access to the specified

range in the memory region.

Available since RTSJ 2.0

createRawFloat(long, int, int)

Signature
public javax.realtime.device.RawFloat
createRawFloat(long base,

int count,
int stride)

throws SecurityException,
OffsetOutOfBoundsException,
SizeOutOfBoundsException,
UnsupportedRawMemoryRegionException,
MemoryTypeConflictException

RTSJ 2.0 (Draft 57) 651

12 Devices and Triggering RawMemoryRegionFactory

Description
Creates an instance of a class that implements RawFloat and accesses memory
of getRegion in the address range described by base, stride, and count. The
actual extent of the memory addressed by the object is stride ∗ size of RawFloat
∗ count. The object is allocated in the current memory area of the calling thread.

Parameters
base—The starting physical address accessible through the returned instance.
count—The number of memory elements accessible through the returned instance.
stride—The distance to the next element in mulitple of element count, where a

value of 1 means the elements are adjacent in memory.
Throws

IllegalArgumentException—when base is negative, count is not greater than
zero, or stride is not greater than zero.

SecurityException—when the caller does not have permissions to access the given
memory region or the specified range of addresses.

OffsetOutOfBoundsException—when base is invalid.
SizeOutOfBoundsException—when the memory addressed by the object would

extend into an invalid range of memory.
MemoryTypeConflictException—when base does not point to memory that

matches the type served by this factory.
Returns
an object that implements RawFloat and supports access to the specified range in

the memory region.
Available since RTSJ 2.0

createRawFloatReader(long, int, int)

Signature
public javax.realtime.device.RawFloatReader
createRawFloatReader(long base,

int count,
int stride)

throws SecurityException,
OffsetOutOfBoundsException,
SizeOutOfBoundsException,
UnsupportedRawMemoryRegionException,

652 RTSJ 2.0 (Draft 57)

RawMemoryRegionFactory javax.realtime.device 12.3

MemoryTypeConflictException

Description
Creates an instance of a class that implements RawFloatReader and accesses
memory of getRegion in the address range described by base, stride, and
count. The actual extent of the memory addressed by the object is stride ∗
size of RawFloatReader ∗ count. The object is allocated in the current memory
area of the calling thread.

Parameters
base—The starting physical address accessible through the returned instance.
count—The number of memory elements accessible through the returned instance.
stride—The distance to the next element in mulitple of element count, where a

value of 1 means the elements are adjacent in memory.
Throws

IllegalArgumentException—when base is negative, count is not greater than
zero, or stride is not greater than zero.

SecurityException—when the caller does not have permissions to access the given
memory region or the specified range of addresses.

OffsetOutOfBoundsException—when base is invalid.
SizeOutOfBoundsException—when the memory addressed by the object would

extend into an invalid range of memory.
MemoryTypeConflictException—when base does not point to memory that

matches the type served by this factory.

Returns
an object that implements RawFloatReader and supports access to the specified

range in the memory region.

Available since RTSJ 2.0

createRawFloatWriter(long, int, int)

Signature
public javax.realtime.device.RawFloatWriter
createRawFloatWriter(long base,

int count,
int stride)

RTSJ 2.0 (Draft 57) 653

12 Devices and Triggering RawMemoryRegionFactory

throws SecurityException,
OffsetOutOfBoundsException,
SizeOutOfBoundsException,
UnsupportedRawMemoryRegionException,
MemoryTypeConflictException

Description
Creates an instance of a class that implements RawFloatWriter and accesses
memory of getRegion in the address range described by base, stride, and
count. The actual extent of the memory addressed by the object is stride ∗
size of RawFloatWriter ∗ count. The object is allocated in the current memory
area of the calling thread.

Parameters
base—The starting physical address accessible through the returned instance.
count—The number of memory elements accessible through the returned instance.
stride—The distance to the next element in mulitple of element count, where a

value of 1 means the elements are adjacent in memory.
Throws

IllegalArgumentException—when base is negative, count is not greater than
zero, or stride is not greater than zero.

SecurityException—when the caller does not have permissions to access the given
memory region or the specified range of addresses.

OffsetOutOfBoundsException—when base is invalid.
SizeOutOfBoundsException—when the memory addressed by the object would

extend into an invalid range of memory.
MemoryTypeConflictException—when base does not point to memory that

matches the type served by this factory.
Returns
an object that implements RawFloatWriter and supports access to the specified

range in the memory region.
Available since RTSJ 2.0

createRawDouble(long, int, int)

Signature
public javax.realtime.device.RawDouble
createRawDouble(long base,

654 RTSJ 2.0 (Draft 57)

RawMemoryRegionFactory javax.realtime.device 12.3

int count,
int stride)

throws SecurityException,
OffsetOutOfBoundsException,
SizeOutOfBoundsException,
UnsupportedRawMemoryRegionException,
MemoryTypeConflictException

Description
Creates an instance of a class that implements RawDouble and accesses memory
of getRegion in the address range described by base, stride, and count. The
actual extent of the memory addressed by the object is stride ∗ size of RawDouble
∗ count. The object is allocated in the current memory area of the calling thread.

Parameters
base—The starting physical address accessible through the returned instance.
count—The number of memory elements accessible through the returned instance.
stride—The distance to the next element in mulitple of element count, where a

value of 1 means the elements are adjacent in memory.
Throws

IllegalArgumentException—when base is negative, count is not greater than
zero, or stride is not greater than zero.

SecurityException—when the caller does not have permissions to access the given
memory region or the specified range of addresses.

OffsetOutOfBoundsException—when base is invalid.
SizeOutOfBoundsException—when the memory addressed by the object would

extend into an invalid range of memory.
MemoryTypeConflictException—when base does not point to memory that

matches the type served by this factory.

Returns
an object that implements RawDouble and supports access to the specified range in

the memory region.

Available since RTSJ 2.0

createRawDoubleReader(long, int, int)

Signature

RTSJ 2.0 (Draft 57) 655

12 Devices and Triggering RawMemoryRegionFactory

public javax.realtime.device.RawDoubleReader
createRawDoubleReader(long base,

int count,
int stride)

throws SecurityException,
OffsetOutOfBoundsException,
SizeOutOfBoundsException,
UnsupportedRawMemoryRegionException,
MemoryTypeConflictException

Description
Creates an instance of a class that implements RawDoubleReader and accesses
memory of getRegion in the address range described by base, stride, and
count. The actual extent of the memory addressed by the object is stride ∗
size of RawDoubleReader ∗ count. The object is allocated in the current memory
area of the calling thread.

Parameters
base—The starting physical address accessible through the returned instance.
count—The number of memory elements accessible through the returned instance.
stride—The distance to the next element in mulitple of element count, where a

value of 1 means the elements are adjacent in memory.
Throws

IllegalArgumentException—when base is negative, count is not greater than
zero, or stride is not greater than zero.

SecurityException—when the caller does not have permissions to access the given
memory region or the specified range of addresses.

OffsetOutOfBoundsException—when base is invalid.
SizeOutOfBoundsException—when the memory addressed by the object would

extend into an invalid range of memory.
MemoryTypeConflictException—when base does not point to memory that

matches the type served by this factory.

Returns
an object that implements RawDoubleReader and supports access to the specified

range in the memory region.

Available since RTSJ 2.0

656 RTSJ 2.0 (Draft 57)

RawMemoryRegionFactory javax.realtime.device 12.3

createRawDoubleWriter(long, int, int)

Signature
public javax.realtime.device.RawDoubleWriter
createRawDoubleWriter(long base,

int count,
int stride)

throws SecurityException,
OffsetOutOfBoundsException,
SizeOutOfBoundsException,
UnsupportedRawMemoryRegionException,
MemoryTypeConflictException

Description

Creates an instance of a class that implements RawDoubleWriter and accesses
memory of getRegion in the address range described by base, stride, and
count. The actual extent of the memory addressed by the object is stride ∗
size of RawDoubleWriter ∗ count. The object is allocated in the current memory
area of the calling thread.

Parameters
base—The starting physical address accessible through the returned instance.
count—The number of memory elements accessible through the returned instance.
stride—The distance to the next element in mulitple of element count, where a

value of 1 means the elements are adjacent in memory.
Throws

IllegalArgumentException—when base is negative, count is not greater than
zero, or stride is not greater than zero.

SecurityException—when the caller does not have permissions to access the given
memory region or the specified range of addresses.

OffsetOutOfBoundsException—when base is invalid.
SizeOutOfBoundsException—when the memory addressed by the object would

extend into an invalid range of memory.
MemoryTypeConflictException—when base does not point to memory that

matches the type served by this factory.

Returns
an object that implements RawDoubleWriter and supports access to the specified

range in the memory region.

RTSJ 2.0 (Draft 57) 657

12 Devices and Triggering RawShortReader

Available since RTSJ 2.0

12.3.1.19 RawShort

public interface RawShort
Interfaces

javax.realtime.device.RawShortReader
javax.realtime.device.RawShortWriter

Description
A marker for an object that can be used to access a single short. Read and write
access to that short is checked by the factory that creates the instance; therefore,
no access checking is provided by this interface, only bounds checking.

Available since RTSJ 2.0

12.3.1.20 RawShortReader

public interface RawShortReader
Interfaces

javax.realtime.device.RawMemory
Description

A marker for a short accessor object encapsulating the protocol for reading
shorts from raw memory. A short accessor can always access at least one short.
Each short is transferred in a single atomic operation. Groups of shorts may be
transferred together; however, this is not required.

Objects of this type are created with the method RawMemoryFactory.
createRawShortReader and RawMemoryFactory.createRawShort. Each object
references a range of elements in the RawMemoryRegion starting at the base ad-
dress provided to the factory method. The size provided to the factory method
determines the number of accessable elements.

Caching of the memory access is controlled by the factory that created this
object. If the memory is not cached, this method guarantees serialized access. In
other words, the memory access at the memory occurs in the same order as in
the program. Multiple writes to the same location may not be coalesced.

658 RTSJ 2.0 (Draft 57)

RawShortReader javax.realtime.device 12.3

Available since RTSJ 2.0

12.3.1.20.1 Methods

getShort

Signature
public short
getShort()

Description
Gets the value at the first position referenced by this instance, i.e., the value at
its start address. This operation must be atomic with respect to all other raw
memory accesses to the address.

Returns
the value at the base address.

getShort(int)

Signature
public short
getShort(int offset)
throws OffsetOutOfBoundsException

Description
Gets the value at the address: base address + offset ∗ stride ∗ element size in
bytes. When an exception is thrown, no data is transferred.

Parameters
offset—of short in the memory region starting from the address specified in the

associated factory method.
Throws

OffsetOutOfBoundsException—when offset is negative or greater than or equal
to the number of elements in the raw memory region.

Returns
the value at the address specified.

RTSJ 2.0 (Draft 57) 659

12 Devices and Triggering RawShortReader

get(int, short)

Signature
public int
get(int offset,

short[] values)
throws OffsetOutOfBoundsException,

NullPointerException

Description
Fills values with elements from this instance, where the nth element is at the
address base address + (offset + n) ∗ stride ∗ element size in bytes. Only the
shorts in the intersection of the start and end of values and the base address
and the end of the memory region are transferred. When an exception is thrown,
no data is transferred.

Parameters
offset—of the first short in the memory region to transfer.
values—The array to receive the shorts.

Throws
OffsetOutOfBoundsException—when offset is negative or greater than or equal

to the number of elements in the raw memory region.
NullPointerException—when values is null.

Returns
the number of elements actually transferred to values.

get(int, short, int, int)

Signature
public int
get(int offset,

short[] values,
int start,
int count)

throws OffsetOutOfBoundsException,
ArrayIndexOutOfBoundsException,
NullPointerException

Description

660 RTSJ 2.0 (Draft 57)

RawShortWriter javax.realtime.device 12.3

Fills values from index start with elements from this instance, where the nth

element is at the address: base address + (offset+n) ∗ stride ∗ element size in
bytes. The number of bytes transferred is the minimum of count, the size of
the memory region minus offset, and length of values minus start. When an
exception is thrown, no data is transferred.

Parameters
offset—of the first short in the memory region to transfer.
values—The array to receive the shorts.
start—The first index in array to fill.
count—The maximum number of shorts to copy.

Throws
OffsetOutOfBoundsException—when offset is negative or either offset or off-

set + count is greater than or equal to the size of this raw memory area.
ArrayIndexOutOfBoundsException—when start is negative or either start or

start + count is greater than or equal to the size of values.
NullPointerException—when values is null or count is negative.

Returns
the number of shorts actually transferred.

12.3.1.21 RawShortWriter

public interface RawShortWriter
Interfaces

javax.realtime.device.RawMemory
Description

A marker for a short accessor object encapsulating the protocol for writing shorts
to raw memory. A short accessor can always access at least one short. Each short
is transferred in a single atomic operation. Groups of shorts may be transferred
together; however, this is not required.

Objects of this type are created with the method RawMemoryFactory.
createRawShortWriter and RawMemoryFactory.createRawShort. Each object
references a range of elements in the RawMemoryRegion starting at the base ad-
dress provided to the factory method. The size provided to the factory method
determines the number of elements accessable.

Caching of the memory access is controlled by the factory that created this
object. If the memory is not cached, this method guarantees serialized access. In

RTSJ 2.0 (Draft 57) 661

12 Devices and Triggering RawShortWriter

other words, the memory access at the memory occurs in the same order as in
the program. Multiple writes to the same location may not be coalesced.

Available since RTSJ 2.0

12.3.1.21.1 Methods

setShort(short)

Signature
public void
setShort(short value)

Description
Sets the value at the first position referenced by this instance, i.e., the value at
its start address. This operation must be atomic with respect to all other raw
memory accesses to the address.

Parameters
value—The new value for the element.

setShort(int, short)

Signature
public void
setShort(int offset,

short value)
throws OffsetOutOfBoundsException

Description
Sets the value of the nth element referenced by this instance, where n is offset
and the address is base address + offset ∗ size of Short. This operation must
be atomic with respect to all other raw memory accesses to the address. When
an exception is thrown, no data is transferred.

Parameters
offset—of short in the memory region.
value—The new value for the element.

662 RTSJ 2.0 (Draft 57)

RawShortWriter javax.realtime.device 12.3

Throws
OffsetOutOfBoundsException—when offset is negative or greater than or equal

to the number of elements in the raw memory region.

set(int, short)

Signature
public int
set(int offset,

short[] values)
throws OffsetOutOfBoundsException,

NullPointerException

Description
Copies from values to the memory region, from index start to elements where
the nth element is at the address: base address + (offset + n) ∗ stride ∗ element
size in bytes. Only the shorts in the intersection of values and the end of
the memory region are transferred. When an exception is thrown, no data is
transferred.

Parameters
offset—of first short in the memory region to be set.
values—The source of the data to write.

Throws
OffsetOutOfBoundsException—when offset is negative or greater than or equal

to the number of elements in the raw memory region.
NullPointerException—when values is null.

Returns
the number of elements actually transferred to values.

set(int, short, int, int)

Signature
public int
set(int offset,

short[] values,
int start,
int count)

RTSJ 2.0 (Draft 57) 663

12 Devices and Triggering DirectMemoryBufferFactory

throws OffsetOutOfBoundsException,
ArrayIndexOutOfBoundsException,
NullPointerException

Description
Copies values to the memory region, where offset is first short in the memory
region to write and start is the first index in values from which to read. The
number of bytes transferred is the minimum of count, the size of the memory
region minus offset, and length of values minus start. When an exception is
thrown, no data is transferred.

Parameters
offset—of the first short in the memory region to set.
values—The array from which to retrieve the shorts.
start—The first index in array to copy.
count—The maximum number of shorts to copy.

Throws
OffsetOutOfBoundsException—when offset is negative or either offset or off-

set + count is greater than or equal to the size of this raw memory area.
ArrayIndexOutOfBoundsException—when start is negative or either start or

start + count is greater than or equal to the size of values.
NullPointerException—when values is null.

Returns
the number of shorts actually transferred.

12.3.2 Classes
12.3.2.1 DirectMemoryBufferFactory

public class DirectMemoryBufferFactory
Inheritance
java.lang.Object
DirectMemoryBufferFactory

Description
A factory class for generating raw byte buffers. This enables the infrastructure
to limit the address ranges from which a buffer may be taken. The address
range managed by a DirectMemoryBufferFactory instance may overlap that of
another DirectMemoryBufferFactory instance.

664 RTSJ 2.0 (Draft 57)

DirectMemoryBufferFactory javax.realtime.device 12.3

Available since RTSJ 2.0

12.3.2.1.1 Constructors

DirectMemoryBufferFactory(DirectMemoryRegion, long,
long)

Signature
public
DirectMemoryBufferFactory(DirectMemoryRegion region,

long base,
long size)

throws MemoryInUseException,
RangeOutOfBoundsException

Description
Creates a factory for allocating buffers in a particular address range. Whether
the address is physical or virtual is system dependent.

Parameters
region—The area of memory a DMA controller can reference, from which this

factory takes its memory.
base—The base address of a memory range in region for buffer allocation.
size—The number of bytes in the memory range.

Throws
MemoryInUseException—when the memory area provided is already in use by or

reserved for a javax.realtime.MemoryArea, program code, or other sytem or
VM structure.

RangeOutOfBoundsException—when the memory region overlaps with another or
cannot be used for DMA.

12.3.2.1.2 Methods

RTSJ 2.0 (Draft 57) 665

12 Devices and Triggering DirectMemoryBufferFactory

allocateByteBuffer(int)

Signature
public javax.realtime.device.DirectMemoryByteBuffer
allocateByteBuffer(int capacity)

Description

Creates a direct byte buffer with the given capacity within the range of this
factory.

Parameters
capacity—The number of bytes in the buffer.

Throws
javax.realtime.StaticOutOfMemoryError—when no memory is available.

Returns
the new buffer.

free(DirectMemoryByteBuffer)

Signature
public void
free(DirectMemoryByteBuffer buffer)

Description

Frees the memory associated with the given DirectMemoryByteBuffer instance.
The capacity and limit of the buffer are both set to zero, so data can no longer
be transferred with the buffer. The buffer range can then be safely reallocated.

Parameters
buffer—The DirectMemoryByteBuffer to free.

Throws
IllegalArgumentException—when buffer was not allocated from this factory.
IllegalStateException—when buffer has already been freed.

Open issue 12.3.1
Unless we get a better answer from the JDK team, we must have our own buffer

class!
End of issue 12.3.1

666 RTSJ 2.0 (Draft 57)

DirectMemoryBufferFactory javax.realtime.device 12.3

inRange(DirectMemoryByteBuffer)

Signature
public boolean
inRange(DirectMemoryByteBuffer buffer)

Description
Checks to see whether or not the buffer’s data area is within the range of this
factory.

Parameters
buffer—The DirectMemoryByteBuffer to check.

Returns
true when and only when the buffer’s data area is within the range of this factory;

otherwise false.

addressOf(DirectMemoryByteBuffer)

Signature
public long
addressOf(DirectMemoryByteBuffer buffer)

Description
Gives the location of this buffer’s data in memory. The address shall be in the
address space of the DMA controller.

Parameters
buffer—The DirectMemoryByteBuffer of which to get the address.

Returns
the start address of the data range of this buffer.

writeFence(DirectMemoryByteBuffer)

Signature
public static void
writeFence(DirectMemoryByteBuffer buffer)

Description

RTSJ 2.0 (Draft 57) 667

12 Devices and Triggering DirectMemoryRegion

Ensures that all changes to the DirectMemoryByteBuffer by the current thread
have been flushed in a manner that makes them visible to other threads (including
native threads), and behaves as a volatile store with respect to the Java Memory
Model synchronization order.

This method shall invoke a memory barrier operation that is understood
by the VM, runtime, native compiler, and platform to provide visibility to all
changes to the associated buffer made before its invocation.

Parameters
buffer—The byte buffer which will be flushed.

readFence(DirectMemoryByteBuffer)

Signature
public static void
readFence(DirectMemoryByteBuffer buffer)

Description
Ensures that any previous changes to the memory represented by the given
DirectMemoryByteBuffer by other threads (including native threads) will be
visible when it is next accessed by the current thread, and behaves as a volatile
load with respect to the Java Memory Model synchronization order.

This method shall invoke a memory barrier operation that is understood
by the VM, runtime, native compiler, and platform to provide visibility for
any changes to the associated buffer previously flushed with a call to write-
Fence(DirectMemoryByteBuffer) or its native equivalent on the buffer’s mem-
ory.

Parameters
buffer—The byte buffer which will be updated.

12.3.2.2 DirectMemoryRegion

public class DirectMemoryRegion

Inheritance
java.lang.Object
DirectMemoryRegion

Description

668 RTSJ 2.0 (Draft 57)

DirectMemoryRegion javax.realtime.device 12.3

Defines the reachable memory for a given DMA controller in terms of the physical
address space of the system.

Available since RTSJ 2.0

12.3.2.2.1 Constructors

DirectMemoryRegion(long, long)

Signature
public
DirectMemoryRegion(long start,

long size)
throws IllegalArgumentException

Description
Creates a DMA memory definition.

Parameters
start—The DMA address space in the physical address space of the main processor.
size—The number of bytes in the DMA address space.

Throws
IllegalArgumentException—when start is less than zero or start + size is

larger than the physical memory of the system.

12.3.2.2.2 Methods

regionAddressOf(long)

Signature
public long
regionAddressOf(long address)
throws IllegalArgumentException

RTSJ 2.0 (Draft 57) 669

12 Devices and Triggering Happening

Description
Translates a physical address into a DMA region address.

Parameters
address—The address to translate.

Throws
IllegalArgumentException—when the result is outside the DMA space.

Returns
the equivalent address in DMA space.

physicalAddressOf(long)

Signature
public long
physicalAddressOf(long address)
throws IllegalArgumentException

Description
Translates a DMA space address into a physical address.

Parameters
address—The address to translate.

Throws
IllegalArgumentException—when the input is outside the DMA space.

Returns
the corresponding physical address.

12.3.2.3 Happening

public class Happening
Inheritance
java.lang.Object
javax.realtime.AsyncBaseEvent
javax.realtime.AsyncEvent
Happening

Interfaces
javax.realtime.ActiveEvent

670 RTSJ 2.0 (Draft 57)

Happening javax.realtime.device 12.3

Description
This class provides second level handling for external events such as interrupts. A
happening can be triggered by an InterruptServiceRoutine or from native code.
Application-defined Happenings can be identified by an application-provided
name or a system-provided id, both of which must be unique. A system Hap-
pening has a name provided by the system which is a string beginning with
@.

Available since RTSJ 2.0

12.3.2.3.1 Constructors

Happening(String, HappeningDispatcher)

Signature
public
Happening(String name,

HappeningDispatcher dispatcher)
throws IllegalArgumentException

Description
Creates a happening with the given name.

Parameters
name—A string to name the happening.
dispatcher—To use when being triggered.

Throws
IllegalArgumentException—when name is null or does not match the pattern

full identifier naming convention, i.e., package plus name. An implementation
may throw this exception for all names starting with java. and javax.

Happening(String)

Signature

RTSJ 2.0 (Draft 57) 671

12 Devices and Triggering Happening

public
Happening(String name)
throws IllegalArgumentException

Description
Creates a happening with the given name and the default dispatcher.

Parameters
name—A string to name the happening.

Throws
IllegalArgumentException—when name is null or does not match the pattern

full type naming convention, i.e., package plus name. An implementation may
throw this exception for all names starting with java. and javax.

12.3.2.3.2 Methods

getHappening(String)

Signature
public static javax.realtime.device.Happening
getHappening(String name)

Description
Finds an active happening by its name.

Parameters
name—Identifies the happening to get.

Throws
IllegalArgumentException—when name is null.

Returns
a reference to the happening with the given name, or null, if no happening with

the given name is found.

isHappening(String)

Signature

672 RTSJ 2.0 (Draft 57)

Happening javax.realtime.device 12.3

public static boolean
isHappening(String name)

Description

Determines whether or not there is an active happening with name given as
parameter.

Parameters
name—A string that might name an active happening.

Throws
IllegalArgumentException—when name is null.

Returns
true only when there is a registered happening with the given name.

createId(String)

Signature
public static int
createId(String name)
throws IllegalStateException

Description

Sets up a mapping between a name and a system-dependent ID. This can be
called either in the constructor of an instance of InterruptServiceRoutine or in
native code that sets up an interrupt service routine to link it with a happening.
Once created, it cannot be removed.

This must take no more than linear time in the number of ID (n) registered,
but should be O(log2(n)).

Parameters
name—A string to name a happening.

Throws
IllegalStateException—when name is already registered.
IllegalArgumentException—when name is null.

Returns
an ID assigned by the system.

RTSJ 2.0 (Draft 57) 673

12 Devices and Triggering Happening

getId(String)

Signature
public static int
getId(String name)

Description
Obtains the ID of name, when one exists or -1, when name is not registered.

This must take no more than linear time in the number of ID (n) registered,
but should be O(log2(n)).

Parameters
name—A happening name string.

Throws
IllegalArgumentException—when name is null.

Returns
The ID, or -1 when no happening is found with that name.

get(int)

Signature
public static javax.realtime.device.Happening
get(int id)

Description
Gets the external event corresponding to a given id.

Parameters
id—The identifier of a registered signal.

Returns
the signal corresponding to id.

get(String)

Signature
public static javax.realtime.device.Happening
get(String name)

Description

674 RTSJ 2.0 (Draft 57)

Happening javax.realtime.device 12.3

Gets the external event corresponding to a given name.

Parameters
name—The name of a registered signal.

Throws
IllegalArgumentException—when name is null.

Returns
the signal corresponding to name.

trigger(int)

Signature
public static boolean
trigger(int id)

Description
Causes the event dispatcher corresponding to happeningId to be scheduled for
execution. The implementation should be simple enough so that it can be done
in the context of an InterruptServiceRoutine.handle method.

trigger() and any native code analog to it interact with other javax.
realtime.ActiveEvent code effectively as if trigger() signals a POSIX count-
ing semaphore that the happening is waiting on.

The implementation is encouraged to create (and document) a native code
analog to this method that can be used without a Java context.

This method must execute in constant time.

Parameters
id—Identifies which happening to trigger.

Returns
true when a happening with ID happeningId was found, false otherwise.

getId

Signature
public final int
getId()

Description
Gets the number of this happening.

RTSJ 2.0 (Draft 57) 675

12 Devices and Triggering Happening

Returns
the happening number or -1, when not registered.

getName

Signature
public java.lang.String
getName()

Description
Gets the name of this happening.

Returns
the name of this happening.

start

Signature
public void
start()
throws IllegalStateException

Description
Starts this happening, i.e., changes its state to the active and enabled. Once a
happening is started for the first time, when it is in a scoped memory it increments
the scope count of that scope; otherwise, it becomes a member of the root set.
An active and enabled happening dispatches its handlers when fired.

Throws
IllegalStateException—when this happening has already been started or its

name is already in use by another happening that has been started.
See Section stop()

start(boolean)

Signature
public void
start(boolean disabled)

676 RTSJ 2.0 (Draft 57)

Happening javax.realtime.device 12.3

throws IllegalStateException

Description
Starts this happening, but leaves it in the disabled state. When fired before
being enabled, it does not dispatch its handlers.

Parameters
disabled—true for starting in a disabled state.

Throws
IllegalStateException—when this happening has already been started.
See Section stop()

stop

Signature
public boolean
stop()
throws IllegalStateException

Description
Stops this happening from responding to the fire and trigger methods.

Throws
IllegalStateException—when this happening is not active.

Returns
true when this is in the enabled state; false otherwise.

isActive

Signature
public boolean
isActive()

Description
Determines the activation state of this happening, i.e., if it has been started.

Returns
true when active; false otherwise.

RTSJ 2.0 (Draft 57) 677

12 Devices and Triggering Happening

isRunning

Signature
public boolean
isRunning()

Description

Determines whether or not this happening is both active an enabled.

Returns
true when this happening is both active and enabled; false otherwise.

trigger

Signature
public void
trigger()

Description

Causes the event dispatcher associated with this to be scheduled for execution.
The implementation should be simple enough so that it can be done in the context
of an InterruptServiceRoutine.handle method.

This method must execute in constant time.

getDispatcher

Signature
public javax.realtime.device.HappeningDispatcher
getDispatcher()

Description

Obtains the dispatcher for this.

Returns
that dispatcher.

678 RTSJ 2.0 (Draft 57)

Happening javax.realtime.device 12.3

addHandler(AsyncBaseEventHandler)

Signature
public void
addHandler(AsyncBaseEventHandler handler)

Description
Adds a handler to the set of handlers associated with this event. An instance of
AsyncBaseEvent may have more than one associated handler. However, adding
a handler to an event has no effect when the handler is already attached to the
event.

The execution of this method is atomic with respect to the execution of the
fire() method.

Note that there is an implicit reference to the handler stored in this. The
assignment must be valid under any applicable memory assignment rules.

setHandler(AsyncBaseEventHandler)

Signature
public void
setHandler(AsyncBaseEventHandler handler)

Description
Associates a new handler with this event and removes all existing handlers. The
execution of this method is atomic with respect to the execution of the fire()
method.

removeHandler(AsyncBaseEventHandler)

Signature
public void
removeHandler(AsyncBaseEventHandler handler)

Description
Removes a handler from the set associated with this event. The execution of this
method is atomic with respect to the execution of the fire() method.

A removed handler continues to execute until its fireCount becomes zero and
it completes.

RTSJ 2.0 (Draft 57) 679

12 Devices and Triggering HappeningDispatcher

When handler has a scoped non-default initial memory area and execution
of this method causes handler to become unfirable, this method shall not return
until all related finalization has completed.

12.3.2.4 HappeningDispatcher

public class HappeningDispatcher

Inheritance
java.lang.Object
javax.realtime.ActiveEventDispatcher<HappeningDispatcher, Happening>
HappeningDispatcher

Description
This class provides a means of dispatching a set of Happening.

Available since RTSJ 2.0

12.3.2.4.1 Constructors

HappeningDispatcher(SchedulingParameters, Scheduling-
Group)

Signature
public
HappeningDispatcher(SchedulingParameters schedule,

SchedulingGroup group)

Description
Creates a new dispatcher, whose dispatching thread runs with the given scheduling
parameters.

Parameters
schedule—The parameters to use for scheduling this dispatcher.
group—The scheduling group to use for the dispatcher.

680 RTSJ 2.0 (Draft 57)

HappeningDispatcher javax.realtime.device 12.3

HappeningDispatcher(SchedulingParameters)

Signature
public
HappeningDispatcher(SchedulingParameters schedule)

Description
Creates a new dispatcher, whose dispatching thread runs with the given scheduling
parameters.

Parameters
schedule—The parameters to use for scheduling this dispatcher.

12.3.2.4.2 Methods

setDefaultDispatcher(HappeningDispatcher)

Signature
public static void
setDefaultDispatcher(HappeningDispatcher dispatcher)

Description
Sets the system default happening dispatcher.

Parameters
dispatcher—The default to use when no dispatcher is provided. When null, the

happening dispatcher is set to the original system default.

register(Happening)

Signature
public synchronized void
register(Happening happening)
throws RegistrationException,

IllegalStateException,
IllegalArgumentException

Description

RTSJ 2.0 (Draft 57) 681

12 Devices and Triggering HappeningDispatcher

Registers a Happening with this dispatcher.

Parameters
happening—The instance to be registered.

Throws
RegistrationException—when happening is already registered.
IllegalStateException—when this object has been destroyed.
IllegalArgumentException—when happening is not stopped.

deregister(Happening)

Signature
public synchronized void
deregister(Happening happening)
throws DeregistrationException,

IllegalStateException,
IllegalArgumentException

Description
Unregisters a Happening from this dispatcher.

Parameters
happening—The instance to be unregistered.

Throws
DeregistrationException—when happening is not already registered.
IllegalStateException—when this object has been destroyed.
IllegalArgumentException—when happening is not stopped.

destroy

Signature
public void
destroy()
throws IllegalStateException

Description
Releases all reasources thereby making the dispatcher unusable.

Throws

682 RTSJ 2.0 (Draft 57)

InterruptServiceRoutine javax.realtime.device 12.3

IllegalStateException—when called on a dispatcher that has one or more regis-
tered Happening objects.

12.3.2.5 InterruptServiceRoutine

public abstract class InterruptServiceRoutine

Inheritance
java.lang.Object
InterruptServiceRoutine

Interfaces
javax.realtime.BoundRealtimeExecutor

Description
A class for defining a first level interrupt handler. The implementation must
override the handle method to provide the code to be run when an interrupt
occurs. This class must always be present in the Device module, but may do
nothing in a context that does not provide direct access to interrupts, e.g., in user
space on an operating system that does not support user space device drivers.
The default affinity of an handler can be determined via calling javax.realtime.
BoundRealtimeExecutor.getAffinity().

Available since RTSJ 2.0

12.3.2.5.1 Constructors

InterruptServiceRoutine(MemoryArea)

Signature
public
InterruptServiceRoutine(MemoryArea area)
throws NullPointerException,

IllegalArgumentException

Description

RTSJ 2.0 (Draft 57) 683

12 Devices and Triggering InterruptServiceRoutine

Creates an interrupt service routine with a particular memory area.

Parameters
area—The allocation context in which the handle method runs.

Throws
NullPointerException—when area is null.
IllegalArgumentException—when area is a memory area that cannot be accessed

from an ISR.

12.3.2.5.2 Methods

validInterruptIds

Signature
public static int[]
validInterruptIds()

Description
Determines which interrupt identifiers are valid.

Returns
an ordered array of integers representing the valid interrupts in the system. On a

machine that does not support any interrupts, a zero length array is returned.

getHandler(int)

Signature
public static javax.realtime.device.InterruptServiceRoutine
getHandler(int interrupt)

Description
Gets the InterruptServiceRoutine that is handling a given interrupt.

Parameters
interrupt—A system-dependent id for the interrupt.

Returns
the InterruptServiceRoutine registered to the given interrupt. When nothing is

registered, null is returned.

684 RTSJ 2.0 (Draft 57)

InterruptServiceRoutine javax.realtime.device 12.3

getMaximumInterruptPriority

Signature
public static int
getMaximumInterruptPriority()

Description
Retrieves the maximum interrupt priority. It must be greater than or equal to
the result of getMinimumInterruptPriority.

Returns
the maximum interrupt priority.

getMinimumInterruptPriority

Signature
public static int
getMinimumInterruptPriority()

Description
Retrieves the minimum interrupt priority. It must be higher than all other
priorities provided by the system.

Returns
the minimum interrupt priority.

getInterruptPriority(int)

Signature
public static int
getInterruptPriority(int interruptId)
throws IllegalArgumentException

Description
Determines the interrupt priority of a given interrupt.

Throws
IllegalArgumentException—when there is no interrupt corresponding to inter-

ruptId

Returns

RTSJ 2.0 (Draft 57) 685

12 Devices and Triggering InterruptServiceRoutine

the priority at which the handle method is invoked. The returned value is always
greater than javax.realtime.PriorityScheduler.getMaxPriority().

isRegistered

Signature
public final boolean
isRegistered()

Description
Obtains the registration state.

Returns
true when registered, otherwise false.

register(int)

Signature
public void
register(int interrupt)
throws RegistrationException,

ScopedCycleException

Description
Registers this interrupt service routine with the system so that it can be triggered.
Its initial memory area, if any, will be placed in the scope stack and have its
reservation count increased. Registering may change the affinity, when the
currently set affinity is not compatible with the affinities available for the specific
interrupt for which this routine is registered.

Parameters
interrupt—A system-dependent identifier for the interrupt.

Throws
RegistrationException—when this is already registered or some other Inter-

ruptServiceRoutine is registered for interrupt.
ScopedCycleException—when the initial memory area for this InterruptSer-

viceRoutine is already present in the scope tree at a different location than
the rules for reservation would imply.

686 RTSJ 2.0 (Draft 57)

InterruptServiceRoutine javax.realtime.device 12.3

unregister

Signature
public void
unregister()
throws DeregistrationException

Description
Deregisters this interrupt service routine with the system so that it can no longer
be triggered. Its initial memory area, if any, will have its reservation count
decreased.

Throws
DeregistrationException—when this interrupt service routine is not registered.

handle

Signature
protected abstract void
handle()

Description
The code to execute for first level interrupt handling. A subclass defines this
to give the required behavior. RawMemory classes may be used to access the
associated device registers and a Happening may be triggered for second level
interrupt handling.

The code used to implement this method should not block itself or induce a
context switch, e.g., sleeping or perform I/O. Only spin waits may be used. The
effects of unbounded blocking and inducing a context switch here are undefined
and could result in a deadlock. Object.notify() and Object.notifyAll()
may be called, but Object.wait() should not be called. This dictates that all
monitors attempted to be acquired in the interrupt context (i.e., in code called
from this handle() method) must use the priority ceiling emulation protocol and
must have a configured priority at least as high as the triggering interrupt. The
result of an attempt to acquire a monitor of any other configuration is undefined.

Unless the overridden method is synchronized, the infrastructure shall provide
no synchronization for the execution of this method. Synchronization always uses
priority ceiling emulation, where the default ceiling priority is getMaximumInter-
ruptPriority(). The ceiling priority may not be less than getMinimumInter-
ruptPriority().

RTSJ 2.0 (Draft 57) 687

12 Devices and Triggering RawMemoryFactory

When a memory area is provided, that memory is entered before this method
is invoked and exited after it returns. When no memory area is provided, the
method may not allocate.

Any exceptions thrown by this method are silently caught and discarded by
the infrastructure.

12.3.2.6 RawMemoryFactory

public class RawMemoryFactory

Inheritance
java.lang.Object
RawMemoryFactory

Description
This class is the hub of a system that constructs special purpose objects to access
particular types and ranges of raw memory. This facility is supported by the
register(RawMemoryRegionFactory) methods. An application developer can
use this method to add support for additional memory regions.

Each create method returns an object of the corresponding type, e.g., the cre-
ateRawByte(RawMemoryRegion, long, int, int) method returns a reference
to an object that implements the RawByte interface and supports access to the
requested type of memory and address range. Each create method is permitted
to optimize error checking and access based on the requested memory type and
address range.

The usage pattern for raw memory, assuming the necessary factory has been
registered, is illustrated by this example.

// Get an accessor object that can access memory starting at
// baseAddress, for size bytes.
RawInt memory =

RawMemoryFactory.
createRawInt(RawMemoryFactory.MEMORY_MAPPED_REGION,

address, count, stride, false);
// Use the accessor to load from and store to raw memory.
int loadedData = memory.getInt(someOffset);
memory.setInt(otherOffset, intVal);

688 RTSJ 2.0 (Draft 57)

RawMemoryFactory javax.realtime.device 12.3

When an application needs to access a class of memory that is not already
supported by a registered factory, the developer must implement and register a
factory that implements the RawMemoryRegionFactory) which can create objects
to access memory in that region.

A raw memory region factory is identified by a RawMemoryRegion that
is used by each create method, e.g., createRawByte(RawMemoryRegion,
long, int, int), to locate the appropriate factory. The name is
provided to register(RawMemoryRegionFactory) through the factory’s
RawMemoryRegionFactory.getName method.

The register(RawMemoryRegionFactory) method is only used by the appli-
cation code when it needs to add support for a new type of raw memory.

Whether a given offset addresses a high-order or low-order byte of an
aligned short in memory is determined by the value of the javax.realtime.
RealtimeSystem.BYTE_ORDER static byte variable in class javax.realtime.
RealtimeSystem, by the start address of the object, and by the offset given the
stride of the object. Regardless of the byte ordering, accessor methods continue
to select bytes starting at offset from the base address and continuing toward
greater addresses.

A raw memory region cannot contain references to Java objects. Such a
capability would be unsafe (since it could be used to defeat Java’s type checking)
and error prone (since it is sensitive to the specific representational choices made
by the Java compiler).

Atomic loads and stores on raw memory are defined in terms of physical
memory. This memory may be accessible to threads outside the JVM and to non-
programmed access (e.g., DMA). Consequently, atomic access must be supported
by hardware. This specification is written with the assumption that all suitable
hardware platforms support atomic loads from raw memory for aligned bytes,
shorts, and ints. Atomic access beyond the specified minimum may be supported
by the implementation.

Storing values into raw memory is more hardware dependent than loading
values. Many processor architectures do not support atomic stores of variables
except for aligned stores of the processor’s word size. For instance, storing a byte
into memory might require reading a 32-bit quantity into a processor register,
updating the register to reflect the new byte value, then restoring the whole
32-bit quantity. Changes to other bytes in the 32-bit quantity that take place
between the load and the store are lost.

Some processors have mechanisms that can be used to implement an atomic
store of a byte, but those mechanisms are often slow and not universally supported.

This class need not support unaligned access to data; but if it does, it is not

RTSJ 2.0 (Draft 57) 689

12 Devices and Triggering RawMemoryFactory

required from the implementation to make such access atomic. Accesses to data
aligned on its natural boundary will be atomic if the processor implements atomic
loads and stores of that data size.

Except where noted, accesses to raw memory are not atomic with respect to
the memory or with respect to schedulable objects. A raw memory region could
be updated by another schedulable object, or even unmapped in the middle of
an access method, or even removed mid method.

The characteristics of raw-memory access are necessarily platform dependent.
This specification provides a minimum requirement for the RTSJ platform, but
it also supports optional system properties that identify a platform’s level of
support for atomic raw put and get. The properties can be represented by a
four-dimensional sparse array of access type, data type, alignment, and atomicity
with boolean values indicating whether that combination of access attributes is
atomic. The default value for array entries is false. The array is descibed in the
following table.

Table 12.1: Properties Array
Attribute Values Comment

Access type read, write

Data type byte, short, int,
long, float, double

Alignment 0 aligned
1 to one less than
data type size

the first byte of the data is the value
of alignment bytes away from natu-
ral alignment.

Atomicity
processor means access is atomic with respect

to other tasks on processor.
smp means access is processor atomic,

and atomic with respect to all pro-
cessors in an SMP.

memory means that access is smp atomic,
and atomic with respect to all access
to the memory including DMA.

The true values in the table are represented by properties of the following form.
javax.realtime.atomicaccess_<access>_<type>_<alignment>_atomicity=true
for example,

690 RTSJ 2.0 (Draft 57)

RawMemoryFactory javax.realtime.device 12.3

javax.realtime.atomicaccess_read_byte_0_memory=true

Table entries with a value of false may be explicitly represented, but since false is
the default value, such properties are redundant.

All raw memory access is treated as volatile, and serialized. The infrastructure
must be forced to read memory or write to memory on each call to a raw memory
objects’s getter or setter method, and to complete the reads and writes in the
order they appear in the program order.

Available since RTSJ 2.0

12.3.2.6.1 Fields

MEMORY_MAPPED_REGION

public static final MEMORY_MAPPED_REGION

Description

This raw memory region is predefined for request access to memory mapped I/O
devices.

IO_PORT_MAPPED_REGION

public static final IO_PORT_MAPPED_REGION

Description

This raw memory region is predefined for access to I/O device space implemented
by processor instructions, such as the x86 in and out instructions.

12.3.2.6.2 Constructors

RTSJ 2.0 (Draft 57) 691

12 Devices and Triggering RawMemoryFactory

RawMemoryFactory

Signature
public
RawMemoryFactory()

Description
Creates an empty factory. For a factory with support for the platform defined
regions, use getDefaultFactory instead.

12.3.2.6.3 Methods

getDefaultFactory

Signature
public static javax.realtime.device.RawMemoryFactory
getDefaultFactory()

Description
Gets the factory with support for the platform defined regions.

Returns
the platform-defined factory.

register(RawMemoryRegionFactory)

Signature
public void
register(RawMemoryRegionFactory factory)
throws RegistrationException

Description
Adds support for a new memory region.

Parameters
factory—The RawMemoryRegionFactory instance to use for creating RawMemory

objects for the RawMemoryRegion instances it makes available.

692 RTSJ 2.0 (Draft 57)

RawMemoryFactory javax.realtime.device 12.3

Throws
RegistrationException—when the factory already is already registered.

deregister(RawMemoryRegionFactory)

Signature
public void
deregister(RawMemoryRegionFactory factory)
throws DeregistrationException

Description
Removes support for a new memory region.

Parameters
factory—The RawMemoryRegionFactory to be made unavailable.

Throws
RegistrationException—when the factory is not registered.

createRawByte(RawMemoryRegion, long, int, int)

Signature
public javax.realtime.device.RawByte
createRawByte(RawMemoryRegion region,

long base,
int count,
int stride)

throws SecurityException,
OffsetOutOfBoundsException,
SizeOutOfBoundsException,
MemoryTypeConflictException,
UnsupportedRawMemoryRegionException

Description
Creates an instance of a class that implements RawByte and accesses memory of
region in the address range described by base, stride, and count. The actual
extent of the memory addressed by the object is stride ∗ size of RawByte ∗
count. The object is allocated in the current memory area of the calling thread.

Parameters
region—The address space from which the new instance should be taken.

RTSJ 2.0 (Draft 57) 693

12 Devices and Triggering RawMemoryFactory

base—The starting physical address accessible through the returned instance.
count—The number of memory elements accessible through the returned instance.
stride—The distance to the next element as a multiple of element size, where 1

means the elements are adjacent in memory.
Throws

IllegalArgumentException—when base is negative, count is not greater than
zero, or stride is less than one.

SecurityException—when the caller does not have permissions to access the given
memory region or the specified range of addresses.

OffsetOutOfBoundsException—when base is invalid.
SizeOutOfBoundsException—when the memory addressed by the object would

extend into an invalid range of memory.
MemoryTypeConflictException—when base does not point to a memory that

matches the type served by this factory.

Returns
an object that implements RawByte and supports access to the specified range in

the memory region.

createRawByteReader(RawMemoryRegion, long, int, int)

Signature
public javax.realtime.device.RawByteReader
createRawByteReader(RawMemoryRegion region,

long base,
int count,
int stride)

throws SecurityException,
OffsetOutOfBoundsException,
SizeOutOfBoundsException,
MemoryTypeConflictException,
UnsupportedRawMemoryRegionException

Description
Creates an instance of a class that implements RawByteReader and accesses
memory of region in the address range described by base, stride, and count.
The actual extent of the memory addressed by the object is stride ∗ size of
RawByteReader ∗ count. The object is allocated in the current memory area of
the calling thread.

694 RTSJ 2.0 (Draft 57)

RawMemoryFactory javax.realtime.device 12.3

Parameters
region—The address space from which the new instance should be taken.
base—The starting physical address accessible through the returned instance.
count—The number of memory elements accessible through the returned instance.
stride—The distance to the next element as a multiple of element size, where 1

means the elements are adjacent in memory.
Throws

IllegalArgumentException—when base is negative, count is not greater than
zero, or stride is less than one.

SecurityException—when the caller does not have permissions to access the given
memory region or the specified range of addresses.

OffsetOutOfBoundsException—when base is invalid.
SizeOutOfBoundsException—when the memory addressed by the object would

extend into an invalid range of memory.
MemoryTypeConflictException—when base does not point to a memory that

matches the type served by this factory.

Returns
an object that implements RawByteReader and supports access to the specified

range in the memory region.

createRawByteWriter(RawMemoryRegion, long, int, int)

Signature
public javax.realtime.device.RawByteWriter
createRawByteWriter(RawMemoryRegion region,

long base,
int count,
int stride)

throws SecurityException,
OffsetOutOfBoundsException,
SizeOutOfBoundsException,
MemoryTypeConflictException,
UnsupportedRawMemoryRegionException

Description
Creates an instance of a class that implements RawByteWriter and accesses
memory of region in the address range described by base, stride, and count.
The actual extent of the memory addressed by the object is stride ∗ size of

RTSJ 2.0 (Draft 57) 695

12 Devices and Triggering RawMemoryFactory

RawByteWriter ∗ count. The object is allocated in the current memory area of
the calling thread.

Parameters
region—The address space from which the new instance should be taken.
base—The starting physical address accessible through the returned instance.
count—The number of memory elements accessible through the returned instance.
stride—The distance to the next element as a multiple of element size, where 1

means the elements are adjacent in memory.
Throws

IllegalArgumentException—when base is negative, count is not greater than
zero, or stride is less than one.

SecurityException—when the caller does not have permissions to access the given
memory region or the specified range of addresses.

OffsetOutOfBoundsException—when base is invalid.
SizeOutOfBoundsException—when the memory addressed by the object would

extend into an invalid range of memory.
MemoryTypeConflictException—when base does not point to a memory that

matches the type served by this factory.

Returns
an object that implements RawByteWriter and supports access to the specified

range in the memory region.

createRawShort(RawMemoryRegion, long, int, int)

Signature
public javax.realtime.device.RawShort
createRawShort(RawMemoryRegion region,

long base,
int count,
int stride)

throws SecurityException,
OffsetOutOfBoundsException,
SizeOutOfBoundsException,
MemoryTypeConflictException,
UnsupportedRawMemoryRegionException

Description

696 RTSJ 2.0 (Draft 57)

RawMemoryFactory javax.realtime.device 12.3

Creates an instance of a class that implements RawShort and accesses memory of
region in the address range described by base, stride, and count. The actual
extent of the memory addressed by the object is stride ∗ size of RawShort ∗
count. The object is allocated in the current memory area of the calling thread.

Parameters
region—The address space from which the new instance should be taken.
base—The starting physical address accessible through the returned instance.
count—The number of memory elements accessible through the returned instance.
stride—The distance to the next element as a multiple of element size, where 1

means the elements are adjacent in memory.
Throws

IllegalArgumentException—when base is negative, count is not greater than
zero, or stride is less than one.

SecurityException—when the caller does not have permissions to access the given
memory region or the specified range of addresses.

OffsetOutOfBoundsException—when base is invalid.
SizeOutOfBoundsException—when the memory addressed by the object would

extend into an invalid range of memory.
MemoryTypeConflictException—when base does not point to a memory that

matches the type served by this factory.
Returns
an object that implements RawShort and supports access to the specified range in

the memory region.

createRawShortReader(RawMemoryRegion, long, int, int)

Signature
public javax.realtime.device.RawShortReader
createRawShortReader(RawMemoryRegion region,

long base,
int count,
int stride)

throws SecurityException,
OffsetOutOfBoundsException,
SizeOutOfBoundsException,
MemoryTypeConflictException,
UnsupportedRawMemoryRegionException

RTSJ 2.0 (Draft 57) 697

12 Devices and Triggering RawMemoryFactory

Description
Creates an instance of a class that implements RawShortReader and accesses
memory of region in the address range described by base, stride, and count.
The actual extent of the memory addressed by the object is stride ∗ size of
RawShortReader ∗ count. The object is allocated in the current memory area of
the calling thread.

Parameters
region—The address space from which the new instance should be taken.
base—The starting physical address accessible through the returned instance.
count—The number of memory elements accessible through the returned instance.
stride—The distance to the next element as a multiple of element size, where 1

means the elements are adjacent in memory.
Throws

IllegalArgumentException—when base is negative, count is not greater than
zero, or stride is less than one.

SecurityException—when the caller does not have permissions to access the given
memory region or the specified range of addresses.

OffsetOutOfBoundsException—when base is invalid.
SizeOutOfBoundsException—when the memory addressed by the object would

extend into an invalid range of memory.
MemoryTypeConflictException—when base does not point to a memory that

matches the type served by this factory.
Returns
an object that implements RawShortReader and supports access to the specified

range in the memory region.

createRawShortWriter(RawMemoryRegion, long, int, int)

Signature
public javax.realtime.device.RawShortWriter
createRawShortWriter(RawMemoryRegion region,

long base,
int count,
int stride)

throws SecurityException,
OffsetOutOfBoundsException,
SizeOutOfBoundsException,
MemoryTypeConflictException,

698 RTSJ 2.0 (Draft 57)

RawMemoryFactory javax.realtime.device 12.3

UnsupportedRawMemoryRegionException

Description
Creates an instance of a class that implements RawShortWriter and accesses
memory of region in the address range described by base, stride, and count.
The actual extent of the memory addressed by the object is stride ∗ size of
RawShortWriter ∗ count. The object is allocated in the current memory area of
the calling thread.

Parameters
region—The address space from which the new instance should be taken.
base—The starting physical address accessible through the returned instance.
count—The number of memory elements accessible through the returned instance.
stride—The distance to the next element as a multiple of element size, where 1

means the elements are adjacent in memory.
Throws

IllegalArgumentException—when base is negative, count is not greater than
zero, or stride is less than one.

SecurityException—when the caller does not have permissions to access the given
memory region or the specified range of addresses.

OffsetOutOfBoundsException—when base is invalid.
SizeOutOfBoundsException—when the memory addressed by the object would

extend into an invalid range of memory.
MemoryTypeConflictException—when base does not point to a memory that

matches the type served by this factory.

Returns
an object that implements RawShortWriter and supports access to the specified

range in the memory region.

createRawInt(RawMemoryRegion, long, int, int)

Signature
public javax.realtime.device.RawInt
createRawInt(RawMemoryRegion region,

long base,
int count,
int stride)

RTSJ 2.0 (Draft 57) 699

12 Devices and Triggering RawMemoryFactory

throws SecurityException,
OffsetOutOfBoundsException,
SizeOutOfBoundsException,
MemoryTypeConflictException,
UnsupportedRawMemoryRegionException

Description
Creates an instance of a class that implements RawInt and accesses memory of
region in the address range described by base, stride, and count. The actual
extent of the memory addressed by the object is stride ∗ size of RawInt ∗ count.
The object is allocated in the current memory area of the calling thread.

Parameters
region—The address space from which the new instance should be taken.
base—The starting physical address accessible through the returned instance.
count—The number of memory elements accessible through the returned instance.
stride—The distance to the next element as a multiple of element size, where 1

means the elements are adjacent in memory.
Throws

IllegalArgumentException—when base is negative, count is not greater than
zero, or stride is less than one.

SecurityException—when the caller does not have permissions to access the given
memory region or the specified range of addresses.

OffsetOutOfBoundsException—when base is invalid.
SizeOutOfBoundsException—when the memory addressed by the object would

extend into an invalid range of memory.
MemoryTypeConflictException—when base does not point to a memory that

matches the type served by this factory.
Returns
an object that implements RawInt and supports access to the specified range in the

memory region.

createRawIntReader(RawMemoryRegion, long, int, int)

Signature
public javax.realtime.device.RawIntReader
createRawIntReader(RawMemoryRegion region,

long base,
int count,

700 RTSJ 2.0 (Draft 57)

RawMemoryFactory javax.realtime.device 12.3

int stride)
throws SecurityException,

OffsetOutOfBoundsException,
SizeOutOfBoundsException,
MemoryTypeConflictException,
UnsupportedRawMemoryRegionException

Description
Creates an instance of a class that implements RawIntReader and accesses
memory of region in the address range described by base, stride, and count.
The actual extent of the memory addressed by the object is stride ∗ size of
RawIntReader ∗ count. The object is allocated in the current memory area of
the calling thread.

Parameters
region—The address space from which the new instance should be taken.
base—The starting physical address accessible through the returned instance.
count—The number of memory elements accessible through the returned instance.
stride—The distance to the next element as a multiple of element size, where 1

means the elements are adjacent in memory.
Throws

IllegalArgumentException—when base is negative, count is not greater than
zero, or stride is less than one.

SecurityException—when the caller does not have permissions to access the given
memory region or the specified range of addresses.

OffsetOutOfBoundsException—when base is invalid.
SizeOutOfBoundsException—when the memory addressed by the object would

extend into an invalid range of memory.
MemoryTypeConflictException—when base does not point to a memory that

matches the type served by this factory.
Returns
an object that implements RawIntReader and supports access to the specified range

in the memory region.

createRawIntWriter(RawMemoryRegion, long, int, int)

Signature
public javax.realtime.device.RawIntWriter
createRawIntWriter(RawMemoryRegion region,

RTSJ 2.0 (Draft 57) 701

12 Devices and Triggering RawMemoryFactory

long base,
int count,
int stride)

throws SecurityException,
OffsetOutOfBoundsException,
SizeOutOfBoundsException,
MemoryTypeConflictException,
UnsupportedRawMemoryRegionException

Description
Creates an instance of a class that implements RawIntWriter and accesses
memory of region in the address range described by base, stride, and count.
The actual extent of the memory addressed by the object is stride ∗ size of
RawIntWriter ∗ count. The object is allocated in the current memory area of
the calling thread.

Parameters
region—The address space from which the new instance should be taken.
base—The starting physical address accessible through the returned instance.
count—The number of memory elements accessible through the returned instance.
stride—The distance to the next element as a multiple of element size, where 1

means the elements are adjacent in memory.
Throws

IllegalArgumentException—when base is negative, count is not greater than
zero, or stride is less than one.

SecurityException—when the caller does not have permissions to access the given
memory region or the specified range of addresses.

OffsetOutOfBoundsException—when base is invalid.
SizeOutOfBoundsException—when the memory addressed by the object would

extend into an invalid range of memory.
MemoryTypeConflictException—when base does not point to a memory that

matches the type served by this factory.
Returns
an object that implements RawIntWriter and supports access to the specified range

in the memory region.

createRawLong(RawMemoryRegion, long, int, int)

Signature

702 RTSJ 2.0 (Draft 57)

RawMemoryFactory javax.realtime.device 12.3

public javax.realtime.device.RawLong
createRawLong(RawMemoryRegion region,

long base,
int count,
int stride)

throws SecurityException,
OffsetOutOfBoundsException,
SizeOutOfBoundsException,
MemoryTypeConflictException,
UnsupportedRawMemoryRegionException

Description
Creates an instance of a class that implements RawLong and accesses memory of
region in the address range described by base, stride, and count. The actual
extent of the memory addressed by the object is stride ∗ size of RawLong ∗
count. The object is allocated in the current memory area of the calling thread.

Parameters
region—The address space from which the new instance should be taken.
base—The starting physical address accessible through the returned instance.
count—The number of memory elements accessible through the returned instance.
stride—The distance to the next element as a multiple of element size, where 1

means the elements are adjacent in memory.
Throws

IllegalArgumentException—when base is negative, count is not greater than
zero, or stride is less than one.

SecurityException—when the caller does not have permissions to access the given
memory region or the specified range of addresses.

OffsetOutOfBoundsException—when base is invalid.
SizeOutOfBoundsException—when the memory addressed by the object would

extend into an invalid range of memory.
MemoryTypeConflictException—when base does not point to a memory that

matches the type served by this factory.
Returns
an object that implements RawLong and supports access to the specified range in

the memory region.

createRawLongReader(RawMemoryRegion, long, int, int)

RTSJ 2.0 (Draft 57) 703

12 Devices and Triggering RawMemoryFactory

Signature
public javax.realtime.device.RawLongReader
createRawLongReader(RawMemoryRegion region,

long base,
int count,
int stride)

throws SecurityException,
OffsetOutOfBoundsException,
SizeOutOfBoundsException,
MemoryTypeConflictException,
UnsupportedRawMemoryRegionException

Description
Creates an instance of a class that implements RawLongReader and accesses
memory of region in the address range described by base, stride, and count.
The actual extent of the memory addressed by the object is stride ∗ size of
RawLongReader ∗ count. The object is allocated in the current memory area of
the calling thread.

Parameters
region—The address space from which the new instance should be taken.
base—The starting physical address accessible through the returned instance.
count—The number of memory elements accessible through the returned instance.
stride—The distance to the next element as a multiple of element size, where 1

means the elements are adjacent in memory.
Throws

IllegalArgumentException—when base is negative, count is not greater than
zero, or stride is less than one.

SecurityException—when the caller does not have permissions to access the given
memory region or the specified range of addresses.

OffsetOutOfBoundsException—when base is invalid.
SizeOutOfBoundsException—when the memory addressed by the object would

extend into an invalid range of memory.
MemoryTypeConflictException—when base does not point to a memory that

matches the type served by this factory.

Returns
an object that implements RawLongReader and supports access to the specified

range in the memory region.

704 RTSJ 2.0 (Draft 57)

RawMemoryFactory javax.realtime.device 12.3

createRawLongWriter(RawMemoryRegion, long, int, int)

Signature
public javax.realtime.device.RawLongWriter
createRawLongWriter(RawMemoryRegion region,

long base,
int count,
int stride)

throws SecurityException,
OffsetOutOfBoundsException,
SizeOutOfBoundsException,
MemoryTypeConflictException,
UnsupportedRawMemoryRegionException

Description
Creates an instance of a class that implements RawLongWriter and accesses
memory of region in the address range described by base, stride, and count.
The actual extent of the memory addressed by the object is stride ∗ size of
RawLongWriter ∗ count. The object is allocated in the current memory area of
the calling thread.

Parameters
region—The address space from which the new instance should be taken.
base—The starting physical address accessible through the returned instance.
count—The number of memory elements accessible through the returned instance.
stride—The distance to the next element as a multiple of element size, where 1

means the elements are adjacent in memory.
Throws

IllegalArgumentException—when base is negative, count is not greater than
zero, or stride is less than one.

SecurityException—when the caller does not have permissions to access the given
memory region or the specified range of addresses.

OffsetOutOfBoundsException—when base is invalid.
SizeOutOfBoundsException—when the memory addressed by the object would

extend into an invalid range of memory.
MemoryTypeConflictException—when base does not point to a memory that

matches the type served by this factory.
Returns
an object that implements RawLongWriter and supports access to the specified

range in the memory region.

RTSJ 2.0 (Draft 57) 705

12 Devices and Triggering RawMemoryFactory

createRawFloat(RawMemoryRegion, long, int, int)

Signature
public javax.realtime.device.RawFloat
createRawFloat(RawMemoryRegion region,

long base,
int count,
int stride)

throws SecurityException,
OffsetOutOfBoundsException,
SizeOutOfBoundsException,
MemoryTypeConflictException,
UnsupportedRawMemoryRegionException

Description
Creates an instance of a class that implements RawFloat and accesses memory of
region in the address range described by base, stride, and count. The actual
extent of the memory addressed by the object is stride ∗ size of RawFloat ∗
count. The object is allocated in the current memory area of the calling thread.

Parameters
region—The address space from which the new instance should be taken.
base—The starting physical address accessible through the returned instance.
count—The number of memory elements accessible through the returned instance.
stride—The distance to the next element as a multiple of element size, where 1

means the elements are adjacent in memory.
Throws

IllegalArgumentException—when base is negative, count is not greater than
zero, or stride is less than one.

SecurityException—when the caller does not have permissions to access the given
memory region or the specified range of addresses.

OffsetOutOfBoundsException—when base is invalid.
SizeOutOfBoundsException—when the memory addressed by the object would

extend into an invalid range of memory.
MemoryTypeConflictException—when base does not point to a memory that

matches the type served by this factory.
Returns
an object that implements RawFloat and supports access to the specified range in

the memory region.

706 RTSJ 2.0 (Draft 57)

RawMemoryFactory javax.realtime.device 12.3

createRawFloatReader(RawMemoryRegion, long, int, int)

Signature
public javax.realtime.device.RawFloatReader
createRawFloatReader(RawMemoryRegion region,

long base,
int count,
int stride)

throws SecurityException,
OffsetOutOfBoundsException,
SizeOutOfBoundsException,
MemoryTypeConflictException,
UnsupportedRawMemoryRegionException

Description
Creates an instance of a class that implements RawFloatReader and accesses
memory of region in the address range described by base, stride, and count.
The actual extent of the memory addressed by the object is stride ∗ size of
RawFloatReader ∗ count. The object is allocated in the current memory area of
the calling thread.

Parameters
region—The address space from which the new instance should be taken.
base—The starting physical address accessible through the returned instance.
count—The number of memory elements accessible through the returned instance.
stride—The distance to the next element as a multiple of element size, where 1

means the elements are adjacent in memory.
Throws

IllegalArgumentException—when base is negative, count is not greater than
zero, or stride is less than one.

SecurityException—when the caller does not have permissions to access the given
memory region or the specified range of addresses.

OffsetOutOfBoundsException—when base is invalid.
SizeOutOfBoundsException—when the memory addressed by the object would

extend into an invalid range of memory.
MemoryTypeConflictException—when base does not point to a memory that

matches the type served by this factory.
Returns
an object that implements RawFloatReader and supports access to the specified

range in the memory region.

RTSJ 2.0 (Draft 57) 707

12 Devices and Triggering RawMemoryFactory

createRawFloatWriter(RawMemoryRegion, long, int, int)

Signature
public javax.realtime.device.RawFloatWriter
createRawFloatWriter(RawMemoryRegion region,

long base,
int count,
int stride)

throws SecurityException,
OffsetOutOfBoundsException,
SizeOutOfBoundsException,
MemoryTypeConflictException,
UnsupportedRawMemoryRegionException

Description
Creates an instance of a class that implements RawFloatWriter and accesses
memory of region in the address range described by base, stride, and count.
The actual extent of the memory addressed by the object is stride ∗ size of
RawFloatWriter ∗ count. The object is allocated in the current memory area of
the calling thread.

Parameters
region—The address space from which the new instance should be taken.
base—The starting physical address accessible through the returned instance.
count—The number of memory elements accessible through the returned instance.
stride—The distance to the next element as a multiple of element size, where 1

means the elements are adjacent in memory.
Throws

IllegalArgumentException—when base is negative, count is not greater than
zero, or stride is less than one.

SecurityException—when the caller does not have permissions to access the given
memory region or the specified range of addresses.

OffsetOutOfBoundsException—when base is invalid.
SizeOutOfBoundsException—when the memory addressed by the object would

extend into an invalid range of memory.
MemoryTypeConflictException—when base does not point to a memory that

matches the type served by this factory.
Returns
an object that implements RawFloatWriter and supports access to the specified

range in the memory region.

708 RTSJ 2.0 (Draft 57)

RawMemoryFactory javax.realtime.device 12.3

createRawDouble(RawMemoryRegion, long, int, int)

Signature
public javax.realtime.device.RawDouble
createRawDouble(RawMemoryRegion region,

long base,
int count,
int stride)

throws SecurityException,
OffsetOutOfBoundsException,
SizeOutOfBoundsException,
MemoryTypeConflictException,
UnsupportedRawMemoryRegionException

Description
Creates an instance of a class that implements RawDouble and accesses memory of
region in the address range described by base, stride, and count. The actual
extent of the memory addressed by the object is stride ∗ size of RawDouble ∗
count. The object is allocated in the current memory area of the calling thread.

Parameters
region—The address space from which the new instance should be taken.
base—The starting physical address accessible through the returned instance.
count—The number of memory elements accessible through the returned instance.
stride—The distance to the next element as a multiple of element size, where 1

means the elements are adjacent in memory.
Throws

IllegalArgumentException—when base is negative, count is not greater than
zero, or stride is less than one.

SecurityException—when the caller does not have permissions to access the given
memory region or the specified range of addresses.

OffsetOutOfBoundsException—when base is invalid.
SizeOutOfBoundsException—when the memory addressed by the object would

extend into an invalid range of memory.
MemoryTypeConflictException—when base does not point to a memory that

matches the type served by this factory.
Returns
an object that implements RawDouble and supports access to the specified range in

the memory region.

RTSJ 2.0 (Draft 57) 709

12 Devices and Triggering RawMemoryFactory

createRawDoubleReader(RawMemoryRegion, long, int, int)

Signature
public javax.realtime.device.RawDoubleReader
createRawDoubleReader(RawMemoryRegion region,

long base,
int count,
int stride)

throws SecurityException,
OffsetOutOfBoundsException,
SizeOutOfBoundsException,
MemoryTypeConflictException,
UnsupportedRawMemoryRegionException

Description
Creates an instance of a class that implements RawDoubleReader and accesses
memory of region in the address range described by base, stride, and count.
The actual extent of the memory addressed by the object is stride ∗ size of
RawDoubleReader ∗ count. The object is allocated in the current memory area
of the calling thread.

Parameters
region—The address space from which the new instance should be taken.
base—The starting physical address accessible through the returned instance.
count—The number of memory elements accessible through the returned instance.
stride—The distance to the next element as a multiple of element size, where 1

means the elements are adjacent in memory.
Throws

IllegalArgumentException—when base is negative, count is not greater than
zero, or stride is less than one.

SecurityException—when the caller does not have permissions to access the given
memory region or the specified range of addresses.

OffsetOutOfBoundsException—when base is invalid.
SizeOutOfBoundsException—when the memory addressed by the object would

extend into an invalid range of memory.
MemoryTypeConflictException—when base does not point to a memory that

matches the type served by this factory.

Returns

710 RTSJ 2.0 (Draft 57)

RawMemoryFactory javax.realtime.device 12.3

an object that implements RawDoubleReader and supports access to the specified
range in the memory region.

createRawDoubleWriter(RawMemoryRegion, long, int, int)

Signature
public javax.realtime.device.RawDoubleWriter
createRawDoubleWriter(RawMemoryRegion region,

long base,
int count,
int stride)

throws SecurityException,
OffsetOutOfBoundsException,
SizeOutOfBoundsException,
MemoryTypeConflictException,
UnsupportedRawMemoryRegionException

Description
Creates an instance of a class that implements RawDoubleWriter and accesses
memory of region in the address range described by base, stride, and count.
The actual extent of the memory addressed by the object is stride ∗ size of
RawDoubleWriter ∗ count. The object is allocated in the current memory area
of the calling thread.

Parameters
region—The address space from which the new instance should be taken.
base—The starting physical address accessible through the returned instance.
count—The number of memory elements accessible through the returned instance.
stride—The distance to the next element as a multiple of element size, where 1

means the elements are adjacent in memory.
Throws

IllegalArgumentException—when base is negative, count is not greater than
zero, or stride is less than one.

SecurityException—when the caller does not have permissions to access the given
memory region or the specified range of addresses.

OffsetOutOfBoundsException—when base is invalid.
SizeOutOfBoundsException—when the memory addressed by the object would

extend into an invalid range of memory.

RTSJ 2.0 (Draft 57) 711

12 Devices and Triggering RawMemoryRegion

MemoryTypeConflictException—when base does not point to a memory that
matches the type served by this factory.

Returns
an object that implements RawDoubleWriter and supports access to the specified

range in the memory region.

12.3.2.7 RawMemoryRegion

public class RawMemoryRegion
Inheritance
java.lang.Object
RawMemoryRegion

Description
RawMemoryRegion is a class for typing raw memory regions. It is returned
by the RawMemoryRegionFactory.getRegion methods of the raw memory re-
gion factory classes, and it is used with methods such as RawMemoryFactory.
createRawByte(RawMemoryRegion, long, int, int) and RawMemoryFactory.
createRawDouble(RawMemoryRegion, long, int, int) methods to identify
the region from which the application wants to get an accessor instance.

Available since RTSJ 2.0

12.3.2.7.1 Methods

getRegion(String)

Signature
public static javax.realtime.device.RawMemoryRegion
getRegion(String name)

Description
Get a region type when it already exists or creates a new one.

Parameters
name—of the region

712 RTSJ 2.0 (Draft 57)

javax.realtime.device 12.4

Returns
the region type object.

isRawMemoryRegion(String)

Signature
public static boolean
isRawMemoryRegion(String name)

Description
Ask whether or not there is a memory region type of a given name.

Parameters
name—for which to search

Returns
true when there is one and false otherwise.

getName

Signature
public final java.lang.String
getName()

Description
Obtains the name of this region type.

Returns
the region types name

toString

Signature
public final java.lang.String
toString()

Description
Gets a printable representation for a Region.

Returns
the name of this memory region type.

RTSJ 2.0 (Draft 57) 713

12 Devices and Triggering

12.4 Rationale

12.4.1 Raw Memory
Raw memory in the RTSJ refers to any memory in which only objects of primitive
types can be stored; Java objects or their references cannot be stored in raw memory.
RTSJ Version 2.0 provides two categories:

1. memory that is used to access memory-mapped device registers, and
2. logical memory that can be used to access port-based device registers.

Each of these categories of memory is represented by an instance of RawMemoryRegion.
In addition, the application can define other regions outside these two, either for
accessing device registers in some other address space or for other purposes, such as
emulating device access.

Java’s primitive types are partitioned into two groups: integral (short, int, long,
byte) and real (float, double) types, including arrays of each type. For integral
types, individual interfaces are also defined to facilitate greater type security during
access. Objects that support these interfaces are created by factory methods, which
again have predefined interfaces. Such objects are called accessor objects as they
encapsulate the access protocol to the raw memory.

Control over all these objects is managed by the RawMemoryFactory class that
provides a set of static methods, as shown in Figure 12.5. There are two groups of
methods:

1. those that enable a factory to be registered, and
2. those that request the creation of accessor object for a particular memory type

at a particular address.
The latter consists of methods to create Java-primitive-type accessor objects, which
will throw exceptions if the appropriate addresses are not on correct boundaries to
enable the underlying machine instructions to be used without causing hardware
exceptions (e.g., createRawByteReader).

As with interrupt handling, some realtime JVMs may not be able to support all of
the memory categories. However, the expectation is that for all supported categories,
they will also provide and register the associated factories for object creation.

For the case of IO_PORT_MAPPED raw memory, the accessor objects will need to
arrange to execute the appropriate machine instructions to access the device registers.

Consider the simple case where a device has two device registers: a control/status
register that is a 32 bits integer, and a data register that is a 64 bits long. The registers
have been memory mapped to locations: 0x20 and 0x24 respectively. Assuming
the realtime JVM has registered a factory for the IO_MEMORY_MAPPED_REGION raw
memory name, then the following code will create the objects that facilitate the
memory access.

714 RTSJ 2.0 (Draft 57)

Rationale 12.4

Figure 12.5: Creating Raw Memory Accessors

javax.realtime::RawMemoryRegion
RawMemoryRegion(String name)
+toString(): String

javax.realtime::RawMemoryFactory
+getDefaultFactory(): RawMemoryFactory
+register(RawMemoryRegionFactory creator)
+createRawLong(RawMemoryRegion type, long base, int size, int stride): RawLong
+createRawInt(RawMemoryRegion type, long base, int size, int stride): RawInt
+createRawShort(RawMemoryRegion type, long base, int size, int stride): RawShort
+createRawByte(RawMemoryRegion type, long base, int size, int stride): RawByte
+createRawFloat(RawMemoryRegion type, long base, int size, int stride): RawFloat
+createRawDouble(RawMemoryRegion type, long base, int size, int stride): RawDouble
...

javax.realtime::RawMemoryRegionFactory
<< in te r f ace>>

+createRawLong(long base, int size, int stride): RawLong
+createRawInt(long base, int size, int stride): RawInt
+createRawShort(long base, int size, int stride): RawShort
+createRawByte(long base, int size, int stride): RawByte
+createRawFloat(long base, int size, int stride): RawFloat
+createRawDouble(long base, int size, int stride): RawDouble
...

1 RawMemoryFactory factor = RawMemoryFactory.getDefault();
2 RawInt controlReg =
3 factory.createRawInt(RawMemoryFactory.IO_MEMORY_MAPPED_REGION,

0x20);
4 RawLong dataReg =
5 factory.createRawLong(RawMemoryFactory.IO_MEMORY_MAPPED_REGION,

0x24);

The above definitions reflect the structure of the actual registers. The JVM will
check that the memory locations are on the correct boundaries and that they can
be accessed without any hardware exceptions being generated. If they cannot, the
create methods will throw an appropriate exceptions. If successfully created, all
future access to the controlReg and dataReg will be exception free. The registers
can be manipulated by calling the appropriate methods, as in the following example.

1 dataReg.setLong(l);

RTSJ 2.0 (Draft 57) 715

12 Devices and Triggering

2 // where l is of type long and is data to be sent to the
device

3 controlReg.setInt(i);
4 // where i is of type int and is the command to the device

In the general case, programmers themselves may create their own memory
categories and provide associated factories (that may use the implementation-defined
factories). These factories are written in Java and are, therefore, constrained by
what the language allows them to do. Typically, they will use the JVM-supplied raw
memory types to facilitate access to a device’s external memory.

The facilities provided by the RTSJ allow an application to support the notion
of removable memory. When this memory is inserted or removed, an asynchronous
event can be set up to fire, thereby alerting the application that the device has
become active. Of course, any removable memory has to be treated with extreme
caution. Hence, the RTSJ facilities allow it only to be accessed as a raw memory
device. An example of this will be given in Section 12.4.3.

12.4.1.1 Direct memory access

DMA requires access to memory outside of the heap. It is often crucial for performance
in embedded systems; however, it does cause problems both from a realtime analysis
perspective and from a JVM-implementation perspective. The latter is the primary
concern here.

There are a few crucial points to note about DMA and the RTSJ.
1. The RTSJ does not address issues of persistent objects, so the input and output

of Java objects to devices (other than by using the Java serialization mechanism)
is not supported.

2. The RTSJ requires that RTSJ programs can be compiled by regular Java com-
pilers. Different bytecode compilers, and their supporting JVMs, use different
representation for objects. Java arrays, even of primitive types, are objects,
and the data they contain might not be stored in contiguous memory.

3. The package java.nio.channels provides a mechanism for I/O that was not
specifically designed for DMA, but provides an applicable pattern for it.

For these reasons, without explicit knowledge of the compiler and JVM, allowing
any DMA into any RTSJ memory area is a very dangerous action; therefore, the RTSJ
provides some special support for DMA. Unfortunately, it would be difficult to find
a general pattern to fit all DMA controllers; however, with raw memory and raw
byte buffers, one could construct a higher level API that would cover most DMA
controllers. Even so, there will always be odd cases that would still not fit the general
pattern, especially for embedded systems. For this reason, only this low level API is
provided.

716 RTSJ 2.0 (Draft 57)

Rationale 12.4

The DMA interface is designed to minimize the points where actual physical
addresses are provided. If nothing else, this reduces the number of places where
security checks are needed. Actual physical addresses are only needed when a
DMARegion is created. When a DMA buffer is needed, the application developer
can draw it from one of the previously defined regions. When exact addresses are
needed for each buffer, a DMARegion can be defined for each buffer. Otherwise, a
large region can be defined for each controller and the system can manage allocation
out of these regions.

Figure 12.6: Flash memory device
Flash Memory Stick

Flash Memory Socket

12.4.2 Interrupt Handling
Handling interrupts is a necessary part of many embedded systems. Interrupt
handlers have traditionally been implemented in assembler code or C. With the
growing popularity of high-level concurrent languages, there has been interest in
better integration between the interrupt handling code and the application. Ada, for
example, allows a “protected” procedure to be called directly from an interrupt [3].

Regehr [7] defines the terms used for the core components of interrupts and their
handlers as follows:

1. Interrupt—a hardware supported asynchronous transfer of control mechanism
initiated by an event external to the processor. Control of the processor is
transferred through an interrupt vector.

2. Interrupt vector—a dedicated (or configurable) location that specifies the
location of an interrupt handler.

3. Interrupt handler—code that is reachable from the interrupt vector.
4. An interrupt controller—a peripheral device that manages interrupts for the

processor.
He further identifies the following problems with programming interrupt-driven

software on single processors:

RTSJ 2.0 (Draft 57) 717

12 Devices and Triggering

1. Stack overflow—the difficulty determining how much call-chain stack is required
to handle an interrupt. The problem is compounded if the stack is borrowed
from the currently executing thread or process.

2. Interrupt overload—the problem of ensuring that noninterrupt driven processing
is not swamped by unexpected or misbehaving interrupts.

3. Real-time analysis—the need to have appropriate schedulability analysis models
to bound the impact of interrupt handlers.

The problems above are accentuated in multiprocessor systems where interrupts
can be handled globally. Fortunately, many multiprocessor systems allow interrupts
to be bound to particular processors. For example, the ARM Cortex A9-MPCore
supports the Arm Generic Interrupt Controller1. This enables a target list of CPUs
to be specified for each hardware interrupt. Software generated interrupts can also
be sent to the list or set up to be delivered to all but the requesting CPU or only
the requesting CPU.

Regehr’s problems are all generic and can be solved irrespective of the language
used to implement the handlers. In general they can be addressed by a combination
of techniques.

1. Stack overflow—static analysis techniques can normally be used to determine
the worst-case stack usage of all interrupt handlers. When stack is borrowed
from the executing thread, this amount must be added to the worst-case stack
usage of all threads.

2. Interrupt overload—this is typically managed by aperiodic server technology
in combination with interrupt masking (see Section 13.6 of [3]).

3. Real-time analysis—again, this can be catered for in modern schedulability
analysis techniques, such as response-time analysis (see Section 14.6 of [3]).

From a RTSJ perspective, the following distinctions are useful
1. The first-level interrupt handlers are the code that the platform executes in

response to the hardware interrupts (or traps). A first-level interrupt is assumed
to be executed at an execution eligibility (priority) and by a processor dictated
by the underlying platform (which may be controllable at the platform level).
On some RTSJ implementations it will not be possible to write Java code
for these handlers. Implementations that do enable Java-level handlers may
restrict the code that can be written. For example, the handler code should
not suspend itself or throw unhandled exceptions. The RTSJ 2.0 optional
InterruptServiceRoutine class supports first level interrupt handling.

2. The external event handler is the code that the JVM executes as a result of
being notified that an external event (be it an operating system signal, an ISR
or some other program) is targeted at the RTSJ application. The programmer
should be able to specify the processor affinity and execution eligibility of

1 See http://infocenter.arm.com/help/index.jsp?topic=/com.arm.doc.ddi0375a/Cegbfjhf.html

718 RTSJ 2.0 (Draft 57)

Rationale 12.4

Figure 12.7: Flash memory classes

<< In te r face>>
RawIntegralAccess

<< In te r face>>
RawIntegralAccessFactory

<< In te r face>>
RemovableMemory

<<AsyncEventHandler>>
FAController

FMRemoved: AsyncEvent

FMInserted: AsyncEvent
FlashEvent: Happening

name="FlashHappening"
<<AsyncEventHandler>>

FMSocketController

handler for

handler for

fires

fires handler
 for

this code. In RTSJ 2.0, all external events are represented by instances of the
Happening interface. Every happening has an associated dispatcher which is
responsible for the initial response to an occurrence of the event.

3. A happening dispatcher is able to find one or more associated RTSJ asynchronous
events and fire them. This then releases the associated asynchronous event
handlers.

12.4.3 An Illustrative Example
Consider an embedded system that has a simple flash memory device that supports
a single type of removable flash memory stick, as illustrated in Figure 12.6.

When the memory stick is inserted or removed, an interrupt is generated. This
interrupt is known to the realtime JVM. The interrupt is also generated when
operations requested on the device are completed. For simplicity, it is assumed that
the application has associated this interrupt to a happening called FlashHappening
with a default happening dispatcher.

The example illustrates how
1. a programmer can use the RTSJ facilities to write a device handler,
2. a factory class can be constructed and how the accessor objects police the

access,
3. removable memory can be handled.
The flash memory device is accessed via several associated registers, which are

shown in Table 12.2. These have all been memory mapped to the indicated locations.
12.4.3.1 Software architecture

There are many ways in which the software architecture for the example could be
constructed. Here, for simplicity of representation, an architecture is chosen with

RTSJ 2.0 (Draft 57) 719

12 Devices and Triggering

Table 12.2: Device registers
Register Location Bit Positions Values
Command 0x20 0 Device: 0 = Disable, 1 = Enable

4 Interrupts: 0 = Disable, 1 = Enable
5-8 1 = Read byte, 2 = Write byte

3 = Read short, 4 = Write short
5 = Read int, 6 = Write int
7 = Read long, 8 = Write long

9 0 = DMA Read, 1 = DMA
31-63 Offset into flash memory

Data 0x28 0-63 Simple data or memory address if DMA
Length 0x30 0-31 Length of data transfer
Status 0x38 0 1 = Device enabled

3 1 = Interrupts enabled
4 1 = Device in error
5 1 = Transfer complete
6 1 = Memory stick present

0 = Memory stick absent
7 1 = Memory stick inserted
8 0 = Memory stick removed

a minimal number of classes. It is illustrated in Figure 12.7. There are three key
components.

1. FlashHappening—This is the happening that has been associated with the
flash device’s interrupt. The RTSJ will provide a default dispatcher, which will
release any associated handler when the interrupt occurs and the happening is
triggered.

2. FMSocketController—This is the object that encapsulates the access to the
flash memory device. In essence, it is the device driver; it is also the handler
for the FlashHappening and is responsible for firing the FMInserted and
FMRemoved asynchronous events.

3. FAController—This is the object that controls access to the flash memory, it
(a) acts as the factory for the creating objects that will facilitate access to

the flash memory itself (using the mechanisms provided by the FMSocket-
Controller),

(b) is the asynchronous event handler that responds to the firing of the
FMInserted and FMRemoved asynchronous events, and

(c) also acts as the accessor object for the memory.

720 RTSJ 2.0 (Draft 57)

Rationale 12.4

12.4.3.2 Device initialization

Figure 12.8 shows the sequence of operations that the program must perform to
initialize the flash memory device. The main steps are as follows.

Figure 12.8: Sequence diagram showing initialization operations

...

RawMemoryFactory FMEvent

Flash Memory
Inialisation

10 Set up device

FAControllerFlashEvent FMSocketController

getName

8 addHandler(FAController)
7 new

5 new
4 initDevice

3 addHandler(FMSocketController)

2 new

1 new("FlashHappening")

1 The happening (FlashEvent) associated with the flash happening must be
created.

2-3 The (FMSocketController) object is created and added as a handler for
FlashEvent.

4 An initialization method is called (initDevice) to perform all the operations
necessary to configure the infrastructure and initialize the hardware device.

5-6 Two new asynchronous events are created to represent insertion and removal
of the flash memory stick.

7-9 The FAController class is created. It is added as the handler for the two
events created in steps 5 and 6.

10 Setting up the device and registering the factory is shown in detail in Figure
12.9. It involves registering the FAController object via the static methods in
the RawMemoryFactory class and creating and using the JVM-supplied factory
to access the memory-mapped I/O registers.

RTSJ 2.0 (Draft 57) 721

12 Devices and Triggering

Figure 12.9: Sequence diagrams showing operations to initialize the hardware device

statusRegAccess =

dataRegAccess =

commandRegAccess =

FAController:

Set up device

set bits to enable
the device and
 its interrupts

statusRegAccess:
RawByte

_

commandRegAccess:
RawLong

_

RawMemoryFactoryFMSocketController

Flash Memory
Initialization

getDefaultFactory

FLASH_MEMORY

getName
registerFactory
(FAController)

setLong

getLong

createRawByte
(IO_MEMORY_MAPPED, 0x38)

createRawLong
(IO_MEMORY_MAPPED, 0x28)

createRawLong
(IO_MEMORY_MAPPED, 0x20)

initDevice

12.4.3.3 Responding to external happenings

In the example, interrupts are handled by the JVM, which turns them into an
external happening. The application code that indirectly responds to the happening
is provided in the handleAsyncEvent method in the FMSocketController object.
Figure 12.10 illustrates the approach. In this example, the actions in response to
the memory stick inserted and memory stick removed flash events are simply shown
as the execution of the FMInserted and FMRemoved handlers. These will inform the
application. The memory accessor classes themselves will ensure that the stick is
present when performing the required application accesses.

12.4.3.4 Access to the flash controller’s device registers

Figure 12.11 shows the sequence of events that the application follows. First it must
register a handler with the FMInserted asynchronous event. Here, the application
itself is an asynchronous event handler. When this is released, the memory has been
inserted.

722 RTSJ 2.0 (Draft 57)

Rationale 12.4

Figure 12.10: The FMSocketController.handleAsync method

determine whether
stick inserted or
removed

Transfer
complete

FMEvent

see later

statusRegAccess:FMSocketController

Flash Memory
Interrupt
Handling

fire(EventType)

getByte

handleAsyncEvent

In this simple example, the application simply reads a byte from an offset within
the memory stick. It, therefore, creates an accessor to access the data. When this
has been returned (it is the FAController itself), the application can now call the
getByte method (called FA getByte, in the following, for clarity). This method
must implement the sequence of raw memory access on the device’s registers to
perform the operation. In Figure 12.11, they are as follows.

1. FA getByte calls the getByte method of the status register’s accessor object.
This can check to make sure that the flash memory is present (bit 6, as shown
in Table 12.2). If it is not, an exception can be thrown.

2. Assuming the memory is present, it then sets the control register with the
offset required (bits 31–63, as shown in Table 12.2) and sets the read byte
request bit (bits 5-8, as shown in Table 12.2).

3. The FA getByte method must then wait for indication that the requested

RTSJ 2.0 (Draft 57) 723

12 Devices and Triggering

Figure 12.11: Application usage

FMEvent

 3. wait completion

Transfer Complete

Access the
device
register
to perform
the required
operation

dataRegAccess
_

FAController statusRegAccess
_

commandRegAccess
_

RawMemory< < A E H > >
Application

Flash
Memory
Access

handleAsyncEvent

addHandler
(This)

data

5 getByte

 4 getByte

3. notify
completion

 handleAsyncEvent

2. setLong

 1. getByte
getByte

FAController
FAController

newRawByte
(0x00,0x800)

 createRawByte
(FLASH_MEMORY,ox800)

operation has been completed by the device. This is detected by the han-
dleAsyncEvent method of the FMController, which performs the necessary
notify.

4. Once notified of completion, the FA getByte method, again, reads the status
register to make sure there were no errors on the device (bit 4 in Table 12.2)
and that the memory is still present.

5. The FA getLong then reads the data register to get the requested data, which
it returns.

724 RTSJ 2.0 (Draft 57)

Chapter 13

Interprocess Signaling

On many operating systems, it is possible for one process to signal another. POSIX
provides a well defined means of signaling other processes and receiving signals from
them, therefore one would like to be able to use this facility when it or a similar
mechanism is available. The POSIX module provides the means to do this. It
provides a common idiom for binding signals to instances of AsyncEventHandler.

13.1 Definitions
Signal — A notification between two system processes, which may or may not

contain a data packet.
Realtime Signal — A special type of signal that carries a bit of data with it.

13.2 Semantics
The POSIX interface provides two main facilities: sending signals and receiving
signals. These are supported by a means of determining which signals are supported
on an implementation. In addition, not only stateless signals, but also signals with
data are also supported. All classes are in the javax.realtime.posix package.

Some signals have predefined uses. For example, SIG_SEGV is used to signal an
application that the program has attempted to reference the content of an address
that is not available in the current address space. There is even a signal that can
never be caught because it terminates the process before anything else can happen.

Therefore, an implementation must document what signals an RTSJ runtime or
virtual machine uses, whether or not the signal handler can be overridden, and what
would happen when a program attaches a handler to that signal or sends that signal
to another instance of the virtual machine. Whenever possible, an RTSJ program

725

13 Interprocess Signaling

should be able to handle any signal it receives. The only exception is SIG_KILL,
which never reaches the program.

13.2.1 POSIX Signals
The Signal class represents POSIX signals and is required on platforms that provide
POSIX signals. As with a Happening, it is a subclass of AsyncEvent and implements
ActiveEvent. Unlike Happening, it cannot be instantiated by the user. Instead, an
instance exists for each POSIX signal defined on the system. They can be retrieved
either by name or number using the Signal.get(int) and Signal.get(String)
methods.

13.2.2 POSIX Realtime Signals
The RealtimeSignal class represents POSIX realtime events. It also implements
ActiveEvent, but as a subclass of AsyncLongEvent, so that it can pass the data
sent with its signal. As with Signal, it cannot be instantiated by the user, rather an
instance exists for each POSIX signal defined on the system, which can be retrieved ei-
ther by name or number using the RealtimeSignal.get(int) and RealtimeSignal.
get(String) methods.

726 RTSJ 2.0 (Draft 57)

RealtimeSignal javax.realtime.posix 13.3

13.3 javax.realtime.posix

13.3.1 Classes
13.3.1.1 RealtimeSignal

public class RealtimeSignal

Inheritance
java.lang.Object
javax.realtime.AsyncBaseEvent
javax.realtime.AsyncLongEvent
RealtimeSignal

Interfaces
javax.realtime.ActiveEvent

Description
A javax.realtime.ActiveEvent subclass for defining a POSIX realtime signal.

Available since RTSJ 2.0

13.3.1.1.1 Methods

isPOSIXRealtimeSignal(String)

Signature
public static boolean
isPOSIXRealtimeSignal(String name)

Description
Determines whether or not a signal with a given name is registered.

Parameters
name—The name of the signal check.

Returns
true when a signal with the given name is registered.

RTSJ 2.0 (Draft 57) 727

13 Interprocess Signaling RealtimeSignal

getId(String)

Signature
public static int
getId(String name)

Description
Gets the ID of a registered signal.

Parameters
name—The name of the signal whose ID should be determined.

Returns
the ID of the signal named by name.

get(String)

Signature
public static javax.realtime.posix.RealtimeSignal
get(String name)

Description
Gets the registered realtime signal with the given name.

Parameters
name—The name of the signal to get.

Returns
the registered signal with name or null.

get(int)

Signature
public static javax.realtime.posix.RealtimeSignal
get(int id)

Description
Gets the realtime signal corresponding to a given ID.

Parameters
id—The identifier of a registered signal.

Returns
the signal corresponding to ID.

728 RTSJ 2.0 (Draft 57)

RealtimeSignal javax.realtime.posix 13.3

getId

Signature
public int
getId()

Description

Gets the name of this realtime signal.

Returns
the ID of this signal.

getName

Signature
public final java.lang.String
getName()

Description

Gets the name of this signal.

Returns
the name of this signal.

getDispatcher

Signature
public javax.realtime.posix.RealtimeSignalDispatcher
getDispatcher()

Description

Obtains the dispatcher for this.

Returns
that dispatcher.

RTSJ 2.0 (Draft 57) 729

13 Interprocess Signaling RealtimeSignal

isActive

Signature
public boolean
isActive()

Description
Determines the activation state of this signal, i.e., whether or not it has been
started.

Returns
true when active; false otherwise.

isRunning

Signature
public boolean
isRunning()

Description
Determines the firing state (releasing or skipping) of this signal, i.e., whether or
not is active and enabled.

Returns
true when releasing, false when skipping.

start

Signature
public final synchronized void
start()
throws IllegalStateException

Description
Starts this RealtimeSignal, i.e., changes to a running state. A running realtime
signal is a source of activation when in a scoped memory and is a member of the
root set when in the heap. A running realtime signal can be triggered.

Throws
IllegalStateException—when this RealtimeSignal has already been started.

730 RTSJ 2.0 (Draft 57)

RealtimeSignal javax.realtime.posix 13.3

See Section stop()

start(boolean)

Signature
public final synchronized void
start(boolean disabled)
throws IllegalStateException

Description
Starts this RealtimeSignal, i.e., changes to a running state. A running realtime
signal is a source of activation when in a scoped memory and is a member of the
root set when in the heap. A running realtime signal can be triggered.

Parameters
disabled—true for starting in a disabled state.

Throws
IllegalStateException—when this RealtimeSignal has already been started.

See Section stop()

stop

Signature
public final boolean
stop()
throws IllegalStateException

Description
Stops this RealtimeSignal. A stopped realtime signal ceases to be a source of
activation and no longer causes any AE attached to it to be a source of activation.

Throws
IllegalStateException—when this RealtimeSignal is not running.

Returns
true when this was enabled; false otherwise.

RTSJ 2.0 (Draft 57) 731

13 Interprocess Signaling RealtimeSignal

send(long, long)

Signature
public native boolean
send(long pid,

long payload)

Description
Sends this signal to another process.

Parameters
pid—The identifier of the process to which to send the signal.
payload—The long value associated with a fire.

Returns
true when signal can be sent; otherwise false.

addHandler(AsyncBaseEventHandler)

Signature
public void
addHandler(AsyncBaseEventHandler handler)

Description
Adds a handler to the set of handlers associated with this event. An instance of
AsyncBaseEvent may have more than one associated handler. However, adding
a handler to an event has no effect when the handler is already attached to the
event.

The execution of this method is atomic with respect to the execution of the
fire() method.

Note that there is an implicit reference to the handler stored in this. The
assignment must be valid under any applicable memory assignment rules.

setHandler(AsyncBaseEventHandler)

Signature
public void
setHandler(AsyncBaseEventHandler handler)

Description

732 RTSJ 2.0 (Draft 57)

RealtimeSignalDispatcher javax.realtime.posix 13.3

Associates a new handler with this event and removes all existing handlers. The
execution of this method is atomic with respect to the execution of the fire()
method.

removeHandler(AsyncBaseEventHandler)

Signature
public void
removeHandler(AsyncBaseEventHandler handler)

Description
Removes a handler from the set associated with this event. The execution of this
method is atomic with respect to the execution of the fire() method.

A removed handler continues to execute until its fireCount becomes zero and
it completes.

When handler has a scoped non-default initial memory area and execution
of this method causes handler to become unfirable, this method shall not return
until all related finalization has completed.

13.3.1.2 RealtimeSignalDispatcher

public class RealtimeSignalDispatcher
Inheritance
java.lang.Object
javax.realtime.ActiveEventDispatcher<RealtimeSignalDispatcher, RealtimeSig-
nal>
RealtimeSignalDispatcher

Description
Provides a means of dispatching a set of RealtimeSignals. An application can
provide its own dispatcher, providing the priority for the internal dispatching
thread. This dispatching thread calls process() each time the signal is triggered.

Available since RTSJ 2.0

13.3.1.2.1 Constructors

RTSJ 2.0 (Draft 57) 733

13 Interprocess Signaling RealtimeSignalDispatcher

RealtimeSignalDispatcher(SchedulingParameters, Schedu-
lingGroup)

Signature
public
RealtimeSignalDispatcher(SchedulingParameters schedule,

SchedulingGroup group)

Description
Creates a new dispatcher, whose dispatching thread runs with the given Schedu-
lingParameters.

Parameters
schedule—Parameters for scheduling this dispatcher.
group—Container for this dispatcher.

RealtimeSignalDispatcher(SchedulingParameters)

Signature
public
RealtimeSignalDispatcher(SchedulingParameters schedule)

Description
Creates a new dispatcher, whose dispatching thread runs with the given Schedu-
lingParameters.

Parameters
schedule—Parameters for scheduling this dispatcher.

13.3.1.2.2 Methods

setDefaultDispatcher(RealtimeSignalDispatcher)

Signature
public static void
setDefaultDispatcher(RealtimeSignalDispatcher dispatcher)

734 RTSJ 2.0 (Draft 57)

RealtimeSignalDispatcher javax.realtime.posix 13.3

Description
Sets the system default realtime signal dispatcher.

Parameters
dispatcher—The instance to be used when no dispatcher is provided. When null,

the realtime signal dispatcher is set to the original system default.

register(RealtimeSignal)

Signature
public void
register(RealtimeSignal signal)
throws RegistrationException,

IllegalStateException,
IllegalArgumentException

Description
Registers signal with this dispatcher.

Parameters
signal—The signal object to register.

Throws
RegistrationException—when signal is already registered.
IllegalStateException—when this object has been destroyed.
IllegalArgumentException—when signal is not stopped.

deregister(RealtimeSignal)

Signature
public void
deregister(RealtimeSignal signal)
throws DeregistrationException,

IllegalStateException,
IllegalArgumentException

Description
Deregisters the signal from this dispatcher.

Parameters
signal—The signal object to deregister.

RTSJ 2.0 (Draft 57) 735

13 Interprocess Signaling Signal

Throws
DeregistrationException—when signal is not already registered.
IllegalStateException—when this object has been destroyed.
IllegalArgumentException—when signal is not stopped.

destroy

Signature
public void
destroy()
throws IllegalStateException

Description
Releases all reasources thereby making the dispatcher unusable.

Throws
IllegalStateException—when called on a dispatcher that has one or more regis-

tered RealtimeSignal objects.

13.3.1.3 Signal

public class Signal
Inheritance
java.lang.Object
javax.realtime.AsyncBaseEvent
javax.realtime.AsyncEvent
Signal

Interfaces
javax.realtime.ActiveEvent

Description
A javax.realtime.ActiveEvent subclass for defining a POSIX signal.

Available since RTSJ 2.0

13.3.1.3.1 Fields

736 RTSJ 2.0 (Draft 57)

Signal javax.realtime.posix 13.3

MAX_NUM_SIGNALS

public static final MAX_NUM_SIGNALS

Description
Obtains the number of signals that can be processed.

13.3.1.3.2 Methods

isPOSIXSignal(String)

Signature
public static boolean
isPOSIXSignal(String name)

Description
Determines if a signal with a given name is registered.

Parameters
name—The string passed as the name of the signal.

Returns
true when a signal with the given name is registered.

getId(String)

Signature
public static int
getId(String name)

Description
Gets the ID of a registered signal.

Parameters
name—The name of the signal for which to search.

Returns
the ID of the signal named by name.

RTSJ 2.0 (Draft 57) 737

13 Interprocess Signaling Signal

get(String)

Signature
public static javax.realtime.posix.Signal
get(String name)

Description
Gets the registered signal with the given name.

Parameters
name—The name identifying the signal to get.

Returns
the registered signal associated with name or null.

get(int)

Signature
public static javax.realtime.posix.Signal
get(int id)

Description
Gets the signal corresponding to a given ID.

Parameters
id—The identifier of a registered signal.

Returns
the signal corresponding to ID or null.

getProcessId

Signature
public static long
getProcessId()

Description
Obtains the OS Id of the JVM process. When running in kernel space, the result
is VM dependent and must be documented. This number returned is only usable
with Signal.send(long).

Returns
the OS process ID.

738 RTSJ 2.0 (Draft 57)

Signal javax.realtime.posix 13.3

getId

Signature
public int
getId()

Description

Gets the number of this signal.

Returns
the signal number.

getName

Signature
public java.lang.String
getName()

Description

Gets the name of this signal.

Returns
the name of this signal.

getDispatcher

Signature
public javax.realtime.posix.SignalDispatcher
getDispatcher()

Description

Obtains the dispatcher for this.

Returns
that dispatcher.

RTSJ 2.0 (Draft 57) 739

13 Interprocess Signaling Signal

isActive

Signature
public boolean
isActive()

Description
Determines the activation state of this signal, i.e., if it has been started.

Returns
true when active; false otherwise.

isRunning

Signature
public boolean
isRunning()

Description
Determines the firing state, releasing or skipping, of this signal, i.e., if it is active
and enabled.

Returns
true when releasing, false when skipping.

start

Signature
public void
start()
throws IllegalStateException

Description
Starts this Signal, i.e., changes to a running state. A running signal is a source
of activation when in a scoped memory and is a member of the root set when in
the heap. A running signal can be triggered.

Throws
IllegalStateException—when this Signal has already been started.
See Section stop()

740 RTSJ 2.0 (Draft 57)

Signal javax.realtime.posix 13.3

start(boolean)

Signature
public void
start(boolean disabled)
throws IllegalStateException

Description
Starts this Signal, i.e., changes to a running state. A running signal is a source
of activation when in a scoped memory and is a member of the root set when in
the heap. A running signal can be triggered.

Parameters
disabled—true for starting in a disabled state.

Throws
IllegalStateException—when this Signal has already been started.
See Section stop()

stop

Signature
public boolean
stop()
throws IllegalStateException

Description
Stops this Signal. A stopped signal ceases to be a source of activation and no
longer causes any AE attached to it to be a source of activation.

Throws
IllegalStateException—when this Signal is not running.

Returns
true when this was enabled and false otherwise.

send(long)

Signature
public void
send(long pid)

RTSJ 2.0 (Draft 57) 741

13 Interprocess Signaling Signal

throws POSIXInvalidSignalException,
POSIXSignalPermissionException,
POSIXInvalidTargetException

Description
Sends this signal to another process or process group.

On POSIX systems running in user space, the following holds:
• when pid is positive, the signal is sent to pid;
• when pid equals 0, the signal is sent to every process in the process group

of the current process;
• when pid equals -1, the signal is sent to every process for which the calling

process has permission to send signals, except for possibly OS-defined system
processes; otherwise
• when pid is less than -1, the signal is sent to every process in the process

group -pid.
POSIX.1-2001 requires the underlying mechanism of signal.send(-1) to

send signal to all processes for which the current process may signal, except
possibly for some OS-defined system processes.

For an RTVM running in kernel space, the meaning of the pid is implemen-
tation dependent, though it should be as closed to the standard definition as
possible.

Parameters
pid—ID of the process to which to send the signal.

Throws
POSIXInvalidSignalException—when the signal number is not valid.
POSIXSignalPermissionException—when the process does not have permission

to send the target.
POSIXInvalidTargetException—when the target does not exist.

addHandler(AsyncBaseEventHandler)

Signature
public void
addHandler(AsyncBaseEventHandler handler)

Description
Adds a handler to the set of handlers associated with this event. An instance of
AsyncBaseEvent may have more than one associated handler. However, adding

742 RTSJ 2.0 (Draft 57)

SignalDispatcher javax.realtime.posix 13.3

a handler to an event has no effect when the handler is already attached to the
event.

The execution of this method is atomic with respect to the execution of the
fire() method.

Note that there is an implicit reference to the handler stored in this. The
assignment must be valid under any applicable memory assignment rules.

setHandler(AsyncBaseEventHandler)

Signature
public void
setHandler(AsyncBaseEventHandler handler)

Description
Associates a new handler with this event and removes all existing handlers. The
execution of this method is atomic with respect to the execution of the fire()
method.

removeHandler(AsyncBaseEventHandler)

Signature
public void
removeHandler(AsyncBaseEventHandler handler)

Description
Removes a handler from the set associated with this event. The execution of this
method is atomic with respect to the execution of the fire() method.

A removed handler continues to execute until its fireCount becomes zero and
it completes.

When handler has a scoped non-default initial memory area and execution
of this method causes handler to become unfirable, this method shall not return
until all related finalization has completed.

13.3.1.4 SignalDispatcher

public class SignalDispatcher
Inheritance

RTSJ 2.0 (Draft 57) 743

13 Interprocess Signaling SignalDispatcher

java.lang.Object
javax.realtime.ActiveEventDispatcher<SignalDispatcher, Signal>
SignalDispatcher

Description
Provides a means of dispatching a set of Signals. An application can provide its
own dispatcher, providing the priority for the internal dispatching thread. This
dispatching thread calls process() each time the signal is triggered.

Available since RTSJ 2.0

13.3.1.4.1 Constructors

SignalDispatcher(SchedulingParameters, Scheduling-
Group)

Signature
public
SignalDispatcher(SchedulingParameters scheduling,

SchedulingGroup group)

Description
Creates a new dispatcher, whose dispatching thread runs with the given Schedu-
lingParameters.

Parameters
scheduling—Parameters for scheduling this dispatcher.
group—Container for this dispatcher.

SignalDispatcher(SchedulingParameters)

Signature
public
SignalDispatcher(SchedulingParameters scheduling)

Description

744 RTSJ 2.0 (Draft 57)

SignalDispatcher javax.realtime.posix 13.3

Creates a new dispatcher, whose dispatching thread runs with the given Schedu-
lingParameters.

Parameters
scheduling—For scheduling this dispatcher.

13.3.1.4.2 Methods

setDefaultDispatcher(SignalDispatcher)

Signature
public static void
setDefaultDispatcher(SignalDispatcher dispatcher)

Description
Sets the system default signal dispatcher.

Parameters
dispatcher—An instance to be used when no dispatcher is provided. When null,

the signal dispatcher is set to the original system default.

register(Signal)

Signature
public synchronized void
register(Signal signal)
throws RegistrationException,

IllegalStateException,
IllegalArgumentException

Description
Registers a POSIX signal with this dispatcher.

Parameters
signal—The signal instance to register.

Throws
RegistrationException—when Signal is already registered.
IllegalStateException—when this object has been destroyed.
IllegalArgumentException—when Signal is not stopped.

RTSJ 2.0 (Draft 57) 745

13 Interprocess Signaling

deregister(Signal)

Signature
public synchronized void
deregister(Signal signal)
throws DeregistrationException,

IllegalStateException,
IllegalArgumentException

Description
Deregisters the POSIX Signal from this dispatcher.

Parameters
signal—The signal instance to deregister.

Throws
DeregistrationException—when Signal is not already registered.
IllegalStateException—when this object has been destroyed.
IllegalArgumentException—when Signal is not stopped.

destroy

Signature
public void
destroy()
throws IllegalStateException

Description
Releases all reasources thereby making the dispatcher unusable.

Throws
IllegalStateException—when called on a dispatcher that has one or more regis-

tered Signal objects.

13.4 Rationale
POSIX is the most widely supported standard for operating systems, both con-
ventional and realtime. Providing support for sending and receiving signals as
encapsulated in the Signal and RealtimeSignal enables realtime java programs to
interact, not just with the environment, but also other processes in a system. Even

746 RTSJ 2.0 (Draft 57)

Rationale 13.4

for systems that are not strictly POSIX compatible, one can implement this interface
for encapsulating similar functionality in a common API.

The Signal and RealtimeSignal classes are singletons for each underlying signal.
This provides minimum delay, but makes isolation more difficult. For OSGi and
other modular platforms, this can be circumvented at a small additional cost. The
application just needs to provide a handler for each isolation group that just dispatches
to a secondary event for handlers in that group. This is the same mechanism that
can be used to emulate the deprecated AsyncEvent.bindTo(String).

RTSJ 2.0 (Draft 57) 747

13 Interprocess Signaling

748 RTSJ 2.0 (Draft 57)

Chapter 14

System and Options

Implementations of this specification run on many operating systems and this
specification itself supports several variants, therefore a means of querying and
handling this variation is required. For instance, though many realtime operating
systems support the POSIX standard, many do not. There are even ones that vary
in their degree of compliance. Also, the type of garbage collection provided may
vary from one implementation to another. This specification offers the means and
facilities to manage these differences by providing the following:
• a class that contains operations and semantics that affect the entire system;
• the security semantics required by the additional features in the entirety of

this specification, which are additional to those required by implementations
of the Java Language Specification; and
• a class that provides some basic information about the garbage collector.

14.1 Semantics
There are three classes with semantics that do not fall into other categories: Real-
timeSystem, RealtimeSecurity, and GarbageCollection. Their overall semantics
is detailed below. Thereafter, semantics applying to methods, constructors, and
fields of theses classes are provided.

14.1.1 RealtimeSystem
RealtimeSystem is a required class, which provides basic information about the
RTSJ extensions supported by the system. Via this class, a program can query the
default monitor policy, the realtime security manager, and other realtime properties
of the system. Starting from version 2.0, a program can also ask what modules are
supported. The enumeration RTSJModule supports this capability.

749

14 System and Options

14.1.2 Realtime Security
Security for the classes in javax.realtime and its subpackages is provided by a set of
permission classes, all of which are subclasses of RealtimePermission. These classes
control access to key realtime features. Particularly critical is access to memory
outside the heap. Core RTSJ features also have security checks. These should enable
an application to restrict the use of the RTSJ, particularly for dynamically loaded
code. Of particular concern are classes that can create or control resources, such as
creating threads, both explicitly and implicitly, controlling scheduling and affinity,
creating persistent objects, and accessing resources outside RTSJ memory areas.

Detailed information is provided in the class documentation below, where the
arguments types are described in the subsequent table.
• AffinityPermission

Method Target Action
BoundRealtimeExecutor.setAffinity Group control
SchedulingGroup.setAffinity Group control
Affinity.set Group control
Affinity.setProcessorAddedEvent Group monitor
Affinity.setProcessorRemovedEvent Group monitor

• CoreMemoryPermission

Method Target Action
MemoryArea.executeInArea Area enter
MemoryArea.enter Area enter
MemoryArea.newArray — allocate
MemoryArea.newInstance — allocate

• SchedulingPermission

Method Target Action
PriorityScheduler.reschedule Group control
SchedulingGroup.setScheduler Group control
ProcessingGroup.ProcessingGroup Group control
ProcessingGroup.enforceCost Group control
SchedulingGroup.setMaxEligibility Group tune
ProcessingGroup.setPeriod Group tune
ProcessingGroup.setMaximumCost Group tune
ProcessingGroup.setMinimumCost Group tune
ProcessingGroup.setCostOverrunHandler Group monitor
ProcessingGroup.setCostUnderrunHandler Group monitor
Scheduler.setDefaultScheduler — system
ProcessingGroup.setGranularity — system
MonitorControl.setMonitorControl — system

750 RTSJ 2.0 (Draft 57)

Semantics 14.1

• TaskPermission
Method Target Action
ActiveEvent.start Group control
ActiveEvent.stop Group control
AsyncBaseEvent.enable Group control
AsyncBaseEvent.disable Group control
Schedulable.setDaemon Group control
Clock.Clock — create
RealtimeThread.RealtimeThread — create
Timer.Timer — create
AsyncBaseEvent.addHandler Group handle
AsyncBaseEvent.setHandler Group handle, override
AsyncBaseEvent.removeHandler Group override
ActiveEventDispatcher.register — system
ActiveEventDispatcher.deregister — system
ActiveEventDispatcher.destroy — system
ReleaseRunner.setDefaultRunner — system
Clock.setRealtimeClock — system
Clock.setUniversalClock — system
TimeDispatcher.setDefaultDispatcher — system

• POSIXPermission
Method Target Action
RealtimeSignal.addHandler Signals handle
RealtimeSignal.setHandler Signals handle, override
RealtimeSignal.removeHandler Signals override
RealtimeSignal.send Signals send
RealtimeSignal.start Signals control
RealtimeSignal.stop Signals control
RealtimeSignalDispatcher.
setDefaultDispatcher

— system

Signal.addHandler Signals handle
Signal.setHandler Signals handle, override
Signal.removeHandler Signals override
Signal.send Signals send
Signal.start Signals control
Signal.stop Signals control
SignalDispatcher.setDefaultDispatcher — system

RTSJ 2.0 (Draft 57) 751

14 System and Options

• DirectMemoryPermission

Method Target Action
DirectMemoryBufferFactory.
DirectMemoryBufferFactory

Addresses define

DirectMemoryBufferFactory.allocateByteBuffer Store map
DirectMemoryBufferFactory.free Group override

• HappeningPermission

Method Target Action
Happening.createId — create
Happening.Happening — create
Happening.addHandler Group handle
Happening.setHandler Group handle, override
Happening.removeHandler Group override
HappeningDispatcher.setDefaultDispatcher — system

• RawMemoryPermission

Method Target Action
RawMemoryFactory.register Addresses define
RawMemoryFactory.deregister Addresses define
RawMemoryFactory.deregister Addresses define
RawMemoryFactory.createRawByte Store map
RawMemoryFactory.createRawByteReader Store map
RawMemoryFactory.createRawByteWriter Store map
· · ·
RawMemoryFactory.createRawDouble Store map
RawMemoryFactory.createRawDoubleReader Store map
RawMemoryFactory.createRawDoubleWriter Store map

• PhysicalMemoryPermission

Method Target Action
PhysicalMemoryFactory.associate Addresses define
PhysicalMemoryFactory.createImmortalMemory Store map
PhysicalMemoryFactory.createLTMemory Store map
PhysicalMemoryFactory.createPinnableMemory Store map
PhysicalMemoryFactory.createStackedMemory Store map

• ScopedMemoryPermission

Method Target Action
LTMemory.LTMemory Store map
PinnableMemory.PinnableMemory Store map
StackedMemory.StackedMemory Store map
ScopedMemory.joinAndEnter Area enter

752 RTSJ 2.0 (Draft 57)

Semantics 14.1

In order to make the system easier to understand, targets are kept as consistent
as possible in accordance with the following table.

Target Values Example
Addresses a set of address ranges or * 0x10000100-0x10000200,

0x10000400-0x10000500
Area a memory area type or * StackedMemory
Group either current or * current
Signals a list of signal names or * INT, STOP
Store an amount of backing store or * 1024k
— no specific target

Similarly, each action is also used for similar functions in different permission
classes in accordance with the following table.

Action description
allocate allows critical memory allocation
control allows changing the mode of realtime tasks
create allows creating critical realtime objects
define allows defining a range of memory for later use
enter allows entering a memory area
handle allows event handling
map allows mapping defined memory into the system
monitor allows resource monitoring
override allows overriding code from another part of the system
send allows sending signals
system allows a critical operation
tune allows system tuning

14.1.3 GarbageCollection
It is extremely difficult to characterize garbage collectors in a uniform manner. The
only information that can be provided by all collectors is the preemption latency.
Each implementation may provide its own subclass of GarbageCollector to provide
additional information, which may be queried via reflection.

14.1.4 Compliance Version
Determining the current version is supported by a system property. When an
application calls the method, System.getProperty("javax.realtime.version"),
the return value will be a string of the form, “x.y.z”. Where ‘x’ is the major version

RTSJ 2.0 (Draft 57) 753

14 System and Options

number and ‘y’ and ‘z’ are minor version numbers. These version numbers state to
which version of the RTSJ the underlying implementation claims conformance. The
first release of the RTSJ, dated 11/2001, was numbered 1.0.0. A release conforming
to the version defined by this specification should return the string "2.0.0".

754 RTSJ 2.0 (Draft 57)

RTSJModule javax.realtime 14.2

14.2 javax.realtime

14.2.1 Enumerations
14.2.1.1 RTSJModule

public enum RTSJModule

Inheritance
java.lang.Object
java.lang.Enum<RTSJModule>
RTSJModule

Description

Modules an RTSJ implementation may provide.

Available since RTSJ 2.0

14.2.1.1.1 Enumeration Constants

CORE

public static final CORE

Description

Indicates the presence of the core module.

DEVICE

public static final DEVICE

Description

Indicates the presence of the device access module.

RTSJ 2.0 (Draft 57) 755

14 System and Options RTSJModule

MEMORY

public static final MEMORY

Description

Indicates the presence of the alternative memory areas module.

POSIX

public static final POSIX

Description

Indicates the presence of the POSIX module.

SCJ

public static final SCJ

Description

Indicates the presence of the Safety-Critical Java module.

14.2.1.1.2 Methods

values

Signature
public static javax.realtime.RTSJModule[]
values()

Description

Gets all enumeration constants.

756 RTSJ 2.0 (Draft 57)

RTSJModule javax.realtime 14.2

valueOf(String)

Signature
public static javax.realtime.RTSJModule
valueOf(String name)

Description

Gets enumeration constants corresponding to name.

value

Signature
public int
value()

Description

Determines the numeric value of an element of this enumeration. This value can
be used in bit sets to determine the presence of the given element.

Returns
a number with a single bit set representing this element.

in(int)

Signature
public boolean
in(int value)

Description

Given an int representing a set of enumeration elements via bit value, sees whether
or not this element is contained within that set.

Parameters
value—The set to test against.

Returns
true when and only when value has the bit set that represents this.

RTSJ 2.0 (Draft 57) 757

14 System and Options AffinityPermission

14.2.2 Classes
14.2.2.1 AffinityPermission

public class AffinityPermission

Inheritance
java.lang.Object
java.security.Permission
RealtimePermission
AffinityPermission

Description
The core module provides a permission for the security manager to administer
CPU affinities. The following table describes the actions to check. Each permission
can be limited to the current ThreadGroup by specifying the target group or it
can apply to all, either with no target or through the target *.

Action Name Description Risks of grant
control Changes the affinity of

a task
CPU Assignment Risk

monitor One could change the
event used to monitor
adding or removing a
processor.

Lost Events Risk

The risk classes are defined in RealtimePermission.

Available since RTSJ 2.0

14.2.2.1.1 Constructors

AffinityPermission(String, String)

Signature

758 RTSJ 2.0 (Draft 57)

AffinityPermission javax.realtime 14.2

public
AffinityPermission(String target,

String actions)

Description
Creates a new AffinityPermission object for a given action, i.e., the symbolic
name of an action. The target string specifies additional limitations on the
action.

Parameters
target—Specifies the domain for the action, or * for no limit on the permission.
actions—The names of the actions to allow, or * for all actions.

Throws
NullPointerException—when action is null.
IllegalArgumentException—when target or action is empty.

14.2.2.1.2 Methods

equals(Object)

Signature
public boolean
equals(Object other)

Description
Compare two Permission objects for equality.

Parameters
other—is the object with which to compare.

Returns
true when yes and false otherwise.

getActions

Signature
public java.lang.String
getActions()

RTSJ 2.0 (Draft 57) 759

14 System and Options CoreMemoryPermission

Description
Obtain the actions as a String in canonical form.

Returns
the actions represented as a string.

hashCode

Signature
public int
hashCode()

Description
Obtain the hash code value for this object.

Returns
the has code value.

implies(Permission)

Signature
public boolean
implies(Permission permission)

Description
Checks if the given permission’s actions are "implied by" this object’s actions.
This method is used by the AccessController to determine whether or not a
requested permission is implied by another permission that is known to be valid
in the current execution context.

Parameters
permission—is the permission to check.

Returns
true when yes and false otherwise.

14.2.2.2 CoreMemoryPermission

public class CoreMemoryPermission
Inheritance

760 RTSJ 2.0 (Draft 57)

CoreMemoryPermission javax.realtime 14.2

java.lang.Object
java.security.Permission
RealtimePermission
CoreMemoryPermission

Description
Memory permission are divided into those for the core module and those for the
memory module. The following table describes the actions to check for the core
module. The name of a primordial memory area type can be given.

Action Name Description Risks of grant
enter Allows execution in a

given area.
Memory Leak Risk

allocate Allows the creation of
an object in Immortal
without entering it.

Can cause a Memory
Leak Risk

The wildcard *, or no target, allows access to primordial memory area. The
risk classes are defined in RealtimePermission.

Available since RTSJ 2.0

14.2.2.2.1 Constructors

CoreMemoryPermission(String)

Signature
public
CoreMemoryPermission(String actions)

Description
Creates a new CoreMemoryPermission object for a given action, i.e., the symbolic
name of an action.

Parameters
actions—The names of the actions to allow, or * for all actions.

Throws

RTSJ 2.0 (Draft 57) 761

14 System and Options CoreMemoryPermission

NullPointerException—when action is null.
IllegalArgumentException—when action is empty.

CoreMemoryPermission(String, String)

Signature
public
CoreMemoryPermission(String target,

String actions)

Description
Creates a new CoreMemoryPermission object for a given action, i.e., the symbolic
name of an action.

Parameters
target—The names of the memory area class for the action, or * for all memory

areas.
actions—The names of the actions to allow, or * for all actions.

Throws
NullPointerException—when action is null.
IllegalArgumentException—when action is empty.

14.2.2.2.2 Methods

equals(Object)

Signature
public boolean
equals(Object other)

Description
Compare two Permission objects for equality.

Parameters
other—is the object with which to compare.

Returns
true when yes and false otherwise.

762 RTSJ 2.0 (Draft 57)

CoreMemoryPermission javax.realtime 14.2

getActions

Signature
public java.lang.String
getActions()

Description
Obtain the actions as a String in canonical form.

Returns
the actions represented as a string.

hashCode

Signature
public int
hashCode()

Description
Obtain the hash code value for this object.

Returns
the has code value.

implies(Permission)

Signature
public boolean
implies(Permission permission)

Description
Checks if the given permission’s actions are "implied by" this object’s actions.
This method is used by the AccessController to determine whether or not a
requested permission is implied by another permission that is known to be valid
in the current execution context.

Parameters
permission—is the permission to check.

Returns
true when yes and false otherwise.

RTSJ 2.0 (Draft 57) 763

14 System and Options GarbageCollector

14.2.2.3 GarbageCollector

public abstract class GarbageCollector

Inheritance
java.lang.Object
GarbageCollector

Description
The system shall provide dynamic and static information characterizing the
temporal behavior and imposed overhead of any garbage collection algorithm
provided by the implementation. This information shall be made available to
applications via methods on subclasses of GarbageCollector. Implementations
are allowed to provide any set of methods in subclasses as long as the temporal
behavior and overhead are sufficiently categorized. The implementations are also
required to fully document the subclasses.

A reference to the garbage collector responsible for heap memory is available
from RealtimeSystem.currentGC().

14.2.2.3.1 Methods

getPreemptionLatency

Signature
public abstract javax.realtime.RelativeTime
getPreemptionLatency()

Description
Preemption latency is a measure of the maximum time a schedulable object may
have to wait for the collector to reach a preemption-safe point.

Schedulables which may not use the heap preempt garbage collection immedi-
ately, but other schedulables must wait until the collector reaches a preemption-
safe point. For many garbage collectors the only preemption-safe point is at
the end of garbage collection, but an implementation of the garbage collector
could permit a schedulable to preempt garbage collection before it completes.
The getPreemptionLatency method gives such a garbage collector a way to
report the worst-case interval between the release of a schedulable during garbage

764 RTSJ 2.0 (Draft 57)

RealtimePermission javax.realtime 14.2

collection, and the time the schedulable starts execution or gains full access to
heap memory, whichever comes later.

Returns

the worst-case preemption latency of the garbage collection algorithm represented
by this. The returned object is allocated in the current allocation context.
When there is no constant that bounds garbage collector preemption latency,
this method shall return a relative time with Long.MAX_VALUE milliseconds.
The number of nanoseconds in this special value is unspecified.

14.2.2.4 RealtimePermission

public abstract class RealtimePermission

Inheritance

java.lang.Object
java.security.Permission
RealtimePermission

Description

All permission classes in the RTSJ inherit from this class. The following table
lists common risk classes that correspond to granting specific permissions.

RTSJ 2.0 (Draft 57) 765

14 System and Options RealtimePermission

Risk Class Description
CPU Assignment Risk Interferes with critical tasks by as-

signing too many other tasks to
the same CPU.

External Risk Could adversely effect other pro-
cesses on the system.

Interference Risk Could interfere with the function
of other parts of the system.

Load Risk Could increase the load on the sys-
tem.

Lost Events Risk Another task could no longer re-
ceive the expected events.

Memory Leak Risk Could cause memory to be lost to
the system.

Scheduling Risk Interferes with the timeliness of
other parts of the system.

Device Range Risk Could specify memory outside the
desired Device range.

Device Map Risk Could map too much or too little
Device memory.

DMA Range Risk Could specify memory outside the
desired DMA range.

DMA Map Risk Could map too much or too little
DMA memory for DMA.

Physical Range Risk Could specify memory outside the
desired Physical range.

Pysical Map Risk Could take too much memory.

Available since RTSJ 2.0

14.2.2.4.1 Constructors

RealtimePermission(String)

Signature

766 RTSJ 2.0 (Draft 57)

RealtimePermission javax.realtime 14.2

protected
RealtimePermission(String action)

Description

Creates a new RealtimePermission object for a given action, i.e., the symbolic
name of an action. The target string specifies additional limitations on the
action.

Parameters
action—The names of the actions to allow, or * for all actions.

Throws
NullPointerException—when action is null.
IllegalArgumentException—when action is empty.

RealtimePermission(String, String)

Signature
protected
RealtimePermission(String target,

String actions)

Description

Creates a new RealtimePermission object for a given action, i.e., the symbolic
name of an action. The target string specifies additional limitations on the
action.

Parameters
target—Specifies the domain for the action, or * for no limit on the permission.
actions—The names of the actions to allow, or * for all actions.

Throws
NullPointerException—when action is null.
IllegalArgumentException—when target or action is empty.

14.2.2.4.2 Methods

RTSJ 2.0 (Draft 57) 767

14 System and Options RealtimePermission

equals(Object)

Signature
public abstract boolean
equals(Object other)

Description
Compare two Permission objects for equality.

Parameters
other—is the object with which to compare.

Returns
true when yes and false otherwise.

getActions

Signature
public abstract java.lang.String
getActions()

Description
Obtain the actions as a String in canonical form.

Returns
the actions represented as a string.

hashCode

Signature
public abstract int
hashCode()

Description
Obtain the hash code value for this object.

Returns
the has code value.

768 RTSJ 2.0 (Draft 57)

RealtimeSystem javax.realtime 14.2

implies(Permission)

Signature
public abstract boolean
implies(Permission permission)

Description
Checks if the given permission’s actions are "implied by" this object’s actions.
This method is used by the AccessController to determine whether or not a
requested permission is implied by another permission that is known to be valid
in the current execution context.

Parameters
permission—is the permission to check.

Returns
true when yes and false otherwise.

14.2.2.5 RealtimeSystem

public class RealtimeSystem
Inheritance
java.lang.Object
RealtimeSystem

Description
RealtimeSystem provides a means for tuning the behavior of the implementation
by specifying parameters such as the maximum number of locks that can be in
use concurrently, and the monitor control policy. In addition, RealtimeSystem
provides a mechanism for obtaining access to the security manager, garbage
collector, and scheduler, to query or set parameters.

14.2.2.5.1 Fields

BIG_ENDIAN

public static final BIG_ENDIAN

RTSJ 2.0 (Draft 57) 769

14 System and Options RealtimeSystem

Description
Value indicating that the highest order byte of a bit word is stored at the lowest
byte address: the int 0x0A0B0C0D is stored in the byte sequence 0x0A, 0x0B,
0x0C, 0x0D. and the long 0x0102030405060708 is stored in the sequence 0x01,
0x02, 0x03, 0x04, 0x05, 0x06, 0x07, 0x08.

LITTLE_ENDIAN

public static final LITTLE_ENDIAN

Description
Value indicating that the lowest order byte of a word is stored at the lowest byte
address: the int 0x0A0B0C0D is stored in the byte sequence 0x0D, 0x0C, 0x0B,
0x0A and the long 0x0102030405060708 is stored in the sequence 0x08, 0x07,
0x06, 0x05, 0x04, 0x03, 0x02, 0x01.

PDP_ENDIAN

public static final PDP_ENDIAN

Description
Value indicating a mixed endian mode used by among others the PDP-11: the
int 0x0A0B0C0D is stored in the byte sequence 0x0B, 0x0A, 0x0D, 0x0C, and
the long 0x0102030405060708 is stored in the sequence 0x03, 0x04, 0x01, 0x02,
0x07, 0x08, 0x05, 0x06.

Available since RTSJ 2.0

CROSS_ENDIAN

public static final CROSS_ENDIAN

Description
Value indicating a mixed endian mode: the int 0x0A0B0C0D is stored in the byte
sequence 0x0D, 0x0C, 0x0B, 0x0A, and the long 0x0102030405060708 is stored
in the sequence 0x05, 0x06, 0x07, 0x08, 0x01, 0x02, 0x03, 0x04.

Available since RTSJ 2.0

770 RTSJ 2.0 (Draft 57)

RealtimeSystem javax.realtime 14.2

BYTE_ORDER

public static final BYTE_ORDER

Description
The byte ordering of the underlying hardware.

Deprecated RTSJ 2.0

14.2.2.5.2 Methods

getByteOrder

Signature
public static byte
getByteOrder()

Description
Obtains the byte order of the byte order of the system.

Returns
one of the defined byte order constants.

currentGC

Signature
public static javax.realtime.GarbageCollector
currentGC()

Description
Returns a reference to the currently active garbage collector for the heap.

Returns
a GarbageCollector object which is the current collector collecting objects on the

conventional Java heap.

RTSJ 2.0 (Draft 57) 771

14 System and Options RealtimeSystem

getConcurrentLocksUsed

Signature
public static int
getConcurrentLocksUsed()

Description

Gets the maximum number of locks that have been used concurrently. This value
can be used for tuning the concurrent locks parameter, which is used as a hint by
systems that use a monitor cache.

Returns
an integer, whose value is the maximum number of locks that have been used

concurrently. When the number of concurrent locks is not tracked by the
implementation, returns -1. Note that when the number of concurrent locks is
not tracked, the number of available concurrent locks is effectively unlimited.

getMaximumConcurrentLocks

Signature
public static int
getMaximumConcurrentLocks()

Description

Gets the maximum number of locks that can be used concurrently without
incurring an execution time increase as set by the setMaximumConcurrentLocks()
methods.

Note that any relationship between this method and setMaximumConcurrent-
Locks is implementation-specific. This method returns the actual maximum num-
ber of concurrent locks the platform can currently support, or Integer.MAX_VALUE
when there is no maximum. The setMaximumConcurrentLocks method gives the
implementation a hint as to the maximum number of concurrent locks it should
expect.

Returns
an integer, whose value is the maximum number of locks that can be in simultaneous

use.

772 RTSJ 2.0 (Draft 57)

RealtimeSystem javax.realtime 14.2

setMaximumConcurrentLocks(int)

Signature
public static void
setMaximumConcurrentLocks(int numLocks)

Description

Sets the anticipated maximum number of locks that may be held or waited on
concurrently. Provides a hint to systems that use a monitor cache as to how
much space to dedicate to the cache.

Parameters
numLocks—An integer, whose value becomes the number of locks that can be in

simultaneous use without incurring an execution time increase. When number
is less than or equal to zero nothing happens. When the system does not
use this hint this method has no effect other than on the value returned by
getMaximumConcurrentLocks().

setMaximumConcurrentLocks(int, boolean)

Signature
public static void
setMaximumConcurrentLocks(int number,

boolean hard)

Description

Sets the anticipated maximum number of locks that may be held or waited on
concurrently. Provides a limit for the size of the monitor cache on systems that
provide one when hard is true.

Parameters
number—The maximum number of locks that can be in simultaneous use without

incurring an execution time increase. When number is less than or equal to
zero nothing happens. When the system does not use this hint this method has
no effect other than on the value returned by getMaximumConcurrentLocks().

hard—When true, number sets a limit. When a lock is attempted which would
cause the number of locks to exceed number then a ResourceLimitError is
thrown. When the system does not limit use of concurrent locks, this parameter
is silently ignored.

RTSJ 2.0 (Draft 57) 773

14 System and Options RealtimeSystem

setSecurityManager(RealtimeSecurity)

Signature
public static void
setSecurityManager(RealtimeSecurity manager)

Description
Sets a new realtime security manager.

Parameters
manager—A RealtimeSecurity object which will become the new security man-

ager.
Throws

SecurityException—when security manager has already been set.

getInitialMonitorControl

Signature
public static javax.realtime.MonitorControl
getInitialMonitorControl()

Description
Returns the monitor control object that represents the initial monitor control
policy.

Returns
the initial monitor control policy.
Available since RTSJ 1.0.1

supports(RTSJModule)

Signature
public static boolean
supports(RTSJModule module)

Description
Determines whether or not a particular module is supported.

Parameters

774 RTSJ 2.0 (Draft 57)

RealtimeSystem javax.realtime 14.2

module—The identifier of the module to be checked for support.
Returns
true when module is supported; otherwise false.
Available since RTSJ 2.0

modules

Signature
public static int
modules()

Description
The set of modules supported.

Returns
an integer representing all the modules supported.
Available since RTSJ 2.0

hasUniversalClock

Signature
public static boolean
hasUniversalClock()

Description
Determines whether or not this system supports a universal time clock.

Returns
true when the system can provide a universal time clock.

canEnforceCost

Signature
public static boolean
canEnforceCost()

Description

RTSJ 2.0 (Draft 57) 775

14 System and Options RealtimeSystem

Determines whether or not hard cost enforcement is supported.

Returns
true when cost enforcement is supported; otherwise false.

Available since RTSJ 2.0

canEnforceAllocationRate

Signature
public static boolean
canEnforceAllocationRate()

Description
Determines whether or not allocation rate enforcement is supported.

Returns
true when allocation rate enforcement is supported, otherwise false.

Available since RTSJ 2.0

setDefaultConfiguration(ConfigurationParameters)

Signature
public static void
setDefaultConfiguration(ConfigurationParameters parameters)

Description
Sets the default configuration used to by tasks that are not explicitly provided
with one.

Parameters
parameters—contains the new default configuration.
Available since RTSJ 2.0

getDefaultConfiguration

Signature

776 RTSJ 2.0 (Draft 57)

SchedulingPermission javax.realtime 14.2

public static javax.realtime.ConfigurationParameters
getDefaultConfiguration()

Description

Determines the current configurations used by tasks that are not explicitly
provided with one.

Returns
the current configurations.

Available since RTSJ 2.0

14.2.2.6 SchedulingPermission

public class SchedulingPermission

Inheritance
java.lang.Object
java.security.Permission
RealtimePermission
SchedulingPermission

Description

Scheduling has its own security permission that covers APIs in Scheduler,
SchedulingGroup, and ProcessingGroup. The following table describes the
actions to check. Either the permission is limited to the current ThreadGroup by
specifying the target group or it can apply to all, either with no target or the
target *.

RTSJ 2.0 (Draft 57) 777

14 System and Options SchedulingPermission

Action Name Description Risks of grant
system Changes system wide

behavior, such as how
scheduling is done.

Scheduling Risk

control Changes someone
else’s scheduling limits
or raises your own
limits.

Scheduling Risk

monitor Adds overrun and
underrun handlers to
someone else’s group.

Load Risk

tune Changes task schedul-
ing.

Scheduling Risk

The wildcard * is allowed for both signal and action. The risk classes are
defined in RealtimePermission.

Available since RTSJ 2.0

14.2.2.6.1 Constructors

SchedulingPermission(String, String)

Signature
public
SchedulingPermission(String target,

String actions)

Description
Creates a new SchedulingPermission object for a given action, i.e., the symbolic
name of an action. The target string specifies additional limitations on the
action.

Parameters
target—Specifies the domain for the action, or * for no limit on the permission.
actions—The names of the actions to allow, or * for all actions.

778 RTSJ 2.0 (Draft 57)

SchedulingPermission javax.realtime 14.2

Throws
NullPointerException—when action is null.
IllegalArgumentException—when target or action is empty.

SchedulingPermission(String)

Signature
public
SchedulingPermission(String actions)

Description
Creates a new SchedulingPermission object for a given action, i.e., the symbolic
name of an action.

Parameters
actions—The names of the actions to allow, or * for all actions.

Throws
NullPointerException—when action is null.
IllegalArgumentException—when action is empty.

14.2.2.6.2 Methods

equals(Object)

Signature
public boolean
equals(Object other)

Description
Compare two Permission objects for equality.

Parameters
other—is the object with which to compare.

Returns
true when yes and false otherwise.

RTSJ 2.0 (Draft 57) 779

14 System and Options SchedulingPermission

getActions

Signature
public java.lang.String
getActions()

Description
Obtain the actions as a String in canonical form.

Returns
the actions represented as a string.

hashCode

Signature
public int
hashCode()

Description
Obtain the hash code value for this object.

Returns
the has code value.

implies(Permission)

Signature
public boolean
implies(Permission permission)

Description
Checks if the given permission’s actions are "implied by" this object’s actions.
This method is used by the AccessController to determine whether or not a
requested permission is implied by another permission that is known to be valid
in the current execution context.

Parameters
permission—is the permission to check.

Returns
true when yes and false otherwise.

780 RTSJ 2.0 (Draft 57)

TaskPermission javax.realtime 14.2

14.2.2.7 TaskPermission

public class TaskPermission

Inheritance
java.lang.Object
java.security.Permission
RealtimePermission
TaskPermission

Description

Task permissions are for controlling threads and handlers, as well as creating
clocks. The following table describes the actions to check. For all but create,
which takes no target, either the permission is limited to the current ThreadGroup
by specifying the target group, or it can apply to all with no target or the target
*.

Action Name Description Risks of grant
control Enables controlling the

activity of a task.
Scheduling Risk

create Enables new thread,
timers, and tasks to be
created.

Scheduling Risk

handle Adds handler to an
asynchronous event.

Load Risk

override Interference Risk.
system Changes system wide

tasking behavior.
Load and Scheduling
Risk

The risk classes are defined in RealtimePermission.

Available since RTSJ 2.0

14.2.2.7.1 Constructors

RTSJ 2.0 (Draft 57) 781

14 System and Options TaskPermission

TaskPermission(String, String)

Signature
public
TaskPermission(String target,

String actions)

Description
Creates a new TaskPermission object for a given action, i.e., the symbolic name
of an action. The target string specifies additional limitations on the action.

Parameters
target—Specifies the domain for the action, or * for no limit on the permission.
actions—The names of the actions to allow, or * for all actions.

Throws
NullPointerException—when action is null.
IllegalArgumentException—when target or action is empty.

TaskPermission(String)

Signature
public
TaskPermission(String actions)

Description
Creates a new TaskPermission object for a given action, i.e., the symbolic name
of an action.

Parameters
actions—The names of the actions to allow, or * for all actions.

Throws
NullPointerException—when action is null.
IllegalArgumentException—when action is empty.

14.2.2.7.2 Methods

782 RTSJ 2.0 (Draft 57)

TaskPermission javax.realtime 14.2

equals(Object)

Signature
public boolean
equals(Object other)

Description
Compare two Permission objects for equality.

Parameters
other—is the object with which to compare.

Returns
true when yes and false otherwise.

getActions

Signature
public java.lang.String
getActions()

Description
Obtain the actions as a String in canonical form.

Returns
the actions represented as a string.

hashCode

Signature
public int
hashCode()

Description
Obtain the hash code value for this object.

Returns
the has code value.

RTSJ 2.0 (Draft 57) 783

14 System and Options TaskPermission

implies(Permission)

Signature
public boolean
implies(Permission permission)

Description
Checks if the given permission’s actions are "implied by" this object’s actions.
This method is used by the AccessController to determine whether or not a
requested permission is implied by another permission that is known to be valid
in the current execution context.

Parameters
permission—is the permission to check.

Returns
true when yes and false otherwise.

784 RTSJ 2.0 (Draft 57)

DirectMemoryPermission javax.realtime.device 14.3

14.3 javax.realtime.device

14.3.1 Classes
14.3.1.1 DirectMemoryPermission

public class DirectMemoryPermission
Inheritance
java.lang.Object
java.security.Permission
javax.realtime.RealtimePermission
DirectMemoryPermission

Description
The device management module provides a permission for the security manager
to control access to DMA memory. The following table describes the actions to
check. An address range can be given as the target or * for any legal address
range.

Action Name Description Risks of grant
define Defines a DMA ad-

dress range for use by
raw memory.

DMA Range Risk

map Maps a DMA address
range for use by a
DMA object.

DMA Mapping risk

The risk classes are defined in javax.realtime.RealtimePermission.

Available since RTSJ 2.0

14.3.1.1.1 Constructors

DirectMemoryPermission(String, String)

Signature

RTSJ 2.0 (Draft 57) 785

14 System and Options DirectMemoryPermission

public
DirectMemoryPermission(String target,

String actions)

Description
Creates a new DirectMemoryPermission object for a given action, i.e., the
symbolic name of an action. The target string specifies additional limitations
on the action.

Parameters
target—Specifies the domain for the action, or * for no limit on the permission.
actions—The names of the actions to allow, or * for all actions.

Throws
NullPointerException—when action is null.
IllegalArgumentException—when target or action is empty.

14.3.1.1.2 Methods

equals(Object)

Signature
public boolean
equals(Object other)

Description
Compare two Permission objects for equality.

Parameters
other—is the object with which to compare.

Returns
true when yes and false otherwise.

getActions

Signature
public java.lang.String
getActions()

786 RTSJ 2.0 (Draft 57)

HappeningPermission javax.realtime.device 14.3

Description
Obtain the actions as a String in canonical form.

Returns
the actions represented as a string.

hashCode

Signature
public int
hashCode()

Description
Obtain the hash code value for this object.

Returns
the has code value.

implies(Permission)

Signature
public boolean
implies(Permission permission)

Description
Checks if the given permission’s actions are "implied by" this object’s actions.
This method is used by the AccessController to determine whether or not a
requested permission is implied by another permission that is known to be valid
in the current execution context.

Parameters
permission—is the permission to check.

Returns
true when yes and false otherwise.

14.3.1.2 HappeningPermission

public class HappeningPermission
Inheritance

RTSJ 2.0 (Draft 57) 787

14 System and Options HappeningPermission

java.lang.Object
java.security.Permission
javax.realtime.RealtimePermission
HappeningPermission

Description
The device management module provides a permission for the security manager
to control happenings. The following table describes the actions to check. For all
but create, which takes no arguments, either the permission is limited to the
current ThreadGroup by specifying the target group or it can apply to all, either
with no target or with the target *.

Action Name Description Risks of grant
create Enables new thread,

timers, and tasks to be
created.

Scheduling Risk

handle Allows adding a han-
dler to a Happening.

Load Risk

override Enables handlers to be
removed.

Interference Risk

system Changes system’s wide
happening behavior.

Scheduling and Load
Risk

The risk classes are defined in javax.realtime.RealtimePermission.

Available since RTSJ 2.0

14.3.1.2.1 Constructors

HappeningPermission(String, String)

Signature
public
HappeningPermission(String target,

String actions)

Description

788 RTSJ 2.0 (Draft 57)

HappeningPermission javax.realtime.device 14.3

Creates a new HappeningPermission object for a given action, i.e., the symbolic
name of an action. The target string specifies additional limitations on the
action.

Parameters
target—Specifies the domain for the action, or * for no limit on the permission.
actions—The names of the actions to allow, or * for all actions.

Throws
NullPointerException—when action is null.
IllegalArgumentException—when target or action is empty.

HappeningPermission(String)

Signature
public
HappeningPermission(String actions)

Description
Creates a new HappeningPermission object for a given action, i.e., the symbolic
name of an action.

Parameters
actions—The names of the actions to allow, or * for all actions.

Throws
NullPointerException—when action is null.
IllegalArgumentException—when action is empty.

14.3.1.2.2 Methods

equals(Object)

Signature
public boolean
equals(Object other)

Description

RTSJ 2.0 (Draft 57) 789

14 System and Options HappeningPermission

Compare two Permission objects for equality.

Parameters
other—is the object with which to compare.

Returns
true when yes and false otherwise.

getActions

Signature
public java.lang.String
getActions()

Description
Obtain the actions as a String in canonical form.

Returns
the actions represented as a string.

hashCode

Signature
public int
hashCode()

Description
Obtain the hash code value for this object.

Returns
the has code value.

implies(Permission)

Signature
public boolean
implies(Permission permission)

Description

790 RTSJ 2.0 (Draft 57)

RawMemoryPermission javax.realtime.device 14.3

Checks if the given permission’s actions are "implied by" this object’s actions.
This method is used by the AccessController to determine whether or not a
requested permission is implied by another permission that is known to be valid
in the current execution context.

Parameters
permission—is the permission to check.

Returns
true when yes and false otherwise.

14.3.1.3 RawMemoryPermission

public class RawMemoryPermission
Inheritance
java.lang.Object
java.security.Permission
javax.realtime.RealtimePermission
RawMemoryPermission

Description
The device management module provides a permission for the security manager
to manage raw memory. The following table describes the actions to check. An
address range can be given as the target or * for any.

Action Name Description Risks of grant
define Defines a device ad-

dress range for use by
raw memory.

Device Range Risk

map Maps a given amount
of raw memory into a
raw memory object.

Device Map Risk

The risk classes are defined in javax.realtime.RealtimePermission.

Available since RTSJ 2.0

14.3.1.3.1 Constructors

RTSJ 2.0 (Draft 57) 791

14 System and Options RawMemoryPermission

RawMemoryPermission(String, String)

Signature
public
RawMemoryPermission(String target,

String actions)
throws NullPointerException,

IllegalArgumentException

Description
Creates a new RawMemoryPermission object for a given action, i.e., the symbolic
name of an action. The target string specifies additional limitations on the
action.

Parameters
target—Specifies the domain for the action, or * for no limit on the permission.
actions—The names of the actions to allow, or * for all actions.

Throws
NullPointerException—when action is null.
IllegalArgumentException—when target or action is empty.

RawMemoryPermission(String)

Signature
public
RawMemoryPermission(String actions)
throws NullPointerException,

IllegalArgumentException

Description
Creates a new RawMemoryPermission object for a given action, i.e., the symbolic
name of an action.

Parameters
actions—The names of the actions to allow, or * for all actions.

Throws
NullPointerException—when action is null.
IllegalArgumentException—when action is empty.

792 RTSJ 2.0 (Draft 57)

RawMemoryPermission javax.realtime.device 14.3

14.3.1.3.2 Methods

equals(Object)

Signature
public boolean
equals(Object other)

Description
Compare two Permission objects for equality.

Parameters
other—is the object with which to compare.

Returns
true when yes and false otherwise.

getActions

Signature
public java.lang.String
getActions()

Description
Obtain the actions as a String in canonical form.

Returns
the actions represented as a string.

hashCode

Signature
public int
hashCode()

Description
Obtain the hash code value for this object.

Returns
the has code value.

RTSJ 2.0 (Draft 57) 793

14 System and Options RawMemoryPermission

implies(Permission)

Signature
public boolean
implies(Permission permission)

Description
Checks if the given permission’s actions are "implied by" this object’s actions.
This method is used by the AccessController to determine whether or not a
requested permission is implied by another permission that is known to be valid
in the current execution context.

Parameters
permission—is the permission to check.

Returns
true when yes and false otherwise.

794 RTSJ 2.0 (Draft 57)

PhysicalMemoryPermission javax.realtime.memory 14.4

14.4 javax.realtime.memory

14.4.1 Classes
14.4.1.1 PhysicalMemoryPermission

public class PhysicalMemoryPermission
Inheritance
java.lang.Object
java.security.Permission
javax.realtime.RealtimePermission
PhysicalMemoryPermission

Description
The alternate memory management module provides two permissions for the
security manager to use. The following table describes the actions for checking
the use of physical memory. An address range can be given as the target or * for
any.

Action Name Description Risks of grant
define Defines a physical ad-

dress range for use by
physical memory.

Physical Range Risk

map Maps physical memory
backing store for creat-
ing a memory area.

Physical Map Risk

The risk classes are defined in javax.realtime.RealtimePermission.

Available since RTSJ 2.0

14.4.1.1.1 Constructors

PhysicalMemoryPermission(String, String)

Signature

RTSJ 2.0 (Draft 57) 795

14 System and Options PhysicalMemoryPermission

public
PhysicalMemoryPermission(String target,

String actions)

Description
Creates a new DirectMemoryPermission object for a given action, i.e., the
symbolic name of an action. The target string specifies additional limitations
on the action.

Parameters
target—Specifies the domain for the action, or * for no limit on the permission.
actions—The names of the actions to allow, or * for all actions.

Throws
NullPointerException—when action is null.
IllegalArgumentException—when target or action is empty.

14.4.1.1.2 Methods

equals(Object)

Signature
public boolean
equals(Object other)

Description
Compare two Permission objects for equality.

Parameters
other—is the object with which to compare.

Returns
true when yes and false otherwise.

getActions

Signature
public java.lang.String
getActions()

796 RTSJ 2.0 (Draft 57)

ScopedMemoryPermission javax.realtime.memory 14.4

Description
Obtain the actions as a String in canonical form.

Returns
the actions represented as a string.

hashCode

Signature
public int
hashCode()

Description
Obtain the hash code value for this object.

Returns
the has code value.

implies(Permission)

Signature
public boolean
implies(Permission permission)

Description
Checks if the given permission’s actions are "implied by" this object’s actions.
This method is used by the AccessController to determine whether or not a
requested permission is implied by another permission that is known to be valid
in the current execution context.

Parameters
permission—is the permission to check.

Returns
true when yes and false otherwise.

14.4.1.2 ScopedMemoryPermission

public class ScopedMemoryPermission
Inheritance

RTSJ 2.0 (Draft 57) 797

14 System and Options ScopedMemoryPermission

java.lang.Object
java.security.Permission
javax.realtime.RealtimePermission
ScopedMemoryPermission

Description
The alternate memory management module provides two permissions for the
security manager to use. The following table describes the actions for checking
the use of scoped memory. A signal name can be given as the target. The name
of a scoped memory area type can be given for enter and a maximum amount of
backing store can be used for global backing store.

Action Name Description Risks of grant
map Uses a given amount

of the global backing
store.

Physical Map Risk

enter Enters a scoped mem-
ory

Memory Risk

The wildcard * or no target allows access to any scoped memory area or
any amount of backing store. The risk classes are defined in javax.realtime.
RealtimePermission.

Available since RTSJ 2.0

14.4.1.2.1 Constructors

ScopedMemoryPermission(String, String)

Signature
public
ScopedMemoryPermission(String target,

String actions)

Description

798 RTSJ 2.0 (Draft 57)

ScopedMemoryPermission javax.realtime.memory 14.4

Creates a new DirectMemoryPermission object for a given action, i.e., the
symbolic name of an action. The target string specifies additional limitations
on the action.

Parameters
target—Specifies the domain for the action, or * for no limit on the permission.
actions—The names of the actions to allow, or * for all actions.

Throws
NullPointerException—when action is null.
IllegalArgumentException—when target or action is empty.

14.4.1.2.2 Methods

equals(Object)

Signature
public boolean
equals(Object other)

Description
Compare two Permission objects for equality.

Parameters
other—is the object with which to compare.

Returns
true when yes and false otherwise.

getActions

Signature
public java.lang.String
getActions()

Description
Obtain the actions as a String in canonical form.

Returns
the actions represented as a string.

RTSJ 2.0 (Draft 57) 799

14 System and Options ScopedMemoryPermission

hashCode

Signature
public int
hashCode()

Description
Obtain the hash code value for this object.

Returns
the has code value.

implies(Permission)

Signature
public boolean
implies(Permission permission)

Description
Checks if the given permission’s actions are "implied by" this object’s actions.
This method is used by the AccessController to determine whether or not a
requested permission is implied by another permission that is known to be valid
in the current execution context.

Parameters
permission—is the permission to check.

Returns
true when yes and false otherwise.

800 RTSJ 2.0 (Draft 57)

POSIXPermission javax.realtime.posix 14.5

14.5 javax.realtime.posix

14.5.1 Classes
14.5.1.1 POSIXPermission

public class POSIXPermission
Inheritance
java.lang.Object
java.security.Permission
javax.realtime.RealtimePermission
POSIXPermission

Description
The POSIX module provides one permission class for the security manager to use.
This permission applies to both Signal and RealtimeSignal. The following
table describes the actions for checking the use of signals. A signal name or *
can be given as the target.

Action Name Description Risks of grant
handle Adds a handle to the

given signal.
Load Risk

override Removes a handler
that belongs to another
scheduling group.

Interference Risk

send Sends a given signal. External Risk
control Starts or stops this sig-

nal.
Scheduling Risk

system Changes system’s wide
signalling behavior.

Scheduling and Load
Risk

The wildcard * is allowed for both signal and action. The risk classes are
defined in javax.realtime.RealtimePermission.

Available since RTSJ 2.0

14.5.1.1.1 Constructors

RTSJ 2.0 (Draft 57) 801

14 System and Options POSIXPermission

POSIXPermission(String, String)

Signature
public
POSIXPermission(String target,

String actions)

Description
Creates a new POSIXPermission object for a given action, i.e., the symbolic
name of an action. The target string specifies for which POSIX signal the action
applies.

Parameters
target—Specifies the domain for the action, or * for no limit on the permission.
actions—The names of the actions to allow, or * for all actions.

Throws
NullPointerException—when action is null.
IllegalArgumentException—when target or action is empty.

POSIXPermission(String)

Signature
public
POSIXPermission(String actions)

Description
Creates a new POSIXPermission object for a given action, i.e., the symbolic
name of an action.

Parameters
actions—The names of the actions to allow, or * for all actions.

Throws
NullPointerException—when action is null.
IllegalArgumentException—when action is empty.

14.5.1.1.2 Methods

802 RTSJ 2.0 (Draft 57)

POSIXPermission javax.realtime.posix 14.5

equals(Object)

Signature
public boolean
equals(Object other)

Description
Compare two Permission objects for equality.

Parameters
other—is the object with which to compare.

Returns
true when yes and false otherwise.

getActions

Signature
public java.lang.String
getActions()

Description
Obtain the actions as a String in canonical form.

Returns
the actions represented as a string.

hashCode

Signature
public int
hashCode()

Description
Obtain the hash code value for this object.

Returns
the has code value.

RTSJ 2.0 (Draft 57) 803

14 System and Options

implies(Permission)

Signature
public boolean
implies(Permission permission)

Description
Checks if the given permission’s actions are "implied by" this object’s actions.
This method is used by the AccessController to determine whether or not a
requested permission is implied by another permission that is known to be valid
in the current execution context.

Parameters
permission—is the permission to check.

Returns
true when yes and false otherwise.

14.6 Rationale
This specification accommodates the variation in underlying systems in a
number of ways. The RealtimeSystem class functions in similar capacity to
java.lang.System. Similarly, the RealtimeSecurity class functions corresponds
to java.lang.SecurityManager.

The concept of optionally required classes provides additional flexibility. Such
classes provide a commonality that can be relied upon by program logic that intends
to execute on implementations that support a given function, such as Signal and
RealtimeSignal encapsulate common functionality for POSIX compliant systems.

Finally, the GarbageCollector class provides some basic information about the
garbage collector, but this information is necessarily very limited. The specification
does not require a deterministic garbage collector, and even with such a collector,
the variation between collectors is quite large. For example, work-based collectors
do not have garbage collector threads, so many of the parameters for thread-based
collectors would not make sense for a work-based collector. Data that is easy to
collect with one type of collector can be quite costly to collect with another. For
this reason, collector information is provided via a factory method so that the return
class can be extended to provide additional, implementation-defined information.

804 RTSJ 2.0 (Draft 57)

Chapter 15

Exceptions

As with other Java specifications, the RTSJ uses exceptions and errors to signal con-
ditions that are abnormal, incorrect, or disallowed. In cases where these exceptional
and error conditions are substantially the same as those defined in conventional Java,
those exceptions and errors are used. They are taken primarily from the java.lang
package, but also a few from the java.lang.reflect and java.io packages as well.
In other cases, new exceptions are defined in the javax.realtime package. These
exception classes provide
• additional exception classes required for other sections of this specification,
• the ability to throw exceptions without allocating memory, and
• the ability to asynchronously transfer the control of program logic (see Asyn-

chronouslyInterruptedException).
The ability to throw exceptions without memory allocation is important for using

scoped and immortal memory; otherwise, throwing an exception would use too much
memory to be useful.

15.1 Semantics
Except for how information associated with a Throwable is stored and managed,
the semantics of the subclasses of Error, Exception, and RuntimeException are
the same as for all other Java throwables. All classes in this section are required.
Semantics that apply to particular classes, constructors, methods, and fields will be
found in the class description and the constructor, method, and field detail sections.

All exceptions defined in this section, as opposed to those that are standard
exceptions used without change by the specification, are statically allocated (and
implement the StaticThrowable interface). There is at most one instance of each
of these exceptions and errors, managed by the runtime. The message and stack
information they would normally carry is held in a thread-local data structure. This

805

15 Exceptions

means this information is only valid within the context of the thread that threw the
StaticThrowable, and there only until a new StaticThrowable is thrown.

The thread-local storage used by StaticThrowables is controlled by the Config-
urationParameters associated with the active task when the exception is thrown.
This may be the system default ConfigurationParameters (set on RealtimeSystem)
in the case of Java threads or a Schedulable for which no ConfigurationParame-
ters was provided, or it may be the ConfigurationParameters explicitly set for a
Schedulable.

Though the AsynchronouslyInterruptedException class defines an exception,
it provides additional functionality for supporting Asynchronous Transfer of Control
(ATC). This functionality is more closely related to asynchronous operation than to
exception handling. For this reason, it is not included in this chapter, but rather in
Chapter 8 on asynchrony.

806 RTSJ 2.0 (Draft 57)

StaticThrowable javax.realtime 15.2

15.2 javax.realtime

15.2.1 Interfaces

15.2.1.1 StaticThrowable

public interface StaticThrowable

Description

A marker interface to indicate that a Throwable is intended to be created once
and reused. Throwables that implement this interface keep their state in a
RealtimeThread local data structure instead of the object itself. This means
that data is only valid until the next StaticThrowable is thrown in the context
of the current thread. Instances of AsyncBaseEventHandler always have some
instance of RealtimeThread when executing. Having a marker interface makes
it easier to provide checking tools to ensure the proper throw sequence for all
Throwables thrown from application code.

Throwables which implement this interface should define a get() method
that returns the singleton Throwable of that class. It should also initialize the
stack backtrace. The message and cause should be cleared.

An application which throws a static exception should use the following
paradigm:

throw LateStartException.get().initMessage("....").initCause(...
);

The message must be initialized before the cause, because initMessage is
defined on StaticThrowable but not Throwable. Setting the message and the
cause are both optional.

Applications which define StaticThrowables should extend one of StaticEr-
ror, StaticCheckedException, or StaticRuntimeException

See Section ConfigurationParameters

Available since RTSJ 2.0

15.2.1.1.1 Methods

RTSJ 2.0 (Draft 57) 807

15 Exceptions StaticThrowable

initMessage(String)

Signature
public java.lang.Throwable
initMessage(String message)

Description
Sets the message in SO local storage. This is the only method not defined in
java.lang.Throwable.

Parameters
message—Text to be saved describing the exception’s cause.

Returns
this object.

Available since RTSJ 2.0 inherited by all static throwables

getMessage

Signature
public java.lang.String
getMessage()

Description
Gets the message describing the exception’s cause from SO’s local memory.

Returns
the message given to the constructor or null when no message was set.

getLocalizedMessage

Signature
public java.lang.String
getLocalizedMessage()

Description
Subclasses may override this message to get an error message that is localized to
the default locale.

By default it returns getMessage().

808 RTSJ 2.0 (Draft 57)

StaticThrowable javax.realtime 15.2

Returns
the value of getMessage().

initCause(Throwable)

Signature
public java.lang.Throwable
initCause(Throwable causingThrowable)

Description
Initializes the cause of this exception to the given Throwable in SO’s local
memory.

Parameters
causingThrowable—The reason why this Throwable gets thrown.

Throws
IllegalArgumentException—when the cause is this Throwable itself.

Returns
the reference to this Throwable.

getCause

Signature
public java.lang.Throwable
getCause()

Description
Gets the cause of this exception or null when no cause was set. The cause is
another exception that was caught before this exception was created.

Returns
the cause or null.

fillInStackTrace

Signature
public java.lang.Throwable
fillInStackTrace()

RTSJ 2.0 (Draft 57) 809

15 Exceptions StaticThrowable

Description
Calls into the virtual machine to capture the current stack trace in SO’s local
memory.

Returns
a reference to this Throwable.

setStackTrace(StackTraceElement)

Signature
public void
setStackTrace(java.lang.StackTraceElement[] new_stackTrace)
throws NullPointerException

Description
This method allows overriding the stack trace that was filled during construction
of this object. It is intended to be used in a serialization context when the stack
trace of a remote exception should be treated like a local.

Parameters
new_stackTrace—the stack trace to be used as replace.

Throws
NullPointerException—when new_stackTrace or any element of new_stackTrace

is null.

getStackTrace

Signature
public java.lang.StackTraceElement[]
getStackTrace()

Description
Gets the stack trace created by fillInStackTrace for this Throwable as an array
of StackTraceElements.

The stack trace does not need to contain entries for all methods that are
actually on the call stack, the virtual machine may decide to skip some stack
trace entries. Even an empty array is a valid result of this function.

Repeated calls of this function without intervening calls to fillInStackTrace
will return the same result.

810 RTSJ 2.0 (Draft 57)

StaticThrowable javax.realtime 15.2

When memory areas of the RTSJ are used (see MemoryArea), and this Throw-
able was allocated in a different memory area than the current allocation context,
the resulting stack trace will be allocated in either the same memory area this
was allocated in or the current memory area, depending on which is the least
deeply nested, thereby creating objects that are assignment compatible with both
areas.

Returns
array representing the stack trace, never null.

printStackTrace

Signature
public void
printStackTrace()

Description
Prints stack trace of this Throwable to System.err.

The printed stack trace contains the result of toString() as the first line
followed by one line for each stack trace element that contains the name of the
method or constructor, optionally followed by the source file name and source
file line number when available.

printStackTrace(PrintStream)

Signature
public void
printStackTrace(PrintStream stream)

Description
Prints the stack trace of this Throwable to the given stream.

The printed stack trace contains the result of toString() as the first line
followed by one line for each stack trace element that contains the name of the
method or constructor, optionally followed by the source file name and source
file line number when available.

Parameters
stream—The stream to print to.

RTSJ 2.0 (Draft 57) 811

15 Exceptions AlignmentError

printStackTrace(PrintWriter)

Signature
public void
printStackTrace(PrintWriter s)

Description
Prints the stack trace of this Throwable to the given PrintWriter.

The printed stack trace contains the result of toString() as the first line
followed by one line for each stack trace element that contains the name of the
method or constructor, optionally followed by the source file name and source
file line number when available.

Parameters
s—The PrintWriter to write to.

15.2.2 Classes
15.2.2.1 AlignmentError

public class AlignmentError
Inheritance
java.lang.Object
java.lang.Throwable
java.lang.Error
StaticError
AlignmentError

Description
The exception thrown on an on a request for a raw memory factory to return
memory for a base address that is aligned such that the factory cannot guarantee
that loads and stores based on that address will meet the factory’s specifications.
For instance, on many processors, odd addresses are unsuitable for anything but
byte access.

Available since RTSJ 2.0

15.2.2.1.1 Methods

812 RTSJ 2.0 (Draft 57)

IllegalAssignmentError javax.realtime 15.2

get

Signature
public static javax.realtime.AlignmentError
get()

Description

Obtains the singleton of this static throwable. It is prepared for immediate
throwing.

Returns
the single instance of this throwable.

Available since RTSJ 2.0

15.2.2.2 IllegalAssignmentError

public class IllegalAssignmentError

Inheritance
java.lang.Object
java.lang.Throwable
java.lang.Error
StaticError
IllegalAssignmentError

Description

The exception thrown on an attempt to make an illegal assignment. For example,
this will be thrown on any attempt to assign a reference to an object in scoped
memory, an area of memory identified to be an instance of javax.realtime.
memory.ScopedMemory, to a field of an object in immortal memory.

Available since RTSJ 2.0 extends StaticError

15.2.2.2.1 Constructors

RTSJ 2.0 (Draft 57) 813

15 Exceptions MemoryAccessError

IllegalAssignmentError

Signature
public
IllegalAssignmentError()

Description
A constructor for IllegalAssignmentError, but the application should use
get() instead.

15.2.2.2.2 Methods

get

Signature
public static javax.realtime.IllegalAssignmentError
get()

Description
Obtains the singleton of this static throwable. It is prepared for immediate
throwing.

Returns
the single instance of this throwable.
Available since RTSJ 2.0

15.2.2.3 MemoryAccessError

public class MemoryAccessError
Inheritance
java.lang.Object
java.lang.Throwable
java.lang.Error
StaticError

814 RTSJ 2.0 (Draft 57)

MemoryAccessError javax.realtime 15.2

MemoryAccessError
Description

This error is thrown on an attempt to refer to an object in an inaccessible
MemoryArea. For example this will be when logic in a NoHeapRealtimeThread
attempts to refer to an object in the traditional Java heap.

Available since RTSJ 2.0 extends StaticError

15.2.2.3.1 Constructors

MemoryAccessError

Signature
public
MemoryAccessError()

Description
A constructor for MemoryAccessError, but application code should use get()
instead.

15.2.2.3.2 Methods

get

Signature
public static javax.realtime.MemoryAccessError
get()

Description
Obtains the singleton of this static Throwable. It is prepared for immediate
throwing.

Returns

RTSJ 2.0 (Draft 57) 815

15 Exceptions ResourceLimitError

the single instance of this Throwable.

Available since RTSJ 2.0

15.2.2.4 ResourceLimitError

public class ResourceLimitError

Inheritance
java.lang.Object
java.lang.Throwable
java.lang.Error
StaticError
ResourceLimitError

Description

This error is thrown when an attempt is made to exceed a system resource limit,
such as the maximum number of locks.

Available since RTSJ 2.0 extends StaticError

15.2.2.4.1 Constructors

ResourceLimitError

Signature
public
ResourceLimitError()

Description

A constructor for ResourceLimitError, but application code should use get()
instead.

816 RTSJ 2.0 (Draft 57)

StaticError javax.realtime 15.2

ResourceLimitError(String)

Signature
public
ResourceLimitError(String description)

Description
A descriptive constructor for ResourceLimitError.

Deprecated since RTSJ 2.0; application code should use get() instead.

Parameters
description—The reason for throwing this error.

15.2.2.4.2 Methods

get

Signature
public static javax.realtime.ResourceLimitError
get()

Description
Obtains the singleton of this static throwable. It is prepared for immediate
throwing.

Returns
the single instance of this throwable.
Available since RTSJ 2.0

15.2.2.5 StaticError

public abstract class StaticError
Inheritance

RTSJ 2.0 (Draft 57) 817

15 Exceptions StaticError

java.lang.Object
java.lang.Throwable
java.lang.Error
StaticError

Interfaces
javax.realtime.StaticThrowable

Description
A base class for all errors defined in the specification which do not extend a
conventional Java error.

Available since RTSJ 2.0

15.2.2.5.1 Constructors

StaticError

Signature
protected
StaticError()

Description
Enable this class to be extended.

15.2.2.5.2 Methods

initMessage(String)

Signature
public java.lang.Throwable
initMessage(String message)

Description

818 RTSJ 2.0 (Draft 57)

StaticError javax.realtime 15.2

Sets the message in SO local storage. This is the only method not defined in
java.lang.Throwable.

Parameters
message—Text to be saved describing the exception’s cause.

Returns
this object.

Available since RTSJ 2.0 inherited by all static throwables

getMessage

Signature
public java.lang.String
getMessage()

Description

Gets the message describing the exception’s cause from SO’s local memory.

Returns
the message given to the constructor or null when no message was set.

getLocalizedMessage

Signature
public java.lang.String
getLocalizedMessage()

Description

Subclasses may override this message to get an error message that is localized to
the default locale.

By default it returns getMessage().

Returns
the value of getMessage().

RTSJ 2.0 (Draft 57) 819

15 Exceptions StaticError

initCause(Throwable)

Signature
public java.lang.Throwable
initCause(Throwable causingThrowable)

Description
Initializes the cause of this exception to the given Throwable in SO’s local
memory.

Parameters
causingThrowable—The reason why this Throwable gets thrown.

Throws
IllegalArgumentException—when the cause is this Throwable itself.

Returns
the reference to this Throwable.

getCause

Signature
public java.lang.Throwable
getCause()

Description
Gets the cause of this exception or null when no cause was set. The cause is
another exception that was caught before this exception was created.

Returns
the cause or null.

fillInStackTrace

Signature
public java.lang.Throwable
fillInStackTrace()

Description
Calls into the virtual machine to capture the current stack trace in SO’s local
memory.

820 RTSJ 2.0 (Draft 57)

StaticError javax.realtime 15.2

Returns
a reference to this Throwable.

setStackTrace(StackTraceElement)

Signature
public void
setStackTrace(java.lang.StackTraceElement[] new_stackTrace)
throws NullPointerException

Description
This method allows overriding the stack trace that was filled during construction
of this object. It is intended to be used in a serialization context when the stack
trace of a remote exception should be treated like a local.

Parameters
new_stackTrace—the stack trace to be used as replace.

Throws
NullPointerException—when new_stackTrace or any element of new_stackTrace

is null.

getStackTrace

Signature
public java.lang.StackTraceElement[]
getStackTrace()

Description
Gets the stack trace created by fillInStackTrace for this Throwable as an array
of StackTraceElements.

The stack trace does not need to contain entries for all methods that are
actually on the call stack, the virtual machine may decide to skip some stack
trace entries. Even an empty array is a valid result of this function.

Repeated calls of this function without intervening calls to fillInStackTrace
will return the same result.

When memory areas of the RTSJ are used (see MemoryArea), and this Throw-
able was allocated in a different memory area than the current allocation context,
the resulting stack trace will be allocated in either the same memory area this
was allocated in or the current memory area, depending on which is the least

RTSJ 2.0 (Draft 57) 821

15 Exceptions StaticError

deeply nested, thereby creating objects that are assignment compatible with both
areas.

Returns
array representing the stack trace, never null.

printStackTrace

Signature
public void
printStackTrace()

Description
Prints stack trace of this Throwable to System.err.

The printed stack trace contains the result of toString() as the first line
followed by one line for each stack trace element that contains the name of the
method or constructor, optionally followed by the source file name and source
file line number when available.

printStackTrace(PrintStream)

Signature
public void
printStackTrace(PrintStream stream)

Description
Prints the stack trace of this Throwable to the given stream.

The printed stack trace contains the result of toString() as the first line
followed by one line for each stack trace element that contains the name of the
method or constructor, optionally followed by the source file name and source
file line number when available.

Parameters
stream—The stream to print to.

printStackTrace(PrintWriter)

Signature

822 RTSJ 2.0 (Draft 57)

StaticOutOfMemoryError javax.realtime 15.2

public void
printStackTrace(PrintWriter writer)

Description

Prints the stack trace of this Throwable to the given PrintWriter.
The printed stack trace contains the result of toString() as the first line

followed by one line for each stack trace element that contains the name of the
method or constructor, optionally followed by the source file name and source
file line number when available.

Parameters
s—The PrintWriter to write to.

15.2.2.6 StaticOutOfMemoryError

public class StaticOutOfMemoryError

Inheritance
java.lang.Object
java.lang.Throwable
java.lang.Error
java.lang.VirtualMachineError
java.lang.OutOfMemoryError
StaticOutOfMemoryError

Interfaces
javax.realtime.StaticThrowable

Description

A version of OutOfMemoryError that does not require allocation. It should be
thrown from all RTSJ memory subclasses except HeapMemory. It is up to the
implementation as to whether HeapMemory throws this exception or its parent.

Available since RTSJ 2.0

15.2.2.6.1 Methods

RTSJ 2.0 (Draft 57) 823

15 Exceptions StaticOutOfMemoryError

get

Signature
public static javax.realtime.StaticOutOfMemoryError
get()

Description
Gets the preallocated version of this Throwable. Allocation is done in memory
that acts like ImmortalMemory. The message and cause are cleared and the stack
trace is filled out.

Returns
the preallocated exception.

initMessage(String)

Signature
public java.lang.Throwable
initMessage(String message)

Description
Sets the message in SO local storage. This is the only method not defined in
java.lang.Throwable.

Parameters
message—Text to be saved describing the exception’s cause.

Returns
this object.

Available since RTSJ 2.0 inherited by all static throwables

getMessage

Signature
public java.lang.String
getMessage()

Description
Gets the message describing the exception’s cause from SO’s local memory.

824 RTSJ 2.0 (Draft 57)

StaticOutOfMemoryError javax.realtime 15.2

Returns
the message given to the constructor or null when no message was set.

getLocalizedMessage

Signature
public java.lang.String
getLocalizedMessage()

Description
Subclasses may override this message to get an error message that is localized to
the default locale.

By default it returns getMessage().

Returns
the value of getMessage().

initCause(Throwable)

Signature
public java.lang.Throwable
initCause(Throwable causingThrowable)

Description
Initializes the cause of this exception to the given Throwable in SO’s local
memory.

Parameters
causingThrowable—The reason why this Throwable gets thrown.

Throws
IllegalArgumentException—when the cause is this Throwable itself.

Returns
the reference to this Throwable.

getCause

Signature
public java.lang.Throwable
getCause()

RTSJ 2.0 (Draft 57) 825

15 Exceptions StaticOutOfMemoryError

Description
Gets the cause of this exception or null when no cause was set. The cause is
another exception that was caught before this exception was created.

Returns
the cause or null.

fillInStackTrace

Signature
public java.lang.Throwable
fillInStackTrace()

Description
Calls into the virtual machine to capture the current stack trace in SO’s local
memory.

Returns
a reference to this Throwable.

setStackTrace(StackTraceElement)

Signature
public void
setStackTrace(java.lang.StackTraceElement[] new_stackTrace)
throws NullPointerException

Description
This method allows overriding the stack trace that was filled during construction
of this object. It is intended to be used in a serialization context when the stack
trace of a remote exception should be treated like a local.

Parameters
new_stackTrace—the stack trace to be used as replace.

Throws
NullPointerException—when new_stackTrace or any element of new_stackTrace

is null.

826 RTSJ 2.0 (Draft 57)

StaticOutOfMemoryError javax.realtime 15.2

getStackTrace

Signature
public java.lang.StackTraceElement[]
getStackTrace()

Description
Gets the stack trace created by fillInStackTrace for this Throwable as an array
of StackTraceElements.

The stack trace does not need to contain entries for all methods that are
actually on the call stack, the virtual machine may decide to skip some stack
trace entries. Even an empty array is a valid result of this function.

Repeated calls of this function without intervening calls to fillInStackTrace
will return the same result.

When memory areas of the RTSJ are used (see MemoryArea), and this Throw-
able was allocated in a different memory area than the current allocation context,
the resulting stack trace will be allocated in either the same memory area this
was allocated in or the current memory area, depending on which is the least
deeply nested, thereby creating objects that are assignment compatible with both
areas.

Returns
array representing the stack trace, never null.

printStackTrace

Signature
public void
printStackTrace()

Description
Prints stack trace of this Throwable to System.err.

The printed stack trace contains the result of toString() as the first line
followed by one line for each stack trace element that contains the name of the
method or constructor, optionally followed by the source file name and source
file line number when available.

printStackTrace(PrintStream)

Signature

RTSJ 2.0 (Draft 57) 827

15 Exceptions StaticThrowableStorage

public void
printStackTrace(PrintStream stream)

Description
Prints the stack trace of this Throwable to the given stream.

The printed stack trace contains the result of toString() as the first line
followed by one line for each stack trace element that contains the name of the
method or constructor, optionally followed by the source file name and source
file line number when available.

Parameters
stream—The stream to print to.

printStackTrace(PrintWriter)

Signature
public void
printStackTrace(PrintWriter s)

Description
Prints the stack trace of this Throwable to the given PrintWriter.

The printed stack trace contains the result of toString() as the first line
followed by one line for each stack trace element that contains the name of the
method or constructor, optionally followed by the source file name and source
file line number when available.

Parameters
s—The PrintWriter to write to.

15.2.2.7 StaticThrowableStorage

public class StaticThrowableStorage

Inheritance
java.lang.Object
java.lang.Throwable
StaticThrowableStorage

Interfaces
javax.realtime.StaticThrowable

828 RTSJ 2.0 (Draft 57)

StaticThrowableStorage javax.realtime 15.2

Description
Provides the methods for managing the thread local memory used for storing
the data needed by preallocated throwables, i.e., exceptions and errors which
implement StaticThrowable. This call is visible so that an application can
extend an existing conventional Java throwable and still implement Static-
Throwable; its methods can be implemented using the methods defined in this
class. An application defined throwable that does not need to extend an existing
conventional Java throwable should extend one of StaticCheckedException,
StaticRuntimeException, or StaticError instead.

Available since RTSJ 2.0

15.2.2.7.1 Methods

getCurrent

Signature
public static javax.realtime.StaticThrowableStorage
getCurrent()

Description
A means of obtaining the storage object for the current task.

Returns
the storage object for the current task.

fillInStackTrace

Signature
public java.lang.Throwable
fillInStackTrace()

Description
Captures the current thread’s stack trace and saves it in thread local storage.
Only the part of the stack trace that fits in the preallocated buffer is stored. This
method should be called by a preallocated exception to implement its method of
the same name.

RTSJ 2.0 (Draft 57) 829

15 Exceptions StaticThrowableStorage

Returns
this

getMessage

Signature
public java.lang.String
getMessage()

Description
Gets the message from thread local storage that was saved by the last preallocated
exception thrown. This method should be called by a preallocated exception to
implement its method of the same name.

Returns
the message.

initMessage(String)

Signature
public java.lang.Throwable
initMessage(String message)

Description
Saves the message in thread local storage for later retrieval. Only the part of
the message that fits in the preallocated buffer is stored. This method should be
called by a preallocated exception to implement its method of the same name.

Parameters
message—The description to save.

getCause

Signature
public java.lang.Throwable
getCause()

Description

830 RTSJ 2.0 (Draft 57)

StaticThrowableStorage javax.realtime 15.2

Gets the cause from thread local storage that was saved by the last preallocated
exception thrown. The actual exception of cause is not saved, but just a reference
to its type. This returns a newly allocated exception without any valid content,
i.e., no valid stack trace. This method should be called by a preallocated exception
to implement its method of the same name.

Returns
the message

initCause(Throwable)

Signature
public java.lang.Throwable
initCause(Throwable causingThrowable)

Description
Saves the message in thread local storage for later retrieval. Only a reference to
the exception class is stored. The rest of its information is lost. This method
should be called by a preallocated exception to implement its method of the same
name.

Parameters
causingThrowable—In the case of cascading throwables, the exception or error

that was the original cause.
Returns
this

getStackTrace

Signature
public java.lang.StackTraceElement[]
getStackTrace()

Description
Gets the stack trace from thread local storage that was saved by the last pre-
allocated exception thrown. This method should be called by a preallocated
exception to implement its method of the same name.

Returns
an array of the elements of the stack trace.

RTSJ 2.0 (Draft 57) 831

15 Exceptions StaticThrowableStorage

getLocalizedMessage

Signature
public java.lang.String
getLocalizedMessage()

Description
Subclasses may override this message to get an error message that is localized to
the default locale.

By default it returns getMessage().

Returns
the value of getMessage().

setStackTrace(StackTraceElement)

Signature
public void
setStackTrace(java.lang.StackTraceElement[] new_stackTrace)

Description
This method allows overriding the stack trace that was filled during construction
of this object. It is intended to be used in a serialization context when the stack
trace of a remote exception should be treated like a local.

Parameters
new_stackTrace—the stack trace to be used as replace.

Throws
NullPointerException—when new_stackTrace or any element of new_stackTrace

is null.

printStackTrace

Signature
public void
printStackTrace()

Description

832 RTSJ 2.0 (Draft 57)

ThrowBoundaryError javax.realtime 15.2

Prints stack trace of this Throwable to System.err.
The printed stack trace contains the result of toString() as the first line

followed by one line for each stack trace element that contains the name of the
method or constructor, optionally followed by the source file name and source
file line number when available.

printStackTrace(PrintStream)

Signature
public void
printStackTrace(PrintStream stream)

Description

Prints the stack trace of this Throwable to the given stream.
The printed stack trace contains the result of toString() as the first line

followed by one line for each stack trace element that contains the name of the
method or constructor, optionally followed by the source file name and source
file line number when available.

Parameters
stream—The stream to print to.

printStackTrace(PrintWriter)

Signature
public void
printStackTrace(PrintWriter writer)

Description

Prints the stack trace of this Throwable to the given PrintWriter.
The printed stack trace contains the result of toString() as the first line

followed by one line for each stack trace element that contains the name of the
method or constructor, optionally followed by the source file name and source
file line number when available.

Parameters
s—The PrintWriter to write to.

RTSJ 2.0 (Draft 57) 833

15 Exceptions ThrowBoundaryError

15.2.2.8 ThrowBoundaryError

public class ThrowBoundaryError

Inheritance
java.lang.Object
java.lang.Throwable
java.lang.Error
StaticError
ThrowBoundaryError

Description

The error thrown by MemoryArea.enter(Runnable logic) when a Throwable
allocated from memory that is not usable in the surrounding scope tries to
propagate out of the scope of the enter.

Available since RTSJ 2.0 extends StaticError

15.2.2.8.1 Constructors

ThrowBoundaryError

Signature
public
ThrowBoundaryError()

Description

A constructor for ThrowBoundaryError, but application code should use get()
instead.

15.2.2.8.2 Methods

834 RTSJ 2.0 (Draft 57)

ArrivalTimeQueueOverflowException javax.realtime 15.2

get

Signature
public static javax.realtime.ThrowBoundaryError
get()

Description
Gets the preallocated instance of this exception.

Returns
the preallocated instance of this exception.

initMessage(String)

Signature
public java.lang.Throwable
initMessage(String message)

Description
Sets the message in SO local storage. This is the only method not defined in
java.lang.Throwable.

Parameters
message—Text to be saved describing the exception’s cause.

Returns
this object.
Available since RTSJ 2.0 inherited by all static throwables

15.2.3 Exceptions
15.2.3.1 ArrivalTimeQueueOverflowException

public class ArrivalTimeQueueOverflowException
Inheritance
java.lang.Object
java.lang.Throwable
java.lang.Exception
java.lang.RuntimeException

RTSJ 2.0 (Draft 57) 835

15 Exceptions ArrivalTimeQueueOverflowException

StaticRuntimeException
EventQueueOverflowException
ArrivalTimeQueueOverflowException

Description
When an arrival time occurs and should be queued, but the queue already holds
a number of times equal to the initial queue length, an instance of this class is
thrown.

Available since RTSJ 1.0.1 this is unchecked

Available since RTSJ 2.0 extends EventQueueOverflowException

15.2.3.1.1 Constructors

ArrivalTimeQueueOverflowException

Signature
public
ArrivalTimeQueueOverflowException()

Description
The default constructor for ArrivalTimeQueueOverflowException, but user
code should use get() instead.

15.2.3.1.2 Methods

get

Signature
public static javax.realtime.ArrivalTimeQueueOverflowException
get()

Description

836 RTSJ 2.0 (Draft 57)

AsynchronouslyInterruptedException javax.realtime 15.2

Obtains the singleton of this static throwable. It is prepared for immediate
throwing.

Returns
the single instance of this Throwable.

Available since RTSJ 2.0

15.2.3.2 AsynchronouslyInterruptedException

public class AsynchronouslyInterruptedException

Inheritance
java.lang.Object
java.lang.Throwable
java.lang.Exception
java.lang.InterruptedException
AsynchronouslyInterruptedException

Description
A special exception that is thrown in response to an attempt to asynchronously
transfer the locus of control of a schedulable.

A Schedulable that is executing a method or constructor, which is de-
clared with an AsynchronouslyInterruptedException in its throws clause,
can be asynchronously interrupted except when it is executing in the lexical
scope of a synchronized statement within that method/constructor. As soon
as the Schedulable object leaves the lexical scope of the method by calling
another method/constructor it may be asynchronously interrupted when the
called method/constructor is asynchronously interruptible. (See this chapter’s
introduction section for the detailed semantics).

The asynchronous interrupt is generated for a Schedulable, s, when the
s.interrupt() method is called or the fire method is called of an AIE for
which s has a doInterruptible method call in progress.

When an asynchronous interrupt is generated when the target Schedulable
is executing within an ATC-deferred section, the asynchronous interrupt be-
comes pending. A pending asynchronous interrupt is delivered when the target
Schedulable next attempts to enter asynchronously interruptible code.

Asynchronous transfers of control (ATCs) are intended to allow long-running
computations to be terminated without the overhead or latency of polling with
java.lang.Thread.interrupted().

RTSJ 2.0 (Draft 57) 837

15 Exceptions AsynchronouslyInterruptedException

When Schedulable.interrupt, or AsynchronouslyInterruptedException.
fire() is called, the AsynchronouslyInterruptedException is compared
against any currently pending AsynchronouslyInterruptedException
on the Schedulable. When there is none, or when the depth of the
AsynchronouslyInterruptedException is less than the currently pending
AsynchronouslyInterruptedException; (i.e., it is targeted at a less deeply
nested method call), the new AsynchronouslyInterruptedException becomes
the currently pending AsynchronouslyInterruptedException and the previ-
ously pending AsynchronouslyInterruptedException is discarded. Otherwise,
the new AsynchronouslyInterruptedException is discarded.

When an AsynchronouslyInterruptedException is caught, the catch clause
may invoke the clear() method on the AsynchronouslyInterruptedException
in which it is interested to see if the exception matches the pending Asynchronous-
lyInterruptedException. When so, the pending AsynchronouslyInterrup-
tedException is cleared for the Schedulable and clear returns true. Otherwise,
the current AIE remains pending and clear returns false.

Schedulable.interrupt() generates the generic AsynchronouslyInterrup-
tedException which will always propagate outward through interruptible meth-
ods until the generic AsynchronouslyInterruptedException is identified and
handled. The pending state of the generic AIE is per-instance of Schedulable.

Other sources (e.g., AsynchronouslyInterruptedException.fire() and
Timed) will generate specific instances of AsynchronouslyInterruptedExcep-
tion which applications can identify and thus limit propagation.

15.2.3.2.1 Constructors

AsynchronouslyInterruptedException

Signature
public
AsynchronouslyInterruptedException()

Description

Creates an instance of AsynchronouslyInterruptedException.

838 RTSJ 2.0 (Draft 57)

AsynchronouslyInterruptedException javax.realtime 15.2

15.2.3.2.2 Methods

getGeneric

Signature
public static javax.realtime.AsynchronouslyInterruptedException
getGeneric()
throws IllegalSchedulableStateException

Description
Gets the singleton system generic AsynchronouslyInterruptedException that
is generated when Schedulable.interrupt() is invoked.

Throws
IllegalSchedulableStateException—when the current thread context is not an

instance of Schedulable.

Returns
the generic AsynchronouslyInterruptedException.

enable

Signature
public boolean
enable()

Description
Enables the throwing of this exception. This method is valid only when the
caller has a call to doInterruptible in progress. When invoked when no call to
doInterruptible is in progress, enable returns false and does nothing.

Returns
true, when this was disabled before the method was called and the call was invoked

whilst the associated doInterruptible was in progress, and false otherwise.

disable

Signature

RTSJ 2.0 (Draft 57) 839

15 Exceptions AsynchronouslyInterruptedException

public synchronized boolean
disable()

Description
Disables the throwing of this exception. When the fire method is called on
this AIE whilst it is disabled, the fire is held pending and delivered as soon as
the AIE is enabled and the interruptible code is within an AI-method. When an
AIE is pending when the associated disable method is called, the AIE remains
pending, and is delivered as soon as the AIE is enabled and the interruptible
code is within an AI-method.

This method is valid only when the caller has a call to doInterruptible in
progress. If invoked when no call to doInterruptible is in progress, disable
returns false and does nothing.

Returns
true, when this was enabled before the method was called and the call was invoked

with the associated doInterruptible in progress, and false otherwise.

isEnabled

Signature
public boolean
isEnabled()

Description
Queries the enabled status of this exception.

This method is valid only when the caller has a call to doInterruptible in
progress. If invoked when no call to doInterruptible is in progress, enable
returns false and does nothing.

Returns
true, when this is enabled and the method call was invoked in the context of the

associated doInterruptible, and false otherwise.

fire

Signature
public boolean
fire()

840 RTSJ 2.0 (Draft 57)

AsynchronouslyInterruptedException javax.realtime 15.2

Description
Generates this exception when its doInterruptible has been invoked and not
completed. When this is the only outstanding AIE on the schedulable object
that invoked this AIE’s doInterruptible(Interruptible) method, this AIE
becomes that schedulable’s current AIE. Otherwise, it only becomes the current
AIE when it is at a less deep level of nesting compared with the current outstanding
AIE.

Behaves as if Thread.interrupt() were called on the task currently operating
within this exception’s doInterruptible.

Returns
true, when this is not disabled and it has an invocation of a doInterruptible in

progress and there is no outstanding fire request, and false otherwise.

doInterruptible(Interruptible)

Signature
public boolean
doInterruptible(Interruptible logic)

Description
Executes the run() method of the given Interruptible. This method may be on
the stack in exactly one Schedulable object. An attempt to invoke this method
in a schedulable while it is on the stack of another or the same schedulable
will cause an immediate return with a value of false.

The run() method of the given Interruptible is always entered with the
exception in the enabled state, but that state can be modified with enable()
and disable(), and the state can be observed with isEnabled().

This AIE is cleared on return from doInterruptible.

Parameters
logic—An instance of an Interruptible whose run() method will be called.

Throws
IllegalSchedulableStateException—when called on the generic Asynchronous-

lyInterruptedException.
IllegalArgumentException—when logic is null.

Returns
true, when the method call completed normally, and false, when another call to

doInterruptible has not completed.

RTSJ 2.0 (Draft 57) 841

15 Exceptions AsynchronouslyInterruptedException

Available since RTSJ 2.0 nolonger throws an exception when called from a Java
thread.

clear

Signature
public boolean
clear()

Description
Atomically checks whether or not this is pending on the currently executing
schedulable, and when so, makes it non-pending.

This method may be called at any time, and in particular need not be called
in a try or catch block.

Returns
true, when this was pending, and false, when this was not pending.

Available since RTSJ 1.0.1

Available since RTSJ 2.0 no longer throws an exception when called from a task
that is not an instance of Schedulable.

throwPending

Signature
public static void
throwPending()
throws AsynchronouslyInterruptedException

Description
Causes a pending AsynchronouslyInterruptedException to be thrown as a
synchronous exception in an AI-deferred region if one exists.

Throws
AsynchronouslyInterruptedException—if an AIE is pending.

Available since RTSJ 2.0

842 RTSJ 2.0 (Draft 57)

CeilingViolationException javax.realtime 15.2

15.2.3.3 CeilingViolationException

public class CeilingViolationException
Inheritance
java.lang.Object
java.lang.Throwable
java.lang.Exception
java.lang.RuntimeException
java.lang.IllegalArgumentException
java.lang.IllegalThreadStateException
IllegalSchedulableStateException
CeilingViolationException

Interfaces
javax.realtime.StaticThrowable

Description
This exception is thrown when a schedulable or java.lang.Thread attempts to
lock an object governed by an instance of PriorityCeilingEmulation and the
thread or SO’s base priority exceeds the policy’s ceiling.

Available since RTSJ 2.0 implements StaticThrowable

15.2.3.3.1 Methods

get

Signature
public static javax.realtime.CeilingViolationException
get()

Description
Obtains the singleton of this static throwable. It is prepared for immediate
throwing.

Returns
the single instance of this throwable.
Available since RTSJ 2.0

RTSJ 2.0 (Draft 57) 843

15 Exceptions ConstructorCheckedException

getCeiling

Signature
public int
getCeiling()

Description
Gets the ceiling of the PriorityCeilingEmulation policy which was exceeded
by the base priority of an SO or thread that attempted to synchronize on an
object governed by the policy, which resulted in throwing of this.

Returns
the ceiling of the PriorityCeilingEmulation policy which caused this exception

to be thrown.

getCallerPriority

Signature
public int
getCallerPriority()

Description
Gets the base priority of the SO or thread whose attempt to synchronize resulted
in the throwing of this.

Returns
the synchronizing thread’s base priority.

15.2.3.4 ConstructorCheckedException

public class ConstructorCheckedException
Inheritance
java.lang.Object
java.lang.Throwable
java.lang.Exception
java.lang.ReflectiveOperationException
java.lang.InstantiationException
ConstructorCheckedException

Description

844 RTSJ 2.0 (Draft 57)

DeregistrationException javax.realtime 15.2

To throw when MemoryArea.newInstance causes the constructor of the new
instance to throw a checked exception.

Available since RTSJ 2.0

15.2.3.4.1 Constructors

ConstructorCheckedException(Throwable)

Signature
public
ConstructorCheckedException(Throwable cause)

Description
A constructor that can carry the original checked exception.

Parameters
cause—The original checked exception.

15.2.3.5 DeregistrationException

public class DeregistrationException

Inheritance
java.lang.Object
java.lang.Throwable
java.lang.Exception
java.lang.RuntimeException
StaticRuntimeException
DeregistrationException

Description
An exception to throw when trying to deregister an ActiveEvent from an Ac-
tiveEventDispatcher to which it is not registered.

Available since RTSJ 2.0

RTSJ 2.0 (Draft 57) 845

15 Exceptions EventQueueOverflowException

15.2.3.5.1 Methods

get

Signature
public static javax.realtime.DeregistrationException
get()

Description
Obtains the singleton of this static throwable. It is prepared for immediate
throwing.

Returns
the single instance of this throwable.

15.2.3.6 EventQueueOverflowException

public class EventQueueOverflowException

Inheritance
java.lang.Object
java.lang.Throwable
java.lang.Exception
java.lang.RuntimeException
StaticRuntimeException
EventQueueOverflowException

Description
When an arrival time occurs and should be queued, but the queue already holds
a number of times equal to the initial queue length, an instance of this class is
thrown.

Available since RTSJ 2.0 Generalizes ArrivalTimeQueueOverflowException

15.2.3.6.1 Methods

846 RTSJ 2.0 (Draft 57)

ForEachTerminationException javax.realtime 15.2

get

Signature
public static javax.realtime.EventQueueOverflowException
get()

Description
Obtains the singleton of this static throwable. It is prepared for immediate
throwing.

Returns
the single instance of this throwable.

15.2.3.7 ForEachTerminationException

public class ForEachTerminationException
Inheritance
java.lang.Object
java.lang.Throwable
java.lang.Exception
java.lang.RuntimeException
StaticRuntimeException
ForEachTerminationException

Description
An exception to throw when a visitor should terminate early. It is for use with
the forEach method in collection classes. Since it is a StaticThrowable, it can be
used without creating garbage.

15.2.3.7.1 Methods

get

Signature
public static javax.realtime.ForEachTerminationException
get()

RTSJ 2.0 (Draft 57) 847

15 Exceptions IllegalSchedulableStateException

Description
Gets the static instance of this class and initializes its stack trace.

Returns
the static singleton of this class.

15.2.3.8 IllegalSchedulableStateException

public class IllegalSchedulableStateException
Inheritance
java.lang.Object
java.lang.Throwable
java.lang.Exception
java.lang.RuntimeException
java.lang.IllegalArgumentException
java.lang.IllegalThreadStateException
IllegalSchedulableStateException

Interfaces
javax.realtime.StaticThrowable

Description
The exception thrown when a Schedulable instance attempts an operation which
is illegal in its current state. For instance, changing parameters on such instances
are only allowed when the scheduler is not active or the new parameters are
consistent with the current scheduler.

Available since RTSJ 2.0

15.2.3.8.1 Methods

get

Signature
public static javax.realtime.IllegalSchedulableStateException
get()

Description

848 RTSJ 2.0 (Draft 57)

IllegalSchedulableStateException javax.realtime 15.2

Gets the preallocated version of this Throwable. Allocation is done in memory
that acts like ImmortalMemory. The message and cause are cleared and the stack
trace is filled out.

Returns
the preallocated exception

initMessage(String)

Signature
public java.lang.Throwable
initMessage(String message)

Description

Sets the message in SO local storage. This is the only method not defined in
java.lang.Throwable.

Parameters
message—Text to be saved describing the exception’s cause.

Returns
this object.

Available since RTSJ 2.0 inherited by all static throwables

getMessage

Signature
public java.lang.String
getMessage()

Description

Gets the message describing the exception’s cause from SO’s local memory.

Returns
the message given to the constructor or null when no message was set.

RTSJ 2.0 (Draft 57) 849

15 Exceptions IllegalSchedulableStateException

getLocalizedMessage

Signature
public java.lang.String
getLocalizedMessage()

Description
Subclasses may override this message to get an error message that is localized to
the default locale.

By default it returns getMessage().

Returns
the value of getMessage().

initCause(Throwable)

Signature
public java.lang.Throwable
initCause(Throwable causingThrowable)

Description
Initializes the cause of this exception to the given Throwable in SO’s local
memory.

Parameters
causingThrowable—The reason why this Throwable gets thrown.

Throws
IllegalArgumentException—when the cause is this Throwable itself.

Returns
the reference to this Throwable.

getCause

Signature
public java.lang.Throwable
getCause()

Description
Gets the cause of this exception or null when no cause was set. The cause is
another exception that was caught before this exception was created.

850 RTSJ 2.0 (Draft 57)

IllegalSchedulableStateException javax.realtime 15.2

Returns
the cause or null.

fillInStackTrace

Signature
public java.lang.Throwable
fillInStackTrace()

Description
Calls into the virtual machine to capture the current stack trace in SO’s local
memory.

Returns
a reference to this Throwable.

setStackTrace(StackTraceElement)

Signature
public void
setStackTrace(java.lang.StackTraceElement[] new_stackTrace)
throws NullPointerException

Description
This method allows overriding the stack trace that was filled during construction
of this object. It is intended to be used in a serialization context when the stack
trace of a remote exception should be treated like a local.

Parameters
new_stackTrace—the stack trace to be used as replace.

Throws
NullPointerException—when new_stackTrace or any element of new_stackTrace

is null.

getStackTrace

Signature
public java.lang.StackTraceElement[]
getStackTrace()

RTSJ 2.0 (Draft 57) 851

15 Exceptions IllegalSchedulableStateException

Description
Gets the stack trace created by fillInStackTrace for this Throwable as an array
of StackTraceElements.

The stack trace does not need to contain entries for all methods that are
actually on the call stack, the virtual machine may decide to skip some stack
trace entries. Even an empty array is a valid result of this function.

Repeated calls of this function without intervening calls to fillInStackTrace
will return the same result.

When memory areas of the RTSJ are used (see MemoryArea), and this Throw-
able was allocated in a different memory area than the current allocation context,
the resulting stack trace will be allocated in either the same memory area this
was allocated in or the current memory area, depending on which is the least
deeply nested, thereby creating objects that are assignment compatible with both
areas.

Returns
array representing the stack trace, never null.

printStackTrace

Signature
public void
printStackTrace()

Description
Prints stack trace of this Throwable to System.err.

The printed stack trace contains the result of toString() as the first line
followed by one line for each stack trace element that contains the name of the
method or constructor, optionally followed by the source file name and source
file line number when available.

printStackTrace(PrintStream)

Signature
public void
printStackTrace(PrintStream stream)

Description

852 RTSJ 2.0 (Draft 57)

InaccessibleAreaException javax.realtime 15.2

Prints the stack trace of this Throwable to the given stream.
The printed stack trace contains the result of toString() as the first line

followed by one line for each stack trace element that contains the name of the
method or constructor, optionally followed by the source file name and source
file line number when available.

Parameters
stream—The stream to print to.

printStackTrace(PrintWriter)

Signature
public void
printStackTrace(PrintWriter writer)

Description
Prints the stack trace of this Throwable to the given PrintWriter.

The printed stack trace contains the result of toString() as the first line
followed by one line for each stack trace element that contains the name of the
method or constructor, optionally followed by the source file name and source
file line number when available.

Parameters
s—The PrintWriter to write to.

15.2.3.9 InaccessibleAreaException

public class InaccessibleAreaException

Inheritance
java.lang.Object
java.lang.Throwable
java.lang.Exception
java.lang.RuntimeException
StaticRuntimeException
InaccessibleAreaException

Description
The specified memory area is not on the current thread’s scope stack.

RTSJ 2.0 (Draft 57) 853

15 Exceptions InaccessibleAreaException

Available since RTSJ 1.0.1 Becomes unchecked

Available since RTSJ 2.0 extends StaticRuntimeException

15.2.3.9.1 Constructors

InaccessibleAreaException

Signature
public
InaccessibleAreaException()

Description
A constructor for InaccessibleAreaException, but application code should use
get() instead.

InaccessibleAreaException(String)

Signature
public
InaccessibleAreaException(String description)

Description
A descriptive constructor for InaccessibleAreaException.

Deprecated since RTSJ 2.0; application code should use get() instead.

Parameters
description—Description of the error.

15.2.3.9.2 Methods

854 RTSJ 2.0 (Draft 57)

LateStartException javax.realtime 15.2

get

Signature
public static javax.realtime.InaccessibleAreaException
get()

Description
Obtains the singleton of this static throwable. It is prepared for immediate
throwing.

Returns
the single instance of this throwable.

Available since RTSJ 2.0

15.2.3.10 LateStartException

public class LateStartException

Inheritance
java.lang.Object
java.lang.Throwable
java.lang.Exception
StaticCheckedException
LateStartException

Description
Exception thrown when a periodic realtime thread or timer is started after its
assigned, absolute, start time.

Available since RTSJ 2.0

15.2.3.10.1 Methods

get

Signature

RTSJ 2.0 (Draft 57) 855

15 Exceptions MITViolationException

public static javax.realtime.LateStartException
get()

Description
Obtains the singleton of this static throwable. It is prepared for immediate
throwing.

Returns
the single instance of this throwable.

15.2.3.11 MITViolationException

public class MITViolationException
Inheritance
java.lang.Object
java.lang.Throwable
java.lang.Exception
java.lang.RuntimeException
StaticRuntimeException
MITViolationException

Description
Thrown by the AsyncEvent.fire() on a minimum interarrival time violation.
More specifically, it is thrown under the semantics of the base priority scheduler’s
sporadic parameters’ mitViolationExcept policy when an attempt is made to
introduce a release that would violate the MIT constraint.

Available since RTSJ 1.0.1 became unchecked

Available since RTSJ 2.0 extends StaticRuntimeException

15.2.3.11.1 Constructors

MITViolationException

Signature

856 RTSJ 2.0 (Draft 57)

MITViolationException javax.realtime 15.2

public
MITViolationException()

Description
A constructor for MITViolationException.

MITViolationException(String)

Signature
public
MITViolationException(String description)

Description
A descriptive constructor for MITViolationException.

Parameters
description—Description of the error.

15.2.3.11.2 Methods

get

Signature
public static javax.realtime.MITViolationException
get()

Description
Obtains the singleton of this static throwable. It is prepared for immediate
throwing.

Returns
the single instance of this throwable.

Available since RTSJ 2.0

RTSJ 2.0 (Draft 57) 857

15 Exceptions MemoryInUseException

15.2.3.12 MemoryInUseException

public class MemoryInUseException
Inheritance
java.lang.Object
java.lang.Throwable
java.lang.Exception
java.lang.RuntimeException
StaticRuntimeException
MemoryInUseException

Description
There has been attempt to allocate a range of physical or virtual memory that is
already in use.

Available since RTSJ 2.0 extends StaticRuntimeException

15.2.3.12.1 Constructors

MemoryInUseException

Signature
public
MemoryInUseException()

Description
A constructor for MemoryInUseException, but application code should use get()
instead.

MemoryInUseException(String)

Signature
public
MemoryInUseException(String description)

858 RTSJ 2.0 (Draft 57)

MemoryScopeException javax.realtime 15.2

Description
A descriptive constructor for MemoryInUseException.

Deprecated since RTSJ 2.0; application code should use get() instead.

Parameters
description—Description of the error.

15.2.3.12.2 Methods

get

Signature
public static javax.realtime.MemoryInUseException
get()

Description
Obtains the singleton of this static throwable. It is prepared for immediate
throwing.

Returns
the single instance of this throwable.

Available since RTSJ 2.0

15.2.3.13 MemoryScopeException

public class MemoryScopeException

Inheritance
java.lang.Object
java.lang.Throwable
java.lang.Exception
java.lang.RuntimeException
StaticRuntimeException
MemoryScopeException

Description

RTSJ 2.0 (Draft 57) 859

15 Exceptions MemoryScopeException

When construction of any of the wait-free queues is attempted with the ends
of the queue in incompatible memory areas. Also thrown by wait-free queue
methods when such an incompatibility is detected after the queue is constructed.

Available since RTSJ 2.0 extends StaticRuntimeException

15.2.3.13.1 Constructors

MemoryScopeException

Signature
public
MemoryScopeException()

Description
A constructor for MemoryScopeException, but application code should use get()
instead.

15.2.3.13.2 Methods

get

Signature
public static javax.realtime.MemoryScopeException
get()

Description
Obtains the singleton of this static throwable. It is prepared for immediate
throwing.

Returns
the single instance of this throwable.
Available since RTSJ 2.0

860 RTSJ 2.0 (Draft 57)

MemoryTypeConflictException javax.realtime 15.2

15.2.3.14 MemoryTypeConflictException

public class MemoryTypeConflictException
Inheritance
java.lang.Object
java.lang.Throwable
java.lang.Exception
java.lang.RuntimeException
StaticRuntimeException
MemoryTypeConflictException

Description
This exception is thrown when the PhysicalMemoryManager is given conflicting
specifications for memory. The conflict can be between types in an array of
memory type specifiers, or between the specifiers and a specified base address.

Available since RTSJ 1.0.1 Changed to an unchecked exception.

Available since RTSJ 2.0 extends StaticRuntimeException

15.2.3.14.1 Constructors

MemoryTypeConflictException

Signature
public
MemoryTypeConflictException()

Description
A constructor for MemoryTypeConflictException, but application code should
use get() instead.

MemoryTypeConflictException(String)

Signature

RTSJ 2.0 (Draft 57) 861

15 Exceptions OffsetOutOfBoundsException

public
MemoryTypeConflictException(String description)

Description
A descriptive constructor for MemoryTypeConflictException.

Deprecated since RTSJ 2.0; application code should use get() instead.

Parameters
description—A description of the exception.

15.2.3.14.2 Methods

get

Signature
public static javax.realtime.MemoryTypeConflictException
get()

Description
Obtains the singleton of this static throwable. It is prepared for immediate
throwing.

Returns
the single instance of this throwable.
Available since RTSJ 2.0

15.2.3.15 OffsetOutOfBoundsException

public class OffsetOutOfBoundsException
Inheritance
java.lang.Object
java.lang.Throwable
java.lang.Exception
java.lang.RuntimeException
StaticRuntimeException

862 RTSJ 2.0 (Draft 57)

OffsetOutOfBoundsException javax.realtime 15.2

OffsetOutOfBoundsException
Description

When the constructor of an ImmortalPhysicalMemory, LTPhysicalMemory, VT-
PhysicalMemory, RawMemoryAccess, or RawMemoryFloatAccess is given an in-
valid address.

Available since RTSJ 1.0.1 became unchecked

Available since RTSJ 2.0 extends StaticRuntimeException

15.2.3.15.1 Constructors

OffsetOutOfBoundsException

Signature
public
OffsetOutOfBoundsException()

Description
A constructor for OffsetOutOfBoundsException, application code should use
get() instead.

15.2.3.15.2 Methods

get

Signature
public static javax.realtime.OffsetOutOfBoundsException
get()

Description
Obtains the singleton of this static throwable. It is prepared for immediate
throwing.

RTSJ 2.0 (Draft 57) 863

15 Exceptions POSIXInvalidSignalException

Returns
the single instance of this throwable.

Available since RTSJ 2.0

15.2.3.16 POSIXException

public abstract class POSIXException

Inheritance
java.lang.Object
java.lang.Throwable
java.lang.Exception
StaticCheckedException
POSIXException

Description
A base class for all POSIX exceptions.

Available since RTSJ 2.0

15.2.3.17 POSIXInvalidSignalException

public class POSIXInvalidSignalException

Inheritance
java.lang.Object
java.lang.Throwable
java.lang.Exception
StaticCheckedException
POSIXException
POSIXInvalidSignalException

Description
An invalid POSIX signal number has been specified.

Available since RTSJ 2.0

864 RTSJ 2.0 (Draft 57)

POSIXInvalidTargetException javax.realtime 15.2

15.2.3.17.1 Methods

get

Signature
public static javax.realtime.POSIXInvalidSignalException
get()

Description

Obtains the singleton of this static throwable. It is prepared for immediate
throwing.

Returns
the single instance of this throwable.

15.2.3.18 POSIXInvalidTargetException

public class POSIXInvalidTargetException

Inheritance
java.lang.Object
java.lang.Throwable
java.lang.Exception
StaticCheckedException
POSIXException
POSIXInvalidTargetException

Description

The target of the signal does not exist.

Available since RTSJ 2.0

15.2.3.18.1 Methods

RTSJ 2.0 (Draft 57) 865

15 Exceptions POSIXSignalPermissionException

get

Signature
public static javax.realtime.POSIXInvalidTargetException
get()

Description
Obtains the singleton of this static throwable. It is prepared for immediate
throwing.

Returns
the single instance of this throwable.

15.2.3.19 POSIXSignalPermissionException

public class POSIXSignalPermissionException
Inheritance
java.lang.Object
java.lang.Throwable
java.lang.Exception
StaticCheckedException
POSIXException
POSIXSignalPermissionException

Description
The process does not have permission to send the given signal to the given target.

Available since RTSJ 2.0

15.2.3.19.1 Methods

get

Signature
public static javax.realtime.POSIXSignalPermissionException
get()

866 RTSJ 2.0 (Draft 57)

ProcessorAffinityException javax.realtime 15.2

Description
Obtains the singleton of this static throwable. It is prepared for immediate
throwing.

Returns
the single instance of this throwable.

15.2.3.20 ProcessorAffinityException

public class ProcessorAffinityException
Inheritance
java.lang.Object
java.lang.Throwable
java.lang.Exception
StaticCheckedException
ProcessorAffinityException

Description
Exception used to report processor affinity-related errors.

Available since RTSJ 2.0

15.2.3.20.1 Methods

get

Signature
public static javax.realtime.ProcessorAffinityException
get()

Description
Obtains the singleton of this static throwable. It is prepared for immediate
throwing.

Returns
the single instance of this throwable.

RTSJ 2.0 (Draft 57) 867

15 Exceptions RegistrationException

15.2.3.21 RangeOutOfBoundsException

public class RangeOutOfBoundsException
Inheritance
java.lang.Object
java.lang.Throwable
java.lang.Exception
StaticCheckedException
RangeOutOfBoundsException

Description
Thrown when the memory region overlaps with another region in use or memory
that may not be used.

Available since RTSJ 2.0

15.2.3.21.1 Methods

get

Signature
public static javax.realtime.RangeOutOfBoundsException
get()

Description
Obtains the singleton of this static throwable. It is prepared for immediate
throwing.

Returns
the single instance of this throwable.

15.2.3.22 RegistrationException

public class RegistrationException
Inheritance

868 RTSJ 2.0 (Draft 57)

ScopedCycleException javax.realtime 15.2

java.lang.Object
java.lang.Throwable
java.lang.Exception
java.lang.RuntimeException
StaticRuntimeException
RegistrationException

Description
An exception to throw when trying to register an ActiveEvent with an Ac-
tiveEventDispatcher to which it is already registered.

Available since RTSJ 2.0

15.2.3.22.1 Methods

get

Signature
public static javax.realtime.RegistrationException
get()

Description
Obtains the singleton of this static throwable. It is prepared for immediate
throwing.

Returns
the single instance of this throwable.

15.2.3.23 ScopedCycleException

public class ScopedCycleException
Inheritance
java.lang.Object
java.lang.Throwable
java.lang.Exception
java.lang.RuntimeException
StaticRuntimeException
ScopedCycleException

RTSJ 2.0 (Draft 57) 869

15 Exceptions ScopedCycleException

Description
Thrown when a schedulable attempts to enter an instance of javax.realtime.
memory.ScopedMemory where that operation would cause a violation of the single
parent rule.

Available since RTSJ 2.0 extends StaticRuntimeException

15.2.3.23.1 Constructors

ScopedCycleException

Signature
public
ScopedCycleException()

Description
A constructor for ScopedCycleException, but application code should use get()
instead.

ScopedCycleException(String)

Signature
public
ScopedCycleException(String description)

Description
A descriptive constructor for ScopedCycleException.

Deprecated since RTSJ 2.0; application code should use get() instead.

Parameters
description—Description of the error.

15.2.3.23.2 Methods

870 RTSJ 2.0 (Draft 57)

SizeOutOfBoundsException javax.realtime 15.2

get

Signature
public static javax.realtime.ScopedCycleException
get()

Description
Obtains the singleton of this static throwable. It is prepared for immediate
throwing.

Returns
the single instance of this throwable.
Available since RTSJ 2.0

15.2.3.24 SizeOutOfBoundsException

public class SizeOutOfBoundsException
Inheritance
java.lang.Object
java.lang.Throwable
java.lang.Exception
java.lang.RuntimeException
StaticRuntimeException
SizeOutOfBoundsException

Description
To throw when the constructor of an ImmortalPhysicalMemory, LTPhysicalMem-
ory, or VTPhysicalMemory is given an invalid size or when a memory access
generated by a raw memory accessor instance (See javax.realtime.device.
RawMemory.) would cause access to an invalid address.

Available since RTSJ 1.0.1 became unchecked

Available since RTSJ 2.0 extends StaticRuntimeException

15.2.3.24.1 Constructors

RTSJ 2.0 (Draft 57) 871

15 Exceptions SizeOutOfBoundsException

SizeOutOfBoundsException

Signature
public
SizeOutOfBoundsException()

Description
A constructor for SizeOutOfBoundsException, but application code should use
get() instead.

SizeOutOfBoundsException(String)

Signature
public
SizeOutOfBoundsException(String description)

Description
A descriptive constructor for SizeOutOfBoundsException.

Deprecated since RTSJ 2.0; application code should use get() instead.

Parameters
description—The description of the exception.

15.2.3.24.2 Methods

get

Signature
public static javax.realtime.SizeOutOfBoundsException
get()

Description
Obtains the singleton of this static throwable. It is prepared for immediate
throwing.

872 RTSJ 2.0 (Draft 57)

StaticCheckedException javax.realtime 15.2

Returns
the single instance of this throwable.

Available since RTSJ 2.0

15.2.3.25 StaticCheckedException

public abstract class StaticCheckedException

Inheritance
java.lang.Object
java.lang.Throwable
java.lang.Exception
StaticCheckedException

Interfaces
javax.realtime.StaticThrowable

Description
A base class for all checked exceptions defined in the specification which do not
extend a conventional Java exception.

Available since RTSJ 2.0

15.2.3.25.1 Constructors

StaticCheckedException

Signature
protected
StaticCheckedException()

Description
Enable this class to be extended.

RTSJ 2.0 (Draft 57) 873

15 Exceptions StaticCheckedException

15.2.3.25.2 Methods

initMessage(String)

Signature
public java.lang.Throwable
initMessage(String message)

Description
Sets the message in SO local storage. This is the only method not defined in
java.lang.Throwable.

Parameters
message—Text to be saved describing the exception’s cause.

Returns
this object.
Available since RTSJ 2.0 inherited by all static throwables

getMessage

Signature
public java.lang.String
getMessage()

Description
Gets the message describing the exception’s cause from SO’s local memory.

Returns
the message given to the constructor or null when no message was set.

getLocalizedMessage

Signature
public java.lang.String
getLocalizedMessage()

Description

874 RTSJ 2.0 (Draft 57)

StaticCheckedException javax.realtime 15.2

Subclasses may override this message to get an error message that is localized to
the default locale.

By default it returns getMessage().

Returns
the value of getMessage().

initCause(Throwable)

Signature
public java.lang.Throwable
initCause(Throwable causingThrowable)

Description

Initializes the cause of this exception to the given Throwable in SO’s local
memory.

Parameters
causingThrowable—The reason why this Throwable gets thrown.

Throws
IllegalArgumentException—when the cause is this Throwable itself.

Returns
the reference to this Throwable.

getCause

Signature
public java.lang.Throwable
getCause()

Description

Gets the cause of this exception or null when no cause was set. The cause is
another exception that was caught before this exception was created.

Returns
the cause or null.

RTSJ 2.0 (Draft 57) 875

15 Exceptions StaticCheckedException

fillInStackTrace

Signature
public java.lang.Throwable
fillInStackTrace()

Description
Calls into the virtual machine to capture the current stack trace in SO’s local
memory.

Returns
a reference to this Throwable.

setStackTrace(StackTraceElement)

Signature
public void
setStackTrace(java.lang.StackTraceElement[] new_stackTrace)
throws NullPointerException

Description
This method allows overriding the stack trace that was filled during construction
of this object. It is intended to be used in a serialization context when the stack
trace of a remote exception should be treated like a local.

Parameters
new_stackTrace—the stack trace to be used as replace.

Throws
NullPointerException—when new_stackTrace or any element of new_stackTrace

is null.

getStackTrace

Signature
public java.lang.StackTraceElement[]
getStackTrace()

Description

876 RTSJ 2.0 (Draft 57)

StaticCheckedException javax.realtime 15.2

Gets the stack trace created by fillInStackTrace for this Throwable as an array
of StackTraceElements.

The stack trace does not need to contain entries for all methods that are
actually on the call stack, the virtual machine may decide to skip some stack
trace entries. Even an empty array is a valid result of this function.

Repeated calls of this function without intervening calls to fillInStackTrace
will return the same result.

When memory areas of the RTSJ are used (see MemoryArea), and this Throw-
able was allocated in a different memory area than the current allocation context,
the resulting stack trace will be allocated in either the same memory area this
was allocated in or the current memory area, depending on which is the least
deeply nested, thereby creating objects that are assignment compatible with both
areas.

Returns
array representing the stack trace, never null.

printStackTrace

Signature
public void
printStackTrace()

Description
Prints stack trace of this Throwable to System.err.

The printed stack trace contains the result of toString() as the first line
followed by one line for each stack trace element that contains the name of the
method or constructor, optionally followed by the source file name and source
file line number when available.

printStackTrace(PrintStream)

Signature
public void
printStackTrace(PrintStream stream)

Description
Prints the stack trace of this Throwable to the given stream.

The printed stack trace contains the result of toString() as the first line
followed by one line for each stack trace element that contains the name of the

RTSJ 2.0 (Draft 57) 877

15 Exceptions StaticRuntimeException

method or constructor, optionally followed by the source file name and source
file line number when available.

Parameters
stream—The stream to print to.

printStackTrace(PrintWriter)

Signature
public void
printStackTrace(PrintWriter writer)

Description
Prints the stack trace of this Throwable to the given PrintWriter.

The printed stack trace contains the result of toString() as the first line
followed by one line for each stack trace element that contains the name of the
method or constructor, optionally followed by the source file name and source
file line number when available.

Parameters
s—The PrintWriter to write to.

15.2.3.26 StaticRuntimeException

public abstract class StaticRuntimeException
Inheritance
java.lang.Object
java.lang.Throwable
java.lang.Exception
java.lang.RuntimeException
StaticRuntimeException

Interfaces
javax.realtime.StaticThrowable

Description
A base class for all unchecked exceptions defined in the specification which do
not extend a conventional Java exception.

Available since RTSJ 2.0

878 RTSJ 2.0 (Draft 57)

StaticRuntimeException javax.realtime 15.2

15.2.3.26.1 Constructors

StaticRuntimeException

Signature
protected
StaticRuntimeException()

Description
Enable this class to be extended.

15.2.3.26.2 Methods

initMessage(String)

Signature
public java.lang.Throwable
initMessage(String message)

Description
Sets the message in SO local storage. This is the only method not defined in
java.lang.Throwable.

Parameters
message—Text to be saved describing the exception’s cause.

Returns
this object.

Available since RTSJ 2.0 inherited by all static throwables

getMessage

Signature

RTSJ 2.0 (Draft 57) 879

15 Exceptions StaticRuntimeException

public java.lang.String
getMessage()

Description
Gets the message describing the exception’s cause from SO’s local memory.

Returns
the message given to the constructor or null when no message was set.

getLocalizedMessage

Signature
public java.lang.String
getLocalizedMessage()

Description
Subclasses may override this message to get an error message that is localized to
the default locale.

By default it returns getMessage().

Returns
the value of getMessage().

initCause(Throwable)

Signature
public java.lang.Throwable
initCause(Throwable causingThrowable)

Description
Initializes the cause of this exception to the given Throwable in SO’s local
memory.

Parameters
causingThrowable—The reason why this Throwable gets thrown.

Throws
IllegalArgumentException—when the cause is this Throwable itself.

Returns
the reference to this Throwable.

880 RTSJ 2.0 (Draft 57)

StaticRuntimeException javax.realtime 15.2

getCause

Signature
public java.lang.Throwable
getCause()

Description
Gets the cause of this exception or null when no cause was set. The cause is
another exception that was caught before this exception was created.

Returns
the cause or null.

fillInStackTrace

Signature
public java.lang.Throwable
fillInStackTrace()

Description
Calls into the virtual machine to capture the current stack trace in SO’s local
memory.

Returns
a reference to this Throwable.

setStackTrace(StackTraceElement)

Signature
public void
setStackTrace(java.lang.StackTraceElement[] new_stackTrace)
throws NullPointerException

Description
This method allows overriding the stack trace that was filled during construction
of this object. It is intended to be used in a serialization context when the stack
trace of a remote exception should be treated like a local.

Parameters
new_stackTrace—the stack trace to be used as replace.

RTSJ 2.0 (Draft 57) 881

15 Exceptions StaticRuntimeException

Throws
NullPointerException—when new_stackTrace or any element of new_stackTrace

is null.

getStackTrace

Signature
public java.lang.StackTraceElement[]
getStackTrace()

Description
Gets the stack trace created by fillInStackTrace for this Throwable as an array
of StackTraceElements.

The stack trace does not need to contain entries for all methods that are
actually on the call stack, the virtual machine may decide to skip some stack
trace entries. Even an empty array is a valid result of this function.

Repeated calls of this function without intervening calls to fillInStackTrace
will return the same result.

When memory areas of the RTSJ are used (see MemoryArea), and this Throw-
able was allocated in a different memory area than the current allocation context,
the resulting stack trace will be allocated in either the same memory area this
was allocated in or the current memory area, depending on which is the least
deeply nested, thereby creating objects that are assignment compatible with both
areas.

Returns
array representing the stack trace, never null.

printStackTrace

Signature
public void
printStackTrace()

Description
Prints stack trace of this Throwable to System.err.

The printed stack trace contains the result of toString() as the first line
followed by one line for each stack trace element that contains the name of the
method or constructor, optionally followed by the source file name and source
file line number when available.

882 RTSJ 2.0 (Draft 57)

UninitializedStateException javax.realtime 15.2

printStackTrace(PrintStream)

Signature
public void
printStackTrace(PrintStream stream)

Description
Prints the stack trace of this Throwable to the given stream.

The printed stack trace contains the result of toString() as the first line
followed by one line for each stack trace element that contains the name of the
method or constructor, optionally followed by the source file name and source
file line number when available.

Parameters
stream—The stream to print to.

printStackTrace(PrintWriter)

Signature
public void
printStackTrace(PrintWriter writer)

Description
Prints the stack trace of this Throwable to the given PrintWriter.

The printed stack trace contains the result of toString() as the first line
followed by one line for each stack trace element that contains the name of the
method or constructor, optionally followed by the source file name and source
file line number when available.

Parameters
s—The PrintWriter to write to.

15.2.3.27 UninitializedStateException

public class UninitializedStateException
Inheritance
java.lang.Object
java.lang.Throwable
java.lang.Exception

RTSJ 2.0 (Draft 57) 883

15 Exceptions UnsupportedPhysicalMemoryException

java.lang.RuntimeException
StaticRuntimeException
UninitializedStateException

Description
Thrown when a resource is not yet initialized, such as a Clock which cannot be
created yet because its data source is not yet available. This can happen when a
Java process starts early in the system startup process.

Available since RTSJ 2.0

15.2.3.27.1 Methods

get

Signature
public static javax.realtime.UninitializedStateException
get()

Description
Gets the static instance of this class and initializes its stack trace.

Returns
the static singleton of this class.

15.2.3.28 UnsupportedPhysicalMemoryException

public class UnsupportedPhysicalMemoryException

Inheritance
java.lang.Object
java.lang.Throwable
java.lang.Exception
java.lang.RuntimeException
StaticRuntimeException
UnsupportedPhysicalMemoryException

Description

884 RTSJ 2.0 (Draft 57)

UnsupportedPhysicalMemoryException javax.realtime 15.2

Thrown when the underlying hardware does not support the type of physical
memory requested.

See Section PhysicalMemoryFactory

Available since RTSJ 1.0.1 became unchecked

Available since RTSJ 2.0 extends StaticRuntimeException

15.2.3.28.1 Constructors

UnsupportedPhysicalMemoryException

Signature
public
UnsupportedPhysicalMemoryException()

Description
A constructor for UnsupportedPhysicalMemoryException, but application code
should use get() instead.

15.2.3.28.2 Methods

get

Signature
public static javax.realtime.UnsupportedPhysicalMemoryException
get()

Description
Obtains the singleton of this static throwable. It is prepared for immediate
throwing.

Returns

RTSJ 2.0 (Draft 57) 885

15 Exceptions

the single instance of this throwable.

Available since RTSJ 2.0

15.2.3.29 UnsupportedRawMemoryRegionException

public class UnsupportedRawMemoryRegionException

Inheritance
java.lang.Object
java.lang.Throwable
java.lang.Exception
java.lang.RuntimeException
StaticRuntimeException
UnsupportedRawMemoryRegionException

Description
Indicates an invalid raw memory region.

Available since RTSJ 2.0

15.2.3.29.1 Methods

get

Signature
public static javax.realtime.UnsupportedRawMemoryRegionException
get()

Description
Obtains the singleton of this static throwable. It is prepared for immediate
throwing.

Returns
the single instance of this throwable.

886 RTSJ 2.0 (Draft 57)

Rationale .0

15.3 Rationale
The need for additional exceptions, given the new semantics added by the other
sections of this specification, is obvious. That the specification attaches new, un-
conventional, exception semantics to AsynchronouslyInterruptedException is,
perhaps, not so obvious. However, after careful thought, and given our self-imposed
directive that only well-defined code blocks would be subject to having their control
asynchronously transferred, the chosen mechanism is logical.

RTSJ 2.0 (Draft 57) 887

Exceptions

888 RTSJ 2.0 (Draft 57)

Appendix A

Bibliography

[1] Portable Operating System Interface (POSIX R©) Part 1: System Application
Program Interface, International Standard ISO/IEC 9945-1, 1996 (E) IEEE Std
1003.1, 1996 edition ed. The Institute of Electrical and Electronics Engineers,
Inc., 1996.

[2] Barr, M. Memory types. Embedded Systems Programming (2001), 103–104.

[3] Burns, A., and Wellings, A. J. Real-Time Systems and Programming
Languages:, 4th ed. Addison Wesley, 2010.

[4] Dos Santos, O. M., and Wellings, A. Cost enforcement in the real-time
specification for java. Real-Time Syst. 37, 2 (Nov. 2007), 139–179.

[5] Gosling, J., Joy, B., Steele, G., Bracha, G., and Buckley, A. The
Java Language Specification Java SE 8 Edition. Oracle, 2014.

[6] Lindholm, T., Yellin, F., Bracha, G., and Buckley, A. The Java
Virtual Machine Specification Java SE 8 Edition. Oracle, 2014.

[7] Regehr, J. Safe and structured use of interrupts in real-time and embedded
software. In Handbook of Real-Time and Embedded Systems, I. Lee, J. Y.-T. Leug,
and S. H. Son, Eds. Chapman and Hall/CRC, 2007, pp. 16–1–16–12.

889

A Bibliography

890 RTSJ 2.0 (Draft 57)

Appendix B

Deprecated APIs

Since modules are new in RTSJ 2.0 and this version introduces new ways of handling
happening, POSIX signals, and raw memory access, there is no need to include the
old API in the RTSJ subsets. Therefore the old classes, including those that have
copies in new subpackages, are deprecated and appear only here. Other deprecated
methods, constructors, and fields, including those for feasibility analysis, are also
here. The feasibility methods are the only ones without replacement, as they where
insufficient for admission control, so where of little utility. Only full implementation
of the RTSJ should implement them.

B.1 Semantics
Implementations of the deprecated interfaces, classes, constructors, methods, and field
given below are optional. In some cases, classes have been moved to a new package.
In this case, the class appears here in its old place and in the documentation above in
its new place. The deprecated elements are only needed for backward compatibility.
They should not be included in implementations that do not include all modules.

891

B Deprecated APIs PhysicalMemoryTypeFilter

B.2 javax.realtime

B.2.1 Interfaces
B.2.1.1 PhysicalMemoryTypeFilter

public interface PhysicalMemoryTypeFilter

Description
Implementation or device providers may include classes that implement Phys-
icalMemoryTypeFilter which allow additional characteristics of memory in
devices to be specified. Implementations of PhysicalMemoryTypeFilter are in-
tended to be used by the PhysicalMemoryManager, not directly from application
code.

Deprecated as of RTSJ 2.0

B.2.1.1.1 Methods

contains(long, long)

Signature
public boolean
contains(long base,

long size)

Description
Queries the system about whether the specified range of memory contains any of
this type.

Parameters
base—The physical address of the beginning of the memory region.
size—The size of the memory region.

Throws
IllegalArgumentException—when base or size is negative.
OffsetOutOfBoundsException—when base is less than zero.

892 RTSJ 2.0 (Draft 57)

PhysicalMemoryTypeFilter javax.realtime B.2

SizeOutOfBoundsException—when base plus size would be greater than the
physical addressing range of the processor.

Returns
true, when the specified range contains ANY of this type of memory.
See Section PhysicalMemoryManager.isRemovable

find(long, long)

Signature
public long
find(long base,

long size)

Description
Search for physical memory of the right type.

Parameters
base—The physical address at which to start searching.
size—The amount of memory to be found.

Throws
OffsetOutOfBoundsException—when base is less than zero.
SizeOutOfBoundsException—when base plus size would be greater than the

physical addressing range of the processor.
IllegalArgumentException—when base or size is negative.

Returns
the address where memory was found or -1 when it was not found.

getVMAttributes

Signature
public int
getVMAttributes()

Description
Gets the virtual memory attributes of this. The value of this field is as defined
for the POSIX mmap function’s prot parameter for the platform. The meaning
of the bits is platform-dependent. POSIX defines constants for PROT_READ,
PROT_WRITE, PROT_EXEC, and PROT_NONE.

RTSJ 2.0 (Draft 57) 893

B Deprecated APIs PhysicalMemoryTypeFilter

Returns
the virtual memory attributes as an integer.

getVMFlags

Signature
public int
getVMFlags()

Description
Gets the virtual memory flags of this. The value of this field is as defined for
the POSIX mmap function’s flags parameter for the platform. The meaning of
the bits is platform-dependent. POSIX defines constants for MAP_SHARED,
MAP_PRIVATE, and MAP_FIXED.

Returns
the virtual memory flags as an integer.

initialize(long, long, long)

Signature
public void
initialize(long base,

long vBase,
long size)

Description
When configuration is required for memory to fit the attribute of this object, do
the configuration here.

Parameters
base—The address of the beginning of the physical memory region.
vBase—The address of the beginning of the virtual memory region.
size—The size of the memory region.

Throws
IllegalArgumentException—when base or size is negative.
OffsetOutOfBoundsException—when base is less than zero.
SizeOutOfBoundsException—when base plus size would be greater than the

physical addressing range of the processor, or vBase plus size would exceed
the virtual addressing range of the processor.

894 RTSJ 2.0 (Draft 57)

PhysicalMemoryTypeFilter javax.realtime B.2

isPresent(long, long)

Signature
public boolean
isPresent(long base,

long size)

Description

Queries the system about the existence of the specified range of physical memory.

Parameters
base—The address of the beginning of the memory region.
size—The size of the memory region.

Throws
IllegalArgumentException—when the base and size do not fall into this type of

memory.
OffsetOutOfBoundsException—when base is less than zero.
SizeOutOfBoundsException—when base plus size would be greater than the

physical addressing range of the processor.

Returns
true, when all of the memory is present. False, when any of the memory has been

removed.

See Section PhysicalMemoryManager.isRemoved

isRemovable

Signature
public boolean
isRemovable()

Description

Queries the system about the removability of this memory.

Returns
true, when this type of memory is removable.

RTSJ 2.0 (Draft 57) 895

B Deprecated APIs PhysicalMemoryTypeFilter

onInsertion(long, long, AsyncEvent)

Signature
public void
onInsertion(long base,

long size,
AsyncEvent ae)

Description
Register the specified AsyncEvent to fire when any memory of this type in the
range is added to the system.

Parameters
base—The starting address in physical memory.
size—The size of the memory area.
ae—The async event to fire.

Throws
IllegalArgumentException—when ae is null, or when the specified range con-

tains no removable memory of this type. IllegalArgumentException may
also be thrown when size is less than zero.

OffsetOutOfBoundsException—when base is less than zero.
SizeOutOfBoundsException—when base plus size would be greater than the

physical addressing range of the processor.
Available since RTSJ 1.0.1

onRemoval(long, long, AsyncEvent)

Signature
public void
onRemoval(long base,

long size,
AsyncEvent ae)

Description
Registers the specified AE to fire when any memory in the range is removed from
the system.

Parameters
base—The starting address in physical memory.

896 RTSJ 2.0 (Draft 57)

PhysicalMemoryTypeFilter javax.realtime B.2

size—The size of the memory area.
ae—The async event to register.

Throws
IllegalArgumentException—when the specified range contains no removable mem-

ory of this type, when ae is null, or when size is less than zero.
OffsetOutOfBoundsException—when base is less than zero.
SizeOutOfBoundsException—when base plus size would be greater than the

physical addressing range of the processor.
Available since RTSJ 1.0.1

unregisterInsertionEvent(long, long, AsyncEvent)

Signature
public boolean
unregisterInsertionEvent(long base,

long size,
AsyncEvent ae)

Description
Unregisters the specified insertion event. The event is only unregistered when all
three arguments match the arguments used to register the event, except that ae
of null matches all values of ae and will unregister every ae that matches the
address range.

Note that this method has no effect on handlers registered directly as async
event handlers.

Parameters
base—The starting address in physical memory associated with ae.
size—The size of the memory area associated with ae.
ae—The event to unregister.

Throws
IllegalArgumentException—when size is less than 0.
OffsetOutOfBoundsException—when base is less than zero.
SizeOutOfBoundsException—when base plus size would be greater than the

physical addressing range of the processor.
Returns
true, when at least one event matched the pattern, false when no such event was

found.

RTSJ 2.0 (Draft 57) 897

B Deprecated APIs PhysicalMemoryTypeFilter

Available since RTSJ 1.0.1

unregisterRemovalEvent(long, long, AsyncEvent)

Signature
public boolean
unregisterRemovalEvent(long base,

long size,
AsyncEvent ae)

Description
Unregisters the specified removal event. The async event is only unregistered
when all three arguments match the arguments used to register the event, except
that ae of null matches all values of ae and will unregister every ae that matches
the address range. Note that this method has no effect on handlers registered
directly as async event handlers.

Parameters
base—The starting address in physical memory associated with ae.
size—The size of the memory area associated with ae.
ae—The async event to unregister.

Throws
IllegalArgumentException—when size is less than 0.
OffsetOutOfBoundsException—when base is less than zero.
SizeOutOfBoundsException—when base plus size would be greater than the

physical addressing range of the processor.
Returns
true, when at least one event matched the pattern, false when no such event was

found.
Available since RTSJ 1.0.1

vFind(long, long)

Signature
public long
vFind(long base,

long size)

898 RTSJ 2.0 (Draft 57)

Schedulable javax.realtime B.2

Description
Searches for virtual memory of the right type. This is important for systems
where attributes are associated with particular ranges of virtual memory.

Parameters
base—The address at which to start searching.
size—The amount of memory to be found.

Throws
OffsetOutOfBoundsException—when base is less than zero.
SizeOutOfBoundsException—when base plus size would be greater than the

physical addressing range of the processor.
IllegalArgumentException—when base or size is negative. IllegalArgu-

mentException may also be when base is an invalid virtual address.
Returns
the address where memory was found or -1 when it was not found.

B.2.1.2 Schedulable

public interface Schedulable
The following elements of Schedulable are deprecated. The required elements are

documented in Section 6.3.1.3 above.

B.2.1.2.1 Methods

setScheduler(Scheduler, SchedulingParameters, ReleasePar-
ameters, MemoryParameters, ProcessingGroupParameters)

Signature
public void
setScheduler(Scheduler scheduler,

SchedulingParameters scheduling,
ReleaseParameters release,
MemoryParameters memoryParameters,

RTSJ 2.0 (Draft 57) 899

B Deprecated APIs Schedulable

ProcessingGroupParameters group)

Description
Sets the scheduler and associated parameter objects. The timing of the change
must be agreed between the scheduler currently associated with this schedulable,
and scheduler.

Parameters
scheduler—A reference to the scheduler that will manage the execution of this

schedulable. Null is not a permissible value.
scheduling—A reference to the SchedulingParameters which will be associated

with this. When null, the default value is governed by scheduler; a new
object is created when the default value is not null. See PriorityScheduler.

release—A reference to the ReleaseParameters which will be associated with
this. When null, the default value is governed by scheduler; a new object
is created when the default value is not null. (See PriorityScheduler.)

memoryParameters—A reference to the MemoryParameters which will be associated
with this. When null, the default value is governed by scheduler; a new
object is created when the default value is not null. (See PriorityScheduler.)

group—A reference to the ProcessingGroupParameters which will be associated
with this. When null, the default value is governed by scheduler; a new
object is created when the default value is not null. (See PriorityScheduler.)

Throws
IllegalArgumentException—when scheduler is null or the parameter values

are not compatible with scheduler. Also thrown when this schedulable may
not use the heap and scheduler, scheduling release, memoryParameters,
or group is located in heap memory.

IllegalAssignmentError—when this object cannot hold references to all the
parameter objects or the parameters cannot hold references to this.

IllegalThreadStateException—when scheduler prohibits the changing of the
scheduler or a parameter at this time due to the state of the schedulable.

SecurityException—when the caller is not permitted to set the scheduler for this
schedulable.

Deprecated since RTSJ 2.0

getProcessingGroupParameters

Signature

900 RTSJ 2.0 (Draft 57)

Schedulable javax.realtime B.2

public javax.realtime.ProcessingGroupParameters
getProcessingGroupParameters()

Description
Gets a reference to the ProcessingGroupParameters object for this schedulable.

Returns
A reference to the current ProcessingGroupParameters object.
Deprecated since RTSJ 2.0

setProcessingGroupParameters(ProcessingGroupParameters)

Signature
public void
setProcessingGroupParameters(ProcessingGroupParameters group)

Description
Sets the ProcessingGroupParameters of this.

This change becomes effective under conditions determined by the scheduler
controlling the schedulable. For instance, the change may be immediate or it
may be delayed until the next release of the schedulable. See the documentation
for the scheduler for details.

Parameters
group—A ProcessingGroupParameters object which will take effect as determined

by the associated scheduler. When null, the default value is governed by the
associated scheduler (a new object is created when the default value is not
null). (See PriorityScheduler.)

Throws
IllegalArgumentException—when group is not compatible with the scheduler

for this schedulable object. Also when this schedulable may not use the heap
and group is located in heap memory.

IllegalAssignmentError—when this object cannot hold a reference to group or
group cannot hold a reference to this.

IllegalThreadStateException—when the schedulable’s scheduler prohibits the
changing of the processing group parameter at this time due to the state of
the schedulable object.

Deprecated since RTSJ 2.0; see ProcessingGroup

RTSJ 2.0 (Draft 57) 901

B Deprecated APIs Schedulable

setProcessingGroupParametersIfFeasible
(ProcessingGroupParameters)

Signature
public boolean
setProcessingGroupParametersIfFeasible(ProcessingGroupParameters group)

Description

This method first performs a feasibility analysis using the proposed parameter
object as replacement for the current parameter of this. When the resulting
system is feasible, this method replaces the current parameter of this with the
proposed one.

This change becomes effective under conditions determined by the scheduler
controlling the schedulable. For instance, the change may be immediate or it
may be delayed until the next release of the schedulable. See the documentation
for the scheduler for details.

This method does not require that the schedulable be in the feasibility set
before it is called. When it is not initially a member of the feasibility set it will
be added when the resulting system is feasible.

Parameters
group—The processing group parameters to use. When null, the default value is

governed by the associated scheduler (a new object is created when the default
value is not null). (See PriorityScheduler.)

Throws
IllegalArgumentException—when the parameter value is not compatible with

the schedulable’s scheduler. Also when this schedulable may not use the heap
and the specified parameter object is located in heap memory.

IllegalAssignmentError—when this cannot hold a reference to the specified
parameter object, or the parameter object cannot hold a reference to this.

IllegalThreadStateException—when the schedulable’s scheduler prohibits the
changing of the processing group parameter at this time due to the state of
the schedulable object.

Returns
true, when the resulting system is feasible and the changes are made. False, when

the resulting system is not feasible and no changes are made.

Deprecated as of RTSJ 2.0 The framework for feasibility analysis is inadequate

902 RTSJ 2.0 (Draft 57)

Schedulable javax.realtime B.2

addIfFeasible

Signature
public boolean
addIfFeasible()

Description
This method first performs a feasibility analysis with this added to the system.
When the resulting system is feasible, informs the scheduler and cooperating
facilities that this instance of Schedulable should be considered in feasibility
analysis until further notified. When the analysis shows that the system including
this would not be feasible, this method does not admit this to the feasibility
set.

When the object is already included in the feasibility set, does nothing.

Returns
true when inclusion of this in the feasibility set yields a feasible system, and false

otherwise. When true is returned then this is known to be in the feasibility
set. When false is returned, this was not added to the feasibility set, but it
may already have been present.

Available since RTSJ 1.0.1 Promoted to the Schedulable interface

Deprecated as of RTSJ 2.0, because the framework for feasibility anlaysis is
inadequate.

addToFeasibility

Signature
public boolean
addToFeasibility()

Description
Informs the scheduler and cooperating facilities that this instance of Schedulable
should be considered in feasibility analysis until further notified.

When the object is already included in the feasibility set, does nothing.

Returns
true, when the resulting system is feasible. False, when not.
Deprecated as of RTSJ 2.0 The framework for feasibility analysis is inadequate.

RTSJ 2.0 (Draft 57) 903

B Deprecated APIs Schedulable

removeFromFeasibility

Signature
public boolean
removeFromFeasibility()

Description
Informs the scheduler and cooperating facilities that this instance of Schedulable
should not be considered in feasibility analysis until it is further notified.

Returns
true when the removal was successful. false when the schedulable cannot be

removed from the scheduler’s feasibility set; e.g., the schedulable is not part of
the scheduler’s feasibility set.

Deprecated as of RTSJ 2.0 The framework for feasibility analysis is inadequate

setIfFeasible(ReleaseParameters, MemoryParameters)

Signature
public boolean
setIfFeasible(ReleaseParameters release,

MemoryParameters memory)
throws IllegalArgumentException,

IllegalAssignmentError,
IllegalThreadStateException

Description
This method first performs a feasibility analysis using the proposed parameter
objects as replacements for the current parameters of this. When the resulting
system is feasible, this method replaces the current parameters of this with the
proposed ones.

This change becomes effective under conditions determined by the scheduler
controlling the schedulable. For instance, the change may be immediate or it
may be delayed until the next release of the schedulable. See the documentation
for the scheduler for details.

This method does not require that the schedulable be in the feasibility set
before it is called. When it is not initially a member of the feasibility set it will
be added when the resulting system is feasible.

Parameters

904 RTSJ 2.0 (Draft 57)

Schedulable javax.realtime B.2

release—The release parameters to use. When null, the default value is governed
by the associated scheduler (a new object is created when the default value is
not null). (See PriorityScheduler.)

memory—The memory parameters to use. When null, the default value is governed
by the associated scheduler (a new object is created when the default value is
not null). (See PriorityScheduler.)

Throws
IllegalArgumentException—when the parameter values are not compatible with

the schedulable’s scheduler. Also when this schedulable may not use the heap
and any of the specified parameter objects are located in heap memory.

IllegalAssignmentError—when this cannot hold references to the specified
parameter objects, or the parameter objects cannot hold a reference to this.

IllegalThreadStateException—when the schedulable’s scheduler prohibits this
parameter change at this time due to the state of the schedulable.

Returns
true, when the resulting system is feasible and the changes are made. False, when

the resulting system is not feasible and no changes are made.
Available since RTSJ 1.0.1 Promoted to the Schedulable interface.

Deprecated as of RTSJ 2.0 The framework for feasibility analysis is inadequate

setIfFeasible(ReleaseParameters, MemoryParameters, Pro-
cessingGroupParameters)

Signature
public boolean
setIfFeasible(ReleaseParameters release,

MemoryParameters memory,
ProcessingGroupParameters group)

throws IllegalArgumentException,
IllegalAssignmentError,
IllegalThreadStateException

Description
This method first performs a feasibility analysis using the proposed parameter
objects as replacements for the current parameters of this. When the resulting
system is feasible, this method replaces the current parameters of this with the
proposed ones.

RTSJ 2.0 (Draft 57) 905

B Deprecated APIs Schedulable

This change becomes effective under conditions determined by the scheduler
controlling the schedulable. For instance, the change may be immediate or it
may be delayed until the next release of the schedulable. See the documentation
for the scheduler for details.

This method does not require that the schedulable be in the feasibility set
before it is called. When it is not initially a member of the feasibility set it will
be added when the resulting system is feasible.

Parameters
release—The release parameters to use. When null, the default value is governed

by the associated scheduler (a new object is created when the default value is
not null). (See PriorityScheduler.)

memory—The memory parameters to use. When null, the default value is governed
by the associated scheduler (a new object is created when the default value is
not null). (See PriorityScheduler.)

group—The processing group parameters to use. When null, the default value is
governed by the associated scheduler (a new object is created when the default
value is not null). (See PriorityScheduler.)

Throws
IllegalArgumentException—when the parameter values are not compatible with

the schedulable’s scheduler. Also when this schedulable may not use the heap
and any of the specified parameter objects are located in heap memory.

IllegalAssignmentError—when this cannot hold references to the specified
parameter objects, or the parameter objects cannot hold a reference to this.

IllegalThreadStateException—when the schedulable’s scheduler prohibits this
parameter change at this time due to the state of the schedulable.

Returns
true, when the resulting system is feasible and the changes are made. False, when

the resulting system is not feasible and no changes are made.

Available since RTSJ 1.0.1 Promoted to the Schedulable interface.

Deprecated as of RTSJ 2.0 The framework for feasibility analysis is inadequate

setIfFeasible(ReleaseParameters, ProcessingGroupParame-
ters)

Signature
public boolean

906 RTSJ 2.0 (Draft 57)

Schedulable javax.realtime B.2

setIfFeasible(ReleaseParameters release,
ProcessingGroupParameters group)

throws IllegalArgumentException,
IllegalAssignmentError,
IllegalThreadStateException

Description
This method first performs a feasibility analysis using the proposed parameter
objects as replacements for the current parameters of this. When the resulting
system is feasible, this method replaces the current parameters of this with the
proposed ones.

This change becomes effective under conditions determined by the scheduler
controlling the schedulable. For instance, the change may be immediate or it
may be delayed until the next release of the schedulable. See the documentation
for the scheduler for details.

This method does not require that the schedulable be in the feasibility set
before it is called. When it is not initially a member of the feasibility set it will
be added when the resulting system is feasible.

Parameters
release—The release parameters to use. When null, the default value is governed

by the associated scheduler (a new object is created when the default value is
not null). (See PriorityScheduler.)

group—The processing group parameters to use. When null, the default value is
governed by the associated scheduler (a new object is created when the default
value is not null). (See PriorityScheduler.)

Throws
IllegalArgumentException—when the parameter values are not compatible with

the schedulable’s scheduler. Also when this schedulable may not use the heap
and any of the specified parameter objects are located in heap memory.

IllegalAssignmentError—when this cannot hold references to the specified
parameter objects, or the parameter objects cannot hold a reference to this.

IllegalThreadStateException—when the schedulable’s scheduler prohibits this
parameter change at this time due to the state of the schedulable.

Returns
true, when the resulting system is feasible and the changes are made. False, when

the resulting system is not feasible and no changes are made.

Available since RTSJ 1.0.1 Promoted to the Schedulable interface.

RTSJ 2.0 (Draft 57) 907

B Deprecated APIs Schedulable

Deprecated as of RTSJ 2.0 The framework for feasibility analysis is inadequate

setIfFeasible(SchedulingParameters, ReleaseParameters,
MemoryParameters)

Signature
public boolean
setIfFeasible(SchedulingParameters scheduling,

ReleaseParameters release,
MemoryParameters memory)

throws IllegalArgumentException,
IllegalAssignmentError,
IllegalThreadStateException

Description

This method first performs a feasibility analysis using the proposed parameter
objects as replacements for the current parameters of this. When the resulting
system is feasible, this method replaces the current parameters of this with the
proposed ones.

This change becomes effective under conditions determined by the scheduler
controlling the schedulable. For instance, the change may be immediate or it
may be delayed until the next release of the schedulable. See the documentation
for the scheduler for details.

This method does not require that the schedulable be in the feasibility set
before it is called. When it is not initially a member of the feasibility set it will
be added when the resulting system is feasible.

Parameters
scheduling—The scheduling parameters to use. When null, the default value is

governed by the associated scheduler (a new object is created when the default
value is not null). (See PriorityScheduler.)

release—The release parameters to use. When null, the default value is governed
by the associated scheduler (a new object is created when the default value is
not null). (See PriorityScheduler.)

memory—The memory parameters to use. When null, the default value is governed
by the associated scheduler (a new object is created when the default value is
not null). (See PriorityScheduler.)

Throws

908 RTSJ 2.0 (Draft 57)

Schedulable javax.realtime B.2

IllegalArgumentException—when the parameter values are not compatible with
the schedulable’s scheduler. Also when this schedulable may not use the heap
and any of the specified parameter objects are located in heap memory.

IllegalAssignmentError—when this cannot hold references to the specified
parameter objects, or the parameter objects cannot hold a reference to this.

IllegalThreadStateException—when the schedulable’s scheduler prohibits this
parameter change at this time due to the state of the schedulable.

Returns
true, when the resulting system is feasible and the changes are made. False, when

the resulting system is not feasible and no changes are made.

Available since RTSJ 1.0.1

Deprecated as of RTSJ 2.0 The framework for feasibility analysis is inadequate

setIfFeasible(SchedulingParameters, ReleaseParameters,
MemoryParameters, ProcessingGroupParameters)

Signature
public boolean
setIfFeasible(SchedulingParameters scheduling,

ReleaseParameters release,
MemoryParameters memory,
ProcessingGroupParameters group)

Description
This method first performs a feasibility analysis using the proposed parameter
objects as replacements for the current parameters of this. When the resulting
system is feasible, this method replaces the current parameters of this with the
proposed ones.

This change becomes effective under conditions determined by the scheduler
controlling the schedulable. For instance, the change may be immediate or it
may be delayed until the next release of the schedulable. See the documentation
for the scheduler for details.

This method does not require that the schedulable be in the feasibility set
before it is called. When it is not initially a member of the feasibility set it will
be added when the resulting system is feasible.

Parameters

RTSJ 2.0 (Draft 57) 909

B Deprecated APIs Schedulable

scheduling—The scheduling parameters to use. When null, the default value is
governed by the associated scheduler (a new object is created when the default
value is not null). (See PriorityScheduler.)

release—The release parameters to use . When null, the default value is governed
by the associated scheduler (a new object is created when the default value is
not null). (See PriorityScheduler.)

memory—The memory parameters to use. When null, the default value is governed
by the associated scheduler (a new object is created when the default value is
not null). (See PriorityScheduler.)

group—The processing group parameters to use. When null, the default value is
governed by the associated scheduler (a new object is created when the default
value is not null). (See PriorityScheduler.)

Throws
IllegalArgumentException—when the parameter values are not compatible with

the schedulable’s scheduler. Also when this schedulable may not use the heap
and any of the specified parameter objects are located in heap memory.

IllegalAssignmentError—when this cannot hold references to the specified
parameter objects, or the parameter objects cannot hold a reference to this.

IllegalThreadStateException—when the schedulable’s scheduler prohibits this
parameter change at this time due to the state of the schedulable.

Returns
true, when the resulting system is feasible and the changes are made. False, when

the resulting system is not feasible and no changes are made.
Available since RTSJ 1.0.1

Deprecated as of RTSJ 2.0 The framework for feasibility analysis is inadequate

setMemoryParametersIfFeasible(MemoryParameters)

Signature
public boolean
setMemoryParametersIfFeasible(MemoryParameters memory)

Description
This method first performs a feasibility analysis using the proposed parameter
object as replacement for the current parameter of this. When the resulting
system is feasible, this method replaces the current parameter of this with the
proposed one.

910 RTSJ 2.0 (Draft 57)

Schedulable javax.realtime B.2

This change becomes effective under conditions determined by the scheduler
controlling the schedulable. For instance, the change may be immediate or it
may be delayed until the next release of the schedulable. See the documentation
for the scheduler for details.

This method does not require that the schedulable be in the feasibility set
before it is called. When it is not initially a member of the feasibility set it will
be added when the resulting system is feasible.

Parameters
memory—The memory parameters to use. When null, the default value is governed

by the associated scheduler (a new object is created when the default value is
not null). (See PriorityScheduler.)

Throws
IllegalArgumentException—when the parameter value is not compatible with

the schedulable’s scheduler. Also when this schedulable may not use the heap
and the specified parameter object is located in heap memory.

IllegalAssignmentError—when this cannot hold a reference to the specified
parameter object, or the parameter object cannot hold a reference to this.

IllegalThreadStateException—when the schedulable’s scheduler prohibits the
changing of the memory parameter at this time due to the state of the schedul-
able.

Returns
true, when the resulting system is feasible and the changes are made. False, when

the resulting system is not feasible and no changes are made.
Deprecated as of RTSJ 2.0 The framework for feasibility analysis is inadequate

setReleaseParametersIfFeasible(ReleaseParameters)

Signature
public boolean
setReleaseParametersIfFeasible(ReleaseParameters release)

Description
This method first performs a feasibility analysis using the proposed parameter
object as replacement for the current parameter of this. When the resulting
system is feasible, this method replaces the current parameter of this with the
proposed one.

This change becomes effective under conditions determined by the scheduler
controlling the schedulable. For instance, the change may be immediate or it

RTSJ 2.0 (Draft 57) 911

B Deprecated APIs Schedulable

may be delayed until the next release of the schedulable. See the documentation
for the scheduler for details.

This method does not require that the schedulable be in the feasibility set
before it is called. When it is not initially a member of the feasibility set it will
be added when the resulting system is feasible.

Parameters
release—The release parameters to use. When null, the default value is governed

by the associated scheduler (a new object is created when the default value is
not null). (See PriorityScheduler.)

Throws
IllegalArgumentException—when the parameter value is not compatible with

the schedulable’s scheduler. Also when this schedulable may not use the heap
and the specified parameter object is located in heap memory.

IllegalAssignmentError—when this cannot hold a reference to the specified
parameter object, or the parameter object cannot hold a reference to this.

IllegalThreadStateException—when the schedulable’s scheduler prohibits the
changing of the release parameter at this time due to the state of the schedulable.

Returns
true, when the resulting system is feasible and the changes are made. False, when

the resulting system is not feasible and no changes are made.

Deprecated as of RTSJ 2.0 The framework for feasibility analysis is inadequate.

setSchedulingParametersIfFeasible(SchedulingParameters)

Signature
public boolean
setSchedulingParametersIfFeasible(SchedulingParameters scheduling)

Description
This method first performs a feasibility analysis using the proposed parameter
object as replacement for the current parameter of this. When the resulting
system is feasible, this method replaces the current parameter of this with the
proposed one.

This change becomes effective under conditions determined by the scheduler
controlling the schedulable. For instance, the change may be immediate or it
may be delayed until the next release of the schedulable. See the documentation
for the scheduler for details.

912 RTSJ 2.0 (Draft 57)

AbsoluteTime javax.realtime B.2

This method does not require that the schedulable be in the feasibility set
before it is called. When it is not initially a member of the feasibility set it will
be added when the resulting system is feasible.

Parameters
scheduling—The scheduling parameters to use. When null, the default value is

governed by the associated scheduler (a new object is created when the default
value is not null). (See PriorityScheduler.)

Throws
IllegalArgumentException—when the parameter value is not compatible with

the schedulable’s scheduler. Also when this schedulable may not use the heap
and the specified parameter object is located in heap memory.

IllegalAssignmentError—when this cannot hold a reference to the specified
parameter object, or the parameter object cannot hold a reference to this.

IllegalThreadStateException—when the schedulable’s scheduler prohibits the
changing of the scheduling parameter at this time due to the state of the
schedulable object.

Returns
true, when the resulting system is feasible and the changes are made. False, when

the resulting system is not feasible and no changes are made.
Deprecated as of RTSJ 2.0 The framework for feasibility analysis is inadequate

B.2.2 Classes
B.2.2.1 AbsoluteTime

public class AbsoluteTime
The following elements of AbsoluteTime are deprecated. The required elements

are documented in Section 9.3.1.1 above.

B.2.2.1.1 Constructors

AbsoluteTime(long, int, Clock)

RTSJ 2.0 (Draft 57) 913

B Deprecated APIs AbsoluteTime

Signature
public
AbsoluteTime(long millis,

int nanos,
Clock clock)

throws IllegalArgumentException

Description
Superceeded by and equivalent to AbsoluteTime(long, int, Chronograph)

Available since RTSJ 1.0.1

Deprecated since version 2.0

Parameters
millis—The desired value for the millisecond component of this. The actual

value is the result of parameter normalization.
nanos—The desired value for the nanosecond component of this. The actual value

is the result of parameter normalization.
clock—The clock providing the association for the newly constructed object.

Throws
IllegalArgumentException—when there is an overflow in the millisecond compo-

nent when normalizing.

AbsoluteTime(AbsoluteTime, Clock)

Signature
public
AbsoluteTime(AbsoluteTime time,

Clock clock)
throws IllegalArgumentException

Description
Equivalent to AbsoluteTime(long, int, Chronograph) with the arguments
time.getMilliseconds(), time.getNanoseconds(), clock().

Available since RTSJ 1.0.1

914 RTSJ 2.0 (Draft 57)

AbsoluteTime javax.realtime B.2

Deprecated since version 2.0

Parameters
time—The AbsoluteTime object which is the source for the copy.
clock—The clock providing the association for the newly constructed object.

Throws
IllegalArgumentException—when the time parameter is null.

AbsoluteTime(Date, Clock)

Signature
public
AbsoluteTime(Date date,

Clock clock)
throws IllegalArgumentException

Description
Superceeded by and equivalent to AbsoluteTime(Date, Chronograph)

Available since RTSJ 1.0.1

Deprecated since version 2.0

Parameters
date—The java.util.Date representation of the time past the Epoch.
clock—The clock providing the association for the newly constructed object.

Throws
IllegalArgumentException—when the date parameter is null.

AbsoluteTime(Clock)

Signature
public
AbsoluteTime(Clock clock)

Description
Superceeded by and equivalent to AbsoluteTime(Chronograph)

RTSJ 2.0 (Draft 57) 915

B Deprecated APIs AbsoluteTime

Available since RTSJ 1.0.1

Deprecated since version 2.0

Parameters
clock—The clock providing the association for the newly constructed object.

B.2.2.1.2 Methods

absolute(Clock)

Signature
public javax.realtime.AbsoluteTime
absolute(Clock clock)

Description
Superceeded by and equivalent to absolute(Chronograph).

Parameters
clock—The clock parameter is used only as the new clock association with the

result, since no conversion is needed.
Returns
the copy of this in a newly allocated AbsoluteTime object, associated with the

clock parameter.
Deprecated since version 2.0

absolute(Clock, AbsoluteTime)

Signature
public javax.realtime.AbsoluteTime
absolute(Clock clock,

AbsoluteTime dest)

Description
Superceeded by and equivalent to absolute(Chronograph, AbsoluteTime).

Parameters

916 RTSJ 2.0 (Draft 57)

AbsoluteTime javax.realtime B.2

clock—The clock parameter is used only as the new clock association with the
result, since no conversion is needed.

dest—When dest is not null, the result is placed in it and returned.
Returns
the copy of this in dest when dest is not null, otherwise the result is returned

in a newly allocated object. It is associated with the clock parameter.
Deprecated since version 2.0

relative(Clock)

Signature
public javax.realtime.RelativeTime
relative(Clock clock)
throws ArithmeticException

Description
Superceeded by and equivalent to relative(Chronograph).

Parameters
clock—The instance of Clock used to convert the time of this into relative time,

and the new clock association for the result.
Throws

ArithmeticException—when the result does not fit in the normalized format.
Returns
the RelativeTime conversion in a newly allocated object, associated with the clock

parameter.
Deprecated since version 2.0

relative(Clock, RelativeTime)

Signature
public javax.realtime.RelativeTime
relative(Clock clock,

RelativeTime dest)
throws ArithmeticException

Description

RTSJ 2.0 (Draft 57) 917

B Deprecated APIs AperiodicParameters

Superceeded by and equivalent to relative(Chronograph, RelativeTime).

Parameters
clock—The instance of Clock used to convert the time of this into relative time,

and the new clock association for the result.
dest—When dest is not null, the result is placed in it and returned.

Throws
ArithmeticException—when the result does not fit in the normalized format.

Returns
the RelativeTime conversion in dest when dest is not null, otherwise the result is

returned in a newly allocated object. It is associated with the clock parameter.

Deprecated since version 2.0

B.2.2.2 AperiodicParameters

public class AperiodicParameters

The following elements of AperiodicParameters are deprecated. The required
elements are documented in Section 6.3.3.2 above.

B.2.2.2.1 Fields

arrivalTimeQueueOverflowExcept

public static final arrivalTimeQueueOverflowExcept

Description
Represents the “EXCEPT” policy for dealing with arrival time queue overflow.
Under this policy, when an arrival occurs and its time should be queued but the
queue already holds a number of times equal to the initial queue length defined
by this then the fire() method shall throw a ArrivalTimeQueueOverflowEx-
ception. Any other associated semantics are governed by the schedulers for the
schedulables using these aperiodic parameters. When the arrival is a result of a
happening to which the instance of AsyncEventHandler is bound then the arrival
time is ignored.

918 RTSJ 2.0 (Draft 57)

AperiodicParameters javax.realtime B.2

Available since RTSJ 1.0.1 Moved here from SporadicParameters.

Deprecated since RTSJ 2.0

arrivalTimeQueueOverflowIgnore

public static final arrivalTimeQueueOverflowIgnore

Description
Represents the “IGNORE” policy for dealing with arrival time queue overflow.
Under this policy, when an arrival occurs and its time should be queued, but the
queue already holds a number of times equal to the initial queue length defined
by this then the arrival is ignored. Any other associated semantics are governed
by the schedulers for the schedulables using these aperiodic parameters.

Available since RTSJ 1.0.1 Moved here from SporadicParameters.

Deprecated since RTSJ 2.0

arrivalTimeQueueOverflowReplace

public static final arrivalTimeQueueOverflowReplace

Description
Represents the “REPLACE” policy for dealing with arrival time queue overflow.
Under this policy, when an arrival occurs and should be queued but the queue
already holds a number of times equal to the initial queue length defined by
this then the information for this arrival replaces a previous arrival. Any other
associated semantics are governed by the schedulers for the schedulables using
these aperiodic parameters.

Available since RTSJ 1.0.1 Moved here from SporadicParameters.

Deprecated since RTSJ 2.0

arrivalTimeQueueOverflowSave

public static final arrivalTimeQueueOverflowSave

Description

RTSJ 2.0 (Draft 57) 919

B Deprecated APIs AperiodicParameters

Represents the “SAVE” policy for dealing with arrival time queue overflow. Under
this policy, when an arrival occurs and should be queued but the queue is full,
then the queue is lengthened and the arrival time is saved. Any other associated
semantics are governed by the schedulers for the schedulables using these aperiodic
parameters.

This policy does not update the “initial queue length;” it alters the actual
queue length. Since the SAVE policy grows the arrival time queue as necessary
for the SAVE policy, the initial queue length is only an optimization.

Available since RTSJ 1.0.1 Moved here from SporadicParameters.

Deprecated since RTSJ 2.0

B.2.2.2.2 Methods

getInitialArrivalTimeQueueLength

Signature
public int
getInitialArrivalTimeQueueLength()

Description
Gets the initial number of elements the arrival time queue can hold. This returns
the initial queue length currently associated with this parameter object. When
the overflow policy is SAVE the initial queue length may not be related to the
current queue lengths of schedulables associated with this parameter object.

Returns
The initial length of the queue.
Available since RTSJ 1.0.1 Moved here from SporadicParameters.

Deprecated since RTSJ 2.0 replaced by ReleaseParameters.
getInitialQueueLength().

setInitialArrivalTimeQueueLength(int)

Signature

920 RTSJ 2.0 (Draft 57)

AperiodicParameters javax.realtime B.2

public void
setInitialArrivalTimeQueueLength(int initial)

Description
Sets the initial number of elements the arrival time queue can hold without
lengthening the queue. The initial length of an arrival queue is set when the
schedulable using the queue is constructed, after that time changes in the initial
queue length are ignored.

Parameters
initial—The initial length of the queue.

Throws
IllegalArgumentException—when initial is less than zero.

Available since RTSJ 1.0.1 Moved here from SporadicParameters.

Deprecated since RTSJ 2.0 replaced by ReleaseParameters.
setInitialQueueLength(int initial).

getArrivalTimeQueueOverflowBehavior

Signature
public java.lang.String
getArrivalTimeQueueOverflowBehavior()

Description
Gets the behavior of the arrival time queue in the event of an overflow.

Returns
The behavior of the arrival time queue as a string.

Available since RTSJ 1.0.1 Moved from SporadicParameters

Deprecated since RTSJ 2.0 and replaced by ReleaseParameters.
getEventQueueOverflowPolicy

setArrivalTimeQueueOverflowBehavior(String)

Signature

RTSJ 2.0 (Draft 57) 921

B Deprecated APIs AperiodicParameters

public void
setArrivalTimeQueueOverflowBehavior(String behavior)

Description
Sets the behavior of the arrival time queue for the case where the insertion of a
new element makes the queue size greater than the initial size given when this
object was constructed.

Values of behavior are compared using reference equality (==) not value
equality (equals()).

Parameters
behavior—A string representing the behavior.

Throws
IllegalArgumentException—when behavior is not one of the final queue over-

flow behavior values defined in this class.

Available since RTSJ 1.0.1 Moved here from SporadicParameters.

Deprecated Since RTSJ 2.0

setIfFeasible(RelativeTime, RelativeTime)

Signature
public boolean
setIfFeasible(RelativeTime cost,

RelativeTime deadline)

Description
This method first performs a feasibility analysis using the new cost and deadline
as replacements for the matching attributes of this. When the resulting system is
feasible, the method replaces the current scheduling characteristics of this with
the new scheduling characteristics.

Parameters
cost—The proposed cost used to determine when any particular object exceeds

cost. When null, the default value is a new instance of RelativeTime(0,0).
deadline—The proposed deadline. When null, the default value is a new instance

of RelativeTime(Long.MAX_VALUE, 999999).
Throws

922 RTSJ 2.0 (Draft 57)

AsyncEvent javax.realtime B.2

IllegalArgumentException—when the time value of cost is less than zero, or
the time value of deadline is less than or equal to zero, or the values are
incompatible with the scheduler for any of the schedulables which are presently
using this parameter object.

IllegalAssignmentError—when cost or deadline cannot be stored in this.

Returns
false. Aperiodic parameters never yield a feasible system. (Subclasses of Aperiod-

icParameters, such as SporadicParameters, need not return false.)

Deprecated as of RTSJ 2.0

B.2.2.3 AsyncEvent

public class AsyncEvent

The following elements of AsyncEvent are deprecated. The required elements are
documented in Section 8.3.2.4 above.

B.2.2.3.1 Methods

handledBy(AsyncEventHandler)

Signature
public boolean
handledBy(AsyncEventHandler handler)

Description
Replaced by AsyncBaseEvent.handledBy(AsyncBaseEventHandler)

Parameters
handler—For querying its association with this.

Returns
true when and only when handler is associated with this event.

Deprecated since RTSJ 2.0

RTSJ 2.0 (Draft 57) 923

B Deprecated APIs AsyncEvent

addHandler(AsyncEventHandler)

Signature
public void
addHandler(AsyncEventHandler handler)

Description
Replaced by AsyncBaseEvent.addHandler(AsyncBaseEventHandler)

Parameters
handler—For adding to this.
Deprecated since RTSJ 2.0

setHandler(AsyncEventHandler)

Signature
public void
setHandler(AsyncEventHandler handler)

Description
Replaced by AsyncBaseEvent.setHandler(AsyncBaseEventHandler)

Parameters
handler—For becoming the sole handler for this.
Deprecated since RTSJ 2.0

removeHandler(AsyncEventHandler)

Signature
public void
removeHandler(AsyncEventHandler handler)

Description
Replaced by AsyncBaseEvent.removeHandler(AsyncBaseEventHandler)

Parameters
handler—For removal.
Deprecated since RTSJ 2.0

924 RTSJ 2.0 (Draft 57)

AsyncEvent javax.realtime B.2

bindTo(String)

Signature
public void
bindTo(String happening)

Description
Binds this to an external event, a happening. The meaningful values of happening
are implementation dependent. This instance of AsyncEvent is considered to
have occurred whenever the happening is triggered. More than one happening
can be bound to the same AsyncEvent. However, binding a happening to an
event has no effect when the happening is already bound to the event.

When an event, which is declared in a scoped memory area, is bound to an
external happening, the reference count of that scoped memory area is incremented
(as if there is an external realtime thread accessing the area). The reference count
is decremented when the event is unbound from the happening.

Parameters
happening—An implementation-dependent value that binds this instance of Async-

Event to a happening.
Throws

UnknownHappeningException—when the String value is not supported by the
implementation.

IllegalArgumentException—when happening is null.
Deprecated since RTSJ 2.0

unbindTo(String)

Signature
public void
unbindTo(String happening)

Description
Removes a binding to an external event, a happening. The meaningful values of
happening are implementation dependent. When the associated event is declared
in a scoped memory area, the reference count for the memory area is decremented.

Parameters
happening—An implementation-dependent value representing some external event

to which this instance of AsyncEvent is bound.

RTSJ 2.0 (Draft 57) 925

B Deprecated APIs AsyncEventHandler

Throws
UnknownHappeningException—when this instance of AsyncEvent is not bound

to the given happening or the given happening is not supported by the
implementation.

IllegalArgumentException—when happening is null.
Deprecated since RTSJ 2.0

B.2.2.4 AsyncEventHandler

public class AsyncEventHandler
The following elements of AsyncEventHandler are deprecated. The required

elements are documented in Section 8.3.2.5 above.

B.2.2.4.1 Constructors

AsyncEventHandler(SchedulingParameters, ReleaseParam-
eters, MemoryParameters, MemoryArea, ProcessingGroup-
Parameters, boolean, Runnable)

Signature
public
AsyncEventHandler(SchedulingParameters scheduling,

ReleaseParameters release,
MemoryParameters memory,
MemoryArea area,
ProcessingGroupParameters group,
boolean nonheap,
Runnable logic)

Description
Calling this constructor is equivalent to calling AsyncEventHand-
ler(SchedulingParameters, ReleaseParameters, MemoryParameters,
MemoryArea, ReleaseRunner, Runnable) with arguments (scheduling,
release, memory.clone(!nonheap), null, logic).

926 RTSJ 2.0 (Draft 57)

AsyncEventHandler javax.realtime B.2

Deprecated in version 2.0.

AsyncEventHandler(SchedulingParameters, ReleaseParam-
eters, MemoryParameters, MemoryArea, ProcessingGroup-
Parameters, Runnable)

Signature
public
AsyncEventHandler(SchedulingParameters scheduling,

ReleaseParameters release,
MemoryParameters memory,
MemoryArea area,
ProcessingGroupParameters group,
Runnable logic)

Description
Calling this constructor is equivalent to calling AsyncEventHand-
ler(SchedulingParameters, ReleaseParameters, MemoryParameters,
MemoryArea, ReleaseRunner, Runnable) with arguments (scheduling,
release, memory, area, group, null, logic).

Deprecated in version 2.0.

AsyncEventHandler(SchedulingParameters, ReleaseParam-
eters, MemoryParameters, MemoryArea, ProcessingGroup-
Parameters, boolean)

Signature
public
AsyncEventHandler(SchedulingParameters scheduling,

ReleaseParameters release,
MemoryParameters memory,
MemoryArea area,
ProcessingGroupParameters group,
boolean nonheap)

Description

RTSJ 2.0 (Draft 57) 927

B Deprecated APIs AsyncEventHandler

Calling this constructor is equivalent to calling AsyncEventHand-
ler(SchedulingParameters, ReleaseParameters, MemoryParameters,
MemoryArea, ReleaseRunner, Runnable) with arguments (scheduling,
release, memory, area, null, null).

Deprecated in version 2.0.

AsyncEventHandler(boolean, Runnable)

Signature
public
AsyncEventHandler(boolean nonheap,

Runnable logic)

Description
Calling this constructor is equivalent to calling AsyncEventHand-
ler(SchedulingParameters, ReleaseParameters, MemoryParameters,
MemoryArea, ReleaseRunner, Runnable) with arguments (null, null, new
MemoryParameters(!nonheap), null, null, logic).

Deprecated in version 2.0.

AsyncEventHandler(boolean)

Signature
public
AsyncEventHandler(boolean nonheap)

Description
Calling this constructor is equivalent to calling AsyncEventHand-
ler(SchedulingParameters, ReleaseParameters, MemoryParameters,
MemoryArea, ReleaseRunner, Runnable) with arguments (null, null, new
MemoryParameters(!nonheap), null, null, null).

Deprecated in version 2.0.

928 RTSJ 2.0 (Draft 57)

AsyncEventHandler javax.realtime B.2

B.2.2.4.2 Methods

getAndIncrementPendingFireCount

Signature
protected int
getAndIncrementPendingFireCount()

Description
This is an accessor method for fireCount. This method atomically increments,
by one, the value of fireCount and returns the value from before the increment.

Calling this method is effectively the same as firing an event that is associated
with this handler. When called from outside the handler’s control flow, call it is
effectively the same as firing an event that is associated with this handler, except
that it does not constitute a release event.

Throws
MITViolationException—when this AEH is controlled by sporadic scheduling

parameters under the base scheduler, the parameters specify the mitViola-
tionExcept policy, and this method would introduce a release that would
violate the specified minimum interarrival time.

ArrivalTimeQueueOverflowException—when this AEH is controlled by aperiodic
scheduling parameters under the base scheduler, the release parameters specify
the arrivalTimeQueueOverflowExcept policy, and this method would cause
the arrival time queue to overflow.

Returns
the value held by fireCount prior to incrementing it by one.
Deprecated as of RTSJ 2.0 Use ae.fire()

setScheduler(Scheduler, SchedulingParameters, ReleasePar-
ameters, MemoryParameters, ProcessingGroupParameters)

Signature
public void
setScheduler(Scheduler scheduler,

SchedulingParameters scheduling,

RTSJ 2.0 (Draft 57) 929

B Deprecated APIs AsyncEventHandler

ReleaseParameters release,
MemoryParameters memoryParameters,
ProcessingGroupParameters group)

Description
Sets the scheduler and associated parameter objects. The timing of the change
must be agreed between the scheduler currently associated with this schedulable,
and scheduler.

Parameters
scheduler—A reference to the scheduler that will manage the execution of this

schedulable. Null is not a permissible value.
scheduling—A reference to the SchedulingParameters which will be associated

with this. When null, the default value is governed by scheduler; a new
object is created when the default value is not null. See PriorityScheduler.

release—A reference to the ReleaseParameters which will be associated with
this. When null, the default value is governed by scheduler; a new object
is created when the default value is not null. (See PriorityScheduler.)

memoryParameters—A reference to the MemoryParameters which will be associated
with this. When null, the default value is governed by scheduler; a new
object is created when the default value is not null. (See PriorityScheduler.)

group—A reference to the ProcessingGroupParameters which will be associated
with this. When null, the default value is governed by scheduler; a new
object is created when the default value is not null. (See PriorityScheduler.)

Throws
IllegalArgumentException—when scheduler is null or the parameter values

are not compatible with scheduler. Also thrown when this schedulable may
not use the heap and scheduler, scheduling release, memoryParameters,
or group is located in heap memory.

IllegalAssignmentError—when this object cannot hold references to all the
parameter objects or the parameters cannot hold references to this.

SecurityException—when the caller is not permitted to set the scheduler for this
schedulable.

Deprecated since RTSJ 2.0

getProcessingGroupParameters

Signature

930 RTSJ 2.0 (Draft 57)

AsyncEventHandler javax.realtime B.2

public javax.realtime.ProcessingGroupParameters
getProcessingGroupParameters()

Description
Gets a reference to the ProcessingGroupParameters object for this schedulable.

Returns
A reference to the current ProcessingGroupParameters object.
Deprecated since RTSJ 2.0

setProcessingGroupParameters(ProcessingGroupParameters)

Signature
public void
setProcessingGroupParameters(ProcessingGroupParameters group)

Description
Sets the ProcessingGroupParameters of this.

This change becomes effective under conditions determined by the scheduler
controlling the schedulable. For instance, the change may be immediate or it
may be delayed until the next release of the schedulable. See the documentation
for the scheduler for details.

Parameters
group—A ProcessingGroupParameters object which will take effect as determined

by the associated scheduler. When null, the default value is governed by the
associated scheduler (a new object is created when the default value is not
null). (See PriorityScheduler.)

Throws
IllegalArgumentException—when group is not compatible with the scheduler

for this schedulable object. Also when this schedulable may not use the heap
and group is located in heap memory.

IllegalAssignmentError—when this object cannot hold a reference to group or
group cannot hold a reference to this.

IllegalThreadStateException—when the schedulable’s scheduler prohibits the
changing of the processing group parameter at this time due to the state of
the schedulable object.

Deprecated since RTSJ 2.0

RTSJ 2.0 (Draft 57) 931

B Deprecated APIs AsyncEventHandler

addToFeasibility

Signature
public boolean
addToFeasibility()

Description

Informs the scheduler and cooperating facilities that this instance of Schedulable
should be considered in feasibility analysis until further notified.

When the object is already included in the feasibility set, does nothing.

Returns
true, when the resulting system is feasible. False, when not.

Deprecated as of RTSJ 2.0 The framework for feasibility analysis is inadequate

addIfFeasible

Signature
public boolean
addIfFeasible()

Description

This method first performs a feasibility analysis with this added to the system.
When the resulting system is feasible, informs the scheduler and cooperating
facilities that this instance of Schedulable should be considered in feasibility
analysis until further notified. When the analysis shows that the system including
this would not be feasible, this method does not admit this to the feasibility
set.

When the object is already included in the feasibility set, does nothing.

Returns
true when inclusion of this in the feasibility set yields a feasible system, and false

otherwise. When true is returned then this is known to be in the feasibility
set. When false is returned, this was not added to the feasibility set, but it
may already have been present.

Deprecated as of RTSJ 2.0 The framework for feasibility analysis is inadequate

932 RTSJ 2.0 (Draft 57)

AsyncEventHandler javax.realtime B.2

removeFromFeasibility

Signature
public boolean
removeFromFeasibility()

Description
Informs the scheduler and cooperating facilities that this instance of Schedulable
should not be considered in feasibility analysis until it is further notified.

Returns
true when the removal was successful. false when the schedulable cannot be

removed from the scheduler’s feasibility set; e.g., the schedulable is not part of
the scheduler’s feasibility set.

Deprecated as of RTSJ 2.0 The framework for feasibility analysis is inadequate

setIfFeasible(ReleaseParameters, MemoryParameters)

Signature
public boolean
setIfFeasible(ReleaseParameters release,

MemoryParameters memory)

Description
This method first performs a feasibility analysis using the proposed parameter
objects as replacements for the current parameters of this. When the resulting
system is feasible, this method replaces the current parameters of this with the
proposed ones.

This change becomes effective under conditions determined by the scheduler
controlling the schedulable. For instance, the change may be immediate or it
may be delayed until the next release of the schedulable. See the documentation
for the scheduler for details.

This method does not require that the schedulable be in the feasibility set
before it is called. When it is not initially a member of the feasibility set it will
be added when the resulting system is feasible.

Parameters
release—The release parameters to use. When null, the default value is governed

by the associated scheduler (a new object is created when the default value is
not null). (See PriorityScheduler.)

RTSJ 2.0 (Draft 57) 933

B Deprecated APIs AsyncEventHandler

memory—The memory parameters to use. When null, the default value is governed
by the associated scheduler (a new object is created when the default value is
not null). (See PriorityScheduler.)

Throws
IllegalArgumentException—when the parameter values are not compatible with

the schedulable’s scheduler. Also when this schedulable may not use the heap
and any of the specified parameter objects are located in heap memory.

IllegalAssignmentError—when this cannot hold references to the specified
parameter objects, or the parameter objects cannot hold a reference to this.

IllegalThreadStateException—when the schedulable’s scheduler prohibits this
parameter change at this time due to the state of the schedulable.

Returns
true, when the resulting system is feasible and the changes are made. False, when

the resulting system is not feasible and no changes are made.
Deprecated as of RTSJ 2.0 The framework for feasibility analysis is inadequate

setIfFeasible(SchedulingParameters, ReleaseParameters,
MemoryParameters)

Signature
public boolean
setIfFeasible(SchedulingParameters scheduling,

ReleaseParameters release,
MemoryParameters memory)

Description
This method first performs a feasibility analysis using the proposed parameter
objects as replacements for the current parameters of this. When the resulting
system is feasible, this method replaces the current parameters of this with the
proposed ones.

This change becomes effective under conditions determined by the scheduler
controlling the schedulable. For instance, the change may be immediate or it
may be delayed until the next release of the schedulable. See the documentation
for the scheduler for details.

This method does not require that the schedulable be in the feasibility set
before it is called. When it is not initially a member of the feasibility set it will
be added when the resulting system is feasible.

Parameters

934 RTSJ 2.0 (Draft 57)

AsyncEventHandler javax.realtime B.2

scheduling—The scheduling parameters to use. When null, the default value is
governed by the associated scheduler (a new object is created when the default
value is not null). (See PriorityScheduler.)

release—The release parameters to use. When null, the default value is governed
by the associated scheduler (a new object is created when the default value is
not null). (See PriorityScheduler.)

memory—The memory parameters to use. When null, the default value is governed
by the associated scheduler (a new object is created when the default value is
not null). (See PriorityScheduler.)

Throws
IllegalArgumentException—when the parameter values are not compatible with

the schedulable’s scheduler. Also when this schedulable may not use the heap
and any of the specified parameter objects are located in heap memory.

IllegalAssignmentError—when this cannot hold references to the specified
parameter objects, or the parameter objects cannot hold a reference to this.

IllegalThreadStateException—when the schedulable’s scheduler prohibits this
parameter change at this time due to the state of the schedulable.

Returns
true, when the resulting system is feasible and the changes are made. False, when

the resulting system is not feasible and no changes are made.
Deprecated as of RTSJ 2.0 The framework for feasibility analysis is inadequate

setIfFeasible(ReleaseParameters, MemoryParameters, Pro-
cessingGroupParameters)

Signature
public boolean
setIfFeasible(ReleaseParameters release,

MemoryParameters memory,
ProcessingGroupParameters group)

Description
This method first performs a feasibility analysis using the proposed parameter
objects as replacements for the current parameters of this. When the resulting
system is feasible, this method replaces the current parameters of this with the
proposed ones.

This change becomes effective under conditions determined by the scheduler
controlling the schedulable. For instance, the change may be immediate or it

RTSJ 2.0 (Draft 57) 935

B Deprecated APIs AsyncEventHandler

may be delayed until the next release of the schedulable. See the documentation
for the scheduler for details.

This method does not require that the schedulable be in the feasibility set
before it is called. When it is not initially a member of the feasibility set it will
be added when the resulting system is feasible.

Parameters
release—The release parameters to use. When null, the default value is governed

by the associated scheduler (a new object is created when the default value is
not null). (See PriorityScheduler.)

memory—The memory parameters to use. When null, the default value is governed
by the associated scheduler (a new object is created when the default value is
not null). (See PriorityScheduler.)

group—The processing group parameters to use. When null, the default value is
governed by the associated scheduler (a new object is created when the default
value is not null). (See PriorityScheduler.)

Throws
IllegalArgumentException—when the parameter values are not compatible with

the schedulable’s scheduler. Also when this schedulable may not use the heap
and any of the specified parameter objects are located in heap memory.

IllegalAssignmentError—when this cannot hold references to the specified
parameter objects, or the parameter objects cannot hold a reference to this.

IllegalThreadStateException—when the schedulable’s scheduler prohibits this
parameter change at this time due to the state of the schedulable.

Returns
true, when the resulting system is feasible and the changes are made. False, when

the resulting system is not feasible and no changes are made.
Deprecated as of RTSJ 2.0 The framework for feasibility analysis is inadequate

setIfFeasible(SchedulingParameters, ReleaseParameters,
MemoryParameters, ProcessingGroupParameters)

Signature
public boolean
setIfFeasible(SchedulingParameters scheduling,

ReleaseParameters release,
MemoryParameters memory,
ProcessingGroupParameters group)

936 RTSJ 2.0 (Draft 57)

AsyncEventHandler javax.realtime B.2

Description
This method first performs a feasibility analysis using the proposed parameter
objects as replacements for the current parameters of this. When the resulting
system is feasible, this method replaces the current parameters of this with the
proposed ones.

This change becomes effective under conditions determined by the scheduler
controlling the schedulable. For instance, the change may be immediate or it
may be delayed until the next release of the schedulable. See the documentation
for the scheduler for details.

This method does not require that the schedulable be in the feasibility set
before it is called. When it is not initially a member of the feasibility set it will
be added when the resulting system is feasible.

Parameters
scheduling—The scheduling parameters to use. When null, the default value is

governed by the associated scheduler (a new object is created when the default
value is not null). (See PriorityScheduler.)

release—The release parameters to use . When null, the default value is governed
by the associated scheduler (a new object is created when the default value is
not null). (See PriorityScheduler.)

memory—The memory parameters to use. When null, the default value is governed
by the associated scheduler (a new object is created when the default value is
not null). (See PriorityScheduler.)

group—The processing group parameters to use. When null, the default value is
governed by the associated scheduler (a new object is created when the default
value is not null). (See PriorityScheduler.)

Throws
IllegalArgumentException—when the parameter values are not compatible with

the schedulable’s scheduler. Also when this schedulable may not use the heap
and any of the specified parameter objects are located in heap memory.

IllegalAssignmentError—when this cannot hold references to the specified
parameter objects, or the parameter objects cannot hold a reference to this.

IllegalThreadStateException—when the schedulable’s scheduler prohibits this
parameter change at this time due to the state of the schedulable.

Returns
true, when the resulting system is feasible and the changes are made. False, when

the resulting system is not feasible and no changes are made.

Deprecated as of RTSJ 2.0 The framework for feasibility analysis is inadequate

RTSJ 2.0 (Draft 57) 937

B Deprecated APIs AsyncEventHandler

setReleaseParametersIfFeasible(ReleaseParameters)

Signature
public boolean
setReleaseParametersIfFeasible(ReleaseParameters release)

Description
This method first performs a feasibility analysis using the proposed parameter
object as replacement for the current parameter of this. When the resulting
system is feasible, this method replaces the current parameter of this with the
proposed one.

This change becomes effective under conditions determined by the scheduler
controlling the schedulable. For instance, the change may be immediate or it
may be delayed until the next release of the schedulable. See the documentation
for the scheduler for details.

This method does not require that the schedulable be in the feasibility set
before it is called. When it is not initially a member of the feasibility set it will
be added when the resulting system is feasible.

Parameters
release—The release parameters to use. When null, the default value is governed

by the associated scheduler (a new object is created when the default value is
not null). (See PriorityScheduler.)

Throws
IllegalArgumentException—when the parameter value is not compatible with

the schedulable’s scheduler. Also when this schedulable may not use the heap
and the specified parameter object is located in heap memory.

IllegalAssignmentError—when this cannot hold a reference to the specified
parameter object, or the parameter object cannot hold a reference to this.

IllegalThreadStateException—when the schedulable’s scheduler prohibits the
changing of the release parameter at this time due to the state of the schedulable.

Returns
true, when the resulting system is feasible and the changes are made. False, when

the resulting system is not feasible and no changes are made.
Deprecated as of RTSJ 2.0 The framework for feasibility analysis is inadequate

setProcessingGroupParametersIfFeasible
(ProcessingGroupParameters)

938 RTSJ 2.0 (Draft 57)

AsyncEventHandler javax.realtime B.2

Signature
public boolean
setProcessingGroupParametersIfFeasible(ProcessingGroupParameters group)

Description
This method first performs a feasibility analysis using the proposed parameter
object as replacement for the current parameter of this. When the resulting
system is feasible, this method replaces the current parameter of this with the
proposed one.

This change becomes effective under conditions determined by the scheduler
controlling the schedulable. For instance, the change may be immediate or it
may be delayed until the next release of the schedulable. See the documentation
for the scheduler for details.

This method does not require that the schedulable be in the feasibility set
before it is called. When it is not initially a member of the feasibility set it will
be added when the resulting system is feasible.

Parameters
group—The processing group parameters to use. When null, the default value is

governed by the associated scheduler (a new object is created when the default
value is not null). (See PriorityScheduler.)

Throws
IllegalArgumentException—when the parameter value is not compatible with

the schedulable’s scheduler. Also when this schedulable may not use the heap
and the specified parameter object is located in heap memory.

IllegalAssignmentError—when this cannot hold a reference to the specified
parameter object, or the parameter object cannot hold a reference to this.

IllegalThreadStateException—when the schedulable’s scheduler prohibits the
changing of the processing group parameter at this time due to the state of
the schedulable object.

Returns
true, when the resulting system is feasible and the changes are made. False, when

the resulting system is not feasible and no changes are made.
Deprecated as of RTSJ 2.0 The framework for feasibility analysis is inadequate

setIfFeasible(ReleaseParameters, ProcessingGroupParame-
ters)

Signature

RTSJ 2.0 (Draft 57) 939

B Deprecated APIs AsyncEventHandler

public boolean
setIfFeasible(ReleaseParameters release,

ProcessingGroupParameters group)

Description
This method first performs a feasibility analysis using the proposed parameter
objects as replacements for the current parameters of this. When the resulting
system is feasible, this method replaces the current parameters of this with the
proposed ones.

This change becomes effective under conditions determined by the scheduler
controlling the schedulable. For instance, the change may be immediate or it
may be delayed until the next release of the schedulable. See the documentation
for the scheduler for details.

This method does not require that the schedulable be in the feasibility set
before it is called. When it is not initially a member of the feasibility set it will
be added when the resulting system is feasible.

Parameters
release—The release parameters to use. When null, the default value is governed

by the associated scheduler (a new object is created when the default value is
not null). (See PriorityScheduler.)

group—The processing group parameters to use. When null, the default value is
governed by the associated scheduler (a new object is created when the default
value is not null). (See PriorityScheduler.)

Throws
IllegalArgumentException—when the parameter values are not compatible with

the schedulable’s scheduler. Also when this schedulable may not use the heap
and any of the specified parameter objects are located in heap memory.

IllegalAssignmentError—when this cannot hold references to the specified
parameter objects, or the parameter objects cannot hold a reference to this.

IllegalThreadStateException—when the schedulable’s scheduler prohibits this
parameter change at this time due to the state of the schedulable.

Returns
true, when the resulting system is feasible and the changes are made. False, when

the resulting system is not feasible and no changes are made.
Deprecated as of RTSJ 2.0 The framework for feasibility analysis is inadequate

setMemoryParametersIfFeasible(MemoryParameters)

940 RTSJ 2.0 (Draft 57)

AsyncEventHandler javax.realtime B.2

Signature
public boolean
setMemoryParametersIfFeasible(MemoryParameters memory)

Description
This method first performs a feasibility analysis using the proposed parameter
object as replacement for the current parameter of this. When the resulting
system is feasible, this method replaces the current parameter of this with the
proposed one.

This change becomes effective under conditions determined by the scheduler
controlling the schedulable. For instance, the change may be immediate or it
may be delayed until the next release of the schedulable. See the documentation
for the scheduler for details.

This method does not require that the schedulable be in the feasibility set
before it is called. When it is not initially a member of the feasibility set it will
be added when the resulting system is feasible.

Parameters
memory—The memory parameters to use. When null, the default value is governed

by the associated scheduler (a new object is created when the default value is
not null). (See PriorityScheduler.)

Throws
IllegalArgumentException—when the parameter value is not compatible with

the schedulable’s scheduler. Also when this schedulable may not use the heap
and the specified parameter object is located in heap memory.

IllegalAssignmentError—when this cannot hold a reference to the specified
parameter object, or the parameter object cannot hold a reference to this.

IllegalThreadStateException—when the schedulable’s scheduler prohibits the
changing of the memory parameter at this time due to the state of the schedul-
able.

Returns
true, when the resulting system is feasible and the changes are made. False, when

the resulting system is not feasible and no changes are made.

Deprecated as of RTSJ 2.0 The framework for feasibility analysis is inadequate

setSchedulingParametersIfFeasible(SchedulingParameters)

Signature

RTSJ 2.0 (Draft 57) 941

B Deprecated APIs BoundAsyncEventHandler

public boolean
setSchedulingParametersIfFeasible(SchedulingParameters scheduling)

Description
This method first performs a feasibility analysis using the proposed parameter
object as replacement for the current parameter of this. When the resulting
system is feasible, this method replaces the current parameter of this with the
proposed one.

This change becomes effective under conditions determined by the scheduler
controlling the schedulable. For instance, the change may be immediate or it
may be delayed until the next release of the schedulable. See the documentation
for the scheduler for details.

This method does not require that the schedulable be in the feasibility set
before it is called. When it is not initially a member of the feasibility set it will
be added when the resulting system is feasible.

Parameters
scheduling—The scheduling parameters to use. When null, the default value is

governed by the associated scheduler (a new object is created when the default
value is not null). (See PriorityScheduler.)

Throws
IllegalArgumentException—when the parameter value is not compatible with

the schedulable’s scheduler. Also when this schedulable may not use the heap
and the specified parameter object is located in heap memory.

IllegalAssignmentError—when this cannot hold a reference to the specified
parameter object, or the parameter object cannot hold a reference to this.

IllegalThreadStateException—when the schedulable’s scheduler prohibits the
changing of the scheduling parameter at this time due to the state of the
schedulable object.

Returns
true, when the resulting system is feasible and the changes are made. False, when

the resulting system is not feasible and no changes are made.
Deprecated as of RTSJ 2.0 The framework for feasibility analysis is inadequate

B.2.2.5 BoundAsyncEventHandler

public class BoundAsyncEventHandler

942 RTSJ 2.0 (Draft 57)

BoundAsyncEventHandler javax.realtime B.2

The following elements of BoundAsyncEventHandler are deprecated. The required
elements are documented in Section 8.3.2.11 above.

B.2.2.5.1 Constructors

BoundAsyncEventHandler(SchedulingParameters, Release-
Parameters, MemoryParameters, MemoryArea, Processing-
GroupParameters, boolean, Runnable)

Signature
public
BoundAsyncEventHandler(SchedulingParameters scheduling,

ReleaseParameters release,
MemoryParameters memory,
MemoryArea area,
ProcessingGroupParameters group,
boolean nonheap,
Runnable logic)

Description

Creates an instance of BoundAsyncEventHandler with the specified parameters.
The newly-created handler inherits the affinity of its creator.

Deprecated since RTSJ 2.0

Parameters
scheduling—A SchedulingParameters object which will be associated with the

constructed instance. When null, and the creator is not an instance of Sched-
ulable, a SchedulingParameters object is created which has the default
SchedulingParameters for the scheduler associated with the current thread.
When null, and the creator is a schedulable object, the SchedulingParamet-
ers are inherited from the current schedulable (a new SchedulingParameters
object is cloned).

release—A ReleaseParameters object which will be associated with the con-
structed instance. When null, this will have default ReleaseParameters for
the BAEH’s scheduler.

RTSJ 2.0 (Draft 57) 943

B Deprecated APIs Clock

memory—A MemoryParameters object which will be associated with the constructed
instance. When null, this will have no MemoryParameters.

area—The MemoryArea for this. When null, the memory area will be that of the
current thread/schedulable.

group—A ProcessingGroupParameters object which will be associated with the
constructed instance. When null, this will not be associated with any
processing group.

logic—The Runnable object whose run() method is executed by
AsyncEventHandler.handleAsyncEvent(). When null, the default
handleAsyncEvent() method invokes nothing.

nonheap—When true, the code executed by this handler may not reference or store
objects in HeapMemory; otherwise, that code may do so. When true and the
current handler tries to reference or store objects in HeapMemory or enter the
HeapMemory a IllegalArgumentException is thrown.

Throws
IllegalArgumentException—when nonheap is true and logic, any parameter

object, or this is in heap memory. Also when noheap is true and area is
heap memory.

IllegalAssignmentError—when the new AsyncEventHandler instance cannot
hold a reference to non-null values of scheduling release memory and group,
or when those parameters cannot hold a reference to the new AsyncEventHand-
ler. Also when the new AsyncEventHandler instance cannot hold a reference
to non-null values of area and logic.

B.2.2.6 Clock

public abstract class Clock
The following elements of Clock are deprecated. The required elements are

documented in Section 10.3.2.1 above.

B.2.2.6.1 Methods

setResolution(RelativeTime)

Signature

944 RTSJ 2.0 (Draft 57)

Clock javax.realtime B.2

public abstract void
setResolution(RelativeTime resolution)

Description
Sets the resolution of this. For some hardware clocks setting resolution is
impossible and when this method is called on those clocks, then an Unsupporte-
dOperationException is thrown.

Parameters
resolution—The new resolution of this, when the requested value is supported

by this clock. When resolution is smaller than the minimum resolution
supported by this clock then it throws IllegalArgumentException. When
the requested resolution is not available and it is larger than the minimum
resolution, then the clock will be set to the closest resolution that the clock
supports, via truncation. The value of the resolution parameter is not altered.
The clock association of the resolution parameter is ignored.

Throws
IllegalArgumentException—when resolution is null, or when the requested

resolution is smaller than the minimum resolution supported by this clock.
UnsupportedOperationException—when the clock does not support setting its

resolution.
Deprecated since RTSJ 2.0

getResolution

Signature
public final javax.realtime.RelativeTime
getResolution()

Description
Gets the resolution of the clock, the nominal interval between ticks.

Returns
A newly allocated RelativeTime object representing the resolution of this. The

returned object is associated with this clock.
Deprecated since RTSJ 2.0

See Section getDrivePrecision

RTSJ 2.0 (Draft 57) 945

B Deprecated APIs HighResolutionTime

See Section getQueryPrecision

B.2.2.7 HighResolutionTime

public abstract class HighResolutionTime<T extends HighResolutionTime<T>>

The following elements of HighResolutionTime are deprecated. The required
elements are documented in Section 9.3.1.2 above.

B.2.2.7.1 Methods

absolute(Clock, AbsoluteTime)

Signature
public abstract javax.realtime.AbsoluteTime
absolute(Clock clock,

AbsoluteTime dest)

Description
Equivalent to and superseded by absolute(Chronograph, AbsoluteTime).
When dest is not null, the result is placed in it and returned. Otherwise,
a new object is allocated for the result. The clock association of the result is
the clock passed as a parameter. See the subclass comments for more specific
information.

Parameters
clock—The instance of Clock used to convert the time of this into absolute time,

and the new clock association for the result.
dest—when dest is not null, the result is placed it and returned.

Returns
The AbsoluteTime conversion in dest when dest is not null, otherwise the result is

returned in a newly allocated object. It is associated with the clock parameter.

Deprecated since version 2.0

946 RTSJ 2.0 (Draft 57)

HighResolutionTime javax.realtime B.2

absolute(Clock)

Signature
public abstract javax.realtime.AbsoluteTime
absolute(Clock clock)

Description

Equivalent to and superseded by absolute(Chronograph).

Parameters
clock—The instance of Clock used to convert the time of this into absolute time,

and the new clock association for the result.
Returns
the AbsoluteTime conversion in a newly allocated object, associated with the clock

parameter.

Deprecated since version 2.0

relative(Clock, RelativeTime)

Signature
public abstract javax.realtime.RelativeTime
relative(Clock clock,

RelativeTime dest)

Description

Equivalent to and superseded by relative(Chronograph, RelativeTime)

Parameters
clock—The instance of Clock used to convert the time of this into relative time,

and the new clock association for the result.
dest—When dest is not null, the result is placed in it and returned.

Returns
the RelativeTime conversion in dest when dest is not null, otherwise the result

is returned in a newly allocated object.

Deprecated since version 2.0

RTSJ 2.0 (Draft 57) 947

B Deprecated APIs IllegalAssignmentError

relative(Clock)

Signature
public abstract javax.realtime.RelativeTime
relative(Clock clock)

Description
Equivalent to and superseded by relative(Chronograph)

Parameters
clock—The instance of Clock used to convert the time of this into relative time,

and the new clock association for the result.
Returns
the RelativeTime conversion in a newly allocated object, associated with the clock

parameter.

Deprecated since version 2.0

B.2.2.8 IllegalAssignmentError

public class IllegalAssignmentError

The following elements of IllegalAssignmentError are deprecated. The required
elements are documented in Section 15.2.2.2 above.

B.2.2.8.1 Constructors

IllegalAssignmentError(String)

Signature
public
IllegalAssignmentError(String description)

Description
A descriptive constructor for IllegalAssignmentError.

948 RTSJ 2.0 (Draft 57)

ImmortalPhysicalMemory javax.realtime B.2

Deprecated since RTSJ 2.0; application code should use get() instead.

Parameters
description—The reason for throwing the error.

B.2.2.9 ImmortalPhysicalMemory

public class ImmortalPhysicalMemory
Inheritance
java.lang.Object
MemoryArea
PerennialMemory
ImmortalPhysicalMemory

Description
An instance of ImmortalPhysicalMemory allows objects to be allocated from a
range of physical memory with particular attributes, determined by their memory
type. This memory area has the same restrictive set of assignment rules as
ImmortalMemory memory areas, and may be used in any execution context where
ImmortalMemory is appropriate.

No provision is made for sharing object in ImmortalPhysicalMemory with
entities outside the JVM that creates them, and, while the memory backing an
instance of ImmortalPhysicalMemory could be shared by multiple JVMs, the
class does not support such sharing.

Methods from ImmortalPhysicalMemory should be overridden only by meth-
ods that use super.

Available since RTSJ 2.0 extends PerennialMemory instead of MemoryArea
directly.

Deprecated since RTSJ 2.0

B.2.2.9.1 Constructors

ImmortalPhysicalMemory(Object, long, long, Runnable)

RTSJ 2.0 (Draft 57) 949

B Deprecated APIs ImmortalPhysicalMemory

Signature
public
ImmortalPhysicalMemory(Object type,

long base,
long size,
Runnable logic)

Description
Creates an instance with the given parameters.

Parameters
type—An instance of Object or an array of objects representing the type of memory

required (e.g., dma, shared) - used to define the base address and control the
mapping. When the required memory has more than one attribute type may
be an array of objects. When type is null or a reference to an array with no
entries, any type of memory is acceptable. Note that type values are compared
by reference (==), not by value (equals).

base—The physical memory address of the area.
size—The size of the area in bytes.
logic—The run() method of this object will be called whenever MemoryArea.

enter() is called. When logic is null, logic must be supplied when the
memory area is entered.

Throws
SecurityException—when the application doesn’t have permissions to access

physical memory or the given type of memory.
OffsetOutOfBoundsException—when the base address is invalid.
SizeOutOfBoundsException—when size extends into an invalid range of memory.
UnsupportedPhysicalMemoryException—when the underlying hardware does not

support the given type, or when no matching PhysicalMemoryTypeFilter has
been registered with the PhysicalMemoryManager.

MemoryTypeConflictException—when the specified base does not point to mem-
ory that matches the requested type, or when type specifies incompatible
memory attributes.

IllegalArgumentException—when size is negative. IllegalArgumentExcep-
tion may also be when base plus size would be greater than the maximum
physical address supported by the processor.

MemoryInUseException—when the specified memory is already in use.
OutOfMemoryError—when there is insufficient memory for the ImmortalPhysi-

calMemory object or for the backing memory.

950 RTSJ 2.0 (Draft 57)

ImmortalPhysicalMemory javax.realtime B.2

IllegalAssignmentError—when storing logic in this would violate the assign-
ment rules.

ImmortalPhysicalMemory(Object, long, SizeEstimator, Run-
nable)

Signature
public
ImmortalPhysicalMemory(Object type,

long base,
SizeEstimator size,
Runnable logic)

Description

Creates an instance with the given parameters.

Parameters
type—An instance of Object or an array of objects representing the type of memory

required (e.g., dma, shared) - used to define the base address and control the
mapping. When the required memory has more than one attribute type may
be an array of objects. When type is null or a reference to an array with no
entries, any type of memory is acceptable. Note that type values are compared
by reference (==), not by value (equals).

base—The physical memory address of the area.
size—A size estimator for this memory area.
logic—The run() method of this object will be called whenever MemoryArea.

enter() is called. When logic is null, logic must be supplied when the
memory area is entered.

Throws
SecurityException—when the application doesn’t have permissions to access

physical memory or the given type of memory.
OffsetOutOfBoundsException—when the base address is invalid.
SizeOutOfBoundsException—when the size estimate from size extends into an

invalid range of memory.
UnsupportedPhysicalMemoryException—when the underlying hardware does not

support the given type, or when no matching PhysicalMemoryTypeFilter has
been registered with the PhysicalMemoryManager.

RTSJ 2.0 (Draft 57) 951

B Deprecated APIs ImmortalPhysicalMemory

MemoryTypeConflictException—when the specified base does not point to mem-
ory that matches the requested type, or when type specifies incompatible
memory attributes.

IllegalArgumentException—when size is null, or size.getEstimate() is neg-
ative. IllegalArgumentException may also be when base plus the size indi-
cated by size would be greater than the maximum physical address supported
by the processor.

MemoryInUseException—when the specified memory is already in use.
OutOfMemoryError—when there is insufficient memory for the ImmortalPhysi-

calMemory object or for the backing memory.
IllegalAssignmentError—when storing logic in this would violate the assign-

ment rules.

ImmortalPhysicalMemory(Object, long, Runnable)

Signature
public
ImmortalPhysicalMemory(Object type,

long size,
Runnable logic)

Description
Creates an instance with the given parameters.

Parameters
type—An instance of Object or an array of objects representing the type of memory

required (e.g., dma, shared) - used to define the base address and control the
mapping. When the required memory has more than one attribute type may
be an array of objects. When type is null or a reference to an array with no
entries, any type of memory is acceptable. Note that type values are compared
by reference (==), not by value (equals).

size—The size of the area in bytes.
logic—The run() method of this object will be called whenever MemoryArea.

enter() is called. When logic is null, logic must be supplied when the
memory area is entered.

Throws
SecurityException—when the application doesn’t have permissions to access

physical memory or the given type of memory.

952 RTSJ 2.0 (Draft 57)

ImmortalPhysicalMemory javax.realtime B.2

SizeOutOfBoundsException—when size extends into an invalid range of memory.
UnsupportedPhysicalMemoryException—when the underlying hardware does not

support the given type, or when no matching PhysicalMemoryTypeFilter has
been registered with the PhysicalMemoryManager.

IllegalArgumentException—when size is negative.
MemoryTypeConflictException—when the specified base does not point to mem-

ory that matches the requested type, or when type specifies incompatible
memory attributes.

OutOfMemoryError—when there is insufficient memory for the ImmortalPhysi-
calMemory object or for the backing memory.

IllegalAssignmentError—when storing logic in this would violate the assign-
ment rules.

ImmortalPhysicalMemory(Object, SizeEstimator, Run-
nable)

Signature
public
ImmortalPhysicalMemory(Object type,

SizeEstimator size,
Runnable logic)

Description

Creates an instance with the given parameters.

Parameters
type—An instance of Object or an array of objects representing the type of memory

required (e.g., dma, shared) - used to define the base address and control the
mapping. When the required memory has more than one attribute type may
be an array of objects. When type is null or a reference to an array with no
entries, any type of memory is acceptable. Note that type values are compared
by reference (==), not by value (equals).

size—A size estimator for this area.
logic—The run() method of this object will be called whenever MemoryArea.

enter() is called. When logic is null, logic must be supplied when the
memory area is entered.

Throws

RTSJ 2.0 (Draft 57) 953

B Deprecated APIs ImmortalPhysicalMemory

SecurityException—when the application doesn’t have permissions to access
physical memory or the given type of memory.

SizeOutOfBoundsException—when the size extends into an invalid range of
memory.

UnsupportedPhysicalMemoryException—when the underlying hardware does not
support the given type, or when no matching PhysicalMemoryTypeFilter has
been registered with the PhysicalMemoryManager.

IllegalArgumentException—when size is null, or size.getEstimate() is neg-
ative.

MemoryTypeConflictException—when type specifies incompatible memory at-
tributes.

OutOfMemoryError—when there is insufficient memory for the ImmortalPhysi-
calMemory object or for the backing memory.

IllegalAssignmentError—when storing logic in this would violate the assign-
ment rules.

ImmortalPhysicalMemory(Object, long, long)

Signature
public
ImmortalPhysicalMemory(Object type,

long base,
long size)

Description
Creates an instance with the given parameters.

Parameters
type—An instance of Object or an array of objects representing the type of memory

required (e.g., dma, shared) - used to define the base address and control the
mapping. When the required memory has more than one attribute type may
be an array of objects. When type is null or a reference to an array with no
entries, any type of memory is acceptable. Note that type values are compared
by reference (==), not by value (equals).

base—The physical memory address of the area.
size—The size of the area in bytes.

Throws

954 RTSJ 2.0 (Draft 57)

ImmortalPhysicalMemory javax.realtime B.2

SecurityException—when the application doesn’t have permissions to access
physical memory or the given range of memory.

OffsetOutOfBoundsException—when the base address is invalid.
SizeOutOfBoundsException—when the size extends into an invalid range of

memory.
UnsupportedPhysicalMemoryException—when the underlying hardware does not

support the given type, or when no matching PhysicalMemoryTypeFilter has
been registered with the PhysicalMemoryManager.

MemoryTypeConflictException—when the specified base does not point to mem-
ory that matches the requested type, or when type specifies incompatible
memory attributes.

IllegalArgumentException—when size is less than zero. IllegalArgumentEx-
ception may also be when base plus size would be greater than the maximum
physical address supported by the processor.

MemoryInUseException—when the specified memory is already in use.
OutOfMemoryError—when there is insufficient memory for the ImmortalPhysi-

calMemory object or for the backing memory.

ImmortalPhysicalMemory(Object, long, SizeEstimator)

Signature
public
ImmortalPhysicalMemory(Object type,

long base,
SizeEstimator size)

Description
Creates an instance with the given parameters.

Parameters
type—An instance of Object or an array of objects representing the type of memory

required (e.g., dma, shared) - used to define the base address and control the
mapping. When the required memory has more than one attribute type may
be an array of objects. When type is null or a reference to an array with no
entries, any type of memory is acceptable. Note that type values are compared
by reference (==), not by value (equals).

base—The physical memory address of the area.
size—A size estimator for this memory area.

RTSJ 2.0 (Draft 57) 955

B Deprecated APIs ImmortalPhysicalMemory

Throws
SecurityException—when the application doesn’t have permissions to access

physical memory or the given type of memory.
OffsetOutOfBoundsException—when the base address is invalid.
SizeOutOfBoundsException—when the size estimate from size extends into an

invalid range of memory.
UnsupportedPhysicalMemoryException—when the underlying hardware does not

support the given type, or when no matching PhysicalMemoryTypeFilter has
been registered with the PhysicalMemoryManager.

MemoryTypeConflictException—when the specified base does not point to mem-
ory that matches the requested type, or when type specifies incompatible
memory attributes.

IllegalArgumentException—when size is null, or size.getEstimate() is neg-
ative. IllegalArgumentException may also be when base plus the size indi-
cated by size would be greater than the maximum physical address supported
by the processor.

MemoryInUseException—when the specified memory is already in use.
OutOfMemoryError—when there is insufficient memory for the ImmortalPhysi-

calMemory object or for the backing memory.

ImmortalPhysicalMemory(Object, long)

Signature
public
ImmortalPhysicalMemory(Object type,

long size)

Description
Creates an instance with the given parameters.

Parameters
type—An instance of Object representing the type of memory required (e.g., dma,

shared) - used to define the base address and control the mapping. When the
required memory has more than one attribute type may be an array of objects.
When type is null or a reference to an array with no entries, any type of
memory is acceptable. Note that type values are compared by reference (==),
not by value (equals).

size—The size of the area in bytes.

956 RTSJ 2.0 (Draft 57)

ImmortalPhysicalMemory javax.realtime B.2

Throws
SecurityException—when the application doesn’t have permissions to access

physical memory or the given type of memory.
UnsupportedPhysicalMemoryException—when the underlying hardware does not

support the given type, or when no matching PhysicalMemoryTypeFilter has
been registered with the PhysicalMemoryManager.

MemoryTypeConflictException—when type specifies incompatible memory at-
tributes.

IllegalArgumentException—when size is less than zero.
OutOfMemoryError—when there is insufficient memory for the ImmortalPhysi-

calMemory object or for the backing memory.
SizeOutOfBoundsException—when the size extends into an invalid range of

memory.

ImmortalPhysicalMemory(Object, SizeEstimator)

Signature
public
ImmortalPhysicalMemory(Object type,

SizeEstimator size)

Description
Creates an instance with the given parameters.

Parameters
type—An instance of Object or an array of objects representing the type of memory

required (e.g., dma, shared) - used to define the base address and control the
mapping. When the required memory has more than one attribute type may
be an array of objects. When type is null or a reference to an array with no
entries, any type of memory is acceptable. Note that type values are compared
by reference (==), not by value (equals).

size—A size estimator for this area.
Throws

SecurityException—when the application doesn’t have permissions to access
physical memory or the given type of memory.

SizeOutOfBoundsException—when the size estimate from size extends into an
invalid range of memory.

RTSJ 2.0 (Draft 57) 957

B Deprecated APIs LTMemory

UnsupportedPhysicalMemoryException—when the underlying hardware does not
support the given type, or when no matching PhysicalMemoryTypeFilter has
been registered with the PhysicalMemoryManager.

MemoryTypeConflictException—when type specifies incompatible memory at-
tributes.

IllegalArgumentException—when size is null, or size.getEstimate() is neg-
ative.

OutOfMemoryError—when there is insufficient memory for the ImmortalPhysi-
calMemory object or for the backing memory.

B.2.2.10 LTMemory

public class LTMemory
Inheritance
java.lang.Object
MemoryArea
ScopedMemory
LTMemory

Description
Equivalent to and superseded by javax.realtime.memory.LTMemory.

Deprecated since RTSJ 2.0; moved to package javax.realtime.memory.

B.2.2.10.1 Constructors

LTMemory(long, long, Runnable)

Signature
public
LTMemory(long initial,

long maximum,
Runnable logic)

Description

958 RTSJ 2.0 (Draft 57)

LTMemory javax.realtime B.2

Creates an LTMemory of the given size.

Parameters
initial—The size in bytes of the memory to allocate for this area. This memory

must be committed before the completion of the constructor.
maximum—The size in bytes of the memory to allocate for this area.
logic—The run() of the given Runnable will be executed using this as its ini-

tial memory area. When logic is null, this constructor is equivalent to
LTMemory(long initial, long maximum).

Throws
IllegalArgumentException—when initial is greater than maximum, or when

initial or maximum is less than zero.
OutOfMemoryError—when there is insufficient memory for the LTMemory object or

for the backing memory.
IllegalAssignmentError—when storing logic in this would violate the assign-

ment rules.

LTMemory(SizeEstimator, SizeEstimator, Runnable)

Signature
public
LTMemory(SizeEstimator initial,

SizeEstimator maximum,
Runnable logic)

Description
Equivalent to LTMemory(long, long, Runnable) with the argument list
(initial.getEstimate(), maximum.getEstimate(), logic).

Parameters
initial—An instance of SizeEstimator used to give an estimate of the initial size.

This memory must be committed before the completion of the constructor.
maximum—An instance of SizeEstimator used to give an estimate for the maximum

bytes to allocate for this area.
logic—The run() of the given Runnable will be executed using this as its ini-

tial memory area. When logic is null, this constructor is equivalent to
LTMemory(SizeEstimator initial, SizeEstimator maximum).

Throws

RTSJ 2.0 (Draft 57) 959

B Deprecated APIs LTMemory

IllegalArgumentException—when initial is null, maximum is null, initial.
getEstimate() is greater than maximum.getEstimate(), or when initial.
getEstimate() is less than zero.

OutOfMemoryError—when there is insufficient memory for the LTMemory object or
for the backing memory.

IllegalAssignmentError—when storing logic in this would violate the assign-
ment rules.

LTMemory(long, long)

Signature
public
LTMemory(long initial,

long maximum)

Description
Equivalent to LTMemory(long, long, Runnable) with the argument list (ini-
tial, maximum, null).

Parameters
initial—The size in bytes of the memory to allocate for this area. This memory

must be committed before the completion of the constructor.
maximum—The size in bytes of the memory to allocate for this area.

Throws
IllegalArgumentException—when initial is greater than maximum, or when

initial or maximum is less than zero.
OutOfMemoryError—when there is insufficient memory for the LTMemory object or

for the backing memory.

LTMemory(SizeEstimator, SizeEstimator)

Signature
public
LTMemory(SizeEstimator initial,

SizeEstimator maximum)

Description

960 RTSJ 2.0 (Draft 57)

LTMemory javax.realtime B.2

Equivalent to LTMemory(long, long, Runnable) with the argument list
(initial.getEstimate(), maximum.getEstimate(), null).

Parameters
initial—An instance of SizeEstimator used to give an estimate of the initial size.

This memory must be committed before the completion of the constructor.
maximum—An instance of SizeEstimator used to give an estimate for the maximum

bytes to allocate for this area.
Throws

IllegalArgumentException—when initial is null, maximum is null, initial.
getEstimate() is greater than maximum.getEstimate(), or when initial.
getEstimate() is less than zero.

OutOfMemoryError—when there is insufficient memory for the LTMemory object or
for the backing memory.

LTMemory(long, Runnable)

Signature
public
LTMemory(long size,

Runnable logic)

Description
Equivalent to LTMemory(long, long, Runnable) with the argument list (size,
size, logic).

Available since RTSJ 1.0.1

Parameters
size—The size in bytes of the memory to allocate for this area. This memory must

be committed before the completion of the constructor.
logic—The run() of the given Runnable will be executed using this as its ini-

tial memory area. When logic is null, this constructor is equivalent to
LTMemory(long size).

Throws
IllegalArgumentException—when size is less than zero.
OutOfMemoryError—when there is insufficient memory for the LTMemory object or

for the backing memory.

RTSJ 2.0 (Draft 57) 961

B Deprecated APIs LTMemory

IllegalAssignmentError—when storing logic in this would violate the assign-
ment rules.

LTMemory(SizeEstimator, Runnable)

Signature
public
LTMemory(SizeEstimator size,

Runnable logic)

Description
Equivalent to LTMemory(long, long, Runnable) with the argument list (size.
getEstimate(), size.getEstimate(), logic).

Available since RTSJ 1.0.1

Parameters
size—An instance of SizeEstimator used to give an estimate of the initial size.

This memory must be committed before the completion of the constructor.
logic—The run() of the given Runnable will be executed using this as its ini-

tial memory area. When logic is null, this constructor is equivalent to
LTMemory(SizeEstimator size).

Throws
IllegalArgumentException—when size is null, or size.getEstimate() is less

than zero.
OutOfMemoryError—when there is insufficient memory for the LTMemory object or

for the backing memory.
IllegalAssignmentError—when storing logic in this would violate the assign-

ment rules.

LTMemory(long)

Signature
public
LTMemory(long size)

Description

962 RTSJ 2.0 (Draft 57)

LTMemory javax.realtime B.2

Equivalent to LTMemory(long, long, Runnable) with the argument list (size,
size, null).

Available since RTSJ 1.0.1

Parameters
size—The size in bytes of the memory to allocate for this area. This memory must

be committed before the completion of the constructor.
Throws

IllegalArgumentException—when size is less than zero.
OutOfMemoryError—when there is insufficient memory for the LTMemory object or

for the backing memory.

LTMemory(SizeEstimator)

Signature
public
LTMemory(SizeEstimator size)

Description
Equivalent to LTMemory(long, long, Runnable) with the argument list (size.
getEstimate(), size.getEstimate(), null).

Available since RTSJ 1.0.1

Parameters
size—An instance of SizeEstimator used to give an estimate of the initial size.

This memory must be committed before the completion of the constructor.
Throws

IllegalArgumentException—when size is null, or size.getEstimate() is less
than zero.

OutOfMemoryError—when there is insufficient memory for the LTMemory object or
for the backing memory.

B.2.2.10.2 Methods

RTSJ 2.0 (Draft 57) 963

B Deprecated APIs LTPhysicalMemory

toString

Signature
public java.lang.String
toString()

Description
Creates a string representation of this object. The string is of the form

{@code (LTMemory) ScopedMemory#<num>}

where <num> uniquely identifies the LTMemory area.

Returns
a string representing the value of this.

B.2.2.11 LTPhysicalMemory

public class LTPhysicalMemory

Inheritance
java.lang.Object
MemoryArea
ScopedMemory
LTPhysicalMemory

Description
An instance of LTPhysicalMemory allows objects to be allocated from a range of
physical memory with particular attributes, determined by their memory type.
This memory area has the same semantics as ScopedMemory memory areas, and
the same performance restrictions as LTMemory.

No provision is made for sharing object in LTPhysicalMemory with entities
outside the JVM that creates them, and, while the memory backing an instance
of LTPhysicalMemory could be shared by multiple JVMs, the class does not
support such sharing.

Methods from LTPhysicalMemory should be overridden only by methods that
use super.

964 RTSJ 2.0 (Draft 57)

LTPhysicalMemory javax.realtime B.2

Deprecated since RTSJ 2.0

B.2.2.11.1 Constructors

LTPhysicalMemory(Object, long, long, Runnable)

Signature
public
LTPhysicalMemory(Object type,

long base,
long size,
Runnable logic)

Description
Creates an instance of LTPhysicalMemory with the given parameters.

See Section PhysicalMemoryManager

Parameters
type—An instance of Object representing the type of memory required, e.g., dma,

shared, used to define the base address and control the mapping. When the
required memory has more than one attribute, type may be an array of objects.
When type is null or a reference to an array with no entries, any type of
memory is acceptable. Note that type values are compared by reference (==),
not by value (equals).

base—The physical memory address of the area.
size—The size of the area in bytes.
logic—The run() method of this object will be called whenever MemoryArea.

enter() is called. When logic is null, logic must be supplied when the
memory area is entered.

Throws
SizeOutOfBoundsException—when the implementation detects that base plus

size extends beyond physically addressable memory.
SecurityException—when the application doesn’t have permissions to access

physical memory or the given type of memory.
IllegalArgumentException—when size is less than zero.

RTSJ 2.0 (Draft 57) 965

B Deprecated APIs LTPhysicalMemory

OffsetOutOfBoundsException—when the address is invalid.
UnsupportedPhysicalMemoryException—when the underlying hardware does not

support the given type, or when no matching PhysicalMemoryTypeFilter has
been registered with the PhysicalMemoryManager.

MemoryTypeConflictException—when the specified base does not point to mem-
ory that matches the requested type, or when type specifies incompatible
memory attributes.

MemoryInUseException—when the specified memory is already in use.
IllegalAssignmentError—when storing logic in this would violate the assign-

ment rules.

LTPhysicalMemory(Object, long, SizeEstimator, Run-
nable)

Signature
public
LTPhysicalMemory(Object type,

long base,
SizeEstimator size,
Runnable logic)

Description
Equivalent to LTPhysicalMemory(Object, long, long, Runnable) with the
argument list (type, base, size.getEstimate(), logic).

See Section PhysicalMemoryManager

Parameters
type—An instance of Object representing the type of memory required, e.g., dma,

shared, used to define the base address and control the mapping. When the
required memory has more than one attribute, type may be an array of objects.
When type is null or a reference to an array with no entries, any type of
memory is acceptable. Note that type values are compared by reference (==),
not by value (equals).

base—The physical memory address of the area.
size—A size estimator for this memory area.
logic—The run() method of this object will be called whenever MemoryArea.

enter() is called. When logic is null, logic must be supplied when the

966 RTSJ 2.0 (Draft 57)

LTPhysicalMemory javax.realtime B.2

memory area is entered.
Throws

SecurityException—when the application doesn’t have permissions to access
physical memory or the given type of memory.

SizeOutOfBoundsException—when the implementation detects that base plus the
size estimate extends beyond physically addressable memory.

OffsetOutOfBoundsException—when the address is invalid.
UnsupportedPhysicalMemoryException—when the underlying hardware does not

support the given type, or when no matching PhysicalMemoryTypeFilter has
been registered with the PhysicalMemoryManager.

MemoryTypeConflictException—when the specified base does not point to mem-
ory that matches the requested type, or when type specifies incompatible
memory attributes.

MemoryInUseException—when the specified memory is already in use.
IllegalArgumentException—when size is null, or size.getEstimate() is neg-

ative.
IllegalAssignmentError—when storing logic in this would violate the assign-

ment rules.

LTPhysicalMemory(Object, long, long)

Signature
public
LTPhysicalMemory(Object type,

long base,
long size)

Description
Equivalent to LTPhysicalMemory(Object, long, long, Runnable) with the
the argument list (type, base, size, null).

See Section PhysicalMemoryManager

Parameters
type—An instance of Object representing the type of memory required, e.g., dma,

shared, used to define the base address and control the mapping. When the
required memory has more than one attribute, type may be an array of objects.
When type is null or a reference to an array with no entries, any type of

RTSJ 2.0 (Draft 57) 967

B Deprecated APIs LTPhysicalMemory

memory is acceptable. Note that type values are compared by reference (==),
not by value (equals).

base—The physical memory address of the area.
size—The size of the area in bytes.

Throws
SecurityException—when the application doesn’t have permissions to access

physical memory or the given type of memory.
SizeOutOfBoundsException—when the size is less than zero, or the implementation

detects that base plus size extends beyond physically addressable memory.
OffsetOutOfBoundsException—when the address is invalid.
UnsupportedPhysicalMemoryException—when the underlying hardware does not

support the given type, or when no matching PhysicalMemoryTypeFilter has
been registered with the PhysicalMemoryManager.

MemoryTypeConflictException—when the specified base does not point to mem-
ory that matches the requested type, or when type specifies incompatible
memory attributes.

IllegalArgumentException—when size is less than zero.
MemoryInUseException—when the specified memory is already in use.

LTPhysicalMemory(Object, long, SizeEstimator)

Signature
public
LTPhysicalMemory(Object type,

long base,
SizeEstimator size)

Description
Equivalent to LTPhysicalMemory(Object, long, long, Runnable) with the
argument list (type, base, size.getEstimate(), null).

See Section PhysicalMemoryManager

Parameters
type—An instance of Object representing the type of memory required, e.g., dma,

shared, used to define the base address and control the mapping. When the
required memory has more than one attribute, type may be an array of objects.
When type is null or a reference to an array with no entries, any type of

968 RTSJ 2.0 (Draft 57)

LTPhysicalMemory javax.realtime B.2

memory is acceptable. Note that type values are compared by reference (==),
not by value (equals).

base—The physical memory address of the area.
size—A size estimator for this memory area.

Throws
SecurityException—when the application doesn’t have permissions to access

physical memory or the given type of memory.
SizeOutOfBoundsException—when the implementation detects that base plus the

size estimate extends beyond physically addressable memory.
OffsetOutOfBoundsException—when the address is invalid.
UnsupportedPhysicalMemoryException—when the underlying hardware does not

support the given type, or when no matching PhysicalMemoryTypeFilter has
been registered with the PhysicalMemoryManager.

MemoryTypeConflictException—when the specified base does not point to mem-
ory that matches the requested type, or when type specifies incompatible
memory attributes.

MemoryInUseException—when the specified memory is already in use.
IllegalArgumentException—when size is null, or size.getEstimate() is neg-

ative.

LTPhysicalMemory(Object, long, Runnable)

Signature
public
LTPhysicalMemory(Object type,

long size,
Runnable logic)

Description
Equivalent to LTPhysicalMemory(Object, long, long, Runnable) with the
argument list (type, next, size, logic), where next is the beginning of the
next best fit in the physical memory range.

See Section PhysicalMemoryManager

Parameters
type—An instance of Object representing the type of memory required, e.g., dma,

shared, used to define the base address and control the mapping. When the

RTSJ 2.0 (Draft 57) 969

B Deprecated APIs LTPhysicalMemory

required memory has more than one attribute, type may be an array of objects.
When type is null or a reference to an array with no entries, any type of
memory is acceptable. Note that type values are compared by reference (==),
not by value (equals).

size—The size of the area in bytes.
logic—The run() method of this object will be called whenever MemoryArea.

enter() is called. When logic is null, logic must be supplied when the
memory area is entered.

Throws
SecurityException—when the application doesn’t have permissions to access

physical memory or the given type of memory.
IllegalArgumentException—when size is less than zero.
SizeOutOfBoundsException—when the implementation detects that size extends

beyond physically addressable memory.
UnsupportedPhysicalMemoryException—when the underlying hardware does not

support the given type, or when no matching PhysicalMemoryTypeFilter has
been registered with the PhysicalMemoryManager.

MemoryTypeConflictException—when the specified base does not point to mem-
ory that matches the requested type, or when type specifies incompatible
memory attributes.

IllegalAssignmentError—when storing logic in this would violate the assign-
ment rules.

LTPhysicalMemory(Object, SizeEstimator, Runnable)

Signature
public
LTPhysicalMemory(Object type,

SizeEstimator size,
Runnable logic)

Description
Equivalent to LTPhysicalMemory(Object, long, long, Runnable) with the
argument list (type, next, size.getEstimate(), logic), where next is the
beginning of the next best fit in the physical memory range.

See Section PhysicalMemoryManager

970 RTSJ 2.0 (Draft 57)

LTPhysicalMemory javax.realtime B.2

Parameters
type—An instance of Object representing the type of memory required, e.g., dma,

shared, used to define the base address and control the mapping. When the
required memory has more than one attribute, type may be an array of objects.
When type is null or a reference to an array with no entries, any type of
memory is acceptable. Note that type values are compared by reference (==),
not by value (equals).

size—A size estimator for this area.
logic—The run() method of this object will be called whenever MemoryArea.

enter() is called. When logic is null, logic must be supplied when the
memory area is entered.

Throws
SecurityException—when the application doesn’t have permissions to access

physical memory or the given type of memory.
SizeOutOfBoundsException—when the implementation detects that base plus the

size estimate extends beyond physically addressable memory.
UnsupportedPhysicalMemoryException—when the underlying hardware does not

support the given type, or when no matching PhysicalMemoryTypeFilter has
been registered with the PhysicalMemoryManager.

MemoryTypeConflictException—when the specified base does not point to mem-
ory that matches the request type, or when type specifies attributes with a
conflict.

IllegalArgumentException—when size is null, or size.getEstimate() is neg-
ative.

IllegalAssignmentError—when storing logic in this would violate the assign-
ment rules.

LTPhysicalMemory(Object, long)

Signature
public
LTPhysicalMemory(Object type,

long size)

Description
Equivalent to LTPhysicalMemory(Object, long, long, Runnable) with the
argument list (type, next, size, null), where next is the beginning of the
next best fit in the physical memory range.

RTSJ 2.0 (Draft 57) 971

B Deprecated APIs LTPhysicalMemory

See Section PhysicalMemoryManager

Parameters
type—An instance of Object representing the type of memory required, e.g., dma,

shared, used to define the base address and control the mapping. When the
required memory has more than one attribute, type may be an array of objects.
When type is null or a reference to an array with no entries, any type of
memory is acceptable. Note that type values are compared by reference (==),
not by value (equals).

size—The size of the area in bytes.
Throws

SecurityException—when the application doesn’t have permissions to access
physical memory or the given type of memory.

IllegalArgumentException—when size is less than zero.
SizeOutOfBoundsException—when the implementation detects size extends be-

yond physically addressable memory.
UnsupportedPhysicalMemoryException—when the underlying hardware does not

support the given type, or when no matching PhysicalMemoryTypeFilter has
been registered with the PhysicalMemoryManager.

MemoryTypeConflictException—when type specifies incompatible memory at-
tributes.

LTPhysicalMemory(Object, SizeEstimator)

Signature
public
LTPhysicalMemory(Object type,

SizeEstimator size)

Description
Equivalent to LTPhysicalMemory(Object, long, long, Runnable) with the
argument list (type, next, size.getEstimate(), null), where next is the
beginning of the next best fit in the physical memory range.

See Section PhysicalMemoryManager

Parameters
type—An instance of Object representing the type of memory required, e.g., dma,

shared, used to define the base address and control the mapping. When the

972 RTSJ 2.0 (Draft 57)

LTPhysicalMemory javax.realtime B.2

required memory has more than one attribute, type may be an array of objects.
When type is null or a reference to an array with no entries, any type of
memory is acceptable. Note that type values are compared by reference (==),
not by value (equals).

size—A size estimator for this area.
Throws

SecurityException—when the application doesn’t have permissions to access
physical memory or the given type of memory.

SizeOutOfBoundsException—when the implementation detects that size extends
beyond physically addressable memory.

UnsupportedPhysicalMemoryException—when the underlying hardware does not
support the given type, or when no matching PhysicalMemoryTypeFilter has
been registered with the PhysicalMemoryManager.

MemoryTypeConflictException—when type specifies incompatible memory at-
tributes.

IllegalArgumentException—when size is null, or size.getEstimate() is neg-
ative.

B.2.2.11.2 Methods

toString

Signature
public java.lang.String
toString()

Description
Creates a string describing this object. The string is of the form

(LTPhysicalMemory) Scoped memory # num

where num is a number that uniquely identifies this LTPhysicalMemory memory
area representing the value of this.

Returns
A string representing the value of this.

RTSJ 2.0 (Draft 57) 973

B Deprecated APIs MemoryParameters

B.2.2.12 MemoryAccessError

public class MemoryAccessError

The following elements of MemoryAccessError are deprecated. The required
elements are documented in Section 15.2.2.3 above.

B.2.2.12.1 Constructors

MemoryAccessError(String)

Signature
public
MemoryAccessError(String description)

Description
A descriptive constructor for MemoryAccessError.

Deprecated since RTSJ 2.0; application code should use get() instead.

Parameters
description—The reason for throwing this error.

B.2.2.13 MemoryParameters

public class MemoryParameters

The following elements of MemoryParameters are deprecated. The required
elements are documented in Section 11.3.2.4 above.

B.2.2.13.1 Fields

974 RTSJ 2.0 (Draft 57)

MemoryParameters javax.realtime B.2

NO_MAX

public static final NO_MAX

Description
Specifies no maximum limit.

Deprecated since RTSJ 2.0.

B.2.2.13.2 Methods

getMaxMemoryArea

Signature
public long
getMaxMemoryArea()

Description
Gets the limit on the amount of memory the schedulable may allocate in its
initial memory area. Units are in bytes.

Returns
the allocation limit in the schedulable’s initial memory area. When zero, no

allocation is allowed in the initial memory area. When the returned value is
NO_MAX then there is no limit for allocation in the initial memory area.

Deprecated since RTSJ 2.0, repleace by getMaxInitialArea.

setAllocationRateIfFeasible(long)

Signature
public boolean
setAllocationRateIfFeasible(long allocationRate)

Description
Sets the limit on the rate of allocation in the heap. When this MemoryParameters
object is currently associated with one or more schedulables that have been passed
admission control, this change in allocation rate will be submitted to admission

RTSJ 2.0 (Draft 57) 975

B Deprecated APIs MemoryParameters

control. The scheduler (in conjunction with the garbage collector) will either
admit all the effected threads with the new allocation rate, or leave the allocation
rate unchanged and cause setAllocationRateIfFeasible to return false.

Changes to this parameter take place at the next object allocation for each
associated schedulable, on an individual basis. Schedulables which are in current
violation of the newly configured value will simply receive an OutOfMemoryError
on violating allocations. Because this MemoryParameters may be associated
with more than one schedulable, on a multiprocessor system there may be some
implementation-defined delay before executing schedulables detect the parameter
changes.

Parameters
allocationRate—Units in bytes per second of wall-clock time. When alloca-

tionRate is zero, no allocation is allowed in the heap. To specify no limit,
use NO_MAX. Enforcement of the allocation rate is an implementation option.
When the implementation does not enforce allocation rate limits, it treats all
non-zero allocation rate limits as NO_MAX.

Throws
IllegalArgumentException—when any value other than positive, zero, or NO_MAX

is passed as the value of allocationRate.

Returns
true when the request was fulfilled.

Deprecated as of RTSJ 2.0 The framework for feasibility analysis is inadequate.

setMaxImmortalIfFeasible(long)

Signature
public boolean
setMaxImmortalIfFeasible(long maximum)

Description
Sets the limit on the amount of memory the schedulable may allocate in the
immortal area.

Changes to this parameter take place at the next object allocation for each
associated schedulable, on an individual basis. Schedulables which are in current
violation of the newly configured value will simply receive an OutOfMemoryError
on violating allocations. Because this MemoryParameters may be associated
with more than one schedulable, on a multiprocessor system there may be some

976 RTSJ 2.0 (Draft 57)

MemoryParameters javax.realtime B.2

implementation-defined delay before executing schedulables detect the parameter
changes.

Parameters
maximum—Units in bytes. When zero, no allocation allowed in immortal. To specify

no limit, use NO_MAX.
Throws

IllegalArgumentException—when any value other than positive, zero, or NO_MAX
is passed as the value of maximum.

Returns
true when the value is set, false when any of the schedulables have already allocated

more than the given value. In this case the call has no effect.

Deprecated as of RTSJ 2.0 The framework for feasibility analysis is inadequate

setMaxMemoryAreaIfFeasible(long)

Signature
public boolean
setMaxMemoryAreaIfFeasible(long maximum)

Description
Sets the limit on the amount of memory the schedulable may allocate in its initial
memory area.

Changes to this parameter take place at the next object allocation for each
associated schedulable, on an individual basis. Schedulables which are in current
violation of the newly configured value will simply receive an OutOfMemoryError
on violating allocations. Because this MemoryParameters may be associated
with more than one schedulable, on a multiprocessor system there may be some
implementation-defined delay before executing schedulables detect the parameter
changes.

Parameters
maximum—Units in bytes. When zero, no allocation allowed in the initial memory

area. To specify no limit, use UNLIMITED.
Throws

IllegalArgumentException—when any value other than positive, zero, or NO_MAX
is passed as the value of maximum.

Returns

RTSJ 2.0 (Draft 57) 977

B Deprecated APIs NoHeapRealtimeThread

true when the value is set, false when any of the schedulables have already allocated
more than the given value. In this case the call has no effect.

Deprecated as of RTSJ 2.0, since the framework for feasibility analysis is inadequate.

B.2.2.14 NoHeapRealtimeThread

public class NoHeapRealtimeThread

Inheritance
java.lang.Object
java.lang.Thread
RealtimeThread
NoHeapRealtimeThread

Description
A NoHeapRealtimeThread is a specialized form of RealtimeThread. Because an
instance of NoHeapRealtimeThread may immediately preempt any implemented
garbage collector, logic contained in its run() is never allowed to allocate or
reference any object allocated in the heap. At the byte-code level, it is illegal for
a reference to an object allocated in heap to appear on a this realtime thread’s
operand stack.

Thus, it is always safe for a NoHeapRealtimeThread to interrupt the garbage
collector at any time, without waiting for the end of the garbage collection cycle or
a defined preemption point. Due to these restrictions, a NoHeapRealtimeThread
object must be placed in a memory area such that thread logic may unexceptionally
access instance variables and such that Java methods on Thread, e.g., enumerate
and join, complete normally, except where execution would cause access violations.
The constructors of NoHeapRealtimeThread require a reference to ScopedMemory
or ImmortalMemory.

When the thread is started, all execution occurs in the scope of the given
memory area. Thus, all memory allocation performed with the new operator is
taken from this given area.

Deprecated since RTSJ 2.0

B.2.2.14.1 Constructors

978 RTSJ 2.0 (Draft 57)

NoHeapRealtimeThread javax.realtime B.2

NoHeapRealtimeThread(SchedulingParameters, Release-
Parameters, MemoryParameters, MemoryArea, Processing-
GroupParameters, Runnable)

Signature
public
NoHeapRealtimeThread(SchedulingParameters scheduling,

ReleaseParameters release,
MemoryParameters memory,
MemoryArea area,
ProcessingGroupParameters group,
Runnable logic)

Description
Creates a realtime thread with the given characteristics and a Runnable. The
thread group of the new thread is (effectively) null. The newly-created realtime
thread which may not use the heap is associated with the scheduler in effect
during execution of the constructor.

Parameters
scheduling—the SchedulingParameters associated with this (and possibly other

instances of Schedulable). When scheduling is null, the default is a copy of
the creator’s scheduling parameters created in the same memory area as the
new NoHeapRealtimeThread.

release—the ReleaseParameters associated with this (and possibly other instances
of Schedulable). When release is null, the default is a copy of the creator’s
ReleaseParameters created in the same memory area as the new NoHeapReal-
timeThread.

memory—the MemoryParameters associated with this (and possibly other instances
of Schedulable). When memory is null, the new NoHeapRealtimeThread will
have a null value for its MemoryParameters, and the amount or rate of memory
allocation is unrestricted.

area—the MemoryArea associated with this. When area is null, an IllegalArgu-
mentException is thrown.

group—the ProcessingGroupParameters associated with this (and possibly other
instances of Schedulable). When null, the new NoHeapRealtimeThread will
not be associated with any processing group.

logic—the Runnable object whose run() method will serve as the logic for the
new NoHeapRealtimeThread. When logic is null, the run() method in the new

RTSJ 2.0 (Draft 57) 979

B Deprecated APIs NoHeapRealtimeThread

object will serve as its logic.
Throws

IllegalArgumentException—when the parameters are not compatible with the
associated scheduler, when area is null, when area is heap memory, when area,
scheduling release, memory or group is allocated in heap memory. when this
is in heap memory, or when logic is in heap memory.

IllegalAssignmentError—when the new NoHeapRealtimeThread instance cannot
hold references to non-null values of the scheduling release, memory and group,
or when those parameters cannot hold a reference to the new NoHeapRealtime-
Thread.

NoHeapRealtimeThread(SchedulingParameters, Release-
Parameters, MemoryArea)

Signature
public
NoHeapRealtimeThread(SchedulingParameters scheduling,

ReleaseParameters release,
MemoryArea area)

Description
Creates a realtime thread which may not use the heap with the given Sched-
ulingParameters, ReleaseParameters and MemoryArea, and default values
for all other parameters. This constructor is equivalent to NoHeapRealtime-
Thread(scheduling, release, null, area, null, null, null).

NoHeapRealtimeThread(SchedulingParameters, Memory-
Area)

Signature
public
NoHeapRealtimeThread(SchedulingParameters scheduling,

MemoryArea area)

Description
Creates a realtime thread with the given SchedulingParameters and MemoryArea
and default values for all other parameters.

980 RTSJ 2.0 (Draft 57)

OneShotTimer javax.realtime B.2

This constructor is equivalent to NoHeapRealtimeThread(scheduling,
null, null, area, null, null, null).

B.2.2.14.2 Methods

start

Signature
public void
start()

Description

Sets up the realtime thread’s environment and starts it. The set up might include
delaying it until the assigned start time and initializing the thread’s memory area
stack. (See ScopedMemory.)

Throws
IllegalStateException—when the configured Scheduler and SchedulingPar-

ameters for this RealtimeThread are not compatible.

Available since RTSJ 2.0 adds new exception

startPeriodic(PhasingPolicy)

Signature
public void
startPeriodic(PhasingPolicy phasingPolicy)
throws LateStartException

Description

Starts the thread with the specified phasing policy.

Available since RTSJ 2.0

RTSJ 2.0 (Draft 57) 981

B Deprecated APIs OneShotTimer

B.2.2.15 OneShotTimer

public class OneShotTimer

The following elements of OneShotTimer are deprecated. The required elements
are documented in Section 10.3.2.2 above.

B.2.2.15.1 Constructors

OneShotTimer(HighResolutionTime, Clock, AsyncEvent-
Handler)

Signature
public
OneShotTimer(javax.realtime.HighResolutionTime<?> time,

Clock clock,
AsyncEventHandler handler)

throws IllegalArgumentException,
UnsupportedOperationException,
IllegalAssignmentError

Description
Creates an instance of OneShotTimer, based on the given clock, that will execute
its fire method according to the given time. The Clock association of the
parameter time is ignored.

Deprecated since RTSJ 2.0

Parameters
time—The time used to determine when to fire the event. A time value of null is

equivalent to a RelativeTime of 0, and in this case the Timer fires immediately
upon a call to start().

clock—The clock on which to base this timer, overriding the clock associated with
the parameter time. When null, the system Realtime clock is used. The
clock associated with the parameter time is always ignored.

982 RTSJ 2.0 (Draft 57)

POSIXSignalHandler javax.realtime B.2

handler—The AsyncEventHandler that will be released when fire is invoked.
When null, no handler is associated with this Timer and nothing will happen
when this event fires unless a handler is subsequently associated with the timer
using the addHandler() or setHandler() method.

Throws
IllegalArgumentException—when time is a RelativeTime instance less than

zero.
UnsupportedOperationException—when the Chronograph associated with time

is not a Clock.
IllegalAssignmentError—when this OneShotTimer cannot hold references to

time, handler, or clock.

B.2.2.16 POSIXSignalHandler

public class POSIXSignalHandler
Inheritance
java.lang.Object
POSIXSignalHandler

Description
This class enables the use of an AsyncEventHandler to react on the occurrence
of POSIX signals.

On systems that support POSIX signals fully, the 13 signals required by
POSIX will be supported. Any further signals defined in this class may be
supported by the system. On systems that do not support POSIX signals, even
the 13 standard signals may never be fired.

Deprecated since RTSJ 2.0

B.2.2.16.1 Fields

SIGHUP

public static final SIGHUP

Description

RTSJ 2.0 (Draft 57) 983

B Deprecated APIs POSIXSignalHandler

Hangup (POSIX).

SIGINT

public static final SIGINT

Description
interrupt (ANSI)

SIGQUIT

public static final SIGQUIT

Description
quit (POSIX)

SIGILL

public static final SIGILL

Description
illegal instruction (ANSI)

SIGTRAP

public static final SIGTRAP

Description
trace trap (POSIX), optional signal.

SIGABRT

public static final SIGABRT

Description
Abort (ANSI).

984 RTSJ 2.0 (Draft 57)

POSIXSignalHandler javax.realtime B.2

SIGBUS

public static final SIGBUS

Description
BUS error (4.2 BSD), optional signal.

SIGFPE

public static final SIGFPE

Description
floating point exception

SIGKILL

public static final SIGKILL

Description
Kill, unblockable (POSIX).

SIGUSR1

public static final SIGUSR1

Description
User-defined signal 1 (POSIX).

SIGSEGV

public static final SIGSEGV

Description
Segmentation violation (ANSI).

SIGUSR2

public static final SIGUSR2

Description
User-defined signal 2 (POSIX).

RTSJ 2.0 (Draft 57) 985

B Deprecated APIs POSIXSignalHandler

SIGPIPE

public static final SIGPIPE

Description
Broken pipe (POSIX).

SIGALRM

public static final SIGALRM

Description
Alarm clock (POSIX).

SIGTERM

public static final SIGTERM

Description
Termination (ANSI).

SIGCHLD

public static final SIGCHLD

Description
Child status has changed (POSIX).

SIGCONT

public static final SIGCONT

Description
Continue (POSIX), optional signal.

SIGSTOP

public static final SIGSTOP

Description
Stop, unblockable (POSIX), optional signal.

986 RTSJ 2.0 (Draft 57)

POSIXSignalHandler javax.realtime B.2

SIGTSTP

public static final SIGTSTP

Description
Keyboard stop (POSIX), optional signal.

SIGTTIN

public static final SIGTTIN

Description
Background read from tty (POSIX), optional signal.

SIGTTOU

public static final SIGTTOU

Description
Background write to tty (POSIX), optional signal.

SIGSYS

public static final SIGSYS

Description
Bad system call, optional signal.

SIGIOT

public static final SIGIOT

Description
IOT instruction (4.2 BSD), optional signal.

SIGCLD

public static final SIGCLD

Description
Same as SIGCHLD (System V), optional signal.

RTSJ 2.0 (Draft 57) 987

B Deprecated APIs POSIXSignalHandler

SIGEMT

public static final SIGEMT

Description
EMT instruction, optional signal.

B.2.2.16.2 Methods

addHandler(int, AsyncEventHandler)

Signature
public static void
addHandler(int signal,

AsyncEventHandler handler)

Description
Adds the handler provided to the set of handlers that will be released on the
provided signal.

Parameters
signal—The POSIX signal as defined in the constants SIG*.
handler—The handler to be released on the given signal.

Throws
IllegalArgumentException—when signal is not defined by any of the constants

in this class or handler is null.

removeHandler(int, AsyncEventHandler)

Signature
public static void
removeHandler(int signal,

AsyncEventHandler handler)

Description
Removes a handler that was added for a given signal.

Parameters

988 RTSJ 2.0 (Draft 57)

PeriodicParameters javax.realtime B.2

signal—The POSIX signal as defined in the constants SIG*.
handler—The handler to be removed from the given signal. When this handler is

null or has not been added to the signal, nothing will happen.
Throws

IllegalArgumentException—when signal is not defined by any of the constants
in this class.

setHandler(int, AsyncEventHandler)

Signature
public static void
setHandler(int signal,

AsyncEventHandler handler)

Description

Sets the set of handlers that will be released on the provided signal to the set
with the provided handler being the single element.

Parameters
signal—The POSIX signal as defined in the constants SIG*.
handler—The handler to be released on the given signal, null to remove all

handlers for the given signal.
Throws

IllegalArgumentException—when signal is not defined by any of the constants
in this class.

B.2.2.17 PeriodicParameters

public class PeriodicParameters

The following elements of PeriodicParameters are deprecated. The required
elements are documented in Section 6.3.3.6 above.

B.2.2.17.1 Methods

RTSJ 2.0 (Draft 57) 989

B Deprecated APIs PeriodicParameters

setIfFeasible(RelativeTime, RelativeTime, RelativeTime)

Signature
public boolean
setIfFeasible(RelativeTime period,

RelativeTime cost,
RelativeTime deadline)

Description

This method first performs a feasibility analysis using the new period, cost and
deadline attributes as replacements for the matching attributes of this. When
the resulting system is feasible the method replaces the current attributes of
this. When this parameter object is associated with any schedulable, either by
being passed through the schedulable’s constructor or set with a method such
as RealtimeThread.setReleaseParameters(ReleaseParameters), the param-
eters of those schedulables are altered as specified by each schedulable’s respective
scheduler.

Parameters
period—The proposed period. There is no default value. When period is null an

exception is thrown.
cost—The proposed cost. When null, the default value is a new instance of

RelativeTime(0,0).
deadline—The proposed deadline. When null, the default value is new instance

of RelativeTime(period).
Throws

IllegalArgumentException—when the period is null or its time value is not
greater than zero, or when the time value of cost is less than zero, or when
the time value of deadline is not greater than zero. Also when the values are
incompatible with the scheduler for any of the schedulables which are presently
using this parameter object.

IllegalAssignmentError—when period, cost, or deadline cannot be stored in
this.

Returns
true, when the resulting system is feasible and the changes are made. False, when

the resulting system is not feasible and no changes are made.

Deprecated as of RTSJ 2.0; the framework for feasibility analysis is inadequate

990 RTSJ 2.0 (Draft 57)

PeriodicTimer javax.realtime B.2

B.2.2.18 PeriodicTimer

public class PeriodicTimer

The following elements of PeriodicTimer are deprecated. The required elements
are documented in Section 10.3.2.3 above.

B.2.2.18.1 Constructors

PeriodicTimer(HighResolutionTime, RelativeTime, Clock,
AsyncEventHandler)

Signature
public
PeriodicTimer(javax.realtime.HighResolutionTime<?> start,

RelativeTime interval,
Clock clock,
AsyncEventHandler handler)

throws IllegalArgumentException,
UnsupportedOperationException,
IllegalAssignmentError

Description
Creates a timer that executes its fire method periodically.

Deprecated since RTSJ 2.0

Parameters
start—The time that specifies when the first interval begins, based on the clock

associated with it. The first firing of the timer is modified according to the
PhasingPolicy when the timer is started. A start value of null is equivalent
to a RelativeTime of 0.

interval—The period of the timer. Its usage is based on the clock specified by
the clock parameter. When interval is zero or null, the period is ignored
and the firing behavior of the PeriodicTimer is that of a OneShotTimer.

RTSJ 2.0 (Draft 57) 991

B Deprecated APIs PhysicalMemoryManager

clock—The clock to be used to time the start and interval. When null, the
system Realtime clock is used. The Clock association of the parameters start
and interval is always ignored.

handler—The AsyncEventHandler that will be released when fire is invoked.
When null, no handler is associated with this Timer and nothing will happen
when this event fires unless a handler is subsequently associated with the timer
using the addHandler() or setHandler() method.

Throws
IllegalArgumentException—when start or interval is a RelativeTime in-

stance with a value less than zero; or the clocks associated with start and
interval are not the identical.

IllegalAssignmentError—when this PeriodicTimer cannot hold references to
handler, clock and interval.

UnsupportedOperationException—when the Chronograph associated with time
is not a Clock.

B.2.2.19 PhysicalMemoryManager

public class PhysicalMemoryManager

Inheritance
java.lang.Object
PhysicalMemoryManager

Description
The PhysicalMemoryManager is not ordinarily used by applications, except that
the implementation may require the application to use the registerFilter
method to make the physical memory manager aware of the memory types on
their platform. The PhysicalMemoryManager class is primarily intended for
use by the various physical memory accessor objects (VTPhysicalMemory, LT-
PhysicalMemory, and ImmortalPhysicalMemory) to create objects of the types
requested by the application. The physical memory manager is responsible for
finding areas of physical memory with the appropriate characteristics and access
rights, and moderating any required combination of physical and virtual memory
characteristics.

The Physical Memory Manager assumes that the physical adresss space is
linear but not necessarily contiguous. That is, addresses range from 0 .. MAX_LONG,
but there may be gaps in the memory space. Some intervals in the range may be
filled with removable memory as well.

992 RTSJ 2.0 (Draft 57)

PhysicalMemoryManager javax.realtime B.2

The physical memory is partitioned into chunks (pages, segments, etc.). Each
chunk of memory has a base address and a length.

Each chunk of memory has certain properties. Some of these properties may
require actions to be performed by the Physical Memory Manager when the
memory is accessed. For example, access to IO_PAGE may require the use of
special instructions to even reach the devices, or it may require special code
sequences to ensure proper handling of processor write queues and caches.

Filters tell the Physical Memory Manager about the properties of the memory
that are available on the machine by registering with the Physical Memory
Manager.

When the program requests a physical memory area with particular properties,
the constructor communicates with the Physical Memory Manager through a
private interface. The Physical Memory Manager asks the filter whether or not
the address specified has the required properties and whether it is free, or asks
for a chunk of memory with the requested size.

The Physical Memory Manager then maps the physical memory chunk into
virtual memory and locks the virtual memory to the memory chunk, on systems
that support virtual memory.

Examples of characteristics that might be specified are DMA memory, hard-
ware byte swapping, and non-cached access to memory. Standard "names" for some
memory characteristics are included in this class: DMA, SHARED, ALIGNED,
BYTESWAP, and IO_PAGE. Support for these characteristics is optional, but
when they are supported they must use these names. Additional characteristics
may be supported, but only names defined in this specification may be visible in
the PhysicalMemoryManager API.

The base implementation will provide a PhysicalMemoryManager.
Original Equipment Manufacturers (OEMs) or other interested parties may

provide PhysicalMemoryTypeFilter classes that allow additional characteristics
of memory devices to be specified.

Deprecated as of RTSJ 2.0

B.2.2.19.1 Fields

ALIGNED

public static final ALIGNED

RTSJ 2.0 (Draft 57) 993

B Deprecated APIs PhysicalMemoryManager

Description
When aligned memory is supported by the implementation, specify ALIGNED to
identify aligned memory. This type of memory ignores low-order bits in load and
store accesses to force accesses to fall on natural boundaries for the access type
even when the processor uses a poorly aligned address.

See Section javax.realtime.device.RawMemory

BYTESWAP

public static final BYTESWAP

Description
When automatic byte swapping is supported by the implementation, specify
BYTESWAP when byte swapping should be used. Byte-swapping memory re-orders
the bytes in accesses for 16 bits or more such that little-endian data in memory is
accessed as big-endian, and vice-versa. Such memory would typically be available
in swapped mode in one physical address range and in un-swapped mode in
another address range.

See Section javax.realtime.device.RawMemory

DMA

public static final DMA

Description
When DMA (Direct Memory Access) memory is supported by the implementation,
specify DMA to identify DMA memory. This memory is visible to devices that use
DMA. In some systems, only a portion of the physical address space is available
to DMA devices. On such systems, memory that will be used for DMA must be
allocated from the range of addresses that DMA can reach.

See Section javax.realtime.device.RawMemory

IO_PAGE

public static final IO_PAGE

Description

994 RTSJ 2.0 (Draft 57)

PhysicalMemoryManager javax.realtime B.2

When access to the system I/O space is supported by the implementation, specify
IO_PAGE when I/O space should be used. Addresses tagged with the name
IO_PAGE are used for memory mapped I/O devices. Such addresses are almost
certainly not suitable for physical memory, but only for raw memory access.

Available since RTSJ 1.0.1

SHARED

public static final SHARED

Description
When shared memory is supported by the implementation, specify SHARED to
identify shared memory. In a NUMA (Non-Uniform Memory Access) architecture,
processors may make some part of their local memory available to other processors.
This memory would be tagged with SHARED, as would memory that is shared and
non-local.

A fully built-out NUMA system might well need sub-classifications of SHARED
to reflect different paths to memory. Note that, as with other physical memory
names, a single byte of memory may be visible at several physical addresses with
different access properties at each address. For instance, a byte of shared memory
accesses at address x might be shared with high-performance access, but without
the support of coherent caches. The same byte accessed at address y might be
shared with coherent cache support, but substantially longer access times.

B.2.2.19.2 Methods

isRemovable(long, long)

Signature
public static boolean
isRemovable(long base,

long size)

Description
Queries the system about the removability of the specified range of memory.

Parameters

RTSJ 2.0 (Draft 57) 995

B Deprecated APIs PhysicalMemoryManager

base—The starting address in physical memory.
size—The size of the memory area.

Throws
IllegalArgumentException—when size is less than zero.
SizeOutOfBoundsException—when base plus size would be greater than the

physical addressing range of the processor.
OffsetOutOfBoundsException—when base is less than zero.

Returns
true, when any part of the specified range can be removed.

isRemoved(long, long)

Signature
public static boolean
isRemoved(long base,

long size)

Description
Queries the system about the removed state of the specified range of memory.
This method is used for devices that lie in the memory address space and can be
removed while the system is running. (Such as PC cards).

Parameters
base—The starting address in physical memory.
size—The size of the memory area.

Throws
IllegalArgumentException—when size is less than zero.
OffsetOutOfBoundsException—when base is less than zero.
SizeOutOfBoundsException—when base plus size would be greater than the

physical addressing range of the processor.

Returns
true, when any part of the specified range is currently not usable.

onInsertion(long, long, AsyncEvent)

Signature

996 RTSJ 2.0 (Draft 57)

PhysicalMemoryManager javax.realtime B.2

public static void
onInsertion(long base,

long size,
AsyncEvent ae)

Description
Registers the specified AsyncEvent to fire when any memory in the range is added
to the system. When the specified range of physical memory contains multiple
different types of removable memory, the AE will be registered with each of them.

Parameters
base—The starting address in physical memory.
size—The size of the memory area.
ae—The async event to fire.

Throws
IllegalArgumentException—when ae is null, or when the specified range con-

tains no removable memory, or when size is less than zero.
OffsetOutOfBoundsException—when base is less than zero.
SizeOutOfBoundsException—when base plus size would be greater than the

physical addressing range of the processor.
Available since RTSJ 1.0.1

onInsertion(long, long, AsyncEventHandler)

Signature
public static void
onInsertion(long base,

long size,
AsyncEventHandler aeh)

Description
Registers the specified AsyncEventHandler to run when any memory in the range
is added to the system. When the specified range of physical memory contains
multiple different types of removable memory, the AEH will be registered with
each of them. When the size or the base is less than 0, unregisters all "onInsertion"
references to the handler.

Note that this method only removes handlers that were registered with the
same method. It has no effect on handlers that were registered using an associated
async event.

RTSJ 2.0 (Draft 57) 997

B Deprecated APIs PhysicalMemoryManager

Parameters
base—The starting address in physical memory.
size—The size of the memory area.
aeh—The handler to register.

Throws
IllegalArgumentException—when aeh is null, or when the specified range con-

tains no removable memory, or when aeh is null and size and base are both
greater than or equal to zero.

SizeOutOfBoundsException—when base plus size would be greater than the
physical addressing range of the processor.

onRemoval(long, long, AsyncEvent)

Signature
public static void
onRemoval(long base,

long size,
AsyncEvent ae)

Description
Registers the specified AE to fire when any memory in the range is removed
from the system. When the specified range of physical memory contains multiple
different types of removable memory, the AE will be registered with each of them.

Parameters
base—The starting address in physical memory.
size—The size of the memory area.
ae—The async event to register.

Throws
IllegalArgumentException—when the specified range contains no removable mem-

ory, when ae is null, or when size is less than zero.
OffsetOutOfBoundsException—when base is less than zero.
SizeOutOfBoundsException—when base plus size would be greater than the

physical addressing range of the processor.

onRemoval(long, long, AsyncEventHandler)

Signature

998 RTSJ 2.0 (Draft 57)

PhysicalMemoryManager javax.realtime B.2

public static void
onRemoval(long base,

long size,
AsyncEventHandler aeh)

Description
Registers the specified AEH to run when any memory in the range is removed
from the system. When the specified range of physical memory contains multiple
different types of removable memory, the AEH will be registered with each of
them. When size or base is less than 0, unregisters all "onRemoval" references
to the handler parameter.

Note that this method only removes handlers that were registered with the
same method. It has no effect on handlers that were registered using an associated
async event.

Parameters
base—The starting address in physical memory.
size—The size of the memory area.
aeh—The handler to register.

Throws
IllegalArgumentException—when the specified range contains no removable mem-

ory, or when aeh is null and size and base are both greater than or equal to
zero.

SizeOutOfBoundsException—when base plus size would be greater than the
physical addressing range of the processor.

registerFilter(Object, PhysicalMemoryTypeFilter)

Signature
public static final void
registerFilter(Object name,

PhysicalMemoryTypeFilter filter)
throws DuplicateFilterException

Description
Registers a memory type filter with the physical memory manager.

Values of name are compared using reference equality (==) not value equality
(equals()).

Parameters

RTSJ 2.0 (Draft 57) 999

B Deprecated APIs PhysicalMemoryManager

name—The type of memory handled by this filter.
filter—The filter object.

Throws
DuplicateFilterException—when a filter for this type of memory already exists.
ResourceLimitError—when the system is configured for a bounded number of

filters. This filter exceeds the bound.
IllegalArgumentException—when the name parameter is an array of objects,

when the name and filter are not both in immortal memory, or when either
name or filter is null.

SecurityException—when this operation is not permitted.

removeFilter(Object)

Signature
public static final void
removeFilter(Object name)

Description
Removes the identified filter from the set of registered filters. When the filter is
not registered, silently does nothing.

Values of name are compared using reference equality (==) not value equality
(equals()).

Parameters
name—The identifying object for this memory attribute.

Throws
IllegalArgumentException—when name is null.
SecurityException—when this operation is not permitted.

unregisterInsertionEvent(long, long, AsyncEvent)

Signature
public static boolean
unregisterInsertionEvent(long base,

long size,
AsyncEvent ae)

Description

1000 RTSJ 2.0 (Draft 57)

PhysicalMemoryManager javax.realtime B.2

Unregisters the specified insertion event. The event is only unregistered when all
three arguments match the arguments used to register the event, except that ae
of null matches all values of ae and will unregister every ae that matches the
address range.

Note that this method has no effect on handlers registered directly as async
event handlers.

Parameters
base—The starting address in physical memory associated with ae.
size—The size of the memory area associated with ae.
ae—The event to unregister.

Throws
IllegalArgumentException—when size is less than 0.
OffsetOutOfBoundsException—when base is less than zero.
SizeOutOfBoundsException—when base plus size would be greater than the

physical addressing range of the processor.
Returns
true, when at least one event matched the pattern, false, when no such event was

found.
Available since RTSJ 1.0.1

unregisterRemovalEvent(long, long, AsyncEvent)

Signature
public static boolean
unregisterRemovalEvent(long base,

long size,
AsyncEvent ae)

Description
Unregisters the specified removal event. The async event is only unregistered
when all three arguments match the arguments used to register the event, except
that ae of null matches all values of ae and will unregister every ae that matches
the address range.

Note that this method has no effect on handlers registered directly as async
event handlers.

Parameters
base—The starting address in physical memory associated with ae.

RTSJ 2.0 (Draft 57) 1001

B Deprecated APIs PriorityScheduler

size—The size of the memory area associated with ae.
ae—The async event to unregister.

Throws
IllegalArgumentException—when size is less than 0.
OffsetOutOfBoundsException—when base is less than zero.
SizeOutOfBoundsException—when base plus size would be greater than the

physical addressing range of the processor.
Returns
true, when at least one event matched the pattern, false, when no such event was

found.
Available since RTSJ 1.0.1

B.2.2.20 PriorityScheduler

public abstract class PriorityScheduler
The following elements of PriorityScheduler are deprecated. The required elements

are documented in Section 6.3.3.8 above.

B.2.2.20.1 Methods

getMaxPriority(Thread)

Signature
public static int
getMaxPriority(Thread thread)

Description
Gets the maximum priority for the given thread. When the given thread is a
realtime thread that is scheduled by an instance of PriorityScheduler, then
the maximum priority for that scheduler is returned. When the given thread is
not an instance of Schedulable, the maximum priority of its thread group is
returned. Otherwise an exception is thrown.

Parameters

1002 RTSJ 2.0 (Draft 57)

PriorityScheduler javax.realtime B.2

thread—An instance of Thread. When null, the maximum priority of this sched-
uler is returned.

Throws
IllegalArgumentException—when thread is a realtime thread that is not sched-

uled by an instance of PriorityScheduler.

Returns
the maximum priority for thread

Deprecated since RTSJ 2.0

getMinPriority(Thread)

Signature
public static int
getMinPriority(Thread thread)

Description
Gets the minimum priority for the given thread. When the given thread is a
realtime thread that is scheduled by an instance of PriorityScheduler, then
the minimum priority for that scheduler is returned. When the given thread is
not an instance of Schedulable, Thread.MIN_PRIORITY is returned. Otherwise
an exception is thrown.

Parameters
thread—An instance of Thread. When null, the minimum priority of this scheduler

is returned.
Throws

IllegalArgumentException—when thread is a realtime thread that is not sched-
uled by an instance of PriorityScheduler.

Returns
the minimum priority for thread

Deprecated since RTSJ 2.0

getNormPriority(Thread)

Signature

RTSJ 2.0 (Draft 57) 1003

B Deprecated APIs PriorityScheduler

public static int
getNormPriority(Thread thread)

Description
Gets the "norm" priority for the given thread. When the given thread is a realtime
thread that is scheduled by an instance of PriorityScheduler, then the norm
priority for that scheduler is returned. When the given thread is not an instance
of Schedulable, Thread.NORM_PRIORITY is returned. Otherwise an exception is
thrown.

Parameters
thread—An instance of Thread. When null, the norm priority for this scheduler

is returned.
Throws

IllegalArgumentException—when thread is a realtime thread that is not sched-
uled by an instance3 of PriorityScheduler.

Returns
The norm priority for thread

Deprecated since RTSJ 2.0

instance

Signature
public static javax.realtime.PriorityScheduler
instance()

Description
Obtains a reference to the distinguished instance of PriorityScheduler, which
is the system’s base scheduler.

Returns
A reference to the distinguished instance PriorityScheduler.

Deprecated since RTSJ 2.0

isFeasible

Signature

1004 RTSJ 2.0 (Draft 57)

PriorityScheduler javax.realtime B.2

public boolean
isFeasible()

Description
Queries this Scheduler about the feasibility of the set of schedulables currently
in the feasibility set.

Implementation Notes
The default feasibility test for the PriorityScheduler considers a set of

schedulables with bounded resource requirements, to always be feasible. This cov-
ers all schedulable objects with release parameters of types PeriodicParameters
and SporadicParameters.

When any schedulable within the feasibility set has release parameters of
the exact type AperiodicParameters (not a subclass thereof), then the feasi-
bility set is not feasible, as aperiodic release characteristics require unbounded
resources. In that case, this method will return false and all methods in the
setIfFeasible family of methods will also return false. Consequently, any call
to a setIfFeasible method that passes a schedulable which has release param-
eters of type AperiodicParameters, or passes proposed release parameters of
type AperiodicParameters, will return false. The only time a setIfFeasible
method can return true, when there exists in the feasibility set a schedulable
with release parameters of type AperiodicParameters, is when the method will
change those release parameters to not be AperiodicParameters.

Implementations may provide a feasibility test other than the default test just
described. In which case the details of that test should be documented here in
place of this description of the default implementation.

Deprecated as of RTSJ 2.0 The framework for feasibility analysis is inadequate

setIfFeasible(Schedulable, ReleaseParameters, MemoryPa-
rameters)

Signature
public boolean
setIfFeasible(Schedulable schedulable,

ReleaseParameters release,
MemoryParameters memory)

Description
This method first performs a feasibility analysis using the proposed parameter
objects as replacements for the current parameters of Schedulable. When

RTSJ 2.0 (Draft 57) 1005

B Deprecated APIs PriorityScheduler

the resulting system is feasible, this method replaces the current parameters of
Schedulable with the proposed ones. This method does not require that the
schedulable be in the feasibility set before it is called. When it is not initially
a member of the feasibility set it will be added when the resulting system is
feasible.

Parameters
schedulable—The schedulable for which the changes are proposed.
release—The proposed release parameters. When null, the default value of this

scheduler is used (a new object is created when the default value is not null).
(See PriorityScheduler.)

memory—The proposed memory parameters. When null, the default value of this
scheduler is used (a new object is created when the default value is not null).
(See PriorityScheduler.)

Throws
IllegalArgumentException—when Schedulable is null, or Schedulable is not

associated with this scheduler, or the proposed parameters are not compatible
with this scheduler.

IllegalAssignmentError—when Schedulable cannot hold references to the pro-
posed parameter objects, or the parameter objects cannot hold a reference to
Schedulable.

IllegalThreadStateException—when the new release parameters change Sched-
ulable from periodic scheduling to some other protocol and Schedulable is cur-
rently waiting for the next release in RealtimeThread.waitForNextPeriod()
or RealtimeThread.waitForNextPeriodInterruptible().

Returns
true, when the resulting system is feasible and the changes are made. False, when

the resulting system is not feasible and no changes are made.

Deprecated as of RTSJ 2.0 The framework for feasibility analysis is inadequate

setIfFeasible(Schedulable, ReleaseParameters, MemoryPa-
rameters, ProcessingGroupParameters)

Signature
public boolean
setIfFeasible(Schedulable schedulable,

ReleaseParameters release,
MemoryParameters memory,

1006 RTSJ 2.0 (Draft 57)

PriorityScheduler javax.realtime B.2

ProcessingGroupParameters group)

Description

This method first performs a feasibility analysis using the proposed parameter
objects as replacements for the current parameters of Schedulable. When
the resulting system is feasible, this method replaces the current parameters of
Schedulable with the proposed ones.

This method does not require that the schedulable be in the feasibility set
before it is called. When it is not initially a member of the feasibility set it will
be added when the resulting system is feasible.

Parameters
schedulable—The schedulable for which the changes are proposed.
release—The proposed release parameters. When null, the default value of this

scheduler is used (a new object is created when the default value is not null).
(See PriorityScheduler.)

memory—The proposed memory parameters. When null, the default value of this
scheduler is used (a new object is created when the default value is not null).
(See PriorityScheduler.)

group—The proposed processing group parameters. When null, the default value
of this scheduler is used (a new object is created when the default value is not
null). (See PriorityScheduler.)

Throws
IllegalArgumentException—when Schedulable is null, or Schedulable is not

associated with this scheduler, or the proposed parameters are not compatible
with this scheduler.

IllegalAssignmentError—when Schedulable cannot hold references to the pro-
posed parameter objects, or the parameter objects cannot hold a reference to
Schedulable.

IllegalThreadStateException—when the new release parameters change Sched-
ulable from periodic scheduling to some other protocol and Schedulable is cur-
rently waiting for the next release in RealtimeThread.waitForNextPeriod()
or RealtimeThread.waitForNextPeriodInterruptible().

Returns
true, when the resulting system is feasible and the changes are made. False, when

the resulting system is not feasible and no changes are made.

Deprecated as of RTSJ 2.0 The framework for feasibility analysis is inadequate

RTSJ 2.0 (Draft 57) 1007

B Deprecated APIs PriorityScheduler

setIfFeasible(Schedulable, SchedulingParameters, Release-
Parameters, MemoryParameters, ProcessingGroupParame-
ters)

Signature
public boolean
setIfFeasible(Schedulable schedulable,

SchedulingParameters scheduling,
ReleaseParameters release,
MemoryParameters memory,
ProcessingGroupParameters group)

Description

This method first performs a feasibility analysis using the proposed parameter
objects as replacements for the current parameters of Schedulable. When
the resulting system is feasible, this method replaces the current parameters of
Schedulable with the proposed ones.

This method does not require that the schedulable be in the feasibility set
before it is called. When it is not initially a member of the feasibility set it will
be added when the resulting system is feasible.

Parameters
schedulable—The schedulable for which the changes are proposed.
scheduling—The proposed scheduling parameters. When null, the default value

of this scheduler is used (a new object is created when the default value is not
null). (See PriorityScheduler.)

release—The proposed release parameters. When null, the default value of this
scheduler is used (a new object is created when the default value is not null).
(See PriorityScheduler.)

memory—The proposed memory parameters. When null, the default value of this
scheduler is used (a new object is created when the default value is not null).
(See PriorityScheduler.)

group—The proposed processing group parameters. When null, the default value
of this scheduler is used (a new object is created when the default value is not
null). (See PriorityScheduler.)

Throws
IllegalArgumentException—when Schedulable is null, or Schedulable is not

associated with this scheduler, or the proposed parameters are not compatible
with this scheduler.

1008 RTSJ 2.0 (Draft 57)

PriorityScheduler javax.realtime B.2

IllegalAssignmentError—when Schedulable cannot hold references to the pro-
posed parameter objects, or the parameter objects cannot hold a reference to
Schedulable.

IllegalThreadStateException—when the new release parameters change Sched-
ulable from periodic scheduling to some other protocol and Schedulable is cur-
rently waiting for the next release in RealtimeThread.waitForNextPeriod()
or RealtimeThread.waitForNextPeriodInterruptible().

Returns
true, when the resulting system is feasible and the changes are made. False, when

the resulting system is not feasible and no changes are made.
Deprecated as of RTSJ 2.0 The framework for feasibility analysis is inadequate

addToFeasibility(Schedulable)

Signature
protected boolean
addToFeasibility(Schedulable schedulable)

Description
Informs this scheduler and cooperating facilities that the resource demands of
the given instance of Schedulable will be considered in the feasibility analysis
of the associated Scheduler until further notice. Whether the resulting system
is feasible or not, the addition is completed. When the object is already included
in the feasibility set, does nothing.

Parameters
schedulable—A reference to the given instance of Schedulable

Throws
IllegalArgumentException—when schedulable is null, or when schedulable

is not associated with this; that is schedulable.getScheduler() != this.
Returns
true, when the system is feasible after the addition, otherwise False.
Deprecated as of RTSJ 2.0 The framework for feasibility analysis is inadequate

removeFromFeasibility(Schedulable)

Signature

RTSJ 2.0 (Draft 57) 1009

B Deprecated APIs ProcessingGroupParameters

protected boolean
removeFromFeasibility(Schedulable schedulable)

Description

Informs this scheduler and cooperating facilities that the resource demands of the
given instance of Schedulable should no longer be considered in the feasibility
analysis of the associated Scheduler. Whether the resulting system is feasible or
not, the removal is completed.

Parameters
schedulable—A reference to the given instance of Schedulable

Throws
IllegalArgumentException—when schedulable is null.

Returns
true, when the removal was successful. False, when the schedulable cannot be

removed from the scheduler’s feasibility set; e.g., the schedulable is not part of
the scheduler’s feasibility set.

Deprecated as of RTSJ 2.0 The framework for feasibility analysis is inadequate

fireSchedulable(Schedulable)

Signature
public void
fireSchedulable(Schedulable schedulable)

Description

Triggers the execution of a schedulable (like an AsyncEventHandler).

Parameters
schedulable—The schedulable to make active. When null, nothing happens.

Throws
UnsupportedOperationException—Thrown in all cases by the PrioritySched-

uler

Deprecated RTSJ 2.0

1010 RTSJ 2.0 (Draft 57)

ProcessingGroupParameters javax.realtime B.2

B.2.2.21 ProcessingGroupParameters

public class ProcessingGroupParameters
Inheritance
java.lang.Object
ProcessingGroupParameters

Interfaces
Cloneable
Serializable

Description
This is associated with one or more schedulables for which the system guarantees
that the associated objects will not be given more time per period than indicated
by cost (budget). The motivation for this class is to allow the execution demands
of one or more aperiodic schedulables to be bound. However, periodic or sporadic
schedulables can also be associated with a processing group.

Processing groups have an associated affinity set that must contain
only a single processor. The default affinity set is given by Affinity.
getGroupDefaultAffinity().

For all schedulables with a reference to an instance of ProcessingGroupPa-
rameters p no more than p.cost will be allocated to the execution of these
schedulables on the processor associated with its processing group in each interval
of time given by p.period after the time indicated by p.start. No execution
of the schedulables will be allowed on any processor other than this processor.
When there is no intersection between the a schedulable object’s affinity set and
its processing group’s affinity set, then the schedulable execution is constrained
by the default processing group’s affinit set.

Logically a virtual server is associated with each instance of Processing-
GroupParameters. This server has a start time, a period, a cost (budget) and a
deadline. The server can only logically execute when (a) it has not consumed
more execution time in its current release than the cost parameter, and (b) one of
its associated schedulables is executable and is the most eligible of the executable
schedulables. When the server is logically executable, the associated schedulable
is executed. When the cost has been consumed, any overrunHandler is released,
and the server is not eligible for logical execution until its next period is due. At
this point, its allocated cost is replenished. When the server is logically executing
when its deadline expires, any associated missHandler is released. The deadline
and cost parameters of all the associated schedulable objects have the same
impact as they would if the objects were not bound to a processing group.

RTSJ 2.0 (Draft 57) 1011

B Deprecated APIs ProcessingGroupParameters

Processing group parameters use HighResolutionTime values for cost, dead-
line, period and start time. Since those times are expressed as a HighReso-
lutionTime, the values use accurate timers with nanosecond granularity. The
actual resolution available and even the quantity it measures depends on the
clock associated with each time value.

When a reference to a ProcessingGroupParameters object is given as a
parameter to a schedulable’s constructor or passed as an argument to one of the
schedulable’s setter methods, the ProcessingGroupParameters object becomes
the processing group parameters object bound to that schedulable object. Changes
to the values in the ProcessingGroupParameters object affect that schedulable
object. When bound to more than one schedulable then changes to the values
in the ProcessingGroupParameters object affect all of the associated objects.
Note that this is a one-to-many relationship and not a many-to-many.

The implementation must use modified copy semantics for each HighResolu-
tionTime parameter value. The value of each time object should be treated as if
it were copied at the time it is passed to the parameter object, but the object
reference must also be retained.

Only changes to a ProcessingGroupParameters object caused by methods
on that object are immediately visible to the scheduler. For instance, invoking
setPeriod() on a ProcessingGroupParameters object will make the change,
then notify the scheduler that the parameter object has changed. At that point the
scheduler’s view of the processing group parameters object is updated. Invoking a
method on the RelativeTime object that is the period for this object may change
the period but it does not pass the change to the scheduler at that time. That
new value for period must not change the behavior of the SOs that use the param-
eter object until a setter method on the ProcessingGroupParameters object is
invoked, or the parameter object is used in setProcessingGroupParameters()
or a constructor for an SO.

The implementation may use copy semantics for each HighResolutionTime
parameter value. For instance the value returned by getCost() must be equal
to the value passed in by setCost, but it need not be the same object.

The following table gives the default parameter values for the constructors.
Caution: This class is explicitly unsafe in multithreaded situations when it

is being changed. No synchronization is done. It is assumed that users of this
class who are mutating instances will be doing their own synchronization at a
higher level.

Caution: The cost parameter time should be considered to be measured
against the target platform.

Deprecated as of RTSJ 2.0; replaced by ProcessingGroup.

1012 RTSJ 2.0 (Draft 57)

ProcessingGroupParameters javax.realtime B.2

Table B.1: ProcessingGroupParameter Default Values
Attribute Default Value

start new RelativeTime(0,0)
period No default. A value must be sup-

plied
cost No default. A value must be sup-

plied
deadline new RelativeTime(period)
overrunHandler None
missHandler None

B.2.2.21.1 Constructors

ProcessingGroupParameters(HighResolutionTime, Relative-
Time, RelativeTime, RelativeTime, AsyncEventHandler,
AsyncEventHandler)

Signature
public
ProcessingGroupParameters(javax.realtime.HighResolutionTime<?> start,

RelativeTime period,
RelativeTime cost,
RelativeTime deadline,
AsyncEventHandler overrunHandler,
AsyncEventHandler missHandler)

throws IllegalArgumentException,
IllegalAssignmentError

Description
Creates a ProcessingGroupParameters object.

Parameters
start—Time at which the first period begins. When a RelativeTime, this time

is relative to the creation of this. When an AbsoluteTime, then the first
release of the logical server is at the start time (or immediately when the

RTSJ 2.0 (Draft 57) 1013

B Deprecated APIs ProcessingGroupParameters

absolute time is in the past). When null, the default value is a new instance
of RelativeTime(0,0).

period—The period is the interval between successive replenishment of the logical
server’s associated cost budget. There is no default value. When period is
null an exception is thrown.

cost—Processing time per period. The budget CPU time that the logical server
can consume each period. When null, an exception is thrown.

deadline—The latest permissible completion time measured from the start of the
current period. Changing the deadline might not take effect after the expiration
of the current deadline. Specifying a deadline less than the period constrains
execution of all the members of the group to the beginning of each period.
When null, the default value is new instance of RelativeTime(period).

overrunHandler—This handler is invoked when any schedulable object member
of this processing group attempts to use processor time beyond the group’s
budget. When null, no application async event handler is fired on the overrun
condition.

missHandler—This handler is invoked when the logical server is still executing
after the deadline has passed. When null, no application async event handler
is fired on the deadline miss condition.

Throws
IllegalArgumentException—when the period is null or its time value is not

greater than zero, when cost is null, or when the time value of cost is
less than zero, when start is an instance of RelativeTime and its value is
negative, or when the time value of deadline is not greater than zero and
less than or equal to the period. When the implementation does not support
processing group deadline less than period, deadline less than period will
cause IllegalArgumentException to be thrown.

IllegalAssignmentError—when start, period, cost, deadline, overrunHan-
dler or missHandler cannot be stored in this.

B.2.2.21.2 Methods

clone

Signature
public java.lang.Object
clone()

1014 RTSJ 2.0 (Draft 57)

ProcessingGroupParameters javax.realtime B.2

throws CloneNotSupportedException

Description
Creates a clone of this. This method should behave effectively as if it constructed
a new object with clones of the high-resolution time values of this.
• The new object is in the current allocation context.
• clone does not copy any associations from this and it does not implicitly

bind the new object to a SO.
• The new object has clones of all high-resolution time values (deep copy).
• References to event handlers are copied (shallow copy.)

Throws
CloneNotSupportedException—never

Returns
the clone of this

Available since RTSJ 1.0.1

getCost

Signature
public javax.realtime.RelativeTime
getCost()

Description
Gets the value of cost.

Returns
a reference to the value of cost.

getCostOverrunHandler

Signature
public javax.realtime.AsyncEventHandler
getCostOverrunHandler()

Description
Gets the cost overrun handler.

Returns

RTSJ 2.0 (Draft 57) 1015

B Deprecated APIs ProcessingGroupParameters

a reference to an instance of AsyncEventHandler that is cost overrun handler of
this.

getDeadline

Signature
public javax.realtime.RelativeTime
getDeadline()

Description
Gets the value of deadline.

Returns
a reference to an instance of RelativeTime that is the deadline of this.

getDeadlineMissHandler

Signature
public javax.realtime.AsyncEventHandler
getDeadlineMissHandler()

Description
Gets the deadline miss handler.

Returns
a reference to an instance of AsyncEventHandlerthat is deadline miss handler of

this.

getPeriod

Signature
public javax.realtime.RelativeTime
getPeriod()

Description
Gets the value of period.

Returns
a reference to an instance of RelativeTime that represents the value of period.

1016 RTSJ 2.0 (Draft 57)

ProcessingGroupParameters javax.realtime B.2

getStart

Signature
public javax.realtime.HighResolutionTime<?>
getStart()

Description
Gets the value of start. This is the value that was specified in the constructor
or by setStart(), not the actual absolute time the corresponding to the start of
the processing group.

Returns
a reference to an instance of HighResolutionTime that represents the value of

start.

setCost(RelativeTime)

Signature
public void
setCost(RelativeTime cost)
throws IllegalArgumentException,

IllegalAssignmentError

Description
Sets the value of cost.

Parameters
cost—The new value for cost. When null, an exception is thrown.

Throws
IllegalArgumentException—when cost is null or its time value is less than zero.
IllegalAssignmentError—when cost cannot be stored in this.

setCostOverrunHandler(AsyncEventHandler)

Signature
public void
setCostOverrunHandler(AsyncEventHandler handler)
throws IllegalAssignmentError

Description

RTSJ 2.0 (Draft 57) 1017

B Deprecated APIs ProcessingGroupParameters

Sets the cost overrun handler.

Parameters
handler—This handler is invoked when the run() method of and of the the

schedulables attempt to execute for more than cost time units in any period.
When null, no handler is attached, and any previous handler is removed.

Throws
IllegalAssignmentError—when handler cannot be stored in this.

setDeadline(RelativeTime)

Signature
public void
setDeadline(RelativeTime deadline)
throws IllegalArgumentException,

IllegalAssignmentError

Description
Sets the value of deadline.

Parameters
deadline—The new value for deadline. When null, the default value is new

instance of RelativeTime(period).
Throws

IllegalArgumentException—when deadline has a value less than zero or greater
than the period. Unless the implementation supports deadline less than period
in processing groups, IllegalArgumentException is also when deadline is
less than the period.

IllegalAssignmentError—when deadline cannot be stored in this.

setDeadlineMissHandler(AsyncEventHandler)

Signature
public void
setDeadlineMissHandler(AsyncEventHandler handler)
throws IllegalAssignmentError

Description
Sets the deadline miss handler.

1018 RTSJ 2.0 (Draft 57)

ProcessingGroupParameters javax.realtime B.2

Parameters
handler—This handler is invoked when the run() method of any of the schedulables

still expect to execute after the deadline has passed. When null, no handler is
attached, and any previous handler is removed.

Throws
IllegalAssignmentError—when handler cannot be stored in this.

setIfFeasible(RelativeTime, RelativeTime, RelativeTime)

Signature
public boolean
setIfFeasible(RelativeTime period,

RelativeTime cost,
RelativeTime deadline)

throws IllegalArgumentException,
IllegalAssignmentError

Description
This method first performs a feasibility analysis using the period, cost and
deadline attributes as replacements for the matching attributes this. When the
resulting system is feasible the method replaces the current attributes of this
with the new attributes.

Parameters
period—The proposed period. There is no default value. When period is null an

exception is thrown.
cost—The proposed cost. When null, an exception is thrown.
deadline—The proposed deadline. When null, the default value is new instance

of RelativeTime(period).
Throws

IllegalArgumentException—when the period is null or its time value is not
greater than zero, or when the time value of cost is less than zero, or when
the time value of deadline is not greater than zero.

IllegalAssignmentError—when period, cost, or deadline cannot be stored in
this.

Returns
true, when the resulting system is feasible and the changes are made. False, when

the resulting system is not feasible and no changes are made.

RTSJ 2.0 (Draft 57) 1019

B Deprecated APIs ProcessingGroupParameters

setPeriod(RelativeTime)

Signature
public void
setPeriod(RelativeTime period)
throws IllegalArgumentException,

IllegalAssignmentError

Description
Sets the value of period.

Parameters
period—The new value for period. There is no default value. When period is

null an exception is thrown.
Throws

IllegalArgumentException—when period is null, or its time value is not greater
than zero. When the implementation does not support processing group
deadline less than period, and period is not equal to the current value of the
processing group’s deadline, the deadline is set to a clone of period created in
the same memory area as period.

IllegalAssignmentError—when period cannot be stored in this.

setStart(HighResolutionTime)

Signature
public void
setStart(javax.realtime.HighResolutionTime<?> start)
throws IllegalArgumentException,

IllegalAssignmentError

Description
Sets the value of start. When the processing group is already started this
method alters the value of this object’s start time property, but has no other
effect.

Parameters
start—The new value for start. When null, the default value is a new instance

of RelativeTime(0,0).
Throws

IllegalAssignmentError—when start cannot be stored in this.

1020 RTSJ 2.0 (Draft 57)

RawMemoryAccess javax.realtime B.2

IllegalArgumentException—when start is a relative time value and less than
zero.

B.2.2.22 RawMemoryAccess

public class RawMemoryAccess
Inheritance
java.lang.Object
RawMemoryAccess

Description
An instance of RawMemoryAccess models a range of physical memory as a fixed
sequence of bytes. A complement of accessor methods enable the contents of the
physical area to be accessed through offsets from the base, interpreted as byte,
short, int, or long data values or as arrays of these types.

Whether an offset addresses the high-order or low-order byte is normally based
on the value of the RealtimeSystem.BYTE_ORDER static byte variable in class
RealtimeSystem. When the type of memory used for this RawMemoryAccess
region implements non-standard byte ordering, accessor methods in this class
continue to select bytes starting at offset from the base address and continuing
toward greater addresses. The memory type may control the mapping of these
bytes into the primitive data type. The memory type could even select bytes that
are not contiguous. In each case the documentation for the PhysicalMemory-
TypeFilter must document any mapping other than the "normal" one specified
above.

The RawMemoryAccess class allows a realtime program to implement device
drivers, memory-mapped I/O, flash memory, battery-backed RAM, and similar
low-level software.

A raw memory area cannot contain references to Java objects. Such a
capability would be unsafe (since it could be used to defeat Java’s type checking)
and error-prone (since it is sensitive to the specific representational choices made
by the Java compiler).

Many of the constructors and methods in this class throw OffsetOutOfBound-
sException. This exception means that the value given in the offset parameter
is either negative or outside the memory area.

Many of the constructors and methods in this class throw SizeOutOfBound-
sException. This exception means that the value given in the size parameter
is either negative, larger than an allowable range, or would cause an accessor
method to access an address outside of the memory area.

RTSJ 2.0 (Draft 57) 1021

B Deprecated APIs RawMemoryAccess

Unlike other integral parameters in this chapter, negative values are valid for
byte, short, int, and long values that are copied in and out of memory by
the set and get methods of this class.

All offset values used in this class are measured in bytes.
Atomic loads and stores on raw memory are defined in terms of physical

memory. This memory may be accessible to threads outside the JVM and
to non-programmed access (e.g., DMA), consequently atomic access must be
supported by hardware. This specification is written with the assumption that
all suitable hardware platforms support atomic loads for aligned bytes, shorts,
and ints. Atomic access beyond the specified minimum may be supported by the
implementation.

Storing values into raw memory is more hardware-dependent than loading
values. Many processor architectures do not support atomic stores of variables
except for aligned stores of the processor’s word size. For instance, storing a byte
into memory might require reading a 32-bit quantity into a processor register,
updating the register to reflect the new byte value, then re-storing the whole
32-bit quantity. Changes to other bytes in the 32-bit quantity that take place
between the load and the store will be lost.

Some processors have mechanisms that can be used to implement an atomic
store of a byte, but those mechanisms are often slow and not universally supported.

This class supports unaligned access to data, but it does not require the
implementation to make such access atomic. Accesses to data aligned on its
natural boundary will be atomic when the processor implements atomic loads
and stores of that data size.

Except where noted, accesses to raw memory are not atomic with respect
to the memory or with respect to schedulables. A raw memory area could be
updated by another schedulable, or even unmapped in the middle of a method.

The characteristics of raw-memory access are necessarily platform dependent.
This specification provides a minimum requirement for the RTSJ platform, but
it also supports optional system properties that identify a platform’s level of
support for atomic raw put and get. The properties represent a four-dimensional
sparse array with boolean values indicating whether that combination of access
attributes is atomic. The default value for array entries is false. The dimension
are

The true values in the table are represented by properties of the following form.
javax.realtime.atomicaccess_<access>_<type>_<alignment>_atomicity=true
for example:

javax.realtime.atomicaccess_read_byte_0_memory=true

1022 RTSJ 2.0 (Draft 57)

RawMemoryAccess javax.realtime B.2

Table B.2: Properties Array
Attribute Values Comment

Access type read, write

Data type byte, short, int,
long, float, double

Alignment 0 aligned
1 to one less than
data type size

the first byte of the data is alignment
bytes away from natural alignment.

Atomicity
processor means access is atomic with respect

to other taska on processor.
smp means access is processor atomic,

and atomic with respect to all pro-
cessors in an SMP.

memory means that access is smp atomic,
and atomic with respect to all access
to the memory including DMA.

Table entries with a value of false may be explicitly represented, but since false is
the default value, such properties are redundant.

All raw memory access is treated as volatile, and serialized. The run-time
must be forced to re-read memory or write to memory on each call to a raw
memory get<type> or put<type> method, where type is defined in the table
above, and to complete the reads and writes in the order they appear in the
program order.

Deprecated as of RTSJ 2.0. Use javax.realtime.device.RawMemoryFactory to
create the appropriate javax.realtime.device.RawMemory object.

B.2.2.22.1 Constructors

RawMemoryAccess(Object, long, long)

Signature

RTSJ 2.0 (Draft 57) 1023

B Deprecated APIs RawMemoryAccess

public
RawMemoryAccess(Object type,

long base,
long size)

Description
Constructs an instance of RawMemoryAccess with the given parameters, and sets
the object to the mapped state. When the platform supports virtual memory,
maps the raw memory into virtual memory.

The run time environment is allowed to choose the virtual address where
the raw memory area corresponding to this object will be mapped. The at-
tributes of the mapping operation are controlled by the vMFlags and vMAt-
tributes of the PhysicalMemoryTypeFilter objects that matched this ob-
ject’s type parameter. (See PhysicalMemoryTypeFilter.getVMAttributes and
PhysicalMemoryTypeFilter.getVMFlags.

Parameters
type—An instance of Object representing the type of memory required (e.g., dma,

shared) - used to define the base address and control the mapping. When the
required memory has more than one attribute, type may be an array of objects.
When type is null or a reference to an array with no entries, any type of
memory is acceptable. Note that type values are compared by reference (==),
not by value (equals).

base—The physical memory address of the region.
size—The size of the area in bytes.

Throws
SecurityException—when application doesn’t have permissions to access physical

memory, the specified range of addresses, or the given type of memory.
OffsetOutOfBoundsException—when the address is invalid.
SizeOutOfBoundsException—when the size is negative or extends into an invalid

range of memory.
UnsupportedPhysicalMemoryException—when the underlying hardware does not

support the given type, or when no matching PhysicalMemoryTypeFilter has
been registered with the PhysicalMemoryManager.

MemoryTypeConflictException—when the specified base does not point to mem-
ory that matches the request type, or when type specifies incompatible memory
attributes.

OutOfMemoryError—when the requested type of memory exists, but there is not
enough of it free to satisfy the request.

1024 RTSJ 2.0 (Draft 57)

RawMemoryAccess javax.realtime B.2

RawMemoryAccess(Object, long)

Signature
public
RawMemoryAccess(Object type,

long size)

Description
Constructs an instance of RawMemoryAccess with the given parameters, and sets
the object to the mapped state. When the platform supports virtual memory,
maps the raw memory into virtual memory.

The run time environment is allowed to choose the virtual address where
the raw memory area corresponding to this object will be mapped. The at-
tributes of the mapping operation are controlled by the vMFlags and vMAt-
tributes of the PhysicalMemoryTypeFilter objects that matched this ob-
ject’s type parameter. (See PhysicalMemoryTypeFilter.getVMAttributes and
PhysicalMemoryTypeFilter.getVMFlags.

Parameters
type—An instance of Object representing the type of memory required (e.g., dma,

shared) - used to define the base address and control the mapping. When the
required memory has more than one attribute, type may be an array of objects.
When type is null or a reference to an array with no entries, any type of
memory is acceptable. Note that type values are compared by reference (==),
not by value (equals).

size—The size of the area in bytes.
Throws

SecurityException—when the application doesn’t have permissions to access
physical memory, the specified range of addresses, or the given type of memory.

SizeOutOfBoundsException—when the size is negative or extends into an invalid
range of memory.

UnsupportedPhysicalMemoryException—when the underlying hardware does not
support the given type, or when no matching PhysicalMemoryTypeFilter has
been registered with the PhysicalMemoryManager.

MemoryTypeConflictException—when the specified base does not point to mem-
ory that matches the request type, or when type specifies incompatible memory
attributes.

OutOfMemoryError—when the requested type of memory exists, but there is not
enough of it free to satisfy the request.

RTSJ 2.0 (Draft 57) 1025

B Deprecated APIs RawMemoryAccess

SecurityException—when the application doesn’t have permissions to access
physical memory or the given range of memory.

B.2.2.22.2 Methods

getByte(long)

Signature
public byte
getByte(long offset)

Description

Gets the byte at the given offset in the memory area associated with this object.
The byte is always loaded from memory in a single atomic operation.

Caching of the memory access is controlled by the memory type requested
when the RawMemoryAccess instance was created. When the memory is not
cached, this method guarantees serialized access (that is, the memory access at
the memory occurs in the same order as in the program. Multiple writes to the
same location may not be coalesced.)

Parameters
offset—The offset in bytes from the beginning of the raw memory from which to

load the byte.
Throws

SizeOutOfBoundsException—when the object is not mapped, or when the byte
falls in an invalid address range.

OffsetOutOfBoundsException—when the offset is negative or greater than the
size of the raw memory area. The role of the SizeOutOfBoundsException
somewhat overlaps this exception since it is when the offset is within the object
but outside the mapped area.

SecurityException—when this access is not permitted by the security manager.

Returns
the byte from raw memory.

See Section RawMemoryAccess.map(long,long)

1026 RTSJ 2.0 (Draft 57)

RawMemoryAccess javax.realtime B.2

getBytes(long, byte, int, int)

Signature
public void
getBytes(long offset,

byte[] bytes,
int low,
int number)

Description
Gets number bytes starting at the given offset in the memory area associated
with this object and assigns them to the byte array passed starting at position
low. Each byte is loaded from memory in a single atomic operation. Groups of
bytes may be loaded together, but this is unspecified.

Caching of the memory access is controlled by the memory type requested
when the RawMemoryAccess instance was created. When the memory is not
cached, this method guarantees serialized access (that is, the memory access at
the memory occurs in the same order as in the program. Multiple writes to the
same location may not be coalesced.)

Parameters
offset—The offset in bytes from the beginning of the raw memory from which to

start loading.
bytes—The array into which the loaded items are placed.
low—The offset which is the starting point in the given array for the loaded items

to be placed.
number—The number of items to load.

Throws
OffsetOutOfBoundsException—when the offset is negative or greater than the

size of the raw memory area. The role of the SizeOutOfBoundsException
somewhat overlaps this exception since it is when the offset is within the object
but outside the mapped area.

SizeOutOfBoundsException—when the object is not mapped, or when a byte falls
in an invalid address range. This is checked at every entry in the array to allow
for the possibility that the memory area could be unmapped or remapped.
The byte array could, therefore, be partially updated when the raw memory is
unmapped or remapped mid-method.

ArrayIndexOutOfBoundsException—when low is less than 0 or greater than
bytes.length - 1, or when low + number is greater than or equal to bytes.
length.

RTSJ 2.0 (Draft 57) 1027

B Deprecated APIs RawMemoryAccess

SecurityException—when this access is not permitted by the security manager.

See Section RawMemoryAccess.map(long,long)

getInt(long)

Signature
public int
getInt(long offset)

Description

Gets the int at the given offset in the memory area associated with this object.
When the integer is aligned on a "natural" boundary it is always loaded from
memory in a single atomic operation. When it is not on a natural boundary it
may not be loaded atomically, and the number and order of the load operations
is unspecified.

Caching of the memory access is controlled by the memory type requested
when the RawMemoryAccess instance was created. When the memory is not
cached, this method guarantees serialized access (that is, the memory access at
the memory occurs in the same order as in the program. Multiple writes to the
same location may not be coalesced.)

Parameters
offset—The offset in bytes from the beginning of the raw memory area from which

to load the integer.
Throws

OffsetOutOfBoundsException—when the offset is negative or greater than the
size of the raw memory area. The role of the SizeOutOfBoundsException
somewhat overlaps this exception since it is when the offset is within the object
but outside the mapped area.

SizeOutOfBoundsException—when the object is not mapped, or when the integer
falls in an invalid address range.

SecurityException—when this access is not permitted by the security manager.

Returns
the integer from raw memory.

See Section RawMemoryAccess.map(long,long)

1028 RTSJ 2.0 (Draft 57)

RawMemoryAccess javax.realtime B.2

getInts(long, int, int, int)

Signature
public void
getInts(long offset,

int[] ints,
int low,
int number)

Description
Gets number integers starting at the given offset in the memory area associated
with this object and assign them to the int array passed starting at position low.

When the integers are aligned on natural boundaries each integer is loaded
from memory in a single atomic operation. Groups of integers may be loaded
together, but this is unspecified. When the integers are not aligned on natural
boundaries they may not be loaded atomically and the number and order of load
operations is unspecified.

Caching of the memory access is controlled by the memory type requested
when the RawMemoryAccess instance was created. When the memory is not
cached, this method guarantees serialized access (that is, the memory access at
the memory occurs in the same order as in the program. Multiple writes to the
same location may not be coalesced.)

Parameters
offset—The offset in bytes from the beginning of the raw memory area at which

to start loading.
ints—The array into which the integers read from the raw memory are placed.
low—The offset which is the starting point in the given array for the loaded items

to be placed.
number—The number of integers to load.

Throws
OffsetOutOfBoundsException—when the offset is negative or greater than the

size of the raw memory area. The role of the SizeOutOfBoundsException
somewhat overlaps this exception since it is when the offset is within the object
but outside the mapped area.

SizeOutOfBoundsException—when the object is not mapped, or when an integer
falls in an invalid address range. This is checked at every entry in the array to
allow for the possibility that the memory area could be unmapped or remapped.
The int array could, therefore, be partially updated when the raw memory is
unmapped or remapped mid-method.

RTSJ 2.0 (Draft 57) 1029

B Deprecated APIs RawMemoryAccess

ArrayIndexOutOfBoundsException—when low is less than 0 or greater than
bytes.length - 1, or when low + number is greater than or equal to bytes.
length.

SecurityException—when this access is not permitted by the security manager.
See Section RawMemoryAccess.map(long,long)

getLong(long)

Signature
public long
getLong(long offset)

Description
Gets the long at the given offset in the memory area associated with this object.

The load is not required to be atomic even it is located on a natural boundary.
Caching of the memory access is controlled by the memory type requested

when the RawMemoryAccess instance was created. When the memory is not
cached, this method guarantees serialized access (that is, the memory access at
the memory occurs in the same order as in the program. Multiple writes to the
same location may not be coalesced.)

Parameters
offset—The offset in bytes from the beginning of the raw memory area from which

to load the long.
Throws

OffsetOutOfBoundsException—when the offset is invalid.
SizeOutOfBoundsException—when the object is not mapped, or when the long

falls in an invalid address range.
SecurityException—when this access is not permitted by the security manager.

Returns
the long from raw memory.

getLongs(long, long, int, int)

Signature
public void
getLongs(long offset,

long[] longs,

1030 RTSJ 2.0 (Draft 57)

RawMemoryAccess javax.realtime B.2

int low,
int number)

Description
Gets number longs starting at the given offset in the memory area associated with
this object and assign them to the longs array passed starting at position low.

The loads are not required to be atomic even when they are located on natural
boundaries.

Caching of the memory access is controlled by the memory type requested
when the RawMemoryAccess instance was created. When the memory is not
cached, this method guarantees serialized access (that is, the memory access at
the memory occurs in the same order as in the program. Multiple writes to the
same location may not be coalesced.)

Parameters
offset—The offset in bytes from the beginning of the raw memory area at which

to start loading.
longs—The array into which the loaded items are placed.
low—The offset which is the starting point in the given array for the loaded items

to be placed.
number—The number of longs to load.

Throws
OffsetOutOfBoundsException—when the offset is negative or greater than the

size of the raw memory area. The role of the SizeOutOfBoundsException
somewhat overlaps this exception since it is when the offset is within the object
but outside the mapped area.

SizeOutOfBoundsException—when the object is not mapped, or when a long falls
in an invalid address range. This is checked at every entry in the array to allow
for the possibility that the memory area could be unmapped or remapped.
The long array could, therefore, be partially updated when the raw memory is
unmapped or remapped mid-method.

ArrayIndexOutOfBoundsException—when low is less than 0 or greater than
bytes.length - 1, or when low + number is greater than or equal to bytes.
length.

SecurityException—when this access is not permitted by the security manager.
See Section RawMemoryAccess.map(long,long)

getMappedAddress

RTSJ 2.0 (Draft 57) 1031

B Deprecated APIs RawMemoryAccess

Signature
public long
getMappedAddress()

Description
Gets the virtual memory location at which the memory region is mapped.

Throws
IllegalStateException—when the raw memory object is not in the mapped state.

Returns
the virtual address to which this is mapped, for reference purposes. When virtual

memory is not supported, this is the same as the physical base address.

getShort(long)

Signature
public short
getShort(long offset)

Description
Gets the short at the given offset in the memory area associated with this object.
When the short is aligned on a natural boundary it is always loaded from memory
in a single atomic operation. When it is not on a natural boundary it may not be
loaded atomically, and the number and order of the load operations is unspecified.

Caching of the memory access is controlled by the memory type requested
when the RawMemoryAccess instance was created. When the memory is not
cached, this method guarantees serialized access (that is, the memory access at
the memory occurs in the same order as in the program. Multiple writes to the
same location may not be coalesced.)

Parameters
offset—The offset in bytes from the beginning of the raw memory area from which

to load the short.
Throws

OffsetOutOfBoundsException—when the offset is negative or greater than the
size of the raw memory area. The role of the SizeOutOfBoundsException
somewhat overlaps this exception since it is when the offset is within the object
but outside the mapped area.

SizeOutOfBoundsException—when the object is not mapped, or when the short
falls in an invalid address range.

1032 RTSJ 2.0 (Draft 57)

RawMemoryAccess javax.realtime B.2

SecurityException—when this access is not permitted by the security manager.

Returns
the short loaded from raw memory.

See Section RawMemoryAccess.map(long,long)

getShorts(long, short, int, int)

Signature
public void
getShorts(long offset,

short[] shorts,
int low,
int number)

Description
Gets number shorts starting at the given offset in the memory area associated
with this object and assign them to the short array passed starting at position
low.

When the shorts are located on natural boundaries each short is loaded from
memory in a single atomic operation. Groups of shorts may be loaded together,
but this is unspecified.

When the shorts are not located on natural boundaries the load may not be
atomic, and the number and order of load operations is unspecified.

Caching of the memory access is controlled by the memory type requested
when the RawMemoryAccess instance was created. When the memory is not
cached, this method guarantees serialized access (that is, the memory access at
the memory occurs in the same order as in the program. Multiple writes to the
same location may not be coalesced.)

Parameters
offset—The offset in bytes from the beginning of the raw memory area from which

to start loading.
shorts—The array into which the loaded items are placed.
low—The offset which is the starting point in the given array for the loaded shorts

to be placed.
number—The number of shorts to load.

Throws

RTSJ 2.0 (Draft 57) 1033

B Deprecated APIs RawMemoryAccess

OffsetOutOfBoundsException—when the offset is negative or greater than the
size of the raw memory area. The role of the SizeOutOfBoundsException
somewhat overlaps this exception since it is when the offset is within the object
but outside the mapped area.

SizeOutOfBoundsException—when the object is not mapped, or when a short falls
in an invalid address range. This is checked at every entry in the array to allow
for the possibility that the memory area could be unmapped or remapped. The
short array could, therefore, be partially updated when the raw memory is
unmapped or remapped mid-method.

ArrayIndexOutOfBoundsException—when low is less than 0 or greater than
bytes.length - 1, or when low + number is greater than or equal to bytes.
length.

SecurityException—when this access is not permitted by the security manager.
See Section RawMemoryAccess.map(long,long)

map

Signature
public long
map()

Description
Maps the physical memory range into virtual memory. No-op when the system
doesn’t support virtual memory.

The run time environment is allowed to choose the virtual address where
the raw memory area corresponding to this object will be mapped. The at-
tributes of the mapping operation are controlled by the vMFlags and vMAt-
tributes of the PhysicalMemoryTypeFilter objects that matched this ob-
ject’s type parameter. (See PhysicalMemoryTypeFilter.getVMAttributes and
PhysicalMemoryTypeFilter.getVMFlags.

When the object is already mapped into virtual memory, this method does
not change anything.

Throws
OutOfMemoryError—when there is insufficient free virtual address space to map

the object.
Returns
the starting point of the virtual memory range.

1034 RTSJ 2.0 (Draft 57)

RawMemoryAccess javax.realtime B.2

map(long)

Signature
public long
map(long base)

Description
Maps the physical memory range into virtual memory at the specified location.
No-op when the system doesn’t support virtual memory.

The attributes of the mapping operation are controlled by the vMFlags
and vMAttributes of the PhysicalMemoryTypeFilter objects that matched this
object’s type parameter. (See PhysicalMemoryTypeFilter.getVMAttributes
and PhysicalMemoryTypeFilter.getVMFlags.

When the object is already mapped into virtual memory at a different address,
this method remaps it to base.

When a remap is requested while another schedulable is accessing the raw
memory, the map will block until one load or store completes. It can interrupt
an array operation between entries.

Parameters
base—The location to map at the virtual memory space.

Throws
OutOfMemoryError—when there is insufficient free virtual memory at the specified

address.
IllegalArgumentException—when base is not a legal value for a virtual address,

or the memory-mapping hardware cannot place the physical memory at the
designated address.

Returns
the starting point of the virtual memory.

map(long, long)

Signature
public long
map(long base,

long size)

Description
Maps the physical memory range into virtual memory. No-op when the system
doesn’t support virtual memory.

RTSJ 2.0 (Draft 57) 1035

B Deprecated APIs RawMemoryAccess

The attributes of the mapping operation are controlled by the vMFlags
and vMAttributes of the PhysicalMemoryTypeFilter objects that matched this
object’s type parameter. (See PhysicalMemoryTypeFilter.getVMAttributes
and PhysicalMemoryTypeFilter.getVMFlags.

When the object is already mapped into virtual memory at a different address,
this method remaps it to base.

When a remap is requested while another schedulable is accessing the raw
memory, the map will block until one load or store completes. It can interrupt
an array operation between entries.

Parameters
base—The location to map at the virtual memory space.
size—The size of the block to map in. When the size of the raw memory area is

greater than size, the object is unchanged but accesses beyond the mapped
region will throw SizeOutOfBoundsException. When the size of the raw
memory area is smaller than the mapped region, access to the raw memory will
behave as if the mapped region matched the raw memory area, but additional
virtual address space will be consumed after the end of the raw memory area.

Throws
IllegalArgumentException—when size is not greater than zero, base is not a

legal value for a virtual address, or the memory-mapping hardware cannot
place the physical memory at the designated address.

Returns
the starting point of the virtual memory.

setByte(long, byte)

Signature
public void
setByte(long offset,

byte value)

Description
Sets the byte at the given offset in the memory area associated with this object.

This memory access may involve a load and a store, and it may have unspecified
effects on surrounding bytes in the presence of concurrent access.

Caching of the memory access is controlled by the memory type requested
when the RawMemoryAccess instance was created. When the memory is not
cached, this method guarantees serialized access (that is, the memory access at

1036 RTSJ 2.0 (Draft 57)

RawMemoryAccess javax.realtime B.2

the memory occurs in the same order as in the program. Multiple writes to the
same location may not be coalesced.)

Parameters
offset—The offset in bytes from the beginning of the raw memory area to which

to write the byte.
value—The byte to write.

Throws
OffsetOutOfBoundsException—when the offset is negative or greater than the

size of the raw memory area. The role of the SizeOutOfBoundsException
somewhat overlaps this exception since it is when the offset is within the object
but outside the mapped area.

SizeOutOfBoundsException—when the object is not mapped, or when the byte
falls in an invalid address range.

SecurityException—when this access is not permitted by the security manager.

See Section RawMemoryAccess.map(long,long)

setBytes(long, byte, int, int)

Signature
public void
setBytes(long offset,

byte[] bytes,
int low,
int number)

Description
Sets number bytes starting at the given offset in the memory area associated with
this object from the byte array passed starting at position low.

This memory access may involve multiple load and a store operations, and it
may have unspecified effects on surrounding bytes (even bytes in the range being
stored) in the presence of concurrent access.

Caching of the memory access is controlled by the memory type requested
when the RawMemoryAccess instance was created. When the memory is not
cached, this method guarantees serialized access (that is, the memory access at
the memory occurs in the same order as in the program. Multiple writes to the
same location may not be coalesced.)

Parameters

RTSJ 2.0 (Draft 57) 1037

B Deprecated APIs RawMemoryAccess

offset—The offset in bytes from the beginning of the raw memory area to which
to start writing.

bytes—The array from which the items are obtained.
low—The offset which is the starting point in the given array for the items to be

obtained.
number—The number of items to write.

Throws
OffsetOutOfBoundsException—when the offset is negative or greater than the

size of the raw memory area. The role of the SizeOutOfBoundsException
somewhat overlaps this exception since it is when the offset is within the object
but outside the mapped area.

SizeOutOfBoundsException—when the object is not mapped, or when a byte falls
in an invalid address range. This is checked at every entry in the array to allow
for the possibility that the memory area could be unmapped or remapped. The
store of the array into memory could, therefore, be only partially complete
when the raw memory is unmapped or remapped mid-method.

ArrayIndexOutOfBoundsException—when low is less than 0 or greater than
bytes.length - 1, or when low + number is greater than or equal to bytes.
length.

SecurityException—when this access is not permitted by the security manager.
See Section RawMemoryAccess.map(long,long)

setInt(long, int)

Signature
public void
setInt(long offset,

int value)

Description
Sets the int at the given offset in the memory area associated with this object.
On most processor architectures an aligned integer can be stored in an atomic
operation, but this is not required.

This memory access may involve multiple load and a store operations, and it
may have unspecified effects on surrounding bytes (even bytes in the range being
stored) in the presence of concurrent access.

Caching of the memory access is controlled by the memory type requested
when the RawMemoryAccess instance was created. When the memory is not

1038 RTSJ 2.0 (Draft 57)

RawMemoryAccess javax.realtime B.2

cached, this method guarantees serialized access (that is, the memory access at
the memory occurs in the same order as in the program. Multiple writes to the
same location may not be coalesced.)

Parameters
offset—The offset in bytes from the beginning of the raw memory area at which

to write the integer.
value—The integer to write.

Throws
OffsetOutOfBoundsException—when the offset is negative or greater than the

size of the raw memory area. The role of the SizeOutOfBoundsException
somewhat overlaps this exception since it is when the offset is within the object
but outside the mapped area.

SizeOutOfBoundsException—when the object is not mapped, or when the integer
falls in an invalid address range.

SecurityException—when this access is not permitted by the security manager.

See Section RawMemoryAccess.map(long,long)

setInts(long, int, int, int)

Signature
public void
setInts(long offset,

int[] ints,
int low,
int number)

Description
Sets number ints starting at the given offset in the memory area associated with
this object from the int array passed starting at position low. On most processor
architectures each aligned integer can be stored in an atomic operation, but this
is not required.

This memory access may involve multiple load and a store operations, and it
may have unspecified effects on surrounding bytes (even bytes in the range being
stored) in the presence of concurrent access.

Caching of the memory access is controlled by the memory type requested
when the RawMemoryAccess instance was created. When the memory is not
cached, this method guarantees serialized access (that is, the memory access at

RTSJ 2.0 (Draft 57) 1039

B Deprecated APIs RawMemoryAccess

the memory occurs in the same order as in the program. Multiple writes to the
same location may not be coalesced.)

Parameters
offset—The offset in bytes from the beginning of the raw memory area at which

to start writing.
ints—The array from which the items are obtained.
low—The offset which is the starting point in the given array for the items to be

obtained.
number—The number of items to write.

Throws
OffsetOutOfBoundsException—when the offset is negative or greater than the

size of the raw memory area. The role of the SizeOutOfBoundsException
somewhat overlaps this exception since it is when the offset is within the object
but outside the mapped area.

SizeOutOfBoundsException—when the object is not mapped, or when an integer
falls in an invalid address range. This is checked at every entry in the array to
allow for the possibility that the memory area could be unmapped or remapped.
The store of the array into memory could, therefore, be only partially complete
when the raw memory is unmapped or remapped mid-method.

ArrayIndexOutOfBoundsException—when low is less than 0 or greater than
bytes.length - 1, or when low + number is greater than or equal to bytes.
length.

SecurityException—when this access is not permitted by the security manager.

See Section RawMemoryAccess.map(long,long)

setLong(long, long)

Signature
public void
setLong(long offset,

long value)

Description

Sets the long at the given offset in the memory area associated with this object.
Even when it is aligned, the long value may not be updated atomically. It is
unspecified how many load and store operations will be used or in what order.

1040 RTSJ 2.0 (Draft 57)

RawMemoryAccess javax.realtime B.2

This memory access may involve multiple load and a store operations, and it
may have unspecified effects on surrounding bytes (even bytes in the range being
stored) in the presence of concurrent access.

Caching of the memory access is controlled by the memory type requested
when the RawMemoryAccess instance was created. When the memory is not
cached, this method guarantees serialized access (that is, the memory access at
the memory occurs in the same order as in the program. Multiple writes to the
same location may not be coalesced.)

Parameters
offset—The offset in bytes from the beginning of the raw memory area at which

to write the long.
value—The long to write.

Throws
OffsetOutOfBoundsException—when the offset is negative or greater than the

size of the raw memory area. The role of the SizeOutOfBoundsException
somewhat overlaps this exception since it is when the offset is within the object
but outside the mapped area.

SizeOutOfBoundsException—when the object is not mapped, or when the long
falls in an invalid address range.

SecurityException—when this access is not permitted by the security manager.
See Section RawMemoryAccess.map(long,long)

setLongs(long, long, int, int)

Signature
public void
setLongs(long offset,

long[] longs,
int low,
int number)

Description
Sets number longs starting at the given offset in the memory area associated with
this object from the long array passed starting at position low. Even when they
are aligned, the long values may not be updated atomically. It is unspecified how
many load and store operations will be used or in what order.

This memory access may involve multiple load and a store operations, and it
may have unspecified effects on surrounding bytes (even bytes in the range being

RTSJ 2.0 (Draft 57) 1041

B Deprecated APIs RawMemoryAccess

stored) in the presence of concurrent access.
Caching of the memory access is controlled by the memory type requested

when the RawMemoryAccess instance was created. When the memory is not
cached, this method guarantees serialized access (that is, the memory access at
the memory occurs in the same order as in the program. Multiple writes to the
same location may not be coalesced.)

Parameters
offset—The offset in bytes from the beginning of the raw memory area at which

to start writing.
longs—The array from which the items are obtained.
low—The offset which is the starting point in the given array for the items to be

obtained.
number—The number of items to write.

Throws
OffsetOutOfBoundsException—when the offset is negative or greater than the

size of the raw memory area. The role of the SizeOutOfBoundsException
somewhat overlaps this exception since it is when the offset is within the object
but outside the mapped area.

SizeOutOfBoundsException—when the object is not mapped, or when a long falls
in an invalid address range. This is checked at every entry in the array to allow
for the possibility that the memory area could be unmapped or remapped. The
store of the array into memory could, therefore, be only partially complete
when the raw memory is unmapped or remapped mid-method.

ArrayIndexOutOfBoundsException—when low is less than 0 or greater than
bytes.length - 1, or when low + number is greater than or equal to bytes.
length.

SecurityException—when this access is not permitted by the security manager.

See Section RawMemoryAccess.map(long,long)

setShort(long, short)

Signature
public void
setShort(long offset,

short value)

Description

1042 RTSJ 2.0 (Draft 57)

RawMemoryAccess javax.realtime B.2

Sets the short at the given offset in the memory area associated with this object.
This memory access may involve a load and a store, and it may have unspecified

effects on surrounding shorts in the presence of concurrent access.
Caching of the memory access is controlled by the memory type requested

when the RawMemoryAccess instance was created. When the memory is not
cached, this method guarantees serialized access (that is, the memory access at
the memory occurs in the same order as in the program. Multiple writes to the
same location may not be coalesced.)

Parameters
offset—The offset in bytes from the beginning of the raw memory area at which

to write the short.
value—The short to write.

Throws
OffsetOutOfBoundsException—when the offset is negative or greater than the

size of the raw memory area. The role of the SizeOutOfBoundsException
somewhat overlaps this exception since it is when the offset is within the object
but outside the mapped area.

SizeOutOfBoundsException—when the object is not mapped, or when the short
falls in an invalid address range.

SecurityException—when this access is not permitted by the security manager.

See Section RawMemoryAccess.map(long,long)

setShorts(long, short, int, int)

Signature
public void
setShorts(long offset,

short[] shorts,
int low,
int number)

Description
Sets number shorts starting at the given offset in the memory area associated
with this object from the short array passed starting at position low.

Each write of a short value may involve a load and a store, and it may have
unspecified effects on surrounding shorts in the presence of concurrent access -
even on other shorts in the array.

RTSJ 2.0 (Draft 57) 1043

B Deprecated APIs RawMemoryAccess

Caching of the memory access is controlled by the memory type requested
when the RawMemoryAccess instance was created. When the memory is not
cached, this method guarantees serialized access (that is, the memory access at
the memory occurs in the same order as in the program. Multiple writes to the
same location may not be coalesced.)

Parameters
offset—The offset in bytes from the beginning of the raw memory area at which

to start writing.
shorts—The array from which the items are obtained.
low—The offset which is the starting point in the given array for the items to be

obtained.
number—The number of items to write.

Throws
OffsetOutOfBoundsException—when the offset is negative or greater than the

size of the raw memory area. The role of the SizeOutOfBoundsException
somewhat overlaps this exception since it is when the offset is within the object
but outside the mapped area.

SizeOutOfBoundsException—when the object is not mapped, or when a short falls
in an invalid address range. This is checked at every entry in the array to allow
for the possibility that the memory area could be unmapped or remapped. The
store of the array into memory could, therefore, be only partially complete
when the raw memory is unmapped or remapped mid-method.

ArrayIndexOutOfBoundsException—when low is less than 0 or greater than
bytes.length - 1, or when low + number is greater than or equal to bytes.
length.

SecurityException—when this access is not permitted by the security manager.

See Section RawMemoryAccess.map(long,long)

unmap

Signature
public void
unmap()

Description
Unmaps the physical memory range from virtual memory. This changes the raw
memory from the mapped state to the unmapped state. When the platform

1044 RTSJ 2.0 (Draft 57)

RawMemoryFloatAccess javax.realtime B.2

supports virtual memory, this operation frees the virtual addresses used for the
raw memory region.

When the object is already in the unmapped state, this method has no effect.
While a raw memory object is unmapped all attempts to set or get values in

the raw memory will throw SizeOutOfBoundsException.
An unmapped raw memory object can be returned to mapped state with any

of the object’s map methods.
When an unmap is requested while another schedulable is accessing the raw

memory, the unmap will throw an IllegalStateException. The unmap method
can interrupt an array operation between entries.

B.2.2.23 RawMemoryFloatAccess

public class RawMemoryFloatAccess
Inheritance
java.lang.Object
RawMemoryAccess
RawMemoryFloatAccess

Description
This class holds the accessor methods for accessing a raw memory area by float
and double types. Implementations are required to implement this class when
and only when the underlying Java Virtual Machine supports floating point data
types.

See RawMemoryAccess for commentary on changes in the preferred use of
this class following RTSJ 2.0.

By default, the byte addressed by offset is the byte at the lowest address
of the floating point processor’s floating point representation. When the type of
memory used for this RawMemoryFloatAccess region implements a non-standard
floating point format, accessor methods in this class continue to select bytes
starting at offset from the base address and continuing toward greater addresses.
The memory type may control the mapping of these bytes into the primitive data
type. The memory type could even select bytes that are not contiguous. In each
case the documentation for the PhysicalMemoryTypeFilter must document any
mapping other than the "normal" one specified above.

All offset values used in this class are measured in bytes.
Atomic loads and stores on raw memory are defined in terms of physical

memory. This memory may be accessible to threads outside the JVM and to non-
programmed access, e.g., DMA, consequently atomic access must be supported

RTSJ 2.0 (Draft 57) 1045

B Deprecated APIs RawMemoryFloatAccess

by hardware. This specification is written with the assumption that all suitable
hardware platforms support atomic loads for aligned floats. Atomic access beyond
the specified minimum may be supported by the implementation.

Storing values into raw memory is more hardware-dependent than loading
values. Many processor architectures do not support atomic stores of variables
except for aligned stores of the processor’s word size.

This class supports unaligned access to data, but it does not require the
implementation to make such access atomic. Accesses to data aligned on its
natural boundary will be atomic when the processor implements atomic loads
and stores of that data size.

Except where noted, accesses to raw memory are not atomic with respect to
the memory or with respect to threads. A raw memory area could be updated by
another thread, or even unmapped in the middle of a method.

The characteristics of raw-memory access are necessarily platform dependent.
This specification provides a minimum requirement for the RTSJ platform, but it
also supports optional system properties that identify a platform’s level of support
for atomic raw put and get. (See RawMemoryAccess.) The properties represent
a four-dimensional sparse array with boolean values, indicating whether that
combination of access attributes is atomic. The default value for array entries is
false.

Many of the constructors and methods in this class throw OffsetOutOfBound-
sException. This exception means that the value given in the offset parameter
is either negative or outside the memory area.

Many of the constructors and methods in this class throw SizeOutOfBound-
sException. This exception means that the value given in the size parameter
is either negative, larger than an allowable range, or would cause an accessor
method to access an address outside of the memory area.

Deprecated as of RTSJ 2.0. Use javax.realtime.device.RawMemory.

B.2.2.23.1 Constructors

RawMemoryFloatAccess(Object, long, long)

Signature
public
RawMemoryFloatAccess(Object type,

1046 RTSJ 2.0 (Draft 57)

RawMemoryFloatAccess javax.realtime B.2

long base,
long size)

Description

Constructs an instance of RawMemoryFloatAccess with the given parameters,
and sets the object to the mapped state. When the platform supports virtual
memory, maps the raw memory into virtual memory.

The run time environment is allowed to choose the virtual address where
the raw memory area corresponding to this object will be mapped. The at-
tributes of the mapping operation are controlled by the vMFlags and vMAt-
tributes of the PhysicalMemoryTypeFilter objects that matched this ob-
ject’s type parameter. (See PhysicalMemoryTypeFilter.getVMAttributes and
PhysicalMemoryTypeFilter.getVMFlags.

Parameters
type—An instance of Object representing the type of memory required, e.g., dma,

shared, for defining the base address and controlling the mapping. When the
required memory has more than one attribute, type may be an array of objects.
When type is null or a reference to an array with no entries, any type of
memory is acceptable. Note that type values are compared by reference (==),
not by value (equals).

base—The physical memory address of the region.
size—The size of the area in bytes.

Throws
SecurityException—when the application doesn’t have permissions to access

physical memory, the specified range of addresses, or the given type of memory.
OffsetOutOfBoundsException—when the address is invalid.
SizeOutOfBoundsException—when the size is negative or extends into an invalid

range of memory.
UnsupportedPhysicalMemoryException—when the underlying hardware does not

support the given type, or when no matching PhysicalMemoryTypeFilter has
been registered with the PhysicalMemoryManager.

MemoryTypeConflictException—when the specified base does not point to mem-
ory that matches the request type, or when type specifies incompatible memory
attributes.

OutOfMemoryError—when the requested type of memory exists, but there is not
enough of it free to satisfy the request.

RTSJ 2.0 (Draft 57) 1047

B Deprecated APIs RawMemoryFloatAccess

RawMemoryFloatAccess(Object, long)

Signature
public
RawMemoryFloatAccess(Object type,

long size)

Description
Constructs an instance of RawMemoryFloatAccess with the given parameters,
and sets the object to the mapped state. When the platform supports virtual
memory, maps the raw memory into virtual memory.

The run time environment is allowed to choose the virtual address where
the raw memory area corresponding to this object will be mapped. The at-
tributes of the mapping operation are controlled by the vMFlags and vMAt-
tributes of the PhysicalMemoryTypeFilter objects that matched this ob-
ject’s type parameter. (See PhysicalMemoryTypeFilter.getVMAttributes and
PhysicalMemoryTypeFilter.getVMFlags.

Parameters
type—An instance of Object representing the type of memory required, e.g., dma,

shared), for defining the base address and controlling the mapping. When the
required memory has more than one attribute, type may be an array of objects.
When type is null or a reference to an array with no entries, any type of
memory is acceptable. Note that type values are compared by reference (==),
not by value (equals).

size—The size of the area in bytes.
Throws

SecurityException—when the application doesn’t have permissions to access
physical memory, the specified range of addresses, or the given type of memory.

SizeOutOfBoundsException—when the size is negative or extends into an invalid
range of memory.

UnsupportedPhysicalMemoryException—when the underlying hardware does not
support the given type, or when no matching PhysicalMemoryTypeFilter has
been registered with the PhysicalMemoryManager.

MemoryTypeConflictException—when the specified base does not point to mem-
ory that matches the request type, or when type specifies incompatible memory
attributes.

OutOfMemoryError—when the requested type of memory exists, but there is not
enough of it free to satisfy the request.

1048 RTSJ 2.0 (Draft 57)

RawMemoryFloatAccess javax.realtime B.2

B.2.2.23.2 Methods

getDouble(long)

Signature
public double
getDouble(long offset)

Description
Gets the double at the given offset in the memory area associated with this
object.

The load is not required to be atomic even it is located on a natural boundary.
Caching of the memory access is controlled by the memory type requested

when the RawMemoryAccess instance was created. When the memory is not
cached, this method guarantees serialized access (that is, the memory access at
the memory occurs in the same order as in the program. Multiple writes to the
same location may not be coalesced.)

Parameters
offset—The offset in bytes from the beginning of the raw memory area from which

to load the double.
Throws

OffsetOutOfBoundsException—when the offset is invalid.
SizeOutOfBoundsException—when the object is not mapped, or when the double

falls in an invalid address range.
SecurityException—when this access is not permitted by the security manager.

Returns
the double from raw memory.

getDoubles(long, double, int, int)

Signature
public void
getDoubles(long offset,

double[] doubles,
int low,
int number)

RTSJ 2.0 (Draft 57) 1049

B Deprecated APIs RawMemoryFloatAccess

Description
Gets number doubles starting at the given offset in the memory area associated
with this object and assigns them to the double array passed starting at position
low.

The loads are not required to be atomic even when they are located on natural
boundaries.

Caching of the memory access is controlled by the memory type requested
when the RawMemoryAccess instance was created. When the memory is not
cached, this method guarantees serialized access (that is, the memory access at
the memory occurs in the same order as in the program. Multiple writes to the
same location may not be coalesced.)

Parameters
offset—The offset in bytes from the beginning of the raw memory area at which

to start loading.
doubles—The array into which the loaded items are placed.
low—The offset which is the starting point in the given array for the loaded items

to be placed.
number—The number of doubles to load.

Throws
OffsetOutOfBoundsException—when the offset is negative or greater than the

size of the raw memory area. The role of the SizeOutOfBoundsException
somewhat overlaps this exception since it is when the offset is within the object
but outside the mapped area. (See RawMemoryAccess.map(long,long)).

SizeOutOfBoundsException—when the object is not mapped, or when a double
falls in an invalid address range. This is checked at every entry in the array to
allow for the possibility that the memory area could be unmapped or remapped.
The double array could, therefore, be partially updated when the raw memory
is unmapped or remapped mid-method.

ArrayIndexOutOfBoundsException—when low is less than 0 or greater than
bytes.length - 1, or when low + number is greater than or equal to bytes.
length.

SecurityException—when this access is not permitted by the security manager.

getFloat(long)

Signature
public float
getFloat(long offset)

1050 RTSJ 2.0 (Draft 57)

RawMemoryFloatAccess javax.realtime B.2

Description
Gets the float at the given offset in the memory area associated with this object.
When the float is aligned on a "natural" boundary it is always loaded from memory
in a single atomic operation. When it is not on a natural boundary it may not be
loaded atomically, and the number and order of the load operations is unspecified.

Caching of the memory access is controlled by the memory type requested
when the RawMemoryAccess instance was created. When the memory is not
cached, this method guarantees serialized access (that is, the memory access at
the memory occurs in the same order as in the program. Multiple writes to the
same location may not be coalesced.)

Parameters
offset—The offset in bytes from the beginning of the raw memory area from which

to load the float.
Throws

OffsetOutOfBoundsException—when the offset is negative or greater than the
size of the raw memory area. The role of the SizeOutOfBoundsException
somewhat overlaps this exception since it is when the offset is within the object
but outside the mapped area. (See RawMemoryAccess.map(long,long)).

SizeOutOfBoundsException—when the object is not mapped, or when the float
falls in an invalid address range.

SecurityException—when this access is not permitted by the security manager.

Returns
the float from raw memory.

getFloats(long, float, int, int)

Signature
public void
getFloats(long offset,

float[] floats,
int low,
int number)

Description
Gets number floats starting at the given offset in the memory area associated
with this object and assign them to the floats array passed starting at position
low.

RTSJ 2.0 (Draft 57) 1051

B Deprecated APIs RawMemoryFloatAccess

When the floats are aligned on natural boundaries each float is loaded from
memory in a single atomic operation. Groups of floats may be loaded together,
but this is unspecified.

When the floats are not aligned on natural boundaries they may not be loaded
atomically and the number and order of load operations is unspecified.

Caching of the memory access is controlled by the memory type requested
when the RawMemoryAccess instance was created. When the memory is not
cached, this method guarantees serialized access (that is, the memory access at
the memory occurs in the same order as in the program. Multiple writes to the
same location may not be coalesced.)

Parameters
offset—The offset in bytes from the beginning of the raw memory area at which

to start loading.
floats—The array into which the floats loaded from the raw memory are placed.
low—The offset which is the starting point in the given array for the loaded items

to be placed.
number—The number of floats to load.

Throws
OffsetOutOfBoundsException—when the offset is negative or greater than the

size of the raw memory area. The role of the SizeOutOfBoundsException
somewhat overlaps this exception since it is when the offset is within the object
but outside the mapped area. (See RawMemoryAccess.map(long,long)).

SizeOutOfBoundsException—when the object is not mapped, or when a float falls
in an invalid address range. This is checked at every entry in the array to allow
for the possibility that the memory area could be unmapped or remapped. The
float array could, therefore, be partially updated when the raw memory is
unmapped or remapped mid-method.

ArrayIndexOutOfBoundsException—when low is less than 0 or greater than
bytes.length - 1, or when low + number is greater than or equal to bytes.
length.

SecurityException—when this access is not permitted by the security manager.

setDouble(long, double)

Signature
public void
setDouble(long offset,

double value)

1052 RTSJ 2.0 (Draft 57)

RawMemoryFloatAccess javax.realtime B.2

Description
Sets the double at the given offset in the memory area associated with this object.
Even when it is aligned, the double value may not be updated atomically. It is
unspecified how many load and store operations will be used or in what order.

Caching of the memory access is controlled by the memory type requested
when the RawMemoryAccess instance was created. When the memory is not
cached, this method guarantees serialized access (that is, the memory access at
the memory occurs in the same order as in the program. Multiple writes to the
same location may not be coalesced.)

Parameters
offset—The offset in bytes from the beginning of the raw memory area at which

to write the double.
value—The double to write.

Throws
OffsetOutOfBoundsException—when the offset is negative or greater than the

size of the raw memory area. The role of the SizeOutOfBoundsException
somewhat overlaps this exception since it is when the offset is within the object
but outside the mapped area. (See RawMemoryAccess.map(long,long)).

SizeOutOfBoundsException—when the object is not mapped, or when the double
falls in an invalid address range.

SecurityException—when this access is not permitted by the security manager.

setDoubles(long, double, int, int)

Signature
public void
setDoubles(long offset,

double[] doubles,
int low,
int number)

Description
Sets number doubles starting at the given offset in the memory area associated
with this object from the doubles array passed starting at position low. Even
when they are aligned, the double values may not be updated atomically. It is
unspecified how many load and store operations will be used or in what order.

Caching of the memory access is controlled by the memory type requested
when the RawMemoryAccess instance was created. When the memory is not
cached, this method guarantees serialized access (that is, the memory access at

RTSJ 2.0 (Draft 57) 1053

B Deprecated APIs RawMemoryFloatAccess

the memory occurs in the same order as in the program. Multiple writes to the
same location may not be coalesced.)

Parameters
offset—The offset in bytes from the beginning of the raw memory area at which

to start writing.
doubles—The array from which the items are obtained.
low—The offset which is the starting point in the given array for the items to be

obtained.
number—The number of items to write.

Throws
OffsetOutOfBoundsException—when the offset is negative or greater than the

size of the raw memory area. The role of the SizeOutOfBoundsException
somewhat overlaps this exception since it is when the offset is within the object
but outside the mapped area. (See RawMemoryAccess.map(long,long)).

SizeOutOfBoundsException—when the object is not mapped, or when a double
falls in an invalid address range. This is checked at every entry in the array to
allow for the possibility that the memory area could be unmapped or remapped.
The doubles array could, therefore, be partially updated when the raw memory
is unmapped or remapped mid-method.

ArrayIndexOutOfBoundsException—when low is less than 0 or greater than
bytes.length - 1, or when low + number is greater than or equal to bytes.
length.

SecurityException—when this access is not permitted by the security manager.

setFloat(long, float)

Signature
public void
setFloat(long offset,

float value)

Description
Sets the float at the given offset in the memory area associated with this object.
On most processor architectures an aligned float can be stored in an atomic
operation, but this is not required.

Caching of the memory access is controlled by the memory type requested
when the RawMemoryAccess instance was created. When the memory is not
cached, this method guarantees serialized access (that is, the memory access at

1054 RTSJ 2.0 (Draft 57)

RawMemoryFloatAccess javax.realtime B.2

the memory occurs in the same order as in the program. Multiple writes to the
same location may not be coalesced.)

Parameters
offset—The offset in bytes from the beginning of the raw memory area at which

to write the float.
value—The float to write.

Throws
OffsetOutOfBoundsException—when the offset is negative or greater than the

size of the raw memory area. The role of the SizeOutOfBoundsException
somewhat overlaps this exception since it is when the offset is within the object
but outside the mapped area. (See RawMemoryAccess.map(long,long)).

SizeOutOfBoundsException—when the object is not mapped, or when the float
falls in an invalid address range.

SecurityException—when this access is not permitted by the security manager.

setFloats(long, float, int, int)

Signature
public void
setFloats(long offset,

float[] floats,
int low,
int number)

Description
Sets number floats starting at the given offset in the memory area associated
with this object from the float array passed starting at position low. On most
processor architectures each aligned float can be stored in an atomic operation,
but this is not required. Caching of the memory access is controlled by the
memory type requested when the RawMemoryAccess instance was created. When
the memory is not cached, this method guarantees serialized access (that is,
the memory access at the memory occurs in the same order as in the program.
Multiple writes to the same location may not be coalesced.)

Parameters
offset—The offset in bytes from the beginning of the raw memory area at which

to start writing.
floats—The array from which the items are obtained.

RTSJ 2.0 (Draft 57) 1055

B Deprecated APIs RealtimeSecurity

low—The offset which is the starting point in the given array for the items to be
obtained.

number—The number of floats to write.
Throws

OffsetOutOfBoundsException—when the offset is negative or greater than the
size of the raw memory area. The role of the SizeOutOfBoundsException
somewhat overlaps this exception since it is when the offset is within the object
but outside the mapped area. (See RawMemoryAccess.map(long, long)).

SizeOutOfBoundsException—when the object is not mapped, or when a float falls
in an invalid address range. This is checked at every entry in the array to allow
for the possibility that the memory area could be unmapped or remapped. The
store of the array into memory could, therefore, be only partially complete
when the raw memory is unmapped or remapped mid-method.

ArrayIndexOutOfBoundsException—when low is less than 0 or greater than
bytes.length - 1, or when low + number is greater than or equal to bytes.
length.

SecurityException—when this access is not permitted by the security manager.

B.2.2.24 RealtimeSecurity

public class RealtimeSecurity

Inheritance
java.lang.Object
RealtimeSecurity

Description

Security policy object for realtime specific issues. Primarily used to control access
to physical memory.

Security requirements are generally application-specific. Every implemen-
tation shall have a default RealtimeSecurity instance, and a way to install a
replacement at run-time, RealtimeSystem.setSecurityManager. The default
security is minimal. All security managers should prevent access to JVM internal
data and the Java heap; additional protection is implementation-specific and
must be documented.

Deprecated since RTSJ 2.0

1056 RTSJ 2.0 (Draft 57)

RealtimeSecurity javax.realtime B.2

B.2.2.24.1 Constructors

RealtimeSecurity

Signature
public
RealtimeSecurity()

Description
Create an RealtimeSecurity object.

B.2.2.24.2 Methods

checkAccessPhysical

Signature
public void
checkAccessPhysical()
throws SecurityException

Description
Check whether the application is allowed to access physical memory.

Throws
SecurityException—The application doesn’t have permission to access physical

memory.

checkAccessPhysicalRange(long, long)

Signature
public void
checkAccessPhysicalRange(long base,

long size)

RTSJ 2.0 (Draft 57) 1057

B Deprecated APIs RealtimeSecurity

throws SecurityException

Description
Checks whether the application is allowed to access physical memory within the
specified range.

Parameters
base—The beginning of the address range.
size—The size of the address range.

Throws
SecurityException—The application doesn’t have permission to access the mem-

ory in the given range.

checkSetFilter

Signature
public void
checkSetFilter()
throws SecurityException

Description
Checks whether the application is allowed to register PhysicalMemoryTypeFilter
objects with the PhysicalMemoryManager.

Throws
SecurityException—The application doesn’t have permission to register filter

objects.

checkSetMonitorControl(MonitorControl)

Signature
public void
checkSetMonitorControl(MonitorControl policy)
throws SecurityException

Description
Checks whether the application is allowed to set the default monitor control
policy.

Parameters

1058 RTSJ 2.0 (Draft 57)

RealtimeSystem javax.realtime B.2

policy—The new policy
Throws

SecurityException—when the application doesn’t have permission to change the
default monitor control policy to policy.

Available since RTSJ 1.0.1

checkAEHSetDaemon

Signature
public void
checkAEHSetDaemon()
throws SecurityException

Description

Checks whether the application is allowed to set the daemon status of an AEH.

Throws
SecurityException—when the application is not permitted to alter the daemon

status.

Available since RTSJ 1.0.1

checkSetScheduler

Signature
public void
checkSetScheduler()
throws SecurityException

Description

Checks whether the application is allowed to set the scheduler.

Throws
SecurityException—The application doesn’t have permission to set the scheduler.

RTSJ 2.0 (Draft 57) 1059

B Deprecated APIs RealtimeThread

B.2.2.25 RealtimeSystem

public class RealtimeSystem

The following elements of RealtimeSystem are deprecated. The required elements
are documented in Section 14.2.2.5 above.

B.2.2.25.1 Methods

getSecurityManager

Signature
public static javax.realtime.RealtimeSecurity
getSecurityManager()

Description
Gets a reference to the security manager used to control access to realtime system
features such as access to physical memory.

Returns
a RealtimeSecurity object representing the default realtime security manager.

Deprecated since RTSJ 2.0

B.2.2.26 RealtimeThread

public class RealtimeThread

The following elements of RealtimeThread are deprecated. The required elements
are documented in Section 5.3.2.2 above.

B.2.2.26.1 Constructors

1060 RTSJ 2.0 (Draft 57)

RealtimeThread javax.realtime B.2

RealtimeThread(SchedulingParameters, ReleaseParameters,
MemoryParameters, MemoryArea, ProcessingGroupPara-
meters, Runnable)

Signature
public
RealtimeThread(SchedulingParameters scheduling,

ReleaseParameters release,
MemoryParameters memory,
MemoryArea area,
ProcessingGroupParameters group,
Runnable logic)

Description
Creates a realtime thread with the given characteristics and a Runnable. This is
equivalent to RealtimeThread(scheduling, release, memory, area, null,
group, null, null, logic).

Deprecated since RTSJ 2.0

B.2.2.26.2 Methods

getInitialMemoryAreaIndex

Signature
public static int
getInitialMemoryAreaIndex()
throws IllegalStateException,

ClassCastException

Description
Gets the position of the initial memory area for the current Schedulable in
the memory area stack. Memory area stacks may include inherited stacks from
parent threads. The initial memory area of a RealtimeThread or an AsyncBase-
EventHandler is the memory area specified in its constructor. The index of the
initial memory area in the initial memory area stack is a fixed property of a
Schedulable.

RTSJ 2.0 (Draft 57) 1061

B Deprecated APIs RealtimeThread

Throws
IllegalStateException—when the memory area stack of the current Schedul-

able has changed from its initial configuration and the memory area at the
originally specified initial memory area index is not the initial memory area,
thus the index is invalid.
This can only happen when the application uses the alternate memory module
and the initial memory area is a scoped memory area. The following is an
example of an event handler that will throw this exception when its initial
memory area is a scoped memory area.

public void handleAsyncEvent()
{

MemoryArea current = RealtimeThread.getCurrentMemoryArea();
if (current instanceof ScopedMemory)
{

MemoryArea parent =
((ScopedMemory) current).getParent();

parent.executeInArea(() ->
{

ScopedMemory scope = new LTMemory(1000);
scope.enter(() ->
{

System.out.println("Initial Memory Area Index = " +
RealtimeThread.getInitialMemoryAreaIndex());
});

});
}

}

ClassCastException—when the current execution context is not an instance of
Schedulable. An exception will be thrown on line 12, where the first opening
bracket is line one, of the handler above.

Returns
the index into the initial memory area stack of the initial memory area of the current

Schedulable.

Deprecated as of RTSJ 2.0.

1062 RTSJ 2.0 (Draft 57)

RealtimeThread javax.realtime B.2

getMemoryAreaStackDepth

Signature
public static int
getMemoryAreaStackDepth()
throws ClassCastException

Description

Gets the size of the memory area stack of MemoryArea instances to which the
current schedulable has access. For a realtime thread started with immortal
or heap as its explicit initial memory area, the initial size is one. The current
memory area (getCurrentMemoryArea()) is found at memory area stack index
of getMemoryAreaStackDepth() - 1.

Throws
ClassCastException—when the current execution context is not an instance of

Schedulable.

Returns
the size of the stack of MemoryArea instances.

Deprecated as of RTSJ 2.0

getOuterMemoryArea(int)

Signature
public static javax.realtime.MemoryArea
getOuterMemoryArea(int index)
throws ClassCastException,

MemoryAccessError

Description

Gets the instance of MemoryArea in the memory area stack at the index
given. When the given index does not exist in the memory area stack, then
null is returned. For a thread started with immortal or heap as its explicit
initial memory area, the index of that area is zero. The current memory
area (getCurrentMemoryArea()) is found at memory area stack index get-
MemoryAreaStackDepth() - 1, so getCurrentMemoryArea() == getOutMemo-
ryArea(getMemoryAreaStackDepth() - 1).

RTSJ 2.0 (Draft 57) 1063

B Deprecated APIs RealtimeThread

Note that accessing the stack should have a maximum complexity of O(n,
where n is the stack depth. This means the memory stack need not be backed by
an array.

Parameters
index—The offset into the memory area stack.

Throws
ClassCastException—when the current execution context is not an instance of

Schedulable.
MemoryAccessError—when the memory area is allocated in heap memory and the

caller is a schedulable that may not use the heap.

Returns
the instance of MemoryArea at index or null when the given index does not

correspond to a position in the stack.

sleep(Clock, HighResolutionTime)

Signature
public static void
sleep(Clock clock,

javax.realtime.HighResolutionTime<?> time)
throws InterruptedException,

ClassCastException,
UnsupportedOperationException,
IllegalArgumentException

Description
A sleep method that is controlled by a generalized clock. Since the time is
expressed as a HighResolutionTime, this method is an accurate timer with
nanosecond granularity. The actual resolution available for the clock and even the
quantity it measures depends on clock associated with time. The time base is
the given Clock associated with time. The sleep time may be relative or absolute.
When relative, then the calling thread is blocked for the amount of time given
by time, and measured by clock. When absolute, then the calling thread is
blocked until the indicated value is reached by clock. When the given absolute
time is less than or equal to the current value of clock, the call to sleep returns
immediately.

Calling sleep is permissible when control is in an AsyncEventHandler. The
method causes the handler to sleep.

1064 RTSJ 2.0 (Draft 57)

RealtimeThread javax.realtime B.2

This method must not throw IllegalAssignmentError. It must tolerate
time instances that may not be stored in this.

Parameters
clock—The instance of Clock used as the base. When clock is null the realtime

clock (see Clock.getRealtimeClock) is used. When time uses a time-base
other than clock, time is reassociated with clock for purposes of this method.

time—The amount of time to sleep or the point in time at which to awaken.
Throws

InterruptedException—when the thread is interrupted by interrupt() or
AsynchronouslyInterruptedException.fire() during the time between call-
ing this method and returning from it.

ClassCastException—when the current execution context is not an instance of
Schedulable.

UnsupportedOperationException—when the sleep operation is not supported by
clock.

IllegalArgumentException—when time is null, or when time is a relative time
less than zero.

Deprecated in RTSJ 2.0

waitForNextPeriod

Signature
public static boolean
waitForNextPeriod()
throws ClassCastException,

IllegalThreadStateException

Description
Causes the current realtime thread to delay until the beginning of the next
period. Used by threads that have a reference to a ReleaseParameters type of
PeriodicParameters to block until the start of each period. The first period
starts when this thread is first released. Each time it is called this method will
block until the start of the next period unless the thread is in a deadline miss
condition. In that case the operation of waitForNextPeriod() is controlled by
this thread’s scheduler. (See PriorityScheduler.)

Throws

RTSJ 2.0 (Draft 57) 1065

B Deprecated APIs RealtimeThread

IllegalThreadStateException—when this does not have a reference to a Re-
leaseParameters type of PeriodicParameters.

ClassCastException—when the current thread is not an instance of Realtime-
Thread.

Returns
either false when the thread is in a deadline miss condition or true otherwise.

When a deadline miss condition occurs is defined by its thread’s scheduler.
Available since RTSJ 1.0.1 Changed from an instance method to a static method.

Deprecated RTSJ 2.0 Replaced by waitForNextRelease()

waitForNextPeriodInterruptible

Signature
public static boolean
waitForNextPeriodInterruptible()
throws InterruptedException,

ClassCastException,
IllegalThreadStateException

Description
The waitForNextPeriodInterruptible() method is a duplicate of wait-
ForNextPeriod() except that waitForNextPeriodInterruptible() is able to
throw InterruptedException.

Used by threads that have a reference to a ReleaseParameters type of
PeriodicParameters to block until the start of each period. The first period
starts when this thread is first released. Each time it is called, this method will
block until the start of the next period unless the thread is in a deadline miss
condition. In that case the operation of waitForNextPeriodInterruptible()
is controlled by this thread’s scheduler. (See PriorityScheduler)

Throws
InterruptedException—when the thread is interrupted by interrupt() or

AsynchronouslyInterruptedException.fire() during the time between call-
ing this method and returning from it.
An interrupt during waitForNextPeriodInterruptible() is treated as a re-
lease for purposes of scheduling. This is likely to disrupt proper operation of
the periodic thread. The periodic behavior of the thread is unspecified until
the state is reset by altering the thread’s periodic parameters.

1066 RTSJ 2.0 (Draft 57)

RealtimeThread javax.realtime B.2

ClassCastException—when the current thread is not an instance of Realtime-
Thread.

IllegalThreadStateException—when this does not have a reference to a Re-
leaseParameters type of PeriodicParameters.

Returns
either false, when the thread is in a deadline miss condition, or true, otherwise.

The time at which a deadline miss condition occurs is defined by its thread’s
scheduler.

Available since RTSJ 1.0.1

Deprecated RTSJ 2.0 Replaced by waitForNextRelease

addIfFeasible

Signature
public boolean
addIfFeasible()

Description
This method first performs a feasibility analysis with this added to the system.
When the resulting system is feasible, informs the scheduler and cooperating
facilities that this instance of Schedulable should be considered in feasibility
analysis until further notified. When the analysis shows that the system including
this would not be feasible, this method does not admit this to the feasibility
set.

When the object is already included in the feasibility set, does nothing.

Returns
true when inclusion of this in the feasibility set yields a feasible system, and false

otherwise. When true is returned then this is known to be in the feasibility
set. When false is returned, this was not added to the feasibility set, but it
may already have been present.

Deprecated as of RTSJ 2.0 The framework for feasibility analysis is inadequate

addToFeasibility

Signature

RTSJ 2.0 (Draft 57) 1067

B Deprecated APIs RealtimeThread

public boolean
addToFeasibility()

Description
Informs the scheduler and cooperating facilities that this instance of Schedulable
should be considered in feasibility analysis until further notified.

When the object is already included in the feasibility set, does nothing.

Returns
true, when the resulting system is feasible. False, when not.
Deprecated as of RTSJ 2.0 The framework for feasibility analysis is inadequate

deschedulePeriodic

Signature
public void
deschedulePeriodic()

Description
When the ReleaseParameters object associated with this RealtimeThread is
an instance of PeriodicParameters, performs any deschedulePeriodic actions
specified by this thread’s scheduler. When the type of the associated instance of
ReleaseParameters is not PeriodicParameters nothing happens.

Deprecated since RTSJ 2.0

getProcessingGroupParameters

Signature
public javax.realtime.ProcessingGroupParameters
getProcessingGroupParameters()

Description
Gets a reference to the ProcessingGroupParameters object for this schedulable.

Returns
A reference to the current ProcessingGroupParameters object.
Deprecated since RTSJ 2.0

1068 RTSJ 2.0 (Draft 57)

RealtimeThread javax.realtime B.2

removeFromFeasibility

Signature
public boolean
removeFromFeasibility()

Description
Informs the scheduler and cooperating facilities that this instance of Schedulable
should not be considered in feasibility analysis until it is further notified.

Returns
true when the removal was successful. false when the schedulable cannot be

removed from the scheduler’s feasibility set; e.g., the schedulable is not part of
the scheduler’s feasibility set.

Deprecated as of RTSJ 2.0 The framework for feasibility analysis is inadequate

schedulePeriodic

Signature
public void
schedulePeriodic()

Description
Begins unblocking RealtimeThread.waitForNextPeriod() for a periodic thread.
When deadline miss detection is disabled, enables it. Typically used when a
periodic schedulable is in a deadline miss condition. The details of the interaction
of this method with deschedulePeriodic() and waitForNextPeriod() are
dictated by this thread’s scheduler.

When this RealtimeThread does not have a type of PeriodicParameters as
its ReleaseParameters nothing happens.

Deprecated since RTSJ 2.0

setIfFeasible(ReleaseParameters, MemoryParameters)

Signature
public boolean
setIfFeasible(ReleaseParameters release,

RTSJ 2.0 (Draft 57) 1069

B Deprecated APIs RealtimeThread

MemoryParameters memory)

Description
This method first performs a feasibility analysis using the proposed parameter
objects as replacements for the current parameters of this. When the resulting
system is feasible, this method replaces the current parameters of this with the
proposed ones.

This change becomes effective under conditions determined by the scheduler
controlling the schedulable. For instance, the change may be immediate or it
may be delayed until the next release of the schedulable. See the documentation
for the scheduler for details.

This method does not require that the schedulable be in the feasibility set
before it is called. When it is not initially a member of the feasibility set it will
be added when the resulting system is feasible.

Parameters
release—The release parameters to use. When null, the default value is governed

by the associated scheduler (a new object is created when the default value is
not null). (See PriorityScheduler.)

memory—The memory parameters to use. When null, the default value is governed
by the associated scheduler (a new object is created when the default value is
not null). (See PriorityScheduler.)

Throws
IllegalArgumentException—when the parameter values are not compatible with

the schedulable’s scheduler. Also when this schedulable may not use the heap
and any of the specified parameter objects are located in heap memory.

IllegalAssignmentError—when this cannot hold references to the specified
parameter objects, or the parameter objects cannot hold a reference to this.

IllegalThreadStateException—when the schedulable’s scheduler prohibits this
parameter change at this time due to the state of the schedulable.

Returns
true, when the resulting system is feasible and the changes are made. False, when

the resulting system is not feasible and no changes are made.
Deprecated as of RTSJ 2.0 The framework for feasibility analysis is inadequate

setIfFeasible(ReleaseParameters, MemoryParameters, Pro-
cessingGroupParameters)

Signature

1070 RTSJ 2.0 (Draft 57)

RealtimeThread javax.realtime B.2

public boolean
setIfFeasible(ReleaseParameters release,

MemoryParameters memory,
ProcessingGroupParameters group)

Description
This method first performs a feasibility analysis using the proposed parameter
objects as replacements for the current parameters of this. When the resulting
system is feasible, this method replaces the current parameters of this with the
proposed ones.

This change becomes effective under conditions determined by the scheduler
controlling the schedulable. For instance, the change may be immediate or it
may be delayed until the next release of the schedulable. See the documentation
for the scheduler for details.

This method does not require that the schedulable be in the feasibility set
before it is called. When it is not initially a member of the feasibility set it will
be added when the resulting system is feasible.

Parameters
release—The release parameters to use. When null, the default value is governed

by the associated scheduler (a new object is created when the default value is
not null). (See PriorityScheduler.)

memory—The memory parameters to use. When null, the default value is governed
by the associated scheduler (a new object is created when the default value is
not null). (See PriorityScheduler.)

group—The processing group parameters to use. When null, the default value is
governed by the associated scheduler (a new object is created when the default
value is not null). (See PriorityScheduler.)

Throws
IllegalArgumentException—when the parameter values are not compatible with

the schedulable’s scheduler. Also when this schedulable may not use the heap
and any of the specified parameter objects are located in heap memory.

IllegalAssignmentError—when this cannot hold references to the specified
parameter objects, or the parameter objects cannot hold a reference to this.

IllegalThreadStateException—when the schedulable’s scheduler prohibits this
parameter change at this time due to the state of the schedulable.

Returns
true, when the resulting system is feasible and the changes are made. False, when

the resulting system is not feasible and no changes are made.

RTSJ 2.0 (Draft 57) 1071

B Deprecated APIs RealtimeThread

Deprecated as of RTSJ 2.0 The framework for feasibility analysis is inadequate

setIfFeasible(ReleaseParameters, ProcessingGroupParame-
ters)

Signature
public boolean
setIfFeasible(ReleaseParameters release,

ProcessingGroupParameters group)

Description
This method first performs a feasibility analysis using the proposed parameter
objects as replacements for the current parameters of this. When the resulting
system is feasible, this method replaces the current parameters of this with the
proposed ones.

This change becomes effective under conditions determined by the scheduler
controlling the schedulable. For instance, the change may be immediate or it
may be delayed until the next release of the schedulable. See the documentation
for the scheduler for details.

This method does not require that the schedulable be in the feasibility set
before it is called. When it is not initially a member of the feasibility set it will
be added when the resulting system is feasible.

Parameters
release—The release parameters to use. When null, the default value is governed

by the associated scheduler (a new object is created when the default value is
not null). (See PriorityScheduler.)

group—The processing group parameters to use. When null, the default value is
governed by the associated scheduler (a new object is created when the default
value is not null). (See PriorityScheduler.)

Throws
IllegalArgumentException—when the parameter values are not compatible with

the schedulable’s scheduler. Also when this schedulable may not use the heap
and any of the specified parameter objects are located in heap memory.

IllegalAssignmentError—when this cannot hold references to the specified
parameter objects, or the parameter objects cannot hold a reference to this.

IllegalThreadStateException—when the schedulable’s scheduler prohibits this
parameter change at this time due to the state of the schedulable.

Returns

1072 RTSJ 2.0 (Draft 57)

RealtimeThread javax.realtime B.2

true, when the resulting system is feasible and the changes are made. False, when
the resulting system is not feasible and no changes are made.

Deprecated as of RTSJ 2.0 The framework for feasibility analysis is inadequate

setIfFeasible(SchedulingParameters, ReleaseParameters,
MemoryParameters)

Signature
public boolean
setIfFeasible(SchedulingParameters scheduling,

ReleaseParameters release,
MemoryParameters memory)

Description

This method first performs a feasibility analysis using the proposed parameter
objects as replacements for the current parameters of this. When the resulting
system is feasible, this method replaces the current parameters of this with the
proposed ones.

This change becomes effective under conditions determined by the scheduler
controlling the schedulable. For instance, the change may be immediate or it
may be delayed until the next release of the schedulable. See the documentation
for the scheduler for details.

This method does not require that the schedulable be in the feasibility set
before it is called. When it is not initially a member of the feasibility set it will
be added when the resulting system is feasible.

Parameters
scheduling—The scheduling parameters to use. When null, the default value is

governed by the associated scheduler (a new object is created when the default
value is not null). (See PriorityScheduler.)

release—The release parameters to use. When null, the default value is governed
by the associated scheduler (a new object is created when the default value is
not null). (See PriorityScheduler.)

memory—The memory parameters to use. When null, the default value is governed
by the associated scheduler (a new object is created when the default value is
not null). (See PriorityScheduler.)

Throws

RTSJ 2.0 (Draft 57) 1073

B Deprecated APIs RealtimeThread

IllegalArgumentException—when the parameter values are not compatible with
the schedulable’s scheduler. Also when this schedulable may not use the heap
and any of the specified parameter objects are located in heap memory.

IllegalAssignmentError—when this cannot hold references to the specified
parameter objects, or the parameter objects cannot hold a reference to this.

IllegalThreadStateException—when the schedulable’s scheduler prohibits this
parameter change at this time due to the state of the schedulable.

Returns
true, when the resulting system is feasible and the changes are made. False, when

the resulting system is not feasible and no changes are made.
Deprecated as of RTSJ 2.0 The framework for feasibility analysis is inadequate

setIfFeasible(SchedulingParameters, ReleaseParameters,
MemoryParameters, ProcessingGroupParameters)

Signature
public boolean
setIfFeasible(SchedulingParameters scheduling,

ReleaseParameters release,
MemoryParameters memory,
ProcessingGroupParameters group)

Description
This method first performs a feasibility analysis using the proposed parameter
objects as replacements for the current parameters of this. When the resulting
system is feasible, this method replaces the current parameters of this with the
proposed ones.

This change becomes effective under conditions determined by the scheduler
controlling the schedulable. For instance, the change may be immediate or it
may be delayed until the next release of the schedulable. See the documentation
for the scheduler for details.

This method does not require that the schedulable be in the feasibility set
before it is called. When it is not initially a member of the feasibility set it will
be added when the resulting system is feasible.

Parameters
scheduling—The scheduling parameters to use. When null, the default value is

governed by the associated scheduler (a new object is created when the default
value is not null). (See PriorityScheduler.)

1074 RTSJ 2.0 (Draft 57)

RealtimeThread javax.realtime B.2

release—The release parameters to use . When null, the default value is governed
by the associated scheduler (a new object is created when the default value is
not null). (See PriorityScheduler.)

memory—The memory parameters to use. When null, the default value is governed
by the associated scheduler (a new object is created when the default value is
not null). (See PriorityScheduler.)

group—The processing group parameters to use. When null, the default value is
governed by the associated scheduler (a new object is created when the default
value is not null). (See PriorityScheduler.)

Throws
IllegalArgumentException—when the parameter values are not compatible with

the schedulable’s scheduler. Also when this schedulable may not use the heap
and any of the specified parameter objects are located in heap memory.

IllegalAssignmentError—when this cannot hold references to the specified
parameter objects, or the parameter objects cannot hold a reference to this.

IllegalThreadStateException—when the schedulable’s scheduler prohibits this
parameter change at this time due to the state of the schedulable.

Returns
true, when the resulting system is feasible and the changes are made. False, when

the resulting system is not feasible and no changes are made.

Deprecated as of RTSJ 2.0 The framework for feasibility analysis is inadequate

setMemoryParametersIfFeasible(MemoryParameters)

Signature
public boolean
setMemoryParametersIfFeasible(MemoryParameters memory)

Description
This method first performs a feasibility analysis using the proposed parameter
object as replacement for the current parameter of this. When the resulting
system is feasible, this method replaces the current parameter of this with the
proposed one.

This change becomes effective under conditions determined by the scheduler
controlling the schedulable. For instance, the change may be immediate or it
may be delayed until the next release of the schedulable. See the documentation
for the scheduler for details.

RTSJ 2.0 (Draft 57) 1075

B Deprecated APIs RealtimeThread

This method does not require that the schedulable be in the feasibility set
before it is called. When it is not initially a member of the feasibility set it will
be added when the resulting system is feasible.

Parameters
memory—The memory parameters to use. When null, the default value is governed

by the associated scheduler (a new object is created when the default value is
not null). (See PriorityScheduler.)

Throws
IllegalArgumentException—when the parameter value is not compatible with

the schedulable’s scheduler. Also when this schedulable may not use the heap
and the specified parameter object is located in heap memory.

IllegalAssignmentError—when this cannot hold a reference to the specified
parameter object, or the parameter object cannot hold a reference to this.

IllegalThreadStateException—when the schedulable’s scheduler prohibits the
changing of the memory parameter at this time due to the state of the schedul-
able.

Returns
true, when the resulting system is feasible and the changes are made. False, when

the resulting system is not feasible and no changes are made.
Deprecated as of RTSJ 2.0 The framework for feasibility analysis is inadequate

setProcessingGroupParameters(ProcessingGroupParameters)

Signature
public void
setProcessingGroupParameters(ProcessingGroupParameters group)

Description
Sets the ProcessingGroupParameters of this.

This change becomes effective under conditions determined by the scheduler
controlling the schedulable. For instance, the change may be immediate or it
may be delayed until the next release of the schedulable. See the documentation
for the scheduler for details.

Parameters
group—A ProcessingGroupParameters object which will take effect as determined

by the associated scheduler. When null, the default value is governed by the

1076 RTSJ 2.0 (Draft 57)

RealtimeThread javax.realtime B.2

associated scheduler (a new object is created when the default value is not
null). (See PriorityScheduler.)

Throws
IllegalArgumentException—when group is not compatible with the scheduler

for this schedulable object. Also when this schedulable may not use the heap
and group is located in heap memory.

IllegalAssignmentError—when this object cannot hold a reference to group or
group cannot hold a reference to this.

IllegalThreadStateException—when the schedulable’s scheduler prohibits the
changing of the processing group parameter at this time due to the state of
the schedulable object.

Deprecated

setProcessingGroupParametersIfFeasible
(ProcessingGroupParameters)

Signature
public boolean
setProcessingGroupParametersIfFeasible(ProcessingGroupParameters group)

Description
This method first performs a feasibility analysis using the proposed parameter
object as replacement for the current parameter of this. When the resulting
system is feasible, this method replaces the current parameter of this with the
proposed one.

This change becomes effective under conditions determined by the scheduler
controlling the schedulable. For instance, the change may be immediate or it
may be delayed until the next release of the schedulable. See the documentation
for the scheduler for details.

This method does not require that the schedulable be in the feasibility set
before it is called. When it is not initially a member of the feasibility set it will
be added when the resulting system is feasible.

Parameters
group—The processing group parameters to use. When null, the default value is

governed by the associated scheduler (a new object is created when the default
value is not null). (See PriorityScheduler.)

Throws

RTSJ 2.0 (Draft 57) 1077

B Deprecated APIs RealtimeThread

IllegalArgumentException—when the parameter value is not compatible with
the schedulable’s scheduler. Also when this schedulable may not use the heap
and the specified parameter object is located in heap memory.

IllegalAssignmentError—when this cannot hold a reference to the specified
parameter object, or the parameter object cannot hold a reference to this.

IllegalThreadStateException—when the schedulable’s scheduler prohibits the
changing of the processing group parameter at this time due to the state of
the schedulable object.

Returns
true, when the resulting system is feasible and the changes are made. False, when

the resulting system is not feasible and no changes are made.

Deprecated as of RTSJ 2.0 The framework for feasibility analysis is inadequate

setReleaseParametersIfFeasible(ReleaseParameters)

Signature
public boolean
setReleaseParametersIfFeasible(ReleaseParameters release)

Description

This method first performs a feasibility analysis using the proposed parameter
object as replacement for the current parameter of this. When the resulting
system is feasible, this method replaces the current parameter of this with the
proposed one.

This change becomes effective under conditions determined by the scheduler
controlling the schedulable. For instance, the change may be immediate or it
may be delayed until the next release of the schedulable. See the documentation
for the scheduler for details.

This method does not require that the schedulable be in the feasibility set
before it is called. When it is not initially a member of the feasibility set it will
be added when the resulting system is feasible.

Parameters
release—The release parameters to use. When null, the default value is governed

by the associated scheduler (a new object is created when the default value is
not null). (See PriorityScheduler.)

Throws

1078 RTSJ 2.0 (Draft 57)

RealtimeThread javax.realtime B.2

IllegalArgumentException—when the parameter value is not compatible with
the schedulable’s scheduler. Also when this schedulable may not use the heap
and the specified parameter object is located in heap memory.

IllegalAssignmentError—when this cannot hold a reference to the specified
parameter object, or the parameter object cannot hold a reference to this.

IllegalThreadStateException—when the schedulable’s scheduler prohibits the
changing of the release parameter at this time due to the state of the schedulable.

Returns
true, when the resulting system is feasible and the changes are made. False, when

the resulting system is not feasible and no changes are made.

Deprecated as of RTSJ 2.0 The framework for feasibility analysis is inadequate

setScheduler(Scheduler, SchedulingParameters, ReleasePar-
ameters, MemoryParameters, ProcessingGroupParameters)

Signature
public void
setScheduler(Scheduler scheduler,

SchedulingParameters scheduling,
ReleaseParameters release,
MemoryParameters memoryParameters,
ProcessingGroupParameters group)

Description
Sets the scheduler and associated parameter objects. The timing of the change
must be agreed between the scheduler currently associated with this schedulable,
and scheduler.

Parameters
scheduler—A reference to the scheduler that will manage the execution of this

schedulable. Null is not a permissible value.
scheduling—A reference to the SchedulingParameters which will be associated

with this. When null, the default value is governed by scheduler; a new
object is created when the default value is not null. See PriorityScheduler.

release—A reference to the ReleaseParameters which will be associated with
this. When null, the default value is governed by scheduler; a new object
is created when the default value is not null. (See PriorityScheduler.)

RTSJ 2.0 (Draft 57) 1079

B Deprecated APIs RealtimeThread

memoryParameters—A reference to the MemoryParameters which will be associated
with this. When null, the default value is governed by scheduler; a new
object is created when the default value is not null. (See PriorityScheduler.)

group—A reference to the ProcessingGroupParameters which will be associated
with this. When null, the default value is governed by scheduler; a new
object is created when the default value is not null. (See PriorityScheduler.)

Throws
IllegalArgumentException—when scheduler is null or the parameter values

are not compatible with scheduler. Also thrown when this schedulable may
not use the heap and scheduler, scheduling release, memoryParameters,
or group is located in heap memory.

IllegalAssignmentError—when this object cannot hold references to all the
parameter objects or the parameters cannot hold references to this.

IllegalThreadStateException—when scheduler prohibits the changing of the
scheduler or a parameter at this time due to the state of the schedulable.

SecurityException—when the caller is not permitted to set the scheduler for this
schedulable.

Deprecated since RTSJ 2.0

setSchedulingParametersIfFeasible(SchedulingParameters)

Signature
public boolean
setSchedulingParametersIfFeasible(SchedulingParameters scheduling)

Description
This method first performs a feasibility analysis using the proposed parameter
object as replacement for the current parameter of this. When the resulting
system is feasible, this method replaces the current parameter of this with the
proposed one.

This change becomes effective under conditions determined by the scheduler
controlling the schedulable. For instance, the change may be immediate or it
may be delayed until the next release of the schedulable. See the documentation
for the scheduler for details.

This method does not require that the schedulable be in the feasibility set
before it is called. When it is not initially a member of the feasibility set it will
be added when the resulting system is feasible.

Parameters

1080 RTSJ 2.0 (Draft 57)

RelativeTime javax.realtime B.2

scheduling—The scheduling parameters to use. When null, the default value is
governed by the associated scheduler (a new object is created when the default
value is not null). (See PriorityScheduler.)

Throws
IllegalArgumentException—when the parameter value is not compatible with

the schedulable’s scheduler. Also when this schedulable may not use the heap
and the specified parameter object is located in heap memory.

IllegalAssignmentError—when this cannot hold a reference to the specified
parameter object, or the parameter object cannot hold a reference to this.

IllegalThreadStateException—when the schedulable’s scheduler prohibits the
changing of the scheduling parameter at this time due to the state of the
schedulable object.

Returns
true, when the resulting system is feasible and the changes are made. False, when

the resulting system is not feasible and no changes are made.
Deprecated as of RTSJ 2.0 The framework for feasibility analysis is inadequate

B.2.2.27 RelativeTime

public class RelativeTime
The following elements of RelativeTime are deprecated. The required elements

are documented in Section 9.3.1.3 above.

B.2.2.27.1 Constructors

RelativeTime(long, int, Clock)

Signature
public
RelativeTime(long millis,

int nanos,
Clock clock)

RTSJ 2.0 (Draft 57) 1081

B Deprecated APIs RelativeTime

throws IllegalArgumentException

Description

Constructs a RelativeTime object representing an interval based on the param-
eter millis plus the parameter nanos. The construction is subject to millis
and nanos parameter normalization. When there is an overflow in the millisec-
ond component when normalizing then an IllegalArgumentException will be
thrown.

The clock association is made with the clock parameter. When clock is
null the association is made with the default realtime clock.

Available since RTSJ 1.0.1

Deprecated since version 2.0

Parameters
millis—The desired value for the millisecond component of this. The actual

value is the result of parameter normalization.
nanos—The desired value for the nanosecond component of this. The actual value

is the result of parameter normalization.
clock—The clock providing the association for the newly constructed object.

Throws
IllegalArgumentException—when there is an overflow in the millisecond compo-

nent when normalizing.

RelativeTime(RelativeTime, Clock)

Signature
public
RelativeTime(RelativeTime time,

Clock clock)
throws IllegalArgumentException

Description

Makes a new RelativeTime object from the given RelativeTime object.
The clock association is made with the clock parameter. When clock is

null the association is made with the default realtime clock.

1082 RTSJ 2.0 (Draft 57)

RelativeTime javax.realtime B.2

Available since RTSJ 1.0.1

Deprecated since version 2.0

Parameters
time—The RelativeTime object which is the source for the copy.
clock—The clock providing the association for the newly constructed object.

Throws
IllegalArgumentException—when the time parameter is null.

RelativeTime(Clock)

Signature
public
RelativeTime(Clock clock)

Description
Equivalent to new RelativeTime(0,0,clock).

The clock association is made with the clock parameter. When clock is
null the association is made with the default realtime clock.

Available since RTSJ 1.0.1

Deprecated since version 2.0

Parameters
clock—The clock providing the association for the newly constructed object.

B.2.2.27.2 Methods

absolute(Clock)

Signature
public javax.realtime.AbsoluteTime
absolute(Clock clock)
throws ArithmeticException

RTSJ 2.0 (Draft 57) 1083

B Deprecated APIs RelativeTime

Description
Converts the time of this to an absolute time, using the given instance of Clock
to determine the current time. The calculation is the current time indicated by
the given instance of Clock plus the interval given by this. When clock is null
the realtime clock is assumed. A destination object is allocated for the result.
The clock association of the result is with the clock passed as a parameter.

Parameters
clock—The instance of Clock used to convert the time of this into absolute time,

and the new clock association for the result.
Throws

ArithmeticException—when the result does not fit in the normalized format.
Returns
The AbsoluteTime conversion in a newly allocated object, associated with the

clock parameter.
Deprecated since version 2.0

absolute(Clock, AbsoluteTime)

Signature
public javax.realtime.AbsoluteTime
absolute(Clock clock,

AbsoluteTime dest)
throws ArithmeticException

Description
Converts the time of this to an absolute time, using the given instance of Clock
to determine the current time. The calculation is the current time indicated by
the given instance of Clock plus the interval given by this. When clock is null
the default realtime clock is assumed. When dest is null, a destination object
is allocated for the result. The clock association of the result is with the clock
passed as a parameter.

Parameters
clock—The instance of Clock used to convert the time of this into absolute time,

and the new clock association for the result.
dest—When dest is not null, the result is placed there and returned.

Throws
ArithmeticException—when the result does not fit in the normalized format.

1084 RTSJ 2.0 (Draft 57)

RelativeTime javax.realtime B.2

Returns
the AbsoluteTime conversion in dest when dest is not null, otherwise the result

is returned in a newly allocated object. The result is associated with the clock
parameter.

Deprecated since version 2.0

relative(Clock)

Signature
public javax.realtime.RelativeTime
relative(Clock clock)

Description
Returns a copy of this. A new object is allocated for the result. This method
is the implementation of the abstract method of the HighResolutionTime
base class. No conversion into RelativeTime is needed in this case. The clock
association of the result is with the clock passed as a parameter. When clock
is null the association is made with the realtime clock.

Parameters
clock—The clock parameter is used only as the new clock association with the

result, since no conversion is needed.
Returns
the copy of this in a newly allocated RelativeTime object, associated with the

clock parameter.
Deprecated since version 2.0

relative(Clock, RelativeTime)

Signature
public javax.realtime.RelativeTime
relative(Clock clock,

RelativeTime dest)

Description
Returns a copy of this. When dest is not null, the result is placed there and
returned. Otherwise, a new object is allocated for the result. This method is the
implementation of the abstract method of the HighResolutionTime base class.

RTSJ 2.0 (Draft 57) 1085

B Deprecated APIs ReleaseParameters

No conversion into RelativeTime is needed in this case. The clock association
of the result is with the clock passed as a parameter. When clock is null the
association is made with the realtime clock.

Parameters
clock—The clock parameter is used only as the new clock association with the

result, since no conversion is needed.
dest—When dest is not null, the result is placed there and returned.

Returns
the copy of this in dest when dest is not null, otherwise the result is returned

in a newly allocated object. It is associated with the clock parameter.

Deprecated since version 2.0

B.2.2.28 ReleaseParameters

public abstract class ReleaseParameters

The following elements of ReleaseParameters are deprecated. The required
elements are documented in Section 6.3.3.10 above.

B.2.2.28.1 Methods

setIfFeasible(RelativeTime, RelativeTime)

Signature
public boolean
setIfFeasible(RelativeTime cost,

RelativeTime deadline)

Description
This method first performs a feasibility analysis using the new cost, and deadline
as replacements for the matching attributes of all schedulables associated with
this release parameters object. When the resulting system is feasible, the method
replaces the current scheduling characteristics of this release parameters object
with the new scheduling characteristics. The change in the release characteristics,

1086 RTSJ 2.0 (Draft 57)

Scheduler javax.realtime B.2

including the timing of the change, of any associated schedulables will take place
under the control of their schedulers.

Parameters
cost—The proposed cost. Equivalent to RelativeTime(0,0) when null. (A

new instance of RelativeTime is created in the memory area containing this
ReleaseParameters instance). When null, the default value is a new instance
of RelativeTime(0,0).

deadline—The proposed deadline. There is no default for deadline in this class.
The default must be determined by the subclasses.

Throws
IllegalArgumentException—when the time value of cost is less than zero, or

the time value of deadline is less than or equal to zero.
IllegalAssignmentError—when cost or deadline cannot be stored in this.

Returns
true, when the resulting system is feasible and the changes are made, and false,

when the resulting system is not feasible and no changes are made.

Deprecated as of RTSJ 2.0

B.2.2.29 Scheduler

public abstract class Scheduler

The following elements of Scheduler are deprecated. The required elements are
documented in Section 6.3.3.12 above.

B.2.2.29.1 Methods

addToFeasibility(Schedulable)

Signature
protected abstract boolean
addToFeasibility(Schedulable schedulable)

Description

RTSJ 2.0 (Draft 57) 1087

B Deprecated APIs Scheduler

Informs this scheduler and cooperating facilities that the resource demands of
the given instance of Schedulable will be considered in the feasibility analysis
of the associated Scheduler until further notice. Whether the resulting system
is feasible or not, the addition is completed. When the object is already included
in the feasibility set, does nothing.

Parameters
schedulable—A reference to the given instance of Schedulable

Throws
IllegalArgumentException—when schedulable is null, or when schedulable

is not associated with this; that is schedulable.getScheduler() != this.
Returns
true, when the system is feasible after the addition, and false, when not.
Deprecated as of RTSJ 2.0 The framework for feasibility analysis is inadequate

isFeasible

Signature
public abstract boolean
isFeasible()

Description
Queries the system about the feasibility of the system currently being consid-
ered. The definitions of "feasible" and "system" are the
responsibility of the feasibility algorithm of the actual Scheduler subclass.

Returns
true, when the system is feasible; false, when not.
Deprecated as of RTSJ 2.0 The framework for feasibility analysis is inadequate

setIfFeasible(Schedulable, ReleaseParameters, MemoryPa-
rameters)

Signature
public abstract boolean
setIfFeasible(Schedulable schedulable,

ReleaseParameters release,
MemoryParameters memory)

1088 RTSJ 2.0 (Draft 57)

Scheduler javax.realtime B.2

Description
This method first performs a feasibility analysis using the proposed parameter
objects as replacements for the current parameters of Schedulable. When
the resulting system is feasible, this method replaces the current parameters of
Schedulable with the proposed ones. This method does not require that the
schedulable be in the feasibility set before it is called. When it is not initially
a member of the feasibility set it will be added when the resulting system is
feasible.

Parameters
schedulable—The schedulable for which the changes are proposed.
release—The proposed release parameters. When null, the default value of this

scheduler is used (a new object is created when the default value is not null).
(See PriorityScheduler.)

memory—The proposed memory parameters. When null, the default value of this
scheduler is used (a new object is created when the default value is not null).
(See PriorityScheduler.)

Throws
IllegalArgumentException—when Schedulable is null, or Schedulable is not

associated with this scheduler, or the proposed parameters are not compatible
with this scheduler.

IllegalAssignmentError—when Schedulable cannot hold references to the pro-
posed parameter objects, or the parameter objects cannot hold a reference to
Schedulable.

IllegalThreadStateException—when the new ReleaseParameters changes Sched-
ulable from periodic scheduling to some other protocol and Schedulable is cur-
rently waiting for the next release in RealtimeThread.waitForNextPeriod()
or RealtimeThread.waitForNextPeriodInterruptible().

Returns
true, when the resulting system is feasible and the changes are made; false, when

the resulting system is not feasible and no changes are made.

Deprecated as of RTSJ 2.0 The framework for feasibility analysis is inadequate

setIfFeasible(Schedulable, ReleaseParameters, MemoryPa-
rameters, ProcessingGroupParameters)

Signature

RTSJ 2.0 (Draft 57) 1089

B Deprecated APIs Scheduler

public abstract boolean
setIfFeasible(Schedulable schedulable,

ReleaseParameters release,
MemoryParameters memory,
ProcessingGroupParameters group)

Description
This method first performs a feasibility analysis using the proposed parameter
objects as replacements for the current parameters of Schedulable. When
the resulting system is feasible, this method replaces the current parameters of
Schedulable with the proposed ones.

This method does not require that the schedulable be in the feasibility set
before it is called. When it is not initially a member of the feasibility set it will
be added when the resulting system is feasible.

Parameters
schedulable—The schedulable for which the changes are proposed.
release—The proposed release parameters. When null, the default value of this

scheduler is used (a new object is created when the default value is not null).
(See PriorityScheduler.)

memory—The proposed memory parameters. When null, the default value of this
scheduler is used (a new object is created when the default value is not null).
(See PriorityScheduler.)

group—The proposed processing group parameters. When null, the default value
of this scheduler is used (a new object is created when the default value is not
null). (See PriorityScheduler.)

Throws
IllegalArgumentException—when Schedulable is null, or Schedulable is not

associated with this scheduler, or the proposed parameters are not compatible
with this scheduler.

IllegalAssignmentError—when Schedulable cannot hold references to the pro-
posed parameter objects, or the parameter objects cannot hold a reference to
Schedulable.

IllegalThreadStateException—when the new release parameters change Sched-
ulable from periodic scheduling to some other protocol and Schedulable is cur-
rently waiting for the next release in RealtimeThread.waitForNextPeriod()
or RealtimeThread.waitForNextPeriodInterruptible().

Returns
true, when the resulting system is feasible and the changes are made; false, when

the resulting system is not feasible and no changes are made.

1090 RTSJ 2.0 (Draft 57)

Scheduler javax.realtime B.2

Deprecated as of RTSJ 2.0 The framework for feasibility analysis is inadequate

setIfFeasible(Schedulable, SchedulingParameters, Release-
Parameters, MemoryParameters, ProcessingGroupParame-
ters)

Signature
public abstract boolean
setIfFeasible(Schedulable schedulable,

SchedulingParameters scheduling,
ReleaseParameters release,
MemoryParameters memory,
ProcessingGroupParameters group)

Description

This method first performs a feasibility analysis using the proposed parameter
objects as replacements for the current parameters of Schedulable. When
the resulting system is feasible, this method replaces the current parameters of
Schedulable with the proposed ones.

This method does not require that the schedulable be in the feasibility set
before it is called. When it is not initially a member of the feasibility set it will
be added when the resulting system is feasible.

Parameters
schedulable—The schedulable for which the changes are proposed.
scheduling—The proposed scheduling parameters. When null, the default value

of this scheduler is used (a new object is created when the default value is not
null). (See PriorityScheduler.)

release—The proposed release parameters. When null, the default value of this
scheduler is used (a new object is created when the default value is not null).
(See PriorityScheduler.)

memory—The proposed memory parameters. When null, the default value of this
scheduler is used (a new object is created when the default value is not null).
(See PriorityScheduler.)

group—The proposed processing group parameters. When null, the default value
of this scheduler is used (a new object is created when the default value is not
null). (See PriorityScheduler.)

Throws

RTSJ 2.0 (Draft 57) 1091

B Deprecated APIs Scheduler

IllegalArgumentException—when Schedulable is null, or Schedulable is not
associated with this scheduler, or the proposed parameters are not compatible
with this scheduler.

IllegalAssignmentError—when Schedulable cannot hold references to the pro-
posed parameter objects, or the parameter objects cannot hold a reference to
Schedulable.

IllegalThreadStateException—when the new release parameters change Sched-
ulable from periodic scheduling to some other protocol and Schedulable is cur-
rently waiting for the next release in RealtimeThread.waitForNextPeriod()
or RealtimeThread.waitForNextPeriodInterruptible().

Returns
true, when the resulting system is feasible and the changes are made; false, when

the resulting system is not feasible and no changes are made.

Deprecated as of RTSJ 2.0 The framework for feasibility analysis is inadequate

removeFromFeasibility(Schedulable)

Signature
protected abstract boolean
removeFromFeasibility(Schedulable schedulable)

Description
Informs this scheduler and cooperating facilities that the resource demands of the
given instance of Schedulable should no longer be considered in the feasibility
analysis of the associated Scheduler. Whether the resulting system is feasible or
not, the removal is completed.

Parameters
schedulable—A reference to the given instance of Schedulable

Throws
IllegalArgumentException—when schedulable is null.

Returns
true, when the removal was successful, and false, when the schedulable cannot

be removed from the scheduler’s feasibility set; e.g., the schedulable is not part
of the scheduler’s feasibility set.

Deprecated as of RTSJ 2.0 The framework for feasibility analysis is inadequate

1092 RTSJ 2.0 (Draft 57)

ScopedMemory javax.realtime B.2

fireSchedulable(Schedulable)

Signature
public abstract void
fireSchedulable(Schedulable schedulable)

Description
Triggers the execution of a schedulable (like an AsyncEventHandler).

Parameters
schedulable—The schedulable to make active. When null, nothing happens.

Throws
UnsupportedOperationException—when the scheduler cannot release schedul-

able for execution.
Deprecated RTSJ 2.0

B.2.2.30 ScopedMemory

public abstract class ScopedMemory
Inheritance
java.lang.Object
MemoryArea
ScopedMemory

Description
Equivalent to and superseded by javax.realtime.memory.ScopedMemory.

Deprecated in RTSJ 2.0; moved to package javax.realtime.memory

B.2.2.30.1 Constructors

ScopedMemory(long, Runnable)

Signature

RTSJ 2.0 (Draft 57) 1093

B Deprecated APIs ScopedMemory

public
ScopedMemory(long size,

Runnable logic)

Description
Creates a new ScopedMemory area with the given parameters.

Parameters
size—The size of the new ScopedMemory area in bytes.
logic—The Runnable to execute when this ScopedMemory is entered. When logic

is null, this constructor is equivalent to constructing the memory area without
a logic value.

Throws
IllegalArgumentException—when size is less than zero.
IllegalAssignmentError—when storing logic in this would violate the assign-

ment rules.
OutOfMemoryError—when there is insufficient memory for the ScopedMemory object

or for the backing memory.

ScopedMemory(SizeEstimator, Runnable)

Signature
public
ScopedMemory(SizeEstimator size,

Runnable logic)

Description
Equivalent to ScopedMemory(long, Runnable) with the argument list (size.
getEstimate(), logic).

Parameters
size—The size of the new ScopedMemory area estimated by an instance of SizeEs-

timator.
logic—The logic which will use the memory represented by this as its initial mem-

ory area. When logic is null, this constructor is equivalent to constructing
the memory area without a logic value.

Throws
IllegalArgumentException—when size is null, or size.getEstimate() is neg-

ative.

1094 RTSJ 2.0 (Draft 57)

ScopedMemory javax.realtime B.2

OutOfMemoryError—when there is insufficient memory for the ScopedMemory object
or for the backing memory.

IllegalAssignmentError—when storing logic in this would violate the assign-
ment rules.

ScopedMemory(long)

Signature
public
ScopedMemory(long size)

Description
Equivalent to ScopedMemory(long, Runnable) with the argument list (size,
null).

Parameters
size—of the new ScopedMemory area in bytes.

Throws
IllegalArgumentException—when size is less than zero.
OutOfMemoryError—when there is insufficient memory for the ScopedMemory object

or for the backing memory.

ScopedMemory(SizeEstimator)

Signature
public
ScopedMemory(SizeEstimator size)

Description
Equivalent to ScopedMemory(long, Runnable) with the argument list (size.
getEstimate(), null).

Parameters
size—The size of the new ScopedMemory area estimated by an instance of SizeEs-

timator.
Throws

IllegalArgumentException—when size is null, or size.getEstimate() is neg-
ative.

RTSJ 2.0 (Draft 57) 1095

B Deprecated APIs ScopedMemory

OutOfMemoryError—when there is insufficient memory for the ScopedMemory object
or for the backing memory.

B.2.2.30.2 Methods

enter

Signature
public void
enter()

Description

Associates this memory area with the current schedulable for the duration of
the execution of the run() method of the instance of Runnable given in the
constructor. During this period of execution, this memory area becomes the
default allocation context until another default allocation context is selected
(using enter, or executeInArea) or the enter method exits.

Throws
ScopedCycleException—when this invocation would break the single parent rule.
ThrowBoundaryError—when the JVM needs to propagate an exception allocated in

this scope to (or through) the memory area of the caller. Storing a reference to
that exception would cause an IllegalAssignmentError, so the JVM cannot
be permitted to deliver the exception. The ThrowBoundaryError is allocated
in the current allocation context and contains information about the exception
it replaces.

IllegalThreadStateException—when the caller is a Java thread, or when this
method is invoked during finalization of objects in scoped memory and enter-
ing this scoped memory area would force deletion of the SO that triggered
finalization. This would include the scope containing the SO, and the scope (if
any) containing the scope containing the SO.

IllegalArgumentException—when the caller is a schedulable and a null value
for logic was supplied when the memory area was constructed.

MemoryAccessError—when caller is a schedulable that may not use the heap and
this memory area’s logic value is allocated in heap memory.

1096 RTSJ 2.0 (Draft 57)

ScopedMemory javax.realtime B.2

enter(Runnable)

Signature
public void
enter(Runnable logic)

Description
Associates this memory area with the current schedulable for the duration of
the execution of the run() method of the given Runnable. During this period of
execution, this memory area becomes the default allocation context until another
default allocation context is selected (using enter, or executeInArea) or the
enter method exits.

Parameters
logic—The Runnable object whose run() method should be invoked.

Throws
ScopedCycleException—when this invocation would break the single parent rule.
ThrowBoundaryError—when the JVM needs to propagate an exception allocated in

this scope to (or through) the memory area of the caller. Storing a reference to
that exception would cause an IllegalAssignmentError, so the JVM cannot
be permitted to deliver the exception. The ThrowBoundaryError is allocated
in the current allocation context and contains information about the exception
it replaces.

IllegalThreadStateException—when the caller is a Java thread, or when this
method is invoked during finalization of objects in scoped memory and enter-
ing this scoped memory area would force deletion of the SO that triggered
finalization. This would include the scope containing the SO, and the scope (if
any) containing the scope containing the SO.

IllegalArgumentException—when the caller is a schedulable and logic is null.

executeInArea(Runnable)

Signature
public void
executeInArea(Runnable logic)

Description
Executes the run method from the logic parameter using this memory area as
the current allocation context. This method behaves as if it moves the allocation
context down the scope stack to the occurrence of this.

RTSJ 2.0 (Draft 57) 1097

B Deprecated APIs ScopedMemory

Parameters
logic—The runnable object whose run() method should be executed.

Throws
IllegalThreadStateException—when the caller context in not an instance of

Schedulable.
InaccessibleAreaException—when the memory area is not in the schedulable’s

scope stack.
IllegalArgumentException—when the caller is a schedulable and logic is null.

getMaximumSize

Signature
public long
getMaximumSize()

Description
Gets the maximum size this memory area can attain. If this is a fixed size memory
area, the returned value will be equal to the initial size.

Returns
the maximum size attainable.

getPortal

Signature
public java.lang.Object
getPortal()

Description
Obtains a reference to the portal object in this instance of ScopedMemory.

Assignment rules are enforced on the value returned by getPortal as if the
return value were first stored in an object allocated in the current allocation
context, then moved to its final destination.

Throws
IllegalAssignmentError—when a reference to the portal object cannot be stored

in the caller’s allocation context; that is, when this is "inner" relative to the
current allocation context or not on the caller’s scope stack.

IllegalThreadStateException—when the caller context in not an instance of
Schedulable.

1098 RTSJ 2.0 (Draft 57)

ScopedMemory javax.realtime B.2

Returns
a reference to the portal object or null when there is no portal object. The portal

value is always set to null when the contents of the memory are deleted.

getReferenceCount

Signature
public int
getReferenceCount()

Description

Returns the reference count of this ScopedMemory.
Note that a reference count of 0 reliably means that the scope is not referenced,

but other reference counts are subject to artifacts of lazy/eager maintenance by
the implementation.

Returns
the reference count of this ScopedMemory.

join

Signature
public void
join()
throws InterruptedException

Description

Waits until the reference count of this ScopedMemory goes down to zero. Returns
immediately when the memory is unreferenced.

Throws
InterruptedException—When this schedulable is interrupted by

RealtimeThread.interrupt() or AsynchronouslyInterruptedException.
fire() while waiting for the reference count to go to zero.

IllegalThreadStateException—when the caller context in not an instance of
Schedulable.

RTSJ 2.0 (Draft 57) 1099

B Deprecated APIs ScopedMemory

join(HighResolutionTime)

Signature
public void
join(javax.realtime.HighResolutionTime<?> time)
throws InterruptedException

Description
Waits at most until the time designated by the time parameter for the reference
count of this ScopedMemory to drop to zero. Returns immediately when the
memory area is unreferenced.

Since the time is expressed as a HighResolutionTime, this method is an
accurate timer with nanosecond granularity. The actual resolution of the timer
and even the quantity it measures depends on the clock associated with time.
The delay time may be relative or absolute. When relative, then the delay is
the amount of time given by time, and measured by its associated clock. When
absolute, then the delay is until the indicated value is reached by the clock. When
the given absolute time is less than or equal to the current value of the clock, the
call to join returns immediately.

Parameters
time—When this time is an absolute time, the wait is bounded by that point in

time. When the time is a relative time, the wait is bounded by a the specified
interval from some time between the time join is called and the time it starts
waiting for the reference count to reach zero.

Throws
InterruptedException—When this schedulable is interrupted by

RealtimeThread.interrupt() or AsynchronouslyInterruptedException.
fire() while waiting for the reference count to go to zero.

IllegalThreadStateException—when the caller context in not an instance of
Schedulable.

IllegalArgumentException—when the caller is a schedulable and time is null.
UnsupportedOperationException—when the wait operation is not supported us-

ing the clock associated with time.

joinAndEnter

Signature
public void
joinAndEnter()

1100 RTSJ 2.0 (Draft 57)

ScopedMemory javax.realtime B.2

throws InterruptedException

Description
In the error-free case, joinAndEnter combines join();enter(); such that no
enter() from another schedulable can intervene between the two method invoca-
tions. The resulting method will wait for the reference count on this ScopedMemory
to reach zero, then enter the ScopedMemory and execute the run method from
logic passed in the constructor. When no instance of Runnable was passed to
the memory area’s constructor, the method throws IllegalArgumentException
immediately.

When multiple threads are waiting in joinAndEnter family methods for a
memory area, at most one of them will be released each time the reference count
goes to zero.

Note that although joinAndEnter guarantees that the reference count is zero
when the schedulable is released for entry, it does not guarantee that the reference
count will remain one for any length of time. A subsequent enter could raise
the reference count to two.

Throws
InterruptedException—When this schedulable is interrupted by

RealtimeThread.interrupt() or AsynchronouslyInterruptedException.
fire() while waiting for the reference count to go to zero.

IllegalThreadStateException—when the caller is a Java thread, or when this
method is invoked during finalization of objects in scoped memory and enter-
ing this scoped memory area would force deletion of the SO that triggered
finalization. This would include the scope containing the SO, and the scope (if
any) containing the scope containing the SO.

ThrowBoundaryError—when the JVM needs to propagate an exception allocated in
this scope to (or through) the memory area of the caller. Storing a reference to
that exception would cause an IllegalAssignmentError, so the JVM cannot
be permitted to deliver the exception. The ThrowBoundaryError is allocated
in the current allocation context and contains information about the exception
it replaces.

ScopedCycleException—when this invocation would break the single parent rule.
IllegalArgumentException—when the caller is a schedulable and no non-null

logic value was supplied to the memory area’s constructor.
MemoryAccessError—when caller is a non-heap schedulable and this memory area’s

logic value is allocated in heap memory.

RTSJ 2.0 (Draft 57) 1101

B Deprecated APIs ScopedMemory

joinAndEnter(HighResolutionTime)

Signature
public void
joinAndEnter(javax.realtime.HighResolutionTime<?> time)
throws InterruptedException

Description
In the error-free case, joinAndEnter combines join();enter(); such that no
enter() from another schedulable can intervene between the two method invoca-
tions. The resulting method will wait for the reference count on this ScopedMemory
to reach zero, or for the current time to reach the designated time, then enter the
ScopedMemory and execute the run method from Runnable object passed to the
constructor. When no instance of Runnable was passed to the memory area’s
constructor, the method throws IllegalArgumentException immediately. *

When multiple threads are waiting in joinAndEnter family methods for a
memory area, at most one of them will be released each time the reference count
goes to zero.

Since the time is expressed as a HighResolutionTime, this method has an
accurate timer with nanosecond granularity. The actual resolution of the timer
and even the quantity it measures depends on the clock associated with time.
The delay time may be relative or absolute. When relative, then the calling
thread is blocked for at most the amount of time given by time, and measured
by its associated clock. When absolute, then the time delay is until the indicated
value is reached by the clock. When the given absolute time is less than or equal
to the current value of the clock, the call to joinAndEnter behaves effectively
like enter.

Note that expiration of time may cause control to enter the memory area
before its reference count has gone to zero.

Parameters
time—The time that bounds the wait.

Throws
ThrowBoundaryError—when the JVM needs to propagate an exception allocated in

this scope to (or through) the memory area of the caller. Storing a reference to
that exception would cause an IllegalAssignmentError, so the JVM cannot
be permitted to deliver the exception. The ThrowBoundaryError is allocated
in the current allocation context and contains information about the exception
it replaces.

InterruptedException—When this schedulable is interrupted by

1102 RTSJ 2.0 (Draft 57)

ScopedMemory javax.realtime B.2

RealtimeThread.interrupt() or AsynchronouslyInterruptedException.
fire() while waiting for the reference count to go to zero.

IllegalThreadStateException—when the caller context is not an instance of
Schedulable, or when this method is invoked during finalization of objects in
scoped memory and entering this scoped memory area would force deletion of
the instance that triggered finalization. This would include the scope containing
the instance, and the scope (if any) containing the scope containing the instance.

ScopedCycleException—when the caller is a schedulable and this invocation would
break the single parent rule.

IllegalArgumentException—when the caller is a schedulable, and time is null
or null was supplied as logic value to the memory area’s constructor.

UnsupportedOperationException—when the wait operation is not supported us-
ing the clock associated with time.

MemoryAccessError—when the calling schedulable may not use the heap and this
memory area’s logic value is allocated in heap memory.

joinAndEnter(Runnable)

Signature
public void
joinAndEnter(Runnable logic)
throws InterruptedException

Description
In the error-free case, joinAndEnter combines join();enter(); such that no
enter() from another schedulable can intervene between the two method invoca-
tions. The resulting method will wait for the reference count on this ScopedMemory
to reach zero, then enter the ScopedMemory and execute the run method from
logic

When logic is null, throw IllegalArgumentException immediately.
When multiple threads are waiting in joinAndEnter family methods for a

memory area, at most one of them will be released each time the reference count
goes to zero.

Note that although joinAndEnter guarantees that the reference count is zero
when the schedulable is released for entry, it does not guarantee that the reference
count will remain one for any length of time. A subsequent enter could raise
the reference count to two.

Parameters

RTSJ 2.0 (Draft 57) 1103

B Deprecated APIs ScopedMemory

logic—The Runnable object which contains the code to execute.
Throws

InterruptedException—When this schedulable is interrupted by
RealtimeThread.interrupt() or AsynchronouslyInterruptedException.
fire() while waiting for the reference count to go to zero.

IllegalThreadStateException—when the caller is a Java thread, or when this
method is invoked during finalization of objects in scoped memory and enter-
ing this scoped memory area would force deletion of the SO that triggered
finalization. This would include the scope containing the SO, and the scope (if
any) containing the scope containing the SO.

ThrowBoundaryError—when the JVM needs to propagate an exception allocated in
this scope to (or through) the memory area of the caller. Storing a reference to
that exception would cause an IllegalAssignmentError, so the JVM cannot
be permitted to deliver the exception. The ThrowBoundaryError is allocated
in the current allocation context and contains information about the exception
it replaces.

ScopedCycleException—when this invocation would break the single parent rule.
IllegalArgumentException—when the caller is a schedulable and logic is null.

joinAndEnter(Runnable, HighResolutionTime)

Signature
public void
joinAndEnter(Runnable logic,

javax.realtime.HighResolutionTime<?> time)
throws InterruptedException

Description
In the error-free case, joinAndEnter combines join();enter(); such that no
enter() from another schedulable can intervene between the two method invoca-
tions. The resulting method will wait for the reference count on this ScopedMemory
to reach zero, or for the current time to reach the designated time, then enter
the ScopedMemory and execute the run method from logic.

Since the time is expressed as a HighResolutionTime, this method is an
accurate timer with nanosecond granularity. The actual resolution of the timer
and even the quantity it measures depends on the clock associated with time.
The delay time may be relative or absolute. When relative, then the delay is
the amount of time given by time, and measured by its associated clock. When
absolute, then the delay is until the indicated value is reached by the clock. When

1104 RTSJ 2.0 (Draft 57)

ScopedMemory javax.realtime B.2

the given absolute time is less than or equal to the current value of the clock, the
call to joinAndEnter behaves effectively like enter(Runnable).

Throws IllegalArgumentException immediately when logic is null.
When multiple threads are waiting in joinAndEnter family methods for a

memory area, at most one of them will be released each time the reference count
goes to zero.

Note that expiration of time may cause control to enter the memory area
before its reference count has gone to zero.

Parameters
logic—The Runnable object which contains the code to execute.
time—The time that bounds the wait.

Throws
InterruptedException—When this schedulable is interrupted by

RealtimeThread.interrupt() or AsynchronouslyInterruptedException.
fire() while waiting for the reference count to go to zero.

IllegalThreadStateException—when the execution context in not an instance
of Schedulable, or when this method is invoked during finalization of objects
in scoped memory and entering this scoped memory area would force deletion
of the task that triggered finalization. This would include the scope containing
the task, and the scope (if any) containing the scope containing the task.

ThrowBoundaryError—when the JVM needs to propagate an exception allocated in
this scope to (or through) the memory area of the caller. Storing a reference to
that exception would cause an IllegalAssignmentError, so the JVM cannot
be permitted to deliver the exception. The ThrowBoundaryError is allocated
in the current allocation context and contains information about the exception
it replaces.

ScopedCycleException—when the caller is a schedulable and this invocation would
break the single parent rule.

IllegalArgumentException—when the caller is a schedulable and time or logic
is null.

UnsupportedOperationException—when the wait operation is not supported us-
ing the clock associated with time.

newArray(Class, int)

Signature
public java.lang.Object
newArray(java.lang.Class<?> type,

RTSJ 2.0 (Draft 57) 1105

B Deprecated APIs ScopedMemory

int number)

Description
Allocates an array of the given type in this memory area. This method may be
concurrently used by multiple threads.

Parameters
type—The class of the elements of the new array. To create an array of a primitive

type use a type such as Integer.TYPE (which would call for an array of the
primitive int type.)

number—The number of elements in the new array.
Throws

IllegalArgumentException—when number is less than zero, type is null, or type
is java.lang.Void.TYPE.

OutOfMemoryError—when space in the memory area is exhausted.
IllegalThreadStateException—when the caller context in not an instance of

Schedulable.
InaccessibleAreaException—when the memory area is not in the schedulable’s

scope stack.
Returns
a new array of class type, of number elements.

newInstance(Class)

Signature
public T
newInstance(java.lang.Class<T> type)
throws IllegalAccessException,

InstantiationException

Description
Allocates an object in this memory area. This method may be concurrently used
by multiple threads.

Parameters
type—The class of which to create a new instance.

Throws
IllegalAccessException—The class or initializer is inaccessible.
IllegalArgumentException—when type is null.

1106 RTSJ 2.0 (Draft 57)

ScopedMemory javax.realtime B.2

ExceptionInInitializerError—when an unexpected exception has occurred in
a static initializer.

OutOfMemoryError—when space in the memory area is exhausted.
InstantiationException—when the specified class object could not be instanti-

ated. Possible causes are it is an interface, it is abstract, or it is an array.
IllegalThreadStateException—when the caller context in not an instance of

Schedulable.
InaccessibleAreaException—when the memory area is not in the schedulable’s

scope stack.

Returns
a new instance of class type.

newInstance(Constructor, Object)

Signature
public T
newInstance(java.lang.reflect.Constructor<T> c,

java.lang.Object[] args)
throws IllegalAccessException,

InstantiationException,
InvocationTargetException

Description
Allocates an object in this memory area. This method may be concurrently used
by multiple threads.

Parameters
c—TThe constructor for the new instance.
args—An array of arguments to pass to the constructor.

Throws
IllegalAccessException—when the class or initializer is inaccessible under Java

access control.
InstantiationException—when the specified class object could not be instanti-

ated. Possible causes are it is an interface, it is abstract, it is an array.
OutOfMemoryError—when space in the memory area is exhausted.
IllegalArgumentException—when c is null, or the args array does not contain

the number of arguments required by c. A null value of args is treated like
an array of length 0.

RTSJ 2.0 (Draft 57) 1107

B Deprecated APIs ScopedMemory

IllegalThreadStateException—when the caller context in not an instance of
Schedulable.

InvocationTargetException—when the underlying constructor throws an excep-
tion.

InaccessibleAreaException—when the memory area is not in the schedulable’s
scope stack.

Returns
a new instance of the object constructed by c.

setPortal(Object)

Signature
public void
setPortal(Object object)

Description
Sets the portal object of the memory area represented by this instance of Scoped-
Memory to the given object. The object must have been allocated in this Scoped-
Memory instance.

Parameters
object—The object which will become the portal for this. When null the previous

portal object remains the portal object for this or when there was no previous
portal object then there is still no portal object for this.

Throws
IllegalThreadStateException—when the caller context in not an instance of

Schedulable.
IllegalAssignmentError—when the caller is a schedulable, and object is not

allocated in this scoped memory instance and not null.
InaccessibleAreaException—when the caller is a schedulable, this memory area

is not in the caller’s scope stack and object is not null.

toString

Signature
public java.lang.String
toString()

Description

1108 RTSJ 2.0 (Draft 57)

SporadicParameters javax.realtime B.2

Returns a user-friendly representation of this ScopedMemory of the form Scoped-
Memory#<num> where <num> is a number that uniquely identifies this scoped
memory area.

Returns
The string representation

B.2.2.31 SporadicParameters

public class SporadicParameters

The following elements of SporadicParameters are deprecated. The required
elements are documented in Section 6.3.3.15 above.

B.2.2.31.1 Fields

mitViolationExcept

public static final mitViolationExcept

Description
Represents the “EXCEPT” policy for dealing with minimum interarrival time vio-
lations. Under this policy, when an arrival time for any instance of Schedulable
which has this as its instance of ReleaseParameters occurs at a time less then
the minimum interarrival time defined here then the fire() method shall throw
MITViolationException. Any other associated semantics are governed by the
schedulers for the schedulables using these sporadic parameters. When the arrival
time is a result of a happening to which the instance of AsyncEventHandler is
bound then the arrival time is ignored.

Deprecated since RTSJ 2.0

mitViolationIgnore

public static final mitViolationIgnore

Description

RTSJ 2.0 (Draft 57) 1109

B Deprecated APIs SporadicParameters

Represents the “IGNORE” policy for dealing with minimum interarrival time
violations. Under this policy, when an arrival time for any instance of Sched-
ulable which has this as its instance of ReleaseParameters occurs at a time
less then the minimum interarrival time defined here then the new arrival time is
ignored. Any other associated semantics are governed by the schedulers for the
schedulables using these sporadic parameters.

Deprecated since RTSJ 2.0

mitViolationSave

public static final mitViolationSave

Description
Represents the “SAVE” policy for dealing with minimum interarrival time viola-
tions. Under this policy the arrival time for any instance of Schedulable which
has this as its instance of ReleaseParameters is not compared to the specified
minimum interarrival time. Any other associated semantics are governed by the
schedulers for the schedulable objects using these sporadic parameters.

Deprecated since RTSJ 2.0

mitViolationReplace

public static final mitViolationReplace

Description
Represents the “REPLACE” policy for dealing with minimum interarrival time
violations. Under this policy when an arrival time for any instance of Schedulable
which has this as its instance of ReleaseParameters occurs at a time less then
the minimum interarrival time defined here then the information for this arrival
replaces a previous arrival. Any other associated semantics are governed by the
schedulers for the schedulables using these sporadic parameters.

Deprecated since RTSJ 2.0

B.2.2.31.2 Methods

1110 RTSJ 2.0 (Draft 57)

SporadicParameters javax.realtime B.2

setMitViolationBehavior(String)

Signature
public void
setMitViolationBehavior(String behavior)

Description
Sets the behavior of the arrival time queue for the case where the new arrival
time is closer to the previous arrival time than the minimum interarrival time
given in this.

Values of behavior are compared using reference equality (==) not value
equality (equals()).

Parameters
behavior—A string representing the behavior.

Throws
IllegalArgumentException—when behavior is not one of the final MIT viola-

tion behavior values defined in this class.

Deprecated since RTSJ 2.0 and replaced by setMinimumInterarrivalPolicy.

getMitViolationBehavior

Signature
public java.lang.String
getMitViolationBehavior()

Description
Gets the arrival time queue behavior in the event of a minimum interarrival time
violation.

Returns
the minimum interarrival time violation behavior as a string.

Deprecated since RTSJ 2.0 and replaced by getMinimumInterarrivalPolicy.

setIfFeasible(RelativeTime, RelativeTime)

Signature

RTSJ 2.0 (Draft 57) 1111

B Deprecated APIs SporadicParameters

public boolean
setIfFeasible(RelativeTime cost,

RelativeTime deadline)

Description
This method first performs a feasibility analysis using the new cost, and deadline
as replacements for the matching attributes of this. When the resulting system is
feasible, the method replaces the current scheduling characteristics, of this with
the new scheduling characteristics.

Parameters
cost—The proposed cost used to determine when any particular object exceeds

cost. When null, the default value is a new instance of RelativeTime(0,0).
deadline—The proposed deadline. When null, the default value is a new instance

of RelativeTime(mit).
Throws

IllegalArgumentException—when the time value of cost is less than zero, or
the time value of deadline is less than or equal to zero, or the values are
incompatible with the scheduler for any of the schedulables which are presently
using this parameter object.

IllegalAssignmentError—when cost or deadline cannot be stored in this.
Returns
true, when the resulting system is feasible and the changes are made; false, when

the resulting system is not feasible and no changes are made.
Deprecated as of RTSJ 2.0 The framework for feasibility analysis is inadequate

setIfFeasible(RelativeTime, RelativeTime, RelativeTime)

Signature
public boolean
setIfFeasible(RelativeTime interarrival,

RelativeTime cost,
RelativeTime deadline)

Description
This method first performs a feasibility analysis using the new interarrival, cost
and deadline attributes as replacements for the matching attributes of this. When
the resulting system is feasible the method replaces the current attributes with
the new ones.

1112 RTSJ 2.0 (Draft 57)

ThrowBoundaryError javax.realtime B.2

Changes to a SporadicParameters instance effect subsequent arrivals.

Parameters
interarrival—The proposed interarrival time. There is no default value. When

minInterarrival is null an illegal argument exception is thrown.
cost—The proposed cost. When null, the default value is a new instance of

RelativeTime(0,0).
deadline—The proposed deadline. When null, the default value is a new instance

of RelativeTime(mit).
Throws

IllegalArgumentException—when minInterarrival is null or its time value is
not greater than zero, or the time value of cost is less than zero, or the time
value of deadline is not greater than zero.

IllegalAssignmentError—when interarrival, cost or deadline cannot be
stored in this.

Returns
true, when the resulting system is feasible and the changes are made; false, when

the resulting system is not feasible and no changes are made.
Deprecated as of RTSJ 2.0 The framework for feasibility analysis is inadequate

B.2.2.32 ThrowBoundaryError

public class ThrowBoundaryError
The following elements of ThrowBoundaryError are deprecated. The required

elements are documented in Section 15.2.2.8 above.

B.2.2.32.1 Constructors

ThrowBoundaryError(String)

Signature
public
ThrowBoundaryError(String description)

RTSJ 2.0 (Draft 57) 1113

B Deprecated APIs Timer

Description

A descriptive constructor for ThrowBoundaryError.

Deprecated since RTSJ 2.0; application code should use get() instead.

Parameters
description—The reason for throwing this error.

B.2.2.33 Timer

public abstract class Timer

The following elements of Timer are deprecated. The required elements are
documented in Section 10.3.2.5 above.

B.2.2.33.1 Methods

destroy

Signature
public void
destroy()
throws IllegalStateException

Description

Stops this from counting or comparing when active, removes from it all the
associated handlers if any, and releases as many of its resources as possible back
to the system. Every method invoked on a Timer that has been destroyed will
throw IllegalStateException.

Throws
IllegalStateException—when this Timer has been destroyed.

Deprecated since RTSJ 2.0

1114 RTSJ 2.0 (Draft 57)

VTMemory javax.realtime B.2

bindTo(String)

Signature
public void
bindTo(String happening)
throws UnsupportedOperationException

Description
Should not be called, since this was only meant for binding happenings to normal
instances AsyncEvent, not to special subclasses.

Parameters
happening—to which to bind

Throws
UnsupportedOperationException—when bindTo is called on a Timer.
Available since RTSJ 1.0.1

Deprecated RTSJ 2.0

B.2.2.34 VTMemory

public class VTMemory
Inheritance
java.lang.Object
MemoryArea
ScopedMemory
VTMemory

Description
VTMemory is similar to LTMemory except that the execution time of an allocation
from a VTMemory area need not complete in linear time.

Methods from VTMemory should be overridden only by methods that use
super.

Deprecated as of RTSJ 2.0

B.2.2.34.1 Constructors

RTSJ 2.0 (Draft 57) 1115

B Deprecated APIs VTMemory

VTMemory(long, long, Runnable)

Signature
public
VTMemory(long initial,

long maximum,
Runnable logic)

Description
Creates a VTMemory with the given parameters.

Parameters
initial—The size in bytes of the memory to initially allocate for this area.
maximum—The maximum size in bytes to which this memory area’s size may grow.
logic—An instance of Runnable whose run() method will use this as its ini-

tial memory area. When logic is null, this constructor is equivalent to
VTMemory(long initial, long maximum).

Throws
IllegalArgumentException—when initial is greater than maximum, or when

initial or maximum is less than zero.
OutOfMemoryError—when there is insufficient memory for the VTMemory object or

for the backing memory.
IllegalAssignmentError—when storing logic in this would violate the assign-

ment rules.

VTMemory(SizeEstimator, SizeEstimator, Runnable)

Signature
public
VTMemory(SizeEstimator initial,

SizeEstimator maximum,
Runnable logic)

Description
Equivalent to VTMemory(long, long, Runnable) with the argument list
(initial.getEstimate(), maximum.getEstimate(), logic).

Parameters

1116 RTSJ 2.0 (Draft 57)

VTMemory javax.realtime B.2

initial—The size in bytes of the memory to initially allocate for this area estimated
by an instance of SizeEstimator.

maximum—The maximum size in bytes to which this memory area’s size may grow
estimated by an instance of SizeEstimator.

logic—An instance of Runnable whose run() method will use this as its ini-
tial memory area. When logic is null, this constructor is equivalent to
VTMemory(SizeEstimator initial, SizeEstimator maximum).

Throws
IllegalArgumentException—when initial is null, maximum is null, initial.

getEstimate() is greater than maximum.getEstimate(), or when initial.
getEstimate() is less than zero.

OutOfMemoryError—when there is insufficient memory for the VTMemory object or
for the backing memory.

IllegalAssignmentError—when storing logic in this would violate the assign-
ment rules.

VTMemory(long, long)

Signature
public
VTMemory(long initial,

long maximum)

Description

Equivalent to VTMemory(long, long, Runnable) with the argument list (ini-
tial, maximum, null).

Parameters
initial—The size in bytes of the memory to initially allocate for this area.
maximum—The maximum size in bytes to which this memory area’s size may grow.

Throws
IllegalArgumentException—when initial is greater than maximum or when

initial or maximum is less than zero.
OutOfMemoryError—when there is insufficient memory for the VTMemory object or

for the backing memory.

RTSJ 2.0 (Draft 57) 1117

B Deprecated APIs VTMemory

VTMemory(SizeEstimator, SizeEstimator)

Signature
public
VTMemory(SizeEstimator initial,

SizeEstimator maximum)

Description
Equivalent to VTMemory(long, long, Runnable) with the argument list
(initial.getEstimate(), maximum.getEstimate(), null).

Parameters
initial—The size in bytes of the memory to initially allocate for this area estimated

by an instance of SizeEstimator.
maximum—The maximum size in bytes to which this memory area’s size may grow

estimated by an instance of SizeEstimator.
Throws

IllegalArgumentException—when initial is null, maximum is null, initial.
getEstimate() is greater than maximum.getEstimate(), or when initial.
getEstimate() is less than zero.

OutOfMemoryError—when there is insufficient memory for the VTMemory object or
for the backing memory.

VTMemory(long, Runnable)

Signature
public
VTMemory(long size,

Runnable logic)

Description
Equivalent to VTMemory(long, long, Runnable) with the argument list (size,
size, logic).

Available since RTSJ 1.0.1

Parameters

1118 RTSJ 2.0 (Draft 57)

VTMemory javax.realtime B.2

size—The size in bytes of the memory to allocate for this area. This memory must
be committed before the completion of the constructor.

logic—The run() of the given Runnable will be executed using this as its ini-
tial memory area. When logic is null, this constructor is equivalent to
VTMemory(long size).

Throws
IllegalArgumentException—when size is less than zero.
OutOfMemoryError—when there is insufficient memory for the VTMemory object or

for the backing memory.
IllegalAssignmentError—when storing logic in this would violate the assign-

ment rules.

VTMemory(SizeEstimator, Runnable)

Signature
public
VTMemory(SizeEstimator size,

Runnable logic)

Description
Equivalent to VTMemory(long, long, Runnable) with the argument list (size.
getEstimate(), size.getEstimate(), logic).

Available since RTSJ 1.0.1

Parameters
size—An instance of SizeEstimator used to give an estimate of the initial size.

This memory must be committed before the completion of the constructor.
logic—The run() of the given Runnable will be executed using this as its ini-

tial memory area. When logic is null, this constructor is equivalent to
VTMemory(SizeEstimator size).

Throws
IllegalArgumentException—when size is null, or size.getEstimate() is less

than zero.
OutOfMemoryError—when there is insufficient memory for the VTMemory object or

for the backing memory.
IllegalAssignmentError—when storing logic in this would violate the assign-

ment rules.

RTSJ 2.0 (Draft 57) 1119

B Deprecated APIs VTMemory

VTMemory(long)

Signature
public
VTMemory(long size)

Description
Equivalent to VTMemory(long, long, Runnable) with the argument list (size,
size, null).

Available since RTSJ 1.0.1

Parameters
size—The size in bytes of the memory to allocate for this area. This memory must

be committed before the completion of the constructor.
Throws

IllegalArgumentException—when size is less than zero.
OutOfMemoryError—when there is insufficient memory for the VTMemory object or

for the backing memory.

VTMemory(SizeEstimator)

Signature
public
VTMemory(SizeEstimator size)

Description
Equivalent to VTMemory(long, long, Runnable) with the argument list (size.
getEstimate(), size.getEstimate(), null).

Available since RTSJ 1.0.1

Parameters
size—An instance of SizeEstimator used to give an estimate of the initial size.

This memory must be committed before the completion of the constructor.
Throws

IllegalArgumentException—when size is null, or size.getEstimate() is less
than zero.

1120 RTSJ 2.0 (Draft 57)

VTPhysicalMemory javax.realtime B.2

OutOfMemoryError—when there is insufficient memory for the VTMemory object or
for the backing memory.

B.2.2.34.2 Methods

toString

Signature
public java.lang.String
toString()

Description
Creates a string representing this object. The string is of the form

{@code (VTMemory) ScopedMemory#<num>}

where <num> uniquely identifies the VTMemory area.

Returns
a string representing the value of this.

B.2.2.35 VTPhysicalMemory

public class VTPhysicalMemory

Inheritance
java.lang.Object
MemoryArea
ScopedMemory
VTPhysicalMemory

Description
An instance of VTPhysicalMemory allows objects to be allocated from a range of
physical memory with particular attributes, determined by their memory type.
This memory area has the same semantics as ScopedMemory memory areas, and
the same performance restrictions as VTMemory.

RTSJ 2.0 (Draft 57) 1121

B Deprecated APIs VTPhysicalMemory

No provision is made for sharing object in VTPhysicalMemory with entities
outside the JVM that creates them, and, while the memory backing an instance
of VTPhysicalMemory could be shared by multiple JVMs, the class does not
support such sharing.

Methods from VTPhysicalMemory should be overridden only by methods that
use super.

See Section MemoryArea

See Section ScopedMemory

See Section VTMemory

See Section LTMemory

See Section LTPhysicalMemory

See Section ImmortalPhysicalMemory

See Section RealtimeThread

See Section NoHeapRealtimeThread

Deprecated since RTSJ 2.0

B.2.2.35.1 Constructors

VTPhysicalMemory(Object, long, long, Runnable)

Signature
public
VTPhysicalMemory(Object type,

long base,
long size,
Runnable logic)

Description

1122 RTSJ 2.0 (Draft 57)

VTPhysicalMemory javax.realtime B.2

Creates an instance of VTPhysicalMemory with the given parameters.

See Section PhysicalMemoryManager

Parameters
type—An instance of Object representing the type of memory required, e.g., dma,

shared, used to define the base address and control the mapping. When the
required memory has more than one attribute, type may be an array of objects.
When type is null or a reference to an array with no entries, any type of
memory is acceptable. Note that type values are compared by reference (==),
not by value (equals).

base—The physical memory address of the area.
size—The size of the area in bytes.
logic—The run() method of this object will be called whenever MemoryArea.

enter() is called. When logic is null, logic must be supplied when the
memory area is entered.

Throws
SizeOutOfBoundsException—when the implementation detects that size extends

beyond physically addressable memory.
SecurityException—when the application does not have permissions to access

physical memory or the given range of memory.
OffsetOutOfBoundsException—when the base address is invalid.
UnsupportedPhysicalMemoryException—when the underlying hardware does not

support the given type, or when no matching PhysicalMemoryTypeFilter has
been registered with the PhysicalMemoryManager.

MemoryTypeConflictException—when the specified base does not point to mem-
ory that matches the requested type, or when type specifies incompatible
memory attributes.

MemoryInUseException—when the specified memory is already in use.
IllegalAssignmentError—when storing logic in this would violate the assign-

ment rules.

VTPhysicalMemory(Object, long, SizeEstimator, Run-
nable)

Signature
public
VTPhysicalMemory(Object type,

RTSJ 2.0 (Draft 57) 1123

B Deprecated APIs VTPhysicalMemory

long base,
SizeEstimator size,
Runnable logic)

Description

Equivalent to VTPhysicalMemory(Object, long, long, Runnable) with the
argument list (type, base, size.getEstimate(), logic).

See Section PhysicalMemoryManager

Parameters
type—An instance of Object representing the type of memory required, e.g., dma,

shared, used to define the base address and control the mapping. When the
required memory has more than one attribute, type may be an array of objects.
When type is null or a reference to an array with no entries, any type of
memory is acceptable. Note that type values are compared by reference (==),
not by value (equals).

base—The physical memory address of the area.
size—A size estimator for this memory area.
logic—The run() method of this object will be called whenever MemoryArea.

enter() is called. When logic is null, logic must be supplied when the
memory area is entered.

Throws
SecurityException—when the application doesn’t have permissions to access

physical memory or the given range of memory.
SizeOutOfBoundsException—when the implementation detects that the size esti-

mate from size extends beyond physically addressable memory.
OffsetOutOfBoundsException—when the base address is invalid.
UnsupportedPhysicalMemoryException—when the underlying hardware does not

support the given type, or when no matching PhysicalMemoryTypeFilter has
been registered with the PhysicalMemoryManager.

MemoryTypeConflictException—when the specified base does not point to mem-
ory that matches the requested type, or when type specifies incompatible
memory attributes.

MemoryInUseException—when the specified memory is already in use.
IllegalArgumentException—when size is null.
IllegalAssignmentError—when storing logic in this would violate the assign-

ment rules.

1124 RTSJ 2.0 (Draft 57)

VTPhysicalMemory javax.realtime B.2

VTPhysicalMemory(Object, long, long)

Signature
public
VTPhysicalMemory(Object type,

long base,
long size)

Description

Equivalent to VTPhysicalMemory(Object, long, long, Runnable) with the
argument list (type, base, size, null).

See Section PhysicalMemoryManager

Parameters
type—An instance of Object representing the type of memory required, e.g., dma,

shared, used to define the base address and control the mapping. When the
required memory has more than one attribute, type may be an array of objects.
When type is null or a reference to an array with no entries, any type of
memory is acceptable. Note that type values are compared by reference (==),
not by value (equals).

base—The physical memory address of the area.
size—The size of the area in bytes.

Throws
SecurityException—when the application doesn’t have permissions to access

physical memory or the given range of memory.
SizeOutOfBoundsException—when the implementation detects that size extends

beyond physically addressable memory.
OffsetOutOfBoundsException—when the base address is invalid.
UnsupportedPhysicalMemoryException—when the underlying hardware does not

support the given type, or when no matching PhysicalMemoryTypeFilter has
been registered with the PhysicalMemoryManager.

MemoryTypeConflictException—when the specified base does not point to mem-
ory that matches the requested type, or when type specifies incompatible
memory attributes.

MemoryInUseException—when the specified memory is already in use.

RTSJ 2.0 (Draft 57) 1125

B Deprecated APIs VTPhysicalMemory

VTPhysicalMemory(Object, long, SizeEstimator)

Signature
public
VTPhysicalMemory(Object type,

long base,
SizeEstimator size)

Description

Equivalent to VTPhysicalMemory(Object, long, long, Runnable) with the
argument list (type, base, size.getEstimate(), null).

See Section PhysicalMemoryManager

Parameters
type—An instance of Object representing the type of memory required, e.g., dma,

shared, used to define the base address and control the mapping. When the
required memory has more than one attribute, type may be an array of objects.
When type is null or a reference to an array with no entries, any type of
memory is acceptable. Note that type values are compared by reference (==),
not by value (equals).

base—The physical memory address of the area.
size—A size estimator for this memory area.

Throws
SecurityException—when the application doesn’t have permissions to access

physical memory or the given range of memory.
SizeOutOfBoundsException—when the implementation detects that the size esti-

mate from size extends beyond physically addressable memory.
OffsetOutOfBoundsException—when the base address is invalid.
UnsupportedPhysicalMemoryException—when the underlying hardware does not

support the given type, or when no matching PhysicalMemoryTypeFilter has
been registered with the PhysicalMemoryManager.

MemoryTypeConflictException—when the specified base does not point to mem-
ory that matches the requested type, or when type specifies incompatible
memory attributes.

MemoryInUseException—when the specified memory is already in use.
IllegalArgumentException—when size is null.

1126 RTSJ 2.0 (Draft 57)

VTPhysicalMemory javax.realtime B.2

VTPhysicalMemory(Object, long, Runnable)

Signature
public
VTPhysicalMemory(Object type,

long size,
Runnable logic)

Description
Equivalent to VTPhysicalMemory(Object, long, long, Runnable) with the
argument list (type, next, size, logic), where next is the beginning of the
next best fit in the physical memory range.

See Section PhysicalMemoryManager

Parameters
type—An instance of Object representing the type of memory required (e.g., dma,

shared), used to define the base address and control the mapping. When the
required memory has more than one attribute, type may be an array of objects.
When type is null or a reference to an array with no entries, any type of
memory is acceptable. Note that type values are compared by reference (==),
not by value (equals).

size—The size of the area in bytes.
logic—The run() method of this object will be called whenever MemoryArea.

enter() is called. When logic is null, logic must be supplied when the
memory area is entered.

Throws
SecurityException—when the application does not have permissions to access

physical memory or the given range of memory.
SizeOutOfBoundsException—when the implementation detects that size extends

beyond physically addressable memory.
UnsupportedPhysicalMemoryException—when the underlying hardware does not

support the given type, or when no matching PhysicalMemoryTypeFilter has
been registered with the PhysicalMemoryManager.

MemoryTypeConflictException—when the specified base does not point to mem-
ory that matches the requested type, or when type specifies incompatible
memory attributes.

IllegalAssignmentError—when storing logic in this would violate the assign-
ment rules.

RTSJ 2.0 (Draft 57) 1127

B Deprecated APIs VTPhysicalMemory

VTPhysicalMemory(Object, SizeEstimator, Runnable)

Signature
public
VTPhysicalMemory(Object type,

SizeEstimator size,
Runnable logic)

Description

Equivalent to VTPhysicalMemory(Object, long, long, Runnable) with the
argument list (type, next, size.getEstimate(), logic). where next is the
beginning of the next best fit in the physical memory range.

See Section PhysicalMemoryManager

Parameters
type—An instance of Object representing the type of memory required, e.g., dma,

shared, used to define the base address and control the mapping. When the
required memory has more than one attribute, type may be an array of objects.
When type is null or a reference to an array with no entries, any type of
memory is acceptable. Note that type values are compared by reference (==),
not by value (equals).

size—A size estimator for this area.
logic—The run() method of this object will be called whenever MemoryArea.

enter() is called. When logic is null, logic must be supplied when the
memory area is entered.

Throws
SecurityException—when the application doesn’t have permissions to access

physical memory or the given range of memory.
SizeOutOfBoundsException—when the implementation detects that the size esti-

mate from size extends beyond physically addressable memory.
UnsupportedPhysicalMemoryException—when the underlying hardware does not

support the given type, or when no matching PhysicalMemoryTypeFilter has
been registered with the PhysicalMemoryManager.

MemoryTypeConflictException—when the specified base does not point to mem-
ory that matches the requested type, or when type specifies incompatible
memory attributes.

IllegalArgumentException—when size is null.

1128 RTSJ 2.0 (Draft 57)

VTPhysicalMemory javax.realtime B.2

IllegalAssignmentError—when storing logic in this would violate the assign-
ment rules.

VTPhysicalMemory(Object, long)

Signature
public
VTPhysicalMemory(Object type,

long size)

Description
Equivalent to VTPhysicalMemory(Object, long, long, Runnable) with the
argument list (type, next, size, null), where next is the beginning of the
next best fit in the physical memory range.

See Section PhysicalMemoryManager

Parameters
type—An instance of Object representing the type of memory required, e.g., dma,

shared, used to define the base address and control the mapping. When the
required memory has more than one attribute, type may be an array of objects.
When type is null or a reference to an array with no entries, any type of
memory is acceptable. Note that type values are compared by reference (==),
not by value (equals).

size—The size of the area in bytes.
Throws

SecurityException—when the application doesn’t have permissions to access
physical memory or the given range of memory.

SizeOutOfBoundsException—when the implementation detects that size extends
beyond physically addressable memory.

UnsupportedPhysicalMemoryException—when the underlying hardware does not
support the given type, or when no matching PhysicalMemoryTypeFilter has
been registered with the PhysicalMemoryManager.

MemoryTypeConflictException—when the specified base does not point to mem-
ory that matches the requested type, or when type specifies incompatible
memory attributes.

IllegalArgumentException—when size is less than zero.

RTSJ 2.0 (Draft 57) 1129

B Deprecated APIs VTPhysicalMemory

VTPhysicalMemory(Object, SizeEstimator)

Signature
public
VTPhysicalMemory(Object type,

SizeEstimator size)

Description
Equivalent to VTPhysicalMemory(Object, long, long, Runnable) with the
argument list (type, next, size.getEstimate(), null), where next is the
beginning of the next best fit in the physical memory range.

See Section PhysicalMemoryManager

Parameters
type—An instance of Object representing the type of memory required, e.g., dma,

shared, used to define the base address and control the mapping. When the
required memory has more than one attribute, type may be an array of objects.
When type is null or a reference to an array with no entries, any type of
memory is acceptable. Note that type values are compared by reference (==),
not by value (equals).

size—A size estimator for this area.
Throws

SecurityException—when the application doesn’t have permissions to access
physical memory or the given range of memory.

SizeOutOfBoundsException—when the implementation detects that the size esti-
mate from size extends beyond physically addressable memory.

UnsupportedPhysicalMemoryException—when the underlying hardware does not
support the given type, or when no matching PhysicalMemoryTypeFilter has
been registered with the PhysicalMemoryManager.

MemoryTypeConflictException—when the specified base does not point to mem-
ory that matches the requested type, or when type specifies incompatible
memory attributes.

IllegalArgumentException—when size is null.

B.2.2.35.2 Methods

1130 RTSJ 2.0 (Draft 57)

ArrivalTimeQueueOverflowException javax.realtime B.2

toString

Signature
public java.lang.String
toString()

Description
Creates a string representing this object. The string is of the form

(VTPhysicalMemory) Scoped memory # num

where num is a number that uniquely identifies this VTPhysicalMemory memory
area.

Returns
a string representing the value of this.

B.2.3 Exceptions
B.2.3.1 ArrivalTimeQueueOverflowException

public class ArrivalTimeQueueOverflowException

The following elements of ArrivalTimeQueueOverflowException are deprecated.
The required elements are documented in Section 15.2.3.1 above.

B.2.3.1.1 Constructors

ArrivalTimeQueueOverflowException(String)

Signature
public
ArrivalTimeQueueOverflowException(String description)

Description

RTSJ 2.0 (Draft 57) 1131

B Deprecated APIs DuplicateFilterException

A descriptive constructor for ArrivalTimeQueueOverflowException.

Deprecated since RTSJ 2.0; application code should use get() instead.

Parameters
description—A description of the exception.

B.2.3.2 DuplicateFilterException

public class DuplicateFilterException
Inheritance
java.lang.Object
java.lang.Throwable
java.lang.Exception
DuplicateFilterException

Description
PhysicalMemoryManager can only accommodate one filter object for each type
of memory. It throws this exception when an attempt is made to register more
than one filter for a type of memory.

Deprecated since RTSJ 2.0

B.2.3.2.1 Constructors

DuplicateFilterException(String)

Signature
public
DuplicateFilterException(String description)

Description
A descriptive constructor for DuplicateFilterException.

Parameters
description—Description of the error.

1132 RTSJ 2.0 (Draft 57)

OffsetOutOfBoundsException javax.realtime B.2

DuplicateFilterException

Signature
public
DuplicateFilterException()

Description

A constructor for DuplicateFilterException.

B.2.3.3 MemoryScopeException

public class MemoryScopeException

The following elements of MemoryScopeException are deprecated. The required
elements are documented in Section 15.2.3.13 above.

B.2.3.3.1 Constructors

MemoryScopeException(String)

Signature
public
MemoryScopeException(String description)

Description

A descriptive constructor for MemoryScopeException.

Deprecated since RTSJ 2.0; application code should use get() instead.

Parameters
description—The reason for throwing this exception.

RTSJ 2.0 (Draft 57) 1133

B Deprecated APIs UnknownHappeningException

B.2.3.4 OffsetOutOfBoundsException

public class OffsetOutOfBoundsException
The following elements of OffsetOutOfBoundsException are deprecated. The

required elements are documented in Section 15.2.3.15 above.

B.2.3.4.1 Constructors

OffsetOutOfBoundsException(String)

Signature
public
OffsetOutOfBoundsException(String description)

Description
A descriptive constructor for OffsetOutOfBoundsException.

Deprecated since RTSJ 2.0; application code should use get() instead.

Parameters
description—The reason for throwing the exception.

B.2.3.5 UnknownHappeningException

public class UnknownHappeningException
Inheritance
java.lang.Object
java.lang.Throwable
java.lang.Exception
java.lang.RuntimeException
UnknownHappeningException

Description
This exception is used to indicate a situation where an instance of AsyncEvent
attempts to bind to a happening that does not exist.

1134 RTSJ 2.0 (Draft 57)

UnsupportedPhysicalMemoryException javax.realtime B.2

Deprecated since RTSJ 2.0

B.2.3.5.1 Constructors

UnknownHappeningException

Signature
public
UnknownHappeningException()

Description
A constructor for UnknownHappeningException.

UnknownHappeningException(String)

Signature
public
UnknownHappeningException(String description)

Description
A descriptive constructor for UnknownHappeningException.

Parameters
description—The reason for throwing the exception.

B.2.3.6 UnsupportedPhysicalMemoryException

public class UnsupportedPhysicalMemoryException

The following elements of UnsupportedPhysicalMemoryException are deprecated.
The required elements are documented in Section 15.2.3.28 above.

RTSJ 2.0 (Draft 57) 1135

B Deprecated APIs

B.2.3.6.1 Constructors

UnsupportedPhysicalMemoryException(String)

Signature
public
UnsupportedPhysicalMemoryException(String description)

Description
A descriptive constructor for UnsupportedPhysicalMemoryException.

Deprecated since RTSJ 2.0; application code should use get() instead.

Parameters
description—The reason for throwing the exception.

B.3 Rationale
These are interface and classes that have been shown to be less than ideal. Except for
feasibility analysis, they have been replaced by elements that better fulfill the require-
ments. Compatibility can be provided by implemenations that use existing facilities,
so there is no reason to continue requiring their inclusion in new implementations.

1136 RTSJ 2.0 (Draft 57)

Appendix C

Indices

C.1 Class Index
AbsoluteTime, 349, 913
ActiveEvent, 264
ActiveEventDispatcher, 269
Affinity, 137
AffinityPermission, 758
AlignmentError, 812
AperiodicParameters, 146, 918
ArrivalTimeQueueOverflowException,

835, 1131
AsyncBaseEvent, 273
AsyncBaseEventHandler, 278
AsyncEvent, 294, 923
AsyncEventHandler, 295, 926
AsynchronouslyInterruptedException,

837
AsyncLongEvent, 303
AsyncLongEventHandler, 305
AsyncObjectEvent, 311
AsyncObjectEventHandler, 313
AsyncTimable, 395

BackgroundParameters, 151
BlockableReleaseRunner, 319
BoundAsyncBaseEventHandler, 267
BoundAsyncEventHandler, 322, 942
BoundAsyncLongEventHandler, 327
BoundAsyncObjectEventHandler, 331
BoundRealtimeExecutor, 118

BoundSchedulable, 119

CeilingViolationException, 843
Chronograph, 396
Clock, 400, 944
ConfigurationParameters, 55
ConstructorCheckedException, 844
CoreMemoryPermission, 760

DeregistrationException, 845
DirectMemoryBufferFactory, 664
DirectMemoryByteBuffer, 588
DirectMemoryPermission, 785
DirectMemoryRegion, 668
DuplicateFilterException, 1132

EnclosedType, 454
EventQueueOverflowException, 846

FirstInFirstOutScheduler, 153
ForEachTerminationException, 847

GarbageCollector, 764

Happening, 670
HappeningDispatcher, 680
HappeningPermission, 787
HeapMemory, 456
HighResolutionTime, 363, 946

1137

C Indices

IllegalAssignmentError, 813, 948
IllegalSchedulableStateException, 848
ImmortalMemory, 461
ImmortalPhysicalMemory, 949
ImportanceParameters, 156
InaccessibleAreaException, 853
Interruptible, 267
InterruptServiceRoutine, 683

LateStartException, 855
LTMemory, 495, 958
LTPhysicalMemory, 964

MemoryAccessError, 814, 974
MemoryArea, 463
MemoryGroup, 499
MemoryInUseException, 858
MemoryParameters, 479, 974
MemoryScopeException, 859, 1133
MemoryTypeConflictException, 861
MinimumInterarrivalPolicy, 130
MITViolationException, 856
MonitorControl, 229

NoHeapRealtimeThread, 978

OffsetOutOfBoundsException, 862, 1134
OneShotTimer, 407, 982

PerennialMemory, 485
PeriodicParameters, 159, 989
PeriodicTimer, 409, 991
PhasingPolicy, 52
PhysicalMemoryCharacteristic, 492
PhysicalMemoryFactory, 501
PhysicalMemoryManager, 992
PhysicalMemoryPermission, 795
PhysicalMemoryRegion, 508
PhysicalMemorySelector, 510
PhysicalMemorySelector.CachingBehavior,

492
PhysicalMemorySelector.PagingBehavior,

494
PhysicalMemoryTypeFilter, 892
PinnableMemory, 513

POSIXException, 864
POSIXInvalidSignalException, 864
POSIXInvalidTargetException, 865
POSIXPermission, 801
POSIXSignalHandler, 983
POSIXSignalPermissionException, 866
PriorityCeilingEmulation, 232
PriorityInheritance, 235
PriorityParameters, 167
PriorityScheduler, 169, 1002
ProcessingGroup, 172
ProcessingGroupParameters, 1011
ProcessorAffinityException, 867

QueueOverflowPolicy, 133

RangeOutOfBoundsException, 868
RawByte, 603
RawByteReader, 604
RawByteWriter, 607
RawDouble, 610
RawDoubleReader, 610
RawDoubleWriter, 614
RawFloat, 617
RawFloatReader, 617
RawFloatWriter, 620
RawInt, 623
RawIntReader, 624
RawIntWriter, 627
RawLong, 630
RawLongReader, 630
RawLongWriter, 633
RawMemory, 636
RawMemoryAccess, 1021
RawMemoryFactory, 688
RawMemoryFloatAccess, 1045
RawMemoryPermission, 791
RawMemoryRegion, 712
RawMemoryRegionFactory, 638
RawShort, 658
RawShortReader, 658
RawShortWriter, 661
RealtimePermission, 765
RealtimeSecurity, 1056

1138 RTSJ 2.0 (Draft 57)

Method Index C.2

RealtimeSignal, 727
RealtimeSignalDispatcher, 733
RealtimeSystem, 769, 1060
RealtimeThread, 58, 1060
RegistrationException, 868
RelativeTime, 372, 1081
Releasable, 268
ReleaseParameters, 185, 1086
ReleaseRunner, 335
ResourceLimitError, 816
RoundRobinScheduler, 197
RTSJModule, 755

Schedulable, 119, 899
Scheduler, 201, 1087
SchedulingGroup, 204
SchedulingParameters, 209
SchedulingPermission, 777
ScopedCycleException, 869
ScopedMemory, 524, 1093
ScopedMemoryPermission, 797
ScopeParameters, 520
Signal, 736
SignalDispatcher, 743
SizeEstimator, 485
SizeOutOfBoundsException, 871
SporadicParameters, 211, 1109

StackedMemory, 550
StaticCheckedException, 873
StaticError, 817
StaticOutOfMemoryError, 823
StaticRuntimeException, 878
StaticThrowable, 807
StaticThrowableStorage, 828

TaskPermission, 781
ThrowBoundaryError, 834, 1113
Timable, 399
Timed, 338
TimeDispatcher, 418
Timer, 421, 1114

UninitializedStateException, 883
UnknownHappeningException, 1134
UnsupportedPhysicalMemoryException,

884, 1135
UnsupportedRawMemoryRegionException,

886

VTMemory, 1115
VTPhysicalMemory, 1121

WaitFreeReadQueue, 236
WaitFreeWriteQueue, 243

C.2 Method Index
absolute, 353, 354, 370, 375, 376, 916,

946, 947, 1083, 1084
add, 356–358, 377–379
addHandler, 275, 411, 679, 732, 742, 924,

988
addIfFeasible, 903, 932, 1067
addressOf, 667
addToFeasibility, 903, 932, 1009, 1067,

1087
allocateByteBuffer, 666
associate, 503, 504
attach, 322, 337
awaken, 79, 130, 293

backingStoreConsumed, 549
backingStoreRemaining, 549
backingStoreSize, 548
bindTo, 925, 1115

canEnforceAllocationRate, 776
canEnforceCost, 775
checkAccessPhysical, 1057
checkAccessPhysicalRange, 1057
checkAEHSetDaemon, 1059
checkSetFilter, 1058
checkSetMonitorControl, 1058
checkSetScheduler, 1059

RTSJ 2.0 (Draft 57) 1139

C Indices

clear, 240, 246, 490, 842
clearAlarm, 406
clone, 188, 210, 368, 482, 1014
compareTo, 369, 382
compareToZero, 382
contains, 892
createId, 673
createImmortalMemory, 504
createLTMemory, 505
createPinnableMemory, 506
createRawByte, 639, 693
createRawByteReader, 640, 694
createRawByteWriter, 641, 695
createRawDouble, 654, 709
createRawDoubleReader, 655, 710
createRawDoubleWriter, 656, 711
createRawFloat, 651, 706
createRawFloatReader, 652, 707
createRawFloatWriter, 653, 708
createRawInt, 645, 699
createRawIntReader, 646, 700
createRawIntWriter, 647, 701
createRawLong, 648, 702
createRawLongReader, 649, 703
createRawLongWriter, 650, 705
createRawShort, 642, 696
createRawShortReader, 643, 697
createRawShortWriter, 644, 698
createReleaseParameters, 278, 414, 430
createStackedMemory, 507
currentGC, 771
currentRealtimeThread, 64
currentSchedulable, 64, 203

deregister, 272, 420, 682, 693, 735, 746
deschedule, 72
deschedulePeriodic, 1068
destroy, 273, 421, 682, 736, 746, 1114
detach, 322, 337
disable, 266, 275, 431, 839
doInterruptible, 340, 841
duplicate, 588

enable, 266, 275, 431, 839

enforceCost, 183, 195
enforcingCost, 183, 194
enter, 457, 466–469, 525–529, 558, 559,

1096, 1097
equals, 364, 369, 759, 762, 768, 779, 783,

786, 789, 793, 796, 799, 803
executeInArea, 458, 462, 474–477,

529–532, 1097

fillInStackTrace, 809, 820, 826, 829, 851,
876, 881

find, 893
fire, 79, 295, 304, 312, 396, 409, 418, 840
fireSchedulable, 1010, 1093
flip, 602
force, 248
free, 666

generate, 140
get, 143, 589, 605, 606, 612, 613, 619,

625, 626, 632, 660, 674, 728, 738,
813–815, 817, 824, 835, 836, 843,
846–848, 855, 857, 859, 860, 862,
863, 865–869, 871, 872, 884–886

getActions, 759, 763, 768, 780, 783, 786,
790, 793, 796, 799, 803

getAddress, 637
getAffinity, 84, 118, 208, 272, 326, 330,

335
getAllocationRate, 482
getAndClearPendingFireCount, 280, 302,

310, 319
getAndDecrementPendingFireCount, 281,

301, 309, 318
getAndIncrementPendingFireCount, 929
getArrivalTimeQueueOverflowBehavior,

921
getAvailableProcessors, 140, 141
getBase, 509
getByte, 604, 605, 1026
getByteOrder, 771
getBytes, 1027
getCachingBehavior, 512
getCallerPriority, 844

1140 RTSJ 2.0 (Draft 57)

Method Index C.2

getCause, 809, 820, 825, 830, 850, 875,
881

getCeiling, 234, 844
getChar, 590
getChronograph, 365
getClock, 365, 414, 424
getConcurrentLocksUsed, 772
getConfigurationParameters, 70, 126, 283
getCost, 188, 189, 1015
getCostOverrunHandler, 182, 189, 1015
getCostUnderrunHandler, 181
getCurrent, 829
getCurrentConsumption, 76, 279
getCurrentCost, 183
getCurrentMemoryArea, 65
getDate, 358
getDeadline, 189, 190, 1016
getDeadlineMissHandler, 190, 1016
getDefault, 502
getDefaultConfiguration, 776
getDefaultFactory, 692
getDefaultRunner, 338
getDefaultScheduler, 202
getDispatcher, 78, 269, 289, 399, 428,

678, 729, 739
getDouble, 590, 591, 611, 1049
getDoubles, 1049
getDrivePrecision, 405
getEffectiveStart, 177
getEffectiveStartTime, 75, 425
getEpochOffset, 397, 402
getEstimate, 490
getEventQueueOverflowPolicy, 195
getFireTime, 415, 416, 427, 428
getFloat, 591, 618, 1050
getFloats, 1051
getGeneric, 839
getGranularity, 184
getHandler, 684
getHappening, 672
getId, 674, 675, 728, 729, 737, 739
getImportance, 157
getInitialArrivalTimeQueueLength, 920

getInitialMemoryAreaIndex, 1061
getInitialMonitorControl, 774
getInitialQueueLength, 196
getInt, 592, 624, 625, 1028
getInterruptPriority, 685
getInterval, 416
getInts, 1029
getLastCost, 184
getLastReleaseTime, 74, 75, 426
getLength, 510
getLocalizedMessage, 808, 819, 825, 832,

850, 874, 880
getLong, 592, 593, 631, 1030
getLongs, 1030
getMappedAddress, 1031
getMaxBackingStore, 500
getMaxCeiling, 235
getMaxConsumption, 77, 78, 127, 290,

291
getMaxContainingArea, 524
getMaxEligibility, 206
getMaxGlobalBackingStore, 523
getMaxImmortal, 483
getMaximumConcurrentLocks, 772
getMaximumCost, 179
getMaximumInterruptPriority, 685
getMaximumSize, 558, 1098
getMaxInitialArea, 483
getMaxInitialBackingStore, 523
getMaxMemoryArea, 975
getMaxPriority, 154, 171, 199, 1002
getMemoryArea, 69, 281, 470
getMemoryAreaStackDepth, 1063
getMemoryParameters, 69, 120, 282
getMessage, 808, 819, 824, 830, 849, 874,

879
getMessageLength, 56
getMilliseconds, 366
getMinConsumption, 77, 126, 127, 289,

290
getMinimumCost, 180
getMinimumInterarrival, 215
getMinimumInterarrivalPolicy, 217

RTSJ 2.0 (Draft 57) 1141

C Indices

getMinimumInterruptPriority, 685
getMinPriority, 155, 171, 199, 1003
getMitViolationBehavior, 1111
getMonitorControl, 229, 230
getName, 638, 676, 713, 729, 739
getNanoseconds, 366
getNormPriority, 155, 171, 200, 1003
getOuterMemoryArea, 1063
getPagingBehavior, 513
getPendingFireCount, 280, 301, 309, 318
getPeriod, 164, 177, 178, 1016
getPinCount, 516
getPolicyName, 155, 170, 200, 203
getPortal, 532, 1098
getPredefinedAffinities, 139
getPredefinedAffinitiesCount, 138
getPreemptionLatency, 764
getPriority, 168
getProcessId, 738
getProcessingGroupParameters, 900, 930,

1068
getProcessorAddedEvent, 142
getProcessorCount, 145
getProcessorRemovedEvent, 143
getProcessors, 144, 145
getQuantum, 198, 199
getQueryPrecision, 398, 404
getQueueLength, 289
getRealtimeClock, 401
getReferenceCount, 533, 1099
getRegion, 638, 712
getRejectSet, 512
getReleaseParameters, 70, 121, 282
getRequestSet, 512
getResolution, 945
getScheduler, 70, 122, 207, 282
getSchedulingGroup, 69, 125, 271, 283
getSchedulingParameters, 71, 124, 271,

283
getSecurityManager, 1060
getShort, 593, 659, 1032
getShorts, 1033
getSize, 637

getSizes, 57
getStackTrace, 810, 821, 827, 831, 851,

876, 882
getStackTraceLength, 57
getStart, 164, 424, 1017
getStride, 637
getSupportedCachingBehavior, 511
getSupportedPagingBehavior, 511
getTime, 397, 398, 403
getUniversalClock, 401
getVMAttributes, 893
getVMFlags, 894

handle, 687
handleAsyncEvent, 300, 308, 316
handledBy, 274, 430, 923
hasHandlers, 277
hashCode, 368, 760, 763, 768, 780, 783,

787, 790, 793, 797, 800, 803
hasRemaining, 603
hasUniversalClock, 775

implies, 760, 763, 769, 780, 784, 787, 790,
794, 797, 800, 804

in, 757
initCause, 809, 820, 825, 831, 850, 875,

880
initialize, 894
initMessage, 808, 818, 824, 830, 835, 849,

874, 879
inRange, 667
inSchedulableExecutionContext, 203
instance, 154, 197, 234, 236, 458, 462,

1004
interrupt, 71, 129, 292
interruptAction, 268
isActive, 264, 429, 677, 730, 740
isAffinityChangeNotificationSupported,

141
isCompatible, 167, 210
isDaemon, 128, 288
isEmpty, 241, 247
isEnabled, 840
isFeasible, 1004, 1088

1142 RTSJ 2.0 (Draft 57)

Method Index C.2

isFull, 241, 247
isHappening, 672
isInterrupted, 72, 130, 291
isPinned, 515
isPOSIXRealtimeSignal, 727
isPOSIXSignal, 737
isPresent, 895
isProcessorInSet, 145
isRawMemoryRegion, 713
isReadOnly, 588
isRegistered, 686
isRemovable, 895, 995
isRemoved, 996
isRousable, 193, 292
isRunning, 265, 274, 429, 678, 730, 740
isSetAffinitySupported, 139

join, 533, 534, 1099, 1100
joinAndEnter, 535–537, 539–544, 560,

561, 563, 564, 1100, 1101, 1103,
1104

joinPinned, 516
joinPinnedAndEnter, 517–519

limit, 601

map, 1034, 1035
mark, 601
mayHoldReferenceTo, 478
mayUseHeap, 79, 129, 291, 484
memoryConsumed, 470
memoryRemaining, 471
modules, 775

newArray, 459, 471, 545, 1105
newArrayInArea, 472
newInstance, 459, 460, 472, 473, 546, 547,

1106, 1107

onInsertion, 896, 996, 997
onRemoval, 896, 998

peekPending, 308, 317
physicalAddressOf, 670
pin, 515

position, 600
printStackTrace, 811, 812, 822, 827, 828,

832, 833, 852, 853, 877, 878, 882,
883

put, 594
putChar, 594, 595
putDouble, 595, 596
putFloat, 596, 597
putInt, 597
putLong, 598
putShort, 599

read, 241, 247
readFence, 668
regionAddressOf, 669
register, 271, 420, 681, 686, 692, 735, 745
registerFilter, 999
relative, 354, 355, 371, 376, 917, 947, 948,

1085
release, 71, 321, 337
remaining, 603
removeFilter, 1000
removeFromFeasibility, 904, 933, 1009,

1069, 1092
removeHandler, 277, 679, 733, 743, 924,

988
reschedule, 73, 156, 172, 200, 433
reserve, 486, 487
reserveArray, 488
reserveLambda, 489, 490
reset, 602
resetTime, 340
resize, 557
restart, 341
run, 268, 293, 300, 309, 317

scale, 381, 382
schedulePeriodic, 1069
send, 732, 741
set, 144, 359, 366, 367, 608, 609, 615, 616,

622, 628, 629, 635, 663
setAffinity, 84, 118, 208, 272, 326, 331,

335
setAlarm, 406

RTSJ 2.0 (Draft 57) 1143

C Indices

setAllocationRate, 484
setAllocationRateIfFeasible, 975
setArrivalTimeQueueOverflowBehavior,

921
setByte, 608, 1036
setBytes, 1037
setCost, 190, 1017
setCostOverrunHandler, 182, 191, 1017
setCostUnderrunHandler, 181
setDaemon, 128, 288
setDeadline, 150, 165, 192, 1018
setDeadlineMissHandler, 193, 1018
setDefaultConfiguration, 776
setDefaultDispatcher, 419, 681, 734, 745
setDefaultRunner, 338
setDefaultScheduler, 202
setDouble, 614, 615, 1052
setDoubles, 1053
setEventQueueOverflowPolicy, 195, 217
setFloat, 621, 1054
setFloats, 1055
setGranularity, 184
setHandler, 276, 412, 679, 732, 743, 924,

989
setIfFeasible, 904–906, 908, 909, 922,

933–936, 939, 990, 1005, 1006,
1008, 1019, 1069, 1070,
1072–1074, 1086, 1088, 1089,
1091, 1111, 1112

setImportance, 158
setInitialArrivalTimeQueueLength, 920
setInitialQueueLength, 196
setInt, 627, 628, 1038
setInterval, 417
setInts, 1039
setLong, 634, 1040
setLongs, 1041
setMaxBackingStore, 501
setMaxEligibility, 206
setMaxImmortalIfFeasible, 976
setMaximumConcurrentLocks, 773
setMaximumCost, 179
setMaxMemoryAreaIfFeasible, 977

setMemoryParameters, 80, 120, 284
setMemoryParametersIfFeasible, 910, 940,

1075
setMinimumCost, 181
setMinimumInterarrival, 216
setMinimumInterarrivalPolicy, 216
setMitViolationBehavior, 1111
setMonitorControl, 230, 231
setPeriod, 165, 178, 1020
setPortal, 548, 1108
setPriority, 168
setProcessingGroupParameters, 901, 931,

1076
setProcessingGroupParametersIfFeasible,

902, 938, 1077
setProcessorAddedEvent, 142
setProcessorRemovedEvent, 143
setQuantum, 198
setRealtimeClock, 401
setReleaseParameters, 80, 121, 284
setReleaseParametersIfFeasible, 911, 938,

1078
setResolution, 944
setRousable, 194, 293
setScheduler, 81, 82, 122, 123, 207, 285,

286, 899, 929, 1079
setSchedulingParameters, 83, 125, 287
setSchedulingParametersIfFeasible, 912,

941, 1080
setSecurityManager, 774
setShort, 662, 1042
setShorts, 1043
setStackTrace, 810, 821, 826, 832, 851,

876, 881
setStart, 166, 1020
setUniversalClock, 402
size, 242, 248, 474
sleep, 65, 1064
slice, 599
spin, 66, 67
start, 74, 265, 413, 432, 676, 730, 731,

740, 741, 981
startPeriodic, 73, 981

1144 RTSJ 2.0 (Draft 57)

Method Index C.2

stop, 266, 432, 677, 731, 741
subtract, 359–361, 380
supports, 774
suspend, 66

throwPending, 842
toString, 158, 169, 362, 383, 550, 713,

964, 973, 1108, 1121, 1131
trigger, 675, 678
triggerAlarm, 406

unbindTo, 925
unmap, 1044
unpin, 515
unregister, 687
unregisterInsertionEvent, 897, 1000
unregisterRemovalEvent, 898, 1001

validInterruptIds, 684
value, 133, 136, 757
valueOf, 54, 132, 136, 456, 493, 495, 757
values, 54, 132, 135, 456, 493, 495, 756
vFind, 898
visitChildren, 208
visitNestedMemory, 461, 463, 477, 544

waitForData, 242
waitForNextPeriod, 1065
waitForNextPeriodInterruptible, 1066
waitForNextRelease, 68
waitForObject, 363
write, 243, 249
writeFence, 667

RTSJ 2.0 (Draft 57) 1145

C Indices

1146 RTSJ 2.0 (Draft 57)

Open Issues

List of Semantic Issues

Issue 11.2.1 (elb) . 450
Issue 11.4.1 . 521
Issue 12.1.1 (elb) . 577
Issue 12.3.1 . 666

List of Review Requests

Editorial Issues
• We should consider numbered paragraphs.
• Should we specify when Illegal Assignment Exceptions can occur?
• Fix overfull boxes, where text is lost.
• Make following test for monospace fonts works in the final version:

– | Test 1 abcdefghij |
– | Test 2 ABCDEFGHIJ |
– | 3 tset 9876543210 |

1147

	Contents
	List of Figures
	List of Tables
	Introduction
	Guiding Principles
	Applicability Across Java Environments
	Backward Compatibility
	Write Once, Run Anywhere
	Current Practice vs. Advanced Features
	Predictable Execution
	No Syntactic Extension
	Allow Variation in Implementation Decisions
	Interoperability

	Areas of Enhancement
	Thread Scheduling and Dispatching
	Memory Management
	Synchronization and Resource Sharing
	Asynchronous Event Handling
	Task Interruption
	Raw Memory Access
	Physical Memory Access
	Modularization

	Overview
	Threads and Scheduling
	Synchronization
	Priority Inversion
	Priority Inversion Avoidance
	Execution Eligibility
	Wait-Free Queues

	Asynchrony
	Asynchronous Events
	Asynchronous Transfer of Control
	Methodological Principles
	Expressibility Principles
	Semantic Principles
	Pragmatic Principles

	Asynchronous Realtime Thread Termination

	Clocks, Time, and Timers
	Memory Management
	Memory Areas
	Heap Memory
	Immortal Memory
	Scoped Memory
	Physical Memory Areas
	Budgeted Allocation

	Device Access and Raw Memory
	Raw Memory Access

	System Options
	Exceptions
	Summary

	General Requirements
	Definitions
	Semantics
	Base Requirements
	Modules
	Core Module
	Device Module
	Alternative Memory Areas Module

	POSIX module
	Optional Features
	Deprecated Classes
	Implementation types Allowed
	Realtime Deployment Implementation
	Simulation Implementation

	Required Documentation
	Rationale

	Realtime vs Conventional Java
	Definitions
	Semantics
	Scheduling
	Priority
	Thread Groups
	Current Thread

	InterruptedException
	Java Memory Model
	Memory Management
	Memory Areas
	Garbage Collection
	Realtime Garbage Collections

	Rationale

	Realtime Threads
	Definitions
	Semantics
	javax.realtime
	Enumerations
	PhasingPolicy

	Classes
	ConfigurationParameters
	RealtimeThread

	Rationale

	Scheduling
	Definitions
	Semantics
	Schedulers
	Parameter Values
	Release Control
	Dispatching
	Cost Monitoring and Cost Enforcement

	Priority Schedulers
	Priorities

	Associating Schedulables with Schedulers
	Managing Groups of Schedulables
	Scheduling Groups
	Processing Groups

	javax.realtime
	Interfaces
	BoundRealtimeExecutor
	BoundSchedulable
	Schedulable

	Enumerations
	MinimumInterarrivalPolicy
	QueueOverflowPolicy

	Classes
	Affinity
	AperiodicParameters
	BackgroundParameters
	FirstInFirstOutScheduler
	ImportanceParameters
	PeriodicParameters
	PriorityParameters
	PriorityScheduler
	ProcessingGroup
	ReleaseParameters
	RoundRobinScheduler
	Scheduler
	SchedulingGroup
	SchedulingParameters
	SporadicParameters

	Rationale
	SchedulingGroup and ProcessingGroup
	Multiprocessor Support
	Impact of Clock Granularity
	Deadline Miss Detection

	Synchronization
	Definitions
	Semantics
	Monitor Control
	Priority Schedulers
	Additional Schedulers

	javax.realtime
	Classes
	MonitorControl
	PriorityCeilingEmulation
	PriorityInheritance
	WaitFreeReadQueue
	WaitFreeWriteQueue

	Rationale

	Asynchrony
	Definitions
	Semantics
	Asynchronous Events and their Handlers
	Active Events and Dispatching
	Termination
	Asynchronous Transfer of Control
	Extending Conventional Java Interrupts
	Nesting AsynchronouslyInterruptedExceptions

	javax.realtime
	Interfaces
	ActiveEvent
	BoundAsyncBaseEventHandler
	Interruptible
	Releasable

	Classes
	ActiveEventDispatcher
	AsyncBaseEvent
	AsyncBaseEventHandler
	AsyncEvent
	AsyncEventHandler
	AsyncLongEvent
	AsyncLongEventHandler
	AsyncObjectEvent
	AsyncObjectEventHandler
	BlockableReleaseRunner
	BoundAsyncEventHandler
	BoundAsyncLongEventHandler
	BoundAsyncObjectEventHandler
	ReleaseRunner

	Exceptions
	Timed

	Rationale

	Time
	Definitions
	Semantics
	javax.realtime
	Classes
	AbsoluteTime
	HighResolutionTime
	RelativeTime

	Rationale

	Clocks and Timers
	Definitions
	Semantics
	Clock Model
	Clocks and Timables
	Timers
	Counter Model
	Comparator Model
	Triggering
	Behavior of Timers
	Phasing

	javax.realtime
	Interfaces
	AsyncTimable
	Chronograph
	Timable

	Classes
	Clock
	OneShotTimer
	PeriodicTimer
	TimeDispatcher
	Timer

	Rationale

	Alternative Memory Areas
	Definitions
	Semantics
	Allocation Execution Time
	Allocation Context
	The Parent Scope
	Memory Areas and Schedulables
	Scoped Memory Reference Counting
	Immortal Memory
	Maintaining Referential Integrity
	Object Initialization
	Maintaining the Scope Stack
	The enter Method
	The executeInArea or newInstance Methods
	Constructor Methods for Schedulables
	The Single Parent Rule
	Scope Tree Maintenance
	Pushing a MemoryArea onto the Scope Stack
	Popping a MemoryArea off the Scope Stack
	Reservation Management

	Physical Memory
	Stacked Memory

	javax.realtime
	Enumerations
	EnclosedType

	Classes
	HeapMemory
	ImmortalMemory
	MemoryArea
	MemoryParameters
	PerennialMemory
	SizeEstimator

	javax.realtime.memory
	Interfaces
	PhysicalMemoryCharacteristic

	Enumerations
	PhysicalMemorySelector.CachingBehavior
	PhysicalMemorySelector.PagingBehavior

	Classes
	LTMemory
	MemoryGroup
	PhysicalMemoryFactory
	PhysicalMemoryRegion
	PhysicalMemorySelector
	PinnableMemory
	ScopeParameters
	ScopedMemory
	StackedMemory

	The Rationale
	The Scoped Memory Model
	The Physical Memory Model
	The Original Physical Memory Framework
	The RTSJ 2.0 Physical Memory Framework
	An example

	Devices and Triggering
	Definitions
	Semantics
	Raw Memory
	Raw Memory Region
	Raw Memory Factory
	Stride

	Direct Memory Access Support
	External Triggering
	Happenings

	Interrupt Service Routines

	javax.realtime.device
	Interfaces
	DirectMemoryByteBuffer
	RawByte
	RawByteReader
	RawByteWriter
	RawDouble
	RawDoubleReader
	RawDoubleWriter
	RawFloat
	RawFloatReader
	RawFloatWriter
	RawInt
	RawIntReader
	RawIntWriter
	RawLong
	RawLongReader
	RawLongWriter
	RawMemory
	RawMemoryRegionFactory
	RawShort
	RawShortReader
	RawShortWriter

	Classes
	DirectMemoryBufferFactory
	DirectMemoryRegion
	Happening
	HappeningDispatcher
	InterruptServiceRoutine
	RawMemoryFactory
	RawMemoryRegion

	Rationale
	Raw Memory
	Direct memory access

	Interrupt Handling
	An Illustrative Example
	Software architecture
	Device initialization
	Responding to external happenings
	Access to the flash controller's device registers

	Interprocess Signaling
	Definitions
	Semantics
	POSIX Signals
	POSIX Realtime Signals

	javax.realtime.posix
	Classes
	RealtimeSignal
	RealtimeSignalDispatcher
	Signal
	SignalDispatcher

	Rationale

	System and Options
	Semantics
	RealtimeSystem
	Realtime Security
	GarbageCollection
	Compliance Version

	javax.realtime
	Enumerations
	RTSJModule

	Classes
	AffinityPermission
	CoreMemoryPermission
	GarbageCollector
	RealtimePermission
	RealtimeSystem
	SchedulingPermission
	TaskPermission

	javax.realtime.device
	Classes
	DirectMemoryPermission
	HappeningPermission
	RawMemoryPermission

	javax.realtime.memory
	Classes
	PhysicalMemoryPermission
	ScopedMemoryPermission

	javax.realtime.posix
	Classes
	POSIXPermission

	Rationale

	Exceptions
	Semantics
	javax.realtime
	Interfaces
	StaticThrowable

	Classes
	AlignmentError
	IllegalAssignmentError
	MemoryAccessError
	ResourceLimitError
	StaticError
	StaticOutOfMemoryError
	StaticThrowableStorage
	ThrowBoundaryError

	Exceptions
	ArrivalTimeQueueOverflowException
	AsynchronouslyInterruptedException
	CeilingViolationException
	ConstructorCheckedException
	DeregistrationException
	EventQueueOverflowException
	ForEachTerminationException
	IllegalSchedulableStateException
	InaccessibleAreaException
	LateStartException
	MITViolationException
	MemoryInUseException
	MemoryScopeException
	MemoryTypeConflictException
	OffsetOutOfBoundsException
	POSIXException
	POSIXInvalidSignalException
	POSIXInvalidTargetException
	POSIXSignalPermissionException
	ProcessorAffinityException
	RangeOutOfBoundsException
	RegistrationException
	ScopedCycleException
	SizeOutOfBoundsException
	StaticCheckedException
	StaticRuntimeException
	UninitializedStateException
	UnsupportedPhysicalMemoryException
	UnsupportedRawMemoryRegionException

	Rationale

	Bibliography
	Deprecated APIs
	Semantics
	javax.realtime
	Interfaces
	PhysicalMemoryTypeFilter
	Schedulable

	Classes
	AbsoluteTime
	AperiodicParameters
	AsyncEvent
	AsyncEventHandler
	BoundAsyncEventHandler
	Clock
	HighResolutionTime
	IllegalAssignmentError
	ImmortalPhysicalMemory
	LTMemory
	LTPhysicalMemory
	MemoryAccessError
	MemoryParameters
	NoHeapRealtimeThread
	OneShotTimer
	POSIXSignalHandler
	PeriodicParameters
	PeriodicTimer
	PhysicalMemoryManager
	PriorityScheduler
	ProcessingGroupParameters
	RawMemoryAccess
	RawMemoryFloatAccess
	RealtimeSecurity
	RealtimeSystem
	RealtimeThread
	RelativeTime
	ReleaseParameters
	Scheduler
	ScopedMemory
	SporadicParameters
	ThrowBoundaryError
	Timer
	VTMemory
	VTPhysicalMemory

	Exceptions
	ArrivalTimeQueueOverflowException
	DuplicateFilterException
	MemoryScopeException
	OffsetOutOfBoundsException
	UnknownHappeningException
	UnsupportedPhysicalMemoryException

	Rationale

	Indices
	Class Index
	Method Index

	Open Issues

