
Realtime and Embedded
Specification for Java

Version 2.0

Draft 48
Christchurch Edition
31st of July 2016

Editor
James J. Hunt
aicas GmbH

Haid-und-Neu-Straße 18
D-76131 Karlsruhe, Germany

Copyright c© 1999–2012 TimeSys
Copyright c© 2012–2015 aicas GmbH

All rights reserved

2

i

The Realtime Specification for Java (RTSJ) is under development within the Java
Community Process (JCP) by the members of the JSR-282 Expert Group (EG).

This group, was lead by TimeSys Inc. Corporation, but has been taken over by aicas
GmbH.

JSR-282 Expert Group Membership

James J. Hunt aicas GmbH
Benjamin Brosgol

Andy Wellings
Kelvin Nilsen

Ethan Blanton

Past Expert Group Members

Peter Dibble TimeSys
David Holmes Oracle

ii

Table of Contents

Contents i

List of Figures xiii

List of Tables xiv

1 Introduction 1
1.1 Guiding Principles . 2
1.1.1 Applicability to Particular Java Environments 2
1.1.2 Backward Compatibility . 3
1.1.3 Write Once, Run Anywhere . 3
1.1.4 Current Practice vs. Advanced Features 3
1.1.5 Predictable Execution . 3
1.1.6 No Syntactic Extension . 3
1.1.7 Allow Variation in Implementation Decisions 3
1.1.8 Interoperability . 4

1.2 Areas of Enhancement . 4
1.2.1 Thread Scheduling and Dispatching 4
1.2.2 Memory Management . 5
1.2.3 Synchronization and Resource Sharing 5
1.2.4 Asynchronous Event Handling . 5
1.2.5 Task Interruption . 5
1.2.6 Raw Memory Access . 6
1.2.7 Physical Memory Access . 6
1.2.8 Modularization . 6

2 Overview 7
2.1 Threads and Scheduling . 7
2.2 Synchronization . 9
2.2.1 Priority Inversion . 9
2.2.2 Priority Inversion Avoidance . 10
2.2.3 Execution Eligibility . 11

i

TABLE OF CONTENTS

2.2.4 Wait-Free Queues . 11
2.3 Asynchrony . 11
2.3.1 Asynchronous Events . 12
2.3.2 Asynchronous Transfer of Control 13
2.3.3 Principles . 13
2.3.3.1 Methodological Principles . 13
2.3.3.2 Expressibility Principles . 14
2.3.3.3 Semantic Principles . 14
2.3.3.4 Pragmatic Principles . 15

2.3.4 Asynchronous Realtime Thread Termination 15
2.4 Clocks, Time, and Timers . 16
2.5 Memory Management . 16
2.5.1 Memory Areas . 16
2.5.2 Heap Memory . 17
2.5.3 Immortal Memory . 17
2.5.4 Scoped Memory . 17
2.5.5 Physical Memory Areas . 18
2.5.6 Budgeted Allocation . 19

2.6 Device Access and Raw Memory . 19
2.6.1 Raw Memory Access . 19

2.7 System Options . 20
2.8 Exceptions . 20
2.9 Summary . 20

3 General Requirements 23
3.1 Definitions . 23
3.2 Semantics . 24
3.2.1 Base Requirements . 24
3.2.2 Modules . 25
3.2.2.1 Base Module . 25
3.2.2.2 Device Module . 28
3.2.2.3 Alternative Memory Areas Module 29

3.2.3 POSIX module . 29
3.2.4 Optional Features . 30
3.2.5 Deprecated Classes . 31
3.2.6 Implementation types Allowed . 31
3.2.6.1 Realtime Deployment Implementation 32
3.2.6.2 Simulation Implementation 33

3.3 Required Documentation . 34
3.4 Rationale . 36

ii RTSJ 2.0 (Draft 48)

TABLE OF CONTENTS

4 Realtime vs Conventional Java 37
4.1 Definitions . 39
4.2 Semantics . 39
4.2.1 Scheduling . 39
4.2.1.1 Priority . 40
4.2.1.2 Thread Groups . 41
4.2.1.3 Current Thread . 43

4.2.2 InterruptedException . 43
4.2.3 Java Memory Model . 43
4.2.4 Memory Management . 44
4.2.4.1 Memory Areas . 44
4.2.4.2 Garbage Collection . 44
4.2.4.3 Realtime Garbage Collections 45

4.3 Rationale . 46

5 Realtime Threads 47
5.1 Definitions . 48
5.2 Semantics . 48
5.3 javax.realtime . 50
5.3.1 Enumerations . 50
5.3.1.1 PhasingPolicy . 50

5.3.2 Classes . 53
5.3.2.1 ConfigurationParameters . 53
5.3.2.2 RealtimeThread . 56

5.4 Rationale . 87

6 Scheduling 89
6.1 Definitions . 91
6.2 Semantics . 93
6.2.1 Schedulers . 93
6.2.1.1 Parameter Values . 94
6.2.1.2 Release Control . 96
6.2.1.3 Dispatching . 105
6.2.1.4 Cost Monitoring and Cost Enforcement 107

6.2.2 Priority Schedulers . 109
6.2.2.1 Priorities . 110

6.2.3 Associating Schedulables with Schedulers 112
6.2.4 Managing Groups of Schedulables 113
6.2.4.1 Scheduling Groups . 113
6.2.4.2 Processing Groups . 114

6.3 javax.realtime . 120

RTSJ 2.0 (Draft 48) iii

TABLE OF CONTENTS

6.3.1 Interfaces . 120
6.3.1.1 BoundSchedulable . 120
6.3.1.2 RealtimeExecutionContext 120
6.3.1.3 Schedulable . 120

6.3.2 Enumerations . 132
6.3.2.1 MinimumInterarrivalPolicy 132
6.3.2.2 QueueOverflowPolicy . 135

6.3.3 Classes . 139
6.3.3.1 Affinity . 139
6.3.3.2 AperiodicParameters . 151
6.3.3.3 BackgroundParameters . 157
6.3.3.4 FirstInFirstOutScheduler . 159
6.3.3.5 ImportanceParameters . 163
6.3.3.6 PeriodicParameters . 165
6.3.3.7 PriorityParameters . 173
6.3.3.8 PriorityScheduler . 176
6.3.3.9 ProcessingGroup . 179
6.3.3.10 ReleaseParameters . 193
6.3.3.11 RoundRobinScheduler . 204
6.3.3.12 Scheduler . 208
6.3.3.13 SchedulingGroup . 211
6.3.3.14 SchedulingParameters . 216
6.3.3.15 SporadicParameters . 218

6.4 Rationale . 224
6.4.1 SchedulingGroup and ProcessingGroup 225
6.4.2 Multiprocessor Support . 226
6.4.3 Impact of Clock Granularity . 227
6.4.4 Deadline Miss Detection . 228

7 Synchronization 229
7.1 Definitions . 229
7.2 Semantics . 230
7.2.1 Monitor Control . 230
7.2.2 Priority Schedulers . 231
7.2.3 Additional Schedulers . 233

7.3 javax.realtime . 235
7.3.1 Classes . 235
7.3.1.1 MonitorControl . 235
7.3.1.2 PriorityCeilingEmulation . 238
7.3.1.3 PriorityInheritance . 241
7.3.1.4 WaitFreeReadQueue . 242

iv RTSJ 2.0 (Draft 48)

TABLE OF CONTENTS

7.3.1.5 WaitFreeWriteQueue . 249
7.4 Rationale . 255

8 Asynchrony 257
8.1 Definitions . 259
8.2 Semantics . 261
8.2.1 Asynchronous Events and their Handlers 261
8.2.2 Active Events and Dispatching . 263
8.2.3 Termination . 264
8.2.4 Asynchronous Transfer of Control 264
8.2.4.1 Extending Conventional Java Interrupts 267
8.2.4.2 Nesting AsynchronouslyInterruptedExceptions 268

8.3 javax.realtime . 270
8.3.1 Interfaces . 270
8.3.1.1 ActiveEvent . 270
8.3.1.2 BoundAsyncBaseEventHandler 273
8.3.1.3 Interruptible . 273
8.3.1.4 Releasable . 274

8.3.2 Exceptions . 275
8.3.2.1 Timed . 275

8.3.3 Classes . 278
8.3.3.1 ActiveEventDispatcher . 278
8.3.3.2 AsyncBaseEvent . 281
8.3.3.3 AsyncBaseEventHandler . 286
8.3.3.4 AsyncEvent . 302
8.3.3.5 AsyncEventHandler . 304
8.3.3.6 AsyncLongEvent . 310
8.3.3.7 AsyncLongEventHandler . 312
8.3.3.8 AsyncObjectEvent . 318
8.3.3.9 AsyncObjectEventHandler 320
8.3.3.10 BoundAsyncEventHandler 326
8.3.3.11 BoundAsyncLongEventHandler 330
8.3.3.12 BoundAsyncObjectEventHandler 333

8.4 Rationale . 336

9 Time 339
9.1 Definitions . 339
9.2 Semantics . 340
9.3 javax.realtime . 343
9.3.1 Classes . 343
9.3.1.1 AbsoluteTime . 343

RTSJ 2.0 (Draft 48) v

TABLE OF CONTENTS

9.3.1.2 HighResolutionTime . 357
9.3.1.3 RelativeTime . 366

9.4 Rationale . 378

10 Clocks and Timers 379
10.1 Definitions . 380
10.2 Semantics . 381
10.2.1 Clock Model . 381
10.2.2 Clocks and Timables . 382
10.2.3 Timers . 385
10.2.3.1 Counter Model . 385
10.2.3.2 Comparator Model . 386
10.2.3.3 Triggering . 386
10.2.3.4 Behavior of Timers . 386
10.2.3.5 Phasing . 387

10.3 javax.realtime . 388
10.3.1 Interfaces . 388
10.3.1.1 AsyncTimable . 388
10.3.1.2 Chronograph . 389
10.3.1.3 Timable . 392

10.3.2 Classes . 393
10.3.2.1 Clock . 393
10.3.2.2 OneShotTimer . 399
10.3.2.3 PeriodicTimer . 402
10.3.2.4 TimeDispatcher . 411
10.3.2.5 TimeDispatcher.Runner . 414
10.3.2.6 Timer . 415

10.4 Rationale . 428

11 Alternative Memory Areas 431
11.1 Definitions . 433
11.2 Semantics . 434
11.2.1 Allocation Execution Time . 434
11.2.2 Allocation Context . 435
11.2.3 The Parent Scope . 436
11.2.4 Memory Areas and Schedulables 436
11.2.5 Scoped Memory Reference Counting 437
11.2.6 Immortal Memory . 438
11.2.7 Maintaining Referential Integrity 439
11.2.8 Object Initialization . 439
11.2.9 Maintaining the Scope Stack . 440

vi RTSJ 2.0 (Draft 48)

TABLE OF CONTENTS

11.2.10 The enter Method . 441
11.2.11 The executeInArea or newInstance Methods 441
11.2.12 Constructor Methods for Schedulables 441
11.2.13 The Single Parent Rule . 442
11.2.14 Scope Tree Maintenance . 442
11.2.14.1 Pushing a MemoryArea onto the Scope Stack 443
11.2.14.2 Popping a MemoryArea off the Scope Stack 444
11.2.14.3 Reservation Management . 444

11.2.15 Physical Memory . 444
11.2.16 Stacked Memory . 446

11.3 javax.realtime . 449
11.3.1 Interfaces . 449
11.3.1.1 MemoryAreaVisitor . 449

11.3.2 Classes . 450
11.3.2.1 HeapMemory . 450
11.3.2.2 ImmortalMemory . 455
11.3.2.3 MemoryArea . 457
11.3.2.4 MemoryParameters . 472
11.3.2.5 SizeEstimator . 478

11.4 javax.realtime.memory . 484
11.4.1 Interfaces . 484
11.4.1.1 PhysicalMemoryCharacteristic 484

11.4.2 Enumerations . 484
11.4.2.1 PhysicalMemorySelector.CachingBehavior 484
11.4.2.2 PhysicalMemorySelector.PagingBehavior 486

11.4.3 Classes . 487
11.4.3.1 LTMemory . 487
11.4.3.2 PhysicalMemoryFactory . 491
11.4.3.3 PhysicalMemoryRegion . 499
11.4.3.4 PhysicalMemorySelector . 501
11.4.3.5 PinnableMemory . 504
11.4.3.6 ScopedMemory . 511
11.4.3.7 StackedMemory . 538

11.5 The Rationale . 554
11.5.1 The Scoped Memory Model . 554
11.5.2 The Physical Memory Model . 555
11.5.2.1 The Original Physical Memory Framework 557
11.5.2.2 The RTSJ 2.0 Physical Memory Framework 558
11.5.2.3 An example . 560

12 Devices and Triggering 563

RTSJ 2.0 (Draft 48) vii

TABLE OF CONTENTS

12.1 Definitions . 564
12.2 Semantics . 565
12.2.1 Raw Memory . 565
12.2.1.1 Raw Memory Region . 568
12.2.1.2 Raw Memory Factory . 568
12.2.1.3 Stride . 568

12.2.2 Direct Memory Access Support 569
12.2.3 External Triggering . 569
12.2.3.1 Happenings . 570

12.2.4 Interrupt Service Routines . 571
12.3 javax.realtime.device . 576
12.3.1 Interfaces . 576
12.3.1.1 DirectMemoryByteBuffer . 576
12.3.1.2 RawByte . 588
12.3.1.3 RawByteReader . 589
12.3.1.4 RawByteWriter . 592
12.3.1.5 RawDouble . 595
12.3.1.6 RawDoubleReader . 595
12.3.1.7 RawDoubleWriter . 598
12.3.1.8 RawFloat . 602
12.3.1.9 RawFloatReader . 602
12.3.1.10 RawFloatWriter . 605
12.3.1.11 RawInt . 608
12.3.1.12 RawIntReader . 609
12.3.1.13 RawIntWriter . 612
12.3.1.14 RawLong . 615
12.3.1.15 RawLongReader . 615
12.3.1.16 RawLongWriter . 618
12.3.1.17 RawMemory . 622
12.3.1.18 RawMemoryRegionFactory 623
12.3.1.19 RawShort . 644
12.3.1.20 RawShortReader . 645
12.3.1.21 RawShortWriter . 648

12.3.2 Classes . 651
12.3.2.1 DMABufferFactory . 651
12.3.2.2 DMARegion . 655
12.3.2.3 Happening . 657
12.3.2.4 HappeningDispatcher . 665
12.3.2.5 InterruptServiceRoutine . 667
12.3.2.6 RawMemoryFactory . 672

viii RTSJ 2.0 (Draft 48)

TABLE OF CONTENTS

12.3.2.7 RawMemoryRegion . 698
12.4 Rationale . 700
12.4.1 Raw Memory . 700
12.4.1.1 Direct memory access . 702

12.4.2 Interrupt Handling . 703
12.4.3 An Illustrative Example . 705
12.4.3.1 Software architecture . 706
12.4.3.2 Device initialization . 707
12.4.3.3 Responding to external happenings 708
12.4.3.4 Access to the flash controller’s device registers 709

13 Interprocess Signalling 711
13.1 Definitions . 711
13.2 Semantics . 711
13.2.1 POSIX Signals . 711
13.2.2 POSIX Realtime Signals . 712

13.3 javax.realtime.posix . 713
13.3.1 Classes . 713
13.3.1.1 RealtimeSignal . 713
13.3.1.2 RealtimeSignalDispatcher . 718
13.3.1.3 Signal . 721
13.3.1.4 SignalDispatcher . 727

13.4 Rationale . 730

14 System and Options 731
14.1 Semantics . 731
14.1.1 RealtimeSystem . 731
14.1.2 RealtimeSecurity . 732
14.1.3 GarbageCollection . 735
14.1.4 Compliance Version . 735

14.2 javax.realtime . 736
14.2.1 Enumerations . 736
14.2.1.1 RTSJModule . 736

14.2.2 Classes . 738
14.2.2.1 AffinityPermission . 738
14.2.2.2 CoreMemoryPermission . 740
14.2.2.3 GarbageCollector . 741
14.2.2.4 RealtimeSecurity . 742
14.2.2.5 RealtimeSystem . 747
14.2.2.6 SchedulingPermission . 755
14.2.2.7 TaskPermission . 756

RTSJ 2.0 (Draft 48) ix

TABLE OF CONTENTS

14.3 javax.realtime.device . 758
14.3.1 Classes . 758
14.3.1.1 DirectMemoryPermission . 758
14.3.1.2 HappeningPermission . 759
14.3.1.3 RawMemoryPermission . 760

14.4 javax.realtime.memory . 762
14.4.1 Classes . 762
14.4.1.1 PhysicalMemoryPermission 762
14.4.1.2 ScopedMemoryPermission . 763

14.5 javax.realtime.posix . 765
14.5.1 Classes . 765
14.5.1.1 POSIXPermission . 765

14.6 Rationale . 766

15 Exceptions 769
15.1 Semantics . 769
15.2 javax.realtime . 771
15.2.1 Interfaces . 771
15.2.1.1 StaticThrowable . 771

15.2.2 Exceptions . 776
15.2.2.1 ArrivalTimeQueueOverflowException 776
15.2.2.2 AsynchronouslyInterruptedException 777
15.2.2.3 CeilingViolationException . 783
15.2.2.4 ConstructorCheckedException 785
15.2.2.5 DeregistrationException . 786
15.2.2.6 EventQueueOverflowException 787
15.2.2.7 IllegalSchedulableStateException 788
15.2.2.8 InaccessibleAreaException 793
15.2.2.9 LateStartException . 795
15.2.2.10 MITViolationException . 796
15.2.2.11 MemoryInUseException . 798
15.2.2.12 MemoryScopeException . 799
15.2.2.13 MemoryTypeConflictException 801
15.2.2.14 OffsetOutOfBoundsException 802
15.2.2.15 POSIXException . 804
15.2.2.16 POSIXInvalidSignalException 804
15.2.2.17 POSIXInvalidTargetException 805
15.2.2.18 POSIXSignalPermissionException 806
15.2.2.19 ProcessorAffinityException 807
15.2.2.20 RangeOutOfBoundsException 808
15.2.2.21 RegistrationException . 808

x RTSJ 2.0 (Draft 48)

TABLE OF CONTENTS

15.2.2.22 ScopedCycleException . 809
15.2.2.23 SizeOutOfBoundsException 811
15.2.2.24 StaticCheckedException . 813
15.2.2.25 StaticRuntimeException . 818
15.2.2.26 UninitializedStateException 823
15.2.2.27 UnsupportedPhysicalMemoryException 824
15.2.2.28 UnsupportedRawMemoryRegionException 826

15.2.3 Classes . 826
15.2.3.1 AlignmentError . 826
15.2.3.2 IllegalAssignmentError . 827
15.2.3.3 MemoryAccessError . 829
15.2.3.4 ResourceLimitError . 830
15.2.3.5 StaticError . 832
15.2.3.6 StaticOutOfMemoryError . 837
15.2.3.7 StaticThrowableStorage . 842
15.2.3.8 ThrowBoundaryError . 848

15.3 Rationale . 849

Open Issues 851

A Deprecated APIs 853
A.1 Semantics . 853
A.2 javax.realtime . 854
A.2.1 Interfaces . 854
A.2.1.1 PhysicalMemoryTypeFilter 854
A.2.1.2 Schedulable . 862

A.2.2 Exceptions . 878
A.2.2.1 ArrivalTimeQueueOverflowException 878
A.2.2.2 AsynchronouslyInterruptedException 878
A.2.2.3 DuplicateFilterException . 880
A.2.2.4 MemoryScopeException . 881
A.2.2.5 OffsetOutOfBoundsException 882
A.2.2.6 UnknownHappeningException 883
A.2.2.7 UnsupportedPhysicalMemoryException 884

A.2.3 Classes . 884
A.2.3.1 AbsoluteTime . 884
A.2.3.2 AperiodicParameters . 889
A.2.3.3 AsyncEvent . 894
A.2.3.4 AsyncEventHandler . 897
A.2.3.5 BoundAsyncEventHandler . 916
A.2.3.6 Clock . 918

RTSJ 2.0 (Draft 48) xi

TABLE OF CONTENTS

A.2.3.7 GarbageCollector . 919
A.2.3.8 HighResolutionTime . 920
A.2.3.9 IllegalAssignmentError . 923
A.2.3.10 ImmortalPhysicalMemory . 923
A.2.3.11 LTMemory . 933
A.2.3.12 LTPhysicalMemory . 939
A.2.3.13 MemoryAccessError . 949
A.2.3.14 MemoryParameters . 950
A.2.3.15 NoHeapRealtimeThread . 952
A.2.3.16 OneShotTimer . 956
A.2.3.17 POSIXSignalHandler . 958
A.2.3.18 PeriodicParameters . 968
A.2.3.19 PeriodicTimer . 969
A.2.3.20 PhysicalMemoryManager . 970
A.2.3.21 PriorityCeilingEmulation . 980
A.2.3.22 PriorityScheduler . 981
A.2.3.23 ProcessingGroupParameters 991
A.2.3.24 RationalTime .1001
A.2.3.25 RawMemoryAccess .1006
A.2.3.26 RawMemoryFloatAccess .1031
A.2.3.27 RealtimeSystem .1043
A.2.3.28 RealtimeThread .1043
A.2.3.29 RelativeTime .1063
A.2.3.30 ReleaseParameters .1070
A.2.3.31 Scheduler .1071
A.2.3.32 ScopedMemory .1077
A.2.3.33 SporadicParameters .1094
A.2.3.34 ThrowBoundaryError .1099
A.2.3.35 Timer .1099
A.2.3.36 VTMemory .1101
A.2.3.37 VTPhysicalMemory .1107
A.2.3.38 WaitFreeDequeue .1117

A.3 Rationale .1122

B Bibliography 1123

xii RTSJ 2.0 (Draft 48)

List of Figures

6.1 Sequence Diagram of Some Example Realtime Thread Releases 117
6.2 A State Chart for a Realtime Thread without a Deadline Miss Handler118
6.3 A State Chart for a Realtime Thread with a Deadline Miss Handler . 119

8.1 The Event Class Hierarchy . 261
8.2 States of a Simple AsyncBaseEvent 263
8.3 States of an ActiveEvent . 265

10.1 Sequence Diagram for Using a Timer 383
10.2 Sequence Diagram for Realtime Sleep 384
10.3 States of a Timer . 388

11.1 Manipulation of StackedMemory Areas 447

12.1 Raw Memory Interface . 566
12.2 Event Classes . 567
12.3 Happening State Transition Diagram 570
12.4 Interrupt servicing . 572
12.5 Creating Raw Memory Accessors . 701
12.6 Flash memory device . 703
12.7 Flash memory classes . 705
12.8 Sequence diagram showing initialization operations 707
12.9 Sequence diagrams showing operations to initialize the hardware device708
12.10The FMSocketController.handleAsync method 709
12.11Application usage . 710

xiii

List of Tables

3.1 RTSJ Options . 30

5.1 Effect of PhasingPolicy on the First Release of a RealtimeThread with
PeriodicParameters . 51

6.3 AperiodicParameters Default Values 153
6.4 FirstInFirstOut Default PriorityParameter Values 160
6.5 PeriodicParameter Default Values . 166
6.6 PriorityScheduler Default PriorityParameter Values 176
6.7 ProcessingGroup Default Values . 181
6.8 ReleaseParameter Default Values . 194
6.9 SporadicParameters Default Values 219

8.1 Event to Handler Matrix . 258

9.1 Examples of Normalized Times . 341
9.2 Semantics of Time Conversion . 342

11.1 Memory Area Referencing Restrictions 439

12.1 Properties Array . 675
12.2 Device registers . 706

A.1 ProcessingGroupParameter Default Values 993
A.2 Properties Array .1009

xiv

Chapter 1

Introduction

The goal of the Real-Time Specification for Java (RTSJ) is to support the use of
Java technology in embedded and realtime systems. It provides a specification for
refining the Java Language Specification and the Java Virtual Machine Specification
and of providing an extended Application Programming Interface that facilitates
the creation, verification, analysis, execution, and management of realtime Java
programs such as control and sensor applications.

The Java Virtual Machine and the Java Language were conceived as a portable en-
vironment for desktop and server applications. The emphasis has been on throughput
and responsiveness. These are characteristics obtainable with time-sharing systems.
For this conventional Java environment, it is more important that each task makes
progress, than that a particular task completes within a predefined time slot.

In a realtime system, the system tries to schedule the most critical task that is
ready to run first. This task runs either until it is finished, or it needs to wait for
some event or data, or a more critical task is released or a more critical task becomes
schedulable after waiting for its event or data.

Realtime scheduling is commonly done with a priority preemptive scheduler,
where tasks that have short deadlines are given higher priority than tasks that have
longer deadlines. The programmer is responsible for encoding some notion of task
importance to priorities. The goal is to see that all tasks finish within their deadlines.
Scheduling analysis, such as Rate Monotonic Analysis, can be used to help determine
this.

Many realtime systems have nonrealtime components, so it is desirable to be able
to combine realtime and nonrealtime tasks in a single system. Realtime tasks are then
given preference over nonrealtime tasks. For Java, this means that realtime tasks
must be scheduled before threads with conventional Java priorities (1–10). Being
able to synchronize between tasks, both realtime and conventional Java threads,
adds additional requirements.

Providing realtime semantics and the additional programming interfaces required

1

1 Introduction

is a core part of this specification. So much so that the original specification provided
special memory areas to avoid the use of garbage collection. The availability of
various techniques for realtime garbage collection has changed the state of practice
since RTSJ Version 1.0. Though still part of the specification, these special memory
areas are no longer central to it. Realtime scheduling and priority inversion avoidance
for synchronization are the core of providing realtime response. These are provided
through refinements to the base Java semantics and additional classes.

Realtime tasks can be modeled both with realtime threads and with event handlers.
Realtime threads are much the same as conventional Java threads except for how
they are scheduled. Event handlers encapsulate a bit of work that is done every time
some event occurs. Events are referred to as asynchronous because they generally
occur independent of program flow. Thus, a periodic timed event is considered to be
an asynchronous event, but scheduled periodically. Event handling provides a less
resource intensive means of writing control applications because the underlying thread
mechanism can be shared between event handlers. Deadline analysis is also somewhat
simpler because the end of the work to be done is well bounded. Event handling
is ideal for periodic tasks and responding to external impulses. The specification
provides both paradigms.

Though realtime is necessary for many control tasks, it is not sufficient. A
significant part of the RTSJ API addresses communication with the outside world
through devices and signals. This makes it possible to write control applications
without resorting to JNI, thereby maintaining the integrity and safety that Java
offers.

Since not all applications need all aspects of the specification, there are now
modules to suite the major application scenarios. This should make it easier for
conventional JVM providers to include basic specification facilities without negatively
impacting their core application domains, but still be compatible with hard realtime
implementations. The goal is to make the transition between conventional JVMs
and realtime JVMs easier.

1.1 Guiding Principles
Providing a coherent semantics and set of programming interfaces requires some
guiding principles around which to organize the RTSJ. These principles delimit the
scope of the RTSJ and its compatibility requirements with conventional Java.

1.1.1 Applicability to Particular Java Environments
The RTSJ shall not include specifications that restrict its use to a particular Java
environment, such as a particular versions of the Java Development Kit, an Embedded

2 RTSJ 2.0 (Draft 48)

Guiding Principles 1.1

Java Application Environment, or a Java Edition, beyond the natural development
of the Java language.

1.1.2 Backward Compatibility
The RTSJ shall not prevent existing, properly written, conventional Java programs
from executing on implementations of the RTSJ.

1.1.3 Write Once, Run Anywhere
The RTSJ should recognize the importance of “Write Once, Run Anywhere”, but it
should also recognize the difficulty of achieving WORA for realtime programs and not
attempt to increase or maintain binary portability at the expense of predictability.
Hence, the goal should be “Write Once Carefully, Run Anywhere Conditionally”.

1.1.4 Current Practice vs. Advanced Features
The RTSJ should address current realtime system practice as well as allow future
implementations to include advanced features.

1.1.5 Predictable Execution
The RTSJ shall hold predictable execution as first priority in all trade-offs; this
may sometimes be at the expense of typical general-purpose computing performance
measures.

1.1.6 No Syntactic Extension
In order to facilitate the job of tool developers, and thus to increase the likelihood of
timely implementations, the RTSJ shall not introduce new keywords or make other
syntactic extensions to the Java language.

1.1.7 Allow Variation in Implementation Decisions
Implementations of the RTSJ may vary in a number of implementation decisions,
such as the use of efficient or inefficient algorithms, trade-offs between time and
space efficiency, inclusion of scheduling algorithms not required in the minimum
implementation, and variation in code path length for the execution of byte codes.
The RTSJ should not mandate algorithms or specific time constants for such, but
require that the semantics of the implementation be met and where necessary put

RTSJ 2.0 (Draft 48) 3

1 Introduction

limits on execution time complexity. The RTSJ offers implementers the flexibility to
create implementations suited to meet the requirements of their customers.

1.1.8 Interoperability
It should be possible to implement all aspects of the RTSJ on a conventional JVM
with the exception that realtime response and pointer assignment rules would not
necessarily be guaranteed. This should ease the transition between conventional and
realtime programming and aid functional testing on a conventional JVM. The API
should support modules for this as well.

1.2 Areas of Enhancement
Each guiding principle has had a direct effect on the development of the specification.
There are eight aspects of these refinements and additions in the specification. Their
enumeration should aid the understanding of the rest of the specification.

1.2.1 Thread Scheduling and Dispatching
Portability dictates the specification of at least one standard realtime scheduler, but
in light of the significant diversity in scheduling and dispatching models and the
recognition that each model has wide applicability in the diverse realtime systems
industry, the specification provides an underlying scheduling infrastructure that can
be extended to use other scheduling algorithms for scheduling realtime Java threads
and event handlers.

To accommodate current practice, the RTSJ shall require a base scheduler in all
implementations. The required base scheduler will be familiar to realtime system
programmers. It is a priority preemptive, first-in-first-out, scheduler. Since most
realtime systems also support round-robin scheduling, a round-robin scheduler shall
also be supplied. For compatibility with conventional Java implementations, both
schedulers shall use priorities above the conventional Java priorities (1–10).

The specification is constructed to allow implementations to provide unanticipated
scheduling algorithms. Implementations will enable the programmatic assignment
of parameters appropriate for the underlying scheduling mechanism as well as
provide any necessary methods for the creation, management and termination of
realtime Java threads. In the current specification, any other thread, scheduling, and
dispatching mechanism may be bound to an implementation; however, there should
be enough flexibility in the thread scheduling framework to enable future versions of
the specification to build on this release.

4 RTSJ 2.0 (Draft 48)

Areas of Enhancement 1.2

1.2.2 Memory Management
Automatic memory management is a particularly important feature of the Java
programming environment. The specification enables, as far as possible, the job of
memory management to be implemented automatically by the underlying system
and not intrude on the programming task. Many automatic memory management
algorithms, also known as garbage collection (GC), exist, and many of those apply
to certain classes of realtime programming styles and systems. In an attempt to
accommodate a diverse set of GC algorithms, the specification defines a memory
allocation and reclamation paradigm that
• is independent of any particular GC algorithm,
• requires the VM to precisely characterize its GC algorithm’s effect on the

preemption of realtime Java tasks, and
• enables the allocation and reclamation of objects outside of any interference by

any GC algorithm.

1.2.3 Synchronization and Resource Sharing
Logic often requires serial access to resources, and realtime systems introduce an
additional complexity: the need to minimize priority inversion and hence the excessive
delay of more critical tasks. The least intrusive specification for enabling realtime safe
synchronization is to require that implementations of the Java keyword synchronized
implement one or more algorithms that prevent priority inversion among realtime
Java tasks that share the serialized resource. In addition, the specification provides
other data passing mechanisms to minimize the need for synchronization.

1.2.4 Asynchronous Event Handling
Realtime systems typically interact closely with the real world. With respect to
the execution of logic, the real world is asynchronous; therefore, the specification
includes efficient mechanisms for programming disciplines that would accommodate
this inherent asynchrony. The RTSJ has a general mechanism for asynchronous event
handling. This specification provides classes that represent things that can happen
and logic that executes when those things happen. The execution of the logic is
scheduled and dispatched by the RTSJ runtime.

1.2.5 Task Interruption
Sometimes, the real world changes so drastically (and asynchronously) that the current
point of logic execution should be immediately, efficiently, and safely ended and control
transferred to another point of execution. The RTSJ provides a mechanism which

RTSJ 2.0 (Draft 48) 5

1 Introduction

extends Java’s interrupt and exception handling mechanisms to enable applications to
programmatically change the locus of control of another Java task. This mechanism
may restrict this asynchronous transfer of control to logic specifically written with
the assumption that its locus of control may asynchronously change. Due to the
inherent susceptibility to deadlock, the Thread.stop method cannot be used for this.

1.2.6 Raw Memory Access
Accessing device memory is not in and of itself a realtime issue; however, many
realtime systems require it for providing realtime control of a system. This requires
an API providing programmers with byte-level access to physical device registers,
whether in main memory or in some I/O space. This API must be as efficient as
possible, since such access is often under tight time constraints.

1.2.7 Physical Memory Access
Some systems provide memory areas that differ in important aspects, such as time
to read or write data and its persistence. Being able to take advantage of these areas
can have an impact on performance. This specification enables their efficient use.

1.2.8 Modularization
Not all applications require all aspects of the specification. In fact, having a core set
of the APIs presented is useful for conventional Java programming and aids overall
interoperability. To this end, the specification provides a core set of APIs and a
few optional modules as well as semantics for use in conventional JVMs that do
not offer realtime guarantees. This should enable implementations to be optimized
for particular use cases and enable conventional Java environments to be used to
help develop code that can be more easily shared between realtime and conventional
systems.

6 RTSJ 2.0 (Draft 48)

Chapter 2

Overview

The RTSJ comprises several areas of extended semantics. These areas are discussed
in approximate order of their relevance to realtime programming. The semantics and
mechanisms of each of threads and scheduling, synchronization, asynchrony, clocks
and timers, memory management, device access and raw memory, system options,
and exceptions are all crucial to the acceptance of the RTSJ as a viable realtime
development platform. Further details, exact requirements, class documentation,
and rationale for these extensions are given in subsequent chapters.

2.1 Threads and Scheduling
One of the concerns of realtime programming is to ensure the timely and predictable
execution of sequences of machine instructions. Various scheduling schemes name
these sequences of instructions differently, for example, thread, task, module, or
block. In Java, this computation is executed in the context of a thread. Since Java
threads were designed for fair execution1 rather than predictable execution, the RTSJ
introduces the concept of a schedulable. These are the objects managed by the base
scheduler: RealtimeThread and its subclasses and AsyncBaseEventHandler and its
subclasses. RealtimeThread is a specialization of Java’s Thread.

Timely execution of schedulables means that the programmer can determine,
by analysis of the program, testing the program on particular implementations,
or both, whether particular threads will always complete execution before a given
timeliness constraint. This is the essence of realtime programming: the addition of
temporal constraints to the correctness conditions for computation. For example, for
a program to compute the sum of two numbers, it may no longer be acceptable to

1Actually, neither the Java Virtual Machine Specification[6] nor the Java Language
Specification[5] defines how Java threads should be scheduled, but most implementations, in-
cluding the reference implementations, use some sort of fair scheduling.

7

2 Overview

compute only the correct arithmetic answer but the answer must be computed within
a particular time interval. Typically, temporal constraints are deadlines expressed in
either relative or absolute time.

The term scheduling (or scheduling algorithm) refers to the production of a
sequence (or ordering) for the execution of a set of schedulables (a schedule). This
schedule attempts to optimize a particular metric (a metric that measures how well
the system is meeting the temporal constraints). A feasibility analysis determines
if a schedule has an acceptable value for the metric. For example in hard realtime
systems, the typical metric is “number of missed deadlines” and the only acceptable
value for that metric is zero. So called soft realtime systems use other metrics (such
as mean tardiness) and may accept various values for the metric in use.

Many systems, including most conventional Java implementations, use thread
priority to guide the determination of a schedule. Priority is typically an integer
associated with a thread; these integers convey to the system the order in which the
threads should execute. The generalization of the concept of priority is execution
eligibility. The term dispatching refers to that portion of the system which selects
the thread with the highest execution eligibility from the pool of threads that are
ready to run.

In current realtime system practice, the assignment of priorities is typically under
programmer control as opposed to under system control. As a base scheduler for
realtime tasks, the RTSJ provides preemptive priority-based first-in-first-out (FIFO)
scheduler, which also leaves the assignment of priorities to programmer control. It
also provides a priority-based round-robin (RR) scheduler. Most realtime operating
systems (RTOS) are also based on priority preemptive scheduling and support both
FIFO and RR scheduling.

The RTSJ defines a number of classes with names of the format <string>Param-
eters such as ReleaseParameters, which provide parameters for resource management.
An instance of one of these parameter classes holds a particular resource-demand
characteristic for one or more schedulables. For example, the PriorityParameters
subclass of SchedulingParameters contains the execution eligibility metric of the
base scheduler, i.e., a priority. At some time (construction-time or later when the
parameters are replaced using setter methods), instances of parameter classes are
bound to a schedulable. The schedulable then assumes the characteristics of the
values in the parameter object. For example, a PriorityParameters instance with its
priority set to the value representing the highest priority available on a system is
bound to a schedulable, then that schedulable will assume the characteristic that it
will execute whenever it is ready in preference to all other schedulables (except, of
course, those also with the same priority).

The RTSJ provides implementers with the flexibility to install arbitrary scheduling
algorithms in an implementation of the specification. This is to support the widely

8 RTSJ 2.0 (Draft 48)

Synchronization 2.2

varying requirements of the realtime systems industry with respect to scheduling.
Use of the Java platform may help produce code written once but able to be executed
on many different computing platforms. The RTSJ contributes to this goal, but the
rigors of realtime systems detract from it. The RTSJ’s rigorous specification of the
required priority scheduler is critical for portability of time-critical code, but the
RTSJ permits and supports platform-specific schedulers which are not necessarily
portable.

2.2 Synchronization

If the computation in each thread were independent of the computation in all other
threads, scheduling alone would be enough to ensure timeliness; however, this is
usually not the case. Threads often need to communicate with one another or share
data. Resources must be shared as well. Two threads cannot read different data from
the disk at the same time nor write data to a disk at the same time. They cannot
send a message to another machine at the same time. They cannot update the same
in-memory data at the same time. One thread may have to wait for another thread
to get the data it needs. Just as in a normal system, synchronization is required.
In a realtime system, this synchronization must not prevent other threads from
completing their tasks on time.

2.2.1 Priority Inversion

The additional concern for synchronization in a realtime system, as opposed to a
conventional system, is that blocking can cause the wrong thread to run first. A
high priority thread can be blocked by a low priority thread that is vying for the
same resource. A priority queue can be used to ensure that a highest priority thread
goes first, when more than one thread is waiting to enter a synchronized block, but
this is not always sufficient.

Consider a single processor system with three threads, t1, t2, and t3, where t1
has the highest priority and t3 has the lowest priority. It is possible that t2 can
prevent t1 from running by preempting t3. This is called priority inversion. It occurs
when t1 is blocked by attempting to acquire a lock that is held by thread t3 and t3
is preempted by t2. When t2 does run, it may prevent t3 from running indefinitely,
thereby keeping t1 blocked past its deadline.

What is needed is a mechanism the ensure that, while t1 is waiting on a resource
in use by t3, thread t3 runs before all threads with a priority less than that of t1.

RTSJ 2.0 (Draft 48) 9

2 Overview

2.2.2 Priority Inversion Avoidance
Two of the most common mechanisms for avoiding priority inversion are priority
inheritance and priority ceiling emulation (a.k.a. highest locker protocol). Both
of these boost the priority of a thread holding the lock in order to prevent a
noncontending thread from transitively blocking a higher priority thread which is
waiting for the same lock. The difference is how high the priority is raised and when.
Both take effect when a thread is in a synchronized section of code.

The first is the default behavior for synchronized blocks and methods. It applies
to all code running within the implementation, not just to schedulables. The priority
inheritance protocol is a well-known algorithm in the realtime scheduling literature
and it has the following effect. If thread t1 attempts to acquire a lock that is held
by a lower-priority thread t3, then t3’s priority is raised to that of t1 as long as t3
holds the lock (and recursively if t3 is itself waiting to acquire a lock held by an even
lower-priority thread).

The specification also provides a mechanism by which the programmer can
override the default system-wide policy, or control the policy to be used for a
particular monitor, provided that policy is supported by the implementation. The
second policy, priority ceiling emulation protocol, can be set using this mechanism.
It is also a well-known algorithm in the literature. The following three points provide
a somewhat simplified description of its effect.

1. A monitor is given a “priority ceiling" when it is created; the programmer
should choose at least the highest priority of any thread that could attempt to
enter the monitor.

2. As soon as a thread enters synchronized code, its (active) priority is raised to
the monitor’s ceiling priority. If, through programming error, a thread has a
higher base priority than the ceiling of the monitor it is attempting to enter,
then an exception is thrown.

3. On leaving the monitor, the thread has its active priority reset. In simple
cases it will set be to the thread’s previous active priority, but under some
circumstances (e.g. a dynamic change to the thread’s base priority while it was
in the monitor) a different value is possible.

In addition, threads and asynchronous event handlers waiting to acquire a resource
must be released from highest to lowest priority (in priority order). This applies to
processors as well as to synchronized blocks. If schedulables with the same priority
are possible under the active scheduling policy, such schedulables are awakened in
FIFO order. This is exemplified in the following scenarios.

1. Threads waiting to enter synchronized blocks are granted access to the syn-
chronized block in priority order.

2. A blocked thread that becomes ready to run is given access to a processor in
priority order.

10 RTSJ 2.0 (Draft 48)

Asynchrony 2.3

3. A thread whose priority is explicitly set by itself or another thread is given
access to a processor in priority order.

4. A thread that performs a yield will be given access to the processor after
waiting for threads of the same priority to be given a processor.

5. Threads that are preempted in favor of a thread with higher priority may
be given access to a processor at any time as determined by a particular
implementation. The implementation is required to provide documentation
stating exactly the algorithm used for granting such access.

In any case, there needs to be a fixed upper bound on the time required to enter
a synchronized block for an unlocked monitor.

2.2.3 Execution Eligibility
Since an implementation of the RTSJ may provide schedulers other than priority-
based schedulers, the notion of priority can be generalized to execution eligibility.
Execution eligibility defines a partial ordering over all tasks for determining which
task should run before which other tasks. Execution eligibility may be determined
dynamically. For example, earliest deadline first (EDF) scheduling determines
execution eligibility ordering by the order of the next deadlines for each of its tasks.
The notion of priority, as described above, can be generalized to execution eligibility
to integrate other schedulers into an RTSJ implementation.

2.2.4 Wait-Free Queues
While the RTSJ requires that the execution of schedulables which do not access
the heap must not be delayed by garbage collection on behalf of lower-priority
schedulables, an application can cause such a schedulable to wait for garbage collection
by synchronizing using an object shared with a heap-using thread or schedulable.
The RTSJ provides wait-free queue classes to provide protected, nonblocking, shared
access to objects accessed by both regular Java threads and schedulables, which do
not access the heap.

2.3 Asynchrony
Since a realtime system must be able to react to the outside world, the system needs
to be able to change its execution flow asynchronously to the current execution. All
external signals, whether interrupts, messages, or timed events, are asynchronous
with respect to ongoing computation. This means that computation must be both
startable and stoppable based on external stimuli.

RTSJ 2.0 (Draft 48) 11

2 Overview

2.3.1 Asynchronous Events
Asynchronous event provide a means of starting computation based on external
stimuli. The asynchronous event facility is based on two classes: AsyncBaseEvent
and AsyncBaseEventHandler. An AsyncBaseEvent object represents something
that can happen, like a POSIX signal, a hardware interrupt, or a computed event
like an airplane entering a specified region. When one of these events occurs,
which is indicated by the fire() method being called, the associated instances of
AsyncBaseEventHandler are scheduled and the handleAsyncEvent() methods are
invoked, thus the required logic is performed. Also, methods on AsyncBaseEvent
are provided to manage the set of instances of AsyncBaseEventHandler associated
with the instance of AsyncBaseEvent.

An instance of an AsyncBaseEventHandler can be thought of as something similar
to a thread. When an event fires, the associated handlers are scheduled and the
handleAsyncEvent() methods are invoked. What distinguishes an AsyncBaseEvent-
Handler from a simple Runnable is that an AsyncBaseEventHandler has associated
instances of ReleaseParameters, SchedulingParameters and MemoryParameters that
control the actual execution of the handler once the associated AsyncBaseEvent is
fired. When an event is fired, the handlers are executed asynchronously, scheduled
according to the associated ReleaseParameters and SchedulingParameters objects,
in a manner that looks like the handler has just been assigned to its own thread. It is
intended that the system can cope well with situations where there are large numbers
of instances of AsyncBaseEvent and AsyncBaseEventHandler (tens of thousands),
since the number of fired (in progress) handlers is expected to be much smaller.

There are specialized forms of AsyncBaseEvent: AsyncEvent, AsyncLongEvent,
and AsyncObjectEvent for events that are stateless, carry a long payload, and carry
an Object payload, respectively. They are matched by specialized forms of Async-
BaseEventHandler: AsyncEventHandler, AsyncLongEventHandler, and AsyncOb-
jectEventHandler. Most external events are stateless, but sometimes it is helpful
to be able to receive some information about the event or pass some data with the
event. The Long and Object variants enable this and the POSIXRealtimeSignal
takes advantage of it.

Another specialized form of an AsyncEvent is the Timer class, which represents
an event whose occurrence is driven by time. There are two forms of Timers: the
OneShotTimer and the PeriodicTimer. Instances of OneShotTimer fire once, at the
specified time. Periodic timers fire initially at the specified time, and then periodically
according to a specified interval.

Timers are driven by Clock objects. There is a special Clock object, Clock.
getRealtimeClock(), that represents the realtime clock. The Clock class may be
extended to represent other clocks, which the underlying system might make available
(such as an execution-time clock of some granularity).

12 RTSJ 2.0 (Draft 48)

Asynchrony 2.3

2.3.2 Asynchronous Transfer of Control
Many event-driven computer systems that tightly interact with external physical
systems (e.g., humans, machines, control processes, etc.) may require mode changes
in their computational behavior as a result of significant changes in the actual
real-world system. It simplifies the architecture of a system when a task can be
programmatically terminated when an external physical system change causes its
computation to be superfluous. Without this facility, a thread or set of threads
have to be coded so that their computational behavior anticipates all of the possible
transitions among possible states of the external system. When the external system
makes a state transition, the changes in computation behavior can be managed by
an oracle that terminates a set of threads required for the old state of the external
system, and invokes a new set of threads appropriate for the new state of the external
system. Since the possible state transitions of the external system are encoded in
only the oracle and not in each thread, the overall system design is simpler.

There is a second requirement for a mechanism to terminate some computation,
where a potentially unbounded computation needs to be done in a bounded period
of time. In this case, if that computation can be executed with an algorithm that
is iterative, and produces successively refined results, the system could abandon
the computation early and still have usable results. The RTSJ supports aborting
a computation by signalling from another thread, or the passage of time, with a
feature termed Asynchronous Transfer of Control (ATC).

An example of the second case is processing compressed video for a human
controller. The system knows that a new frame must be produced at a constant
update frequency. The cost of each iteration is highly variable and the minimum
required latency to terminate the computation and receive the last consistent result
is much less than the mean iteration cost and bound. Therefore, using ATC for
interrupting a computation to capture an intermediate result at the expiration of a
known time bound is a convenient programming style. Of course, there are other
kinds of programming tasks that may also benefit from ATC.

2.3.3 Principles
The RTSJ’s approach to ATC uses asynchronous interruptions and exceptions, and is
based on several guiding principles covering methodology, expressiveness, semantics,
and pragmatic concerns.

2.3.3.1 Methodological Principles

1. A method must explicitly indicate its susceptibility to ATC, i.e., it is asyn-
chronously interruptible. Since legacy code or library methods might have been

RTSJ 2.0 (Draft 48) 13

2 Overview

written assuming no ATC, by default ATC must be turned off (more precisely,
must be deferred as long as control is in such code).

2. Even if a method allows ATC, some code sections must be executed to comple-
tion and thus ATC is deferred in such sections. These ATC-deferred sections
are synchronized methods, static initializers, and synchronized statements.

3. Code that responds to an ATC does not return to the point in the schedulable
where the ATC was triggered; that is, an ATC is an unconditional transfer of
control. Resumptive semantics, which returns control from the handler to the
point of interruption, are not needed since they can be achieved through other
mechanisms (in particular, an AsyncEventHandler).

2.3.3.2 Expressibility Principles

1. A mechanism is needed through which an ATC can be explicitly triggered in
a target schedulable. This triggering may be direct (from a source thread or
schedulable) or indirect (through an asynchronously interrupted exception).

2. It must be possible to trigger an ATC based on any asynchronous event
including an external happening or an explicit event firing from another thread
or schedulable. In particular, it must be possible to base an ATC on a timer
going off.

3. Through ATC it must be possible to abort a realtime thread but in a manner
that does not carry the dangers of the Thread class’s stop() and destroy()
methods.

2.3.3.3 Semantic Principles

1. If ATC is modeled by exception handling, there must be some way to ensure
that an asynchronous exception is only caught by the intended handler and not,
for example, by an all-purpose handler that happens to be on the propagation
path.

2. Nested ATCs must work properly. For example, consider two, nested ATC-
based timers and assume that the outer timer has a shorter time-out than the
nested, inner timer. If the outer timer times out while control is in the nested
code of the inner timer, then the nested code must be aborted (as soon as
it is outside an ATC-deferred section), and control must then transfer to the
appropriate catch clause for the outer timer. An implementation that either
handles the outer time-out in the nested code, or that waits for the longer
(nested) timer, is incorrect.

14 RTSJ 2.0 (Draft 48)

Asynchrony 2.4

2.3.3.4 Pragmatic Principles

1. There should be straightforward idioms for common cases such as timer handlers
and realtime thread termination.

2. If code with a time-out completes before the timer’s expiration, the timer needs
to be automatically stopped and its resources returned to the system.

2.3.4 Asynchronous Realtime Thread Termination

A special case of stopping a particular computation is stopping a thread. Earlier
versions of the Java language supplied mechanisms for achieving these effects: in
particular the methods stop() and destroy() in class Thread. However, since stop()
could leave shared objects in an inconsistent state, stop() has been deprecated. The
use of destroy() can lead to deadlock (if a thread is destroyed while it is holding a
lock) and although it was not deprecated until version 1.5 of the Java specification, its
usage has long been discouraged. A goal of the RTSJ was to meet the requirements
of asynchronous thread termination without introducing the dangers of the stop() or
destroy() methods.

The RTSJ accommodates safe asynchronous realtime thread termination through
a combination of the asynchronous event handling and the asynchronous transfer of
control mechanisms. To create such a set of realtime threads consider the following
steps:

1. make all of the application methods of the realtime thread asynchronously
interruptible;

2. create an oracle which monitors the external world by setting up an asyn-
chronous event with a number of asynchronous event handlers, which is fired
when an appropriate mode change;

3. have the handlers call interrupt() on each of the realtime threads affected by
the change; then

4. after the handlers call interrupt(), have them create a new set of realtime
threads appropriate to the current state of the external world.

The effect of the event is to cause each interruptible method to abort abnormally by
transferring control to the appropriate catch clause. Ultimately the run() method of
the realtime thread will complete normally.

This idiom provides a quick (if coded to be so) but orderly clean up and termina-
tion of the realtime thread. Note that the oracle can comprise as many or as few
asynchronous event handlers as appropriate.

RTSJ 2.0 (Draft 48) 15

2 Overview

2.4 Clocks, Time, and Timers
Realtime systems require a high resolution notion of time. Both very small units
and very long periods of time must be uniformly representable, a range that is not
even representable with a long value. Furthermore, a time can represent an absolute
value, usually represented as some absolute fixed point in time plus an offset, or it
can represent an interval of time. The time classes defined in Chapter 9 support a
longs worth of seconds and another integer for nanoseconds.

2.5 Memory Management
The Java language is designed around automatic memory management, in particular
garbage collection. Unfortunately, though garbage collection is a functional safety and
security feature, conventional garbage collectors interrupt the normal flow of control
in a program. Therefore, garbage-collected memory heaps had been considered an
obstacle to realtime programming due to the potential for unpredictable latencies
introduced by the garbage collector. Though conventional collectors still have these
drawbacks, there are now realtime collectors that can be used for hard realtime
application. Still, the RTSJ provides an alternative to garbage collection for systems
which require it, either because they do not have a garbage collector or deterministic
garbage collector, or require heap partitioning for some other reason. Extensions
to the memory model, which support memory management in a manner that does
not interfere with the ability of realtime code to provide deterministic behavior,
are provided to support these alternatives. This goal is accomplished by providing
memory areas for the allocation of objects outside of the garbage-collected heap for
both short-lived and long-lived objects. In order to provide additional separation
between the garbage collector and schedulables which do not require its services, a
schedulable can be marked to indicate that it never accesses the heap.

2.5.1 Memory Areas

The RTSJ introduces the concept of a memory area. A memory area represents an
area of memory that may be used for allocating objects. Some memory areas exist
outside of the heap and place restrictions on what the system and garbage collector
may do with objects allocated within. Objects in some memory areas are never
garbage collected; however, the garbage collector must be capable of scanning these
memory areas for references to any object within the heap to preserve the integrity
of the heap.

There are four basic types of memory areas:

16 RTSJ 2.0 (Draft 48)

Memory Management 2.5

1. Heap memory represents an area of memory that is the heap. The RTSJ does
not change the determinant of lifetime of objects on the heap. The lifetime is
still determined by visibility.

2. Immortal memory represents an area of memory containing objects that may
be referenced without exception or garbage collection delay by any schedul-
able, specifically including realtime threads and asynchronous event handlers
configured to not have access to the heap.

3. Scoped memory provides a mechanism for managing objects that have a lifetime
defined by their scope. It is akin to, but more general than, allocating objects
on the thread stack.

4. Physical memory allows objects to be created within specific physical memory
regions that have particular important characteristics, such as memory that
has substantially faster access.

2.5.2 Heap Memory
Heap memory is the memory area used by Java by default. It is garbage collected
and the access time to objects in this area are not guaranteed unless the implemen-
tation supports realtime garbage collection. The RTSJ, as with conventional Java,
supports only one Heap in a system. Multiple heaps are only practical in one of two
configurations: the heaps are completely independent of one another or there are
subsidiary heaps from which a program may not store references in the main heap.
In other words, the subsidiary heaps can reference the main heap but not vice versa.
Currently, the RTSJ does not address these cases.

2.5.3 Immortal Memory
ImmortalMemory is a memory resource shared among all schedulable objects and
threads in an application. Objects allocated in ImmortalMemory are always available
to extraheap threads and asynchronous event handlers without the possibility of a
delay for garbage collection.

2.5.4 Scoped Memory
The RTSJ introduces the concept of scoped memory. A memory scope is used to give
bounds to the lifetime of any objects allocated within it. When a scope is entered,
every use of new causes the memory to be allocated from the active memory scope.
A scope may be entered explicitly, or it can be attached to a schedulable which will
effectively enter the scope before it executes the object’s run() method.

The contents of a scoped memory are discarded when no object in the scope can
be accessed. This is done by a technique similar to reference counting the scope.

RTSJ 2.0 (Draft 48) 17

2 Overview

A conforming implementation might maintain a count of the number of external
references to each memory area. The reference count for a ScopedMemory area would
be increased by entering a new scope through the enter() method of MemoryArea,
by the creation of a schedulable using the particular ScopedMemory area, or by the
opening of an inner scope. The reference count for a ScopedMemory area would be
decreased when returning from the enter() method, when the schedulable using the
ScopedMemory terminates, or when an inner scope returns from its enter() method.
When the count drops to zero, the finalize method for each object in the memory
would be executed to completion. Reuse of the scope is blocked until finalization is
complete.

Scopes may be nested. When a nested scope is entered, all subsequent allocations
are taken from the memory associated with the new scope. When the nested scope
is exited, the previous scope is restored and subsequent allocations are again taken
from that scope.

Because of the lifetimes of scoped objects, it is necessary to limit the references
to scoped objects, by means of a restricted set of assignment rules. A reference to a
scoped object cannot be assigned to a variable from an outer scope, or to a field of an
object in either the heap or the immortal area. A reference to a scoped object may
only be assigned into the same scope or into an inner scope. The virtual machine
must detect illegal assignment attempts and must throw an appropriate exception
when they occur.

For cases where the usage of memory does not follow a stack discipline, in
particular code that uses the producer-consumer pattern, a special variant of scoped
memory is provided. This variant PinnableMemory has the same semantics as
LTMemory except that a task can “pin” the memory, thereby keeping it open, even
when no task is in the area. One task can fill the memory, put a reference in its
portal, and then pass it on to another task to consume the data therein. Thus one
does not have to have a dummy task to hold a pinned area open while it is passed
from producer to consumer.

The flexibility provided in choice of scoped memory types enables the application
to use a memory area that has characteristics that are appropriate to a particular
syntactically defined region of the code.

2.5.5 Physical Memory Areas
In many cases, systems needing the predictable execution of the RTSJ will also need
to access various kinds of memory at particular addresses for performance or other
reasons. Consider a system in which very fast static RAM was programmatically
available. A design that could optimize performance might wish to place various
frequently used Java objects in the fast static RAM. The PhysicalMemoryRegion
and PhysicalMemoryFactory classes provide the programmer this flexibility. The

18 RTSJ 2.0 (Draft 48)

Device Access and Raw Memory 2.7

programmer would construct a physical memory object on the memory addresses
occupied by the fast RAM.

2.5.6 Budgeted Allocation
The RTSJ also provides limited support for providing memory allocation budgets
for schedulables using memory areas. Maximum memory area consumption and
maximum allocation rates for individual schedulable objects may be specified when
they are created.

2.6 Device Access and Raw Memory
The RTSJ defines classes for programmers wishing to directly access physical memory
from code written in the Java language. The RawMemory<Size> types, where
<Size> is one of Byte, Short, Long, Float, or Double, define methods that enable
the programmer to construct an object that represents a vector of consecutive
positions in memory where the Size represents a primitive numerical data type, i.e.,
byte, short, int, long, float, and double repectively. Access to the physical memory
is then accomplished through get<Size>() and set<Size>() methods of that object.
No semantics other than the set<Size>() and get<Size>() methods are implied.
On the other hand, the PhysicalMemoryRegion and PhysicalMemoryFactory classes
enable programmers to construct an object that represents a range of physical
memory addresses. When this object is used as a MemoryArea other objects can be
constructed in the physical memory using the new keyword as appropriate. Factories
can be used to create the desired type of both physical and raw memory.

2.6.1 Raw Memory Access
An instance of RawMemory models a range of physical memory locations as a fixed
sequence of elements of a given size. The elements correspond to Java primitive
types. For objects that access more than a single physical address, elements can be
accessed through offsets from the base, where the offset is measured in multiples of
the element size, not necessarily the byte offset in memory.

The RawMemory interface enables a realtime program to implement device drivers,
memory-mapped registers, I/O space mapped registers, flash memory, battery-backed
RAM, and similar low-level hardware.

A raw memory area cannot contain references to Java objects. Such a capability
would be unsafe (since it could be used to defeat Java’s type checking) and error
prone (since it is sensitive to the specific representational choices made by the Java
compiler).

RTSJ 2.0 (Draft 48) 19

2 Overview

2.7 System Options
POSIX defines some convenient interfaces for interacting with the system. These
interactions include catching keyboard interrupts, user-to-process signaling, and
interprocess signaling. Many realtime operating systems support this POSIX signal
interface. For this reason, the RTSJ provides a POSIX signal interface. Though many
of the features POSIX signals provide are also available on most other operating
systems, the specification does not require the POSIX signal interface to be emulated
on these other platforms. Thus they are optional in the sense that they are only
required on systems that directly support POSIX signals.

2.8 Exceptions
Aside from several new exceptions, the RTSJ provides a new interface for using
exceptions without creating ephemeral objects and some new treatment of exceptions
surrounding asynchronous transfer of control.

Using exceptions is resource intensive, since a new exception is allocated for each
throw. This is particularly a problem for scoped memory, since scopes may need to
be sized much larger than otherwise necessary to hold exceptions and their stack
traces. Additionally, the information they contain cannot be propagated beyond the
scope in which they are allocated. To better support scoped, immortal, and physical
memory, a new class of throwable has been included: StaticThrowable. Exceptions
and Errors which implement this interface are not thrown in the usual manner, but
with a style that does not require memory to be allocated at all.

Asynchronous transfer of control can cause the exception that triggered it to
be propagated even when it is caught but the underlying interrupt is not cleared.
The system rethrows the exception once the catch is finished. This is necessary
since the exception hierarchy is poorly designed. There is no common base class for
checked exceptions, so application code often contains a catch for Exception when
only checked exceptions need to be caught. Even the JVM specification wording
is awkward on this point, where a checked exception is an exception that is not a
subclass of RuntimeException and an error is a throwable that is not a subclass of
Exception.

2.9 Summary
The RTSJ refines the semantics of threads, scheduling, synchronization, memory
management, and exceptions and adds features to support realtime threads, realtime
scheduling, configuring synchronization, asynchrony, representing time, clocks and
timers, additional methods for memory management, device access and raw memory,

20 RTSJ 2.0 (Draft 48)

Summary 2.9

system options. These features and semantic refinements to the Java language and
virtual machine have been outlined above, but the description does not constitute a
definition for them. In other words, it is not normative. The normative chapters
follow.

RTSJ 2.0 (Draft 48) 21

2 Overview

22 RTSJ 2.0 (Draft 48)

Chapter 3

General Requirements

The RTSJ is both an Application Programmer Interface (API) and a refinement of
the semantics of the Java virtual machine. Both aspects are necessary to produce
a programming environment conducive to programming realtime systems. Most
realtime systems require features that go beyond simply being able to react within a
defined time bounds, they must also respond to something and take action thereon.
Therefore, the ability to interact with the external environment is a necessary part
of a realtime specification.

There are many applications that can benefit from the API and semantic re-
finements of the Java runtime environment that have been described above. Not
every application requires all parts, so some flexibility of implementation is necessary.
Therefore the RTSJ is divided into a core package and three optional packages.
Furthermore, it also provides for different usage modes to support both development
and deployment.

Finally, the vast majority of realtime systems are also embedded systems. The
constraints of such system must also be considered. The specification begins with
the overall requirements of these concerns.

3.1 Definitions
Code — Program text written in the Java programming language.
Java Language — A programming language defined through the Java Community

Process.
Heap — An area of memory for allocating data structures (objects) defined by the

Java Langauge.
Extraheap Memory — An area of memory for allocating data structures (objects)

other than the heap defined by the Java Langauge.
Thread — An instance of the java.lang.Thread class.

23

3 General Requirements

Realtime Thread — An instance of the javax.realtime.RealtimeThread class.
Java Thread — An instance of java.lang.Thread class, but does not extend the

javax.realtime.RealtimeThread class.
Heapless Realtime Thread —An instance of the javax.realtime.RealtimeThread

class that must not access the heap.
Event Handler — An instance of the javax.realtime.AbstractAsyncEventHandler

class.
Schedulable — Any object that is of type Schedulable, and is recognized as a

dispatchable entity by the required schedulers. The required schedulers’ set of
schedulables comprises instances of RealtimeThread and AbstractAsyncEven-
tHandler. Other schedulers may support a different set of schedulables, but
this specification only defines the behavior of the required schedulers so the
term schedulable should be understood as “schedulable by the base scheduler.”

Task — Any thread or schedulable, including Java threads.
Garbage Collection — A processes that reclaims memory on the heap that is no

longer reachable by the application program. It may be accomplished through
a dedicated set of threads or be distributed throughout the application.

3.2 Semantics
This specification is a contract between the specification implementer and the user
who writes a program to run on an implementation. To be able to support both
implementation and use, many chapters provide additional rationale to help both
the implementer and the user understand the intention behind the normative text.
The remainder of this specification, including this chapter, is normative, except for
the introductory text in each chapter and the sections named Rationale.

3.2.1 Base Requirements
The base requirements of this specification are as follows.

1. Except as specifically required by this specification, any implementation shall
fully conform to a Java platform configuration.

2. Any implementation of this specification shall implement all classes and methods
in the base module of this specification.

3. Except as noted in this chapter, all classes and methods in an implemented
module shall be implemented.

4. The javax.realtime package and it subpackages shall contain no public or
protected classes or methods not included in this specification.

5. A realtime JVM implementation shall not be implemented in a way that permits
unbounded priority inversion in any scheduling interaction it implements.

24 RTSJ 2.0 (Draft 48)

Semantics 3.2

6. All methods defined under javax.realtime can safely be used concurrently by
multiple threads unless otherwise documented.

7. Static final values, as found in AperiodicParameters, SporadicParameters, Real-
timeSystem, and PriorityScheduler, shall be implemented such that their values
cannot be resolved by a conformant Java compiler (Java source to byte code).

Many aspects of this specification set a minimum requirement, but permit the
implementation latitude in its implementation. For instance, the required priority
scheduler requires at least 28 consecutively numbered realtime priorities. It does
not, however, specify the numeric values of the maximum and minimum realtime
priorities. Implementations are encouraged to offer as many realtime priority levels
immediately above the conventional Java priorities as they can support.

Except where otherwise specified, when this specification requires object creation,
the object is created in the current allocation context.

3.2.2 Modules
The original RTSJ specification was conceived, with the exception of some optional
features, as a monolith specification. This has inhibited the adoption of the RTSJ
beyond the hard realtime community, because some of the features were considered
to have an overly negative impact on overall JVM performance. Version 2.0 addresses
this by breaking the specification into modules.

Modules provide a means of grouping like functionality together in a way that
promotes maximal adoption for various implementation classes. A conventional
JVM may simply implement the Base Module API, without providing any realtime
guarantees at all, thereby providing programmers with the benefits of features such
as asynchronous event programming as an alternative to conventional threading. A
hard realtime implementation could implement all modules to provide the maximal
flexibility and functionality to the realtime programmer. Both would benefit from
easier migration of code to realtime systems.

Every RTSJ implementation shall provide the Base Module functionality, but
all other modules are optional. The optional modules are the Device Module, the
Alternative Memory Areas Module and the POSIX Module. In addition, there are a
couple of optional features as well. This give the implementation some choice over
which modules and features to include and which not.

3.2.2.1 Base Module

The Base Module adds the concepts of processor affinity, threads with realtime
scheduling, and asynchronous event handling. This includes the notion of executing
code at a given time interval, providing a much more stable response than using
sleep in a loop. These features should have no impact on the overall performance

RTSJ 2.0 (Draft 48) 25

3 General Requirements

of a system that implements them, but enrich the programming modules available
to the programmer. The classes and interfaces required in this module are all in
package javax.realtime and are listed below.
• AbsoluteTime (Section 9.3.1.1)
• ActiveEvent (Section 8.3.1.1)
• ActiveEventDispatcher (Section 8.3.3.1)
• Affinity (Section 6.3.3.1)
• AperiodicParameters (Section 6.3.3.2)
• AsyncBaseEvent (Section 8.3.3.2)
• AsyncBaseEventHandler (Section 8.3.3.3)
• AsyncEvent (Section 8.3.3.4)
• AsyncEventHandler (Section 8.3.3.5)
• AsyncLongEvent (Section 8.3.3.6)
• AsyncLongEventHandler (Section 8.3.3.7)
• AsyncObjectEvent (Section 8.3.3.8)
• AsyncTimable (Section 10.3.1.1)
• AsyncObjectEventHandler (Section 8.3.3.9)
• BoundAsyncBaseEventHandler (Section 8.3.1.2)
• BoundAsyncEventHandler (Section 8.3.3.10)
• BoundAsyncLongEventHandler (Section 8.3.3.11)
• BoundAsyncObjectEventHandler (Section 8.3.3.12)
• Clock (Section 10.3.2.1)
• Chronograph (Section 10.3.1.2)
• ConfigurationParameters (Section 5.3.2.1)
• FirstInFirstOutScheduler (Section 6.3.3.4)
• GarbageCollector (Section 14.2.2.3)
• HeapMemory (Section 11.3.2.1)
• HighResolutionTime (Section 9.3.1.2)
• ImmortalMemory (Section 11.3.2.2)
• ImportanceParameters (Section 6.3.3.5)
• Interruptible (Section 8.3.1.3)
• MemoryArea (Section 11.3.2.3)
• MemoryAreaVisitor (Section 11.3.1.1)
• MemoryParameters (Section 11.3.2.4)1

• MonitorControl (Section 7.3.1.1)
• OneShotTimer (Section 10.3.2.2)
• PeriodicParameters (Section 6.3.3.6)
• PeriodicTimer (Section 10.3.2.3)
• PhasingPolicy (Section 5.3.1.1)

1The mayUseHeap flag is present, but can only be set if the Memory Module is supported.

26 RTSJ 2.0 (Draft 48)

Semantics 3.2

• PriorityCeilingEmulation (Section 7.3.1.2)
• PriorityInheritance (Section 7.3.1.3)
• PriorityParameters (Section 6.3.3.7)
• PriorityScheduler (Section 6.3.3.8)
• ProcessingGroup (Section 6.3.3.9)
• QueueOverflowPolicy (Section 6.3.2.2)
• RealtimeExecutionContext (Section 6.3.1.2)
• RealtimeSecurity (Section 14.2.2.4)
• RealtimeSystem (Section 14.2.2.5)
• RealtimeThread (Section 5.3.2.2)
• RelativeTime (Section 9.3.1.3)
• Releasable (Section 8.3.1.4)
• ReleaseParameters (Section 6.3.3.10)
• RoundRobinScheduler (Section 6.3.3.11)
• RTSJModule (Section 14.2.1.1)
• Schedulable (Section 6.3.1.3)
• Scheduler (Section 6.3.3.12)
• SchedulingParameters (Section 6.3.3.14)
• SizeEstimator (Section 11.3.2.5)
• SporadicParameters (Section 6.3.3.15)
• Timable (Section 10.3.1.3)
• Timed (Section 8.3.2.1)
• TimeDispatcher (Section 10.3.2.4)
• Timer (Section 10.3.2.6)
• WaitFreeReadQueue (Section 7.3.1.4)
• WaitFreeWriteQueue (Section 7.3.1.5)

All throwables defined in the RTSJ are also in the javax.realtime package:

• AlignmentError (Section 15.2.3.1)
• ArrivalTimeQueueOverflowException (Section 15.2.2.1)
• CeilingViolationException (Section 15.2.2.3)
• DeregistrationException (Section 15.2.2.5)
• IllegalAssignmentError (Section 15.2.3.2)
• InaccessibleAreaException (Section 15.2.2.8)
• LateStartException (Section 15.2.2.9)
• MemoryAccessError (Section 15.2.3.3)
• MemoryInUseException (Section 15.2.2.11)
• MemoryScopeException (Section 15.2.2.12)
• MemoryTypeConflictException (Section 15.2.2.13)
• MITViolationException (Section 15.2.2.10)
• OffsetOutOfBoundsException (Section 15.2.2.14)

RTSJ 2.0 (Draft 48) 27

3 General Requirements

• POSIXException (Section 15.2.2.15)
• POSIXInvalidSignalException (Section 15.2.2.16)
• POSIXInvalidTargetException (Section 15.2.2.17)
• POSIXSignalPermissionException (Section 15.2.2.18)
• ProcessorAffinityException (Section 15.2.2.19)
• RangeOutOfBoundsException (Section 15.2.2.20)
• RegistrationException (Section 15.2.2.21)
• ResourceLimitError (Section 15.2.3.4)
• ScopedCycleException (Section 15.2.2.22)
• StaticCheckedException (Section 15.2.2.24)
• StaticError (Section 15.2.3.5)
• StaticOutOfMemoryError (Section 15.2.3.6)
• StaticRuntimeException (Section 15.2.2.25)
• StaticThrowable (Section 15.2.1.1)
• StaticThrowableStorage (Section 15.2.3.7)
• SizeOutOfBoundsException (Section 15.2.2.23)
• ThrowBoundaryError (Section 15.2.3.8)
• UnsupportedPhysicalMemoryException (Section 15.2.2.27)
• UnsupportedRawMemoryRegionException (Section 15.2.2.28)

3.2.2.2 Device Module

The Device Module provides a low level interface for interacting with the real world.
Though realtime control systems need this kind of interaction, other systems can
benefit from it as well. Data collection, that is not time critical is a good example.
For instance, monitoring the temperature or humidity in a room could be done easily
with off-the-self hardware using this module. The classes required in this module are
all in the package javax.realtime.device and are listed below.
• Happening (Section 12.3.2.3)
• HappeningDispatcher (Section 12.3.2.4)
• InterruptServiceRoutine (Section 12.3.2.5)
• DMABufferFactory (Section 12.3.2.1)
• RawMemory (Section 12.3.1.17)
• RawMemoryFactory (Section 12.3.2.6)
• RawMemoryRegion (Section 12.3.2.7)
• RawMemoryRegionFactory (Section 12.3.1.18)
• RawByte (Section 12.3.1.2)
• RawByteReader (Section 12.3.1.3)
• RawByteWriter (Section 12.3.1.4)
• RawDouble (Section 12.3.1.5)
• RawDoubleReader (Section 12.3.1.6)

28 RTSJ 2.0 (Draft 48)

Semantics 3.2

• RawDoubleWriter (Section 12.3.1.7)
• RawFloat (Section 12.3.1.8)
• RawFloatReader (Section 12.3.1.9)
• RawFloatWriter (Section 12.3.1.10)
• RawInt (Section 12.3.1.11)
• RawIntReader (Section 12.3.1.12)
• RawIntWriter (Section 12.3.1.13)
• RawLong (Section 12.3.1.14)
• RawLongReader (Section 12.3.1.15)
• RawLongWriter (Section 12.3.1.16)
• RawShort (Section 12.3.1.19)
• RawShortReader (Section 12.3.1.20)
• RawShortWriter (Section 12.3.1.21)

3.2.2.3 Alternative Memory Areas Module

The Alternative Memory Areas Module provides an alternative to a single heap with
garbage collection model for memory management. Most of the facilities are centered
around providing an alternative to garbage collection, but facilities for providing
what memory to use for Java objects is also addressed. The classes required in this
module are all in package javax.realtime.memory and are listed below.
• LTMemory (Section 11.4.3.1)
• PhysicalMemoryCharacteristic (Section 11.4.1.1)
• PhysicalMemoryFactory (Section 11.4.3.2)
• PhysicalMemoryRegion (Section 11.4.3.3)
• PhysicalMemorySelector (Section 11.4.3.4)
• PinnableMemory (Section 11.4.3.5)
• ScopedMemory (Section 11.4.3.6)
• StackedMemory (Section 11.4.3.7)

3.2.3 POSIX module
The POSIX module provides access to functionality particular to POSIX systems.
In particular, it addresses POSIX signals and POSIX realtime signals. This module
is optional, but it an implementation of this standard on a POSIX platform should
provide it. Implementations on platforms that are not POSIX compliant may provide
it. The classes in this module are in the package javax.realtime.posix and are listed
below.
• RealtimeSignal (Section 13.3.1.1)
• RealtimeSignalDispatcher (Section 13.3.1.2)
• Signal (Section 13.3.1.3)

RTSJ 2.0 (Draft 48) 29

3 General Requirements

• SignalDispatcher (Section 13.3.1.4)

3.2.4 Optional Features
Even with modules, it is difficult to eliminate all optional features. These features
are either not easy to implement on all platforms or have the potential to cause
a significant performance overhead. Therefore, an application cannot depend on
them to be present in every implementation. However, if an optional facility is
implemented, the application may rely on it to behave as specified here. Those
extensions are illustrated in Table 3.1.

Table 3.1: RTSJ Options
Hard cost enforcement Provides an automatic means of controlling the

processor usage of a task or group of tasks.
Processing Group deadline less
than period

Enables the application to specify a processing
group deadline less than the processing group
period

Allocation-rate enforcement on
heap allocation

Enables the application to limit the rate at which
a schedulable creates objects in the heap.

Interrupt Service Routine Provides first level interrupt processing in Java.

The ProcessingGroup class only intervenes in scheduling on systems that support
the hard cost enforcement option. The precision of intervention is limited by the
precision of the clock being used to measure time times the number of CPUs involved
in the enforcement. When cost enforcement is supported, the precision of enforcement
is the drive precision of the clock being used. In any event, cost and deadline overrun
handlers are fired with the resolution specified for hard cost enforcement.

In implementations where processing group deadline less than period is not
supported, values passed to the constructor for ProcessingGroup and its setDeadline
method are constrained to be equal to the period. If the option is supported,
processing group deadlines less than the period shall be supported and function as
specified.

In implementations where heap allocation rate enforcement is supported, it shall
be implemented as specified. If heap allocation rate enforcement is not supported,
the allocation rate attribute of MemoryParameters shall be checked for validity but
otherwise ignored by the implementation.

First level interrupt handling can only be supported in certain contexts, such
as in kernel space and in a device driver context in user space on systems that
support this feature. Normally user space programs cannot handle interrupts di-
rectly. The class should be present in every system that implements the device

30 RTSJ 2.0 (Draft 48)

Semantics 3.2

module, but in implementations that do not support first level interrupt handling,
the InterruptServiceRoutine.register should always throw an UnsupportedOpera-
tionException.

Extensions to this specification are allowed, but shall not require changes to the
public interfaces defined in the javax.realtime package tree in particular and the java
and javax package trees in general.

3.2.5 Deprecated Classes

Classes and methods that have been deprecated as of this specification are not part of
any module, but may be implemented by a full RTSJ implementation. The following
classes are deprecated:
• DuplicateFilterException (Section A.2.2.3)
• ImmortalPhysicalMemory (Section A.2.3.10)
• LTMemory (Section A.2.3.11)
• LTPhysicalMemory (Section A.2.3.12)
• NoHeapRealtimeThread (Section A.2.3.15)
• PhysicalMemoryManager (Section A.2.3.20)
• PhysicalMemoryTypeFilter (Section A.2.1.1)
• ProcessingGroupParameters (Section A.2.3.23)
• POSIXSignalHandler (Section A.2.3.17)
• RationalTime (Section A.2.3.24)
• RawMemoryAccess (Section A.2.3.25)
• RawMemoryFloatAccess (Section A.2.3.26)
• ScopedMemory (Section A.2.3.32)
• UnknownHappeningException (Section A.2.2.6)
• VTMemory (Section A.2.3.36)
• VTPhysicalMemory (Section A.2.3.37)
• WaitFreeDequeue (Section A.2.3.38)

They are documented fully in Chapter A.

3.2.6 Implementation types Allowed

As described in Section 3.2.2, the RTSJ now has modules. Every implementation,
except one supporting Safety Critical Java, must implement the Core module. Each
module provided by an implementation must be provided in full. None of the classes
of an unimplemented module should be present. Only an implementation of this
specification for Safety Critical Java, may subset classes and packages herein, but
must implement the methods and classes defined in that specification.

RTSJ 2.0 (Draft 48) 31

3 General Requirements

3.2.6.1 Realtime Deployment Implementation

A realtime deployment implementation must support all semantics described herein
necessary for deterministic programming. In addition to implementing the core
module, a realtime deployment implementation must have a realtime garbage collector
or implement the alternative memory areas module. All other modules are optional.

The minimum scheduling semantics that must be supported in all implementations
of the RTSJ are fixed-priority preemptive scheduling and at least 28 unique priority
levels. Fixed priority means that the system does not change the priority of any
Schedulable except, temporarily, for priority inversion avoidance. Priority change is
under control of the application.

What the RTSJ precludes by this statement is scheduling algorithms for realtime
priorities which change thread priorities according to policies for optimizing through-
put. An implementation may not increase the priority of a thread that has been
receiving few processor cycles because of higher priority threads (aging) or other
so-called fair scheduling algorithms. Fair scheduling operations are also prohibited.
These types of algorithms are reserved for conventional Java thread priorities. This
does not prohibit an application from implementing other realtime schedulers, such
as earliest deadline first, which use underlying OS priorities to support an application
meeting its deadlines.

The 28 unique priority levels are required to be unique to preclude implementations
from using fewer priority levels of underlying systems to implement the required 28
by simplistic algorithms (such as lumping four RTSJ priorities into seven buckets for
an underlying system that only supports seven priority levels). It is sufficient for
systems with fewer than 28 priority levels to use more sophisticated algorithms to
implement the required 28 unique levels as long as Schedulable behave as though
there were at least 28 unique levels. (e.g. if there were 28 RealtimeThreads (t1, ..., t28)
with priorities (p1, ..., p28), respectively, where the value of p1 was the highest priority
and the value of p2 the next highest priority, etc., then for all executions of threads
t1 through t28 thread t1 would always execute in preference to threads t2, ..., t28 and
thread t2 would always execute in preference to threads t3, ..., t28, etc.)

The minimum synchronization semantics that must be supported in all deployment
implementations of the RTSJ are detailed in the section on synchronization below
and repeated here. All deployment implementations of the RTSJ must provide an
implementation of the synchronized primitive with default behavior that ensures
that there is no unbounded priority inversion. Furthermore, this must apply to code
if it is run within the implementation as well as to schedulables. Both the priority
inheritance and the priority ceiling emulation protocols must be implemented, but
priority inheritance is the default.

All instances of Schedulable waiting to acquire a resource must be queued in
priority order. This applies to the processor as well as to synchronized blocks. When

32 RTSJ 2.0 (Draft 48)

Semantics 3.2

schedulables with the same exact priority are possible under the active scheduling
policy, schedulables with the same priority are queued in FIFO order. Note that
these requirements apply only to the required scheduling policy and hence use the
specific term "priority". In particular,

1. schedulables waiting to enter synchronized blocks are granted access to the
synchronized block in priority order;

2. a blocked schedulable that becomes ready to run is given access to the processor
in priority order;

3. a schedulable whose execution eligibility is explicitly set by itself or another
schedulable is given access to the processor in priority order;

4. a schedulable that performs a yield() will be given access to the processor after
all other schedulables waiting at the same priority;

5. however, schedulables that are preempted in favor of a schedulable with higher
priority may be given access to the processor at any time as determined
by a particular implementation. The implementation is required to provide
documentation stating exactly the algorithm used for granting such access.

Other realtime schedulers must provide and document similar algorithms to expe-
dited schedulables with higher execution eligibility over those with lower execution
eligibility.

The RTSJ does not require any particular garbage collection algorithm; however,
every deployment implementation must either implement the alternate memory
area module or have a realtime garbage collection. In the later case, the realtime
limitations must be documented. All implementations of the RTSJ must support
the class GarbageCollector and implement all of its methods.

Notwithstanding the above, a program that uses the RTSJ and is deployed as an
executable, so that it does not provide general access to the virtual machine, but
solely runs that program code, need only include the RTSJ methods and classes
needed by the application.

3.2.6.2 Simulation Implementation

An implementation that chooses not to provide realtime guarantees, is termed a
simulation implementation. Such an implementation does not need to provide the
realtime characteristic described above, but does need to at least provide all the
APIs of the core module. A simulation implementation can be a production system,
but not for realtime applications. This enables a conventional JVM to make the base
APIs available to a wider audience without changing its performance characteristics.

The following semantics are optional for an RTSJ implementation designed and
licensed exclusively as a development tool.

1. The priority scheduler need not support fixed-priority preemptive scheduling or
the priority inversion avoidance algorithms. This does not excuse an implemen-

RTSJ 2.0 (Draft 48) 33

3 General Requirements

tation from fully supporting the relevant APIs. It only reduces the required
behavior of the underlying scheduler to the level of the scheduler in the Java
specification extended to at least 28 priorities.

2. No semantics constraining timing beyond the requirements of the Java spec-
ifications need be supported. Specifically, garbage collection may delay any
thread without bound and any delay in delivering asynchronously interrup-
ted exceptions is permissible including never delivering the exception. Note,
however, that if any AIE other than the generic AIE is delivered, it shall
meet the AIE semantics, and all heap-memory-related semantics other than
preemption remain fully in effect. Further, relaxed timing does not imply
relaxed sequencing. For instance, semantics for scoped memory shall be fully
implemented.

3. The RTSJ semantics that alter standard Java method behavior, such as the
modified semantics for Thread.setPriority and Thread.interrupt, are not re-
quired for a development tool, but such deviations from the RTSJ shall be
documented, and the implementation shall be able to generate a runtime warn-
ing each time one of these methods deviates from standard RTSJ behavior.

These relaxed requirements set a floor for RTSJ development system tool imple-
mentations. A development tool may choose to implement semantics that are not
required.

3.3 Required Documentation
In order to properly engineer a realtime system, an understanding of the cost
associated with any arbitrary code segment is required. This is especially important
for operations that are performed by the runtime system, largely hidden from the
programmer. An example of this is the maximum expected latency before the garbage
collector can be interrupted.

The RTSJ does not require specific performance or latency numbers to be matched.
Rather, to be conformant to this specification, an implementation must provide
documentation regarding the expected behavior of particular mechanisms. The
mechanisms requiring such documentation, and the specific data to be provided, will
be detailed in the class and method definitions.

Each implementation of the RTSJ is required to provide documentation for several
behaviors.

1. If schedulers other than the required first-in-first-out (FIFO) and round robin
(RR) schedulers are available to applications, the behavior of these schedulers
and their interaction with each other and the required schedulers as detailed
in Chapter 6, Scheduling, shall be documented.
(a) The documentation must define how its order of execution eligibility

34 RTSJ 2.0 (Draft 48)

Required Documentation 3.3

relates to that of the priority schedulers, where the order of execution
eligibility of a priority scheduler is the priority order.

(b) The list of classes whose instances constitute schedulables for the scheduler,
unless that list is the same as the list of schedulables for the required
schedulers, shall be included.

(c) If there are restrictions on use of the scheduler from a nonheap context,
such restrictions shall be documented as well.

2. A scheduler that cannot place a schedulable at the front of the queue for its
active priority when it is preempted by a higher-priority schedulable must
document such a deviation from the specification.

3. An implementation is required to document the granularity at which the current
CPU consumption is updated for cost monitoring and cost enforcement, when
the later is implemented.

4. The implementation shall fully document the behavior of any subclasses of
GarbageCollector.

5. An implementation that provides any MonitorControl subclasses not detailed
in this specification shall document their effects, particularly with respect to
priority inversion control and which (if any) schedulers fail to support the new
policy.

6. If on losing “boosted” priority due to a priority inversion avoidance algorithm,
the schedulable is not placed at the front of its new queue, the implementation
shall document the queuing behavior.

7. For any available scheduler other than the required schedulers, an implementa-
tion shall document how, if at all, the semantics of synchronization differ from
the rules defined for the default PriorityInheritance monitor control policy.
(a) It shall supply documentation for the behavior of the new scheduler with

priority inheritance (and, if it is supported, priority ceiling emulation
protocol) equivalent to the semantics for the base priority scheduler found
in the Synchronization chapter.

(b) If there are restrictions on use of the scheduler from a extraheap context,
the documentation shall detail the effect of these restrictions for each
RTSJ API.

8. The worst-case response interval between firing an AsyncEvent because of a
bound happening to releasing an associated AsyncEventHandler (assuming no
higher-priority schedulables are runnable) shall be documented for at least one
reference architecture.

9. The interval between firing an AsynchronouslyInterruptedException at an ATC-
enabled thread and first delivery of that exception (assuming no higher-priority
schedulables are runnable) shall be documented for at least one reference
architecture.

RTSJ 2.0 (Draft 48) 35

3 General Requirements

10. If cost enforcement is supported and the implementation assigns the cost of
running finalizers for objects in scoped memory to any schedulable other than
the one that caused the scope’s reference count to drop to zero by leaving the
scope, the rules for assigning the cost shall be documented.

11. If hard cost enforcement is supported and enforcement (blocked-by-cost-overrun)
can be delayed beyond the enforcement time granularity, the maximum such
delay shall be documented.

12. If the implementation of RealtimeSecurity is more restrictive than the required
implementation, or has run-time configuration options, those features shall be
documented.

13. For each supported clock, the documentation shall specify whether the res-
olution is settable, and if it is settable the documentation shall indicate the
supported values.

14. If an implementation includes any clocks other than the required realtime clock,
their documentation shall indicate in what contexts those clocks can be used.
If they cannot be used in extraheap context, the documentation shall detail the
consequences of passing the clock, or a time that uses the clock to a heapless
schedulable.

3.4 Rationale
The embedded market, especially for safety critical applications, is quite sensitive
to including code that is not needed by an application. Furthermore, different
application domains have differing needs on API. Flexibility is needed to ensure that
these diverse domains and requirements are met. Still, it is important to ensure
that when a given function is needed, it is included as defined herein. It is also
important that an open virtual machine deployment has a well-defined API set. This
has required moving a few classes into a new package, so that the resulting modules
will be consistent with the rules imposed by the JSR 376, the Java Platform Module
System. The above modules and deployment rules provide both this flexibility and
standardization.

36 RTSJ 2.0 (Draft 48)

Chapter 4

Realtime vs Conventional Java

Though compatibility with conventional Java (i.e., any Java runtime environments
that implement the Java Virtual Machine Specification and the Java Language
Specification but not the RTSJ) is the first concern of this specification, there
are several several cases where being able to meet realtime constraints requires a
tightening of the semantics of the virtual machine and some subtle changes to the
semantics of two key classes: java.lang.Thread and java.lang.ThreadGroup. These
constraints and changes place additional requirements on scheduling, the memory
model, and memory management. The specification additionally defines both an
extension to thread for realtime scheduling and a new type of concurrent activity called
an event handler; hence, the meaning of current thread has a different interpretation
than in conventional Java. The term task is used when refering to any of these three
types: conventional Java thread, realtime thread, and event handler.

Behaviors that may be different from conventional Java or may be surprising to
developers of conventional Java applications under the RTSJ can be divided into
three categories. The first category applies to conventional Java code that was not
developed with the RTSJ in mind and does not use RTSJ features but runs under an
RTSJ implementation. The second is conventional Java code that was not developed
with the RTSJ in mind but is called by code developed for the RTSJ in an RTSJ
implementation. The final catagory is Java code that was developed for the RTSJ
and is being used in an RTSJ implementation.

The first category, conventional Java code running on an RTSJ implementation
but not using any RTSJ features, may encounter the following behaviors that are
not (necessarily) experienced under a conventional Java VM.
• Any object allocated in a static initializer that later becomes garbage may be

unable to be collected by the VM. (See Section 11.2.6.)
• Some Throwables, in particular, those implementing StaticThrowable, which
includes StaticOutOfMemoryError, which an RTSJ VM throws in preference
to OutOfMemoryError, have stack trace and message information which is

37

4 Realtime vs Conventional Java

valid only while the Throwable is in flight and in the thread which originally
threw the Throwable. (See Section 15.1.)

The second category, conventional Java code that is running on an RTSJ imple-
mentation and in use by code that was developed for the RTSJ, may encounter the
following differences in behavior.
• IllegalAssignmentError may be thrown in non RTSJ-aware classes when the
Alternative Memory Management module (Chapter 11) is in use. (See Sec-
tion 11.2.7.)
• Tasks in an RTSJ application might not be scheduled by a fair scheduler. The

result is that there may be thread starvation unexpected by conventional Java
applications. (See Section 6.2.1.)
• A call to Thread.getPriority() may return a priority higher than
Thread.MAX_PRIORITY. (See Section 6.3.3.8.3.)
• Methods cannot rely on any thread local information when used in conjunction
with asynchronous event handlers. This includes thread local data and calls
to Thread.currentThread(). Hence, care must be taken when using thread
identifiers to determine the identity of callers. (This is analogous to the use of
ThreadPool in conventional Java.) (See Sections 8.2.1 and 8.3.3.5.)

The third and final category is behaviors experienced by code designed for the
RTSJ running on an RTSJ implementation that are departures from conventional
Java semantics or may be otherwise surprising.
• Finally clauses in asynchronously interruptible methods are not executed

during propagation of an AsynchronouslyInterruptedException. However, syn-
chronized code is always ATC-deferred, and therefore monitor locks are released
normally. (See Section 8.2.4.)
• Catch clauses that name AsynchronouslyInterruptedException (or its parent
classes) will not automatically stop the propagation of AIEs. An Asynchron-
ouslyInterruptedException must be explicitly cleared. (See Section 8.2.4.)
• Exceptions propagating into asynchronously interruptible regions of code
will be lost if an AsynchronouslyInterruptibleException is pending. (See Sec-
tion 8.2.4.)
• Subclasses of AsynchronouslyInterruptibleException indicated in the signature

of a method do not indicate that the method is asynchronously interruptible.
(See Section 8.2.4.)
• Catch clauses for AsynchronouslyInterruptibleException or its subclasses in

asynchronously interruptible methods will not catch an AIE. (See Section 8.2.4.)
• A Throwable crossing a MemoryArea boundary might be transformed into
a ThrowBoundaryError, and the original exception may be lost. (See Sec-
tion 15.2.3.8 and the enter family of methods on MemoryArea.)

38 RTSJ 2.0 (Draft 48)

Definitions 4.2

4.1 Definitions
Conventional Java — The language and runtime as defined by the “Java Language

Specification[5]” and “Java Virtual Machine Specification[6],” without any
realtime extensions.

Realtime Java — Conventional Java extended and refined according to this speci-
fication for programming realtime systems.

Fair Scheduling — A method of nonrealtime scheduling which tries to ensure that
all tasks get a chance to run, thus preventing starvation. Tasks with a higher
priority get a notionally larger share of execution time than lower priority tasks.
Tasks running at the same priority get notionally equal shares of the processor.

Happens-Before — The “Java Language Specification[5]” specifies the happens-
before relationship as “If one action happens-before another, then the first
is visible to and ordered before the second.” See the specification for the
implications of this relationship.

Priority — An indication of the relative scheduling eligibility of a task. A task
with a higher priority is scheduled before a task with a lower priority. The
priority assigned to a task is not necessarily the one used for scheduling, since
priority avoidance and cost enforcement mechanisms may transiently override
it. See Base Priority in Section 6.1 and Active Priority in Section 7.1.

Task — A conventional Java thread or an RTSJ Schedulable.

4.2 Semantics
The refinements and changes to the semantics of the Java runtime environment
and classes shall not affect the functional correctness of Java code written for a
conventional Java implementation when running on a Java runtime environment
which implements this specification. There may be changes in the relative timing of
threads, but these should not violate the conventional Java specifications. The use
of some RTSJ features with code written for a conventional Java implementation
may, however, cause unexpected behaviors. This is particularly true when using
alternate memory areas, asynchronous transfer of control, and thread local memory
in conjunction with unbound asynchronous event handlers.

4.2.1 Scheduling
How tasks are scheduled in a realtime system is quite different from what one expects
in a conventional Java virtual machine. For compatibility, this means that there
must be a domain where conventional Java threads are scheduled in a familiar way
and another domain that supports realtime scheduling. This separation is done in

RTSJ 2.0 (Draft 48) 39

4 Realtime vs Conventional Java

part via task priority.
Tasks running with the conventional ten priorities defined in Java should be

scheduled as expected. Unfortunately, in order to ease the porting of Java to different
environments, the scheduling of conventional Java threads is underspecified in [5].
This has been resolved in practice to avoid surprising the programmer by providing
some sort of fair scheduling for these threads, i.e, scheduling that at least prevents
task starvation, but may also try to balance CPU availability across threads. For
tasks running in these priorities an implementation of this specification shall provide
some notion of fair scheduling between tasks with priority between one and ten
inclusive.

Realtime threads and event handlers need a stronger notion of prioritization
than conventional Java threads, so this specification requires the implementation of
two priority-preemptive schedulers, one with run to completion (or next suspension
point) and one with round-robin semantics. Priorities above the conventional ten
priorities are used for these schedulers, and the interactions of the two schedulers are
well-defined. Multithreaded code that runs with the priority-preemptive scheduler
(or any other realtime scheduler) is more prone to deadlock or starvation than code
run with fair scheduling. The changes to Thread and ThreadGroup are to support
this realtime scheduling.

1. The semantics of set and get methods for priority in Thread differ for realtime
threads.

2. The ThreadGroup class’s behavior differs with respect to realtime threads.
3. The behavior of the ThreadGroup-related methods in Thread differ when they

are applied to realtime threads.
Code running at realtime priorities can also starve tasks scheduled on the conventional
Java scheduler, possibly indefinitely.

4.2.1.1 Priority

The methods setPriority and getPriority in java.lang.Thread are final. The realtime
thread classes are consequently not able to override them and modify their behavior
to suit the requirements of the RTSJ scheduler. To bring the java.lang.Thread class
in line with its realtime subclasses, the semantics of the getPriority and setPriority
methods must be modified.

4.2.1.1.1 Setting Priority

The setPriority method has the following additional requirements.
1. Use of Thread.setPriority() shall not affect the correctness of the priority

inversion avoidance algorithms controlled by PriorityCeilingEmulation and
PriorityInheritance. Changes to the base priority of a realtime thread as a

40 RTSJ 2.0 (Draft 48)

Semantics 4.2

result of invoking Thread.setPriority() are governed by semantics from Chapter
7 on Synchronization.

2. Conventional Java threads may not use setPriority to apply the expanded
range of priorities defined by this specification.

3. When setPriority is called on a realtime thread, that thread’s Scheduling-
Parameters are set to null and the thread is scheduled as if it were a Java
thread.

4.2.1.1.2 Getting Priority

The getPriority method has the following additional requirements.
1. When called on a conventional Java thread, its assigned priority is returned

even if it has a higher priority than what would be allowed by conventional
Java. It may be higher only when set with an instance of SchedulingParameters
through a scheduler.

2. When called on a realtime thread with null SchedulingParameters, a value in
the conventional Java priority range is returned.

3. When called on a realtime thread (t) with PriorityParameters, getPriority
behaves effectively as if it included the following code snippet:

1 ((PriorityParameters)t.getSchedulingParameters()).getPriority();

4. When the scheduling parameters are of a type other than PriorityParameters,
a ClassCastException is thrown.

All supported monitor control policies must apply to Java threads as well as to all
schedulables.

4.2.1.2 Thread Groups

Conventional Java provides thread groups as a means of managing groups of threads.
Since the RTSJ provides additional classes for encapsulating control flow under
the umbrella of Schedulable, it makes sense to have facilities for managing groups
of these as well. The RTSJ provides an extension of ThreadGroup for this called
SchedulingGroup.

Every instance of ThreadGroup holds a reference to every member thread and
every subgroup instance of ThreadGroup, as well as a reference to its parent group.
This is problematic under the RTSJ, since realtime threads may be allocated in scoped
memory. Rather than making complicated changes to the semantics of ThreadGroup
(and, in particular, its enumerate methods), the RTSJ requires that no ThreadGroup
or Java thread is allocated in scoped memory, and that no thread allocated in
ScopedMemory is referenced by a ThreadGroup. Instances of SchedulingGroup are

RTSJ 2.0 (Draft 48) 41

4 Realtime vs Conventional Java

instead used for these purposes, and an alternative to enumerate is provided on
SchedulingGroup in the form of a visitor.

Scheduling groups, i.e., instances of SchedulingGroup (a subclass of ThreadGroup,
are designed to be able to reference threads, schedulables, and other scheduling
groups, even when they are in scoped memory. These are only reachable using a
visitor with a lambda expression. Consequently schedulables and scheduling groups
are not part of any thread group and will hold a scheduling group reference as their
parent thread group. This requires that the thread group of the main thread is also
a schedulable group, so that schedulables and schedule groups can be created from
the main thread.

In order for this to work in a transparent manner, the following rules must hold.

1. An instance of ThreadGroup that is not an instance of SchedulingGroup cannot
contain any instances of Schedulable.

2. In an RTSJ implementation, both the ThreadGroup at the root of the Thread-
Group hierarchy and the ThreadGroup to which the initial thread belongs
must be instances of SchedulingGroup.

3. Call the SchedulingGroup.enumerate(Thread[]) and SchedulingGroup.enumerate(Thread[],
boolean) only return Java threads.

4. Call the SchedulingGroup.enumerate(ThreadGroup[]) and SchedulingGroup.enumerate(ThreadGroup[],
boolean) only return threads groups and scheduling groups allocated in heap
and immortal memory.

5. A Java thread (not a realtime thread) that is created from a realtime thread or
bound asynchronous event handler without an explicit thread group and that
is not assigned a thread group by the security manager, inherits the scheduling
group of it creator, when that group is allocated in heap or immortal memory;
otherwise an IllegalAssignmentError is thrown.

6. The thread group of a Java thread that is created from an unbound asyn-
chronous event handler without an explicit thread group and that is not assigned
a thread group by the security manager, is assigned to the scheduling group of
the handler’s dispatcher, when that dispatcher’s scheduling group is allocated
in heap or immortal memory; otherwise an IllegalAssignmentError is thrown.

7. A thread group cannot be created in scoped memory. The constructor shall
throw an IllegalAssignmentError.

8. Setting a maximum priority on a scheduling group, either explicitly via it parent
with a thread group specific method, has no influence on the schedulables in
that group.

9. Except as specified previously, realtime threads and bound asynchronous event
handlers have the same ThreadGroup membership rules as their parent Thread
class.

42 RTSJ 2.0 (Draft 48)

Semantics 4.2

4.2.1.3 Current Thread

In Java, the currently executing thread can always be determined by calling the static
method Thread.currentThread(). In the RTSJ, there are two types of schedulable
entities: threads and asynchronous event handlers. The latter may be mapped
dynamically by the realtime Java virtual machine onto the underlying thread model.
The method Thread.currentThread() when called from an unbound asynchronous
event handler will return the thread that is being used as the current execution
engine for that event handler. The program should not rely on this being constant
for the lifetime of the program. It can rely on it being constant for the current release
of the handler (see 6.1 for the definition of a release). It is not recommended that
the program perform any operations on this underlying thread as it may have an
impact beyond that of the current event handler. This also means that thread local
memory cannot be relied on when used with unbound event handlers, because data
saved in one release may not be available in the next release.

4.2.2 InterruptedException
The specification extends the use of the InterruptedException to support asyn-
chronous transfer of control.

The interruptible methods in the standard libraries (such as Object.wait, Thread.
sleep, and Thread.join) have their contract expanded slightly such that they will
respond to interruption not only when the interrupt method is invoked on the current
thread, but also, for schedulables, when executing within a call to AIE.doInterruptible
and that AIE is fired where AIE is an instance of the AsynchronouslyInterrupted-
Exception. See Chapter 8 on Asynchrony.

4.2.3 Java Memory Model
Some aspects of the Java Memory Model must be tightened for this specification, in
particular with regards to interactions with native code or when using the Device
Module. A conforming implementation must ensure that volatile loads and stores,
raw memory operations (see 12.2.1), and DMABufferFactory fence methods are all
ordered in a way that is consistent with respect to native code or hardware devices
that use platform-native memory coherence protocols to access raw memory or raw
byte buffers shared with the virtual machine. In particular, all Java code that
precedes a JNI call in the source happens-before the code executed during the JNI
call, which happens-before all Java code that follows its return.

Though not specified for conventional Java, most implementations provide explicit
fencing for JNI calls.

RTSJ 2.0 (Draft 48) 43

4 Realtime vs Conventional Java

4.2.4 Memory Management
The specification provides for two means of managing memory: garbage collection
and special memory areas. The latter are not collected by the garbage collector.
Since memory allocated in Java is always in the heap, or at least appears to be,
the initial allocation area is the heap. Furthermore, the allocation area can only
be changed either by entering another memory area or by calling a method that
explicitly causes allocation in another area. When the alternative memory areas
module is not present, the conventional Java semantics for allocation prevails.

4.2.4.1 Memory Areas

Using a conventional class in a memory area other than a heap can result in
unexpected behavior. This is particularly the case when a method of a class is
called when the current allocation context is different from the allocation context in
which the object was created; this can lead to exceptions. In general, memory areas
other than the heap may become full much faster than expected, because objects
that are no longer referenced will not be collected automatically.

A method that allocates an object or takes an object that was created in a
different memory area and tries to assign it to a field of its associated object can fail.
For example, creating a List on the heap and adding to it an object from a scoped
memory area will most likely cause an exception. Although using other memory
areas, such as scoped memory, is useful for helping to improving determinism, its
use complicates the logic of application and library code.

On systems that support memory areas other than heap and do not support
realtime garbage collection, some global resources must be put in immortal memory.
System properties and their String values allocated during system initialization shall
be allocated in immortal memory. For such a system, class objects should also be
stored there. Though this avoids priority inversion with the garbage collector, it can
cause higher memory use than expected.

4.2.4.2 Garbage Collection

Garbage collection is an important safety feature of the Java language and runtime
environment. Unfortunately, the garbage collection process can interfere with a
realtime program’s ability to always meet its timing deadlines. This specification
provides two main means of circumventing this problem: using a realtime garbage
collector or using the memory area module as an alternative to garbage collection
for realtime code. Additionally, an implementation may ignore the problem for an
implementation meant as a development system or for systems that choose not to
provide realtime guarantees. In any case, an implementation must document what
realtime guarantees it gives and which method it uses to do so.

44 RTSJ 2.0 (Draft 48)

Semantics 4.3

4.2.4.3 Realtime Garbage Collections

Industrial realtime garbage collectors are available with varying approaches to
providing realtime response. Though new collectors will undoubtably be developed,
all current ones use a variant of the mark-and-sweep algorithm. In all cases, the
collectors are incremental: realtime response is obtained by limiting how much of a
collection cycle is done each time the collector runs. Even on a multicore machine,
the garbage collector must be incremental, because it must tolerate changes to the
heap during garbage collection. Then CPU use is limited by tying the collector to
one ore more cores.

4.2.4.3.1 Thread-Based Collectors

A realtime thread-based collector is an incremental garbage collector that has its
own thread of control and runs at intervals. In this case, the garbage collector needs
to be scheduled to ensure that it runs often enough and long enough at each interval
to recycle discarded objects fast enough to keep up with allocations. There should
also be some maximum time after which the garbage collector can be interrupted.

4.2.4.3.2 Allocation-Based Collectors

A realtime allocation-based garbage collector does not have its own thread of
control. Instead, some interval of garbage collection work is done at each allocation.
This work is generally a function of the size of the object being allocated. This work
becomes part of the execution time of the program. Again, there should be some
maximum time after which the garbage collector can be interrupted.

4.2.4.3.3 Alternatives to Garbage Collection

This specification provides an Alternative Memory Areas Module for managing
memory without garbage collection. An implementation of this specification may
provide realtime response by requiring applications to use that module instead of
providing a realtime garbage collector. This means that all realtime threads would
have to run above the priority of the garbage collector and all communication with
conventional threads would have to use some nonblocking protocol.

4.2.4.3.4 Developer Implementation

An implementation that simply provides all the API but no realtime guarantee
is also permitted. This is useful as a development environment. Also, many of the
APIs are useful event in a conventional Java implementation.

RTSJ 2.0 (Draft 48) 45

4 Realtime vs Conventional Java

4.3 Rationale
The threading model of conventional Java was never meant for realtime programming.
Refinements to the virtual machine and new APIs are necessary to support the
additional requirements of applications, which have tasks that must complete in
a fixed amount of time. However, to ensure that any conventional Java program
can run on a virtual machine or runtime that implements this specification requires
careful consideration of each refinement to the Java programming model. Therefore,
conventional Java APIs and sematics have been extended, rather than replaced, to
facilitate compatibility with conventional Java runtime implementations.

46 RTSJ 2.0 (Draft 48)

Chapter 5

Realtime Threads

Conventional Java provides a thread class for its tasking model. Tasks can be
run simultaneously by creating multiple threads, but they do not provide realtime
scheduling semantics. For this, the specification provides a realtime thread class.
This class provides for the creation of
• realtime threads that have more precise scheduling semantics than java.lang.-
Thread, and
• realtime threads that have no dependency on the heap.
The RealtimeThread class extends java.lang.Thread. The ReleaseParameters,

SchedulingParameters, and MemoryParameters objects that can be passed to the
RealtimeThread constructor provide the temporal and processor configuration of
the thread to be communicated to the scheduler. ProcessingGroup, a class derived
from ThreadGroup provides cost enforcement on groups of tasks. The Configura-
tionParameters class defines, amongst other things, the size of Java thread stack.
The PhasingPolicy class defines the relationship between the threads start time and
its first release time when the start time is in the past.

The RTSJ provides two types of objects that implement the Schedulable interface:
realtime threads and asynchronous event handlers. This chapter defines the facilities
that are available to realtime threads. In many cases these facilities are also available
to asynchronous event handlers. In particular,
• the default scheduler must support the scheduling of both realtime threads

and asynchronous event handlers;
• realtime threads and asynchronous event handlers are allowed to enter into

memory areas and consequently they have associated scope stacks; and
• the flow of control of realtime threads and asynchronous event handlers are

affected by the RTSJ asynchronous transfer of control facilities.
Where the semantics apply to both realtime threads and asynchronous event handlers,
the term schedulable will be used.

47

5 Realtime Threads

5.1 Definitions
Exception — Both a mechanism of nonlocal transfer of control and a Java object

which carried information about the cause of the control transfer.
Scheduler — A module that manages the execution of tasks, as well as detecting

deadline misses and monitoring costs.

5.2 Semantics
Instances of RealtimeThread have the same semantics as conventional Java threads
except as noted below.

1. Garbage collection executing in the context of a Java thread must not in itself
block execution of a schedulable with a higher execution eligibility that may
not access the heap; however application locks work as specified even when the
lock causes synchronization between a heap-using thread and a schedulable
that may not use the heap.

2. Each schedulable has an attribute which indicates whether an Asynchron-
ouslyInterruptedException is pending. This attribute is set when a call to
RealtimeThread.interrupt() is made on the associated realtime thread, when
a call is made to the interrupt method in one of the family of asynchronous
event handler classes, and when an asynchronously interrupted exception’s fire
method is invoked between the time the schedulable has entered that excep-
tion’s doInterruptible method, and before it has return from doInterruptible.
(See Chapter 8 on Asynchrony.)

3. A call to Schedulable.interrupt() generates the system’s generic Asynchronous-
lyInterruptedException. (See Chapter 8 on Asynchrony.)

4. The RealtimeThread.waitForNextRelease method is for use by realtime threads
that have periodic or aperiodic release parameters. In the absence of any
deadline miss or cost overrun, or an interrupt, the method returns when the
realtime thread’s next period is due or the next release happens.

5. In the presence of a cost overrun or a deadline miss, the behavior of wait-
ForNextRelease is governed by the thread’s scheduler.

6. The first release time of a realtime thread is governed by the value of any
start time in its associated ReleaseParameter object and the time at which
the RealtimeThread.start method is called and the value of any PhasingPolicy
parameter passed to it.

7. Instances of RealtimeThread may not be created with a thread group which is
not an instance of SchedulingGroup.

8. System-related termination activity (such as execution of finalizers for scoped
objects in scoped memory areas that become unreferenced) triggered by termi-

48 RTSJ 2.0 (Draft 48)

Semantics 5.2

nation of a realtime thread is not subject to cost enforcement or deadline miss
detection.

9. The scheduling of a realtime thread is governed by its SchedulingParameters
and its Scheduler unless set explicitly with java.lang.Thread.setPriority(int),
which causes it to be treated as a conventional java thread until a new Schedu-
lingParameters object is set.

RTSJ 2.0 (Draft 48) 49

5 Realtime Threads PhasingPolicy

5.3 javax.realtime

5.3.1 Enumerations
5.3.1.1 PhasingPolicy

Inheritance
java.lang.Object
java.lang.Enum<PhasingPolicy>
PhasingPolicy

Description
This class defines a set of constants that specify the supported policies for starting
a periodic thread or periodic timer, when it is started later than the assigned
absolute time. The following table specifies the effective start time, that is, the
first release time of a periodic realtime thread. The effective start time of a
periodic timer is similar; where the first firing is equivalent to the first release,
and a call to the constructor is equivalent to a call to RealtimeThread.start().

Available since RTSJ 2.0

5.3.1.1.1 Enumeration Constants

ADJUST_IMMEDIATE

public static final ADJUST_IMMEDIATE

Description
Indicates that a periodic thread started after the absolute time given for its start
time show be released immediately with the next release one period later.

ADJUST_FORWARD

public static final ADJUST_FORWARD

Description

50 RTSJ 2.0 (Draft 48)

PhasingPolicy javax.realtime 5.3

Table 5.1: Effect of PhasingPolicy on the First Release of a RealtimeThread with
PeriodicParameters

ADJUST IM-
MEDIATE

ADJUST
FORWARD

ADJUST
BACKWARD

STRICT
PHASING

Relative Time The time of
start method
invocation
plus start
time.

The time of
start method
invocation
plus start
time.

The time of
start method
invocation
plus start
time.

The time of
start method
invocation
plus start
time.

Absolute
Time, earlier
than call to
start

Release im-
mediately
and set next
release time
to be at the
time the start
method was
invoked plus
period.

All releases
before the
time start
is called are
ignored. The
first release is
at the start
time plus
the smallest
multiple of
period whose
time is after
the time start
was called.

The first
release occurs
immediately
and the next
release is at
the start time
plus the small-
est multiple of
period whose
time is after
the time start
was called.

The start
method
throws an
exception.

Absolute
Time, later
than call to
start

First release is
at time passed
to start.

First release is
at time passed
to start.

First release is
at time passed
to start.

First release is
at time passed
to start.

Without Time First release
is at time of
start method
invocation

First release
is at time of
start method
invocation

First release
is at time of
start method
invocation

First release
is at time of
start method
invocation

Indicates that a periodic thread started after the absolute time given for its start
time should be released at the next multiple of its period from its start time.

ADJUST_BACKWARD

public static final ADJUST_BACKWARD

RTSJ 2.0 (Draft 48) 51

5 Realtime Threads ConfigurationParameters

Description
Indicates that a periodic thread started after the absolute time given for its start
time should be released immediately with the next release at the next multiple of
its period from its start time.

STRICT_PHASING

public static final STRICT_PHASING

Description
Indicates that a periodic thread started after the absolute time given for its start
time should throw the LateStartException1 exception instead of being released.

5.3.1.1.2 Methods

values

Signature
public static javax.realtime.PhasingPolicy[]
values()

Description

valueOf(String)

Signature
public static javax.realtime.PhasingPolicy
valueOf(String name)

Description

1Section 15.2.2.9

52 RTSJ 2.0 (Draft 48)

ConfigurationParameters javax.realtime 5.3

5.3.2 Classes
5.3.2.1 ConfigurationParameters

Inheritance
java.lang.Object
ConfigurationParameters

Description
Configuration parameters provide a way to specify various implementation-dependent
parameters such as the Java stack and native stack sizes, and to configure the
statically allocated ThrowBoundaryError2 associated with a Schedulable3.

Note that these parameters are immutable.

Available since RTSJ 2.0

5.3.2.1.1 Constructors

ConfigurationParameters(int, int, long)

Signature
public
ConfigurationParameters(int messageLength,

int stackTraceLength,
long[] sizes)

throws IllegalStateException

Description
Creates a parameter object for initializing the state of a Schedulable4. The
parameters provide the data for this initialization. For RealtimeThread5 and
bound versions of AsyncBaseEventHandler6, the stack and message buffers can

2Section 15.2.3.8
3Section 6.3.1.3
4Section 6.3.1.3
5Section 5.3.2.2
6Section 8.3.3.3

RTSJ 2.0 (Draft 48) 53

5 Realtime Threads ConfigurationParameters

be set exactly, but for the unbound event handlers, the system cannot give any
guarentees to allow thread sharing.

Parameters
messageLength is the size of the buffer, in units of char, for storing an exception

message used by preallocated exceptions and errors thrown in the context of
an instance of Schedulable7 which was created with this as its configuration
parameters. The value 0 indicates that no message should be stored. The value
of -1 uses the system default and is the default when an instance of this class
is not provided.

stackTraceLength Length of the stack trace buffer, in units of a number of Stack-
TraceElement instances, reserved use by preallocated exceptions and errors
thrown in the execution context of the Schedulable8 object created with these
parameters. The amount of space this requires is implementation-specific. The
value 0 indicates that no stack trace should be stored. The value of -1 uses the
system default and is the default when an instance of this class is not provided.

sizes An array of implementation-specific values dictating memory parameters for
Schedulable objects created with these parameters, such as maximum Java and
native stack sizes. The sizes array will not be stored in the constructed object.
The default is system dependent, and indicated by setting this parameter to
null or by not providing an instance of this class.

ConfigurationParameters(long)

Signature
public
ConfigurationParameters(long[] sizes)

Description

Same as ConfigurationParameters(int,int,long[])9 with arguments -1, -1, sizes.

5.3.2.1.2 Methods

7Section 6.3.1.3
8Section 6.3.1.3
9Section 5.3.2.1.1

54 RTSJ 2.0 (Draft 48)

ConfigurationParameters javax.realtime 5.3

getMessageLength

Signature
public int
getMessageLength()

Description
Gets the size of the buffer dedicated to storing the message of the last thrown
throwable in the context of instances of Schedulable10 created with these param-
eters. The value 0 indicates that no message will be stored.

Returns
Reserved memory size in units of char.

getStackTraceLength

Signature
public int
getStackTraceLength()

Description
Gets the length of the stack trace buffer dedicated to Schedulable11 objects created
with these parameters’ preallocated exceptions, measured in number of Stack-
TraceElement instances. The amount of space this requires is implementation-
specific. The value 0 indicates that no stack trace will be stored.

Returns
Reserved memory size in implementation-dependent stack frames.

getSizes

Signature
public long[]
getSizes()

Description
10Section 6.3.1.3
11Section 6.3.1.3

RTSJ 2.0 (Draft 48) 55

5 Realtime Threads RealtimeThread

Gets the array of implementation-specific sizes associated with Schedulable12

objects created with these parameters. This method may allocate memory.

Returns
A copy of the array of implementation-specific sizes.

5.3.2.2 RealtimeThread

Inheritance
java.lang.Object
java.lang.Thread
RealtimeThread

Interfaces
javax.realtime.BoundSchedulable
javax.realtime.AsyncTimable

Description
Class RealtimeThread extends Thread and adds access to realtime services such
as asynchronous transfer of control, nonheap memory, and advanced scheduler
services.

As with java.lang.Thread, there are two ways to create a RealtimeThread.
• Create a new class that extends RealtimeThread and override the run()

method with the logic for the thread.
• Create an instance of RealtimeThread using one of the constructors with a

logic parameter. Pass a Runnable object whose run() method implements
the logic of the thread.

5.3.2.2.1 Constructors

RealtimeThread(SchedulingParameters, ReleaseParameters,
MemoryParameters, MemoryArea, ConfigurationParameters,
TimeDispatcher, SchedulingGroup, Runnable)

Signature
12Section 6.3.1.3

56 RTSJ 2.0 (Draft 48)

RealtimeThread javax.realtime 5.3

public
RealtimeThread(SchedulingParameters scheduling,

ReleaseParameters release,
MemoryParameters memory,
MemoryArea area,
ConfigurationParameters config,
TimeDispatcher dispatcher,
SchedulingGroup group,
Runnable logic)

Description
Create a realtime thread with the given characteristics and a specified Runnable.
The scheduling group of the new thread is inherited from its parent task unless
group is set. The newly-created realtime thread is associated with the scheduler
in effect during execution of the constructor.

Available since RTSJ 2.0

Parameters
scheduling The SchedulingParameters13 associated with this (And possibly other

instances of Schedulable14). When scheduling is null and the creator is a
schedulable, SchedulingParameters15 is a clone of the creator’s value created
in the same memory area as this. When scheduling is null and the creator is a
Java thread, the contents and type of the new SchedulingParameters object is
governed by the associated scheduler.

release The ReleaseParameters16 associated with this (and possibly other instances
of Schedulable17). When release is null the new RealtimeThread will use a
clone of the default ReleaseParameters for the associated scheduler created in
the memory area that contains the RealtimeThread object.

memory The MemoryParameters18 associated with this (and possibly other in-
stances of Schedulable19). When memory is null, the new RealtimeThread
receives null value for its memory parameters, and the amount or rate of
memory allocation for the new thread is unrestricted, and it may access the
heap.

13Section 6.3.3.14
14Section 6.3.1.3
15Section 6.3.3.14
16Section 6.3.3.10
17Section 6.3.1.3
18Section 11.3.2.4
19Section 6.3.1.3

RTSJ 2.0 (Draft 48) 57

5 Realtime Threads RealtimeThread

area the initial memory area of this handler.
config The ConfigurationParameters20 associated with this (and possibly other

instances of Schedulable21). When config is null, this RealtimeThread will
reserve no space for preallocated exceptions and implementation-specific values
will be set to their implementation-defined defaults.

dispatcher The TimeDispatcher22 to use for realtime sleep and determining the
period of a periodic thread.

group The SchedulingGroup of the newly created realtime thread or the parent’s
scheduling group when null.

logic The Runnable object whose run() method will serve as the logic for the new
RealtimeThread. When logic is null, the run() method in the new object will
serve as its logic.

Throws
IllegalArgumentException when the parameters are not compatible with the asso-

ciated scheduler or the current thread group is not a SchedulingGroup and
group is null.

IllegalAssignmentError when the new RealtimeThread instance cannot hold a refer-
ence to any of the values of scheduling, release, memory, or group, when those
parameters cannot hold a reference to the new RealtimeThread, when the new
RealtimeThread instance cannot hold a reference to the values of area or logic,
when the initial memory area is not specified and the new RealtimeThread
instance cannot hold a reference to the default initial memory area, and when
the thread may not use the heap, as specified by its memory parameters, and
any of the following is true:
• the initial memory ares is not specified,
• the initial memory is heap memory,
• the initial memory area, scheduling, release, memory, or group is allocated

in heap memory.
• when this is in heap memory, or
• logic is in heap memory.

ScopedCycleException when memory is a scoped memory area that has already
been entered from a memory area other than the current scope.

RealtimeThread(SchedulingParameters, ReleaseParameters,
MemoryParameters, MemoryArea, ConfigurationParameters,
Runnable)

20Section 5.3.2.1
21Section 6.3.1.3
22Section 10.3.2.4

58 RTSJ 2.0 (Draft 48)

RealtimeThread javax.realtime 5.3

Signature
public
RealtimeThread(SchedulingParameters scheduling,

ReleaseParameters release,
MemoryParameters memory,
MemoryArea area,
ConfigurationParameters config,
Runnable logic)

Description

Create a realtime thread with the given SchedulingParameters23, ReleaseParam-
eters24, MemoryParameters25, ConfigurationParameters26, a specified Runnable,
and default values for all other parameters.

This constructor is equivalent to RealtimeThread(scheduling, release, memory,
area, config, null, null, logic).

Available since RTSJ 2.0

RealtimeThread(SchedulingParameters, ReleaseParameters,
ConfigurationParameters, Runnable)

Signature
public
RealtimeThread(SchedulingParameters scheduling,

ReleaseParameters release,
ConfigurationParameters config,
Runnable logic)

Description

Create a realtime thread with the given SchedulingParameters27, ReleaseParam-

23Section 6.3.3.14
24Section 6.3.3.10
25Section 11.3.2.4
26Section 5.3.2.1
27Section 6.3.3.14

RTSJ 2.0 (Draft 48) 59

5 Realtime Threads RealtimeThread

eters28, MemoryArea29 and a specified Runnable and default values for all other
parameters.

This constructor is equivalent to RealtimeThread(scheduling, release, config,
null, null, null, logic).

Available since RTSJ 2.0

RealtimeThread(SchedulingParameters, ReleaseParameters,
ConfigurationParameters)

Signature
public
RealtimeThread(SchedulingParameters scheduling,

ReleaseParameters release,
ConfigurationParameters config)

Description
Create a realtime thread with the given SchedulingParameters30, ReleaseParam-
eters31 and MemoryArea32 and default values for all other parameters.

This constructor is equivalent to RealtimeThread(scheduling, release, null,
null, config, null, null, null).

Available since RTSJ 2.0

RealtimeThread(SchedulingParameters, ReleaseParameters,
Runnable)

Signature
public
RealtimeThread(SchedulingParameters scheduling,

ReleaseParameters release,
Runnable logic)

28Section 6.3.3.10
29Section 11.3.2.3
30Section 6.3.3.14
31Section 6.3.3.10
32Section 11.3.2.3

60 RTSJ 2.0 (Draft 48)

RealtimeThread javax.realtime 5.3

Description

Create a realtime thread with the given SchedulingParameters33, ReleaseParam-
eters34 and a specified Runnable and default values for all other parameters.

This constructor is equivalent to RealtimeThread(scheduling, release, null,
null, null, null, null, logic).

Available since RTSJ 2.0

RealtimeThread(SchedulingParameters, ReleaseParameters)

Signature
public
RealtimeThread(SchedulingParameters scheduling,

ReleaseParameters release)

Description

Create a realtime thread with the given SchedulingParameters35 and ReleasePar-
ameters36 and default values for all other parameters.

This constructor is equivalent to RealtimeThread(scheduling, release, null,
null, null, null, null).

RealtimeThread(SchedulingParameters, TimeDispatcher)

Signature
public
RealtimeThread(SchedulingParameters scheduling,

TimeDispatcher dispatcher)

Description

33Section 6.3.3.14
34Section 6.3.3.10
35Section 6.3.3.14
36Section 6.3.3.10

RTSJ 2.0 (Draft 48) 61

5 Realtime Threads RealtimeThread

Create a realtime thread with the given SchedulingParameters37 and TimeDis-
patcher38 and default values for all other parameters. This constructor is equiva-
lent to RealtimeThread(scheduling, null, null, null, null, dispatcher, null, null).

Available since RTSJ 2.0

RealtimeThread(SchedulingParameters)

Signature
public
RealtimeThread(SchedulingParameters scheduling)

Description

Create a realtime thread with the given SchedulingParameters39 and default
values for all other parameters. This constructor is equivalent to Realtime-
Thread(scheduling, null, null, null, null, null, null, null).

RealtimeThread

Signature
public
RealtimeThread()

Description

Create a realtime thread with default values for all parameters. This constructor
is equivalent to RealtimeThread(null, null, null, null, null, null, null).

5.3.2.2.2 Methods

37Section 6.3.3.14
38Section 10.3.2.4
39Section 6.3.3.14

62 RTSJ 2.0 (Draft 48)

RealtimeThread javax.realtime 5.3

currentRealtimeThread

Signature
public static javax.realtime.RealtimeThread
currentRealtimeThread()
throws ClassCastException

Description
Gets a reference to the current instance of RealtimeThread.

It is permissible to call currentRealtimeThread when control is in an Async-
EventHandler40. The method will return a reference to the RealtimeThread
supporting that release of the async event handler.

Throws
ClassCastException when the current execution context is not an instance of Sched-

ulable41.
Returns
A reference to the current instance of RealtimeThread.

currentSchedulable

Signature
public static javax.realtime.RealtimeThread
currentSchedulable()
throws ClassCastException

Description
Gets a reference to the current instance of Schedulable. It behaves the same when
the current thread is an instance of java.lang.Thread, but otherwise it returns
an instance of AsyncBaseEventHandler42.

Throws
ClassCastException when the current execution context is that of a conventional

Java thread.
Returns
A reference to the current instance of Schedulable.

40Section 8.3.3.5
41Section 6.3.1.3
42Section 8.3.3.3

RTSJ 2.0 (Draft 48) 63

5 Realtime Threads RealtimeThread

getCurrentMemoryArea

Signature
public static javax.realtime.MemoryArea
getCurrentMemoryArea()

Description
Return a reference to theMemoryArea43 object representing the current allocation
context. For a task that is not an instance of Schedulable44, the result can only
be heap or immortal memory.

Returns
A reference to the MemoryArea45 object representing the current allocation context.

getInitialMemoryAreaIndex

Signature
public static int
getInitialMemoryAreaIndex()
throws IllegalStateException,

ClassCastException

Description
Gets the position of the initial memory area for the current Schedulable46 in
the memory area stack. Memory area stacks may include inherited stacks from
parent threads. The initial memory area of a RealtimeThread47 or an Async-
BaseEventHandler48 is the memory area specified in its constructor. The index
of the initial memory area in the initial memory area stack is a fixed property of
a Schedulable.

Throws
IllegalSchedulableStateException when the memory area stack of the current Sched-

ulable has changed from its initial configuration and the memory area at the
originally specified initial memory area index is not the initial memory area,
thus the index is invalid.

43Section 11.3.2.3
44Section 6.3.1.3
45Section 11.3.2.3
46Section 6.3.1.3
47Section 5.3.2.2
48Section 8.3.3.3

64 RTSJ 2.0 (Draft 48)

RealtimeThread javax.realtime 5.3

This can only happen when the application uses the alternate memory module
and the initial memory area is a scoped memory area. The following is an ex-
ample of an event handler that will throw this exception when its initial memory
area is a scoped memory area.

public void handleAsyncEvent()
{

MemoryArea current = RealtimeThread.getCurrentMemoryArea();
if (current instanceof ScopedMemory)
{

MemoryArea parent = ((ScopedMemory) current).getParent();
parent.executeInArea(() ->
{

ScopedMemory scope = new LTMemory(1000);
scope.enter(() ->
{

System.out.println("Initial Memory Area Index = " +
RealtimeThread.getInitialMemoryAreaIndex());

});
});

}
}

ClassCastException when the current execution context is not an instance of Sched-
ulable49. An exception will be thrown on line 12, where the first opening
bracket is line one, of the handler above.

Returns
The index into the initial memory area stack of the initial memory area of the

current Schedulable.

getMemoryAreaStackDepth

Signature
public static int
getMemoryAreaStackDepth()
throws ClassCastException

49Section 6.3.1.3

RTSJ 2.0 (Draft 48) 65

5 Realtime Threads RealtimeThread

Description
Gets the size of the stack of MemoryArea50 instances to which the current
schedulable has access.

Note, the current memory area (getCurrentMemoryArea()51) is found at
memory area stack index of getMemoryAreaStackDepth() - 1.

Throws
ClassCastException when the current execution context is not an instance of Sched-

ulable52.

Returns
The size of the stack of MemoryArea53 instances.

getOuterMemoryArea(int)

Signature
public static javax.realtime.MemoryArea
getOuterMemoryArea(int index)
throws ClassCastException,

MemoryAccessError

Description
Gets the instance of MemoryArea54 in the memory area stack at the index given.
When the given index does not exist in the memory area scope stack then null is
returned.

Note, the current memory area (getCurrentMemoryArea()55) is found at
memory area stack index getMemoryAreaStackDepth() - 1, so getCurrentMemo-
ryArea() == getOutMemoryArea(getMemoryAreaStackDepth() - 1).

Parameters
index The offset into the memory area stack.

Throws
ClassCastException when the current execution context is not an instance of Sched-

ulable56.
50Section 11.3.2.3
51Section 5.3.2.2.2
52Section 6.3.1.3
53Section 11.3.2.3
54Section 11.3.2.3
55Section 5.3.2.2.2
56Section 6.3.1.3

66 RTSJ 2.0 (Draft 48)

RealtimeThread javax.realtime 5.3

MemoryAccessError when the memory area is allocate in heap memory and the
caller is a schedulable that may not use the heap.

Returns
The instance of MemoryArea57 at index or null when the given value does not

correspond to a position in the stack.

sleep(HighResolutionTime)

Signature
public static void
sleep(javax.realtime.HighResolutionTime<?> time)
throws InterruptedException,

ClassCastException,
IllegalArgumentException

Description
A sleep method that is controlled by a generalized clock. Since the time is
expressed as a HighResolutionTime58, this method is an accurate timer with
nanosecond granularity. The actual resolution available for the clock and even the
quantity it measures depends on clock. The time base is the given Clock59. The
sleep time may be relative or absolute. When relative, then the calling thread
is blocked for the amount of time given by time, and measured by clock. When
absolute, then the calling thread is blocked until the indicated value is reached
by clock. When the given absolute time is less than or equal to the current value
of clock, the call to sleep returns immediately.

It is permissible to call sleep when control is in an AsyncEventHandler60. The
method cause the handler to sleep.

This method must not throw IllegalAssignmentError. It must tolerate time
instances that may not be stored in this.

Parameters
time The amount of time to sleep or the point in time at which to awaken.

Throws
InterruptedException when the thread is interrupted by interrupt()61 orAsynchronouslyInterruptedException.

fire()62 during the time between calling this method and returning from it.
57Section 11.3.2.3
58Section 9.3.1.2
59Section 10.3.2.1
60Section 8.3.3.5
61Section 5.3.2.2.2
62Section 15.2.2.2.2

RTSJ 2.0 (Draft 48) 67

5 Realtime Threads RealtimeThread

ClassCastException when the current execution context is not an instance of Sched-
ulable63.

IllegalArgumentException when time is null, when time is a relative time less than
zero, or when the Chronograph64 of time is not a Clock65.

suspend(HighResolutionTime)

Signature
public static void
suspend(javax.realtime.HighResolutionTime<?> time)
throws ClassCastException,

IllegalArgumentException

Description
The same as sleep(HighResolutionTime)66 except that it is not interruptible.

Parameters
time an absolute or relative time until which to suspend.

Throws
ClassCastException when the current execution context is not an instance of Sched-

ulable67.
IllegalArgumentException when time is null, when time is a relative time less than

zero, or when the Chronograph68 of time is not a Clock69.

Available since RTSJ 2.0

spin(HighResolutionTime)

Signature
public static void
spin(javax.realtime.HighResolutionTime<?> time)

63Section 6.3.1.3
64Section 10.3.1.2
65Section 10.3.2.1
66Section 5.3.2.2.2
67Section 6.3.1.3
68Section 10.3.1.2
69Section 10.3.2.1

68 RTSJ 2.0 (Draft 48)

RealtimeThread javax.realtime 5.3

throws InterruptedException,
ClassCastException,
IllegalArgumentException

Description

Similar to sleep(HighResolutionTime)70 except it performs a busy wait by polling
on the Chronograph71 associated with time until time has been reached. Note
that interaction with other tasks, scheduling considerations, and other effects
may reduce the frequency of polling for long delays, so an application cannot
assume that the associated Chronograph will be polled as quickly as possible.

Parameters
time an absolute or relative time at which to stop spinning.

Throws
InterruptedException when the thread is interrupted by interrupt()72 orAsynchronouslyInterruptedException.

fire()73 during the time between calling this method and returning from it.
ClassCastException when the current execution context is not an instance of Sched-

ulable74.
IllegalArgumentException when time is null, or when time is a relative time less

than zero.

Available since RTSJ 2.0

spin(int)

Signature
public static void
spin(int nanos)
throws InterruptedException,

ClassCastException,
IllegalArgumentException

Description

70Section 5.3.2.2.2
71Section 10.3.1.2
72Section 5.3.2.2.2
73Section 15.2.2.2.2
74Section 6.3.1.3

RTSJ 2.0 (Draft 48) 69

5 Realtime Threads RealtimeThread

The same as calling spin(HighResolutionTime)75 with a relative time to the
default realtime clock, zero milliseconds, and nanos nanoseconds, except no
relative time object is necessary.

Parameters
nanos a relative number of nanoseconds to wait.

Throws
InterruptedException when the thread is interrupted by interrupt()76 orAsynchronouslyInterruptedException.

fire()77 during the time between calling this method and returning from it.
ClassCastException when the current execution context is not an instance of Sched-

ulable78.
IllegalArgumentException when nanos is less than zero.

Available since RTSJ 2.0

waitForNextRelease

Signature
public static boolean
waitForNextRelease()
throws AsynchronouslyInterruptedException,

IllegalStateException,
ClassCastException

Description
Causes the current realtime thread to delay until the next release. (See re-
lease()79.) Used by threads that have a reference to either periodic or aperiodic
ReleaseParameters80. The first release starts when this thread is released as a
consequence of the action of one of the start()81 family of methods. Each time
this method is called it will block until the next release unless the thread is in
a deadline miss condition. In that case, the operation of waitForNextRelease is
controlled by this thread’s scheduler. (See PriorityScheduler82.)

75Section 5.3.2.2.2
76Section 5.3.2.2.2
77Section 15.2.2.2.2
78Section 6.3.1.3
79Section 5.3.2.2.2
80Section 6.3.3.10
81Section 5.3.2.2.2
82Section 6.3.3.8

70 RTSJ 2.0 (Draft 48)

RealtimeThread javax.realtime 5.3

Throws
AsynchronouslyInterruptedException when the thread is interrupted by interrupt()83

or AsynchronouslyInterruptedException.fire()84 during the time between call-
ing this method and returning from it and the ReleaseParameters.isRousable()85

on its release parameters returns true.
An interrupt during waitForNextPeriodInterruptible() is treated as a release
for purposes of scheduling. This is likely to disrupt proper operation of the
periodic thread. The timing behavior of the thread is unspecified until the
state is reset by altering the thread’s release parameters or the thread is no
longer in a deadline miss state.

IllegalStateException when this does not have a reference to a ReleaseParameters86

type of either PeriodicParameters87 or AperiodicParameters88.
ClassCastException when the current thread is not an instance of RealtimeThread.

Returns
Either false when the thread is in a deadline miss condition or true otherwise. When

a deadline miss condition occurs is defined by its thread’s scheduler.
Available since RTSJ 2.0

getMemoryArea

Signature
public javax.realtime.MemoryArea
getMemoryArea()

Description
Return the initial memory area for this RealtimeThread. When not specified
through the constructor, the default is a reference to the current allocation context
when this was constructed.

Returns
A reference to the initial memory area for this thread.
Available since RTSJ 1.0.1

83Section 5.3.2.2.2
84Section 15.2.2.2.2
85Section 6.3.3.10.2
86Section 6.3.3.10
87Section 6.3.3.6
88Section 6.3.3.2

RTSJ 2.0 (Draft 48) 71

5 Realtime Threads RealtimeThread

getMemoryParameters

Signature
public javax.realtime.MemoryParameters
getMemoryParameters()

Description
Gets a reference to the MemoryParameters89 object for this schedulable.

Returns
A reference to the current MemoryParameters90 object.

getSchedulingGroup

Signature
public javax.realtime.SchedulingGroup
getSchedulingGroup()

Description
Gets a reference to the SchedulingGroup91 instance of this schedulable.

Returns
A reference to the current SchedulingGroup92 object.

Available since since RTSJ 2.0

getConfigurationParameters

Signature
public javax.realtime.ConfigurationParameters
getConfigurationParameters()

Description
Gets a reference to the ConfigurationParameters93 object for this schedulable.

89Section 11.3.2.4
90Section 11.3.2.4
91Section 6.3.3.13
92Section 6.3.3.13
93Section 5.3.2.1

72 RTSJ 2.0 (Draft 48)

RealtimeThread javax.realtime 5.3

Returns
A reference to the associated ConfigurationParameters94 object.
Available since RTSJ 2.0

getReleaseParameters

Signature
public javax.realtime.ReleaseParameters
getReleaseParameters()

Description
Gets a reference to the ReleaseParameters95 object for this schedulable.

Returns
A reference to the current ReleaseParameters96 object.

getScheduler

Signature
public javax.realtime.Scheduler
getScheduler()

Description
Gets a reference to the Scheduler97 object for this schedulable.

Returns
A reference to the associated Scheduler98 object.

getSchedulingParameters

Signature
public javax.realtime.SchedulingParameters
getSchedulingParameters()

94Section 5.3.2.1
95Section 6.3.3.10
96Section 6.3.3.10
97Section 6.3.3.12
98Section 6.3.3.12

RTSJ 2.0 (Draft 48) 73

5 Realtime Threads RealtimeThread

Description
Gets a reference to the SchedulingParameters99 object for this schedulable.

Returns
A reference to the current SchedulingParameters100 object.

release

Signature
public void
release()

Description
Generate a release for this RealtimeThread. The action of this release is governed
by the scheduler. It may, for instance, act immediately, or be queued, delayed, or
discarded.

Throws
IllegalStateException when this does not have a reference to a ReleaseParameters101

type of AperiodicParameters102.
Available since RTSJ 2.0

interrupt

Signature
public void
interrupt()

Description
Make the generic AsynchronouslyInterruptedException103 pending for this, and
sets the interrupted state to true. As with Thread.interrupt(), blocking operations
that are interruptible are interrupted. When this.isRousable() is true cause an
early release. In any case, AsynchronouslyInterruptedException is thrown once
a method is entered that implements AsynchronouslyInterruptedException.

99Section 6.3.3.14
100Section 6.3.3.14
101Section 6.3.3.10
102Section 6.3.3.2
103Section 15.2.2.2

74 RTSJ 2.0 (Draft 48)

RealtimeThread javax.realtime 5.3

Behaves as if Thread.interrupt() were called on the implementation thread
underlying this Schedulable. throws IllegalSchedulableStateException when this
is not currently releasable, i.e., is disabled, not firable, its start method has not
been called, or it has terminated.

Available since RTSJ 2.0

isInterrupted

Signature
public boolean
isInterrupted()

Description
Determines whether or not any AsynchronouslyInterruptedException104 is pend-
ing.

Returns
true when and only when the generic AsynchronouslyInterruptedException is pend-

ing.

Available since RTSJ 2.0

deschedule

Signature
public void
deschedule()

Description
Perform any deschedule actions specified by this thread’s scheduler, either im-
mediately when in waitForNextRelease()105 or the next time the thread enters
waitForNextRelease().

Available since RTSJ 2.0

104Section 15.2.2.2
105Section 5.3.2.2.2

RTSJ 2.0 (Draft 48) 75

5 Realtime Threads RealtimeThread

reschedule

Signature
public void
reschedule()
throws IllegalSchedulableStateException

Description
Returns the thread to the blocked-for-next-release state. This causes the next
event release the thread and waitForNextRelease106 to return. Deadline miss and
cost enforcement are re-enabled.

The details of the interaction of this method with deschedule107, waitForNex-
tRelease108 and release109 are dictated by this thread’s scheduler.

Throws
IllegalSchedulableStateException when the configured Scheduler and Scheduling-

Parameters for this RealtimeThread are not compatible.
Available since RTSJ 2.0

startPeriodic(PhasingPolicy)

Signature
public void
startPeriodic(PhasingPolicy phasingPolicy)
throws LateStartException,

IllegalSchedulableStateException,
IllegalArgumentException

Description
Start the thread with the specified phasing policy.

Parameters
phasingPolicy The phasing policy to be applied when the start time given in the

realtime thread’s associated PeriodicParameters110 is in the past.
Throws

106Section 5.3.2.2.2
107Section 5.3.2.2.2
108Section 5.3.2.2.2
109Section 5.3.2.2.2
110Section 6.3.3.6

76 RTSJ 2.0 (Draft 48)

RealtimeThread javax.realtime 5.3

javax.realtime.LateStartException when the actual start time is after the assigned
start time and the phasing policy is PhasingPolicy.STRICT_PHASING111.

IllegalArgumentException when the thread is not periodic, or when its start time
is not absolute.

IllegalSchedulableStateException when the configured Scheduler and Scheduling-
Parameters for this RealtimeThread are not compatible.

Available since RTSJ 2.0

start

Signature
public void
start()

Description
Set up the realtime thread’s environment and start it. The set up might include
delaying it until the assigned start time and initializing the thread’s scope stack.
(See ScopedMemory112.)

Throws
IllegalStateException when the configured Scheduler and SchedulingParameters for

this RealtimeThread are not compatible.

Available since RTSJ 2.0 adds new exception

getLastReleaseTime

Signature
public javax.realtime.AbsoluteTime
getLastReleaseTime()

Description
Equivalent to getLastReleaseTime(null)

Available since RTSJ 2.0

111Section 5.3.1.1.1
112Section A.2.3.32

RTSJ 2.0 (Draft 48) 77

5 Realtime Threads RealtimeThread

getLastReleaseTime(AbsoluteTime)

Signature
public javax.realtime.AbsoluteTime
getLastReleaseTime(AbsoluteTime dest)

Description
Return the absolute time of this thread’s last release, whether periodic or aperi-
odic.

The clock in the returned absolute time shall be the realtime clock for aperiodic
releases and the clock used for the periodic release for periodic releases.

Returns
the last release time in dest. When dest is null, create a new absolute time instance

in the current memory area.

Available since RTSJ 2.0

getEffectiveStartTime

Signature
public javax.realtime.AbsoluteTime
getEffectiveStartTime()

Description
Equivalent to getEffectiveStartTime(null).

Available since RTSJ 2.0

getEffectiveStartTime(AbsoluteTime)

Signature
public javax.realtime.AbsoluteTime
getEffectiveStartTime(AbsoluteTime dest)

Description
Determine the effective start time of this realtime thread. This is not necessarily
the same as the start time in the release parameters.

78 RTSJ 2.0 (Draft 48)

RealtimeThread javax.realtime 5.3

• When the release parameters’ start time is relative, the effective start time
is the time of the first release.
• When the release parameters’ start time is an absolute time after start() is

invoked, the effective start time is the same as the release parameters’ start
time.
• When the release parameters’ start time is an absolute time before start()

is invoked, the effective start time depends on the phasing policy.
The default is to set the effective start time equal to the time start() is invoked.

Returns
The effective start time in dest. When dest is null, return the effective start time

in an AbsoluteTime113 instance created in the current memory area.

Available since RTSJ 2.0

getCurrentConsumption(RelativeTime)

Signature
public static javax.realtime.RelativeTime
getCurrentConsumption(RelativeTime dest)

Description
Determine the CPU consumption for this release.

Throws
IllegalStateException when the caller is not a Schedulable114.

Returns
When dest is null, return the CPU consumption in a RelativeTime115 instance

created in the current execution context. When dest is not null, return the
CPU consumption in dest

Available since RTSJ 2.0

getCurrentConsumption

Signature
113Section 9.3.1.1
114Section 6.3.1.3
115Section 9.3.1.3

RTSJ 2.0 (Draft 48) 79

5 Realtime Threads RealtimeThread

public static javax.realtime.RelativeTime
getCurrentConsumption()

Description
Equivalent to getCurrentConsumption(null).

Available since RTSJ 2.0

getMinConsumption(RelativeTime)

Signature
public javax.realtime.RelativeTime
getMinConsumption(RelativeTime dest)

Description
Get the minimum CPU consumption measured for any completed release of this
schedulable.

Throws
IllegalStateException when the caller is not a Schedulable116.

Returns
the minimum CPU consumption in dest. When dest is null return the minimum

CPU consumption in a RelativeTime117 instance created in the current memory
area.

Available since RTSJ 2.0

getMinConsumption

Signature
public javax.realtime.RelativeTime
getMinConsumption()

Description
Equivalent to getMinConsumption(null).

Available since RTSJ 2.0

116Section 6.3.1.3
117Section 9.3.1.3

80 RTSJ 2.0 (Draft 48)

RealtimeThread javax.realtime 5.3

getMaxConsumption(RelativeTime)

Signature
public javax.realtime.RelativeTime
getMaxConsumption(RelativeTime dest)

Description
Get the maximum CPU consumption measured for any completed release of this
schedulable.

Throws
IllegalStateException when the caller is not a Schedulable118.

Returns
the maximum CPU consumption in dest. When dest is null return the maximum

CPU consumption in a RelativeTime119 instance created in the current memory
area.

Available since RTSJ 2.0

getMaxConsumption

Signature
public javax.realtime.RelativeTime
getMaxConsumption()

Description
Equivalent to getMaxConsumption(null).

Available since RTSJ 2.0

getDispatcher

Signature
public javax.realtime.TimeDispatcher
getDispatcher()

Description
118Section 6.3.1.3
119Section 9.3.1.3

RTSJ 2.0 (Draft 48) 81

5 Realtime Threads RealtimeThread

Get the dispatcher responsible for handling sleep requests issued by this thread

See Section Timable.getDispatcher()

Available since RTSJ 2.0

fire

Signature
public final void
fire()

Description
Used by the Clock120 infrastructure to cause a call to waitForNextRelease121 to
return.

See Section AsyncTimable.fire()

Available since RTSJ 2.0

mayUseHeap

Signature
public boolean
mayUseHeap()

Description
Determine whether or not this schedulable may use the heap.

Returns
true only when this Schedulable may allocate on the heap and may enter Heap-

Memory.

Available since RTSJ 2.0

120Section 10.3.2.1
121Section 5.3.2.2.2

82 RTSJ 2.0 (Draft 48)

RealtimeThread javax.realtime 5.3

awaken

Signature
public final void
awaken()

Description
Used by the Clock122 infrastructure to cause a call to sleep123 to return.

See Section Schedulable.awaken()

Available since RTSJ 2.0

setMemoryParameters(MemoryParameters)

Signature
public javax.realtime.RealtimeThread
setMemoryParameters(MemoryParameters memory)

Description
Sets the memory parameters associated with this instance of Schedulable.

This change becomes effective under conditions determined by the scheduler
controlling the schedulable. For instance, the change may be immediate or it may
be delayed until the next release of the schedulable object. See the documentation
for the scheduler for details.

Parameters
memory memory A MemoryParameters124 object which will become the memory

parameters associated with this after the method call. When null, the default
value is governed by the associated scheduler (a new object is created when
the default value is not null). (See PriorityScheduler125.)

Throws
IllegalArgumentException IllegalArgumentException when memory is not compat-

ible with the schedulable’s scheduler. Also when this schedulable may not use
the heap and memory is located in heap memory.

122Section 10.3.2.1
123Section 5.3.2.2.2
124Section 11.3.2.4
125Section 6.3.3.8

RTSJ 2.0 (Draft 48) 83

5 Realtime Threads RealtimeThread

IllegalAssignmentError IllegalAssignmentError when the schedulable cannot hold
a reference to memory, or when memory cannot hold a reference to this
schedulable instance.

IllegalStateException null
Returns
this

setReleaseParameters(ReleaseParameters)

Signature
public javax.realtime.RealtimeThread
setReleaseParameters(ReleaseParameters release)

Description
Sets the release parameters associated with this instance of Schedulable.

This change becomes effective under conditions determined by the scheduler
controlling the schedulable. For instance, the change may be immediate or it may
be delayed until the next release of the schedulable. The different properties of
the release parameters may take effect at different times. See the documentation
for the scheduler for details.

Parameters
release A ReleaseParameters126 object which will become the release parameters

associated with this after the method call, and take effect as determined by
the associated scheduler. When null, the default value is governed by the
associated scheduler (a new object is created when the default value is not
null). (See PriorityScheduler127.)

Throws
IllegalArgumentException Thrown when release is not compatible with the associ-

ated scheduler. Also when this schedulable may not use the heap and release
is located in heap memory.

IllegalAssignmentError when this object cannot hold a reference to release or release
cannot hold a reference to this.

IllegalSchedulableStateException when the task is running and the new release
parameters are not compatible with the current scheduler.

Returns
this

126Section 6.3.3.10
127Section 6.3.3.8

84 RTSJ 2.0 (Draft 48)

RealtimeThread javax.realtime 5.3

setScheduler(Scheduler)

Signature
public javax.realtime.RealtimeThread
setScheduler(Scheduler scheduler)

Description
Sets the reference to the Scheduler object. The timing of the change must be
agreed between the scheduler currently associated with this schedulable, and
scheduler. If the Schedulable is running, its associated SchedulingParameters (if
any) must be compatible with scheduler.

For an instance of RealtimeThread, the Schedulable is running when RealtimeThread.
start()128 has been called on it and RealtimeThread.join() would block.

Parameters
scheduler scheduler A reference to the scheduler that will manage execution of this

schedulable. Null is not a permissible value.
Throws
IllegalArgumentException IllegalArgumentException Thrown when scheduler is

null, or the schedulable’s existing parameter values are not compatible with
scheduler. Also when this schedulable may not use the heap and scheduler is
located in heap memory.

IllegalAssignmentError IllegalAssignmentError when the schedulable cannot hold a
reference to scheduler or the current Schedulable is running and its associated
SchedulingParameters are incompatible with scheduler.

SecurityException SecurityException when the caller is not permitted to set the
scheduler for this schedulable.

IllegalSchedulableStateException IllegalSchedulableStateException when scheduler
has scheduling or release parameters that are not compatible with the new
scheduler and this schedulable is running.

Returns
this

setScheduler(Scheduler, SchedulingParameters, ReleasePar-
ameters, MemoryParameters)

Signature
128Section 5.3.2.2.2

RTSJ 2.0 (Draft 48) 85

5 Realtime Threads RealtimeThread

public javax.realtime.RealtimeThread
setScheduler(Scheduler scheduler,

SchedulingParameters scheduling,
ReleaseParameters release,
MemoryParameters memoryParameters)

Description
Sets the scheduler and associated parameter objects. The timing of the change
must be agreed between the scheduler currently associated with this schedulable,
and scheduler.

Parameters
scheduler A reference to the scheduler that will manage the execution of this

schedulable. Null is not a permissible value.
scheduling A reference to the SchedulingParameters129 which will be associated

with this. When null, the default value is governed by scheduler (a new object
is created when the default value is not null). (See PriorityScheduler130.)

release A reference to the ReleaseParameters131 which will be associated with this.
When null, the default value is governed by scheduler (a new object is created
when the default value is not null). (See PriorityScheduler132.)

memoryParameters A reference to the MemoryParameters133 which will be associ-
ated with this. When null, the default value is governed by scheduler (a new
object is created when the default value is not null). (See PriorityScheduler134.)

Throws
IllegalArgumentException Thrown when scheduler is null or the parameter values

are not compatible with scheduler. Also thrown when this schedulable may not
use the heap and scheduler, scheduling release, memoryParameters, or group
is located in heap memory.

IllegalAssignmentError when this object cannot hold references to all the parameter
objects or the parameters cannot hold references to this.

SecurityException when the caller is not permitted to set the scheduler for this
schedulable.

Returns
this

129Section 6.3.3.14
130Section 6.3.3.8
131Section 6.3.3.10
132Section 6.3.3.8
133Section 11.3.2.4
134Section 6.3.3.8

86 RTSJ 2.0 (Draft 48)

Rationale 5.4

setSchedulingParameters(SchedulingParameters)

Signature
public javax.realtime.RealtimeThread
setSchedulingParameters(SchedulingParameters scheduling)

Description
Sets the scheduling parameters associated with this instance of Schedulable.

This change becomes effective under conditions determined by the scheduler
controlling the schedulable. For instance, the change may be immediate or it
may be delayed until the next release of the schedulable. See the documentation
for the scheduler for details.

Parameters
scheduling A reference to the SchedulingParameters135 object. When null, the

default value is governed by the associated scheduler (a new object is created
when the default value is not null). (See PriorityScheduler136.)

Throws
IllegalArgumentException Thrown when scheduling is not compatible with the

associated scheduler. Also when this schedulable may not use the heap and
scheduling is located in heap memory.

IllegalAssignmentError when this object cannot hold a reference to scheduling or
scheduling cannot hold a reference to this.

IllegalSchedulableStateException when the task is active and the new scheduling
parameters are not compatible with the current scheduler.

Returns
this

5.4 Rationale
Realtime programming requires a schedule method radically different than what
a conventional Java programmer would expect, but most other aspects of thread
behavior is the same, it is reasonable to model a realtime thread as a java.lang.Thread.
The main additions that where needed are for adding additional scheduling control
such as release control for asynchronous event handling. Here asynchronous includes
periodic releases, since release is asynchronous with regards to the executing code.

135Section 6.3.3.14
136Section 6.3.3.8

RTSJ 2.0 (Draft 48) 87

5 Realtime Threads

The RTSJ platform’s priority-preemptive dispatching model is very similar to the
dispatching model found in the majority of commercial realtime operating systems.
The ReleaseParameters and MemoryParameters provided to the RealtimeThread
constructor provide a number of common realtime thread types, including periodic
threads. However, conventional Java thread scheduling is supported. The realtime
priorities are all above the conventional Java priorities to ensure the realtime threads
take precedence over normal tasks.

The MemoryParameters class is provided with a may-use-heap option in order
to enable time-critical schedulables to execute in preference to the garbage collector
given appropriate assignment of execution eligibility when false. The memory access
and assignment semantics of these heapless schedulables are designed to guarantee
that the execution of such threads does not lead to an inconsistent heap state.

88 RTSJ 2.0 (Draft 48)

Chapter 6

Scheduling

Scheduling is a key differentiator between a conventional Java implementation and a
realtime Java implementation. Whereas conventional Java implementations relies on
some sort of fair scheduling, a realtime Java implementation must provide a realtime
scheduler. In a realtime scheduler, ensuring that critical tasks finish on time is more
important than overall throughput or fairness.

The scheduler required by this specification is fixed-priority preemptive with at
least 28 unique priority levels. It is represented by the class FirstInFirstOutScheduler,
a subclass of PriorityScheduler, and is called the base scheduler. As the name implies,
this scheduler does not time-slice threads at a given priority, but rather runs each to
completion, so long as no higher priority thread becomes ready to run and no other
processor is available for the higher priority thread. In that case, the current thread
is preempted by the higher priority thread.

The schedulables required by this specification are denoted by the Schedulable
interface and include the classes RealtimeThread and AsyncBaseEventHandler along
with its subclasses. The base scheduler assigns processor resources according to the
schedulables’ release characteristics, execution eligibility, affinity, and processing
group values. Subclasses of these schedulables are also schedulables and behave as
these required classes.

The scheduler dispatches a schedulable, that is ready to run, on a CPU. Some
systems, such as multicore systems, have more than one CPU to choose from. By
default, a ready schedulable would be dispatched on the next available CPU; however,
the specification provides an interface, Affinity, to control on which sets of CPUs a
given schedulable may run.

An instance of the SchedulingParameters class contains values of execution el-
igibility. A schedulable is considered to have the execution eligibility represented
by the SchedulingParameters object currently bound to it. For implementations
providing only the base scheduler, the scheduling parameters object is an instance of
PriorityParameters (a subclass of SchedulingParameters).

89

6 Scheduling

An instance of the ReleaseParameters class or its subclasses, PeriodicParame-
ters, AperiodicParameters, and SporadicParameters, contains values that define a
particular release characteristic. A schedulable is considered to have the release
characteristics of a single associated instance of the ReleaseParameters class.

For a realtime thread, the scheduler defines the behavior of the realtime thread’s
waitForNextRelease methods. For all Schedulables, the scheduler monitors cost
overrun and deadline miss conditions based on its release parameters. Release
parameters also govern the treatment of the minimum interarrival time for sporadic
schedulables.

The ThreadGroup class has special significance in an RTSJ implementation. As
in conventional Java, the maximum priority of a thread is governed in part by its
thread group, but the CPU affinity of a thread is also governed by its thread group
along with the Affinity class. Furthermore, there are two important subclasses:
SchedulingGroup and ProcessingGroup. These classes provide additional means of
managing tasks.

An instance of the SchedulingGroup provides scheduling constraints for schedula-
bles similar to how a TheadGroup does for conventional Java threads. The scheduler
and maximum SchedulingParameters can be set. A schedulable can only be created
in an instance of SchedulingGroup or its subclass. Therefore the root thread group
and the thread group of the initial thread must both be scheduling groups in an
RTSJ implementation.

The ProcessingGroup class is a subclass of SchedulingGroup. An instance of the
ProcessingGroup class contains values that define a temporal scope for a processing
group. When a schedulable has an associated instance of the ProcessingGroup
class, it is said to execute within the temporal scope defined by that instance. A
single instance of the ProcessingGroup class can be, and typically is, associated
with many schedulables. In an implementation that supports cost enforcement, the
combined processor demand of all of the schedulables associated with an instance
of the ProcessingGroup class must not exceed the values in that instance (i.e., the
defined temporal scope). The processor demand is determined by the Scheduler.

The scheduling classes provide the necessary support for realtime scheduling.
These classes
• enable the definition of schedulables,
• manage the assignment of execution eligibility to schedulable objects,
• manage the execution of instances of the AsyncBaseEventHandler and Real-

timeThread classes,
• assign release characteristics to schedulables,
• assign execution eligibility values to schedulables, and
• manage the execution of groups of schedulables that collectively exhibit addi-

tional release characteristics.

90 RTSJ 2.0 (Draft 48)

Definitions 6.1

6.1 Definitions
Task — A unit of independent execution. In conventional Java, this is a thread.

The Schedulable interface marks realtime tasks. The classes that implement
Schedulable are subject to the scheduling behavior of realtime schedulers.
Instances of these classes are referred to as Schedulables (SO) and provide four
execution states: executing, eligible-for-execution, blocked, and descheduled.
1. Executing refers to the state where the schedulable is currently running

on a processor.
2. Blocked refers to the state where the schedulable is not among those

schedulables that could be selected to have their state changed to executing.
The blocked state will have a reason associated with it, e.g., blocked-for-
I/O-completion, blocked-for-release-event, or blocked-by-cost-overrun.

3. Eligible-for-execution refers to the state where the schedulable could be
selected to have its state changed to executing.

4. Descheduled refers to the state where the schedulable is ineligible to be
released.

Each type of schedulable defines its own release events, for example, the release
events for a periodic schedulable are caused by the passage of time and occur
at programmatically specified intervals.

Release — The changing of the state of a schedulable from blocked-for-release-event
to eligible-for-execution. When the state of a schedulable is blocked-for-release-
event and a release event occurs then the state of the schedulable is changed
to eligible-for-execution. Otherwise, a state transition from blocked-for-release-
event to eligible-for-execution is queued; this is known as a pending release.
When the next transition of the schedulable into state blocked-for-release-
event occurs, and there is a pending release, the state of the schedulable is
immediately changed to eligible-for-execution. (Some actions implicitly clear
any pending releases.)

Completion — The changing of the state of a schedulable from executing to
blocked-for-release-event. Each completion corresponds to a release. A realtime
thread is deemed to complete its most recent release when it terminates.

Deadline — A time before which a schedulable should complete. The ith deadline
is associated with the ith release event and a deadline miss occurs when the ith
completion would occur after the ith deadline.

Deadline Monitoring — The process by which the implementation responds to
deadline misses. When a deadline miss occurs for a schedulable object, the
deadline miss handler, if any, for that schedulable is released. This behaves
as if there were an asynchronous event associated with the schedulable, to
which the miss handler was bound, and which was fired when the deadline miss
occurred.

RTSJ 2.0 (Draft 48) 91

6 Scheduling

Periodic, Sporadic, and Aperiodic — Adjectives applied to schedulables which
describe the temporal relationship between consecutive release events. Let Ri

denote the time at which a schedulable has had the ith release event occur.
Ignoring the effect of release jitter:

1. a schedulable is periodic when there exists a value T > 0 such that for all
i, Ri+1 −Ri = T , where T is called the period;

2. a schedulable that is not periodic is said to be aperiodic; and
3. an aperiodic schedulable is said to be sporadic when there is a known

value T > 0 such that for all i, Ri+1 − Ri >= T . T is then called the
minimum interarrival time (MIT).

Cost — The maximum amount of CPU time that a schedulable is allowed between
a release and its associated completion.

Current CPU Consumption — The amount of CPU time that the schedulable
has consumed since its last release.

Cost Overrun — The time at which a schedulable’s current CPU consumption
becomes greater than, or equal to, its cost.

Cost Monitoring — The process by which the implementation tracks CPU con-
sumption and responds to cost overruns. When a cost overrun occurs for a
schedulable, its cost overrun handler, if any, is released. This behaves as if
there were an asynchronous event associated with the schedulable, to which
the overrun handler was bound, and which is fired when a cost overrun occurrs.

Cost Enforcement — The process by which the implementation ensures that
the CPU consumption of a schedulable is no more than the value of the
cost parameter in its associated ReleaseParameters. (Cost enforcement is an
optional facility in an implementation of the RTSJ.)

Base Priority — The priority assigned to a task, either in its associated Priority-
Parameters object or by Thread.setPriority; the base priority of a Java thread
is the priority returned by its getPriority method.

Enforced Priority — A priority below the idle priority, which ensures the sched-
ulable has no execution eligibility.

Active Priority — The execution eligibility criterion for the priority-based sched-
ulers. It is the maximum of the base (or enforced priority) and any priority a
task has acquired due to the action of priority inversion avoidance algorithms
(see the Synchronization Chapter).

Processing Group — A collection of tasks whose combined execution has further
execution time constraints which the scheduler uses to govern the group’s
execution eligibility.

Base Scheduler — An instance of the FirstInFirstOutScheduler class as defined
in this specification. This is the initial default scheduler.

Round-Robin Scheduler — An instance of the RoundRobinScheduler class as

92 RTSJ 2.0 (Draft 48)

Semantics 6.2

defined in this specification. It is specified to execute in tandem with the base
scheduler in a predictable fashion.

Processor — A logical processing element that is capable of physically executing a
single thread of control at any point in time. Hence, multicore platforms have
multiple processors, platforms that support hyperthreading also have more
than one processor. It is assumed that all processors are capable of executing
the same instruction sets.

Affinity — A set of processors on which the global scheduling of a schedulable can
be supported.

Idle Task — A notional system or VM-provided task that consumes all CPU time
not used by other tasks. It may be an actual process or thread, or it may be
a power-saving mode that halts or slows the CPU, or it may be an artificial
construction. For the purposes of this specification, it has a priority below that
of all nonblocked tasks and above that of tasks blocked due to cost overrun.
Details of its implementation are not specified here.

6.2 Semantics
Scheduling semantics determines when each task runs. Both The Java Virtual
Machine Specification[6] and The Java Language Specification[5] are silent on the
semantics for scheduling; only the semantics for synchronization is provided. Since
scheduling is central to realtime programming, a detail semantic applicable across all
available scheduler algorithms is defined below, along with definitions of the required
scheduling algorithms. Semantics that apply to particular classes, constructors,
methods, and fields can be found in the class description and the constructor,
method, and field detail sections.

6.2.1 Schedulers
There are four basic requirements for schedulers.

1. A scheduler may only change the execution eligibility of the schedulables which
it manages and only in accordance with its scheduling algorithm.

2. Each scheduler provided for application code by an RTSJ implementation must
have documentation describing its semantics including at least the following:
the algorithm used to determine eligibility, what schedulables may be scheduled
by it, the subclasses of Scheduler and SchedulingParameters used to control
the scheduler, and any other classes needed by the scheduler.

3. Every implementation must provide a round-robin scheduler and a first in first
out scheduler using priorities above the ten (1–10) conventional Java priorities
as documented below.

RTSJ 2.0 (Draft 48) 93

6 Scheduling

4. Tasks with a conventional Java priority (1–10) must be scheduled such that
when two or more threads run at the same priority, one thread cannot block
another indefinitely or violate the requirements dictated by java.lang.Thread.

5. Tasks with a conventional Java priority must be scheduled using some sort of
fair scheduler such that higher-priority Java tasks cannot starve lower-priority
Java tasks indefinitely.

The scheduler can be changed independently of the SchedulingParameters and
vice versa only when the Schedulable in question is descheduled. Rescheduling will
throw an IllegalSchedulableStateException when called on a Schedulable scheduling
parameters that are inconsistent with its scheduler. Trying to add a handler with
SchedulingParameters that do not match its scheduler to an event will also result in
an IllegalSchedulableStateException being thrown.

6.2.1.1 Parameter Values

A scheduler uses the values contained in the different parameter objects associated
with a schedulable to control the behavior of the schedulable. The scheduler deter-
mines what values are valid for the schedulables it manages, which defaults apply and
how changes to parameter values are acted upon by the scheduler. Invalid parameter
values result in exceptions, as documented in the relevant classes and methods.

1. The default values for the priority schedulers are as follows.
(a) Scheduling parameters are copied from the creating schedulable when

possible; when the creating schedulable does not have scheduling parame-
ters, the default is an instance of the default parameters for the prevailing
scheduler when the schedulable starts.

(b) The default for release depend on the type of schedulable:
i. for instance of RealtimeThread the default is an instance of Back-

groundParameters with default values (seeAperiodicParameters), and
ii. for instance of AsyncBaseEventHandler the default is an instance of

aperiodic parameters with default values (see AperiodicParameters).
(c) Memory parameters default to null which signifies that memory allocation

by the schedulable is not constrained by the scheduler.
(d) The default scheduling parameter values for parameter objects created by

a schedulable controlled by the base scheduler are given by the following
table (see FirstInFirstOutScheduler).

Attribute Default Value
Priority parameters
priority norm priority
Importance parameters
importance No default.

A value must be supplied.

94 RTSJ 2.0 (Draft 48)

Semantics 6.2

2. All numeric or RelativeTime attributes in parameter values must be greater
than or equal to zero.

3. Values of period must be greater than zero.
4. Changes to scheduling, release, memory, and processing group parameters,

either by methods on the schedulables bound to the parameters or by altering
the parameter objects themselves, potentially modify the behavior of the
scheduler with regard to those schedulables. When such changes in behavior
take effect depends on the parameter in question, and the type of schedulable,
as described below.

5. When changes to a parameter type—scheduling, release, memory, and process-
ing group—take effect depends on the parameter type.
(a) Changes to scheduling parameters take effect immediately except when

constrained by priority inversion avoidance algorithms.
(b) Changes to release parameters depend on the parameter being changed,

the type of release parameter object, and the type of schedulable.
i. Changes to the deadline and the deadline miss handler take effect at

each release event as follows: when the ith release event occurred at
a time ti, then the ith deadline is the time ti + Di, where Di is the
value of the deadline stored in the schedulable’s release parameters
object at the time ti. When a deadline miss occurs then it is the
deadline miss handler that was installed in the schedulable’s release
parameters at time ti that is released.

ii. Changes to cost and the cost overrun handler take effect immediately.
iii. Changes to the period and start time values in PeriodicParameters

objects are described in “Release of a Realtime Thread” below.
iv. Changes to the additional values in ReleaseParameters objects and

SporadicParameters are described, respectively, in “General Release
Control” and “Sporadic Release Control”, below.

v. Changes to the type of release parameters object generally take effect
after completion, except as documented in the following sections.

(c) Changes to memory parameters take effect immediately.
(d) Changes to processing group parameters take effect as described in “Pro-

cessing Groups” below.
(e) Changes to the scheduler responsible for a schedulable object take effect

at completion.
(f) Changes to cost enforcement state, i.e., enabling or disabling cost enforce-

ment on a processing group or release parameters object associated with
one or more schedulables, take effect at the next release of the associated
ProcessingGroup or associated Schedulable, respectively.

RTSJ 2.0 (Draft 48) 95

6 Scheduling

6.2.1.2 Release Control

Schedulables are released in response to the occurance of events, such as starting
a realtime thread, calling the release method of a realtime thread, or firing the
asynchronous event associated with an asynchronous event handler. The occurrence
of these events, each of which is a potential release event, is termed an arrival, and
the time that they occur is termed the arrival time. The only difference between a
periodic and an aperiodic event is the regularity of the arrival times.

A scheduler behaves effectively as if it maintained a queue, called the arrival time
queue, for each schedulable object. This queue maintains information related to each
release event, including any parameters passed with the release mechanism, from its
“arrival” time until the associated release completes, or another release event occurs,
whichever is later. When an arrival is accepted into the arrival time queue, then it is
a release event and the time of the release event is the arrival time. The initial size
of this queue is an attribute of the schedulable’s aperiodic parameters, and is set
when an aperiodic parameter object is first associated with the schedulable. Over
time, the queue may become full and its behavior in this situation is determined by
the queue overflow policy specified in the schedulable’s aperiodic parameters. The
enumeration class QueueOverflowPolicy defines four overflow policies.

Policy Action on Overflow
IGNORE Silently ignore the arrival. The arrival is not accepted, no

release event occurs, and, when the arrival was caused pro-
grammatically, such as by invoking fire on an asynchronous
event, the caller is not informed that the arrival has been
ignored.

EXCEPT Throw an ArrivalTimeQueueOverflowException. The ar-
rival is not accepted, and no release event occurs, but when
the arrival was caused programmatically, the caller will have
ArrivalTimeQueueOverflowException thrown.

REPLACE The arrival replaces the latest release in the queue, when
there is one, but no new release event occurs. When the
completion associated with the last release event in the
queue has not yet occurred, and the deadline has not been
missed, the release event time for that release event is re-
placed with the arrival time of the new arrival and any
associated parameters overwritten. This will alter the dead-
line for that release event. When the deadline has already
been missed or the queue length is zero, the behavior of the
REPLACE policy is equivalent to the IGNORE policy.

96 RTSJ 2.0 (Draft 48)

Semantics 6.2

SAVE Behave effectively as if the queue were expanded as nec-
essary to accommodate the new arrival. This expansion
is permanent. The arrival is accepted and a release event
occurs.

DISABLE No queuing takes place. All incoming events increment the
pending fire or release count. I may only be used where
there is no payload and the release parameters are not
sporadic.

Changes to the queue overflow policy take effect immediately. When an arrival
occurs, and the queue is full, the policy applied is the policy as defined at that time.

6.2.1.2.1 Sporadic Release Control

“Sporadic Release Control” is a special case of “Release Control,” where the arrival
time or execution time may be additionaly regulated. Sporadic parameters include
a minimum interarrival time (MIT) which characterizes the expected frequency of
releases. When an arrival is accepted, the implementation behaves as if it calculates
the earliest time at which the next arrival could be accepted, by adding the current
MIT to the arrival time of this accepted arrival. The scheduler guarantees that each
sporadic schedulable it manages, is released at most once in any MIT.

Two mechanisms are specified for enforcing this rule: arrival-Time regulation and
release-time regulation. Arrival-time regulation controls the work-load by considering
the time between arrivals. When a new arrival occurs earlier than the expected next
arrival time then a MIT violation has occurred, and the scheduler acts to prevent
a release from occurring that would break the “one release per MIT” guarantee.
Release-time regulation controls when events are released. Under this policy all
arrivals that can be queued under the current QueueOverflowPolicy are accepted,
but the scheduler behaves effectively as if released schedulable objects were further
constrained by a scheduling policy that restricts releases to at most one release per
MIT. As described in the following tables, three types of arrival-time regulation and
one type of release-time regulation are supported.

Arrival-Time Regulation
Policy Action on Violation

IGNORE Silently ignore the violating arrival. The arrival is not
accepted, no release event occurs, and, when the arrival
was caused programmatically (such as by invoking fire on
an asynchronous event), the caller is not informed that the
arrival has been ignored.

RTSJ 2.0 (Draft 48) 97

6 Scheduling

EXCEPT Throw a MITViolationException. The arrival is not ac-
cepted, and no release event occurs, but when the arrival
was caused programmatically, the caller will have MITVio-
lationException thrown.

REPLACE The arrival is not accepted and no release event occurs.
When the completion associated with the last release event
in the queue has not yet occurred, and the deadline has not
been missed, then the release event time for that release
event is replaced with the arrival time of the new arrival and
any associated parameters overwritten. This will alter the
deadline for that release event. When the completion associ-
ated with the last release event has occurred, or the deadline
has already been missed, the behavior of the REPLACE
policy is equivalent to the IGNORE policy.

Arrival-Time Regulation
Policy Action on Violation
SAVE The arrival time is delayed until after the current MIT

interval. This policy is only able to delay the effective
release of a schedulable. The deadline of each release event
is always set relative to its arrival time. This policy might
not schedule the effective release of an async event handler
until after its deadline has passed. In this case, the deadline
miss handler is released at the deadline time even though the
related async event has not yet reached its effective release.
Once an arrival is queued, the SAVE policy makes no direct
use of the next expected arrival time, but it maintains the
value in case the MIT violation policy is changed from
SAVE to one of the arrival-time regulation policies.

The effective release time of a release event i is the earliest time that the handler
can be released in response to that release event. It is determined for each release
event based on the MIT policy in force at the release event time.

1. For IGNORE, EXCEPT and REPLACE the effective release time is the release
event time.

2. For SAVE the effective release time of release event i is the effective release
time of release event i-1 plus the current value of the MIT.

The scheduler will delay the release associated with the release event at the head of
the arrival time queue until the current time is greater than or equal to the effective
release time of that release event.

Changes to minimum interarrival time and the MIT violation policy take effect

98 RTSJ 2.0 (Draft 48)

Semantics 6.2

immediately, but only affect the next expected arrival time, and effective release
time, for release events that occur after the change.

6.2.1.2.2 Releasing a Realtime Thread

The repeated release of a realtime thread is achieved by executing in a loop
and invoking the RealtimeThread.waitForNextRelease1 methods, or its interruptible
equivalent RealtimeThread.waitForNextReleaseInterruptible) within that loop. For
simplicity, unless otherwise stated, the semantics in this section apply to both forms
of this method.

1. A realtime thread’s release characteristics are determined by the following:
(a) the invocation of the realtime thread’s start method and the value of its

phasing policy parameter (if applicable);
(b) the action of the RealtimeThread methods waitForNextRelease, schedule,

and deschedule;
(c) the occurrence of deadline misses and whether or not a miss handler is

installed; and
(d) whether the passing of time generates periodic release events or calls to

the release method generates aperiodic release events.
2. The initial release event depends on the type of release parameters given the

realtime thread:
(a) for a realtime thread with periodic parameters, the initial release event

occurs in response to the invocation of its start method in accordance
with the start time specified in its release parameters and its assigned
phasing policy—see PeriodicParameters and PhasingPolicy;

(b) For a realtime thread with aperiodic parameters, the initial release event
occurs immediately in response to the invocation of its start method.

3. Changes to the start time in a realtime thread’s PeriodicParameters object
only have an effect on its initial release time. Consequently, when a Periodic-
Parameters object is bound to multiple realtime threads, a change in the start
time may affect all, some or none, of those threads, depending on whether or
not start has been invoked on them.

4. When subsequent release events occur also depends on the type of release
parameters given to the realtime thread:
(a) for periodic realtime threads, each period (and hence each release) falls

due, except as described below (in 6d), at regular intervals such that when
the ith release event occurred at a time ti, the i+ 1 release event occurs at
the time ti + Ti, where Ti is the value of the period stored in the realtime

1The method RealtimeThread.waitForNextPeriod has been replaced by RealtimeThread.wait-
ForNextRelease as of RTSJ 2.0. The same goes for its interruptible equivalent.

RTSJ 2.0 (Draft 48) 99

6 Scheduling

thread’s PeriodicParameters object at the time ti;
(b) for aperiodic realtime threads, a release occurs with each call of the release

method, except as described below (in 6d); and
(c) for sporadic realtime threads, a release occurs with each call of the release

method, except, as described below (in 6d), when additional regulation is
required to enforce MIT as defined in Sporadic Release Control below.

5. Each release of an aperiodic realtime thread is an arrival.
(a) When the thread has release parameters of type ReleaseParameters, then

the arrival may become a release event for the thread according to the
semantics given in “General Release Control” below.

(b) When the thread has release parameters of type SporadicParameters, then
the arrival may become a release event for the thread according to the
semantics given in “Sporadic Release Control” below.

6. The implementation should behave effectively as if the following state variables
were added to a realtime thread’s state,
boolean deschedule,
integer pendingReleases,
integer missCount, and
boolean lastReturn;

and manipulated by the actions as described below.
(a) Initially

deschedule = false,
pendingReleases = 0,
missCount = 0, and
lastReturn = true.

(b) The function of the deschedule method depends on the current state of
the realtime thread.
i. When current state is a blocked state, either blocked-for-release-event

or blocked-for-missed-release, it sets the value of deschedule to true
and set the thread’s state to descheduled.

ii. When the current state is not a blocked state, it just sets the value
of deschedule to true.

(c) The function of the reschedule method also depends on the current state
of the realtime thread.
i. When the realtime thread is in the Descheduled state, it sets the

value of deschedule to false, sets the values of pendingReleases and
missCount to zero, changes the thread’s state to descheduled, and tell
the cost monitoring and enforcement system to reset for this thread.

ii. When the realtime thread is not in the Descheduled state, it just sets
the value of deschedule to false.

(d) A realtime thread that is in the Descheduled state will not receive any

100 RTSJ 2.0 (Draft 48)

Semantics 6.2

further release events until after it has been rescheduled by a call to
reschedule; this means that no deadline misses can occur.

(e) What happens when a release event occurs depends on the current state.
i. When the state of the realtime thread is descheduled, do nothing.
ii. When the state is blocked-for-release-event, i.e., it is waiting in wait-

ForNextRelease, increment the value of pendingReleases, inform cost
monitoring and enforcement that the next release event has occurred,
and notify the thread to make it eligible for execution;

iii. Otherwise, when the thread is in a release, increment the value of
pendingReleases, and inform cost monitoring and enforcement that
the next release event has occurred.

(f) On each deadline miss, one of two things happen:
i. when the realtime thread has a deadline miss handler, the value

of deschedule is set to true, the handler is atomically released with
its fireCount increased by the value of missCount + 1, and zero for
missCount;

ii. otherwise, one is added to the missCount value.
(g) When the waitForNextRelease method is invoked by the current realtime

thread there are three possible behaviors depending on the value of
missCount and lastReturn.
i. When missCount is zero, any pending parameter changes are applied,

cost monitoring and enforcement are informed of completion, and
then the thread waits while deschedule is true, or pendingReleases
is zero. Then the lastReturn value is set to true, pendingReleases is
decremented, and true is returned.

ii. When missCount is greater than zero and the lastReturn value is
false, completion occurs: the missCount value is decremented; then
any pending parameter changes are applied, pendingReleases is decre-
mented, cost monitoring and enforcement is informed that the realtime
thread has completed, and false is returned;

iii. Otherwise, when missCount is greater than zero and the lastReturn
value is true, the missCount value is decremented and the lastReturn
value is set to false and false is returned.

7. An invocation of the RealtimeThread.waitForNextRelease method with re-
lease parameters where ReleaseParameters.isRousable return true behaves as
described above with the following differences.
(a) When the invocation commences with an instance of AsynchronouslyIn-

terruptedException (AIE) is pending on the realtime thread, then the
invocation immediately completes abruptly by throwing that pending
instance as an InterruptedException. When this occurs, the most recent

RTSJ 2.0 (Draft 48) 101

6 Scheduling

release has not completed. When the pending instance is the generic AIE
instance, then the interrupt state of the realtime thread is cleared.

(b) What happens when an instance of AIE becomes pending on a realtime
thread is dependent on the state of the thread.
i. When the thread is descheduled, the AIE remains pending until the

realtime thread is no longer descheduled. The associated reschedule
acts as a release event. Execution then continues as in 7c where
the time value used as tint is the time at which the schedulable was
rescheduled.

ii. When it is blocked-for-release-event, then this acts as a release event.
Execution then continues as in 7c, where the time value used as tint

is the time at which the AIE becomes pending.
(c) i. The realtime thread is made eligible for execution.

ii. Upon execution, the invocation completes abruptly by throwing the
pending AIE instance as an InterruptedException. When the pending
instance is the generic AIE instance, the interrupt state of the realtime
thread is cleared.

iii. The deadline associated with this release is the time tint+Dint, where
Dint is the value of the deadline stored in the realtime thread’s release
parameters object at the time tint.

iv. The next release time for the realtime thread will be tint+Tint, where
Tint is the value of the period stored in the realtime thread’s release
parameters object at the time tint.

v. Cost monitoring and enforcement is informed of the release event.
When the thrown AIE instance is caught, the AIE becomes pending again (as
per the usual semantics for AIE) until it is explicitly cleared.

8. Changes to release parameter types are treated as a pseudo RESTART of the
realtime thread and
(a) any old pending releases are cleared,
(b) any old arrival queue is flushed,
(c) any outstanding call to deschedule is cleared, and
(d) any outstanding deadline misses are cleared.

9. The effect of the change on the thread falls into one of four main cases.
(a) When the realtime thread is not waiting for next release event and is not

descheduled,
i. there is no effect until the end of current release, and
ii. when the change occurs, it is a pseudo restart of the thread, i.e., when

the new parameters are aperiodic, the release is immediate and when
the parameters are periodic, the periodic start time algorithm is used.

(b) When the realtime thread is not waiting for next release event, but there

102 RTSJ 2.0 (Draft 48)

Semantics 6.2

is an outstanding deschedule,
i. there is an immediate “schedule” of the thread,
ii. there is no further effect until end of current release, and
iii. when change occurs, it is a pseudo restart of the thread, i.e., when

new parameters are aperiodic, the release is immediate, and when new
parameters are periodic, the periodic start time algorithm is used.

(c) When the realtime thread state is blocked-for-release-event, i.e., it is
waiting in waitForNextRelease, and the release parameter type is changed,
i. from Periodic to Aperiodic, at the next periodic release event occurs,

the thread becomes aperiodic with an immediate release, or
ii. from Aperiodic to Periodic, there is an immediate pseudo restart of

the thread using the periodic start time algorithm.
(d) When the realtime thread state is descheduled and the of release parame-

ters is changed,
i. the change is from Periodic to Aperiodic, there is an immediate
“schedule” of the thread, and when the next periodic release event
occurs, the thread becomes aperiodic with an immediate release, or

ii. the change is from Aperiodic to Periodic, there is an immediate
“schedule” of the thread and there is an immediate pseudo restart of
the thread using the periodic start time algorithm.

6.2.1.2.3 UML Diagrams for Realtime Thread Releases

The three UML diagrams in Figures 6.1, 6.2, and 6.3, are provided to illustrate
the foregoing rules for releasing realtime threads. The first two figures are for a
thread without a deadline miss handler. The first is a UML sequence diagram of
some example Realtime Thread releases. The second is a UML state chart of the
release process for a realtime thread. The third is a UML state chart of the release
process for a realtime thread with a deadline miss handler.

In Figure 6.1, a yellow background marks the execution of a normal release, an
orange background marks the execution of a miss handler, and a red background
marks the execution of a missed release. Both the miss handler and all missed
releases are eligible to run as soon as the previous release is finish. A normal release,
which encounters a deadline miss during its execution is not complete until its miss
handler completes.

In the other two figures, a yellow background marks releases and a pink background
marks blocked states. There are three release states: normal release, miss handler,
and missed release. They can only be left by a call to waitForNextRelease or its
equivalent. The miss handler state is part of a normal release that misses its deadline
during the release. There are two blocked-for-release-event states: blocked for normal

RTSJ 2.0 (Draft 48) 103

6 Scheduling

release and blocked for missed release. It is only in these states that descheduling
can occur, because only completion occurs upon their entry. In addition, the blocked
for missed release is a ephemeral state, since the deadline miss has already occurred
before the state is entered, so state is left immediately. It is there to enable all
actions that occur on completion.

6.2.1.2.4 Releasing an Asynchronous Event Handlers

Asynchronous event handlers can be associated with one or more asynchronous
events. When an asynchronous event is fired, all handlers associated with it are
released, according to the semantics below.

1. Each firing of an associated asynchronous event is an arrival. Unless the handler
has release parameters of type SporadicParameters, the arrival becomes a
release event for the handler in strict accordance with the semantics given in
“General Release Control” above. When the handler has release parameters of
type SporadicParameters, the arrival becomes a release event for the handler
in strict accordance with the semantics given in “Sporadic Release Control”
above.

2. For each release event that occurs for a handler, an entry is made in the
arrival-time queue and the handler’s fireCount is incremented by one.

3. Initially, a handler is considered to be blocked-for-release-event and its fireCount
is zero.

4. Releases of a handler are serialized by having its handleAsyncEvent method
invoked repeatedly while its fireCount is greater than zero:
(a) before invoking handleAsyncEvent, the fireCount is decremented and the

front entry (when still present) removed from the arrival-time queue;
(b) each invocation of handleAsyncEvent, in this way, is a release;
(c) the return from handleAsyncEvent is the completion of a release; and
(d) processing of any exceptions thrown by handleAsyncEvent occurs prior

to completion.
5. The deadline for a release is relative to the release event time and determined

at the release event time according to the value of the deadline contained
in the handler’s release parameters. This value does not change, except as
described previously for handlers using a REPLACE policy for MIT violation
or arrival-time queue overflow.

6. The application code can directly modify the fireCount.
(a) The getAndDecrementPendingFireCount method decreases the fireCount

by one (when it is greater than zero), and returns the old value. This
removes the front entry from the arrival-time queue but otherwise has no
effect on the scheduling of the current schedulable, nor the handler itself.

104 RTSJ 2.0 (Draft 48)

Semantics 6.2

Any data parameter passed with the associated fire request is lost.
(b) The getAndClearPendingFireCount method is functionally equivalent to

invoking getAndDecrementPendingFireCount until it returns zero, and
returning the original fireCount value. Any data parameters passed with
the associated fire requests are lost.

7. The scheduler may delay the invocation of handleAsyncEvent to ensure the
effective release time honors any restrictions imposed by the MIT violation
policy, when applicable, of that release event.

8. Cost monitoring and enforcement for an asynchronous event handler interacts
with release events and completions as previously defined with the added
requirement that at the completion of handleAsyncEvent, when the fireCount
is now zero, then the cost monitoring and enforcement system is told to reset
for this handler.

9. The value of ReleaseParameters.isRousable controls whether a call to Schedul-
able.interrupt causes a premature release or only affects a running schedulable.
(a) When interrupt is called on an instance of Schedulable and the schedulable

is running, the interrupt is made pending and as soon as AI code is entered,
an AIE is thrown.

(b) Depending on the value of the isRousable property, start will prematurely
complete, i.e., start user code, or simply wait for the start time to occur.

(c) Depending on the value of the isRousable property, the next release of a
firable handler, i.e., an enabled instance of AsyncBaseEventHandler which
is attached to an instance of AsyncBaseEvent, will occur immediately or
not, but in both cases an AIE will be pending until the next AI method.

6.2.1.3 Dispatching

The execution scheduling semantics described in this section are defined in terms of
a conceptual model that contains a set of queues of schedulables that are eligible for
execution. There is, conceptually, one queue for each scheduler eligibility on each
processor. No implementation structures are necessarily implied by the use of this
conceptual model. It is assumed that no time elapses during operations described
using this model, and therefore no simultaneous operations are possible.

The RTSJ dispatching model specifies its dispatching rules in terms of task
priority for priority schedulers, but other schedulers should act simularly with respect
to their own scheduler eligibility levels.

1. A Schedulable can become a running schedulable only when it is ready and
one of the processors in its requested affinity is available.

2. When two schedulables have different active priorities and request the same
processor, the schedulable with the higher active priority will always execute
in preference to the schedulable with the lower value when both are eligible for

RTSJ 2.0 (Draft 48) 105

6 Scheduling

execution.
3. Processors are allocated to schedulables based on each schedulable’s active

priority and their associated affinity.
4. Schedulable dispatching is the process by which one ready schedulable is

selected for execution on a processor. This selection is done at certain points
during the execution of a schedulable called schedulable dispatching points.

5. A schedulable reaches a schedulable dispatching point whenever it becomes
blocked, when it terminates, or when a higher priority schedulable becomes
ready for execution on its processor. That is, a schedulable that is executing
will continue to execute until it either blocks, terminates or is preempted by a
higher-priority schedulable.

6. The dispatching policy is specified in terms of ready queues and schedulable
states. The ready queues are purely conceptual; there is no requirement that
such lists physically exist in an implementation. A ready queue is an ordered
list of ready schedulable objects. The first position in a queue is called the
head of the queue, and the last position is called the tail of the queue.

7. A schedulable is ready when it is in a ready queue, or when it is running. Each
processor has one ready queue for each priority value. At any instant, each
ready queue of a processor contains exactly the set of schedulables of that
priority that are ready for execution on that processor, but are not running on
any processor; that is, those schedulables that are ready, are not running on
any processor, and can be executed using that processor.

8. Each processor has one running schedulable, which is the schedulable currently
being executed by that processor. Whenever a schedulable running on a
processor reaches a schedulable dispatching point, a new schedulable object
is selected to run on that processor. The schedulable selected is the one at
the head of the highest priority nonempty ready queue for that processor; this
schedulable is then removed from all ready queues to which it belongs.

9. In a multiprocessor system, a schedulable can be on the ready queues of more
than one processor. At the extreme, when several processors share the same set
of ready schedulables, the contents of their ready queues are identical, and so
they can be viewed as sharing one ready queue, and can be implemented that
way. Thus, the dispatching model covers multiprocessors where dispatching
is implemented using a single ready queue, as well as those with separate
dispatching domains.

10. The dispatching mechanism must enable the preemption of the execution of
schedulables and Java threads with a bounded delay at a point not governed
by the preempted object. The bound on this delay may be implementation-
defined, and could be the time to the next point in execution that the heap is
in a consistent state or some similar restriction. The implementation should

106 RTSJ 2.0 (Draft 48)

Semantics 6.2

document this bound.
11. A schedulable that is preempted by a higher priority schedulable is placed in

the queue for its active priority, at a position determined by the implementation.
The implementation must document the algorithm used for such placement. It
is recommended that a preempted schedulable be placed at the front of the
appropriate queue.

12. A realtime thread that performs a yield() is placed at the tail of the queue
(dictated by its affinity) for its active priority level.

13. A blocked schedulable that becomes eligible for execution is added to the tail
of the queues (dictated by its affinity) for that priority. This behavior also
applies to the initial release of a schedulable.

14. A schedulable whose active priority is raised as a result of explicitly setting
its base priority (through the PriorityParameters setPriority() method, the
RealtimeThread setSchedulingParameters() method, or Thread’s setPriority()
method) is added to the tail of the queues (dictated by its affinity) for its new
priority level.

15. Queuing when priorities are adjusted by priority inversion avoidance algorithms
is governed by semantics specified in the Synchronization chapter.

6.2.1.4 Cost Monitoring and Cost Enforcement

The cost of a schedulable is defined by the value returned by invoking the getCost
method of the schedulable’s release parameters object. When a schedulable is initially
released, its current CPU consumption is zero, and as the schedulable executes, the
current CPU consumption increases. For cost monitoring, an implementation must
conform to the following requirements.

1. If, at any time, due to either execution of the schedulable or a change in the
schedulable’s cost, the current CPU consumption becomes greater than or
equal to the current cost of the schedulable, then a cost overrun is triggered.

2. The implementation is required to document the granularity at which the
current CPU consumption is updated.

3. When a cost overrun is triggered, the cost overrun handler associated with the
schedulable, if any, is released. No further action is taken.

4. The current CPU consumption is reset to zero when the schedulable is next
released (i.e. it moves from the blocked-for-release-event state to the eligible-
for-execution state).

When cost enforcement is supported, an implementation must conform to the
following requirements.

1. When a cost overrun is triggered, in addition to releasing any cost overrun
handler, the following actions must be performed.
(a) When the most recent release of the schedulable is the ith release, and the

RTSJ 2.0 (Draft 48) 107

6 Scheduling

i+ 1 release event has not yet occurred, the following must hold.
i. When the state of the schedulable is either executing or eligible-for-

execution, the schedulable is placed into the state blocked-by-cost-
overrun. There may be a bounded delay between the time at which a
cost overrun occurs and the time at which the schedulable becomes
blocked-by-cost-overrun.

ii. Otherwise, the schedulable must have been blocked for a reason
other than blocked-by-cost-overrun. In this case, the state change to
blocked-by-cost-overrun is left pending; when the blocking condition
for the schedulable is removed, then its state changes to blocked-by-
cost-overrun. There may be a bounded delay between the time at
which the blocking condition is removed and the time at which the
schedulable becomes blocked-by-cost-overrun.

(b) When the most recent release of the schedulable is the ith release, and the
i+ 1 release event has occurred, the current CPU consumption is set to
zero, the schedulable remains in its current state and the cost monitoring
system considers the most recent release to now be the i+ 1 release.

2. When the ith release event occurs for a schedulable, the action taken depends
on the state of the schedulable.
(a) When the schedulable is blocked-by-cost-overrun then the cost monitoring

system considers the most recent release to be the ith release, the current
CPU consumption is set to zero and the schedulable is made eligible for
execution;

(b) When the schedulable is blocked for a reason other than blocked-by-cost-
overrun then
i. when there is a pending state change to blocked-by-cost-overrun then

the pending state change is removed, the cost monitoring system
considers the most recent release to be the ith release, the current
CPU consumption is set to zero, and the schedulable remains in its
current blocked state;

ii. otherwise, no cost monitoring action occurs.
(c) When the schedulable is not blocked, no cost monitoring action occurs.

3. When the ith release of a schedulable completes, and the cost monitoring system
considers the most recent release to be the ith release, then the current CPU
consumption is set to zero and the cost monitoring system considers the most
recent release to be the i + 1 release. Otherwise, no cost monitoring action
occurs.

4. Changes to the cost parameter take effect immediately.
(a) When the new cost is less than or equal to the current CPU consumption,

and the old cost was greater than the current CPU consumption, then a

108 RTSJ 2.0 (Draft 48)

Semantics 6.2

cost overrun is triggered.
(b) When the new cost is greater than the current CPU consumption,

i. in the case that the schedulable is blocked-by-cost-overrun, the sched-
ulable is made eligible for execution;

ii. in the case that the schedulable is blocked for a reason other than
blocked-by-cost-overrun and there is a pending state change to blocked-
by-cost-overrun, the pending state change is removed;

iii. in all other cases, no cost monitoring action occurs.
5. When a schedulable changes state to blocked-by-cost-overrun, it must behave

as if its base priority has been reduced to the enforced priority. In other words,
unless its active priority has been modified by a priority inversion avoidance
algorithm as defined in this specification, it should not be scheduled on any
CPU. Upon moving out of this state, it will resume execution as if its base
priority had been restored to its configured base priority.

6. The state of the cost monitoring system for a schedulable can be reset by
the scheduler (see 6.2.1.2.2 in the Release of a Realtime Thread section,
below). When the most recent release of the schedulable is considered to be
the mth release and the most recent release event for the schedulable was the
nth release event (where n > m), a reset causes the cost monitoring system to
consider the most recent release to be the nth release, and to zero the current
CPU consumption.

6.2.2 Priority Schedulers
This specification defines a class of scheduler that are priority preemptive. There
sematics assumes a uniprocessor or shared memory multiprocessor execution environ-
ment. Two subclasses are defined: the base scheduler and a round-robin scheduler.

The semantics for the base scheduler is priority preemptive with run to completion
sematics, also known as first-in-first-out (FIFO) semantics: FirstInFirstOutScheduler.
The base scheduler supports the execution of all schedulables. When a schedulable
managed by the base scheduler is scheduled, it will run either until it blocks (as on a
monitor or for some I/O operation), voluntarily relinquishes the CPU (as for sleep),
or is preempted by a higher priority task.

The round-robin scheduler is a fixed-quantum, fixed-priority priority-preemptive
scheduler that interacts predictably with the base scheduler: RoundRobinScheduler.
The time at which a quantum expires may be calculated either from last task switch
or on a heartbeat. It uses the PriorityParameters class for the configuration of
schedulable priorities. It may not be present on all systems, but if it is present
then it will obey the semantics specified here. When a schedulable managed by the
round-robin scheduler is scheduled, it will run no only until it blocks (as on a monitor
or for some I/O operation), voluntarily relinquishes the CPU (as for sleep), or is

RTSJ 2.0 (Draft 48) 109

6 Scheduling

preempted by a higher priority task, as with the base scheduler, but also when its
quantum has expired.

The scheduler is not responsible for ensuring that a release, such as an event
handler, will complete within the quantum. A release which would run longer than
its quantum will be rescheduled at the end of that quantum, when another task with
the same priority is ready to run, even if it has not completed. When this is not the
desired behavior, the FirstInFirstOutScheduler should be used instead.

Both schedulers share the same base class: PriorityScheduler.

6.2.2.1 Priorities

No only the presents or absence of a time quantum, but also the semantics for
scheduling eligibility differs between the base (FIFO) and round-robin schedulers.
Both schedulers use a numerical priority value to determine scheduling eligibility.
A higher value means a higher scheduler eligibility and a lower one means a lower
scheduler eligibility. The values themselves have the same relative meaning between
schedulers, but the details of their semantics vary between the two schedulers.

6.2.2.1.1 First-In-First-Out-Scheduler

The base scheduler is a priority scheduler with the following requirements.
1. The base scheduler must support at least 28 distinct values (realtime priorities)

that can be stored in an instance of PriorityParameters in addition to the values
1 through 10 required to support the priorities defined by java.lang.Thread.

2. The realtime priority values must be greater than 10, and they must include
all integers from the base scheduler’s getMinPriority() value to its getMaxPri-
ority() value inclusive.

3. Higher priority values in an instance of PriorityParameters have a higher
execution eligibility.

4. The 10 priorities defined for java.lang.Thread must effectively have lower
execution eligibility than the realtime priorities.

5. When the round-robin scheduler is present, the base scheduler must support
at least one priority value numerically greater than the maximum allowable
round-robin priority.

6. For realtime scheduling, the base priority of each Schedulable under the con-
trol of the base scheduler must be from the range of realtime priorities. A
Schedulable with a priority in the java.lang.Thread range will be scheduled as
if it were an instance of java.lang.Thread.

7. Assignment of any of the realtime priority values to any Schedulable controlled
by the base priority scheduler is legal. It is the responsibility of application
logic to make rational priority assignments.

110 RTSJ 2.0 (Draft 48)

Semantics 6.2

8. The base scheduler does not use the importance value in the ImportancePa-
rameters subclass of PriorityParameters.

9. Calling the java.lang.Thread.setPriority on a thread can only be used to set
the thread’s priority to a conventional Java priority (1–10).

10. For schedulables managed by the base scheduler, the implementation must not
change the execution eligibility for any reason other than
(a) the implementation of a priority inversion avoidance algorithm requires it,

or
(b) as a result of a program’s request to change the priority parameters

associated with one or more schedulables; e.g., by changing a value in
a scheduling parameter object that is used by one or more schedulables,
or by using setSchedulingParameters() to give a schedulable a different
SchedulingParameters value.

11. Use of Thread.setPriority(), any of the methods defined for schedulables, or any
of the methods defined for parameter objects must not affect the correctness of
the priority inversion avoidance algorithms controlled by PriorityCeilingEmu-
lation and PriorityInheritance—see Chapter7.

12. When schedulable A managed by the base scheduler creates a Java thread, B,
then the initial base priority of B is the minimum of the priority value returned
by the getMaxPriority method of B’s java.lang.ThreadGroup object and the
priority of A.

13. PriorityScheduler.getNormPriority() shall be set to

1 ((PriorityScheduler.getMaxPriority() −
2 PriorityScheduler.getMinPriority()) / 3) +
3 PriorityScheduler.getMinPriority()

14. Hardware priorities, where supported, have values above the base scheduler’s
priority range (see Section 12.2.4).

6.2.2.1.2 The Round-Robin Scheduler

Priorities in the round-robin scheduler are as in the base scheduler, and priority
values are numerically equivalent between the two. Schedulables managed by the
round-robin scheduler behave as if they are scheduled from the same FIFO queue as
schedulables managed by the base scheduler of the same numeric priority, except
that they will consume no more than one quantum of execution time before being
moved to the tail of the queue. Implementations are permitted to use a single, shared
queue for this purpose.

If the round-robin scheduler is present, its priorities will have the same properties
as the base scheduler, except for the following.

RTSJ 2.0 (Draft 48) 111

6 Scheduling

1. The round-robin scheduler must support at least one priority, and may support
an arbitrarily large number of priorities.

2. All round-robin priorities must be greater than 10, and they must include
all integers from the round-robin scheduler’s getMinPriority() value to its
getMaxPriority() value, inclusive.

3. The round-robin scheduler does not use the importance value in the Importan-
ceParameters subclass of PriorityParameters.

4. RoundRobinScheduler.getNormPriority() shall be set to

1 ((RoundRobinScheduler.getMaxPriority() −
2 RoundRobinScheduler.getMinPriority()) / 3) +
3 RoundRobinScheduler.getMinPriority()

The round-robin scheduler may provide priorities strictly lower than that of the
base scheduler or a set of priorities partially or entirely overlapping with the priorities
provided by the base scheduler.

6.2.3 Associating Schedulables with Schedulers
The Scheduler associated with a Schedulable at the time it is started is derived
from its configuration and the configuration of the task (an instance of Thread or
Schedulable) that started it. The start time of a RealtimeThread is the time at which
its RealtimeThread.start() method is invoked, and the start time of an event handler
is the time at which it is attached to an event with AsyncBaseEvent.addHandler().
For the following discussion, let si be the instance of Schedulable being started,
parent be the task from which it is started, ns be some arbitrary scheduler, and sg be
the SchedulingGroup instance associated with si. The Scheduler for si is determined
as follows and in the order stated.

1. When Scheduler.setScheduler(ns) has been used to explicitly configure a sched-
uler for si, that scheduler will be the scheduler associated with si.

2. When parent is an instance of Schedulable and the scheduler associated with
parent is an instance of the class returned by sg.getScheduler(), then the
scheduler associated with si will be the scheduler associated with parent.

3. When parent is not an instance of Schedulable (i.e., it is a Java Thread)
but is currently scheduled with a realtime Scheduler and that scheduler is
an instance of the class returned by sg.getScheduler(), then si will use the
scheduler currently associated with parent.

4. When the default scheduler is an instance of the class returned by sg.getScheduler(),
then si will use the default scheduler.

5. When none of these conditions hold, a scheduler cannot be determined for si
and an IllegalStateException will be thrown.

112 RTSJ 2.0 (Draft 48)

Semantics 6.2

Schedulables must always have a compatible Scheduler and SchedulingParameters
any time these are explicitly configured. This means that appropriate configuration
objects must be passed in at construction time, and that all later changes must be
compatible; if both the Scheduler and SchedulingParameters must be changed in
such a way that neither is compatible with the current configuration, setScheduler
may be called on the Schedulable with both a scheduler and compatible parameters
passed at the same time.

6.2.4 Managing Groups of Schedulables
Conventional Java provides the class ThreadGroup to manage groups of threads.
Only minimal functionality is provided: limiting priority, setting daemon status, and
interrupting a group of threads at once. RTSJ extends this concept in two ways:
limiting CPU affinity on an instance of ThreadGroup through the Affinity class and
providing subclasses for managing Schedulables.

6.2.4.1 Scheduling Groups

The SchedulingGroup subclass of ThreadGroup provides a means of constraining the
possible scheduling parameters and scheduler of tasks. The setMaxPriority method
on ThreadGroup only pertains to tasks scheduled in the conventional Java range
(1–10), and not to tasks scheduled with a realtime scheduler. To ensure that this
works and that conventional thread groups must not need to be scope aware, an
implementation must enforce several restrictions:

1. only tasks in a scheduling group may use a realtime scheduler,
2. instances of Schedulable may only be created in a scheduling group,
3. the root ThreadGroup instance must be an instance of SchedulingGroup,
4. the ThreadGroup instance of the initial thread must be an instance of Schedul-

ingGroup,
5. an instance of SchedulingGroup may not have a parent that is not an instance

of SchedulingGroup, and
6. all children of a SchedulingGroup allocated in a ScopedMemory must be in-

stances of SchedulingGroup.
Furthermore, the enumeration methods on a scheduling group are aware of scoped
memory and the referential integrity restrictions discussed in Chapter 11, Alternative
Memory Areas. The enumeration methods of SchedulingGroup will not return
references to any descendants allocated in a ScopedMemory to which references may
not be made from the current allocation context. That is, if a newly allocated object
in the current allocation context could not safely hold a reference to a descendant of
the ScopedMemory, that descendant will not be included in the array returned by
enumerate(). For processing such SchedulingGroups, a visitor must be used.

RTSJ 2.0 (Draft 48) 113

6 Scheduling

The maximum priority and scheduler restrictions on SchedulingGroup and Thread-
Group apply only to the base priority of a task belonging to that group. Priority
inversion avoidance algorithms (see Chapter 7, Synchronization) may cause a task to
temporarily obtain a priority notionally higher than its maximum base priority as
specified in its associated instance of ThreadGroup.

Changing the maximum eligibility allowed to tasks in a SchedulingGroup (via
the SchedulingGroup.setMaxEligibility(SchedulingParameters) method) takes effect
immediately, and will do the following.

1. For any task t in the affected SchedulingGroup that is associated with a
SchedulingParameters not allowable under the new eligibility restriction, set the
SchedulingParameters associated with t to the SchedulingParameters currently
being set by setMaxEligibility().

2. For any SchedulingGroup child sg of the affected SchedulingGroup that has
a maximum eligibility not allowed under the new eligibility restriction, set
the maximum eligibility of sg to the SchedulingParameters currently being
set by setMaxEligibility(). Note that this will recursively effect the tasks and
SchedulingGroup children in sg.

6.2.4.2 Processing Groups

A processing group is defined by an instance of the ProcessingGroup subclass of
SchedulingGroup and each schedulable that is bound to that parameter object is
called a member of that processing group. A processing group instance acts as a
proxy for its members, but enforcement does have an effect on the execution of
member threads. As a subclass of ThreadGroup, SchedulingGroup instances are
members of the thread group hierarchy of thread groups in the system. Since a
SchedulingGroup may have another SchedulingGroup instance as its ancestor, a task
might be in more than one scheduling group, and hence can be in more than one
processing group.

1. The deadline of a processing group is defined by the value returned by invoking
the getDeadline method of the processing group object.

2. A deadline miss for the processing group is triggered when any member of the
processing group consumes CPU time at a time greater than the deadline for
the most recent release of the processing group.

3. When a processing group misses a deadline:
(a) when the processing group has a miss handler, it is released for execution,
(b) otherwise, the processing group has no miss handler, no action is taken.

4. The cost of a processing group is defined by the value returned by invoking
the getCost method of the processing group object.

5. When a processing group is initially released, its current CPU consumption is
zero and as the members of the processing group execute, the current CPU

114 RTSJ 2.0 (Draft 48)

Semantics 6.2

consumption increases. The current CPU consumption is set to zero in response
to certain actions as described below.

6. Whenever, due to either execution of the members of the processing group or
a change in the group’s cost, the current CPU consumption becomes greater
than or equal to the current cost of the processing group, then a cost overrun
is triggered. The implementation is required to document the granularity at
which the current CPU consumption is updated.

7. When a cost underrun handler has been set, it is release at the end of any cost
period, where the minimal cost has not been consumed by the tasks in the
group.

8. When the affinity of the group contains more than one processor, the granularity
enforced may be as large as the base granularity times the number of processors
in the group’s affinity.

9. When a cost overrun is triggered, the cost overrun handler associated with the
processing group, if any, is released.

10. When more than one processing group monitoring a given task or set of tasks
reach their limits at the same time, all corresponding handlers are released in
an unspecified order.

11. Any group entering enforcement between a given group and the root enforces
that group.

12. When cost enforcement is supported, enabled, and triggered, the processing
group enters the enforced state. For each member of the processing group:
(a) the schedulable is placed into the enforced state; and
(b) when a schedulable is in the enforced state, the base scheduler schedules

that schedulable effectively as if it has a base priority lower than that of
a notional idle task.

13. When the release event occurs for a processing group, the action taken depends
on the state of the processing group.
(a) When the processing group is not in the enforced state, the current CPU

consumption for the group is set to zero.
(b) Otherwise, the processing group is in the enforced state. It is removed

from the enforced state, the current CPU consumption of the group is
set to zero, and each member of the group is removed from the enforced
state.

14. Changes to the cost, minimum and maximum, take effect immediately.
(a) When the new cost is less than or equal to the current CPU consumption,

and the old cost was greater than the current CPU consumption, a cost
overrun is triggered.

(b) When the new cost is greater than the current CPU consumption there
are two case:

RTSJ 2.0 (Draft 48) 115

6 Scheduling

i. when the processing group is enforced, then the processing group
behaves as defined in semantic 13;

ii. otherwise, no cost monitoring and enforcement action occurs.
15. Changes to other parameters take place as follows:

(a) changes to start have no effect;
(b) period can be change at each release, so the next period is set based on

the current value of the processing group’s period;
(c) deadline can change at each release, so the next deadline is set based on

the current value of the processing group’s deadline;
(d) OverrunHandler can change at each release, so the overrunHandler is

set based on the current value of the processing group’s overrunHandler;
(e) MissHandler can change at each release, so the missHandler is set based

on the current value of the processing group’s missHandler; and
(f) UnderrunHandler can change at each release, so the underrunHandler is

set based on the current value of the processing group’s underrunHandler.
16. Changes to the membership of the processing group take effect immediately.
17. The start time for the processing group may be relative or absolute.

(a) When the start time is absolute, the processing group behaves effectively
as if the initial release time were the start time.

(b) When the start time is relative, the initial release time is computed relative
to the time that the processing group is constructed.

Note that until a processing group starts (i.e., its start time has been reached) it
will perform no cost monitoring or enforcement on the Schedulables that it contains.
Once a processing group is started, it behaves effectively as if it runs continuously
until the defining ProcessingGroup object is freed. The start time does not affect
limits placed on the group that are inherited from ThreadGroup or SchedulingGroup,
such as affinity and scheduling parameters.

116 RTSJ 2.0 (Draft 48)

Semantics 6.2

Figure 6.1: Sequence Diagram of Some Example Realtime Thread Releases

pendingReleases = 1
missCount = 0
lastReturn = false

pendingReleases = 0
missCount = 0
lastReturn = true

pendingReleases = 0
missCount = 0
lastReturn = true

pendingReleases = 1
missCount = 0
lastReturn = true

pendingReleases = 1
missCount = 0
lastReturn = false

pendingReleases = 0
missCount = 0
lastReturn = false

pendingReleases = 1
missCount = 0
lastReturn = false

pendingReleases = 0
missCount = 0
lastReturn = false

pendingReleases = 1
missCount = 1
lastReturn = true

pendingReleases = 1
missCount = 0
lastReturn = false

pendingReleases = 0
missCount = 0
lastReturn = true

pendingReleases = 1
missCount = 1
lastReturn = false

pendingReleases = 0
missCount = 0
lastReturn = false

pendingReleases = 0
missCount = 1
lastReturn = true

pendingReleases = 0
missCount = 0
lastReturn = true

pendingReleases = 1
missCount = 0
lastReturn = true

pendingReleases = 0
missCount = 0
lastReturn = true

:Other:RealtimeThread

deadline

deadline

deadline

wFNR

wFNR <- true
release

wFNR

wFNR <- false

wFNR <- false

wFNR <-true

wFNR

deadline

release

deadline

wFNR <- false

release

wFNR <- true

release

wFNR

release

start

RTSJ 2.0 (Draft 48) 117

6 Scheduling

Figure 6.2: A State Chart for a Realtime Thread without a Deadline Miss Handler

Blocked for Missed Release

missCount > 0
pendingReleases > 0
in wFNR()
* re lease
 increments pendingReleases
* deschedule()
 sets deschedule

Handle Miss

* re lease
 increments pendingReleases
* deadline miss
 increments missCount
* deschedule()
 sets deschedule
* reschedule()
 clears deschedule

Missed Release

* re lease
 increments pendingReleases
* deadline miss
 increments missCount
* deschedule()
 sets deschedule
* reschedule()
 clears deschedule

Blocked for Normal Release

missCount == 0
* re lease
 increments pendingReleases
* deschedule()
 sets deschedule

Normal Release

* re lease
 increments pendingReleases
* deadline miss
 increments missCount
* deschedule()
 sets deschedule
* reschedule()
 clears deschedule

Descheduled

deschedule == true
in wFNR()
* reschedule()
 clears deschedule

Initial

pendingReleases == 0
missCount == 0
deschedule == false

[missCount > 0]
decrement pendingReleases

decrement missCount
wFNR() returns false

[deschedule == true]

wFNR() called
[missCount > 0]

wFNR() called
[missCount > 0]

wFNR() called
[missCount > 0]
decrement missCount
returns false

[pendingReleases > 0]
decrement pendingReleases
wFNR() returns true

wFNR() called
[missCount == 0]

[deschedule == true]

[deschedule == false]
pendingReleases = 0

missCount = 0

start()

init ial

118 RTSJ 2.0 (Draft 48)

Semantics 6.2

Figure 6.3: A State Chart for a Realtime Thread with a Deadline Miss Handler

Blocked for Normal Release

descheduled == false
* re lease
 increments pendingReleases
* deschedule()
 sets deschedule

Normal Release

* re lease
 increments pendingReleases
* deadline miss
 releases miss handler
 sets deschedule
* deschedule()
 sets deschedule
* schedule()
 clears deschedule

Descheduled

pendingReleases == 0
descheduled == true

Initial

pendingReleases == 0
descheduled == true

wFNR() called when
deschedule == true

blocks

release causes
wFNR() to return truewFNR() called when

deschedule == false

deschedule == true

reschedule()
(clear deschedule)

start()

init ial

RTSJ 2.0 (Draft 48) 119

6 Scheduling Schedulable

6.3 javax.realtime

6.3.1 Interfaces
6.3.1.1 BoundSchedulable

Interfaces
javax.realtime.Schedulable

Description
A marker interface to provide a type safe reference to all schedulables that are
bound to a single underlying thread. A RealtimeThread2 is by definition bound.

6.3.1.2 RealtimeExecutionContext

Description
All RTSJ objects that encapsulate execution. This type includes Schedulable and
javax.realtime.device.InterruptServiceRoutine. It is used by Affinity to remove
the need to have a reference into the javax.realtime.device package.

6.3.1.3 Schedulable

Interfaces
Runnable
javax.realtime.Timable
javax.realtime.RealtimeExecutionContext

Description
Handlers and other objects can be dispatched by a Scheduler3 when they pro-
vide a run() method and the methods defined below. The Scheduler4 uses this
information to create a suitable context to execute the run() method.

2Section 5.3.2.2
3Section 6.3.3.12
4Section 6.3.3.12

120 RTSJ 2.0 (Draft 48)

Schedulable javax.realtime 6.3

6.3.1.3.1 Methods

getMemoryParameters

Signature
public javax.realtime.MemoryParameters
getMemoryParameters()

Description
Gets a reference to the MemoryParameters5 object for this schedulable.

Returns
A reference to the current MemoryParameters6 object.

setMemoryParameters(MemoryParameters)

Signature
public javax.realtime.Schedulable
setMemoryParameters(MemoryParameters memory)

Description
Sets the memory parameters associated with this instance of Schedulable.

This change becomes effective under conditions determined by the scheduler
controlling the schedulable. For instance, the change may be immediate or it may
be delayed until the next release of the schedulable object. See the documentation
for the scheduler for details.

Parameters
memory A MemoryParameters7 object which will become the memory parameters

associated with this after the method call. When null, the default value is
governed by the associated scheduler (a new object is created when the default
value is not null). (See PriorityScheduler8.)

Throws
5Section 11.3.2.4
6Section 11.3.2.4
7Section 11.3.2.4
8Section 6.3.3.8

RTSJ 2.0 (Draft 48) 121

6 Scheduling Schedulable

IllegalArgumentException when memory is not compatible with the schedulable’s
scheduler. Also when this schedulable may not use the heap and memory is
located in heap memory.

IllegalAssignmentError when the schedulable cannot hold a reference to memory,
or when memory cannot hold a reference to this schedulable instance.

Returns
this

Open issue 6.3.1
We decided to change this on the 2016-07-14 call; should we leave it scheduler-

dependent, though?
End of issue 6.3.1

getReleaseParameters

Signature
public javax.realtime.ReleaseParameters
getReleaseParameters()

Description
Gets a reference to the ReleaseParameters9 object for this schedulable.

Returns
A reference to the current ReleaseParameters10 object.

setReleaseParameters(ReleaseParameters)

Signature
public javax.realtime.Schedulable
setReleaseParameters(ReleaseParameters release)

Description
Sets the release parameters associated with this instance of Schedulable.

This change becomes effective under conditions determined by the scheduler
controlling the schedulable. For instance, the change may be immediate or it may
be delayed until the next release of the schedulable. The different properties of
the release parameters may take effect at different times. See the documentation
for the scheduler for details.

9Section 6.3.3.10
10Section 6.3.3.10

122 RTSJ 2.0 (Draft 48)

Schedulable javax.realtime 6.3

Parameters
release A ReleaseParameters11 object which will become the release parameters

associated with this after the method call, and take effect as determined by
the associated scheduler. When null, the default value is governed by the
associated scheduler (a new object is created when the default value is not
null). (See PriorityScheduler12.)

Throws
IllegalArgumentException Thrown when release is not compatible with the associ-

ated scheduler. Also when this schedulable may not use the heap and release
is located in heap memory.

IllegalAssignmentError when this object cannot hold a reference to release or release
cannot hold a reference to this.

IllegalSchedulableStateException when the task is running and the new release
parameters are not compatible with the current scheduler.

Returns
this

getScheduler

Signature
public javax.realtime.Scheduler
getScheduler()

Description
Gets a reference to the Scheduler13 object for this schedulable.

Returns
A reference to the associated Scheduler14 object.

setScheduler(Scheduler)

Signature
public javax.realtime.Schedulable
setScheduler(Scheduler scheduler)

11Section 6.3.3.10
12Section 6.3.3.8
13Section 6.3.3.12
14Section 6.3.3.12

RTSJ 2.0 (Draft 48) 123

6 Scheduling Schedulable

throws SecurityException,
IllegalSchedulableStateException

Description

Sets the reference to the Scheduler object. The timing of the change must be
agreed between the scheduler currently associated with this schedulable, and
scheduler. If the Schedulable is running, its associated SchedulingParameters (if
any) must be compatible with scheduler.

Parameters
scheduler A reference to the scheduler that will manage execution of this schedulable.

Null is not a permissible value.
Throws
IllegalArgumentException Thrown when scheduler is null, or the schedulable’s

existing parameter values are not compatible with scheduler. Also when this
schedulable may not use the heap and scheduler is located in heap memory.

IllegalAssignmentError when the schedulable cannot hold a reference to scheduler
or the current Schedulable is running and its associated SchedulingParameters
are incompatible with scheduler.

SecurityException when the caller is not permitted to set the scheduler for this
schedulable.

IllegalSchedulableStateException when scheduler has scheduling or release parame-
ters that are not compatible with the new scheduler and this schedulable is
running.

Returns
this

setScheduler(Scheduler, SchedulingParameters, ReleasePar-
ameters, MemoryParameters)

Signature
public javax.realtime.Schedulable
setScheduler(Scheduler scheduler,

SchedulingParameters scheduling,
ReleaseParameters release,
MemoryParameters memoryParameters)

Description

124 RTSJ 2.0 (Draft 48)

Schedulable javax.realtime 6.3

Sets the scheduler and associated parameter objects. The timing of the change
must be agreed between the scheduler currently associated with this schedulable,
and scheduler.

Parameters
scheduler A reference to the scheduler that will manage the execution of this

schedulable. Null is not a permissible value.
scheduling A reference to the SchedulingParameters15 which will be associated with

this. When null, the default value is governed by scheduler (a new object is
created when the default value is not null). (See PriorityScheduler16.)

release A reference to the ReleaseParameters17 which will be associated with this.
When null, the default value is governed by scheduler (a new object is created
when the default value is not null). (See PriorityScheduler18.)

memoryParameters A reference to the MemoryParameters19 which will be associ-
ated with this. When null, the default value is governed by scheduler (a new
object is created when the default value is not null). (See PriorityScheduler20.)

Throws
IllegalArgumentException Thrown when scheduler is null or the parameter values

are not compatible with scheduler. Also thrown when this schedulable may not
use the heap and scheduler, scheduling release, memoryParameters, or group
is located in heap memory.

IllegalAssignmentError when this object cannot hold references to all the parameter
objects or the parameters cannot hold references to this.

SecurityException when the caller is not permitted to set the scheduler for this
schedulable.

Returns
this

getSchedulingParameters

Signature
public javax.realtime.SchedulingParameters
getSchedulingParameters()

15Section 6.3.3.14
16Section 6.3.3.8
17Section 6.3.3.10
18Section 6.3.3.8
19Section 11.3.2.4
20Section 6.3.3.8

RTSJ 2.0 (Draft 48) 125

6 Scheduling Schedulable

Description
Gets a reference to the SchedulingParameters21 object for this schedulable.

Returns
A reference to the current SchedulingParameters22 object.

setSchedulingParameters(SchedulingParameters)

Signature
public javax.realtime.Schedulable
setSchedulingParameters(SchedulingParameters scheduling)
throws IllegalSchedulableStateException,

IllegalAssignmentError,
IllegalArgumentException

Description
Sets the scheduling parameters associated with this instance of Schedulable.

This change becomes effective under conditions determined by the scheduler
controlling the schedulable. For instance, the change may be immediate or it
may be delayed until the next release of the schedulable. See the documentation
for the scheduler for details.

Parameters
scheduling A reference to the SchedulingParameters23 object. When null, the default

value is governed by the associated scheduler (a new object is created when
the default value is not null). (See PriorityScheduler24.)

Throws
IllegalArgumentException Thrown when scheduling is not compatible with the

associated scheduler. Also when this schedulable may not use the heap and
scheduling is located in heap memory.

IllegalAssignmentError when this object cannot hold a reference to scheduling or
scheduling cannot hold a reference to this.

IllegalSchedulableStateException when the task is active and the new scheduling
parameters are not compatible with the current scheduler.

Returns
this

21Section 6.3.3.14
22Section 6.3.3.14
23Section 6.3.3.14
24Section 6.3.3.8

126 RTSJ 2.0 (Draft 48)

Schedulable javax.realtime 6.3

getSchedulingGroup

Signature
public javax.realtime.SchedulingGroup
getSchedulingGroup()

Description
Gets a reference to the SchedulingGroup25 instance of this schedulable.

Returns
A reference to the current SchedulingGroup26 object.

Available since since RTSJ 2.0

getConfigurationParameters

Signature
public javax.realtime.ConfigurationParameters
getConfigurationParameters()

Description
Gets a reference to the ConfigurationParameters27 object for this schedulable.

Returns
A reference to the associated ConfigurationParameters28 object.

Available since RTSJ 2.0

getMinConsumption(RelativeTime)

Signature
public javax.realtime.RelativeTime
getMinConsumption(RelativeTime dest)

Description
25Section 6.3.3.13
26Section 6.3.3.13
27Section 5.3.2.1
28Section 5.3.2.1

RTSJ 2.0 (Draft 48) 127

6 Scheduling Schedulable

Determine the minimum CPU consumption for this schedulable in any single
release. When this method is called on the current schedulable, the CPU con-
sumption of the current release is not considered. When dest is null, return the
minimum consumption in a RelativeTime29 instance from the current allocation
context. When dest is not null, return the minimum consumption in dest

Parameters
dest when not null is the object in which to return the result.

Returns
the minimum time consumed in any release.

Available since RTSJ 2.0

getMinConsumption

Signature
public javax.realtime.RelativeTime
getMinConsumption()

Description
Equivalent to getMinConsumption(null).

Returns
the minimum time consumed in any release.

Available since RTSJ 2.0

getMaxConsumption(RelativeTime)

Signature
public javax.realtime.RelativeTime
getMaxConsumption(RelativeTime dest)

Description
Determine the maximum CPU consumption for this schedulable in any single
release. When this method is called on the current schedulable, the CPU con-
sumption of the current release is not considered. When dest is null, return the

29Section 9.3.1.3

128 RTSJ 2.0 (Draft 48)

Schedulable javax.realtime 6.3

maximum consumption in a RelativeTime30 instance from the current allocation
context. When dest is not null, return the maximum consumption in dest

Parameters
dest when not null is the object in which to return the result.

Returns
the maximum time consumed in any release.
Available since RTSJ 2.0

getMaxConsumption

Signature
public javax.realtime.RelativeTime
getMaxConsumption()

Description
Equivalent to getMaxConsumption(null).

Returns
the maximum time consumed in any release.
Available since RTSJ 2.0

setDaemon(boolean)

Signature
public void
setDaemon(boolean on)

Description
Marks this schedulable as either a daemon or a user task. A realtime virtual
machine exits when the only tasks running are all daemon. This method must
be called before the task is attached to any event or started. Once attached or
started, it cannot be changed.

Parameters
on When true, marks this event handler as a daemon handler.

Throws
30Section 9.3.1.3

RTSJ 2.0 (Draft 48) 129

6 Scheduling Schedulable

IllegalThreadStateException when this schedulable is active.
SecurityException when the current schedulable cannot modify this event handler.
Available since RTSJ 2.0

isDaemon

Signature
public boolean
isDaemon()

Description
Tests if this event handler is a daemon handler.

Returns
True when this event handler is a daemon handler; false otherwise.
Available since RTSJ 2.0

mayUseHeap

Signature
public boolean
mayUseHeap()

Description
Determine whether or not this schedulable may use the heap.

Returns
true only when this Schedulable may allocate on the heap and may enter the Heap.
Available since RTSJ 2.0

interrupt

Signature
public void
interrupt()

130 RTSJ 2.0 (Draft 48)

Schedulable javax.realtime 6.3

throws IllegalSchedulableStateException

Description
Make the generic AsynchronouslyInterruptedException31 pending for this, and
sets the interrupted state to true. As with Thread.interrupt(), blocking operations
that are interruptible are interrupted. When this.isRousable() is true cause an
early release. In any case, AsynchronouslyInterruptedException is thrown once
a method is entered that implements AsynchronouslyInterruptedException.

Behaves as if Thread.interrupt() were called on the implementation thread
underlying this Schedulable. throws IllegalSchedulableStateException when this
is not currently releasable, i.e., is disabled, not firable, its start method has not
been called, or it has terminated.

Available since RTSJ 2.0

isInterrupted

Signature
public boolean
isInterrupted()

Description
Determines whether or not any AsynchronouslyInterruptedException32 is pend-
ing.

Returns
true when and only when the generic AsynchronouslyInterruptedException is pend-

ing.
Available since RTSJ 2.0

awaken

Signature
public void
awaken()

31Section 15.2.2.2
32Section 15.2.2.2

RTSJ 2.0 (Draft 48) 131

6 Scheduling MinimumInterarrivalPolicy

throws IllegalStateException

Description
Provides a means for a Clock33 to end a sleep.

Throws
IllegalStateException when called from user code.

Available since RTSJ 2.0

6.3.2 Enumerations
6.3.2.1 MinimumInterarrivalPolicy

Inheritance
java.lang.Object
java.lang.Enum<MinimumInterarrivalPolicy>
MinimumInterarrivalPolicy

Description
Defines the set of policies for handling interarrival time violations in Sporadic-
Parameters34. Each policy governs every instance of Schedulable35 which has
SporadicParameters36 with that minimum interarrival time policy.

Available since RTSJ 2.0

6.3.2.1.1 Enumeration Constants

EXCEPT

public static final EXCEPT

Description
33Section 10.3.2.1
34Section 6.3.3.15
35Section 6.3.1.3
36Section 6.3.3.15

132 RTSJ 2.0 (Draft 48)

MinimumInterarrivalPolicy javax.realtime 6.3

Represents the "EXCEPT" policy for minimum interarrival time. Under this
policy, when an arrival time of a release occurs at a time less then the last
release time plus its minimum interarrival time, the fire() method shall throw a
preallocated instance of MITViolationException37.

IGNORE

public static final IGNORE

Description
Represents the "IGNORE" policy for minimum interarrival time. Under this
policy, when an arrival time of a release occurs at a time less then the last release
time plus its minimum interarrival time, the new arrival time is ignored.

REPLACE

public static final REPLACE

Description
Represents the "REPLACE" policy for minimum interarrival time. Under this
policy, when an arrival time of a release occurs at a time less then the last release
time plus its minimum interarrival time, the information for this arrival replaces
a previous arrival. For cases when the previous event has already been released or
the event queue has a length of zero, the arrival is ignore as with the "IGNORE"
policy.

SAVE

public static final SAVE

Description
Represents the "SAVE" policy for minimum interarrival time. Under this policy,
when an arrival time of a release occurs at a time less then the last release time
plus its minimum interarrival time, the new release is queued until the last release
time plus its minimum interarrival time is reached.

37Section 15.2.2.10

RTSJ 2.0 (Draft 48) 133

6 Scheduling MinimumInterarrivalPolicy

6.3.2.1.2 Methods

values

Signature
public static javax.realtime.MinimumInterarrivalPolicy[]
values()

Description

valueOf(String)

Signature
public static javax.realtime.MinimumInterarrivalPolicy
valueOf(String name)

Description

value

Signature
public java.lang.String
value()

Description
Determine the string corresponding to this value.

Returns
the corresponding string.

value(String)

Signature

134 RTSJ 2.0 (Draft 48)

QueueOverflowPolicy javax.realtime 6.3

public static javax.realtime.MinimumInterarrivalPolicy
value(String value)

Description
Convert a string into a policy type.

Parameters
value is the string to convert.

Returns
the corresponding policy type.

6.3.2.2 QueueOverflowPolicy

Inheritance
java.lang.Object
java.lang.Enum<QueueOverflowPolicy>
QueueOverflowPolicy

Description
Defines the set of policies for handling overflow on event queues used by Re-
leaseParameters38. An event queue holds a number of event arrival times with
any respective payload provided with the event. A reference to the event itself
is only held when it happens to be the payload, e.g., for an AsyncObjectEvent
associated with a Timer.

Available since RTSJ 2.0

6.3.2.2.1 Enumeration Constants

DISABLE

public static final DISABLE

Description
38Section 6.3.3.10

RTSJ 2.0 (Draft 48) 135

6 Scheduling QueueOverflowPolicy

Represents the "DISABLE" policy which means, when an arrival occurs, no
queuing takes place, thus no overflow can happen. This policy is for instances
of ActiveEvent39 with no payload and instances of RealtimeThread40 with Pe-
riodicParameters41. In contrast to IGNORE42, all incoming events increment
the pending fire or release count, respectively. For this reason, it may not be
used with an event handler that supports an event payload or any instance
of Schedulable43 with SporadicParameters44. This policy is also the default for
PeriodicParameters45. Instances of RealtimeThread without with null release
parameters have this policy implicitly, as they do not have an event queue either.

EXCEPT

public static final EXCEPT

Description
Represents the "EXCEPT" policy which means, when an arrival occurs and its
event time and payload should be queued but the queue already holds a number
of event times and payloads equal to the initial queue length, the fire() method
shall throw an ArrivalTimeQueueOverflowException46. When fire is used within
a Timer47, the exception is ignored and the fire does nothing, i.e., it acts the
same as “IGNORE”.

IGNORE

public static final IGNORE

Description
Represents the "IGNORE" policy which means, when an arrival occurs and its
event time and payload should be queued, but the queue already holds a number
of event times and payloads equal to the initial queue length, the arrival is ignored.

39Section 8.3.1.1
40Section 5.3.2.2
41Section 6.3.3.6
42Section 6.3.2.2.1
43Section 6.3.1.3
44Section 6.3.3.15
45Section 6.3.3.6
46Section 15.2.2.1
47Section 10.3.2.6

136 RTSJ 2.0 (Draft 48)

QueueOverflowPolicy javax.realtime 6.3

REPLACE

public static final REPLACE

Description
Represents the "REPLACE" policy which means, when an arrival occurs and
should be queued but the queue already holds a number of event times and
payloads equal to the initial queue length, the information for this arrival replaces
a previous arrival. When the queue length is zero, the behavior is the same as
the "IGNORE" policy.

SAVE

public static final SAVE

Description
Represents the "SAVE" policy which means, when an arrival occurs and should
be queued but the queue is full, the queue is lengthened and the arrival time
and payload are saved. This policy does not update the"initial queue length"
as it alters the actual queue length. Since the SAVE policy grows the arrival
time queue as necessary, for the SAVE policy the initial queue length is only an
optimization. It is also the default for AperiodicParameters48.

6.3.2.2.2 Methods

values

Signature
public static javax.realtime.QueueOverflowPolicy[]
values()

Description

48Section 6.3.3.2

RTSJ 2.0 (Draft 48) 137

6 Scheduling Affinity

valueOf(String)

Signature
public static javax.realtime.QueueOverflowPolicy
valueOf(String name)

Description

value

Signature
public java.lang.String
value()

Description

Determine the string corresponding to this value.

Returns
the corresponding string.

value(String)

Signature
public static javax.realtime.QueueOverflowPolicy
value(String value)

Description

Convert a string into a policy type.

Parameters
value is the string to convert.

Returns
the corresponding policy type.

138 RTSJ 2.0 (Draft 48)

Affinity javax.realtime 6.3

6.3.3 Classes
6.3.3.1 Affinity

Inheritance
java.lang.Object
Affinity

Description
This is the API for all processor-affinity-related aspects of the RTSJ. It includes a
factory that generates Affinity objects, and methods that control the CPU affinity
used by java.lang.ThreadGroup to control the affinity of all its tasks. With it,
the affinity of every task in the JVM can be controlled.

An affinity is a set of processors that can be associated with certain types
of tasks. Each task (java.lang.Thread and RealtimeExecutionContext49) can be
associated with an affinity. Groups of these can be assigned an affinity through
their java.lang.ThreadGroup.

Each implementation supports an array of predefined affinity sets. They can
be used either to reflect the scheduling arrangement of the underlying OS or they
can be used by the system designer to impose defaults for groups of task. A
program is only allowed to dynamically create new affinity sets with cardinality
of one. This restriction reflects the concern that not all operating systems will
support multiprocessor affinity sets.

The processor membership of an affinity set is immutable. The tasks asso-
ciations of an affinity set are mutable. The processor affinity of a task can be
changed by static methods in this class. The internal representation of a set of
processors in an Affinity instance is not specified, but the representation that is
used to communicate with this class is a BitSet where each bit corresponds to a
logical processor ID. The relationship between logical and physical processors is
beyond the scope of this specification, and may change.

The affinity set factory only generates usable Affinity instances; i.e., affinity
sets that (at least when they are created) can be used with set(Affinity, Realtime-
ExecutionContext)50, set(Affinity, Thread)51, and set(Affinity, ThreadGroup)52.
The factory cannot create an affinity set with more than one processor member,
but such affinity sets are supported. They may be internally created by the RTSJ
runtime at startup time.

49Section 6.3.1.2
50Section 6.3.3.1.1
51Section 6.3.3.1.1
52Section 6.3.3.1.1

RTSJ 2.0 (Draft 48) 139

6 Scheduling Affinity

The set of affinity sets created at startup (the predefined set) is visible through
the getPredefinedAffinities(Affinity[])53 method. The affinity set factory may be
used to create affinity sets with a single processor member at any time. This
operation only supports processor members that are available to the JVM at the
time of creation.

External changes to the set of processors available to the RTSJ runtime is
likely to cause serious trouble ranging from violation of assumptions underlying
schedulability analysis to freezing the entire RTSJ runtime, so when a system is
capable of such manipulation it should not exercise it on RTSJ processes.

Tasks are subject to both their own processor affinity and that of their thread
group. Their processor affinity is governed by the intersection of the thread
group’s affinity and the task’s affinity. The intersection of a thread group’s
affinity set with the schedulable’s affinity set must contain at least one entry.
Trying to set a tasks affinity outside its thread group always fails. Trying to
setting the affinity of a thread group that does not intersect with the thread
group of its tasks will also fail.

Ordinarily, an execution context inherits its creator’s affinity set, but
• Java threads do not inherit affinity from Schedulable54s,
• instances of AsyncBaseEventHandler55 that are not bound do not inherit

affinity, and
• Schedulables do not inherit affinity from Java threads.

When a task does not inherit its creator’s affinity set, its initial affinity set is set
to all processors and is thus only limited by its thread group.

There is no public constructor for this class. All instances must be created by
the factory method (generate).

Available since RTSJ 2.0

6.3.3.1.1 Methods

getPredefinedAffinitiesCount

Signature
public static final int
getPredefinedAffinitiesCount()

53Section 6.3.3.1.1
54Section 6.3.1.3
55Section 8.3.3.3

140 RTSJ 2.0 (Draft 48)

Affinity javax.realtime 6.3

Description
Determine the minimum array size required to store references to all the predefined
processor affinity sets.

Returns
The minimum array size required to store references to all the predefined affinity

sets.

getPredefinedAffinities

Signature
public static final javax.realtime.Affinity[]
getPredefinedAffinities()

Description
Equivalent to invoking getPredefinedAffinitySets(null).

Returns
an array of the predefined affinity sets.

getPredefinedAffinities(Affinity)

Signature
public static final javax.realtime.Affinity[]
getPredefinedAffinities(javax.realtime.Affinity[] dest)

Description
Determine what affinity sets are predefined by the Java runtime.

Parameters
dest The destination array, or null.

Throws
IllegalArgumentException when dest is not large enough.

Returns
dest or a newly created array when dest is null, populated with references to the

predefined affinity sets. When dest has excess entries, those entries are filled
with null.

RTSJ 2.0 (Draft 48) 141

6 Scheduling Affinity

isSetAffinitySupported

Signature
public static final boolean
isSetAffinitySupported()

Description
Determine whether or not affinity control is supported.

Returns
true when the set(Affinity, Thread)56 family of methods is supported.

generate(BitSet)

Signature
public static final javax.realtime.Affinity
generate(BitSet set)

Description
Determine the Affinity corresponding to a BitSet, where each bit in set represents
a CPU.

Platforms that support specific affinity sets will register those Affinity instances
with Affinity57. They appear in the arrays returned by getPredefinedAffinities()58

and getPredefinedAffinities(Affinity[])59.

Parameters
set is the BitSet to convert into an Affinity.

Throws
NullPointerException when set is null.
IllegalArgumentException when set does not refer to a valid set of processors,

where “valid” is defined as the bitset from a predefined affinity set, or a
bitset of cardinality one containing a processor from the set returned by
getAvailableProcessors(). The definition of “valid set of processors” is system
dependent; however, every set consisting of one valid processor makes up a
valid bit set, and every bit set correspond to a predefined affinity set is valid.

Returns
56Section 6.3.3.1.1
57Section 6.3.3.1
58Section 6.3.3.1.1
59Section 6.3.3.1.1

142 RTSJ 2.0 (Draft 48)

Affinity javax.realtime 6.3

The resulting Affinity.

getAvailableProcessors

Signature
public static final java.util.BitSet
getAvailableProcessors()

Description

This method is equivalent to getAvailableProcessors(BitSet)60 with a null argu-
ment.

Returns
the set of processors available to the program.

getAvailableProcessors(BitSet)

Signature
public static final java.util.BitSet
getAvailableProcessors(BitSet dest)

Description

In systems where the set of processors available to a process is dynamic (e.g.,
because of system management operations or because of fault tolerance capabili-
ties), the set of available processors shall reflect the processsors that are allocated
to the RTSJ runtime and are currently available to execute tasks.

Parameters
dest When dest is non-null, use dest as the returned value. When it is null, create

a new BitSet.
Returns
A BitSet representing the set of processors currently valid for use in the bitset

argument to generate(BitSet)61.

60Section 6.3.3.1.1
61Section 6.3.3.1.1

RTSJ 2.0 (Draft 48) 143

6 Scheduling Affinity

isAffinityChangeNotificationSupported

Signature
public static final boolean
isAffinityChangeNotificationSupported()

Description
Determine whether or not the system can trigger an event for notifying the
application when the set of available CPUs changes.

Returns
true when change notification is supported. (See setProcessorAddedEvent(AsyncEvent)62

and setProcessorRemovedEvent(AsyncEvent)63.)

getProcessorAddedEvent

Signature
public static javax.realtime.AsyncEvent
getProcessorAddedEvent()

Description
Get the event used for CPU addition notification.

Returns
The async event that will be fired when a processor is added to the set available to

the JVM. Returns null when change notification is not supported, or when no
async event has been designated.

setProcessorAddedEvent(AsyncEvent)

Signature
public static void
setProcessorAddedEvent(AsyncEvent event)
throws UnsupportedOperationException,

IllegalArgumentException

Description
62Section 6.3.3.1.1
63Section 6.3.3.1.1

144 RTSJ 2.0 (Draft 48)

Affinity javax.realtime 6.3

Set the AsyncEvent that will be fired when a processor is added to the set
available to the JVM.

Parameters
event The async even to fire in case an added processor is detected, or null to cause

no AE to be called in case an added processor is detected.
Throws
UnsupportedOperationException when change notification is not supported.
IllegalArgumentException when event is not in immortal memory.

getProcessorRemovedEvent

Signature
public static javax.realtime.AsyncEvent
getProcessorRemovedEvent()

Description
Get the event used for CPU removal notification.

Returns
The async event that will be fired when a processor is removed from the set available

to the JVM. Returns null when change notification is not supported, or when
no async event has been designated.

setProcessorRemovedEvent(AsyncEvent)

Signature
public static void
setProcessorRemovedEvent(AsyncEvent event)

Description
Set the AsyncEvent64 that will be fired when a processor is removed from the set
available to the JVM.

Parameters
event

Throws
UnsupportedOperationException when change notification is not supported.
IllegalArgumentException when event is not null or in immortal memory.

64Section 8.3.3.4

RTSJ 2.0 (Draft 48) 145

6 Scheduling Affinity

get(RealtimeExecutionContext)

Signature
public static final javax.realtime.Affinity
get(RealtimeExecutionContext task)

Description
Determine the affinity set instance associated with task.

Parameters
task is the execution context to query.

Returns
The associated affinity.

set(Affinity, RealtimeExecutionContext)

Signature
public static final void
set(Affinity set,

RealtimeExecutionContext task)
throws ProcessorAffinityException

Description
Set the processor affinity of a task.

Parameters
set is the processor affinity
task is the execution context whose affinity will be set.

Throws
IllegalArgumentException when the intersection of set the affinity of any Thread-

Group instance containing task is empty.
ProcessorAffinityException is thrown when the runtime fails to set the affinity for

platform-specific reasons.
NullPointerException when set or task is null.

get(Thread)

Signature

146 RTSJ 2.0 (Draft 48)

Affinity javax.realtime 6.3

public static final javax.realtime.Affinity
get(Thread thread)

Description
Determmine the affinity set instance associated with thread.

Parameters
thread a Java thread, or one of its subclasses (including RealtimeThread65).

Returns
The associated affinity set.

set(Affinity, Thread)

Signature
public static final void
set(Affinity set,

Thread thread)
throws ProcessorAffinityException

Description
Set the processor affinity of a Java thread or RealtimeThread66 to set.

Parameters
set The processor affinity set
thread The thread or realtime thread.

Throws
IllegalArgumentException when the intersection of set and the affinity of any

ThreadGroup instance containing thread is empty.
ProcessorAffinityException when the runtime fails to set the affinity for platform-

specific reasons.
NullPointerException when set or thread is null.

get(ThreadGroup)

Signature
public static final javax.realtime.Affinity
get(ThreadGroup group)

65Section 5.3.2.2
66Section 5.3.2.2

RTSJ 2.0 (Draft 48) 147

6 Scheduling Affinity

Description
Determine the affinity set instance associated with group.

Parameters
group An instance of java.lang.ThreadGroup

Returns
The associated affinity set.

set(Affinity, ThreadGroup)

Signature
public static final void
set(Affinity set,

ThreadGroup group)
throws ProcessorAffinityException

Description
Set the processor affinity of group to set with immediate effect.

Parameters
set The processor affinity set
group The processing group parameters instance.

Throws
IllegalArgumentException when the intersection of set and the affinity of any

task in group is empty, or when the disjunction of set and the affinity of any
ThreadGroup containing group is non-empty.

ProcessorAffinityException when the runtime fails to set the affinity for platform-
specific reasons or group contains more than one processor.

NullPointerException when set or group is null.

getProcessors

Signature
public final java.util.BitSet
getProcessors()

Description
Return a BitSet representing the processor affinity set for this Affinity.

Returns
A newly created BitSet representing this Affinity.

148 RTSJ 2.0 (Draft 48)

Affinity javax.realtime 6.3

getProcessors(BitSet)

Signature
public final java.util.BitSet
getProcessors(BitSet dest)

Description
Determine the set of CPUs representing the processor affinity of this Affinity.

Parameters
dest Set dest to the BitSet value. When dest is null, create a new BitSet in the

current allocation context.
Returns
A BitSet representing the processor affinity set of this Affinity.

isProcessorInSet(int)

Signature
public final boolean
isProcessorInSet(int processorId)

Description
Ask whether a processor is included in this affinity set.

Parameters
processorId a number identifying a single CPU in a multiprocessor system.

Returns
true when and only when processorNumber is represented in this affinity set.

applyTo(BoundAsyncEventHandler)

Signature
public final void
applyTo(BoundAsyncEventHandler aeh)
throws ProcessorAffinityException

Description
Set the processor affinity of a bound AEH to this.

Parameters

RTSJ 2.0 (Draft 48) 149

6 Scheduling Affinity

aeh The bound async event handler
Throws
IllegalArgumentException when intersection of this with the affinity of any group

containing aeh is empty.
ProcessorAffinityException Thrown when the runtime fails to set the affinity for

platform-specific reasons.
NullPointerException when aeh is null.

applyTo(Thread)

Signature
public final void
applyTo(Thread thread)
throws ProcessorAffinityException

Description
Set the processor affinity of a Java thread or RealtimeThread67 to this.

Parameters
thread The thread or realtime thread.

Throws
IllegalArgumentException when intersection of this with the affinity of any group

containing thread is empty.
ProcessorAffinityException when the runtime fails to set the affinity for platform-

specific reasons.
NullPointerException when thread is null.

applyTo(ThreadGroup)

Signature
public final void
applyTo(ThreadGroup group)
throws ProcessorAffinityException

Description
Set the processor affinity of group to this.

Parameters
67Section 5.3.2.2

150 RTSJ 2.0 (Draft 48)

AperiodicParameters javax.realtime 6.3

group The processing group parameters instance.
Throws
IllegalArgumentException when the intersection of this and the affinity of any

task in group is empty, or when the disjunction of this and the affinity of any
ThreadGroup containing group is non-empty.

ProcessorAffinityException when the runtime fails to set the affinity for platform-
specific reasons or group contains more than one processor.

NullPointerException when group is null.

applyTo(ActiveEventDispatcher)

Signature
public final void
applyTo(javax.realtime.ActiveEventDispatcher<?, ?> dispatcher)
throws ProcessorAffinityException

Description
Set the processor affinity of dispatcher to this.

Parameters
dispatcher is the dispatcher instance.

Throws
IllegalArgumentException when intersection of this with the affinity of any group

containing dispatcher is empty.
ProcessorAffinityException when the runtime fails to set the affinity for platform-

specific reasons.
NullPointerException when dispatcher is null.

6.3.3.2 AperiodicParameters

Inheritance
java.lang.Object
ReleaseParameters
AperiodicParameters

Description
When a reference to an AperiodicParameters object is given as a parameter
to a schedulable’s constructor or passed as an argument to one of the sched-
ulable’s setter methods, the AperiodicParameters object becomes the release

RTSJ 2.0 (Draft 48) 151

6 Scheduling AperiodicParameters

parameters object bound to that schedulable. Changes to the values in the
AperiodicParameters object affect that schedulable. When bound to more than
one schedulable, changes to the values in the AperiodicParameters object affect
all of the associated objects. Note that this is a one-to-many relationship and
not a many-to-many.

Only changes to an AperiodicParameters object caused by methods on that
object cause the change to propagate to all schedulables using the object. For
instance, calling setCost on an AperiodicParameters object will make the change,
then notify that the scheduler that the parameter object has changed. At that
point the object is reconsidered for every schedulable that uses it. Invoking a
method on the RelativeTime object that is the cost for this object may change
the cost but it does not pass the change to the scheduler at that time. That
change must not change the behavior of the schedulable’s that use the parameter
object until a setter method on the AperiodicParameters object is invoked, or
the parameter object is used in setReleaseParameters() or a constructor for a
schedulable.

The implementation must use modified copy semantics for each HighResolu-
tionTime68 parameter value. The value of each time object should be treated as
if it were copied at the time it is passed to the parameter object, but the object
reference must also be retained. For instance, the value returned by getCost()
must be the same object passed in by setCost(), but any changes made to the
time value of the cost must not take effect in the associated AperiodicParameters
instance unless they are passed to the parameter object again, e.g. with a new
invocation of setCost.

Correct initiation of the deadline miss and cost overrun handlers requires
that the underlying system know the arrival time of each aperiodic task. For an
instance of RealtimeThread69 the arrival time is the time at which the start() is
invoked. For other instances of Schedulable70, the required behaviors may require
the implementation to behave effectively as if it maintained a queue of arrival
times.

When the release parameters for a RealtimeThread are set to an instance of
this class or one of its subclasses, the thread does not start executing code until
the RealtimeThread.release()71 method is called.

The following table gives the default values for the constructors parameters.

68Section 9.3.1.2
69Section 5.3.2.2
70Section 6.3.1.3
71Section 5.3.2.2.2

152 RTSJ 2.0 (Draft 48)

AperiodicParameters javax.realtime 6.3

Table 6.3: AperiodicParameters Default Values
Attribute Value

cost new RelativeTime(0,0)
deadline new RelativeTime(Long.MAX_VALUE, 999999)
overrunHandler None
missHandler None
rousable false
Arrival time queue size 0
Queue overflow policy SAVE

Caution: This class is explicitly unsafe for multithreading when being changed.
Code that mutates instances of this class should synchronize at a higher level.

6.3.3.2.1 Fields

6.3.3.2.2 Constructors

AperiodicParameters(RelativeTime, RelativeTime, AsyncEv-
entHandler, AsyncEventHandler, boolean)

Signature
public
AperiodicParameters(RelativeTime cost,

RelativeTime deadline,
AsyncEventHandler overrunHandler,
AsyncEventHandler missHandler,
boolean rousable)

Description
Create an AperiodicParameters object.

Available since RTSJ 2.0

RTSJ 2.0 (Draft 48) 153

6 Scheduling AperiodicParameters

Parameters
cost Processing time per invocation. On implementations which can measure the

amount of time a schedulable object is executed, this value is the maximum
amount of time a schedulable receives. On implementations which cannot
measure execution time, it is not possible to determine when any particu-
lar object exceeds cost. When null, the default value is a new instance of
RelativeTime(0,0).

deadline The latest permissible completion time measured from the release time of
the associated invocation of the schedulable. When null, the default value is a
new instance of RelativeTime(Long.MAX_VALUE, 999999).

overrunHandler This handler is invoked when an invocation of the schedulable
exceeds cost. Not required for minimum implementation. When null, the
default value is no overrun handler.

missHandler This handler is invoked when the run() method of the schedulable
object is still executing after the deadline has passed. When null, the default
value is no miss handler.

rousable determines whether or not an instance of Schedulable can be prematurely
released by a thread interrupt.

Throws
IllegalArgumentException when the time value of cost is less than zero, or the time

value of deadline is less than or equal to zero.
IllegalAssignmentError when cost, deadline, overrunHandler or missHandler cannot

be stored in this.

AperiodicParameters(RelativeTime, RelativeTime, AsyncEv-
entHandler, AsyncEventHandler)

Signature
public
AperiodicParameters(RelativeTime cost,

RelativeTime deadline,
AsyncEventHandler overrunHandler,
AsyncEventHandler missHandler)

Description
Equivalent to AperiodicParameters(RelativeTime, RelativeTime, AsyncEvent-
Handler, AsyncEventHandler, boolean)72 with the argument list (cost, deadline,

72Section 6.3.3.2.2

154 RTSJ 2.0 (Draft 48)

AperiodicParameters javax.realtime 6.3

overrunHandler, missHandler, false).

Parameters
cost Processing time per invocation. On implementations that support cost enforce-

ment, this value is the maximum amount of time a schedulable receives. On
implementations which do not support cost enforcement, it is not possible to
determine when any particular object exceeds cost. When null, the default
value is a new instance of RelativeTime(0,0).

deadline The latest permissible completion time measured from the release time of
the associated invocation of the schedulable. When null, the default value is a
new instance of RelativeTime(Long.MAX_VALUE, 999999).

overrunHandler This handler is invoked when an invocation of the schedulable
exceeds cost. Not required for minimum implementation. When null, the
default value is no overrun handler.

missHandler This handler is invoked when the run() method of the schedulable
object is still executing after the deadline has passed. When null, the default
value is no miss handler.

Throws
IllegalArgumentException when the time value of cost is less than zero, or the time

value of deadline is less than or equal to zero.
IllegalAssignmentError when cost, deadline, overrunHandler or missHandler cannot

be stored in this.

AperiodicParameters(RelativeTime, AsyncEventHandler, boo-
lean)

Signature
public
AperiodicParameters(RelativeTime deadline,

AsyncEventHandler missHandler,
boolean rousable)

Description
Equivalent to AperiodicParameters(RelativeTime, RelativeTime, AsyncEvent-
Handler, AsyncEventHandler, boolean)73 with the argument list (null, deadline,
null, missHandler, rousable).

73Section 6.3.3.2.2

RTSJ 2.0 (Draft 48) 155

6 Scheduling AperiodicParameters

Available since RTSJ 2.0

AperiodicParameters(RelativeTime)

Signature
public
AperiodicParameters(RelativeTime deadline)

Description

Equivalent to AperiodicParameters(RelativeTime, RelativeTime, AsyncEvent-
Handler, AsyncEventHandler, boolean)74 with the argument list (null, deadline,
null, null, false).

Available since RTSJ 2.0

AperiodicParameters

Signature
public
AperiodicParameters()

Description

Equivalent to AperiodicParameters(RelativeTime, RelativeTime, AsyncEvent-
Handler, AsyncEventHandler, boolean)75 with the argument list (null, null, null,
null, false).

Available since RTSJ 1.0.1

6.3.3.2.3 Methods

74Section 6.3.3.2.2
75Section 6.3.3.2.2

156 RTSJ 2.0 (Draft 48)

BackgroundParameters javax.realtime 6.3

setDeadline(RelativeTime)

Signature
public javax.realtime.AperiodicParameters
setDeadline(RelativeTime deadline)

Description
Sets the deadline value.

When this parameter object is associated with any schedulable object (by
being passed through the schedulable’s constructor or set with a method such
as RealtimeThread.setReleaseParameters(ReleaseParameters)76) the deadline of
those schedulables is altered as specified by each schedulable’s respective scheduler.

Parameters
deadline The latest permissible completion time measured from the release time of

the associated invocation of the schedulable. When deadline is null, the deadline
is set to a new instance of RelativeTime(Long.MAX_VALUE, 999999).

Throws
IllegalArgumentException when the time value of deadline is less than or equal to

zero, or when the new value of this deadline is incompatible with the scheduler
for any associated schedulable.

IllegalAssignmentError IllegalAssignmentError when deadline cannot be stored in
this.

Returns
this

6.3.3.3 BackgroundParameters

Inheritance
java.lang.Object
ReleaseParameters
BackgroundParameters

Description
Parameters for realtime threads that are only released once. A thread using this
release parameters may not use RealtimeThread.waitForNextRelease()77 or have

76Section 5.3.2.2.2
77Section 5.3.2.2.2

RTSJ 2.0 (Draft 48) 157

6 Scheduling BackgroundParameters

its RealtimeThread.release()78 methods called. Calling these methods results
in an IllegalThreadStateException. Event handlers may not use this type of
ReleaseParameters.

6.3.3.3.1 Constructors

BackgroundParameters(RelativeTime, RelativeTime, Async-
EventHandler, AsyncEventHandler)

Signature
public
BackgroundParameters(RelativeTime cost,

RelativeTime deadline,
AsyncEventHandler overrunHandler,
AsyncEventHandler missHandler)

Description
A constructor for both cost and deadline monitoring.

Caution: This class is explicitly unsafe for multithreading when being changed.
Code that mutates instances of this class should synchronize at a higher level. Avail-
able since RTSJ 2.0

Parameters
cost is the maximum cost for the initial release
deadline is the deadline for the initial release
overrunHandler is the handler to call on cost overrun.
missHandler is the handler to call on deadline miss.

Throws
IllegalArgumentException when the time value of cost is less than zero, or the time

value of deadline is less than or equal to zero, or the chronograph associated
with the cost or deadline parameters is not an instance of Clock79.

IllegalAssignmentError when cost, deadline, overrunHandler, or missHandler cannot
be stored in this.

78Section 5.3.2.2.2
79Section 10.3.2.1

158 RTSJ 2.0 (Draft 48)

FirstInFirstOutScheduler javax.realtime 6.3

BackgroundParameters(RelativeTime, AsyncEventHandler)

Signature
public
BackgroundParameters(RelativeTime deadline,

AsyncEventHandler missHandler)

Description
A constructor for deadline monitoring. Equivalent to BackgroundParameters(null,
deadline, null, missHandler)

Available since RTSJ 2.0

BackgroundParameters

Signature
public
BackgroundParameters()

Description
A constructor for not having any restrictions on or monitoring of scheduling.
Equivalent to BackgroundParameters(null, null, null, null, false)

6.3.3.4 FirstInFirstOutScheduler

Inheritance
java.lang.Object
Scheduler
PriorityScheduler
FirstInFirstOutScheduler

Description
A version of PriorityScheduler80 where once a thread is scheduled at a given
priority, it runs until it is blocked or is preempted by a higher priority thread.

80Section 6.3.3.8

RTSJ 2.0 (Draft 48) 159

6 Scheduling FirstInFirstOutScheduler

When preempted, it remains the next thread ready for its priority. This is the
default scheduler for realtime tasks. It represents the required (by the RTSJ)
priority-based scheduler. The default instance is the base scheduler which does
fixed priority, preemptive scheduling.

This scheduler, like all schedulers, governs the default values for scheduling-
related parameters in its client schedulables. The defaults are as follows:

Table 6.4: FirstInFirstOut Default PriorityParameter Values
Attribute Default Value

Priority norm priority

The system contains one instance of the FirstInFirstOutScheduler which is the
system’s base scheduler and is returned by FirstInFirstOutScheduler.instance().
The instance returned by the instance()81 method is the base scheduler and
is returned by Scheduler.getDefaultScheduler()82 unless the default scheduler is
reset with Scheduler.setDefaultScheduler(Scheduler)83.

Available since RTSJ 2.0

6.3.3.4.1 Methods

instance

Signature
public static javax.realtime.FirstInFirstOutScheduler
instance()

Description
Obtain a reference to the distinguished instance of PriorityScheduler which is
the system’s base scheduler.

Returns
A reference to the distinguished instance PriorityScheduler.

81Section 6.3.3.4.1
82Section 6.3.3.12.2
83Section 6.3.3.12.2

160 RTSJ 2.0 (Draft 48)

FirstInFirstOutScheduler javax.realtime 6.3

getMaxPriority

Signature
public int
getMaxPriority()

Description
Obtain the maximum priority available for a schedulable managed by this sched-
uler.

Returns
The value of the maximum priority.

getMinPriority

Signature
public int
getMinPriority()

Description
Obtain the minimum priority available for a schedulable managed by this sched-
uler.

Returns
The minimum priority used by this scheduler.

getNormPriority

Signature
public int
getNormPriority()

Description
Obtain the normal priority available for a schedulable managed by this scheduler.

Returns
The value of the normal priority.

RTSJ 2.0 (Draft 48) 161

6 Scheduling ImportanceParameters

getPolicyName

Signature
public java.lang.String
getPolicyName()

Description

Obtain the policy name of this.

Returns
The policy name (Fixed Priority First In First Out) as a string.

reschedule(Thread, int)

Signature
public void
reschedule(Thread thread,

int priority)

Description

Promotes a java.lang.Thread to realtime priority under this scheduler. The
affected thread will be scheduled as if it were a RealtimeThread84 of the given
priority. This does not make the affected thread a RealtimeThread, however, and
it will not have access to facilities reserved for instances of RealtimeThread.

Parameters
thread The thread to promote to realtime scheduling.
priority An integer priority equivalent to a priority set via PriorityParameters85 on

a RealtimeThread.
Throws
IllegalArgumentException when priority is not between getMinPriority()86 and

getMaxPriority()87, inclusive.

84Section 5.3.2.2
85Section 6.3.3.7
86Section 6.3.3.4.1
87Section 6.3.3.4.1

162 RTSJ 2.0 (Draft 48)

ImportanceParameters javax.realtime 6.3

6.3.3.5 ImportanceParameters

Inheritance
java.lang.Object
SchedulingParameters
PriorityParameters
ImportanceParameters

Description
Importance is an additional scheduling metric that may be used by some priority-
based scheduling algorithms during overload conditions to differentiate execution
order among threads of the same priority.

In some realtime systems an external physical process determines the period
of many threads. When rate-monotonic priority assignment is used to assign
priorities, many of the threads in the system may have the same priority because
their periods are the same. However, it is conceivable that some threads may be
more important than others and in an overload situation importance can help the
scheduler decide which threads to execute first. The base scheduling algorithm
represented by PriorityScheduler88 must not consider importance.

6.3.3.5.1 Constructors

ImportanceParameters(int, int)

Signature
public
ImportanceParameters(int priority,

int importance)

Description
Create an instance of ImportanceParameters.

Parameters
priority The priority value assigned to schedulables that use this parameter instance.

This value is used in place of the value passed to Thread.setPriority.
88Section 6.3.3.8

RTSJ 2.0 (Draft 48) 163

6 Scheduling ImportanceParameters

importance The importance value assigned to schedulable objects that use this
parameter instance.

6.3.3.5.2 Methods

getImportance

Signature
public int
getImportance()

Description
Gets the importance value.

Returns
The value of importance for the associated instances of Schedulable89.

setImportance(int)

Signature
public javax.realtime.ImportanceParameters
setImportance(int importance)

Description
Set the importance value. When this parameter object is associated with any
schedulable (by being passed through the schedulable’s constructor or set with a
method such as RealtimeThread.setSchedulingParameters(SchedulingParameters)90)
the importance of those schedulables is altered at a moment controlled by the
schedulers for the respective schedulables.

Parameters
importance The value to which importance is set.

Throws
IllegalArgumentException when the given importance value is incompatible with the

scheduler for any of the schedulables which are presently using this parameter
object.

89Section 6.3.1.3
90Section 5.3.2.2.2

164 RTSJ 2.0 (Draft 48)

PeriodicParameters javax.realtime 6.3

Returns
this

toString

Signature
public java.lang.String
toString()

Description
Print the value of the priority and importance values of the associated instance
of Schedulable91

6.3.3.6 PeriodicParameters

Inheritance
java.lang.Object
ReleaseParameters
PeriodicParameters

Description
This release parameter indicates that the schedulable is released on a regular
basis. For an AsyncEventHandler92, this means that the handler is either re-
leased by a periodic timer, or the associated event occurs periodically. For a
RealtimeThread93, this means that the RealtimeThread.waitForNextRelease94

method will unblock the associated realtime thread at the start of each period.
When a reference to a PeriodicParameters object is given as a parameter to

a schedulable’s constructor or passed as an argument to one of the schedulable’s
setter methods, the PeriodicParameters object becomes the release parameters
object bound to that schedulable. Changes to the values in the PeriodicPa-
rameters object affect that schedulable object. When bound to more than one
schedulable then changes to the values in the PeriodicParameters object affect
all of the associated objects. Note that this is a one-to-many relationship and
not a many-to-many.

91Section 6.3.1.3
92Section 8.3.3.5
93Section 5.3.2.2
94Section 5.3.2.2.2

RTSJ 2.0 (Draft 48) 165

6 Scheduling PeriodicParameters

Only changes to a PeriodicParameters object caused by methods on that
object cause the change to propagate to all schedulable objects using the object.
For instance, calling setCost on an PeriodicParameters object will make the
change, then notify that the scheduler that the parameter object has changed. At
that point the object is reconsidered for every SO that uses it. Invoking a method
on the RelativeTime object that is the cost for this object may change the cost
but it does not pass the change to the scheduler at that time. That change must
not change the behavior of the SOs that use the parameter object until a setter
method on the PeriodicParameters object is invoked, or the parameter object is
used in setReleaseParameters() or a constructor for an SO.

Periodic parameters use HighResolutionTime95 values for period and start
time. Since these times are expressed as a HighResolutionTime96 values, these
values use accurate timers with nanosecond granularity. The actual resolution
available and even the quantity the timers measure depend on the clock associated
with each time value.

The implementation must use modified copy semantics for each HighResolu-
tionTime97 parameter value. The value of each time object should be treated as
if it were copied at the time it is passed to the parameter object, but the object
reference must also be retained. For instance, the value returned by getCost()
must be the same object passed in by setCost(), but any changes made to the
time value of the cost must not take effect in the associated PeriodicParameters
instance unless they are passed to the parameter object again, e.g. with a new
invocation of setCost.

The following table gives the default parameter values for the constructors.

Table 6.5: PeriodicParameter Default Values
Attribute Default Value

start new RelativeTime(0,0)
period No default. A value must be sup-

plied
cost new RelativeTime(0,0)
deadline new RelativeTime(period)
overrunHandler None
missHandler None
EventQueueOverflowPolicy QueueOverflowPolicy.DISABLE

95Section 9.3.1.2
96Section 9.3.1.2
97Section 9.3.1.2

166 RTSJ 2.0 (Draft 48)

PeriodicParameters javax.realtime 6.3

Periodic release parameters are strictly informational when they are applied
to async event handlers. They must be used for any feasibility analysis, but
release of the async event handler is not entirely controlled by the scheduler.

Caution: This class is explicitly unsafe for multithreading when being changed.
Code that mutates instances of this class should synchronize at a higher level.

6.3.3.6.1 Constructors

PeriodicParameters(HighResolutionTime, RelativeTime, Re-
lativeTime, RelativeTime, AsyncEventHandler, AsyncEvent-
Handler, boolean)

Signature
public
PeriodicParameters(javax.realtime.HighResolutionTime<?> start,

RelativeTime period,
RelativeTime cost,
RelativeTime deadline,
AsyncEventHandler overrunHandler,
AsyncEventHandler missHandler,
boolean rousable)

Description
Create a PeriodicParameters object with attributes set to the specified values.

Available since RTSJ 2.0

Parameters
start Time at which the first release begins (i.e. the realtime thread becomes

eligible for execution.) When a RelativeTime, this time is relative to the first
time the thread becomes activated (that is, when start() is called). When an
AbsoluteTime, then the first release is the maximum of the start parameter
and the time of the call to the associated RealtimeThread.start() method
(modified according to any phasing policy). When null, the default value is a
new instance of RelativeTime(0,0).

period The period is the interval between successive releases. There is no default
value. When period is null an exception is thrown.

RTSJ 2.0 (Draft 48) 167

6 Scheduling PeriodicParameters

cost Processing time per release. On implementations which can measure the
amount of time a schedulable is executed, this value is the maximum amount
of time a schedulable receives per release. When null, the default value is a
new instance of RelativeTime(0,0).

deadline The latest permissible completion time measured from the release time of
the associated invocation of the schedulable. When null, the default value is
new instance of RelativeTime(period).

overrunHandler This handler is invoked when an invocation of the schedulable
exceeds cost in the given release. Implementations may ignore this parameter.
When null, the default value is no overrun handler.

missHandler This handler is invoked when the run() method of the schedulable is
still executing after the deadline has passed. When null, the default value is
no deadline miss handler.

rousable when true, and interrupt will cause an early release, otherwise not.
Throws
IllegalArgumentException when the period is null or its time value is not greater

than zero, or when the time value of cost is less than zero, or when the time
value of deadline is not greater than zero, or when the clock associated with
the cost is not the realtime clock, or when the clock associated with the start,
deadline and period parameters are not the same.

IllegalAssignmentError when start period, cost, deadline, overrunHandler or mis-
sHandler cannot be stored in this.

PeriodicParameters(HighResolutionTime, RelativeTime, Re-
lativeTime, RelativeTime, AsyncEventHandler, AsyncEvent-
Handler)

Signature
public
PeriodicParameters(javax.realtime.HighResolutionTime<?> start,

RelativeTime period,
RelativeTime cost,
RelativeTime deadline,
AsyncEventHandler overrunHandler,
AsyncEventHandler missHandler)

Description
Equivalent to PeriodicParameters(HighResolutionTime, RelativeTime, Relative-

168 RTSJ 2.0 (Draft 48)

PeriodicParameters javax.realtime 6.3

Time, RelativeTime, AsyncEventHandler, AsyncEventHandler, boolean)98 with
the argument list (start, period, cost, deadline, overrunHandler, missHandler,
false);

PeriodicParameters(HighResolutionTime, RelativeTime, Re-
lativeTime, AsyncEventHandler, boolean)

Signature
public
PeriodicParameters(javax.realtime.HighResolutionTime<?> start,

RelativeTime period,
RelativeTime deadline,
AsyncEventHandler missHandler,
boolean rousable)

Description
Equivalent to PeriodicParameters(HighResolutionTime, RelativeTime, Relative-
Time, RelativeTime, AsyncEventHandler, AsyncEventHandler, boolean)99 with
the argument list (start, period, deadline, null, null, missHandler, rousable);

Available since RTSJ 2.0

PeriodicParameters(HighResolutionTime, RelativeTime)

Signature
public
PeriodicParameters(javax.realtime.HighResolutionTime<?> start,

RelativeTime period)

Description
Equivalent to PeriodicParameters(HighResolutionTime, RelativeTime, Relative-
Time, RelativeTime, AsyncEventHandler, AsyncEventHandler, boolean)100 with
the argument list (start, period, null, null, null, null, false);

98Section 6.3.3.6.1
99Section 6.3.3.6.1

100Section 6.3.3.6.1

RTSJ 2.0 (Draft 48) 169

6 Scheduling PeriodicParameters

Available since RTSJ 1.0.1

PeriodicParameters(RelativeTime)

Signature
public
PeriodicParameters(RelativeTime period)

Description
Create a PeriodicParameters object with the specified period and all other at-
tributes set to their default values. This constructor has the same effect as
invoking PeriodicParameters(null, period, null, null, null, null, false)

Available since RTSJ 1.0.1

6.3.3.6.2 Methods

getPeriod

Signature
public javax.realtime.RelativeTime
getPeriod()

Description
Determine the current value of period.

Returns
the object last used to set the period containing the current value of period.

getPeriod(RelativeTime)

Signature
public javax.realtime.RelativeTime
getPeriod(RelativeTime value)

170 RTSJ 2.0 (Draft 48)

PeriodicParameters javax.realtime 6.3

Description
Determine the current value of period.

Returns
value or, when null, the last object used to set the period, set to the current value

of period.

getStart

Signature
public javax.realtime.HighResolutionTime<?>
getStart()

Description
Determine the time used to start an instance of Schedulable, which is not neces-
sarily the time at which it actually started.

Returns
the object last used to set the start containing the current value of start.

setDeadline(RelativeTime)

Signature
public javax.realtime.PeriodicParameters
setDeadline(RelativeTime deadline)

Description
Sets the deadline value.

When this parameter object is associated with any schedulable object (by
being passed through the schedulable’s constructor or set with a method such
as RealtimeThread.setReleaseParameters(ReleaseParameters)101) the deadline of
those schedulables is altered as specified by each schedulable’s respective scheduler.

Parameters
deadline The latest permissible completion time measured from the release time

of the associated invocation of the schedulable. When deadline is null, the
deadline is set to a new instance of RelativeTime equal to period.

Throws
101Section 5.3.2.2.2

RTSJ 2.0 (Draft 48) 171

6 Scheduling PeriodicParameters

IllegalArgumentException when the time value of deadline is less than or equal to
zero, or when the new value of this deadline is incompatible with the scheduler
for any associated schedulable.

IllegalAssignmentError IllegalAssignmentError when deadline cannot be stored in
this.

Returns
this

setPeriod(RelativeTime)

Signature
public javax.realtime.PeriodicParameters
setPeriod(RelativeTime period)

Description
Sets the period.

Parameters
period The value to which period is set.

Throws
IllegalArgumentException when the given period is null or its time value is not

greater than zero. Also when period is incompatible with the scheduler for
any associated schedulable or when an associated AsyncBaseEventHandler102

is associated with a Timer103 whose period does not match period.
IllegalAssignmentError when period cannot be stored in this.

Returns
this

setStart(HighResolutionTime)

Signature
public javax.realtime.PeriodicParameters
setStart(javax.realtime.HighResolutionTime<?> start)

Description
102Section 8.3.3.3
103Section 10.3.2.6

172 RTSJ 2.0 (Draft 48)

PriorityParameters javax.realtime 6.3

Sets the start time.
The effect of changing the start time for any schedulables associated with this

parameter object is determined by the scheduler associated with each schedulable.
Note: An instance of PeriodicParameters may be shared by several schedula-

bles. A change to the start time may take effect on a subset of these schedulables.
That leaves the start time returned by getStart unreliable as a way to determine
the start time of a schedulable.

Parameters
start The new start time. When null, the default value is a new instance of

RelativeTime(0,0).
Throws
IllegalArgumentException when the given start time is incompatible with the

scheduler for any of the schedulable objects which are presently using this
parameter object.

IllegalAssignmentError when start cannot be stored in this.

Returns
this

6.3.3.7 PriorityParameters

Inheritance
java.lang.Object
SchedulingParameters
PriorityParameters

Description

Instances of this class should be assigned to schedulables that are managed by
schedulers which use a single integer to determine execution order. The base
scheduler required by this specification and represented by the class PrioritySched-
uler104 is such a scheduler.

6.3.3.7.1 Constructors

104Section 6.3.3.8

RTSJ 2.0 (Draft 48) 173

6 Scheduling PriorityParameters

PriorityParameters(int)

Signature
public
PriorityParameters(int priority)

Description
Create an instance of PriorityParameters105 with the given priority.

Parameters
priority The priority assigned to schedulables that use this parameter instance.

6.3.3.7.2 Methods

isCompatible(Class)

Signature
public boolean
isCompatible(java.lang.Class<javax.realtime.Scheduler> type)

Description
Determine whether this scheduling parameters can be used by tasks scheduled
by instances of type.

Parameters
type of scheduler to check against

Returns
true when and only when this can be used with type as the scheduler.

Available since RTSJ 2.0

getPriority

Signature
105Section 6.3.3.7

174 RTSJ 2.0 (Draft 48)

PriorityParameters javax.realtime 6.3

public int
getPriority()

Description
Gets the priority value.

Returns
The priority.

setPriority(int)

Signature
public javax.realtime.PriorityParameters
setPriority(int priority)

Description
Set the priority value. When this parameter object is associated with any sched-
ulable (by being passed through the schedulable’s constructor or set with a method
such as RealtimeThread.setSchedulingParameters(SchedulingParameters)106) the
base priority of those schedulables is altered as specified by each schedulable’s
scheduler.

Parameters
priority The value to which priority is set.

Throws
IllegalArgumentException when the given priority value is incompatible with the

scheduler for any of the schedulables which are presently using this parameter
object.

Returns
this

toString

Signature
public java.lang.String
toString()

Description
106Section 5.3.2.2.2

RTSJ 2.0 (Draft 48) 175

6 Scheduling PriorityScheduler

Converts the priority value to a string.

Returns
A string representing the value of priority.

6.3.3.8 PriorityScheduler

Inheritance
java.lang.Object
Scheduler
PriorityScheduler

Description
Class which represents the required (by the RTSJ) priority-based schedulers. The
default instance is the base scheduler which uses a fixed priority, first-in-first-out,
preemptive scheduling algorithm.

This scheduler, like all schedulers, governs the default values for scheduling-
related parameters in its client schedulables. The defaults are as follows:

Table 6.6: PriorityScheduler Default PriorityParameter Values
Attribute Default Value

Priority norm priority

Note that the system contains one instance of the PriorityScheduler which is
the system’s base scheduler and is returned by FirstInFirstOutScheduler.instance()107.
It may, however, contain instances of subclasses of PriorityScheduler created
through this class’ protected constructor. The instance returned by the FirstInFirstOutScheduler.
instance()method, the base scheduler, is returned by Scheduler.getDefaultScheduler()108

unless the default scheduler is changed with Scheduler.setDefaultScheduler(Scheduler)109.

6.3.3.8.1 Fields

107Section 6.3.3.4.1
108Section 6.3.3.12.2
109Section 6.3.3.12.2

176 RTSJ 2.0 (Draft 48)

PriorityScheduler javax.realtime 6.3

6.3.3.8.2 Constructors

PriorityScheduler

Signature
protected
PriorityScheduler()

Description
Construct an instance of PriorityScheduler. Applications will likely not need any
instance other than the default instance.

6.3.3.8.3 Methods

getPolicyName

Signature
public java.lang.String
getPolicyName()

Description
Gets the policy name of this.

Returns
The policy name (Fixed Priority) as a string.

getMaxPriority

Signature
public abstract int
getMaxPriority()

Description
Gets the maximum priority available for a schedulable managed by this scheduler.

RTSJ 2.0 (Draft 48) 177

6 Scheduling PriorityScheduler

Returns
The value of the maximum priority.

getMinPriority

Signature
public abstract int
getMinPriority()

Description
Gets the minimum priority available for a schedulable managed by this scheduler.

Returns
The minimum priority used by this scheduler.

getNormPriority

Signature
public abstract int
getNormPriority()

Description
Gets the normal priority available for a schedulable managed by this scheduler.

Returns
The value of the normal priority.

reschedule(Thread, int)

Signature
public abstract void
reschedule(Thread thread,

int priority)

Description
Promotes a java.lang.Thread to realtime priority under this scheduler. The
affected thread will be scheduled as if it were a RealtimeThread110 of the given
priority. This does not make the affected thread a RealtimeThread, however, and
it will not have access to facilities reserved for instances of RealtimeThread.

110Section 5.3.2.2

178 RTSJ 2.0 (Draft 48)

ProcessingGroup javax.realtime 6.3

Parameters
thread The thread to promote to realtime scheduling.
priority An integer priority equivalent to a priority set via PriorityParameters111

on a RealtimeThread.
Throws
IllegalArgumentException when priority is not between getMinPriority()112 and

getMaxPriority()113, inclusive.

Available since RTSJ 2.0

6.3.3.9 ProcessingGroup

Inheritance
java.lang.Object
java.lang.ThreadGroup
SchedulingGroup
ProcessingGroup

Description
A descendant class of ThreadGroup for handling tasks (instances of Schedul-
able114 and java.lang.Thread) as a group. As with ThreadGroup and Scheduling-
Group115, instances of ProcessingGroup can be nested. A processing group can
contain all group types, i.e., instance of all three classes. The cost of the group,
including all tasks in its subgroups, can be both tracked and limited over a given
period, by bounding the execution demands of those tasks.

A processing group has an associated affinity. The precision of cost monitoring
is dependent on the number of processors in the thread group. In the worst case,
it is the base precision times the number of processors in the processing group.
The default affinity is that which was inherited from the parent SchedulingGroup.

For all tasks with a reference to an instance of ProcessingGroup p, no more
than p.cost will be allocated to the execution of these tasks on the processors
associated with its processing group in each interval of time given by p.period
after the time indicated by p.start. No execution of the tasks will be allowed on
any processor other than these processors.

111Section 6.3.3.7
112Section 6.3.3.8.3
113Section 6.3.3.8.3
114Section 6.3.1.3
115Section 6.3.3.13

RTSJ 2.0 (Draft 48) 179

6 Scheduling ProcessingGroup

For each running task in a processing group, there must always be at least one
processor in the intersection between a task object’s affinity and its processing
group’s affinity regardless of the groups monitoring state.

Logically, a ProcessingGroup represents a virtual server. This server has a
start time, a period, a cost (budget), and a deadline. The server can only logically
execute when
• (a) it has not consumed more execution time in its current release than the

cost (budget) parameter,
• (b) one of its associated tasks is executable and is the most eligible of the

executable tasks.
When the server is logically executable, the associated tasks are executed.

When the cost has been consumed, any overrunHandler is released, and the
server is not eligible for logical execution until the period is finished. At this point,
its allocated cost (budget) is replenished. When the server is logically executable
when its deadline expires, any associated missHandler is released. When the
server is logically executable when its next release time occurs, any associated
underrunHandler is released.

The deadline and cost parameters of all the associated schedulable objects
have the same impact as they would if the objects were not bound to a processing
group.

Processing group parameters use HighResolutionTime116 values for cost, dead-
line, period and start time. Since those times are expressed as a HighResolu-
tionTime117, the values use accurate timers with nanosecond granularity. The
actual resolution available and even the quantity it measures depends on the
clock associated with each time value.

When a reference to a ProcessingGroup object is given as a parameter to a
schedulable’s constructor or passed as an argument to one of the schedulable’s
setter methods, the ProcessingGroup object becomes the processing group pa-
rameters object bound to that schedulable object. Changes to the values in the
ProcessingGroup object affect that schedulable object. When bound to more
than one schedulable then changes to the values in the ProcessingGroup object
affect all of the associated objects. Note that this is a one-to-many relationship
and not a many-to-many.

The implementation must use copy semantics for each HighResolutionTime118

parameter value. The value of each time object should be copied at the time it is
passed to the parameter object, and the object reference must not be retained.
Only changes to a ProcessingGroup object caused by methods on that object

116Section 9.3.1.2
117Section 9.3.1.2
118Section 9.3.1.2

180 RTSJ 2.0 (Draft 48)

ProcessingGroup javax.realtime 6.3

are immediately visible to the scheduler. For instance, invoking setPeriod() on
a ProcessingGroup object will make the change, then notify that the scheduler
that the parameter object has changed. At that point the scheduler’s view of
the processing group parameters object is updated. Invoking a method on the
RelativeTime object that is the period for this object may change the period but
it does not pass the change to the scheduler at that time. That new value for
period must not change the behavior of the SOs that use the parameter object
until a setter method on the ProcessingGroup object is invoked or a constructor
for an SO.

The following table gives the default parameter values for the constructors.

Table 6.7: ProcessingGroup Default Values
Attribute Default Value

start new RelativeTime(0,0)
period No default. A value must be sup-

plied
cost No default. A value must be sup-

plied
deadline new RelativeTime(period)
minimum null, no minimum
overrunHandler None
missHandler None
underrunHandler None

Caution: This class is explicitly unsafe in multithreaded situations when it
is being changed. No synchronization is done. It is assumed that users of this
class who are mutating instances will be doing their own synchronization at a
higher level.

Caution: The cost parameter time should be considered to be measured
against the target platform.

Available since RTSJ 2.0

6.3.3.9.1 Constructors

RTSJ 2.0 (Draft 48) 181

6 Scheduling ProcessingGroup

ProcessingGroup(SchedulingGroup, String, HighResolution-
Time, RelativeTime, RelativeTime, AsyncEventHandler, Re-
lativeTime, AsyncEventHandler)

Signature
public
ProcessingGroup(SchedulingGroup parent,

String name,
javax.realtime.HighResolutionTime<?> start,
RelativeTime period,
RelativeTime cost,
AsyncEventHandler overrun,
RelativeTime minimum,
AsyncEventHandler underrun)

Description
Create a ProcessingGroup

Parameters
parent is the parent SchedulingGroup119 of this ProcessingGroup.
name is a string identifier for this group.
start is when monitoring should begin.
period is an amount of time for cost and overrun monitoring and for cost enforcement.
cost is the maximum total execution time of all tasks in the group during a given

period.
overrun is called when the the total execution of all tasks in the group exceeds cost

for a given period.
minimum is the least amount of processing time for all the tasks in this group

together.
underrun is called at the end of period when the total processing time of all tasks

was less than minimum in the last period.

ProcessingGroup(SchedulingGroup, String, HighResolution-
Time, RelativeTime, RelativeTime, AsyncEventHandler)

Signature
119Section 6.3.3.13

182 RTSJ 2.0 (Draft 48)

ProcessingGroup javax.realtime 6.3

public
ProcessingGroup(SchedulingGroup parent,

String name,
javax.realtime.HighResolutionTime<?> start,
RelativeTime period,
RelativeTime cost,
AsyncEventHandler overrun)

Description
Equivalent to ProcessingGroup(SchedulingGroup, String, HighResolutionTime,
RelativeTime, RelativeTime, AsyncEventHandler, RelativeTime, AsyncEvent-
Handler)120 with the argument list (parent, name, start, period, cost, overrun,
null, null).

ProcessingGroup(String, HighResolutionTime, RelativeTime,
RelativeTime, AsyncEventHandler)

Signature
public
ProcessingGroup(String name,

javax.realtime.HighResolutionTime<?> start,
RelativeTime period,
RelativeTime cost,
AsyncEventHandler overrun)

Description
Equivalent to ProcessingGroup(SchedulingGroup, String, HighResolutionTime,
RelativeTime, RelativeTime, AsyncEventHandler, RelativeTime, AsyncEvent-
Handler)121 with the argument list (Scheduler.currentSchedulable().getSchedulingGroup(),
name, start, period, cost, overrun, null, null).

6.3.3.9.2 Methods

120Section 6.3.3.9.1
121Section 6.3.3.9.1

RTSJ 2.0 (Draft 48) 183

6 Scheduling ProcessingGroup

getEffectiveStart(AbsoluteTime)

Signature
public javax.realtime.AbsoluteTime
getEffectiveStart(AbsoluteTime dest)

Description
Obtain the actual time of the group started as recorded by the system. When
the start time is absolute, that is the effective start time; otherwise, the effective
start is computed relative to the time that the processing group is constructed.

Parameters
dest is a time value to fill.

Returns
either, a new instance of AbsoluteTime, when dest is null, or dest otherwise. In

either case, its value is the time at which this group actually started.

getEffectiveStart

Signature
public javax.realtime.AbsoluteTime
getEffectiveStart()

Description
Obtain the actual time of the group started as recorded by the system.

Equivalent to getEffectiveStart(AbsoluteTime)122 where dest is set to null.
Returns
A reference a new instance of AbsoluteTime that represents the time at which this

group started.

getPeriod(RelativeTime)

Signature
public javax.realtime.RelativeTime
getPeriod(RelativeTime dest)

Description
Gets the value of period and returns it in the provided RelativeTime123 object.

122Section 6.3.3.9.2
123Section 9.3.1.3

184 RTSJ 2.0 (Draft 48)

ProcessingGroup javax.realtime 6.3

Parameters
dest An instance of RelativeTime which will be set to the currently configured

period. If dest is null, a new RelativeTime will be created in the current
allocation context.

Returns
A reference to dest, or a newly created object if dest is null.

getPeriod

Signature
public javax.realtime.RelativeTime
getPeriod()

Description
Gets the value of period.

Equivalent to getPeriod(null).

Returns
A reference to a newly allocated instance of RelativeTime124 that represents the

value of period.

setPeriod(RelativeTime)

Signature
public javax.realtime.ProcessingGroup
setPeriod(RelativeTime period)
throws IllegalArgumentException,

IllegalAssignmentError

Description
Sets the value of period.

Parameters
period The new value for period. There is no default value. When period is null

an exception is thrown.
Throws

124Section 9.3.1.3

RTSJ 2.0 (Draft 48) 185

6 Scheduling ProcessingGroup

IllegalArgumentException when period is null, or its time value is not greater than
zero. When the implementation does not support processing group deadline
less than period, and period is not equal to the current value of the processing
group’s deadline, the deadline is set to a clone of period created in the same
memory area as period.

Returns
this

getMaximumCost(RelativeTime)

Signature
public javax.realtime.RelativeTime
getMaximumCost(RelativeTime dest)

Description
Gets the value of cost. and returns it in the provided RelativeTime125 object.

Parameters
dest An instance of RelativeTime which will be set to the currently configured cost.

If dest is null, a new RelativeTime will be created in the current allocation
context.

Returns
A reference to dest, or a newly created object if dest is null.

getMaximumCost

Signature
public javax.realtime.RelativeTime
getMaximumCost()

Description
Gets the value of cost.

Equivalent to getMaximumCost(null).

Returns
a reference to a newly allocated object containing the value of cost.

125Section 9.3.1.3

186 RTSJ 2.0 (Draft 48)

ProcessingGroup javax.realtime 6.3

setMaximumCost(RelativeTime)

Signature
public javax.realtime.ProcessingGroup
setMaximumCost(RelativeTime cost)
throws IllegalArgumentException,

IllegalAssignmentError

Description

Sets the value of cost.

Parameters
cost The new value for cost. When null, an exception is thrown.

Throws
IllegalArgumentException when cost is null or its time value is less than zero.

Returns
this

getMinimumCost(RelativeTime)

Signature
public javax.realtime.RelativeTime
getMinimumCost(RelativeTime dest)

Description

Gets the value of minimum. and returns it in the provided RelativeTime126

object.

Parameters
dest An instance of RelativeTime which will be set to the currently configured

minimum. If dest is null, a new RelativeTime will be created in the current
allocation context.

Returns
A reference to dest, or a newly created object if dest is null.

126Section 9.3.1.3

RTSJ 2.0 (Draft 48) 187

6 Scheduling ProcessingGroup

getMinimumCost

Signature
public javax.realtime.RelativeTime
getMinimumCost()

Description
Gets the value of minimum and returns it in a newly allocated object.

Equivalent to getMinimumCost(null).

Returns
a reference to the value of minimum.

setMinimumCost(RelativeTime)

Signature
public javax.realtime.ProcessingGroup
setMinimumCost(RelativeTime cost)
throws IllegalArgumentException,

IllegalAssignmentError

Description
Sets the value of minimum.

Parameters
cost The new value for minimum. When null, an exception is thrown.

Throws
IllegalArgumentException when minimum is null or its time value is less than zero.

Returns
this

getCostUnderrunHandler

Signature
public javax.realtime.AsyncEventHandler
getCostUnderrunHandler()

Description
Gets the cost underrun handler.

188 RTSJ 2.0 (Draft 48)

ProcessingGroup javax.realtime 6.3

Returns
A reference to an instance of AsyncEventHandler127 that is cost overrun handler of

this.

setCostUnderrunHandler(AsyncEventHandler)

Signature
public javax.realtime.ProcessingGroup
setCostUnderrunHandler(AsyncEventHandler handler)
throws IllegalAssignmentError

Description
Sets the cost underrun handler.

Parameters
handler This handler is invoked when the run()method of and of the the schedulables

attempt to execute for more than cost time units in any period. When null,
no handler is attached, and any previous handler is removed.

Throws
IllegalAssignmentError when handler cannot be stored in this.

Returns
this

getCostOverrunHandler

Signature
public javax.realtime.AsyncEventHandler
getCostOverrunHandler()

Description
Gets the cost overrun handler.

Returns
A reference to an instance of AsyncEventHandler128 that is cost overrun handler of

this.

127Section 8.3.3.5
128Section 8.3.3.5

RTSJ 2.0 (Draft 48) 189

6 Scheduling ProcessingGroup

setCostOverrunHandler(AsyncEventHandler)

Signature
public javax.realtime.ProcessingGroup
setCostOverrunHandler(AsyncEventHandler handler)
throws IllegalAssignmentError

Description
Sets the cost overrun handler.

Parameters
handler This handler is invoked when the run()method of and of the the schedulables

attempt to execute for more than cost time units in any period. When null,
no handler is attached, and any previous handler is removed.

Throws
IllegalAssignmentError when handler cannot be stored in this.

Returns
this

enforcingCost

Signature
public boolean
enforcingCost()

Description
Determine whether or not cost is being enforced for releases.

Returns
true when enforcing code.

enforceCost

Signature
public void
enforceCost()
throws UnsupportedOperationException

Description

190 RTSJ 2.0 (Draft 48)

ProcessingGroup javax.realtime 6.3

Start cost enforcement at next release, when supported. Subsequent invocations
have no effect.

Throws
UnsupportedOperationException when cost enforcement is not supported.

getCurrentCost(RelativeTime)

Signature
public javax.realtime.RelativeTime
getCurrentCost(RelativeTime dest)

Description

Get the cost used in the current period so far.

Parameters
dest is the instance to use for returning the time. If dest is null, the result will be

returned in a newly allocated object.
Returns
dest containing the cost of the current period

getLastCost(RelativeTime)

Signature
public javax.realtime.RelativeTime
getLastCost(RelativeTime dest)

Description

Get the total cost used in the last period.

Parameters
dest is the instance to use for returning the time. If dest is null, the result will be

returned in a newly allocated object.
Returns
dest containing the cost of the last period

RTSJ 2.0 (Draft 48) 191

6 Scheduling ReleaseParameters

getGranularity

Signature
public long
getGranularity()

Description
Determine the measurement granularity of cost monitoring and cost enforcement.

Returns
the granularity in nanoseconds.

See Section setGranularity

setGranularity(long)

Signature
public javax.realtime.ProcessingGroup
setGranularity(long nanos)
throws IllegalArgumentException

Description
Set the measurement granularity of cost monitoring and cost enforcement. The
system provides a lower bound for this. When nanos is below this lower bound,
granularity is sliently set to the lower bound. In general, the lower bound is the
precision of the realtime clock.

Note that the ganularity applies to a single processor. When a processing group
spans more than one processor, the percission of cost monitoring or enforcement
is this ganularity times the number of active processors. This is because more
than one task could be running at the same time and cost can be measure at
most once per the elapse of this ganularity.

Parameters
nanos the new granularity in nanoseconds.

Throws
IllegalArgumentException when nanos is less than one.

Returns
this

192 RTSJ 2.0 (Draft 48)

ReleaseParameters javax.realtime 6.3

6.3.3.10 ReleaseParameters

Inheritance
java.lang.Object
ReleaseParameters

Interfaces
Cloneable
Serializable

Description
The top-level class for release characteristics used by Schedulable129. When a
reference to a ReleaseParameters object is given as a parameter to a constructor
of a schedulable, the ReleaseParameters object becomes bound to the object
being created. Changes to the values in the ReleaseParameters object affect the
constructed object. When given to more than one constructor, then changes to
the values in the ReleaseParameters object affect all of the associated objects.
Note that this is a one-to-many relationship and not a many-to-many.

Only changes to an ReleaseParameters object caused by methods on that
object cause the change to propagate to all schedulables using the object. For
instance, invoking setDeadline on a ReleaseParameters instance will make the
change, and then notify that the scheduler that the object has been changed. At
that point the object is reconsidered for every SO that uses it. Invoking a method
on the RelativeTime object that is the deadline for this object may change the
time value but it does not pass the new time value to the scheduler at that time.
Even though the changed time value is referenced by ReleaseParameters objects,
it will not change the behavior of the SOs that use the parameter object until
a setter method on the ReleaseParameters object is invoked, or the parameter
object is used in setReleaseParameters() or a constructor for a schedulable.

Release parameters use HighResolutionTime130 values for cost, and deadline.
Since the times are expressed as a HighResolutionTime131 values, these values
use accurate timers with nanosecond granularity. The actual precision available
and even the quantity the timers measure depend on the clock associated with
each time value.

The implementation must use modified copy semantics for each HighResolu-
tionTime132 parameter value. The value of each time object should be treated as
when it were copied at the time it is passed to the parameter object, but the object

129Section 6.3.1.3
130Section 9.3.1.2
131Section 9.3.1.2
132Section 9.3.1.2

RTSJ 2.0 (Draft 48) 193

6 Scheduling ReleaseParameters

reference must also be retained. For instance, the value returned by getCost()
must be the same object passed in by setCost(), but any changes made to the
time value of the cost must not take effect in the associated ReleaseParameters
instance unless they are passed to the parameter object again, e.g. with a new
invocation of setCost.

The following table gives the default parameter values for the constructors.

Table 6.8: ReleaseParameter Default Values
Attribute Default Value

cost new RelativeTime(0,0)
deadline no default
overrunHandler None
missHandler None
rousable false
initial event queue length 0

Caution: This class is explicitly unsafe for multithreading when being changed.
Code that mutates instances of this class should synchronize at a higher level.

6.3.3.10.1 Constructors

ReleaseParameters(RelativeTime, RelativeTime, AsyncEvent-
Handler, AsyncEventHandler)

Signature
protected
ReleaseParameters(RelativeTime cost,

RelativeTime deadline,
AsyncEventHandler overrunHandler,
AsyncEventHandler missHandler)

Description
Create a new instance of ReleaseParameters with the given parameter values.
@rtsj.issue{I really don’t see why this needs to be generic}

194 RTSJ 2.0 (Draft 48)

ReleaseParameters javax.realtime 6.3

Parameters
cost Processing time units per release. On implementations which can measure the

amount of time a schedulable object is executed, When null, the default value
is a new instance of RelativeTime(0, 0).

deadline The latest permissible completion time measured from the release time of
the associated invocation of the schedulable. There is no default for deadline
in this class. The default must be determined by the subclasses.

overrunHandler This handler is invoked when an invocation of the schedulable
exceeds cost. In the minimum implementation overrunHandler is ignored.
When null, no application event handler is executed on cost overrun.

missHandler This handler is invoked when the run() method of the schedulable is
still executing after the deadline has passed. When null, no application event
handler is executed on the miss deadline condition.

Throws
IllegalArgumentException when the time value of cost is less than zero, or the time

value of deadline is less than or equal to zero, or the chronograph associated
with the cost or deadline parameters is not an instance of Clock133.

IllegalAssignmentError when cost, deadline, overrunHandler, or missHandler cannot
be stored in this.

ReleaseParameters

Signature
protected
ReleaseParameters()

Description

Equivalent to ReleaseParameters(RelativeTime, RelativeTime, AsyncEventHand-
ler, AsyncEventHandler)134 with the argument list (null, null, null, null).

6.3.3.10.2 Methods

133Section 10.3.2.1
134Section 6.3.3.10.1

RTSJ 2.0 (Draft 48) 195

6 Scheduling ReleaseParameters

clone

Signature
public java.lang.Object
clone()

Description
Return a clone of this. This method should behave effectively as when it con-
structed a new object with clones of the high-resolution time values of this.
• The new object is in the current allocation context.
• clone does not copy any associations from this and it does not implicitly

bind the new object to a SO.
• The new object has clones of all high-resolution time values (deep copy).
• References to event handlers are copied (shallow copy.)

Available since RTSJ 1.0.1

getCost

Signature
public javax.realtime.RelativeTime
getCost()

Description
Determine the current value of cost.

Returns
the object last used to set the cost containing the current value of cost.

getCost(RelativeTime)

Signature
public javax.realtime.RelativeTime
getCost(RelativeTime value)

Description
Determine the current value of cost.

Returns
value or, when null, the last object used to set the cost, set to the current value of

cost.

196 RTSJ 2.0 (Draft 48)

ReleaseParameters javax.realtime 6.3

getCostOverrunHandler

Signature
public javax.realtime.AsyncEventHandler
getCostOverrunHandler()

Description

Gets a reference to the cost overrun handler.

Returns
A reference to the associated cost overrun handler.

getDeadline

Signature
public javax.realtime.RelativeTime
getDeadline()

Description

Determine the current value of deadline.

Returns
the object last used to set the deadline containing the current value of deadline.

getDeadline(RelativeTime)

Signature
public javax.realtime.RelativeTime
getDeadline(RelativeTime value)

Description

Determine the current value of deadline.

Returns
value or, when null, the last object used to set the deadline, set to the current value

of deadline.

RTSJ 2.0 (Draft 48) 197

6 Scheduling ReleaseParameters

getDeadlineMissHandler

Signature
public javax.realtime.AsyncEventHandler
getDeadlineMissHandler()

Description
Gets a reference to the deadline miss handler.

Returns
A reference to the deadline miss handler.

setCost(RelativeTime)

Signature
public javax.realtime.ReleaseParameters
setCost(RelativeTime cost)

Description
Sets the cost value.

When this parameter object is associated with any schedulable object (by
being passed through the schedulable’s constructor or set with a method such as
RealtimeThread.setReleaseParameters(ReleaseParameters)135) the cost of those
schedulables is altered as specified by each schedulable’s respective scheduler.

Parameters
cost Processing time units per release. On implementations which can measure

the amount of time a schedulable is executed, this value is the maximum
amount of time a schedulable receives per release. On implementations which
cannot measure execution time, it is not possible to determine when any
particular object exceeds cost. When null, the default value is a new instance
of RelativeTime(0,0).

Throws
IllegalArgumentException when the time value of cost is less than zero, or the clock

associated with the cost parameters is not the realtime clock.
IllegalAssignmentError when cost cannot be stored in this.

Returns
this

135Section 5.3.2.2.2

198 RTSJ 2.0 (Draft 48)

ReleaseParameters javax.realtime 6.3

setCostOverrunHandler(AsyncEventHandler)

Signature
public javax.realtime.ReleaseParameters
setCostOverrunHandler(AsyncEventHandler handler)
throws UnsupportedOperationException,

IllegalAssignmentError

Description
Sets the cost overrun handler.

When this parameter object is associated with any schedulable object (by
being passed through the schedulable’s constructor or set with a method such as
RealtimeThread.setReleaseParameters(ReleaseParameters)136) the cost overrun
handler of those schedulables is altered as specified by each schedulable’s respective
scheduler.

Parameters
handler This handler is invoked when an invocation of the schedulable attempts to

exceed cost time units in a release. A null value of handler signifies that no
cost overrun handler should be used.

Throws
IllegalAssignmentError when handler cannot be stored in this.
UnsupportedOperationException when cost enforcement is not supported.

Returns
this

setDeadline(RelativeTime)

Signature
public javax.realtime.ReleaseParameters
setDeadline(RelativeTime deadline)

Description
Sets the deadline value.

When this parameter object is associated with any schedulable object (by
being passed through the schedulable’s constructor or set with a method such
as RealtimeThread.setReleaseParameters(ReleaseParameters)137) the deadline of
those schedulables is altered as specified by each schedulable’s respective scheduler.

136Section 5.3.2.2.2
137Section 5.3.2.2.2

RTSJ 2.0 (Draft 48) 199

6 Scheduling ReleaseParameters

Parameters
deadline The latest permissible completion time measured from the release time of

the associated invocation of the schedulable. The default value of the deadline
must be controlled by the classes that extend ReleaseParameters.

Throws
IllegalArgumentException when deadline is null, the time value of deadline is less

than or equal to zero, or when the new value of this deadline is incompatible
with the scheduler for any associated schedulable.

IllegalAssignmentError when deadline cannot be stored in this.

Returns
this

setDeadlineMissHandler(AsyncEventHandler)

Signature
public javax.realtime.ReleaseParameters
setDeadlineMissHandler(AsyncEventHandler handler)

Description

Sets the deadline miss handler.
When this parameter object is associated with any schedulable object (by

being passed through the schedulable’s constructor or set with a method such as
RealtimeThread.setReleaseParameters(ReleaseParameters)138) the deadline miss
handler of those schedulables is altered as specified by each schedulable’s respective
scheduler.

Parameters
handler This handler is invoked when any release of the schedulable fails to complete

before the deadline passes. A null value of handler signifies that no deadline
miss handler should be used.

Throws
IllegalAssignmentError when handler cannot be stored in this.

Returns
this

138Section 5.3.2.2.2

200 RTSJ 2.0 (Draft 48)

ReleaseParameters javax.realtime 6.3

isRousable

Signature
public boolean
isRousable()

Description
Determine whether or not a thread interrupt will cause instances of Schedulable
associated with an instance of this class will be prematurely released.

Note that the rousable state has no effect on instances of RealtimeThread
which have an instance of BackgroundParameters for ReleaseParameters or on
ordinary event handlers, i.e., those which do not extend ActiveEvent139. In the
former case, there are no releases to interrupt and, in the case, the handler does
not have a ActiveEventDispatcher140 to release it.

Returns
true when rousable and false when not.

Available since RTSJ 2.0

setRousable(boolean)

Signature
public javax.realtime.ReleaseParameters
setRousable(boolean value)

Description
Dictate whether or not a thread interrupt will cause instances of Schedulable
associated with an instance of this class will be prematurely released.

Parameters
value is true when rousable and false when not.

Returns
this

Available since RTSJ 2.0

139Section 8.3.1.1
140Section 8.3.3.1

RTSJ 2.0 (Draft 48) 201

6 Scheduling ReleaseParameters

enforcingCost

Signature
public boolean
enforcingCost()

Description
Determine whether or not cost is being enforced for releases.

Returns
true when enforcing code.
Available since RTSJ 2.0

enforceCost(boolean)

Signature
public void
enforceCost(boolean value)
throws UnsupportedOperationException

Description
Set cost enforcement.

Parameters
value true when enforcing code.

Throws
UnsupportedOperationException when cost enforcement is not supported on this

platform.
Available since RTSJ 2.0

getEventQueueOverflowPolicy

Signature
public javax.realtime.QueueOverflowPolicy
getEventQueueOverflowPolicy()

Description
Gets the behavior of the arrival time queue in the event of an overflow.

202 RTSJ 2.0 (Draft 48)

ReleaseParameters javax.realtime 6.3

Returns
The behavior of the arrival time queue.

Available since RTSJ 2.0

setEventQueueOverflowPolicy(QueueOverflowPolicy)

Signature
public javax.realtime.ReleaseParameters
setEventQueueOverflowPolicy(QueueOverflowPolicy policy)

Description
Sets the policy for the arrival time queue for when the insertion of a new element
would make the queue size greater than the initial size given in this.

Parameters
policy is a queue overflow policy to use for handlers associated with this.

Returns
this

Available since RTSJ 2.0.

getInitialQueueLength

Signature
public int
getInitialQueueLength()

Description
Gets the initial number of elements the event queue can hold. This returns the
initial queue length currently associated with this parameter object. When the
overflow policy is SAVE the initial queue length may not be related to the current
queue lengths of schedulables associated with this parameter object.

Returns
The initial length of the queue.

Available since RTSJ 2.0 replacing AperiodicParameters.getInitialArrivalTimeQueueLength().

RTSJ 2.0 (Draft 48) 203

6 Scheduling RoundRobinScheduler

setInitialQueueLength(int)

Signature
public javax.realtime.ReleaseParameters
setInitialQueueLength(int initial)

Description
Sets the initial number of elements the arrival time queue can hold without
lengthening the queue. The initial length of an arrival queue is set when the
schedulable using the queue is constructed, after that time changes in the initial
queue length are ignored. The queue may have a length of zero, i.e., any event,
along with its arrival time, received during a previous release is lost.

Parameters
initial The initial length of the queue.

Throws
IllegalArgumentException when initial is less than zero.

Returns
this

Available since RTSJ 2.0 replacingAperiodicParameters.setInitialArrivalTimeQueueLength(int)141.

6.3.3.11 RoundRobinScheduler

Inheritance
java.lang.Object
Scheduler
PriorityScheduler
RoundRobinScheduler

Description
Class which represents a priority-based round-robin scheduler.

The default instance of this scheduler (returned by instance()142) represents
the RTSJ-specified round-robin scheduler.

Available since RTSJ 2.0

141Section A.2.3.2.2
142Section 6.3.3.11.1

204 RTSJ 2.0 (Draft 48)

RoundRobinScheduler javax.realtime 6.3

6.3.3.11.1 Methods

instance

Signature
public static javax.realtime.RoundRobinScheduler
instance()

Description
Return a reference to the distinguished instance of RoundRobinScheduler which
is the RTSJ-specified round-robin scheduler.

Throws
UnsupportedOperationException if this platform has no default round-robin sched-

uler.

Returns
A reference to the distinguished instance of RoundRobinScheduler

setQuantum(RelativeTime)

Signature
public javax.realtime.RoundRobinScheduler
setQuantum(RelativeTime quantum)
throws UnsupportedOperationException,

IllegalArgumentException

Description
Set the quantum of this instance of RoundRobinScheduler. This takes effect at
the end of the current quantum.

Parameters
quantum The new quantum to use. Copy semantics are used for this argument,

and future changes to quantum will not affect this scheduler unless it is again
passed to setQuantum().

Throws
UnsupportedOperationException if this scheduler’s quantum is not configurable at

runtime.

RTSJ 2.0 (Draft 48) 205

6 Scheduling RoundRobinScheduler

IllegalArgumentException if the provided quantum is null, less than zero, or not
appropriate for this platform.

Returns
this

getQuantum

Signature
public javax.realtime.RelativeTime
getQuantum()

Description
Get the quantum of this instance of RoundRobinScheduler.

Returns
a newly-allocated RelativeTime containing the currently-configured quantum of

this scheduler.

getQuantum(RelativeTime)

Signature
public javax.realtime.RelativeTime
getQuantum(RelativeTime dest)

Description
Get the quantum of this instance of RoundRobinScheduler.

Parameters
dest return the quantum in dest . When dest is null, allocate a new RelativeTime143

instance to hold the returned value.
Returns
The currently-configured quantum of this scheduler.

getMaxPriority

Signature
143Section 9.3.1.3

206 RTSJ 2.0 (Draft 48)

RoundRobinScheduler javax.realtime 6.3

public int
getMaxPriority()

Description
Gets the maximum priority available for a schedulable managed by this scheduler.

Returns
The value of the maximum priority.

getMinPriority

Signature
public int
getMinPriority()

Description
Gets the minimum priority available for a schedulable managed by this scheduler.

Returns
The minimum priority used by this scheduler.

getNormPriority

Signature
public int
getNormPriority()

Description
Gets the normal priority available for a schedulable managed by this scheduler.

Returns
The value of the normal priority.

getPolicyName

Signature
public java.lang.String
getPolicyName()

Description

RTSJ 2.0 (Draft 48) 207

6 Scheduling Scheduler

Gets the policy name of this.

Returns
The policy name (Fixed Priority Round Robin) as a string.

reschedule(Thread, int)

Signature
public void
reschedule(Thread thread,

int priority)

Description
Promotes a java.lang.Thread to realtime priority under this scheduler. The
affected thread will be scheduled as if it were a RealtimeThread144 of the given
priority. This does not make the affected thread a RealtimeThread, so it will not
have access to facilities reserved for instances of RealtimeThread.

The method Thread.setPriority(int) can be used to reschedule back to the
conventional Java priority levels.

Parameters
thread The thread to promote to realtime scheduling.
priority An integer priority equivalent to a priority set via PriorityParameters145

on a RealtimeThread.
Throws
IllegalArgumentException when thread is null or priority is not between getMin-

Priority()146 and getMaxPriority()147, inclusive.

6.3.3.12 Scheduler

Inheritance
java.lang.Object
Scheduler

Description
144Section 5.3.2.2
145Section 6.3.3.7
146Section 6.3.3.11.1
147Section 6.3.3.11.1

208 RTSJ 2.0 (Draft 48)

Scheduler javax.realtime 6.3

An instance of Scheduler manages the execution of schedulables.
Subclasses of Scheduler are used for alternative scheduling policies and should

define an instance() class method to return the default instance of the subclass.
The name of the subclass should be descriptive of the policy, allowing applica-
tions to deduce the policy available for the scheduler obtained via Scheduler.
getDefaultScheduler148 (e.g., EDFScheduler).

6.3.3.12.1 Constructors

Scheduler

Signature
protected
Scheduler()

Description
Create an instance of Scheduler.

6.3.3.12.2 Methods

getDefaultScheduler

Signature
public static javax.realtime.Scheduler
getDefaultScheduler()

Description
Gets a reference to the default scheduler.

Returns
A reference to the default scheduler.

148Section 6.3.3.12.2

RTSJ 2.0 (Draft 48) 209

6 Scheduling Scheduler

setDefaultScheduler(Scheduler)

Signature
public static void
setDefaultScheduler(Scheduler scheduler)

Description
Sets the default scheduler. This is the scheduler given to instances of schedulables
when they are constructed by a Java thread. The default scheduler is set to the
required PriorityScheduler149 at startup.

Parameters
scheduler The Scheduler that becomes the default scheduler assigned to new schedu-

lables created by Java threads. When null nothing happens.
Throws
SecurityException when the caller is not permitted to set the default scheduler.

inSchedulableExecutionContext

Signature
public static boolean
inSchedulableExecutionContext()

Description
Determine whether the current calling context is a Schedulable150: Realtime-
Thread151 or AsyncBaseEventHandler152.

Returns
true when yes and false otherwise.

Available since RTSJ 2.0

currentSchedulable

Signature
149Section 6.3.3.8
150Section 6.3.1.3
151Section 5.3.2.2
152Section 8.3.3.3

210 RTSJ 2.0 (Draft 48)

SchedulingGroup javax.realtime 6.3

public static javax.realtime.Schedulable
currentSchedulable()

Description
Get the current execution context when called from a Schedulable153 execution
context.

Throws
ClassCastException when the caller is not a Schedulable154

Returns
the current Schedulable155.
Available since RTSJ 2.0

getPolicyName

Signature
public abstract java.lang.String
getPolicyName()

Description
Gets a string representing the policy of this. The string value need not be
interned, but it must be created in a memory area that does not cause an illegal
assignment error when stored in the current allocation context and does not cause
a MemoryAccessError156 when accessed.

Returns
A String object which is the name of the scheduling policy used by this.

6.3.3.13 SchedulingGroup

Inheritance
java.lang.Object
java.lang.ThreadGroup

153Section 6.3.1.3
154Section 6.3.1.3
155Section 6.3.1.3
156Section 15.2.3.3

RTSJ 2.0 (Draft 48) 211

6 Scheduling SchedulingGroup

SchedulingGroup
Description

An enhanced ThreadGroup in which a Schedulable157 may be started. Limits for
what realtime scheduler and scheduling parameters can be enforced on all tasks in
this group. A normal ThreadGroup may not contain instance of Schedulable158,
but may contain other instances of SchedulingGroup to form a hierarchy. Every
task is in some instance of ThreadGroup and every instance of Schedulable is in
some instance of SchedulingGroup.

Available since RTSJ 2.0

6.3.3.13.1 Constructors

SchedulingGroup(SchedulingGroup, String)

Signature
public
SchedulingGroup(SchedulingGroup parent,

String name)

Description

Create a new scheduling group.

Parameters
parent is the parent group of the new group
name is the name of the new group

Throws
IllegalStateException when the parent ThreadGroup instance is not an instance of

SchedulingGroup.
IllegalAssignmentError when the parent ThreadGroup instance is not assignable

to this.

157Section 6.3.1.3
158Section 6.3.1.3

212 RTSJ 2.0 (Draft 48)

SchedulingGroup javax.realtime 6.3

SchedulingGroup(String)

Signature
public
SchedulingGroup(String name)
throws IllegalStateException,

IllegalAssignmentError

Description
Create a new group with the current ThreadGroup instance as its parent, so long
as it is an instance of SchedulingGroup.

Parameters
name is the name of the new group

Throws
IllegalStateException when the parent ThreadGroup instance is not an instance of

SchedulingGroup.
IllegalAssignmentError when the parent ThreadGroup instance is not assignable

to this.

6.3.3.13.2 Methods

getMaxEligibility

Signature
public javax.realtime.SchedulingParameters
getMaxEligibility()

Description
Find the upper bound on scheduling eligibility that tasks in this group may have.
For example, when it is an instance of PriorityParameters, it gives the maximum
base priority any task in this group.

Returns
the scheduling parameter instance denoting the upper bound on the scheduling

eligibility of threads in this group, null when no such bound has been specified.

RTSJ 2.0 (Draft 48) 213

6 Scheduling SchedulingGroup

setMaxEligibility(SchedulingParameters)

Signature
public javax.realtime.SchedulingGroup
setMaxEligibility(SchedulingParameters parameters)
throws IllegalStateException

Description

Set the upper bound on scheduling eligibility that tasks in this group may have.
For example, when it is an instance of PriorityParameters, it sets the maximum
base priority any task in this group may have. When a task in the group has a
higher eligibility than specified in parameters, the task’s eligibility is silently set
to the max specified in parameters. When a child of this SchedulingGroup has a
higher max eligibility than specified in parameters, its max eligibility is silently
set to the max specified in parameters as if setMaxEligibility were invoked on it
recursively.

When a task in this SchedulingGroup or a child of this SchedulingGroup has
previously had its maximum eligibility reduced by a call to this method, setting
a higher maximum eligibility via this method will not automatically reraise its
eligibility.

Parameters
parameters the scheduling parameter instance denoting the new upper bound on

the scheduling eligibility of threads in this group.
Throws
IllegalStateException when parameters are not consistent with the scheduler type.
IllegalArgumentException when parameters is a higher eligibility than the max

eligibility enforced by a SchedulingParameters above this in the hierarchy.

Returns
this

getScheduler

Signature
public java.lang.Class<javax.realtime.Scheduler>
getScheduler()

Description

214 RTSJ 2.0 (Draft 48)

SchedulingParameters javax.realtime 6.3

Find the type of scheduler tasks in this group may use. The scheduler of each
thread must be an instance of the type returned. The default is class<Scheduler>,
but it may be set to any subtype.

Returns
the scheduler type

setScheduler(Class)

Signature
public javax.realtime.SchedulingGroup
setScheduler(java.lang.Class<javax.realtime.Scheduler> type)

Description
Limit the schedulers that may be used for tasks in this group.

Parameters
type is the type of scheduler of which the schedulers of all tasks must be instances.

Throws
IllegalStateException when a thread in the group has a scheduler that is not an

instance of type or getMaxEligibility159 returns parameters that are inconsistent
with the scheduler type.

Returns
this

visitChildren(Predicate)

Signature
public boolean
visitChildren(java.util.function.Predicate<java.lang.ThreadGroup> visitor)

Description
Perform some operation on all the children of the current group. The traversal of
the children continues as long as visitor return true. Thus the traversal can be
prematurely ended by visitor returning false, e.g., when a particular element is
found.

Parameters
visitor the function to be called on each child thread group.
159Section 6.3.3.13.2

RTSJ 2.0 (Draft 48) 215

6 Scheduling SchedulingParameters

6.3.3.14 SchedulingParameters

Inheritance
java.lang.Object
SchedulingParameters

Interfaces
Cloneable
Serializable

Description
Subclasses of SchedulingParameters (PriorityParameters160, ImportanceParame-
ters161, and any others defined for particular schedulers) provide the parameters
to be used by the Scheduler162. Changes to the values in a parameters object
affects the scheduling behavior of all the Schedulable163 objects to which it is
bound.

Caution: This class is explicitly unsafe for multithreading when being changed.
Code that mutates instances of this class should synchronize at a higher level.

6.3.3.14.1 Constructors

SchedulingParameters

Signature
protected
SchedulingParameters()

Description
Create a new instance of SchedulingParameters.

Available since RTSJ 1.0.1

160Section 6.3.3.7
161Section 6.3.3.5
162Section 6.3.3.12
163Section 6.3.1.3

216 RTSJ 2.0 (Draft 48)

SporadicParameters javax.realtime 6.3

6.3.3.14.2 Methods

clone

Signature
public java.lang.Object
clone()

Description

Return a clone of this. This method should behave effectively as if it constructed
a new object with clones of the high-resolution time values of this.
• The new object is in the current allocation context.
• clone does not copy any associations from this and it does not implicitly

bind the new object to a SO.
• The new object has clones of all high-resolution time values (deep copy).
• References to event handlers are copied (shallow copy.)

Available since RTSJ 1.0.1

isCompatible(Class)

Signature
public boolean
isCompatible(java.lang.Class<javax.realtime.Scheduler> type)

Description

Determine whether this scheduling parameters can be used by tasks scheduled
by instances of type.

Parameters
type of scheduler to check against

Returns
true when and only when this can be used with type as the scheduler.

Available since RTSJ 2.0

RTSJ 2.0 (Draft 48) 217

6 Scheduling SporadicParameters

6.3.3.15 SporadicParameters

Inheritance
java.lang.Object
ReleaseParameters
AperiodicParameters
SporadicParameters

Description
A notice to the scheduler that the associated schedulable will be released aperi-
odically but with a minimum time between releases.

When a reference to a SporadicParameters object is given as a parameter to
a schedulable’s constructor or passed as an argument to one of the schedulable’s
setter methods, the SporadicParameters object becomes the release parameters
object bound to that schedulable. Changes to the values in the SporadicPa-
rameters object affect that schedulable object. When bound to more than one
schedulable then changes to the values in the SporadicParameters object affect
all of the associated objects. Note that this is a one-to-many relationship and
not a many-to-many.

The implementation must use modified copy semantics for each HighResolu-
tionTime164 parameter value. The value of each time object should be treated
as when it were copied at the time it is passed to the parameter object, but the
object reference must also be retained. Only changes to a SporadicParameters
object caused by methods on that object cause the change to propagate to all
schedulables using the parameter object. For instance, calling setCost on a
SporadicParameters object will make the change, then notify that the scheduler
that the parameter object has changed. At that point the object is reconsidered
for every SO that uses it. Invoking a method on the RelativeTime object that is
the cost for this object may change the cost but it does not pass the change to
the scheduler at that time. That change must not change the behavior of the SOs
that use the parameter object until a setter method on the SporadicParameters
object is invoked, or the parameter object is used in setReleaseParameters() or a
constructor for an SO.

The following table gives the default parameter values for the constructors.
This class enables the application to specify one of four possible behaviors

that indicate what to do when an arrival occurs that is closer in time to the
previous arrival than the value given in this class as minimum interarrival time,
what to do when, for any reason, the queue overflows, and the initial size of the
queue.

164Section 9.3.1.2

218 RTSJ 2.0 (Draft 48)

SporadicParameters javax.realtime 6.3

Table 6.9: SporadicParameters Default Values
Attribute Value

minInterarrival time No default. A value must be sup-
plied

cost new RelativeTime(0,0)
deadline new RelativeTime(mit)
overrunHandler None
missHandler None
rousable false
MIT violation policy SAVE
Arrival queue overflow policy SAVE
Initial arrival queue length 0

Caution: This class is explicitly unsafe for multithreading when being changed.
Code that mutates instances of this class should synchronize at a higher level.

6.3.3.15.1 Fields

6.3.3.15.2 Constructors

SporadicParameters(RelativeTime, RelativeTime, Relative-
Time, AsyncEventHandler, AsyncEventHandler, boolean)

Signature
public
SporadicParameters(RelativeTime minInterarrival,

RelativeTime cost,
RelativeTime deadline,
AsyncEventHandler overrunHandler,
AsyncEventHandler missHandler,
boolean rousable)

Description

RTSJ 2.0 (Draft 48) 219

6 Scheduling SporadicParameters

Create a SporadicParameters object.

Available since RTSJ 2.0

Parameters
minInterarrival The release times of the schedulable will occur no closer than

this interval. This time object is treated as if it were copied. Changes to
minInterarrival will not effect the SporadicParameters object. There is no
default value. When minInterarrival is null an illegal argument exception is
thrown.

cost Processing time per release. On implementations which can measure the
amount of time a schedulable is executed, this value is the maximum amount
of time a schedulable receives per release. When null, the default value is a
new instance of RelativeTime(0,0).

deadline The latest permissible completion time measured from the release time of
the associated invocation of the schedulable. When null, the default value is a
new instance of minInterarrival: new RelativeTime(minInterarrival).

overrunHandler This handler is invoked when an invocation of the schedulable
exceeds cost. Not required for minimum implementation. When null no
overrun handler will be used.

missHandler This handler is invoked when the run() method of the schedulable
is still executing after the deadline has passed. When null, no deadline miss
handler will be used.

rousable determines whether or not an instance of Schedulable can be prematurely
released by a thread interrupt.

Throws
IllegalArgumentException when minInterarrival is null or its time value is not

greater than zero, or the time value of cost is less than zero, or the time value
of deadline is not greater than zero, or when the chronograph associated with
deadline and minInterarrival parameters are not identical or not an instance
of Clock165.

IllegalAssignmentError when minInterarrival, cost, deadline, overrunHandler or
missHandler cannot be stored in this.

SporadicParameters(RelativeTime, RelativeTime, Relative-
Time, AsyncEventHandler, AsyncEventHandler)

165Section 10.3.2.1

220 RTSJ 2.0 (Draft 48)

SporadicParameters javax.realtime 6.3

Signature
public
SporadicParameters(RelativeTime minInterarrival,

RelativeTime cost,
RelativeTime deadline,
AsyncEventHandler overrunHandler,
AsyncEventHandler missHandler)

Description
Equivalent to SporadicParameters(RelativeTime, RelativeTime, RelativeTime,
AsyncEventHandler, AsyncEventHandler, boolean)166 with an argument list of
(minInterarrival, cost, deadline, overrunHandler, missHandler, false).

SporadicParameters(RelativeTime, RelativeTime, AsyncEv-
entHandler, boolean)

Signature
public
SporadicParameters(RelativeTime minInterarrival,

RelativeTime deadline,
AsyncEventHandler missHandler,
boolean rousable)

Description
Equivalent to SporadicParameters(RelativeTime, RelativeTime, RelativeTime,
AsyncEventHandler, AsyncEventHandler, boolean)167 with an argument list of
(minInterarrival, null, deadline, null, missHandler, rousable).

Available since RTSJ 2.0

SporadicParameters(RelativeTime)

Signature
166Section 6.3.3.15.2
167Section 6.3.3.15.2

RTSJ 2.0 (Draft 48) 221

6 Scheduling SporadicParameters

public
SporadicParameters(RelativeTime minInterarrival)

Description
Equivalent to SporadicParameters(RelativeTime, RelativeTime, RelativeTime,
AsyncEventHandler, AsyncEventHandler, boolean)168 with an argument list of
(minInterarrival, null, null, null, null, false).

Available since RTSJ 1.0.1

6.3.3.15.3 Methods

getMinimalInterarrival

Signature
public javax.realtime.RelativeTime
getMinimalInterarrival()

Description
Determine the current value of minimal interarrival.

Returns
the object last used to set the minimal interarrival containing the current value of

minimal interarrival.

getMinimumInterarrival(RelativeTime)

Signature
public javax.realtime.RelativeTime
getMinimumInterarrival(RelativeTime value)

Description
Determine the current value of minimum interarrival.

Returns
168Section 6.3.3.15.2

222 RTSJ 2.0 (Draft 48)

SporadicParameters javax.realtime 6.3

value or, when null, the last object used to set the minimal interarrival, set to the
current value of minimal interarrival.

Available since RTSJ 2.0

setMinimumInterarrival(RelativeTime)

Signature
public javax.realtime.SporadicParameters
setMinimumInterarrival(RelativeTime minimum)

Description
Set the minimum interarrival time.

Parameters
minimum The release times of the schedulable will occur no closer than this interval.

Throws
IllegalArgumentException when minimum is null or its time value is not greater

than zero.
IllegalAssignmentError when minimum cannot be stored in this.

Returns
this

setMinimumInterarrivalPolicy(MinimumInterarrivalPolicy)

Signature
public javax.realtime.SporadicParameters
setMinimumInterarrivalPolicy(MinimumInterarrivalPolicy policy)

Description
Sets the policy for handling the arrival time queue when the new arrival time is
closer to the previous arrival time than the minimum interarrival time given in
this.

Parameters
policy is the current policy for MIT violations.
Available since RTSJ 2.0

RTSJ 2.0 (Draft 48) 223

6 Scheduling

getMinimumInterarrivalPolicy

Signature
public javax.realtime.MinimumInterarrivalPolicy
getMinimumInterarrivalPolicy()

Description
Gets the arrival time queue policy for handling minimal interarrival time under-
flow.

Returns
The minimum interarrival time violation behavior as a string.

Available since RTSJ 2.0

setEventQueueOverflowPolicy(QueueOverflowPolicy)

Signature
public javax.realtime.SporadicParameters
setEventQueueOverflowPolicy(QueueOverflowPolicy policy)
throws IllegalArgumentException

Description
Sets the policy for the arrival time queue for when the insertion of a new element
would make the queue size greater than the initial size given in this.

Parameters
policy the new overflow policy to use.

Throws
IllegalArgumentException when policy is QueueOverflowPolicy.DISABLE169.

Returns
this

6.4 Rationale
As specified, the required semantics of this section establish a scheduling policy
that is very similar to the scheduling policies found on the vast majority of realtime

169Section 6.3.2.2.1

224 RTSJ 2.0 (Draft 48)

Rationale 6.4

operating systems and kernels in commercial use today. The semantics for the base
scheduler accommodate existing practice, which is a stated goal of the effort.

There is an important division between priority schedulers that force periodic
context switching between tasks at the same priority, and those that do not cause these
context switches. By not specifying time slicing[1] behavior this specification calls for
the latter type of priority scheduler as the base scheduler: FirstInFirstOutScheduler.
The specification supplies a second scheduler, RoundRobinScheduler, for cases where
timeslicing behavior is desired. In POSIX terms, SCHED_FIFO meets the RTSJ
requirements for the base scheduler, and SCHED_RR meets the requirements for
the round-robin scheduler.

Although a system may not implement the first release (start) of a schedulable
as unblocking that schedulable, under the base scheduler those semantics apply; i.e.,
the schedulable is added to the tail of the queue for its active priority.

Some research shows that, given a set of reasonable common assumptions, 32
distinct priority levels are a reasonable choice for close-to-optimal scheduling efficiency
when using the rate-monotonic priority assignment algorithm on a single processor
system (256 priority levels provide better efficiency). This specification requires at
least 28 distinct priority levels as a compromise noting that implementations of this
specification will exist on systems with logic executing outside of the Java Virtual
Machine and may need priorities above, below, or both for system activities.

The default behavior for implementations that support cost monitoring and
enforcement is that a schedulable receives no more than cost units of CPU time
during each release. The programmer must explicitly change the cost attribute
to override the scheduler. The RTSJ allows schedulables to self suspend during a
release, in addition to that which might be necessary to acquire a lock. These self
suspensions must be time bounded.

Any self suspension which is not time bounded may undermine the cost enforce-
ment model specified in this document, as it may result in a schedulable suspending
beyond its next release event. This can result in more time being allocated than any
associated schedulability analysis might assume. See Dos Santos and Wellings for a
full discussion on the problem [4].

Cost enforcement may be deferred while the overrun schedulable holds locks
that are out of application control, such as locks used to protect garbage collection.
Applications should include the resulting jitter in any analysis that depends on cost
enforcement.

6.4.1 SchedulingGroup and ProcessingGroup
The SchedulingGroup and ProcessingGroup classes were added in RTSJ 2.0 to both
support the notion of a subsystem constrained by the greater system configuration
and generalize the existing notion of cost monitoring and enforcement for schedulables

RTSJ 2.0 (Draft 48) 225

6 Scheduling

to groups of schedulables. In addition, they provide a way to enable Java threads to
be elevated to realtime scheduling priorities in a controlled fashion.

A combination of security manager policy and the SchedulingGroup hierarchy
may be used to constrain the maximum priority directly configurable by an entire
subsystem. To achieve this, a SchedulingGroup with an appropriate maximum
priority must be created, the security manager must be configured to disallow
threads in that SchedulingGroup from accessing their parent SchedulingGroup, and
all threads for the subsystem must be created in that SchedulingGroup. This tactic
may even be used recursively. Similar practice can be used with ProcessingGroup to
constrain the maximum execution time allowable to a subsystem, or other properties
configurable in a processing group.

As previously mentioned, a motivation for adding SchedulingGroup as a subclass
of ThreadGroup is to clarify the relationship between Java threads and realtime
schedulers. In order to obtain realtime priorities, a Java thread must belong to
a SchedulingGroup. Its access to realtime scheduling is then restricted (with the
exception of priority inversion avoidance protocols, which ignore such restrictions)
by the configuration of its SchedulingGroup. This enables Java threads to obtain
realtime priorities in a controlled and predictable fashion. Likewise, realtime threads
(but not necessarily other schedulables) may obtain nonrealtime conventional Java
priorities by calling Thread.setPriority() on their RealtimeThread object. To start
a realtime thread with a nonrealtime priority, this call must be made prior to the
time at which the realtime thread is started.

A ProcessingGroup can also be used to apply cost monitoring and enforcement
to a collection of standard Java threads. However, note that placing a Java thread
directly in a ProcessingGroup, which is an instance of SchedulingGroup, may allow
it to obtain realtime priorities. This can be avoided by placing the Java threads
in a Java ThreadGroup which is in turn the child of an appropriately-configured
ProcessingGroup and applying security manager restrictions.

6.4.2 Multiprocessor Support
The support that the RTSJ provides for multiprocessor systems is primarily con-
strained by the support it can expect from the underlying operating system. The
following have had the most impact on the level of support that has been specified.

1. The notion of processor affinity is common across operating systems and has
become the accepted way to specify the constraints on which processor a thread
can execute. In some sense, processor affinities can be viewed as additional
release or scheduling parameters. However, to add them to the parameter
classes requires the support to be distributed throughout the specification
with a proliferation of new constructor methods. To avoid this, support is
grouped together within the Affinity class. The class also provides the addition

226 RTSJ 2.0 (Draft 48)

Rationale 6.4

of processor affinity support to Java threads without modifying the thread
object’s visible API.

2. The range of processors on which global scheduling is possible is dictated by
the operating system. For SMP architectures, global scheduling across all
the processors in the system is typically supported. However, an application
and an operator can constrain threads and processes to execute only within a
subset of the processors. As the number of processors increase, the scalability
of global scheduling is called into question. Hence, for NUMA architectures
some partitioning of the processors is likely to performed by the OS. Hence,
global scheduling across all processors will not be possible in these systems.
For these reasons, the RTSJ supports an array of predefined affinities. These
are implementation-defined. They can be used either to reflect the scheduling
arrangement of the underlying OS or they can be used by the system designer
to impose defaults for, say, Java threads, extraheap realtime schedulables etc.
A program is only allowed to dynamically create new affinities with cardinality
of one. This restriction reflects the concern that not all operating systems will
support multiprocessor affinities.

3. Many OSs give system operators command-level dynamic control over the set
of processors allocated to a processes. Consequently, the realtime JVM has no
control over whether processors are dynamically added or removed from its OS
process. Predictability is a prime concern of the RTSJ. Clearly, dynamic changes
to the allocated processors will have a dramatic, and possibly catastrophic,
effect on the ability of the program to meet timing requirements. Hence, the
RTSJ assumes that the processor set allocated to the RTSJ process does not
change during its execution. A system that is capable of such manipulations
should not exercise it on RTSJ processes.

4. The reason the expert group decided not to add affinities to scheduling parame-
ters is that ASEH do not have a single server thread, hence forcing a particular
affinity would complicate the implementation.

6.4.3 Impact of Clock Granularity
All time-triggered computation can suffer from release jitter. This is defined to be the
variation in the actual time the computation becomes available for execution from
its scheduled release time. The amount of release jitter depends on two factors. The
first is the granularity of the clock/timer used to trigger the release. For example, a
periodic event handler that is due to be released at absolute time T will actually
be release at time T + δ. δ is the difference between T and the first time the timer
clock advances to T0, where T0 >= T . The upper bound of δ is the value returned
from calling the getResolution method of the associated clock. It is for this reason
that the implementation of release times for periodic activities must use absolute

RTSJ 2.0 (Draft 48) 227

6 Scheduling

rather than relative time values, in order to avoid the drift accumulating.
The second contribution to release jitter is also related to the clock/timer. It

is the duration of interval between T0 being signaled by the clock/timer and the
time this event is noticed by the underlying operating system or platform (perhaps
because interrupts have been disabled). A compliant implementation of SCJ should
document the maximum value of δ for the realtime clock.

6.4.4 Deadline Miss Detection
Although RTSJ supports deadline miss detection, it is important to understand
the intrinsic limitations of the facility. The SCJ facility is supported using a time-
triggered event. All time-triggered computation can suffer from release jitter. Hence,
any deadline miss handler may not be released until sometime after the deadline has
expired. The handlers actual execution will depend on its priority relative to other
schedulables.

A related limitation is that a deadline can be missed but not detected. This can
occur when the deadline has been set at a smaller granularity than the detecting
timer. Consider an absolute deadline of D. Suppose that the next absolute time that
the timer can recognize is D + δ. When the associate thread finishes after D but
before D+ δ, it will have missed its deadline, but this miss will have been undetected.

A third limitation is due to the inherent race condition that is present when
checking for deadline misses. A deadline miss is defined to occur when a schedulable
has not completed the computation associated with its release before its deadline.
This completion event is signalled in the application code by the return of the
handleAsyncEvent method or a call to waitForNextRelease etc. When this occurs,
the infrastructure reschedules/cancels the timing event that signals the miss of a
deadline. This is clearly a race condition. The timer event could fire between the
last statement the completion event and the rescheduling/canceling of the timer
event. Hence a deadline miss could be signalled when arguably the application had
performed all of its computation.

228 RTSJ 2.0 (Draft 48)

Chapter 7

Synchronization

One of the strengths of Java is its language support for multithreading. This requires
synchronization. In a realtime system, there are additional requirement on this
synchronization. Therefore this specification not only tightens the semantics of the
synchronization declarations, but it also provides addition classes that specifically
manage synchronization.

This specification strengthens the semantics of Java synchronized code by mandat-
ing monitor execution eligibility control, commonly referred to as priority inversion
control. The MonitorControl class is defined as the superclass of all such execu-
tion eligibility control algorithms. Its subclasses PriorityInheritance and Priority-
CeilingEmulation avoid unbounded priority inversions, which would be unacceptable
in realtime systems.

The classes described below provide two main services.
1. They enable the setting of a priority inversion control policy either as the

default or for specific objects.
2. They also provide wait-free communication between schedulables (especially

instances of Schedulable, whose mayUseHeap is false) and regular Java threads.
These classes establish a framework for priority inversion management that applies
to priority-oriented schedulers in general, and a specific set of requirements for the
base priority scheduler. The wait-free queue classes provide safe, concurrent access
to data shared between instances of schedulable objects without heap access and
schedulable objects subject to garbage collection delays.

7.1 Definitions
Scheduling Eligibility Inversion — When a more important task is blocked by

a less important task. This is usually caused by synchronization, where a
more important task must wait for a less important task to release a required

229

7 Synchronization

resource, which can in turn be blocked by a task of intermediate importance.
The classical example is priority inversion in a system with a priority-based
scheduler.

Governed by — An object A that has been assigned (either by default or via an
explicit method call) to the MonitorControlPolicy α is said to be governed by
α.

Active Priority — The priority of a task used for scheduling at any given time. It
is the maximum of the tasks’s current base priority and any priority boosting
due to priority inversion avoidance mechanisms. The base priority can be
temporarily reduced by cost enforcement.

7.2 Semantics
Synchronization semantics has two main aspects: monitor control and scheduling.
The first determines which inversion avoidance is to use. The second determines
how it is done. Since, only priority-based schedulers are defined in the RTSJ, the
semantics is only completely defined for priority-based schedulers.

7.2.1 Monitor Control
The specification provides for two monitor control policies with the following seman-
tics.

1. The initial default monitor control policy shall be PriorityInheritance. The
default policy can be altered by using the setMonitorControl() method.

2. Notwithstanding the preceding rule, an RTSJ implementation may allow the
program to establish a different initial default monitor control policy at JVM
startup. The program can query the initial default monitor control policy via
the method RealtimeSystem.getInitialMonitorControl.

3. The PriorityCeilingEmulation monitor control policy is also required.
4. An implementation that provides any additional MonitorControl subclasses

must document their effects, particularly with respect to priority inversion
control.

5. An object’s monitor control policy affects each task that attempts to lock the
object; i.e., regular Java threads as well as schedulables.

6. When a task enters synchronized code, the target object’s monitor control
policy must be supported by the thread schedulable’s scheduler; otherwise an
IllegalSchedulableStateException is thrown. An implementation that defines a
new MonitorControl subclass must document which schedulers, if any, do not
support this policy.

Open issue 7.2.1

230 RTSJ 2.0 (Draft 48)

Semantics 7.2

Do we need to say something about PCEP w/ respect to interrupt priorities,
here? (I.e., that they mask out hardware interrupts if necessary.)
End of issue 7.2.1

7.2.2 Priority Schedulers
The two schedulers provided by the RTSJ must both handle synchronization in
the same way. All tasks governed by these schedulers are subject to the following
semantics when they synchronize on objects governed by monitor control policies
defined in this section.

1. Each task has a base priority and an active priority. A task that holds a lock
on a PCE-governed object also has a ceiling priority.

2. The base priority for a task is limited by the maximum priority of its scheduling
groups’ maximum scheduling parameters.

3. The active priority for a task is independent of its scheduling groups.
4. The base priority for a task t is initially the priority that t has when it is

created. The base priority is updated (immediately) as an effect of invoking
any of the following methods:
(a) pparam.setPriority(prio), where t is a schedulable with pparams as its

SchedulingParameters and pparams is an instance of PriorityParameters
or one of its subclasses, where the new base priority is prio;

(b) t.setSchedulingParameters(pparams), where t is a schedulable and ppa-
rams is an instance of PriorityParameters, where the new base priority is
pparams.getPriority();

(c) t.setPriority(prio), when t is a schedulable object the new base priority is
prio, and when it is a Java thread the new base priority is the lesser of
prio and the maximum priority for t’s thread group; and

(d) sg.setMaxEligibility(pparams), when sg is in t’s SchedulingGroup hierar-
chy and the priority of pparams is less than the current base priority of
t, where the new base priority is the priority specified in pparams as a
result of setting the task’s scheduling parameters to pparams.

5. When the task t does not hold any locks, its active priority is the same as its
base priority. In such a situation, modification of the priority of t through an
invocation of any of the above priority-setting methods for t causes t to be
placed at the tail of its relevant queue (ready, blocked on a particular object,
etc.) at its new priority when the new priority is higher than the old priority,
and at the beginning otherwise.

6. When task t holds one or more locks, then t has a set of priority sources. The
active priority for t at any point in time is the maximum of the priorities
associated with all of these sources. The priority sources resulting from the
monitor control policies defined in this section, and their associated priorities

RTSJ 2.0 (Draft 48) 231

7 Synchronization

for a schedulable t, are as follows:
(a) Source t itself

Associated Priority The base priority for t
Note This may have been changed (either synchronously

or asynchronously) while t has been holding its
lock(s).

(b) Source Each object locked by t and governed by a Priority-
CeilingEmulation policy

Associated Priority The maximum value ceil, where ceil is the ceiling
of a PriorityCeilingEmulation policy governing an
object locked by t.

Note This value is also referred to as the ceiling priority
for t.

(c) Source Each task attempting to synchronize on an object
locked by t and governed by a PriorityInheritance
policy

Associated Priority The maximum active priority over all such threads
and schedulables

Note This rule accounts for recursive priority inheritance.
(d) Source Each task attempting to synchronize on an object

locked by t and governed by a PriorityCeilingEmu-
lation policy.

Associated Priority The maximum active priority over all such threads
and schedulables

Note This rule, which in effect allows a PriorityCeilingEm-
ulation lock to behave like a PriorityInheritance lock,
helps avoid unbounded priority inversions that could
otherwise occur in the presence of nested synchro-
nizations involving a mix of PriorityCeilingEmula-
tion and PriorityInheritance policies.

7. The addition of a priority source for t either leaves t’s active priority unchanged,
or increases it. When t’s active priority is unchanged, t’s status in its relevant
queue(s), e.g., blocked waiting for some object, is not affected. When t’s active
priority is increased, t is placed at the tail of the relevant queue(s) at its new
active priority level.

8. The removal of a priority source for t either leaves t’s active priority unchanged,
or decreases it. When t’s active priority is unchanged, then t’s status in its
relevant queue, e.g., blocked waiting for some object, is not affected. When t’s
active priority is decreased and t is either ready or running, then t must be
placed at the head of the ready queue at its new active priority level, When t’s
active priority is decreased and t is blocked, then t is queued at the end of the

232 RTSJ 2.0 (Draft 48)

Semantics 7.2

queue for the new priority when it becomes unblocked.
The above rules have four main consequences.
1. A thread or schedulable t’s priority sources from 6b are added and removed

synchronously; i.e., they are established based on t’s entering or leaving synchro-
nized code. However, priority sources from 6a, 6c, and 6d may be added and
removed asynchronously, as an effect of actions by other threads or schedulables.

2. A task holding only one lock, when it releases this lock, has its active priority
set to its base priority.

3. A task’s active priority is never less than its base priority.
4. When a task blocks at a call of obj.wait(), it releases the lock on obj and

hence relinquishes the priority source(s) based on obj’s monitor control policy.
The task will be queued at a new active priority that reflects the loss of these
priority sources.

When modifying the active priority of a task, the active priority may exceed
the priority range of the task’s scheduler. For example, a thread scheduled on the
standard Java scheduler may be assigned a priority greater than 10, or a thread
scheduled on the round robin scheduler may be assigned a priority greater than the
round robin maximum priority but within the default scheduler priority range. In
both cases, the task will be rescheduled on the default scheduler until its active
priority is once again within the range schedulable on its associated scheduler. A
task scheduled on the round robin scheduler, however, need not be moved to the
default scheduler while its active priority remains within the allowable range for the
round robin scheduler. Any scheduler not defined in this standard must specify the
behavior of tasks associated with it with respect to these priority-based monitor
control policies.

Since base priorities may be shared (i.e., the same PriorityParameters object
may be associated with multiple schedulables), a given base priority may be the
active priority for some but not all of its associated schedulables. It is a consequence
of other rules that, when a thread or schedulable t attempts to synchronize on an
object obj governed by a PriorityCeilingEmulation policy with ceiling ceil, then t’s
active priority may exceed ceil but t’s base priority must not. In contrast, once t
has successfully synchronized on obj, then t’s base priority may also exceed obj’s
monitor control policy’s ceiling. Note that either or both of t’s base priority and
obj’s monitor control policy may have been dynamically modified.

7.2.3 Additional Schedulers
Schedulers based on criteria other than priority, for example, deadline in a deadline
first scheduler, must consider how synchronization is handled to avoid scheduling
eligibility inversion. Such a scheduler must conform to the following semantics for
tasks managed by that scheduler when they synchronize on objects with the monitor

RTSJ 2.0 (Draft 48) 233

7 Synchronization

control policies defined above.
1. An implementation that defines a new Scheduler subclass must document which

(if any) monitor control policies the new scheduler does not support.
2. An implementation must document how, if at all, the semantics of synchroniza-

tion differ from the rules defined for the default PriorityInheritance instance
and for the PriorityCeilingEmulation policy. It must supply documentation
for the behavior of the new scheduler with priority inheritance and priority
ceiling emulation protocol equivalent to the semantics for the default priority
scheduler found in the previous section.

3. The new Scheduler subclass must conform to the sematics for parameter values,
release control, dispatching, and cost monitoring described in Section 6.2.1.

234 RTSJ 2.0 (Draft 48)

MonitorControl javax.realtime 7.3

7.3 javax.realtime

7.3.1 Classes
7.3.1.1 MonitorControl

Inheritance
java.lang.Object
MonitorControl

Description
Abstract superclass for all monitor control policy objects.

7.3.1.1.1 Constructors

MonitorControl

Signature
protected
MonitorControl()

Description
Invoked from subclass constructors.

7.3.1.1.2 Methods

getMonitorControl(Object)

Signature
public static javax.realtime.MonitorControl
getMonitorControl(Object obj)

Description

RTSJ 2.0 (Draft 48) 235

7 Synchronization MonitorControl

Gets the monitor control policy of the given instance of Object.

Parameters
obj The object being queried.

Throws
IllegalArgumentException when obj is null.

Returns
The monitor control policy of the obj parameter.

getMonitorControl

Signature
public static javax.realtime.MonitorControl
getMonitorControl()

Description
Gets the current default monitor control policy.

Returns
The default monitor control policy object.

setMonitorControl(MonitorControl)

Signature
public static javax.realtime.MonitorControl
setMonitorControl(MonitorControl policy)

Description
Sets the default monitor control policy. This policy does not affect the monitor
control policy of any already created object, it will, however, govern any object
subsequently constructed, until either
1. a new “per-object” policy is set for that object, thereby altering the monitor

control policy for a single object without changing the default policy, or
2. a new default policy is set.

Like the per-object method (see setMonitorControl(Object, MonitorControl)1,
the setting of the default monitor control policy occurs immediately.

Parameters
1Section 7.3.1.1.2

236 RTSJ 2.0 (Draft 48)

MonitorControl javax.realtime 7.3

policy The new monitor control policy. When null, the default MonitorControl
policy is not changed.

Throws
SecurityException when the caller is not permitted to alter the default monitor

control policy.
IllegalArgumentException when policy is not in immortal memory.
UnsupportedOperationException when policy is not a supported monitor control

policy.
Returns
The default MonitorControl policy in effect on completion.
Available since RTSJ 1.0.1 The return type is changed from void toMonitorControl.

setMonitorControl(Object, MonitorControl)

Signature
public static javax.realtime.MonitorControl
setMonitorControl(Object obj,

MonitorControl policy)

Description
Immediately sets policy as the monitor control policy for obj.

A thread or schedulable that is queued for the lock associated with obj,
or is in obj’s wait set, is not rechecked (e.g., for a CeilingViolationException)
under policy, either as part of the execution of setMonitorControl or when it is
awakened to (re)acquire the lock.

The thread or schedulable invoking setMonitorControl must already hold the
lock on obj.

Parameters
obj The object that will be governed by the new policy.
policy The new policy for the object. When null nothing will happen.

Throws
IllegalArgumentException Thrown when obj is null or policy is not in immortal

memory.
UnsupportedOperationException when policy is not a supported monitor control

policy.
IllegalMonitorStateException when the caller does not hold a lock on obj.

Returns

RTSJ 2.0 (Draft 48) 237

7 Synchronization PriorityCeilingEmulation

The current MonitorControl policy for obj, which will be replaced.

Available since RTSJ 1.0.1 The return type is changed from void toMonitorControl.

7.3.1.2 PriorityCeilingEmulation

Inheritance
java.lang.Object
MonitorControl
PriorityCeilingEmulation

Description

Monitor control class specifying the use of the priority ceiling emulation protocol
(also known as the "highest lockers" protocol). Each PriorityCeilingEmulation
instance is immutable; it has an associated ceiling, initialized at construction and
queryable but not updatable thereafter.

When a thread or schedulable synchronizes on a target object governed by a
PriorityCeilingEmulation policy, then the target object becomes a priority source
for the thread or schedulable object. When the object is unlocked, it ceases
serving as a priority source for the thread or schedulable. The practical effect
of this rule is that the thread or schedulable’s active priority is boosted to the
policy’s ceiling when the object is locked, and is reset when the object is unlocked.
The value that it is reset to may or may not be the same as the active priority it
held when the object was locked; this depends on other factors (e.g. whether the
thread or schedulable’s base priority was changed in the interim).

The implementation must perform the following checks when a thread or
schedulable t attempts to synchronize on a target object governed by a Priority-
CeilingEmulation policy with ceiling ceil:
• t’s base priority does not exceed ceil
• t’s ceiling priority (when t is holding any other PriorityCeilingEmulation

locks) does not exceed ceil.
Thus for any object targetObj that will be governed by priority ceiling emulation,
the programmer needs to provide (via MonitorControl.setMonitorControl(Object,
MonitorControl)2) a PriorityCeilingEmulation policy whose ceiling is at least as
high as the maximum of the following values:
• the highest base priority of any thread or schedulable that could synchronize

on targetObj

2Section 7.3.1.1.2

238 RTSJ 2.0 (Draft 48)

PriorityCeilingEmulation javax.realtime 7.3

• the maximum ceiling priority value that any thread or schedulable object
could have when it attempts to synchronize on targetObj.

More formally,
• when a thread or schedulable t whose base priority is p1 attempts to
synchronize on an object governed by a PriorityCeilingEmulation policy
with ceiling p2, where p1 > p2, then a CeilingViolationException is thrown
in t; likewise, a CeilingViolationException is thrown in t when t is holding
a PriorityCeilingEmulation lock and has a ceiling priority exceeding p2.

The values of p1 and p2 are passed to the constructor for the exception and may
be queried by an exception handler.

A consequence of the above rule is that a thread or schedulable may nest
synchronizations on PriorityCeilingEmulation-governed objects as long as the
ceiling for the inner lock is not less than the ceiling for the outer lock.

The possibility of nested synchronizations on objects governed by a mix of
PriorityInheritance and PriorityCeilingEmulation policies requires one other piece
of behavior in order to avoid unbounded priority inversions. When a thread or
schedulable holds a PriorityInheritance lock, then any PriorityCeilingEmulation
lock that it either holds or attempts to acquire will exhibit priority inheritance
characteristics. This rule is captured above in the definition of priority sources
(4.d).

When a thread or schedulable t attempts to synchronize on a PriorityCeilingEm-
ulation-governed object with ceiling ceil, then ceil must be within the priority
range allowed by t’s scheduler; otherwise, an IllegalSchedulableStateException is
thrown. Note that this does not prevent a regular Java thread from synchronizing
on an object governed by a PriorityCeilingEmulation policy with a ceiling higher
than 10.

The priority ceiling for an object obj can be modified by invokingMonitorControl.
setMonitorControl(obj, newPCE) where newPCE’s ceiling has the desired value.

See also MonitorControl3 PriorityInheritance4, and CeilingViolationExcep-
tion5.

7.3.1.2.1 Methods

instance(int)

3Section 7.3.1.1
4Section 7.3.1.3
5Section 15.2.2.3

RTSJ 2.0 (Draft 48) 239

7 Synchronization PriorityCeilingEmulation

Signature
public static javax.realtime.PriorityCeilingEmulation
instance(int ceiling)

Description
Return a PriorityCeilingEmulation object with the specified ceiling. This object
is in ImmortalMemory. All invocations with the same ceiling value return a
reference to the same object.

Parameters
ceiling Priority ceiling value.

Throws
IllegalArgumentException when ceiling is outside of the range of permitted priority

values (e.g., less than PriorityScheduler.instance().getMinPriority() or greater
than PriorityScheduler.instance().getMaxPriority() for the base scheduler).

Available since RTSJ 1.0.1

getCeiling

Signature
public int
getCeiling()

Description
Gets the priority ceiling for this PriorityCeilingEmulation object.

Returns
The priority ceiling.

Available since RTSJ 1.0.1

getMaxCeiling

Signature
public static javax.realtime.PriorityCeilingEmulation
getMaxCeiling()

Description

240 RTSJ 2.0 (Draft 48)

PriorityInheritance javax.realtime 7.3

Gets a PriorityCeilingEmulation object whose ceiling is PriorityScheduler.instance().
getMaxPriority(). This method returns a reference to a PriorityCeilingEmulation
object allocated in immortal memory. All invocations of this method return a
reference to the same object.

Returns
A PriorityCeilingEmulation object whose ceiling is PriorityScheduler.instance().

getMaxPriority().

Available since RTSJ 1.0.1

7.3.1.3 PriorityInheritance

Inheritance
java.lang.Object
MonitorControl
PriorityInheritance

Description
Singleton class specifying use of the priority inheritance protocol. When a thread
or schedulable t1 attempts to enter code that is synchronized on an object obj
governed by this protocol, and obj is currently locked by a lower-priority thread
or schedulable t2, then
1. When t1’s active priority does not exceed the maximum priority allowed by

t2’s scheduler, then t1 becomes a priority source for t2; t1 ceases to serve as
a priority source for t2 when either t2 releases the lock on obj, or t1 ceases
attempting to synchronize on obj (e.g., when t1 incurs an ATC).

2. Otherwise (i.e., t1’s active priority exceeds the maximum priority allowed
by t2’s scheduler), an IllegalSchedulableStateException is thrown in t1.

Note on the 2nd rule, throwing the exception in t1, rather than in t2, ensures
that the exception is synchronous.

See also MonitorControl6 and PriorityCeilingEmulation7

7.3.1.3.1 Methods

6Section 7.3.1.1
7Section 7.3.1.2

RTSJ 2.0 (Draft 48) 241

7 Synchronization WaitFreeReadQueue

instance

Signature
public static javax.realtime.PriorityInheritance
instance()

Description
Return a reference to the singleton PriorityInheritance.

This is the default MonitorControl policy in effect at system startup.
The PriorityInheritance instance shall be allocated in ImmortalMemory.

7.3.1.4 WaitFreeReadQueue<T>

Inheritance
java.lang.Object
WaitFreeReadQueue<T>

Description
A queue that can be non-blocking for consumers. The WaitFreeReadQueue class
is intended for single-reader multiple-writer communication, although it may also
be used (with care) for multiple readers. A reader is generally a instance of
Schedulable with may not use the heap, and the writers are generally regular
Java threads or heap-using instances of Schedulable. Communication is through
a bounded buffer of Objects that is managed first-in-first-out. The principal
methods for this class are write and read
• The write method appends a new element onto the queue. It is synchronized,

and blocks when the queue is full. It may be called by more than one writer,
in which case, the different callers will write to different elements of the
queue.
• The read method removes the oldest element from the queue. It is not
synchronized and does not block; it will return null when the queue is
empty.Multiple reader threads or schedulables are permitted, but when two
or more intend to read from the same WaitFreeWriteQueue they will need
to arrange explicit synchronization.

For convenience, and to avoid requiring a reader to poll until the queue is non-
empty, this class also supports instances that can be accessed by a reader that
blocks on queue empty. To obtain this behavior, the reader needs to invoke
the waitForData() method on a queue that has been constructed with a notify
parameter set to true.

242 RTSJ 2.0 (Draft 48)

WaitFreeReadQueue javax.realtime 7.3

WaitFreeReadQueue is one of the classes enabling instances of Schedulable
that may not use the heap and conventional Java threads to synchronize on an
object without the risk of that Schedulable instance incurring Garbage Collector
latency due to priority inversion avoidance management.

Incompatibility with V1.0: Three exceptions previously thrown by the con-
structor have been deleted. These are
• java.lang.IllegalAccessException,
• java.lang.ClassNotFoundException, and
• java.lang.InstantiationException.

These exceptions were in error. Their deletion may cause compile-time errors in
code using the previous constructor. The repair is to remove the exceptions from
the catch clause around the constructor invocation.

7.3.1.4.1 Constructors

WaitFreeReadQueue(Runnable, Runnable, int, MemoryArea,
boolean)

Signature
public
WaitFreeReadQueue(Runnable writer,

Runnable reader,
int maximum,
MemoryArea memory,
boolean notify)

throws IllegalArgumentException,
MemoryScopeException,
InaccessibleAreaException

Description
Constructs a queue containing up to maximum elements in memory. The queue
has an unsynchronized and nonblocking read() method and a synchronized and
blocking write() method.

The writer and reader parameters, when non-null, are checked to insure that
they are compatible with the MemoryArea specified by memory (when non-null.)
When memory is null and both Runnables are non-null, the constructor will select
the nearest common scoped parent memory area, or when there is no such scope

RTSJ 2.0 (Draft 48) 243

7 Synchronization WaitFreeReadQueue

it will use immortal memory. When all three parameters are null, the queue will
be allocated in immortal memory.

reader and writer are not necessarily the only instances of Schedule that will
access the queue; moreover, there is no check that they actually access the queue
at all.

Note, the wait free queue’s internal queue is allocated in memory, but the
memory area of the wait free queue instance itself is determined by the current
allocation context.

Parameters
writer An instance of Runnable or null.
reader An instance of Runnable or null.
maximum The maximum number of elements in the queue.
memory The MemoryArea8 in which internal elements are allocated.
notify A flag that establishes whether a reader is notified when the queue becomes

non-empty.
Throws
IllegalArgumentException when an argument holds an invalid value. The writer

argument must be null, a reference to a Thread, or a reference to a schedulable
(a RealtimeThread, or an AsyncEventHandler.) The reader argument must be
null, a reference to a Thread, or a reference to a schedulable. The maximum
argument must be greater than zero.

InaccessibleAreaException when memory is a scoped memory that is not on the
caller’s scope stack.

MemoryScopeException when either reader or writer is non-null and the mem-
ory argument is not compatible with reader and writer with respect to the
assignment and access rules for memory areas.

WaitFreeReadQueue(Runnable, Runnable, int, MemoryArea)

Signature
public
WaitFreeReadQueue(Runnable writer,

Runnable reader,
int maximum,
MemoryArea memory)

8Section 11.3.2.3

244 RTSJ 2.0 (Draft 48)

WaitFreeReadQueue javax.realtime 7.3

throws IllegalArgumentException,
MemoryScopeException,
InaccessibleAreaException

Description
Constructs a queue containing up to maximum elements in memory. The queue
has an unsynchronized and nonblocking read() method and a synchronized and
blocking write() method.

Equivalent to WaitFreeReadQueue(writer, reader, maximum, memory, false)

WaitFreeReadQueue(int, MemoryArea, boolean)

Signature
public
WaitFreeReadQueue(int maximum,

MemoryArea memory,
boolean notify)

throws IllegalArgumentException,
InaccessibleAreaException

Description
Constructs a queue containing up to maximum elements in memory. The queue
has an unsynchronized and nonblocking read() method and a synchronized and
blocking write() method.

Equivalent to WaitFreeReadQueue(null, null, maximum, memory, notify)

Available since RTSJ 1.0.1

WaitFreeReadQueue(int, boolean)

Signature
public
WaitFreeReadQueue(int maximum,

boolean notify)
throws IllegalArgumentException

Description

RTSJ 2.0 (Draft 48) 245

7 Synchronization WaitFreeReadQueue

Constructs a queue containing up tomaximum elements in immortal memory. The
queue has an unsynchronized and nonblocking read() method and a synchronized
and blocking write() method.

Equivalent to WaitFreeReadQueue(null, null, maximum, null, notify)

Available since RTSJ 1.0.1

7.3.1.4.2 Methods

clear

Signature
public void
clear()

Description

Sets this to empty.
Note, this method needs to be used with care. Invoking clear concurrently

with read or write can lead to unexpected results.

isEmpty

Signature
public boolean
isEmpty()

Description

Queries the queue to determine if this is empty.
Note: This method needs to be used with care since the state of the queue

may change while the method is in progress or after it has returned.

Returns
true when this is empty; false when this is not empty.

246 RTSJ 2.0 (Draft 48)

WaitFreeReadQueue javax.realtime 7.3

isFull

Signature
public boolean
isFull()

Description
Queries the system to determine if this is full.

Note: This method needs to be used with care since the state of the queue
may change while the method is in progress or after it has returned.

Returns
true when this is full; false when this is not full.

read

Signature
public T
read()

Description
Reads the least recently inserted element from the queue and returns it as the
result, unless the queue is empty. When the queue is empty, null is returned.

Returns
The instance of T read, or else null when this is empty.

size

Signature
public int
size()

Description
Queries the queue to determine the number of elements in this.

Note: This method needs to be used with care since the state of the queue
may change while the method is in progress or after it has returned.

Returns
The number of positions in this occupied by elements that have been written but

not yet read.

RTSJ 2.0 (Draft 48) 247

7 Synchronization WaitFreeReadQueue

waitForData

Signature
public void
waitForData()
throws UnsupportedOperationException,

InterruptedException

Description
When this is empty block until a writer inserts an element.

Note: When there is a single reader and no asynchronous invocation of clear,
then it is safe to invoke read after waitForData and know that read will find the
queue non-empty.

Implementation note, to avoid reader and writer synchronizing on the same
object, the reader should not be notified directly by a writer. (This is the issue
that the non-wait queue classes are intended to solve).

Throws
UnsupportedOperationException when this has not been constructed with notify

set to true.
InterruptedException when the thread is interrupted by interrupt() orAsynchronouslyInterruptedException.

fire()9 during the time between calling this method and returning from it.
Available since RTSJ 1.0.1 InterruptedException was added to the throws clause.

write(T)

Signature
public synchronized void
write(T value)
throws MemoryScopeException,

InterruptedException

Description
A synchronized and blocking write. This call blocks on queue full and will wait
until there is space in the queue.

Parameters
value The java.lang.Object that is placed in the queue.

9Section 15.2.2.2.2

248 RTSJ 2.0 (Draft 48)

WaitFreeWriteQueue javax.realtime 7.3

Throws
InterruptedException when the thread is interrupted by interrupt() orAsynchronouslyInterruptedException.

fire()10 during the time between calling this method and returning from it.
MemoryScopeException when a memory access error or illegal assignment error

would occur while storing object in the queue.

Available since RTSJ 1.0.1 The return type is changed to void since it always
returned true, and InterruptedException was added to the throws clause.

7.3.1.5 WaitFreeWriteQueue<T>

Inheritance
java.lang.Object
WaitFreeWriteQueue<T>

Description
A queue that can be non-blocking for producers. TheWaitFreeWriteQueue class is
intended for single-writer multiple-reader communication, although it may also be
used (with care) for multiple writers. A writer is generally an instance Schedulable
which may not use the heap, and the readers are generally conventional Java
threads or instances of Schedulable which use the heap. Communication is
through a bounded buffer of Objects that is managed first-in-first-out. The
principal methods for this class are write and read.
• The write method appends a new element onto the queue. It is not synchro-
nized, and does not block when the queue is full (it returns false instead).
Multiple writer threads or schedulables are permitted, but when two or more
threads intend to write to the same WaitFreeWriteQueue they will need to
arrange explicit synchronization.
• The read method removes the oldest element from the queue. It is syn-
chronized, and will block when the queue is empty. It may be called by
more than one reader, in which case the different callers will read different
elements from the queue.

WaitFreeWriteQueue is one of the classes enabling schedulables which may
not use the heap and regular Java threads to synchronize on an object without
the risk of the schedulable incurring Garbage Collector latency due to priority
inversion avoidance management.

Incompatibility with V1.0: Three exceptions previously thrown by the con-
structor have been deleted from the throws clause. These are

10Section 15.2.2.2.2

RTSJ 2.0 (Draft 48) 249

7 Synchronization WaitFreeWriteQueue

• java.lang.IllegalAccessException,
• java.lang.ClassNotFoundException, and
• java.lang.InstantiationException.
Including these exceptions on the throws clause was an error. Their deletion

may cause compile-time errors in code using the previous constructor. The
repair is to remove the exceptions from the catch clause around the constructor
invocation.

7.3.1.5.1 Constructors

WaitFreeWriteQueue(Runnable, Runnable, int, MemoryArea)

Signature
public
WaitFreeWriteQueue(Runnable writer,

Runnable reader,
int maximum,
MemoryArea memory)

throws IllegalArgumentException,
MemoryScopeException,
InaccessibleAreaException

Description

Constructs a queue in memory with an unsynchronized and nonblocking write()
method and a synchronized and blocking read() method.

The writer and reader parameters, when non-null, are checked to insure that
they are compatible with the MemoryArea specified by memory (when non-null.)
When memory is null and both Runnables are non-null, the constructor will select
the nearest common scoped parent memory area, or when there is no such scope
it will use immortal memory. When all three parameters are null, the queue will
be allocated in immortal memory.

reader and writer are not necessarily the only threads or schedulables that
will access the queues; moreover, there is no check that they actually access the
queue at all.

250 RTSJ 2.0 (Draft 48)

WaitFreeWriteQueue javax.realtime 7.3

Note, the wait free queue’s internal queue is allocated in memory, but the
memory area of the wait free queue instance itself is determined by the current
allocation context.

Parameters
writer is an instance of Schedulable or null.
reader An instance of Schedulable or null.
maximum The maximum number of elements in the queue.
memory The MemoryArea11 in which this and internal elements are allocated.

Throws
IllegalArgumentException when an argument holds an invalid value. The writer

argument must be null, a reference to a Thread, or a reference to a schedulable
(a RealtimeThread, or an AsyncEventHandler.) The reader argument must be
null, a reference to a Thread, or a reference to a schedulable. The maximum
argument must be greater than zero.

MemoryScopeException when either reader or writer is non-null and the mem-
ory argument is not compatible with reader and writer with respect to the
assignment and access rules for memory areas.

InaccessibleAreaException when memory is a scoped memory that is not on the
caller’s scope stack.

WaitFreeWriteQueue(int, MemoryArea)

Signature
public
WaitFreeWriteQueue(int maximum,

MemoryArea memory)
throws IllegalArgumentException,

InaccessibleAreaException

Description
Constructs a queue containing up to maximum elements in memory. The queue
has an unsynchronized and nonblocking write() method and a synchronized and
blocking read() method.

Equivalent to WaitFreeWriteQueue(null,null,mximum, memory)

Available since RTSJ 1.0.1

11Section 11.3.2.3

RTSJ 2.0 (Draft 48) 251

7 Synchronization WaitFreeWriteQueue

WaitFreeWriteQueue(int)

Signature
public
WaitFreeWriteQueue(int maximum)
throws IllegalArgumentException

Description
Constructs a queue containing up tomaximum elements in immortal memory. The
queue has an unsynchronized and nonblocking write() method and a synchronized
and blocking read() method.

Equivalent to WaitFreeWriteQueue(null,null,mximum, null)

Available since RTSJ 1.0.1

7.3.1.5.2 Methods

clear

Signature
public void
clear()

Description
Sets this to empty.

isEmpty

Signature
public boolean
isEmpty()

Description
Queries the system to determine if this is empty.

Note, this method needs to be used with care since the state of the queue
may change while the method is in progress or after it has returned.

252 RTSJ 2.0 (Draft 48)

WaitFreeWriteQueue javax.realtime 7.3

Returns
True, when this is empty. False, when this is not empty.

isFull

Signature
public boolean
isFull()

Description
Queries the system to determine if this is full.

Note, this method needs to be used with care since the state of the queue
may change while the method is in progress or after it has returned.

Returns
True, when this is full. False, when this is not full.

read

Signature
public synchronized T
read()
throws InterruptedException

Description
A synchronized and possibly blocking operation on the queue.

Throws
InterruptedException when the thread is interrupted by interrupt() orAsynchronouslyInterruptedException.

fire()12 during the time between calling this method and returning from it.

Returns
The T least recently written to the queue. When this is empty, the calling schedul-

able blocks until an element is inserted; when it is resumed, read removes and
returns the element.

Available since RTSJ 1.0.1 Throws InterruptedException

12Section 15.2.2.2.2

RTSJ 2.0 (Draft 48) 253

7 Synchronization WaitFreeWriteQueue

size

Signature
public int
size()

Description
Queries the queue to determine the number of elements in this.

Note, this method needs to be used with care since the state of the queue
may change while the method is in progress or after it has returned.

Returns
The number of positions in this occupied by elements that have been written but

not yet read.

force(T)

Signature
public boolean
force(T value)
throws MemoryScopeException,

IllegalArgumentException

Description
Unconditionally insert value into this, either in a vacant position or else over-
writing the most recently inserted element. The boolean result reflects whether,
at the time that force() returns, the position at which value was inserted was
vacant (false) or occupied (true).

Parameters
value An instance of T to insert.

Throws
MemoryScopeException when a memory access error or illegal assignment error

would occur while storing value in the queue.
IllegalArgumentException when value is null.

Returns
true when value has overwritten an element that was occupied when the function

returns; false otherwise (it has been inserted into a position that was vacant
when the function returns)

254 RTSJ 2.0 (Draft 48)

Rationale 7.4

write(T)

Signature
public boolean
write(T value)
throws MemoryScopeException,

IllegalArgumentException

Description
Inserts value into this when this is non-full and otherwise has no effect on this;
the boolean result reflects whether value has been inserted. When the queue was
empty and one or more threads or schedulables were waiting to read, then one
will be awakened after the write. The choice of which to awaken depends on the
involved scheduler(s).

Parameters
value An instance of T to insert.

Throws
MemoryScopeException when a memory access error or illegal assignment error

would occur while storing value in the queue.
IllegalArgumentException when value is null.

Returns
true when the queue was non-full; false otherwise.

7.4 Rationale
Java’s rules for synchronized code provide a means for mutual exclusion but do
not prevent unbounded priority inversions and thus are insufficient for realtime
applications. This specification strengthens the semantics for synchronized code by
mandating priority inversion control, in particular by furnishing classes for priority
inheritance and priority ceiling emulation. Priority inheritance is more widely
implemented in realtime operating systems and thus is the initial default mechanism
in this specification.

Priority ceiling emulation is also a useful protocol. It is necessary for blocking out
interrupts in interrupt service routines and simplifies scheduling analysis for single
core systems. Since it can easily be implemented in user space, it is required as well.

Since the same object may be accessed from synchronized code by both a sched-
ulable which may not use the heap and an arbitrary thread or schedulable which
may, unwanted dependencies may result. To avoid this problem, this specification

RTSJ 2.0 (Draft 48) 255

7 Synchronization

provides three wait-free queue classes as an alternative means for safe, concurrent
data accesses without priority inversion.

256 RTSJ 2.0 (Draft 48)

Chapter 8

Asynchrony

One of the most important aspects of this specification is the support for asynchronous
control flow. Mechanisms are provided for both starting a task asynchronously and
interrupting the execution of a thread or other task. This specifications provides
mechanisms that
• bind the execution of program logic to the occurrence of internal and external

events;
• enable asynchronous transfer of control; and
• facilitate the asynchronous termination of realtime threads.

The first of is provided by asynchronous event handling. Using this, an application
can define some computation that is executed every time an event is “fired,” either
from a clock or from some signal. The second is Asynchronous Transfer of Control
(ATC), which provides a means of stopping some calculation prematurely. ATC may
also be used to terminate a realtime thread safely.

Events and Event Handling
Asynchronous event handling is captured by the classes AsyncBaseEvent (AE), Async-
BaseEventHandler (AEH) and AbstractBoundAsyncEventHandler, along with their
subclasses. An AE is an object used to direct event occurrences to asynchronous event
handlers. An event occurrence may be initiated by application logic, by mechanisms
internal to the RTSJ implementation (see the handlers in PeriodicParameters), or
by some external input such as a clock, a signal, or an interrupt.

An asynchronous event occurrence is initiated in program logic by the invocation
of the fire method of an AE. The fire method dispatches all handlers associated with
its event. This means that dispatching occurs in the execution context of the caller.

An asynchronous event that is initiated from an external source has additional
requirements and hence additional API features. These features are captured by the
ActiveEvent interface. Since external events do not have a full execution context of

257

8 Asynchrony

their own, this category of events must provide an alternate execution context. In
order to give the programmer control over this execution context, the specification
defines the abstract class ActiveEventDispatcher to provide execution context for
dispatching. By convention, subclasses provide a trigger method for initiating
dispatching. Triggering simply informs this execution context to start dispatching.
The trigger method is not defined in ActiveEventDispatcher, since some classes need
a trigger method with an argument and others do not. The types of ActiveEvent
supported are described in subsequent chapters.

Any variety of AEH may be associated with any variety of AE. The event actually
delivered depends on the combination of the two. The table 8.1 illustrates this.

Table 8.1: Event to Handler Matrix
Types AsyncEvent AsyncLongEvent AsyncObjectEvent
AsyncEventHandler Nothing Nothing Nothing
AsyncLongEventHandler Event Id Payload Event Id
AsyncObjectEventHandler Event Object Event Object Payload

Memory assignment rules apply to the payload passed to AsyncObjectEvent-
Handler.

An AEH is a schedulable embodying code that is released for execution in response
to the occurrence of an associated event. Each AEH behaves as if it is executed by
a RealtimeThread except that it is not permitted to use the waitForNextRelease()
method. There is not necessarily a separate realtime thread for each AEH, but
the server realtime thread (returned by currentRealtimeThread()) remains constant
during each execution of the handleAsyncEvent() method. The implication of this
is that calls to Thread.currentThread(), RealtimeThread.currentRealtimeThread(),
and access to thread-local storage may have unpredictable results from release to
release. The manner in which the implementation selects a realtime thread to release
a given AEH at a given release is implementation-defined. The interface Bound-
AsyncBaseEventHandler is used to mark subclasses of AsyncBaseEventHandler, such
as BoundAsyncEventHandler, which have a dedicated realtime server thread. Such
a server thread is associated with one and only one bound AEH for the lifetime of
that AEH.

Asynchronous Transfer of Control
The interrupt() method in java.lang.Thread provides rudimentary asynchronous
communication by setting a pollable and resettable flag in the target thread, and
by throwing a synchronous exception when the target thread is blocked at an
invocation of wait(), sleep(), join(), or an operation that throws InterruptException.

258 RTSJ 2.0 (Draft 48)

Definitions 8.1

This specification generalizes the notion of interrupt to all Tasks, offering a more
comprehensive asynchronous execution control facility without requiring polling. For
RealtimeThreads, the effect of Thread.interrupt() must be extended by adding an
overridden version in RealtimeThread.

This new mechanism, called Asynchronous Transfer of Control (ATC), is based
on throwing and propagating an exception that, though asynchronous, is deferred
where necessary in order to avoid data structure corruption. The main elements of
ATC are embodied in the class AsynchronouslyInterruptedException, its subclass
Timed, the interface Interruptible, and in the semantics of the interrupt method in
Schedulable.

A method indicates its eligibility for asynchronous interruption by including the
checked exception AsynchronouslyInterruptedException in its throws clause. If a
schedulable is asynchronously interrupted while executing such a method, then an
AIE will be delivered as soon as the schedulable is outside of a section in which ATC
is deferred. Several idioms are available for handling an AIE, giving the programmer
the choice of using catch clauses and a low-level mechanism with specific control over
propagation, or a higher-level facility that enables specifying the interruptible code,
the handler, and the result retrieval as separate methods.

8.1 Definitions
Asynchronous Event (AE) — An instance of one of the subclasses of the javax.

realtime.AsyncBaseEvent class.
Asynchronous Event Handler (AEH) — An instance of one of the subclasses

of the AsyncBaseEventHandler class.
Bound Asynchronous Event Handler (Bound AEH) — An instance of one

of the subclasses of the BoundAsyncBaseEventHandler class.
Asynchronously Interrupted Exception (AIE) — An instance of the javax.

realtime.AsynchronouslyInterruptedException class (a subclass of java.lang.
InterruptedException).

Asynchronously Interruptible Method (AI-Method) —Amethod or construc-
tor that includes AsynchronouslyInterruptedException explicitly (that is, not
a subclass of AsynchronouslyInterruptedException) in its throws clause.

Asynchronous Transfer of Control (ATC) — A nonlocal transfer of program
control in a task initiated from outside that task.

ATC-Deferred Section — A synchronized statement, a static initializer or any
method or constructor without AsynchronouslyInterruptedException in its
throws clause. As specified in the introduction to Chapter 8 in Java Language
Specification, a synchronized method is equivalent to a non-synchronized method
with the body of the method contained in a synchronized statement. Thus,

RTSJ 2.0 (Draft 48) 259

8 Asynchrony

a synchronized AI method behaves like an AI method containing only an
ATC-deferred statement.

Bounded Execution Time — As a particular task or schedulable may not be
scheduled on a CPU for an arbitrarily long period of time, bounds on the
responsiveness of a given task or schedulable are defined in terms of execution
time during which that task is scheduled on a CPU and executing. Time during
which a task is blocked, either voluntarily, pending acquisition of a resource,
or due to a higher-priority task executing on the CPUs available to it, is not
considered execution time.

Firable Asynchronous Event Handler —An instance of AsyncBaseEventHand-
ler is firable whenever there is an agent that can release it. This includes cases
when the AsyncBaseEventHandler is
1. a miss handler or overrun handler of a RealtimeThread instance that has

been started but not yet terminated;
2. a handler associated with an AsyncBaseEvent that can be fired; or
3. a miss handler or overrun handler for an instance of AsyncBaseEvent-

Handler that is firable.
Interruptible Blocking Methods — The RTSJ and standard Java methods that

are explicitly interruptible by an AsynchronouslyInterruptedException (AIE).
The interruptible blocking methods comprise
• HighResolutionTime.waitForObject(),
• Object.wait(),
• Thread.sleep(),
• RealtimeThread.sleep(),
• Thread.join(),
• ScopedMemory.join(),
• ScopedMemory.joinAndEnter(),
• RealtimeThread.waitForNextRelease(),
• WaitFreeWriteQueue.read(),
• WaitFreeReadQueue.waitForData(),
• WaitFreeReadQueue.write(),
• WaitFreeDequeue.blockingRead(),
• WaitFreeDequeue.blockingWrite()

and their overloaded forms. Furthermore, the RealtimeThread.waitForNextRelease
method is interruptible when the thread’s release parameters isRousablemethod
returns true. Similarly instances of AsyncBaseEventHandlers are released early
when their release parameters isRousable method returns true.

Lexical Scope — The textual region within programming block, such as a construc-
tor, method, or statement, excluding the code within any class declarations,
and the code within any class instance creation expressions for anonymous

260 RTSJ 2.0 (Draft 48)

Semantics 8.2

classes, contained therein. The lexical scope of a construct does not include
the bodies of any methods or constructors that this code invokes.

8.2 Semantics
Basic event types are passive: they are not directly associated with a thread of control.
They are intended to be fired programmatically. Handling external events, such
as clocks (see Chapter 10) and happenings (see Chapter 12), requires an execution
context. The ActiveEvent interface is provided to mark these and provide additional
execution semantics. Figure 8.1 illustrates the event hierarchy.

Figure 8.1: The Event Class Hierarchy
Visibility
+ = publ ic
= protected
~ = package

javax.realtime::PeriodicTimer

...

javax.realtime::OneShotTimer

...

javax.realtime::ActiveEvent
<< in te r f ace>>

+isActive() : boolean
+isRunning() : boolean
+enable()
+disable()
+star t ()
+start(boolean disable)
+stop()

javax.realtime::Timer
Timer(HighResolutionTime,
 AsyncBaseEventHandler,
 TimeDispatcher)
+getDispatcher() : TimeDispatcher
...

javax.realtime::AsyncBaseEvent
< < a b s t r a c t > >

+isRunning() : boolean
+enable()
+disable()
+boolean hasHandlers() : boolean
+handledBy(AsyncBaseEventHandler) : boolean
+addHandler(AsyncBaseEventHandler)
+setHandler(AsyncBaseEventHandler)
+removeHandler(AsyncBaseEventHandler)
+createReleaseParameters() : ReleaseParameters

javax.realtime::AsyncObjectEvent

+fire(Object value)

javax.realtime::AsyncEvent

+f i re()

javax.realtime::POSIXRealtimeSignal

+isPOSIXRealtimeSignal() : boolean
+getId(String name): int
+get(String name): POSIXRealtimeSignal
+get(int id): POSIXRealtimeSignal
+getId() : int
+getName() : String
+getDispatcher() : POSIXRealtimeSignalDispatcher
+send(long, long) : boolean
...

javax.realtime::POSIXSignal

+isPOSIXSignal() : boolean
+getId(String name): int
+get(String name): POSIXSignal
+get(int id): POSIXSignal
+getProcessId(): long
+getId() : int
+getName() : String
+getDispatcher() : POSIXSignalDispatcher
+send(long) : boolean
...

javax.realtime::Happening
+Happening(String name)
+Happening(String, HappeningDispatcher)
+isHappening(String name) : boolean
+getHappening(String name): int
+createId(String name): int
+getId(String name): int
+get(String name): Happening
+get(int id): Happening
+trigger(int id)
+getId(): int
+getName() : String
+tr igger()
+getDispatcher() : HappeningDispatcher
...

javax.realtime::AsyncLongEvent

+fire(long value)

8.2.1 Asynchronous Events and their Handlers
This following points give the basic semantics for asynchronous events and their
handlers. Semantics that apply to particular classes, constructors, methods, and
fields are provided in the class description and the constructor, method, and field
specifications.

RTSJ 2.0 (Draft 48) 261

8 Asynchrony

1. When an asynchronous event occurs, either by either program logic or by the
triggering of a happening, and the event is enabled, its attached handlers, i.e.,
all AEHs that have been added to the AE by the execution of addHandler(),
are released for execution.

(a) Every occurrence of an event increments the fireCount in each attached
handler.

(b) Handlers may elect to execute logic for each occurrence of the event or
not.

2. When interrupt is called on an AEH whose rousable state is true, i.e., its
release parameters isRousable method returns true, that AEH will be release
independently of all other AEH attached to any common AE.

3. The release of attached handlers occurs in execution eligibility order, i.e,
priority order, from highest to lowest, with the default PriorityScheduler, and
at the active priority of the schedulable that invoked the fire method. The
release of handlers resulting from a happening or a timer must begin within a
bounded time (ignoring time consumed by unrelated activities in the system).
This worst-case response interval must be documented for some reference
architecture.

4. The release of attached handlers is an atomic operation with respect to adding
and removing handlers.

5. The logical release of an attached handler may occur before the previous release
has completed.

6. Each handler has an application configurable, handler type dependent queue for
holding events that have been released before a previous release has completed.

7. The overflow policy of a handlers queue is also application configurable.
8. A deadline may be associated with each logical release of an attached handler.

The deadline is relative to the occurrence of the associated event.
9. AEs and AEHs may be created and used by any program logic within the

constraints of the memory assignment rules.
10. More than one AEH may be added to an AE. However, adding an AEH to an

AE has no effect if the AEH is already attached to the AE.
11. The same AEH may be added to more than one AE.
12. By default all AEHs are daemons: the daemon status is set by their constructors.

An AEH can be set to have a non daemon status after it has been created and
before it has been attached to an AE.

13. The object returned by currentRealtimeThread() while an AEH is running
shall behave with respect to memory access and assignment rules as if it were
allocated in the same memory area as the AEH.

14. System-related termination activity (such as execution of finalizers for scoped
objects in scopes that become unreferenced) triggered when an AEH becomes

262 RTSJ 2.0 (Draft 48)

Semantics 8.2

unfirable is not subject to cost enforcement or deadline miss detection.
15. AEs and AEHs behave effectively as if changes to an AEH’s fireability are

contained in synchronized blocks, and the AEH holds that lock while it is in
the process of becoming unfirable.

AsyncBaseEvent provides two basic states: enabled and disabled. In the enabled
state, fire causes all associated handlers to be dispatched, whereas fire does nothing
when the event is disabled. Figure 8.2 illustrates this state space.

Figure 8.2: States of a Simple AsyncBaseEvent

DisabledEnabledNonexistent

8.2.2 Active Events and Dispatching
Active events refine the semantics of AsyncBaseEventHandler with the addition of
execution semantics to support second level interrupt handling. The fire method of
an event runs in the Java execution context of the caller. For events that represent
external signals, whether a certain time is reached or something has occurred, there
may not be a Java execution context, or at least that context is of necessity limited
and often needs to have a very short duration; dispatching an unlimited number of
handlers is not acceptable. They require an additional execution context for releasing
handlers.

In order to be able to distinguish between events that are caused to be fired by an
outside mechanism from those that are fired from another thread, the former extend
the ActiveEvent interface. Each class implementing ActiveEvent must provide its
own trigger method for initiating the handler release by releasing another execution
context. Since the trigger methods may vary in the number of their arguments

RTSJ 2.0 (Draft 48) 263

8 Asynchrony

depending on the type of event, they are not provided by the ActiveEvent class.
Each trigger method must act as if it calls the fire method on its event and then
terminates. Hence trigger has the same functional behavior as fire, but runs in this
other execution context.

This extra execution context is exposed to the user as an ActiveEventDispatcher.
There is an active event dispatcher for each kind of active event. The programmer
does not need to write a dispatcher, but just creates the one of the corresponding
type. The programmer does determine the priority and the affinity of a dispatcher,
as well as determine the mapping between dispatchers and events.

Each event has a single dispatcher, but a dispatcher may serve many events. As
with fire, the dispatcher releases handlers in reverse priority order, i.e., from highest
to lowest. This enables the programmer to control the number of these execution
contexts and still optimize how handlers are released.

The state space of an ActiveEvent is an extension of the state space for an
AsyncBaseEvent depicted in Figure 8.2. ActiveEvent adds the notion of active and
inactive on top of enabled and disabled, as depicted in Figure 8.3. Note that the
enabled-disabled distinction only splits the active state. The inactive state is by
definition disabled.

8.2.3 Termination
An RTSJ program terminates when and only when

1. all nondaemon threads, either regular Java threads or realtime threads, are
terminated;

2. the fireCounts of all nondaemon instances of AsyncBaseEventHandler are zero
and all of their releases are completed; and

3. there are no nondaemon instances of AsyncBaseEventHandler attached to a
firable instance of ActiveEvent.

Bound and unbound AEH are treated alike. As with conventional Java, daemon
tasks, including service threads such as a dispatcher’s thread or the threads used to
run unbound AEH, do not hinder termination.

8.2.4 Asynchronous Transfer of Control
Asynchronously interrupting a schedulable consists of the following activities.

1. Generation of an asynchronous interrupt exception — this is the event in the
underlying system that makes the AIE available to the program.

2. Delivery of the asynchronous interrupt exception to the target schedulable—
this is the action that invokes the search for and execution of an appropriate
handler.

264 RTSJ 2.0 (Draft 48)

Semantics 8.2

Figure 8.3: States of an ActiveEvent

Active
Inactive

Disabled
Active

Disabled
Active

Enabled

stop
-> t rue

stop
-> false

stop -> false

startDisabled
-> IllegalStateException

start
-> IllegalStateException

start

startDisabled

enable

disable

new

Between the generation of an AIE and its delivery, the exception is held pending.
The AIE remains pending, even after delivery, until it is cleared by the program
logic using the AsynchronouslyInterruptedException.clear() or when Asynchronous-
lyInterruptedException.doInterruptible completes. Simply catching the exception
does not change its pending state.

The following eight points define the semantics of ATC. Semantics that apply
to particular classes, constructors, methods, and fields will be found in their detail
sections, respectively.

1. An AIE is generated for a given schedulable when the fire() method is called
on an AIE for which the schedulable object is executing within the doInter-
ruptible method or the Schedulable.interrupt() method is called; the latter is
also effectively called when an AIE is generated by internal virtual machine
mechanisms (such as an interrupted I/O operation) that are asynchronous to
the execution of the program logic which is the target of the AIE. An AIE
becomes pending upon generation and remains pending until explicitly cleared
or replaced by another AIE.

RTSJ 2.0 (Draft 48) 265

8 Asynchrony

2. An AIE is delivered to a schedulable when it is executing in a method declared
to throw AIE, except in an ATC-deferred section as defined below.
(a) The generation of an AIE through the fire() mechanism behaves as if it

set an asynchronously-interrupted status in the schedulable.
i. When the schedulable is blocked within an interruptible blocking

method or invokes an interruptible blocking method when this asynchronously-
interrupted status is set, the invocation immediately completes by
throwing the pending AIE and clearing the asynchronously-interrupted
status.

ii. When a pending AIE is explicitly cleared then the asynchronously-
interrupted status is also cleared.

(b) Blocking methods which are declared to throw java.lang.IOException
but are not declared to throw java.io.InterruptedException (for example,
blocking methods in java.io.*) must be prevented from blocking indefinitely
when invoked from a method with AsynchronouslyInterruptedException
in its throws clause. When an AIE is generated and the target schedulable’s
control is blocked inside one of these methods with an AI-method on the
call stack, the implementation may either unblock the blocked call, raise
java.lang.InterruptedIOException on behalf of the call, or allow the call
to complete normally if the implementation determines that the call would
unblock within a bounded period of time defined by the implementation.

(c) When an AI-method is attempting to acquire an object lock when an
associated AIE is generated, the attempt to acquire the lock is abandoned.

(d) When control is in the lexical scope of an ATC-deferred section when an
AIE (targeted at the executing schedulable) is generated, the AIE is not
delivered until the first subsequent attempt to transfer control to code
that is not ATC deferred. At that point, control is transferred to the
catch or finally clause of the nearest dynamically-enclosing try statement
that i) has a handler for the generated AIE (that is a handler naming
the AIE’s class or any of its superclasses, or a finally clause) and ii) is in
an ATC-deferred section. Intervening handlers and finally clauses that
are not in ATC-deferred sections are not executed, but object locks are
released.
See section 11.3 of The Java Language Specification second edition for an
explanation of the terms, dynamically enclosing and handler. The RTSJ
uses those JLS definitions unaltered. Note that if synchronized code is
abandoned as a result of this control transfer, the associated locks are
released.

3. Constructors are allowed to include AsynchronouslyInterruptedException in
their throws clause and if they do will be asynchronously interruptible under

266 RTSJ 2.0 (Draft 48)

Semantics 8.2

the same conditions as AI methods.
4. Native methods that include AsynchronouslyInterruptedException in their

throws clause have implementation-specific behavior.
5. An implementation must deliver the transfer of control in a schedulable that

is subject to asynchronous interruption (in an AI-method but not in a syn-
chronized block) within a bounded execution time of that schedulable. This
worst-case response interval must be documented for some reference architec-
ture.

6. Instances of the Timed class have a logically associated timer. When the timer
fires, the schedulable executing the instance’s doInterruptible method must
have the AIE generated within a bounded execution time of the schedulable.
This worst-case response interval must be documented for some reference
architecture.

7. An AIE only has the semantics defined here when it originates with the
AsynchronouslyInterruptedException.fire()method, the Schedulable.interrupt()
method or from within the realtime VM. If an AIE is thrown from program
logic using the Java throw statement, it uses the same semantics as throwing
any other instance of a subclass of Exception, it is processed as a normal
exception, and has no affect on the pending state of any AIE, and no affect on
the firing of the AIE concerned.

8. The Schedulable.interrupt() method is a special case of ATC.
(a) it causes the target task to throw a generic AIE and has the behaviors

defined for Thread.interrupt(). This is the only interaction between the
ATC mechanism and the conventional interrupt() mechanism.

(b) An AEH that is waiting for a release and is rousable will release immedi-
ately as per Section 6.2.1.2.4 above with the generic AIE pending when it
is interrupted.

(c) A RealtimeThread blocked in waitForNextRelease that is rousable will
immediately return as per Section 6.2.1.2.2 with the generic AIE pending
when it is interrupted.

8.2.4.1 Extending Conventional Java Interrupts

The RTSJ’s approach to ATC is designed to follow the above principles. It is
based on exceptions and is an extension of the current Java language rules for
java.lang.Thread.interrupt(). In summary, ATC works as follows.

When so is an instance of a schedulable and the interrupt() method is called on
the schedulable associated with that object, then the following holds.

1. When control is in an ATC-deferred section, then the AIE remains in a pending
state. Execution continues normally until the first attempt to return to an AI
method or invoke an AI method or exit a synchronized block within an AI

RTSJ 2.0 (Draft 48) 267

8 Asynchrony

method. Then ATC follows option 2 as appropriate.
2. When control is not in an ATC-deferred section, then control is transferred to

the catch or finally clause of the nearest dynamically-enclosing try statement
that has a handler for the generated AIE (that is a handler naming the AIE’s
class or any of its superclasses, or a finally clause) and which is in an ATC-
deferred section. Intervening handlers and finally clauses that are not in
ATC-deferred sections are not executed, but objects locks are released. See
section 11.3 of The Java Language Specification [5] for an explanation of the
terms dynamically enclosing and handlers. The RTSJ uses those definitions
unaltered.

3. When control is in an interruptible blocking method, the schedulable object is
awakened and the generated AIE (which is a subclass of InterruptedException)
is thrown with regular Java semantics (the AIE is still marked as pending).
ATC then follows option 1 or 2 as appropriate.

4. When control is transferred from an ATC-deferred section to an AI method
through the action of propagating an exception while an AIE is pending, when
the transition to the AI-method occurs, the thrown exception is discarded and
replaced by the pending AIE.

8.2.4.2 Nesting AsynchronouslyInterruptedExceptions

An AIE may be generated while another AIE is pending. Because AI code blocks are
nested by method invocation (a stack-based nesting) there is a natural precedence
among active instances of AIE. Let AIE0 be the AIE raised when the Schedul-
able.interrupt() method is invoked and AIEi (i = 1, ..., n, for n unique instances of
AIE) be the AIE generated when AIE.fire() is invoked. In the following, the phrase
“a frame deeper on the stack than this frame” refers to a stack frame further from
stack base. The phrase “a frame shallower on the stack than this frame” refers to a
stack frame nearer to the stack base.

1. When the current AIE is an AIE0 and the new AIE is an AIEx associated
with any frame on the stack, the new AIE (AIEx) is discarded.

2. When the current AIE is an AIEx and the new AIE is an AIE0, the current
AIE (AIEx) is replaced by the new AIE (AIE0).

3. When the current AIE is an AIEx and the new AIE is an AIEy from a frame
deeper on the stack, the new AIE (AIEy) discarded.

4. When the current AIE is an AIEx and the new AIE is an AIEy from a frame
shallower on the stack, the current AIE (AIEx) is replaced by the new AIE
(AIEy).

5. When the current AIE is an AIE0 and the new AIE is an AIE0, or when
the current AIE is an AIEx and the new AIE is an AIEx, the new AIE is
discarded.

268 RTSJ 2.0 (Draft 48)

Semantics 8.2

When clear() is called on a pending AIE or that AIE is superseded by another,
the first AIE’s pending state is cleared. Clearing a nonpending AIE (with the clear()
method) has no effect.

RTSJ 2.0 (Draft 48) 269

8 Asynchrony ActiveEvent

8.3 javax.realtime

8.3.1 Interfaces
8.3.1.1 ActiveEvent<T extends Releasable<T, D>, D extends ActiveEvent-

Dispatcher<D, T>>

Interfaces
javax.realtime.Releasable

Description
This is the interface for defining the active event system. Classes implementing
ActiveEvent are used to connect events that take place outside the Java virtual
machine to RTSJ activities.

When an event takes place outside the Java virtual machine, some event-
specific code within the Java virtual machine executes. That code notifies the
ActiveEvent infrastructure of this event by calling a trigger method in the event.

An instance of this class holds a reference to its dispatcher. When ActiveEvent.
isActive1 is true, the dispatcher must also hold a reference to the instance. For
this reason, whenever an active event instance is active, it is also a execution
context, so that this reference can be safely held during this time. Only the active
event instance must be assignable to its dispatcher instance under the memory
assignment rules, but not visa versa.

8.3.1.1.1 Methods

isActive

Signature
public boolean
isActive()

Description
Determine the activation state of this event, i.e., it has been started but not yet
stopped again.

1Section 8.3.1.1.1

270 RTSJ 2.0 (Draft 48)

ActiveEvent javax.realtime 8.3

Returns
true when active, false otherwise.

isRunning

Signature
public boolean
isRunning()

Description
Determine the running state of this event, i.e., it is both active and enabled.

Returns
true when active and enabled, false otherwise.

start

Signature
public void
start()
throws IllegalStateException

Description
Start this active event.

Throws
IllegalStateException when this event has already been started.

start(boolean)

Signature
public void
start(boolean disabled)
throws IllegalStateException

Description
Start this active event.

Parameters
disabled true for starting in a disabled state.

RTSJ 2.0 (Draft 48) 271

8 Asynchrony BoundAsyncBaseEventHandler

Throws
IllegalStateException when this event has already been started.

stop

Signature
public boolean
stop()
throws IllegalStateException

Description
Stop this active event.

Throws
IllegalStateException when this event is not running.

Returns
the previous enabled state.

enable

Signature
public void
enable()

Description
Change the state of the event so that associated handlers are release on fire.
Each subclass provides a means of dispatching its handlers when requested. This
method enables that request mechanism.

disable

Signature
public void
disable()

Description
Change the state of the event so that associated handlers are skipped on fire.
Each subclass provides a fire method as means of dispatching its handlers when
requested. This method disables that request mechanism.

272 RTSJ 2.0 (Draft 48)

Interruptible javax.realtime 8.3

8.3.1.2 BoundAsyncBaseEventHandler

Interfaces
javax.realtime.BoundSchedulable

Description
An marker interface for all schedulables that are bound to a single thread of
control. It is required to enable references to all bound handlers. A thread is
bound to a handler of this type when it is first attached to an event. Thus
security checks for thread use can be done when AsyncBaseEvent.addHandler2

and AsyncBaseEvent.setHandler3 are called.

8.3.1.3 Interruptible

Description
Interruptible is an interface implemented by classes that will be used as arguments
on the methodsdoInterruptible() of AsynchronouslyInterruptedException4 and
its subclasses. doInterruptible() invokes the implementations of the methods in
this interface.

8.3.1.3.1 Methods

run(AsynchronouslyInterruptedException)

Signature
public void
run(AsynchronouslyInterruptedException exception)
throws AsynchronouslyInterruptedException

Description
2Section 8.3.3.2.1
3Section 8.3.3.2.1
4Section 15.2.2.2

RTSJ 2.0 (Draft 48) 273

8 Asynchrony Releasable

The main piece of code that is executed when an implementation is given to
doInterruptible(). When a class is created that implements this interface (for
example through an anonymous inner class) it must include the throws clause to
make the method interruptible.

Parameters
exception The AIE object whose doInterruptible method is calling the run method.

Used to invoke methods on AsynchronouslyInterruptedException5 from within
the run() method.

interruptAction(AsynchronouslyInterruptedException)

Signature
public void
interruptAction(AsynchronouslyInterruptedException exception)

Description
This method is called by the system when the run() method is interrupted. Using
this, the program logic can determine when the run() method completed normally
or had its control asynchronously transferred to its caller.

Parameters
exception The currently pending AIE. Used to invoke methods on Asynchronously-

InterruptedException6 from within the interruptAction() method.

8.3.1.4 Releasable<T extends Releasable<T, D>, D extends ActiveEvent-
Dispatcher<D, T>>

Description
A base interface for everything that has a dispatcher.

8.3.1.4.1 Methods

5Section 15.2.2.2
6Section 15.2.2.2

274 RTSJ 2.0 (Draft 48)

Timed javax.realtime 8.3

getDispatcher

Signature
public D extends javax.realtime.ActiveEventDispatcher<D, T>
getDispatcher()

Description
Obtain the dispatcher for this.

Returns
that dispatcher.

8.3.2 Exceptions
8.3.2.1 Timed

Inheritance
java.lang.Object
java.lang.Throwable
java.lang.Exception
java.lang.InterruptedException
AsynchronouslyInterruptedException
Timed

Description
Create a scope in a Schedulable7 object which will be asynchronously interrupted
at the expiration of a timer. This timer will begin measuring time at some point
between the time doInterruptible is invoked and the time the run() method of
the Interruptible object is invoked. Each call of doInterruptible on an instance
of Timed will restart the timer for the amount of time given in the constructor
or the most recent invocation of resetTime(). The timer is cancelled when it has
not expired before the doInterruptible method has finished.

All memory use of an instance of Timed occurs during construction or the
first invocation of doInterruptible. Subsequent invocations of doInterruptible do
not allocate memory.

When the timer fires, the resulting AIE will be generated for the schedulable
within a bounded execution time of the targeted schedulable.

Typical usage: new Timed(T).doInterruptible(interruptible);

7Section 6.3.1.3

RTSJ 2.0 (Draft 48) 275

8 Asynchrony Timed

8.3.2.1.1 Constructors

Timed(HighResolutionTime)

Signature
public
Timed(javax.realtime.HighResolutionTime<?> time)
throws IllegalArgumentException,

UnsupportedOperationException

Description
Create an instance of Timed with a timer set to time. When the time is in the past
the AsynchronouslyInterruptedException8 mechanism is activated immediately
after or when the doInterruptible method is called.

Parameters
time When time is a RelativeTime9 value, it is the interval of time between the

invocation of doInterruptible and when the schedulable is asynchronously
interrupted. When time is an AbsoluteTime10 value, the timer asynchronously
interrupts at this time (assuming the timer has not been cancelled).

Throws
IllegalArgumentException when time is null.
UnsupportedOperationException when time is not based on a Clock11.

8.3.2.1.2 Methods

doInterruptible(Interruptible)

Signature

8Section 15.2.2.2
9Section 9.3.1.3

10Section 9.3.1.1
11Section 10.3.2.1

276 RTSJ 2.0 (Draft 48)

Timed javax.realtime 8.3

public boolean
doInterruptible(Interruptible logic)

Description
Execute a time-out method. Starts the timer and executes the run() method of
the given Interruptible12 object.

Parameters
logic logic An instance of an Interruptible13 whose run method will be called.

Throws
IllegalArgumentException IllegalArgumentException when logic is null.
IllegalThreadStateException null

Returns
true, when the method call completed normally, and false, when another call to

doInterruptible has not completed.

resetTime(HighResolutionTime)

Signature
public void
resetTime(javax.realtime.HighResolutionTime<?> time)

Description
To set the time-out for the next invocation of doInterruptible.

Parameters
time This can be an absolute time or a relative time. When null or not based on a

Clock14, the time-out is not changed.

restart(HighResolutionTime)

Signature
public void
restart(javax.realtime.HighResolutionTime<?> time)

Description
12Section 8.3.1.3
13Section 8.3.1.3
14Section 10.3.2.1

RTSJ 2.0 (Draft 48) 277

8 Asynchrony ActiveEventDispatcher

Reset the timeout. When this Timed15 instance is executing, adjust the timeout
to time and restart the timer. When the instance is not executing, adjust the
timeout for the next invocation.

Parameters
time The new timeout.

Throws
IllegalArgumentException when time is null or a relative time less than zero.
UnsupportedOperationException when time is not based on a Clock16

Available since RTSJ 2.0

8.3.3 Classes
8.3.3.1 ActiveEventDispatcher<D extends ActiveEventDispatcher<D, T>,

T extends Releasable<T, D>>

Inheritance
java.lang.Object
ActiveEventDispatcher<D extends ActiveEventDispatcher<D, T>, T extends
Releasable<T, D>>

Interfaces
javax.realtime.RealtimeExecutionContext

Description
Provides a means of dispatching a set of ActiveEvent17s. It acts as if it contains
a daemon RealtimeThread to perform this task. The priority of this thread can
be specified when a dispatcher object is created. The default dispatcher runs at
the highest realtime priority on the base scheduler. Dispatchers do not maintain
a queue of pending event.

Application code cannot extend this class.

8.3.3.1.1 Constructors

15Section 8.3.2.1
16Section 10.3.2.1
17Section 8.3.1.1

278 RTSJ 2.0 (Draft 48)

ActiveEventDispatcher javax.realtime 8.3

ActiveEventDispatcher(SchedulingParameters, SchedulingGroup)

Signature
protected
ActiveEventDispatcher(SchedulingParameters schedule,

SchedulingGroup group)

Description
Create a new dispatcher.

Parameters
schedule provide scheduling information to the new object.
group the SchedulingGroup of the thread of this dispatcher.

ActiveEventDispatcher(SchedulingParameters)

Signature
protected
ActiveEventDispatcher(SchedulingParameters schedule)

Description
Create a new dispatcher.

Parameters
schedule provide scheduling information to the new object.

8.3.3.1.2 Methods

getSchedulingParameters

Signature
public javax.realtime.SchedulingParameters
getSchedulingParameters()

Description

RTSJ 2.0 (Draft 48) 279

8 Asynchrony ActiveEventDispatcher

Determine how the thread associated with this dispatcher is scheduled.

Returns
the scheduling parameters of the dispatcher thread.

getSchedulingGroup

Signature
public javax.realtime.SchedulingGroup
getSchedulingGroup()

Description

Determine in which group the thread associated with this dispatcher is.

Returns
the scheduling group of the dispatcher thread.

register(T)

Signature
public abstract void
register(T event)
throws RegistrationException,

IllegalStateException,
IllegalArgumentException

Description

Register an active event with this dispatcher.

Parameters
event to register

Throws
RegistrationException when event is already registered.
IllegalStateException when this object has been destroyed.
IllegalArgumentException when event is not stopped.

280 RTSJ 2.0 (Draft 48)

AsyncBaseEvent javax.realtime 8.3

deregister(T)

Signature
public abstract void
deregister(T event)
throws DeregistrationException,

IllegalStateException,
IllegalArgumentException

Description
Deregister an active event from this dispatcher.

Parameters
event to deregister

Throws
DeregistrationException when event is already registered.
IllegalStateException when this object has been destroyed.
IllegalArgumentException when event is not stopped.

destroy

Signature
public abstract void
destroy()
throws IllegalStateException

Description
Makes the dispatcher unusable.

Throws
IllegalStateException when called on a dispatcher that has one or more registered

objects.

8.3.3.2 AsyncBaseEvent

Inheritance
java.lang.Object
AsyncBaseEvent

RTSJ 2.0 (Draft 48) 281

8 Asynchrony AsyncBaseEvent

Description
This is the base class for all asynchronous events, where asynchronous is in regards
to running code, not external time. This class unifies the original AsyncEvent18

with AsyncLongEvent19 and AsyncObjectEvent20.
Note that when this class is collected, all its handlers are automatically

removed as if setHandler21 was called with a null parameter.

Available since RTSJ 2.0

8.3.3.2.1 Methods

isRunning

Signature
public boolean
isRunning()

Description
Determine the firing state (releasing or skipping) of this event, i.e., whether it is
enabled or disabled.

Returns
true when releasing, false when skipping.

handledBy(AsyncBaseEventHandler)

Signature
public boolean
handledBy(AsyncBaseEventHandler handler)

Description
Test to see if the handler given as the parameter is associated with this.

Parameters
18Section 8.3.3.4
19Section 8.3.3.6
20Section 8.3.3.8
21Section 8.3.3.2.1

282 RTSJ 2.0 (Draft 48)

AsyncBaseEvent javax.realtime 8.3

handler The handler to be tested to determine if it is associated with this.
Returns
True when the parameter is associated with this. False when handler is null or the

parameters is not associated with this.

enable

Signature
public void
enable()

Description
Change the state of the event so that associated handlers are release on fire.
Each subclass provides a means of dispatching its handlers when requested. This
method enables that request mechanism.

disable

Signature
public void
disable()

Description
Change the state of the event so that associated handlers are skipped on fire.
Each subclass provides a fire method as means of dispatching its handlers when
requested. This method disables that request mechanism.

addHandler(AsyncBaseEventHandler)

Signature
public void
addHandler(AsyncBaseEventHandler handler)

Description
Add a handler to the set of handlers associated with this event. An instance of
AsyncBaseEvent may have more than one associated handler. However, adding
a handler to an event has no effect when the handler is already attached to the
event.

RTSJ 2.0 (Draft 48) 283

8 Asynchrony AsyncBaseEvent

The execution of this method is atomic with respect to the execution of the
fire() method.

Note, there is an implicit reference to the handler stored in this. The assign-
ment must be valid under any applicable memory assignment rules.

Parameters
handler The new handler to add to the list of handlers already associated with this.

When handler is already associated with the event, the call has no effect.
Throws
IllegalArgumentException when handler is null or the handler has PeriodicParam-

eters22. Only the subclass PeriodicTimer23 is allowed to have handlers with
PeriodicParameters24.

IllegalAssignmentError when this AsyncBaseEvent cannot hold a reference to han-
dler.

IllegalStateException when the configured Scheduler and SchedulingParameters for
handler are not compatible with one another.

ScopedCycleException when handler has an explicit initial scoped memory area
that has already been entered from a memory area other than the area where
handler was allocated.

setHandler(AsyncBaseEventHandler)

Signature
public void
setHandler(AsyncBaseEventHandler handler)

Description
Associate a new handler with this event and remove all existing handlers. The
execution of this method is atomic with respect to the execution of the fire()
method.

Parameters
handler The instance of AsyncBaseEventHandler25 to be associated with this. When

handler is null then no handler will be associated with this, i.e., behave effec-
tively as if setHandler(null) invokes removeHandler(AsyncBaseEventHandler)26

for each associated handler.
22Section 6.3.3.6
23Section 10.3.2.3
24Section 6.3.3.6
25Section 8.3.3.3
26Section 8.3.3.2.1

284 RTSJ 2.0 (Draft 48)

AsyncBaseEvent javax.realtime 8.3

Throws
IllegalArgumentException when handler has PeriodicParameters27. Only the sub-

class PeriodicTimer28 is allowed to have handlers with PeriodicParameters29.
IllegalAssignmentError when this AsyncBaseEvent cannot hold a reference to han-

dler.

removeHandler(AsyncBaseEventHandler)

Signature
public void
removeHandler(AsyncBaseEventHandler handler)

Description
Remove a handler from the set associated with this event. The execution of this
method is atomic with respect to the execution of the fire() method.

A removed handler continues to execute until its fireCount becomes zero and
it completes.

When handler has a scoped non-default initial memory area and execution
of this method causes handler to become unfirable, this method shall not return
until all related finalization has completed.

Parameters
handler The handler to be disassociated from this. When null nothing happens.

When the handler is not already associated with this then nothing happens.

hasHandlers

Signature
public boolean
hasHandlers()

Description
Determine whether or not this event has any handlers.

Returns
true when and only when at least one handler is associated with this event.

27Section 6.3.3.6
28Section 10.3.2.3
29Section 6.3.3.6

RTSJ 2.0 (Draft 48) 285

8 Asynchrony AsyncBaseEventHandler

createReleaseParameters

Signature
public javax.realtime.ReleaseParameters
createReleaseParameters()

Description
Create a ReleaseParameters30 object appropriate to the release characteristics
of this event. The default is the most pessimistic: AperiodicParameters31. This
is typically called by code that is setting up a handler for this event that will
fill in the parts of the release parameters for which it has values, e.g., cost. The
returned ReleaseParameters32 object is not bound to the event. Any changes in
the event’s release parameters are not reflected in previously returned objects.

When an event returns PeriodicParameters33, there is no requirement for an
implementation to check that the handler is released periodically.

Returns
A new ReleaseParameters34 object.

8.3.3.3 AsyncBaseEventHandler

Inheritance
java.lang.Object
AsyncBaseEventHandler

Interfaces
javax.realtime.Schedulable

Description
This is the base class for all asynchronous event handlers, where asynchronous
is in regards to running code, not external time. This class unifies the original
AsyncEventHandler35 with AsyncLongEventHandler36 and AsyncObjectEvent-
Handler37.

30Section 6.3.3.10
31Section 6.3.3.2
32Section 6.3.3.10
33Section 6.3.3.6
34Section 6.3.3.10
35Section 8.3.3.5
36Section 8.3.3.7
37Section 8.3.3.9

286 RTSJ 2.0 (Draft 48)

AsyncBaseEventHandler javax.realtime 8.3

Available since RTSJ 2.0

8.3.3.3.1 Methods

getCurrentConsumption(RelativeTime)

Signature
public static javax.realtime.RelativeTime
getCurrentConsumption(RelativeTime dest)
throws IllegalStateException

Description
Determine the CPU consumption for this release. When dest is null, return the
CPU consumption in an otherwise unused RelativeTime38 instance in the current
execution context. Otherwise, when dest is not null, return the CPU consumption
in dest

Parameters
dest when not null is the object in which to return the result.

Throws
IllegalStateException when the caller is not a Schedulable39.

Returns
the time consumed in the current release.

getCurrentConsumption

Signature
public static javax.realtime.RelativeTime
getCurrentConsumption()

Description
Equivalent to getCurrentConsumption(null).

Returns
the time consumed in the current release.
38Section 9.3.1.3
39Section 6.3.1.3

RTSJ 2.0 (Draft 48) 287

8 Asynchrony AsyncBaseEventHandler

getPendingFireCount

Signature
protected int
getPendingFireCount()

Description
This is an accessor method for fireCount. The fireCount field nominally holds
the number of times associated instances of AsyncEvent40 have occurred that
have not had the method handleAsyncEvent() invoked. It is incremented and
decremented by the implementation of the RTSJ. The application logic may
manipulate the value in this field for application-specific reasons.

Returns
The value held by fireCount.

getAndClearPendingFireCount

Signature
protected int
getAndClearPendingFireCount()

Description
This is an accessor method for fireCount. This method atomically sets the value
of fireCount to zero and returns the value from before it was set to zero. This
may used by handlers for which the logic can accommodate multiple releases in a
single execution.

The general form for using this is

public void handleAsyncEvent()
{

int numberOfReleases = getAndClearPendingFireCount();
<handle the events>

}
The effect of a call to getAndClearPendingFireCount on the scheduling of

this AEH depends on the semantics of the scheduler controlling this AEH.

Returns
The value held by fireCount prior to setting the value to zero.

40Section 8.3.3.4

288 RTSJ 2.0 (Draft 48)

AsyncBaseEventHandler javax.realtime 8.3

getAndDecrementPendingFireCount

Signature
protected int
getAndDecrementPendingFireCount()

Description

This is an accessor method for fireCount. This method atomically decrements, by
one, the value of fireCount (when it is greater than zero) and returns the value
from before the decrement. This method can be used in the handleAsyncEvent()
method to handle multiple releases:

public void handleAsyncEvent()
{

<setup>
do
{

<handle the event>
}

while(getAndDecrementPendingFireCount() > 0);
}

This construction is necessary only in the case where a handler wishes to
avoid the setup costs since the framework guarantees that handleAsyncEvent()
will be invoked whenever the fireCount is greater than zero. The effect of a call
to getAndDecrementPendingFireCount on the scheduling of this AEH depends
on the semantics of the scheduler controlling this AEH.

Returns
The value held by fireCount prior to decrementing it by one.

getMemoryArea

Signature
public javax.realtime.MemoryArea
getMemoryArea()

Description

RTSJ 2.0 (Draft 48) 289

8 Asynchrony AsyncBaseEventHandler

This is an accessor method for the initial instance of MemoryArea41 associated
with this.

To determine the current status of the memory area stack associated with
this, use the static methods defined in the RealtimeThread42 class. That is
RealtimeThread.getCurrentMemoryArea43, RealtimeThread.getInitialMemoryAreaIndex44,
RealtimeThread.getMemoryAreaStackDepth45.

Returns
The instance of MemoryArea46 which was passed as the area parameter when this

was created (or the default value when area was allowed to default.

getMemoryParameters

Signature
public javax.realtime.MemoryParameters
getMemoryParameters()

Description
Gets a reference to the MemoryParameters47 object for this schedulable.

Returns
A reference to the current MemoryParameters48 object.

getReleaseParameters

Signature
public javax.realtime.ReleaseParameters
getReleaseParameters()

Description
Gets a reference to the ReleaseParameters49 object for this schedulable.

41Section 11.3.2.3
42Section 5.3.2.2
43Section 5.3.2.2.2
44Section 5.3.2.2.2
45Section 5.3.2.2.2
46Section 11.3.2.3
47Section 11.3.2.4
48Section 11.3.2.4
49Section 6.3.3.10

290 RTSJ 2.0 (Draft 48)

AsyncBaseEventHandler javax.realtime 8.3

Returns
A reference to the current ReleaseParameters50 object.

getScheduler

Signature
public javax.realtime.Scheduler
getScheduler()

Description
Gets a reference to the Scheduler51 object for this schedulable.

Returns
A reference to the associated Scheduler52 object.

getSchedulingParameters

Signature
public javax.realtime.SchedulingParameters
getSchedulingParameters()

Description
Gets a reference to the SchedulingParameters53 object for this schedulable.

Returns
A reference to the current SchedulingParameters54 object.

getSchedulingGroup

Signature
public javax.realtime.SchedulingGroup
getSchedulingGroup()

Description
50Section 6.3.3.10
51Section 6.3.3.12
52Section 6.3.3.12
53Section 6.3.3.14
54Section 6.3.3.14

RTSJ 2.0 (Draft 48) 291

8 Asynchrony AsyncBaseEventHandler

Gets a reference to the SchedulingGroup55 instance of this schedulable.

Returns
A reference to the current SchedulingGroup56 object.

Available since since RTSJ 2.0

getConfigurationParameters

Signature
public javax.realtime.ConfigurationParameters
getConfigurationParameters()

Description
Gets a reference to the ConfigurationParameters57 object for this schedulable.

Returns
A reference to the associated ConfigurationParameters58 object.

Available since RTSJ 2.0

setMemoryParameters(MemoryParameters)

Signature
public javax.realtime.AsyncBaseEventHandler
setMemoryParameters(MemoryParameters memory)

Description
Sets the memory parameters associated with this instance of Schedulable.

This change becomes effective under conditions determined by the scheduler
controlling the schedulable. For instance, the change may be immediate or it may
be delayed until the next release of the schedulable object. See the documentation
for the scheduler for details.

Parameters
55Section 6.3.3.13
56Section 6.3.3.13
57Section 5.3.2.1
58Section 5.3.2.1

292 RTSJ 2.0 (Draft 48)

AsyncBaseEventHandler javax.realtime 8.3

memory A MemoryParameters59 object which will become the memory parameters
associated with this after the method call. When null, the default value is
governed by the associated scheduler (a new object is created when the default
value is not null). (See PriorityScheduler60.)

Throws
IllegalArgumentException when memory is not compatible with the schedulable’s

scheduler. Also when this schedulable may not use the heap and memory is
located in heap memory.

IllegalAssignmentError when the schedulable cannot hold a reference to memory,
or when memory cannot hold a reference to this schedulable instance.

Returns
this

Open issue 8.3.1
We decided to change this on the 2016-07-14 call; should we leave it scheduler-

dependent, though?
End of issue 8.3.1

setReleaseParameters(ReleaseParameters)

Signature
public javax.realtime.AsyncBaseEventHandler
setReleaseParameters(ReleaseParameters release)

Description
Sets the release parameters associated with this instance of Schedulable.

This change becomes effective under conditions determined by the scheduler
controlling the schedulable. For instance, the change may be immediate or it may
be delayed until the next release of the schedulable. The different properties of
the release parameters may take effect at different times. See the documentation
for the scheduler for details.

Parameters
release A ReleaseParameters61 object which will become the release parameters

associated with this after the method call, and take effect as determined by
the associated scheduler. When null, the default value is governed by the

59Section 11.3.2.4
60Section 6.3.3.8
61Section 6.3.3.10

RTSJ 2.0 (Draft 48) 293

8 Asynchrony AsyncBaseEventHandler

associated scheduler (a new object is created when the default value is not
null). (See PriorityScheduler62.)

Throws
IllegalArgumentException Thrown when release is not compatible with the associ-

ated scheduler. Also when this schedulable may not use the heap and release
is located in heap memory.

IllegalAssignmentError when this object cannot hold a reference to release or release
cannot hold a reference to this.

IllegalSchedulableStateException when the task is running and the new release
parameters are not compatible with the current scheduler.

Returns
this

setScheduler(Scheduler)

Signature
public javax.realtime.AsyncBaseEventHandler
setScheduler(Scheduler scheduler)

Description
Sets the reference to the Scheduler object. The timing of the change must be
agreed between the scheduler currently associated with this schedulable, and
scheduler. If the Schedulable is running, its associated SchedulingParameters (if
any) must be compatible with scheduler.

For an instance of AsyncBaseEventHandler, the Schedulable is running for
the purpose of setting the scheduler if it is attached to an AsyncEvent (even if
AsyncBaseEvent.isRunning()63 would return false for that event).

Parameters
scheduler scheduler A reference to the scheduler that will manage execution of this

schedulable. Null is not a permissible value.
Throws
IllegalArgumentException IllegalArgumentException Thrown when scheduler is

null, or the schedulable’s existing parameter values are not compatible with
scheduler. Also when this schedulable may not use the heap and scheduler is
located in heap memory.

62Section 6.3.3.8
63Section 8.3.3.2.1

294 RTSJ 2.0 (Draft 48)

AsyncBaseEventHandler javax.realtime 8.3

IllegalAssignmentError IllegalAssignmentError when the schedulable cannot hold a
reference to scheduler or the current Schedulable is running and its associated
SchedulingParameters are incompatible with scheduler.

SecurityException SecurityException when the caller is not permitted to set the
scheduler for this schedulable.

IllegalSchedulableStateException IllegalSchedulableStateException when scheduler
has scheduling or release parameters that are not compatible with the new
scheduler and this schedulable is running.

Returns
this

setScheduler(Scheduler, SchedulingParameters, ReleasePar-
ameters, MemoryParameters)

Signature
public javax.realtime.AsyncBaseEventHandler
setScheduler(Scheduler scheduler,

SchedulingParameters scheduling,
ReleaseParameters release,
MemoryParameters memoryParameters)

Description
Sets the scheduler and associated parameter objects. The timing of the change
must be agreed between the scheduler currently associated with this schedulable,
and scheduler.

Parameters
scheduler A reference to the scheduler that will manage the execution of this

schedulable. Null is not a permissible value.
scheduling A reference to the SchedulingParameters64 which will be associated with

this. When null, the default value is governed by scheduler (a new object is
created when the default value is not null). (See PriorityScheduler65.)

release A reference to the ReleaseParameters66 which will be associated with this.
When null, the default value is governed by scheduler (a new object is created
when the default value is not null). (See PriorityScheduler67.)

64Section 6.3.3.14
65Section 6.3.3.8
66Section 6.3.3.10
67Section 6.3.3.8

RTSJ 2.0 (Draft 48) 295

8 Asynchrony AsyncBaseEventHandler

memoryParameters A reference to the MemoryParameters68 which will be associ-
ated with this. When null, the default value is governed by scheduler (a new
object is created when the default value is not null). (See PriorityScheduler69.)

Throws
IllegalArgumentException Thrown when scheduler is null or the parameter values

are not compatible with scheduler. Also thrown when this schedulable may not
use the heap and scheduler, scheduling release, memoryParameters, or group
is located in heap memory.

IllegalAssignmentError when this object cannot hold references to all the parameter
objects or the parameters cannot hold references to this.

SecurityException when the caller is not permitted to set the scheduler for this
schedulable.

Returns
this

setSchedulingParameters(SchedulingParameters)

Signature
public javax.realtime.AsyncBaseEventHandler
setSchedulingParameters(SchedulingParameters scheduling)

Description
Sets the scheduling parameters associated with this instance of Schedulable.

This change becomes effective under conditions determined by the scheduler
controlling the schedulable. For instance, the change may be immediate or it
may be delayed until the next release of the schedulable. See the documentation
for the scheduler for details.

Parameters
scheduling A reference to the SchedulingParameters70 object. When null, the default

value is governed by the associated scheduler (a new object is created when
the default value is not null). (See PriorityScheduler71.)

Throws
IllegalArgumentException Thrown when scheduling is not compatible with the

associated scheduler. Also when this schedulable may not use the heap and
scheduling is located in heap memory.

68Section 11.3.2.4
69Section 6.3.3.8
70Section 6.3.3.14
71Section 6.3.3.8

296 RTSJ 2.0 (Draft 48)

AsyncBaseEventHandler javax.realtime 8.3

IllegalAssignmentError when this object cannot hold a reference to scheduling or
scheduling cannot hold a reference to this.

IllegalSchedulableStateException when the task is active and the new scheduling
parameters are not compatible with the current scheduler.

Returns
this

setDaemon(boolean)

Signature
public final void
setDaemon(boolean on)

Description
Marks this schedulable as either a daemon or a user task. A realtime virtual
machine exits when the only tasks running are all daemon. This method must
be called before the task is attached to any event or started. Once attached or
started, it cannot be changed.

Parameters
on When true, marks this event handler as a daemon handler.

Throws
IllegalThreadStateException when this schedulable is active.
SecurityException when the current schedulable cannot modify this event handler.
Available since RTSJ 2.0

isDaemon

Signature
public final boolean
isDaemon()

Description
Tests if this event handler is a daemon handler.

Returns
True when this event handler is a daemon handler; false otherwise.
Available since RTSJ 2.0

RTSJ 2.0 (Draft 48) 297

8 Asynchrony AsyncBaseEventHandler

getDispatcher

Signature
public javax.realtime.TimeDispatcher
getDispatcher()

Description
Get the dispatcher associated with this Timable.

See Section Timable.getDispatcher()

getQueueLength

Signature
public int
getQueueLength()

Description
Find the current length of the event queue. The event queue holds the time and
payload of all released events that are still outstanding. The queue may have a
length of zero.

Returns
the queue length.

getMinConsumption(RelativeTime)

Signature
public javax.realtime.RelativeTime
getMinConsumption(RelativeTime dest)

Description
Determine the minimum CPU consumption of all completed releases. When
dest is null, return the CPU consumption in an otherwise unused RelativeTime72

instance in the current execution context. Otherwise, when dest is not null,
return the CPU consumption in dest

Parameters
72Section 9.3.1.3

298 RTSJ 2.0 (Draft 48)

AsyncBaseEventHandler javax.realtime 8.3

dest when not null is the object in which to return the result.
Returns
the minimum time consumed in any release.

getMinConsumption

Signature
public javax.realtime.RelativeTime
getMinConsumption()

Description
Same as getMinConsumption(RelativeTime)73 with a null argument.

Returns
the minimum time consumed in any release.

getMaxConsumption(RelativeTime)

Signature
public javax.realtime.RelativeTime
getMaxConsumption(RelativeTime dest)

Description
Determine the maximum CPU consumption of all completed releases. When
dest is null, return the CPU consumption in an otherwise unused RelativeTime74

instance in the current execution context. Otherwise, when dest is not null,
return the CPU consumption in dest.

Parameters
dest when not null is the object in which to return the result.

Returns
the maximum time consumed in any release.

getMaxConsumption

Signature
73Section 8.3.1
74Section 9.3.1.3

RTSJ 2.0 (Draft 48) 299

8 Asynchrony AsyncBaseEventHandler

public javax.realtime.RelativeTime
getMaxConsumption()

Description
Same as getMaxConsumption(RelativeTime)75 with a null argument.

Returns
the maximum time consumed in any release.

mayUseHeap

Signature
public boolean
mayUseHeap()

Description
Determine whether or not this schedulable may use the heap.

Returns
true only when this Schedulable may allocate on the heap and may enter the Heap.

isInterrupted

Signature
public boolean
isInterrupted()

Description
Determines whether or not any AsynchronouslyInterruptedException76 is pend-
ing.

Returns
true when and only when the generic AsynchronouslyInterruptedException is pend-

ing.

Available since RTSJ 2.0

75Section 8.3.1
76Section 15.2.2.2

300 RTSJ 2.0 (Draft 48)

AsyncBaseEventHandler javax.realtime 8.3

interrupt

Signature
public void
interrupt()

Description
Make the generic AsynchronouslyInterruptedException77 pending for this, and
sets the interrupted state to true. As with Thread.interrupt(), blocking operations
that are interruptible are interrupted. When this.isRousable() is true cause an
early release. In any case, AsynchronouslyInterruptedException is thrown once
a method is entered that implements AsynchronouslyInterruptedException.

Behaves as if Thread.interrupt() were called on the implementation thread
underlying this Schedulable. throws IllegalSchedulableStateException when this
is not currently releasable, i.e., is disabled, not firable, its start method has not
been called, or it has terminated.

Available since RTSJ 2.0

isRousable

Signature
public boolean
isRousable()

Description
Determine if it is possible for an interruptible to prematurely release the handler.

Returns
true when it is possible, otherwise it is not.

setRousable(boolean)

Signature
public javax.realtime.AsyncBaseEventHandler
setRousable(boolean value)

Description
77Section 15.2.2.2

RTSJ 2.0 (Draft 48) 301

8 Asynchrony AsyncEvent

Set the state for whether a interrupt can prematurely release this handler or not.

Parameters
value is the new value of the wake by interrupt state.

Returns
this

awaken

Signature
public final void
awaken()

Description
Indicate that a sleep has ended.

See Section Schedulable.awaken()

run

Signature
public void
run()

Description
This method is only to be used by the infrastructure, and should not be called
by the application.

The handleAsyncEvent() family of methods provides the equivalent function-
ality to Runnable.run() for asynchronous event handlers, including execution
of the logic argument passed to this object’s constructor. Applications should
override that method or provide a logic object for the default implementation to
invoke.

8.3.3.4 AsyncEvent

Inheritance
java.lang.Object

302 RTSJ 2.0 (Draft 48)

AsyncEvent javax.realtime 8.3

AsyncBaseEvent
AsyncEvent

Description
An asynchronous event can have a set of handlers associated with it, and when
the event occurs, the fireCount of each handler is incremented, and the handlers
are released (see AsyncEventHandler78).

8.3.3.4.1 Constructors

AsyncEvent

Signature
public
AsyncEvent()

Description
Create a new AsyncEvent object.

8.3.3.4.2 Methods

fire

Signature
public void
fire()

Description
When enabled, release the asynchronous events associated with this instance
of AsyncEvent. When no handlers are attached or this object is disabled the
method does nothing, i.e., it skips the release.

78Section 8.3.3.5

RTSJ 2.0 (Draft 48) 303

8 Asynchrony AsyncEventHandler

• When the instance of AsyncEvent has more than one instance of Async-
EventHandler with release parameters object of type AperiodicParameters
attached and the execution of AsyncEvent.fire() introduces the requirement
to throw at least one type of exception, then all instances of AsyncEvent-
Handler not affected by the exception are handled normally
• When the instance of AsyncEvent has more than one instance of Async-

EventHandler with release parameters object of type SporadicParameters
attached and the execution of AsyncEvent.fire() introduces the simultaneous
requirement to throw more than one type of exception or error then MITVi-
olationException79 has precedence over ArrivalTimeQueueOverflowExcep-
tion80.

Throws
MITViolationException Thrown under the base priority scheduler’s semantics when

there is a handler associated with this event that has its MIT violated by the
call to fire (and it has set the minimum inter-arrival time violation behavior
to MITViolationExcept). Only the handlers which do not have their MITs
violated are released in this situation.

ArrivalTimeQueueOverflowException when the queue of release information, arrival
time and payload, overflows. Only the handlers which do not cause this
exception to be thrown are released in this situation. When fire is called from
the infrastructure, such as for an ActiveEvent81, this exception is ignored.

8.3.3.5 AsyncEventHandler

Inheritance
java.lang.Object
AsyncBaseEventHandler
AsyncEventHandler

Description
An asynchronous event handler encapsulates code that is released after an instance
of AsyncEvent82 to which it is attached occurs.

It is guaranteed that multiple releases of an event handler will be serialized.
It is also guaranteed that (unless the handler explicitly chooses otherwise) for

79Section 15.2.2.10
80Section 15.2.2.1
81Section 8.3.1.1
82Section 8.3.3.4

304 RTSJ 2.0 (Draft 48)

AsyncEventHandler javax.realtime 8.3

each release of the handler, there will be one execution of the AsyncEventHandler.
handleAsyncEvent()83 method. Control over the number of calls toAsyncEventHandler.
handleAsyncEvent()84 is given by methods which manipulate a fireCount. These
may be called by the application via sub-classing and overridingAsyncEventHandler.
handleAsyncEvent()85.

Instances of AsyncEventHandler with a release parameter of type Sporadic-
Parameters86 or AperiodicParameters87 have a list of release times which corre-
spond to the occurrence times of instances of AsyncEvent88 to which they are
attached. The minimum interarrival time specified in SporadicParameters89 is
enforced when a release time is added to the list. Unless the handler explicitly
chooses otherwise, there will be one execution of the code in AsyncEventHandler.
handleAsyncEvent()90 for each entry in the list.

The deadline and the time each release event causes the AEH to become
eligible for execution are properties of the scheduler that controls the AEH. For
the base scheduler, the deadline for each release event is relative to its fire time,
and the release takes place at fire time but execution eligibility may be deferred
when the queue’s MIT violation policy is SAVE.

Handlers may do almost anything a realtime thread can do. They may run for a
long or short time, and they may block. (Note, blocked handlers may hold system
resources.) A handler may not use the RealtimeThread.waitForNextRelease91

method.
Normally, handlers are bound to an execution context dynamically when the

instances of AsyncEvent92s to which they are bound occur. This can introduce a
(small) time penalty. For critical handlers that cannot afford the expense, and
where this penalty is a problem, BoundAsyncEventHandler93s can be used.

The scheduler for an asynchronous event handler is inherited from the task
that created it. When created from a task that is not an instance of Schedulable94,
the scheduler is the current default scheduler.

The semantics for memory areas that were defined for realtime threads apply
in the same way to instances of AsyncEventHandler They may inherit a scope

83Section 8.3.3.5.2
84Section 8.3.3.5.2
85Section 8.3.3.5.2
86Section 6.3.3.15
87Section 6.3.3.2
88Section 8.3.3.4
89Section 6.3.3.15
90Section 8.3.3.5.2
91Section 5.3.2.2.2
92Section 8.3.3.4
93Section 8.3.3.10
94Section 6.3.1.3

RTSJ 2.0 (Draft 48) 305

8 Asynchrony AsyncEventHandler

stack when they are created, and the single parent rule applies to the use of
memory scopes for instances of AsyncEventHandler just as it does in realtime
threads.

8.3.3.5.1 Constructors

AsyncEventHandler(SchedulingParameters, ReleaseParamet-
ers, MemoryParameters, MemoryArea, SchedulingGroup, Con-
figurationParameters, Runnable)

Signature
public
AsyncEventHandler(SchedulingParameters scheduling,

ReleaseParameters release,
MemoryParameters memory,
MemoryArea area,
SchedulingGroup group,
ConfigurationParameters config,
Runnable logic)

Description
Create a handler with the given scheduling, release, memory, group, and configu-
ration parameters to run the given logic.

Available since RTSJ 2.0

Parameters
scheduling parameters for scheduling the new handler (and possibly other instances

of Schedulable95). When scheduling is null and the creator is an instance of
Schedulable96, SchedulingParameters97 is a clone of the creator’s value created
in the same memory area as this. When scheduling is null and the creator is a
task that is not an instance of Schedulable, the contents and type of the new
SchedulingParameters object is governed by the associated scheduler.

95Section 6.3.1.3
96Section 6.3.1.3
97Section 6.3.3.14

306 RTSJ 2.0 (Draft 48)

AsyncEventHandler javax.realtime 8.3

release parameters for scheduling the new handler (and possibly other instances
of Schedulable98). When release is null the new AsyncEventHandler will use a
clone of the default ReleaseParameters99 for the associated scheduler created
in the memory area that contains the AsyncEventHandler object.

memory parameters for scheduling the new handler (and possibly other instances of
Schedulable100). When memory is null, the new AsyncEventHandler receives
null value for its memory parameters, and the amount or rate of memory
allocation for the new handler is unrestricted.

area the initial memory area of this handler.
group A SchedulingGroup101 object which will be associated with the constructed

instance. When null, this will not be associated with any scheduling group.
config parameters for reserving space for preallocated exceptions and change im-

plementation specific per Schedulable102 memory reservations, such as Java
stack size, for the new handler (and possibly other instances of Schedulable103.
When initial is null, this AsyncEventHandler will reserve no space for pre-
allocated exceptions and implementation-specific values will be set to their
implementation-defined defaults.

logic The Runnable object whose run() method will serve as the logic for the new
AsyncEventHandler. When logic is null, the handleAsyncEvent() method in
the new object will serve as its logic.

AsyncEventHandler(SchedulingParameters, ReleaseParamet-
ers, MemoryParameters, MemoryArea, ConfigurationParam-
eters, Runnable)

Signature
public
AsyncEventHandler(SchedulingParameters scheduling,

ReleaseParameters release,
MemoryParameters memory,
MemoryArea area,
ConfigurationParameters config,
Runnable logic)

98Section 6.3.1.3
99Section 6.3.3.10

100Section 6.3.1.3
101Section 6.3.3.13
102Section 6.3.1.3
103Section 6.3.1.3

RTSJ 2.0 (Draft 48) 307

8 Asynchrony AsyncEventHandler

Description

AsyncEventHandler(SchedulingParameters, ReleaseParamet-
ers, Runnable)

Signature
public
AsyncEventHandler(SchedulingParameters scheduling,

ReleaseParameters release,
Runnable logic)

Description
Calling this constructor is equivalent to callingAsyncEventHandler(SchedulingParameters,
ReleaseParameters, MemoryParameters, MemoryArea, SchedulingGroup, Con-
figurationParameters, Runnable)104 with arguments (scheduling, release, null,
null, null, null, logic).

Available since RTSJ 2.0

AsyncEventHandler(SchedulingParameters, ReleaseParamet-
ers)

Signature
public
AsyncEventHandler(SchedulingParameters scheduling,

ReleaseParameters release)

Description
Calling this constructor is equivalent to callingAsyncEventHandler(SchedulingParameters,
ReleaseParameters, MemoryParameters, MemoryArea, SchedulingGroup, Con-
figurationParameters, Runnable)105 with arguments (scheduling, release, null,
null, null, null, null)

104Section 8.3.3.5.1
105Section 8.3.3.5.1

308 RTSJ 2.0 (Draft 48)

AsyncEventHandler javax.realtime 8.3

Available since RTSJ 2.0

AsyncEventHandler(Runnable)

Signature
public
AsyncEventHandler(Runnable logic)

Description
Calling this constructor is equivalent to callingAsyncEventHandler(SchedulingParameters,
ReleaseParameters, MemoryParameters, MemoryArea, SchedulingGroup, Con-
figurationParameters, Runnable)106 with arguments (null, null, null, null, null,
null, logic).

AsyncEventHandler

Signature
public
AsyncEventHandler()

Description
Create an instance of AsyncEventHandler with default values for all parameters.

See Section AsyncEventHandler(SchedulingParameters, ReleaseParameters, Memo-
ryParameters, MemoryArea, SchedulingGroup, ConfigurationParameters, Runnable)

8.3.3.5.2 Methods

handleAsyncEvent

Signature
106Section 8.3.3.5.1

RTSJ 2.0 (Draft 48) 309

8 Asynchrony AsyncLongEvent

public void
handleAsyncEvent()

Description
This method holds the logic which is to be executed when any AsyncEvent107 with
which this handler is associated is fired. This method will be invoked repeatedly
while fireCount is greater than zero.

The default implementation of this method invokes the run method of any
non-null logic instance passed to the constructor of this handler.

This AEH acts as a source of "reference" for its initial memory area while it is
released.

All throwables from (or propagated through) handleAsyncEvent are caught,
a stack trace is printed and execution continues as if handleAsyncEvent had
returned normally.

run

Signature
public final void
run()

Description
This method is only to be used by the infrastructure, and should not be called
by the application.

The handleAsyncEvent() family of methods provides the equivalent function-
ality to Runnable.run() for asynchronous event handlers, including execution
of the logic argument passed to this object’s constructor. Applications should
override that method or provide a logic object for the default implementation to
invoke.

8.3.3.6 AsyncLongEvent

Inheritance
java.lang.Object
AsyncBaseEvent
AsyncLongEvent

107Section 8.3.3.4

310 RTSJ 2.0 (Draft 48)

AsyncLongEvent javax.realtime 8.3

Description
A new type of event that carries a long as a payload.

See Section AsyncEvent

Available since RTSJ 2.0

8.3.3.6.1 Constructors

AsyncLongEvent

Signature
public
AsyncLongEvent()

Description
Create a new AsyncLongEvent object.

8.3.3.6.2 Methods

fire(long)

Signature
public void
fire(long value)
throws MITViolationException,

EventQueueOverflowException

Description
When enabled, release the handlers associated with this instance of AsyncLong-
Event with the long passed by fire(long)108. When no handlers are attached or
this object is disabled the method does nothing, i.e., it skips the release.

108Section 8.3.3.6.2

RTSJ 2.0 (Draft 48) 311

8 Asynchrony AsyncLongEventHandler

• When the instance of AsyncLongEvent is associated with more than one
instance of AsyncLongEventHandler109 with release parameters object of
type AperiodicParameters110 and the execution of fire(long)111 introduces
the requirement to throw at least one type of exception, then all instances
of AsyncLongEventHandler112 not affected by the exception are handled
normally.
• When this instance of AsyncLongEvent is associated with more than one
instance of AsyncLongEventHandler113 with release parameters object of
type SporadicParameters114 and the execution of fire(long)115 introduces
the simultaneous requirement to throw more than one type of exception
or error, then MITViolationException116 has precedence over ArrivalTime-
QueueOverflowException117.

Parameters
value is the payload passed to the event.

Throws
MITViolationException Thrown under the base priority scheduler’s semantics, when

there is a handler associated with this event that has its MIT violated by the
call to fire (and it has set the minimum inter-arrival time violation behavior
to MITViolationExcept). Only the handlers which do not have their MITs
violated are released in this situation.

EventQueueOverflowException when the queue of release information, arrival time
and payload, overflows. Only the handlers which do not cause this exception
to be thrown are released in this situation. When fire is called from the
infrastructure, such as for an ActiveEvent118, this exception is ignored.

8.3.3.7 AsyncLongEventHandler

Inheritance
java.lang.Object
109Section 8.3.3.7
110Section 6.3.3.2
111Section 8.3.3.6.2
112Section 8.3.3.7
113Section 8.3.3.7
114Section 6.3.3.15
115Section 8.3.3.6.2
116Section 15.2.2.10
117Section 15.2.2.1
118Section 8.3.1.1

312 RTSJ 2.0 (Draft 48)

AsyncLongEventHandler javax.realtime 8.3

AsyncBaseEventHandler
AsyncLongEventHandler

Description
A version of AsyncBaseEventHandler119 that carries a long value as paylaod.

Available since RTSJ 2.0

8.3.3.7.1 Constructors

AsyncLongEventHandler(SchedulingParameters, ReleasePar-
ameters, MemoryParameters, MemoryArea, SchedulingGroup,
ConfigurationParameters, LongConsumer)

Signature
public
AsyncLongEventHandler(SchedulingParameters scheduling,

ReleaseParameters release,
MemoryParameters memory,
MemoryArea area,
SchedulingGroup group,
ConfigurationParameters config,
LongConsumer logic)

throws IllegalArgumentException

Description
Create an asynchronous event handler that receives a Long payload with each
fire.

Parameters
scheduling parameters for scheduling the new handler (and possibly other instances

of Schedulable120). When scheduling is null and the creator is an instance
of Schedulable121, SchedulingParameters122 is a clone of the creator’s value
created in the same memory area as this. When scheduling is null and the

119Section 8.3.3.3
120Section 6.3.1.3
121Section 6.3.1.3
122Section 6.3.3.14

RTSJ 2.0 (Draft 48) 313

8 Asynchrony AsyncLongEventHandler

creator is a task that is not an instance of Schedulable, the contents and type of
the new SchedulingParameters object is governed by the associated scheduler.

release parameters for scheduling the new handler (and possibly other instances of
Schedulable123). When release is null the new AsyncEventHandler will use a
clone of the default ReleaseParameters124 for the associated scheduler created
in the memory area that contains the AsyncEventHandler object.

memory parameters for scheduling the new handler (and possibly other instances of
Schedulable125). When memory is null, the new AsyncEventHandler receives
null value for its memory parameters, and the amount or rate of memory
allocation for the new handler is unrestricted.

area the initial memory area of this handler.
group parameters for providing CPU cost management on a set of Schedulable126s.

When null, this will not be associated with any processing group.
config parameters for reserving space for preallocated exceptions and change im-

plementation specific per Schedulable127 memory reservations, such as Java
stack size, for the new handler (and possibly other instances of Schedulable128.
When initial is null, this AsyncEventHandler will reserve no space for pre-
allocated exceptions and implementation-specific values will be set to their
implementation-defined defaults.

logic is the logic to run for each fire. When logic is null, the handleAsyncEvent()
method in the new object will serve as its logic.

Throws
IllegalArgumentException when the event queue overflow policy isQueueOverflowPolicy.

DISABLE129.

AsyncLongEventHandler(SchedulingParameters, ReleasePar-
ameters, MemoryParameters, MemoryArea, ConfigurationPa-
rameters, LongConsumer)

Signature
public
AsyncLongEventHandler(SchedulingParameters scheduling,

123Section 6.3.1.3
124Section 6.3.3.10
125Section 6.3.1.3
126Section 6.3.1.3
127Section 6.3.1.3
128Section 6.3.1.3
129Section 6.3.2.2.1

314 RTSJ 2.0 (Draft 48)

AsyncLongEventHandler javax.realtime 8.3

ReleaseParameters release,
MemoryParameters memory,
MemoryArea area,
ConfigurationParameters config,
LongConsumer logic)

throws IllegalArgumentException

Description
Calling this constructor is equivalent to callingAsyncLongEventHandler(SchedulingParameters,
ReleaseParameters, MemoryParameters, MemoryArea, SchedulingGroup, Con-
figurationParameters, LongConsumer)130 with arguments (scheduling, release,
memory, area, null, config, logic). This constructor is needed for SCJ.

AsyncLongEventHandler(SchedulingParameters, ReleasePar-
ameters, LongConsumer)

Signature
public
AsyncLongEventHandler(SchedulingParameters scheduling,

ReleaseParameters release,
LongConsumer logic)

throws IllegalArgumentException

Description
Calling this constructor is equivalent to callingAsyncLongEventHandler(SchedulingParameters,
ReleaseParameters, MemoryParameters, MemoryArea, SchedulingGroup, Con-
figurationParameters, LongConsumer)131 with arguments (scheduling, release,
null, null, null, null, logic).

AsyncLongEventHandler(SchedulingParameters, ReleasePar-
ameters)

Signature
130Section 8.3.3.7.1
131Section 8.3.3.7.1

RTSJ 2.0 (Draft 48) 315

8 Asynchrony AsyncLongEventHandler

public
AsyncLongEventHandler(SchedulingParameters scheduling,

ReleaseParameters release)
throws IllegalArgumentException

Description

Calling this constructor is equivalent to callingAsyncLongEventHandler(SchedulingParameters,
ReleaseParameters, MemoryParameters, MemoryArea, SchedulingGroup, Con-
figurationParameters, LongConsumer)132 with arguments (scheduling, release,
null, null, null, null, null)

AsyncLongEventHandler(LongConsumer)

Signature
public
AsyncLongEventHandler(LongConsumer logic)

Description

Calling this constructor is equivalent to callingAsyncLongEventHandler(SchedulingParameters,
ReleaseParameters, MemoryParameters, MemoryArea, SchedulingGroup, Con-
figurationParameters, LongConsumer)133 with arguments (null, null, null, null,
null, null, null, logic).

AsyncLongEventHandler

Signature
public
AsyncLongEventHandler()

Description

Create an instance of AsyncLongEventHandler with default values for all param-
eters.

132Section 8.3.3.7.1
133Section 8.3.3.7.1

316 RTSJ 2.0 (Draft 48)

AsyncLongEventHandler javax.realtime 8.3

See Section AsyncLongEventHandler(SchedulingParameters, ReleaseParameters, Mem-
oryParameters, MemoryArea, SchedulingGroup, ConfigurationParameters, LongCon-
sumer)

8.3.3.7.2 Methods

handleAsyncEvent(long)

Signature
public void
handleAsyncEvent(long payload)

Description
This method holds the logic which is to be executed when any AsyncEvent134 with
which this handler is associated is fired. This method will be invoked repeatedly
while fireCount is greater than zero.

This ALEH is a source of reference for its initial memory area while this
ALEH is released.

All throwables from (or propagated through) handleAsyncEvent are caught,
a stack trace is printed and execution continues as if handleAsyncEvent had
returned normally.

Parameters
payload is the long value associated with a fire.

peekPending

Signature
public long
peekPending()
throws IllegalStateException

Description
Determine the next value queued for handling.

Throws
134Section 8.3.3.4

RTSJ 2.0 (Draft 48) 317

8 Asynchrony AsyncObjectEvent

IllegalStateException when the fire count is zero.
Returns
The long value at the head of the queue of longs to be passed to handleAsyncEvent(long)135.

run

Signature
public final void
run()

Description
This method is only to be used by the infrastructure, and should not be called
by the application.

The handleAsyncEvent() family of methods provides the equivalent function-
ality to Runnable.run() for asynchronous event handlers, including execution
of the logic argument passed to this object’s constructor. Applications should
override that method or provide a logic object for the default implementation to
invoke.

8.3.3.8 AsyncObjectEvent<P>

Inheritance
java.lang.Object
AsyncBaseEvent
AsyncObjectEvent<P>

Description
A new type of event that carries an object as a payload.

See Section AsyncEvent

Available since RTSJ 2.0

8.3.3.8.1 Constructors

135Section 8.3.3.7.2

318 RTSJ 2.0 (Draft 48)

AsyncObjectEvent javax.realtime 8.3

AsyncObjectEvent

Signature
public
AsyncObjectEvent()

Description
Create a new AsyncObjectEvent instance.

8.3.3.8.2 Methods

fire(P)

Signature
public void
fire(P value)
throws MITViolationException,

EventQueueOverflowException,
IllegalAssignmentError

Description
When enabled, fire this instance of AsyncObjectEvent. The asynchronous event
handlers associated with this event will be released with the object passed by
fire136. When no handlers are attached or this object is disabled the method does
nothing, i.e., it skips the release.
• When the instance of AsyncObjectEvent is associated with more than one

instance of AsyncObjectEventHandler137 with release parameters object of
type AperiodicParameters138 and the execution of fire139 introduces the
requirement to throw at least one type of exception, then all instances
of AsyncObjectEventHandler140 not affected by the exception are handled
normally.

136Section 8.3.3.8.2
137Section 8.3.3.9
138Section 6.3.3.2
139Section 8.3.3.8.2
140Section 8.3.3.9

RTSJ 2.0 (Draft 48) 319

8 Asynchrony AsyncObjectEventHandler

• When this instance of AsyncObjectEvent is associated with more than
one instance of AsyncObjectEventHandler141 with release parameters ob-
ject of type SporadicParameters142 and the execution of fire143 introduces
the simultaneous requirement to throw more than one type of exception
or error, then MITViolationException144 has precedence over ArrivalTime-
QueueOverflowException145.

Parameters
value is the payload passed to the event.

Throws
MITViolationException Thrown under the base priority scheduler’s semantics when

there is a handler associated with this event that has its MIT violated by the
call to fire (and it has set the minimum inter-arrival time violation behavior
to MITViolationExcept). Only the handlers which do not have their MITs
violated are released in this situation.

ArrivalTimeQueueOverflowException when the queue of releases information, ar-
rival time and payload, overflows. Only the handlers which do not cause this
exception to be thrown are released in this situation. When fire is called from
the infrastructure, such as for an ActiveEvent146, this exception is ignored.

IllegalAssignmentError when P is not assignable the event queue of one of the
associated handlers.

8.3.3.9 AsyncObjectEventHandler<P>

Inheritance
java.lang.Object
AsyncBaseEventHandler
AsyncObjectEventHandler<P>

Description
A version of AsyncBaseEventHandler147 that carries an Object value as paylaod.

Available since RTSJ 2.0

141Section 8.3.3.9
142Section 6.3.3.15
143Section 8.3.3.8.2
144Section 15.2.2.10
145Section 15.2.2.1
146Section 8.3.1.1
147Section 8.3.3.3

320 RTSJ 2.0 (Draft 48)

AsyncObjectEventHandler javax.realtime 8.3

8.3.3.9.1 Constructors

AsyncObjectEventHandler(SchedulingParameters, ReleasePar-
ameters, MemoryParameters, MemoryArea, SchedulingGroup,
ConfigurationParameters, Consumer)

Signature
public
AsyncObjectEventHandler(SchedulingParameters scheduling,

ReleaseParameters release,
MemoryParameters memory,
MemoryArea area,
SchedulingGroup group,
ConfigurationParameters config,
java.util.function.Consumer<P> logic)

throws IllegalArgumentException

Description
Create an asynchronous event handler that receives a Long payload with each
fire.

Parameters
scheduling parameters for scheduling the new handler (and possibly other instances

of Schedulable148). When scheduling is null and the creator is an instance
of Schedulable149, SchedulingParameters150 is a clone of the creator’s value
created in the same memory area as this. When scheduling is null and the
creator is a task that is not an instance of Schedulable, the contents and type of
the new SchedulingParameters object is governed by the associated scheduler.

release parameters for scheduling the new handler (and possibly other instances of
Schedulable151). When release is null the new AsyncEventHandler will use a
clone of the default ReleaseParameters152 for the associated scheduler created
in the memory area that contains the AsyncEventHandler object.

148Section 6.3.1.3
149Section 6.3.1.3
150Section 6.3.3.14
151Section 6.3.1.3
152Section 6.3.3.10

RTSJ 2.0 (Draft 48) 321

8 Asynchrony AsyncObjectEventHandler

memory parameters for scheduling the new handler (and possibly other instances of
Schedulable153). When memory is null, the new AsyncEventHandler receives
null value for its memory parameters, and the amount or rate of memory
allocation for the new handler is unrestricted.

area the initial memory area of this handler.
group parameters for providing CPU cost management on a set of Schedulable154s.

When null, this will not be associated with any processing group.
config parameters for reserving space for preallocated exceptions and change im-

plementation specific per Schedulable155 memory reservations, such as Java
stack size, for the new handler (and possibly other instances of Schedulable156.
When initial is null, this AsyncEventHandler will reserve no space for pre-
allocated exceptions and implementation-specific values will be set to their
implementation-defined defaults.

logic is the logic to run for each fire. When logic is null, the handleAsyncEvent
method in the new object will serve as its logic.

Throws
IllegalArgumentException when the event queue overflow policy isQueueOverflowPolicy.

DISABLE157.

AsyncObjectEventHandler(SchedulingParameters, ReleasePar-
ameters, MemoryParameters, MemoryArea, ConfigurationPa-
rameters, Consumer)

Signature
public
AsyncObjectEventHandler(SchedulingParameters scheduling,

ReleaseParameters release,
MemoryParameters memory,
MemoryArea area,
ConfigurationParameters config,
java.util.function.Consumer<P> logic)

throws IllegalArgumentException

Description
153Section 6.3.1.3
154Section 6.3.1.3
155Section 6.3.1.3
156Section 6.3.1.3
157Section 6.3.2.2.1

322 RTSJ 2.0 (Draft 48)

AsyncObjectEventHandler javax.realtime 8.3

Calling this constructor is equivalent to callingAsyncObjectEventHandler(SchedulingParameters,
ReleaseParameters, MemoryParameters, MemoryArea, SchedulingGroup, Con-
figurationParameters, Consumer)158 with arguments (scheduling, release, mem-
ory, area, null, config, logic). This constructor is needed for SCJ.

AsyncObjectEventHandler(SchedulingParameters, ReleasePar-
ameters, Consumer)

Signature
public
AsyncObjectEventHandler(SchedulingParameters scheduling,

ReleaseParameters release,
java.util.function.Consumer<P> logic)

throws IllegalArgumentException

Description
Calling this constructor is equivalent to callingAsyncObjectEventHandler(SchedulingParameters,
ReleaseParameters, MemoryParameters, MemoryArea, SchedulingGroup, Con-
figurationParameters, Consumer)159 with arguments (scheduling, release, null,
null, null, null, logic).

AsyncObjectEventHandler(SchedulingParameters, ReleasePar-
ameters)

Signature
public
AsyncObjectEventHandler(SchedulingParameters scheduling,

ReleaseParameters release)
throws IllegalArgumentException

Description
Calling this constructor is equivalent to callingAsyncObjectEventHandler(SchedulingParameters,
ReleaseParameters, MemoryParameters, MemoryArea, SchedulingGroup, Con-

158Section 8.3.3.9.1
159Section 8.3.3.9.1

RTSJ 2.0 (Draft 48) 323

8 Asynchrony AsyncObjectEventHandler

figurationParameters, Consumer)160 with arguments (scheduling, release, null,
null, null, null, null)

AsyncObjectEventHandler(Consumer)

Signature
public
AsyncObjectEventHandler(java.util.function.Consumer<P> logic)

Description
Calling this constructor is equivalent to callingAsyncObjectEventHandler(SchedulingParameters,
ReleaseParameters, MemoryParameters, MemoryArea, SchedulingGroup, Con-
figurationParameters, Consumer)161 with arguments (null, null, null, null, null,
null, null, logic).

Parameters
logic is the function to call on the object received.

AsyncObjectEventHandler

Signature
public
AsyncObjectEventHandler()

Description
Create an instance of AsyncObjectEventHandler with default values for all pa-
rameters.

See Section AsyncObjectEventHandler(SchedulingParameters, ReleaseParameters,
MemoryParameters, MemoryArea, SchedulingGroup, ConfigurationParameters, Con-
sumer)

8.3.3.9.2 Methods

160Section 8.3.3.9.1
161Section 8.3.3.9.1

324 RTSJ 2.0 (Draft 48)

AsyncObjectEventHandler javax.realtime 8.3

handleAsyncEvent(P)

Signature
public void
handleAsyncEvent(P value)

Description

This method holds the logic which is to be executed when any AsyncEvent162 with
which this handler is associated is fired. This method will be invoked repeatedly
while fireCount is greater than zero.

The default implementation of this method invokes the run method of any
non-null logic instance passed to the constructor of this handler.

This AOEH is a source of reference for its initial memory area while this
AOEH is released.

All throwables from (or propagated through) handleAsyncEvent(P) are caught,
a stack trace is printed and execution continues as if handleAsyncEvent(P) had
returned normally.

peekPending

Signature
public P
peekPending()
throws IllegalStateException

Description

Determine the next value queued for handling.

Throws
IllegalStateException when the fire count is zero.

Returns
The object reference at the head of the queue of object references to be passed to

handleAsyncEvent163}.

162Section 8.3.3.4
163Section 8.3.3.9.2

RTSJ 2.0 (Draft 48) 325

8 Asynchrony BoundAsyncEventHandler

run

Signature
public final void
run()

Description

This method is only to be used by the infrastructure, and should not be called
by the application.

The handleAsyncEvent() family of methods provides the equivalent function-
ality to Runnable.run() for asynchronous event handlers, including execution
of the logic argument passed to this object’s constructor. Applications should
override that method or provide a logic object for the default implementation to
invoke.

8.3.3.10 BoundAsyncEventHandler

Inheritance
java.lang.Object
AsyncBaseEventHandler
AsyncEventHandler
BoundAsyncEventHandler

Interfaces
javax.realtime.BoundAsyncBaseEventHandler

Description

A bound asynchronous event handler is an instance of AsyncEventHandler164

that is permanently bound to a dedicated realtime thread. Bound asynchronous
event handlers are for use in situations where the added timeliness is worth the
overhead of dedicating an individual realtime thread to the handler. Individual
server realtime threads can only be dedicated to a single bound event handler.

8.3.3.10.1 Constructors

164Section 8.3.3.5

326 RTSJ 2.0 (Draft 48)

BoundAsyncEventHandler javax.realtime 8.3

BoundAsyncEventHandler(SchedulingParameters, ReleasePar-
ameters, MemoryParameters, MemoryArea, SchedulingGroup,
ConfigurationParameters, Runnable)

Signature
public
BoundAsyncEventHandler(SchedulingParameters scheduling,

ReleaseParameters release,
MemoryParameters memory,
MemoryArea area,
SchedulingGroup group,
ConfigurationParameters config,
Runnable logic)

Description
Create an instance of BoundAsyncEventHandler with the specified parameters.
The newly-created handler inherits the affinity of its creator.

Parameters
scheduling a SchedulingParameters165 object which will be associated with the

constructed instance. When null, and the creator is not an instance of Sched-
ulable166, a SchedulingParameters object is created which has the default
SchedulingParameters for the scheduler associated with the current thread.
When null, and the creator is a schedulable object, the SchedulingParameters
are inherited from the current schedulable (a new SchedulingParameters object
is cloned).

release a ReleaseParameters167 object which will be associated with the constructed
instance. When null, this will have default ReleaseParameters for the BAEH’s
scheduler.

memory a MemoryParameters168 object which will be associated with the con-
structed instance. When null, this will have no MemoryParameters and the
handler can access the heap.

area The MemoryArea169 for this. When null, the memory area will be that of the
current thread/schedulable.

165Section 6.3.3.14
166Section 6.3.1.3
167Section 6.3.3.10
168Section 11.3.2.4
169Section 11.3.2.3

RTSJ 2.0 (Draft 48) 327

8 Asynchrony BoundAsyncEventHandler

group a SchedulingGroup170 object which will be associated with the constructed
instance. When null, this will not be associated with any scheduling group.

config The ConfigurationParameters171 associated with this (and possibly other in-
stances of Schedulable172. When config is null, this BoundAsyncEventHandler
will reserve no space for preallocated exceptions and implementation-specific
values will be set to their implementation-defined defaults.

logic The Runnable object whose run() method is executed by AsyncEventHandler.
handleAsyncEvent()173. When null, the default handleAsyncEvent() method
invokes nothing.

Throws
IllegalArgumentException when mayUseHeap in memory is true and logic, any

parameter object, or this is in heap memory. Also when noheap is true and
area is heap memory.

IllegalAssignmentError when the new AsyncEventHandler instance cannot hold a
reference to non-null values of scheduling release memory and group, or when
those parameters cannot hold a reference to the new AsyncEventHandler. Also
when the new AsyncEventHandler instance cannot hold a reference to non-null
values of area and logic.

BoundAsyncEventHandler(SchedulingParameters, ReleasePar-
ameters, Runnable)

Signature
public
BoundAsyncEventHandler(SchedulingParameters scheduling,

ReleaseParameters release,
Runnable logic)

Description
Create an instance of BoundAsyncEventHandler with the specified parameters.
The newly-created handler inherits the affinity of its creator.

Equivalent to BoundAsyncEventHandler(scheduling, release, null, null, null,
config, logic)

170Section 6.3.3.13
171Section 5.3.2.1
172Section 6.3.1.3
173Section 8.3.3.5.2

328 RTSJ 2.0 (Draft 48)

BoundAsyncLongEventHandler javax.realtime 8.3

BoundAsyncEventHandler(SchedulingParameters, ReleasePar-
ameters)

Signature
public
BoundAsyncEventHandler(SchedulingParameters scheduling,

ReleaseParameters release)

Description
Create an instance of BoundAsyncEventHandler with the specified parameters.
The newly-created handler inherits the affinity of its creator.

Equivalent to BoundAsyncEventHandler(scheduling, release, null, null, null,
null, logic)

BoundAsyncEventHandler(Runnable)

Signature
public
BoundAsyncEventHandler(Runnable logic)

Description
Create an instance of BoundAsyncEventHandler with the specified parameters.
The newly-created handler inherits the affinity of its creator.

Equivalent to BoundAsyncEventHandler(null, null, null, null, null, null, logic)

BoundAsyncEventHandler

Signature
public
BoundAsyncEventHandler()

Description
Create an instance of BoundAsyncEventHandler. The newly-created handler
inherits the affinity of its creator.

Equivalent to BoundAsyncEventHandler(null, null, null, null, null, null, null)

RTSJ 2.0 (Draft 48) 329

8 Asynchrony BoundAsyncLongEventHandler

8.3.3.11 BoundAsyncLongEventHandler

Inheritance
java.lang.Object
AsyncBaseEventHandler
AsyncLongEventHandler
BoundAsyncLongEventHandler

Interfaces
javax.realtime.BoundAsyncBaseEventHandler

Description
A bound asynchronous event handler is an instance of AsyncLongEventHandler174

that is permanently bound to a dedicated realtime thread. Bound asynchronous
long event handlers are for use in situations where the added timeliness is worth
the overhead of dedicating an individual realtime thread to the handler. Individual
server realtime threads can only be dedicated to a single bound event handler.

Available since RTSJ 2.0

8.3.3.11.1 Constructors

BoundAsyncLongEventHandler(SchedulingParameters, Release-
Parameters, MemoryParameters, MemoryArea, Scheduling-
Group, ConfigurationParameters, LongConsumer)

Signature
public
BoundAsyncLongEventHandler(SchedulingParameters scheduling,

ReleaseParameters release,
MemoryParameters memory,
MemoryArea area,
SchedulingGroup group,
ConfigurationParameters config,
LongConsumer logic)

174Section 8.3.3.7

330 RTSJ 2.0 (Draft 48)

BoundAsyncLongEventHandler javax.realtime 8.3

Description
Create an instance of BoundAsyncLongEventHandler which specifies all possible
parameters. The newly-created handler inherits the affinity of its creator.

Parameters
scheduling A SchedulingParameters175 object which will be associated with the

constructed instance. When null, and the creator is not an instance of Sched-
ulable176, a SchedulingParameters object is created which has the default
SchedulingParameters for the scheduler associated with the current thread.
When null, and the creator is a schedulable object, the SchedulingParameters
are inherited from the current schedulable (a new SchedulingParameters object
is cloned).

release A ReleaseParameters177 object which will be associated with the constructed
instance. When null, this will have default ReleaseParameters for the BAEH’s
scheduler.

memory A MemoryParameters178 object which will be associated with the con-
structed instance. When null, this will have no MemoryParameters and the
handler can access the heap.

area The MemoryArea179 for this. When null, the memory area will be that of the
current thread/schedulable.

group A SchedulingGroup180 object which will be associated with the constructed
instance. When null, this will not be associated with any scheduling group.

config The ConfigurationParameters181 associated with this (and possibly other in-
stances of Schedulable182. When config is null, this BoundAsyncEventHandler
will reserve no space for preallocated exceptions and implementation-specific
values will be set to their implementation-defined defaults.

logic The LongConsumer object whose accept()method is executed byAsyncLongEventHandler.
handleAsyncEvent(long)183. When null, the default handleAsyncEvent(long)
method invokes nothing.

Throws
IllegalArgumentException when mayUseHeap in memory is true and logic, any

parameter object, or this is in heap memory. Also when noheap is true and
175Section 6.3.3.14
176Section 6.3.1.3
177Section 6.3.3.10
178Section 11.3.2.4
179Section 11.3.2.3
180Section 6.3.3.13
181Section 5.3.2.1
182Section 6.3.1.3
183Section 8.3.3.7.2

RTSJ 2.0 (Draft 48) 331

8 Asynchrony BoundAsyncLongEventHandler

area is heap memory.
IllegalAssignmentError when the new AsyncEventHandler instance cannot hold a

reference to non-null values of scheduling release memory and group, or when
those parameters cannot hold a reference to the new AsyncEventHandler. Also
when the new AsyncEventHandler instance cannot hold a reference to non-null
values of area and logic.

BoundAsyncLongEventHandler(SchedulingParameters, Release-
Parameters, LongConsumer)

Signature
public
BoundAsyncLongEventHandler(SchedulingParameters scheduling,

ReleaseParameters release,
LongConsumer logic)

Description

BoundAsyncLongEventHandler(SchedulingParameters, Release-
Parameters)

Signature
public
BoundAsyncLongEventHandler(SchedulingParameters scheduling,

ReleaseParameters release)

Description

BoundAsyncLongEventHandler(LongConsumer)

Signature
public
BoundAsyncLongEventHandler(LongConsumer logic)

332 RTSJ 2.0 (Draft 48)

BoundAsyncObjectEventHandler javax.realtime 8.3

Description

BoundAsyncLongEventHandler

Signature
public
BoundAsyncLongEventHandler()

Description

Create an instance of BoundAsyncLongEventHandler using default values. This
constructor is equivalent to BoundAsyncLongEventHandler(null, null, null, null,
null, false, null)

8.3.3.12 BoundAsyncObjectEventHandler<P>

Inheritance
java.lang.Object
AsyncBaseEventHandler
AsyncObjectEventHandler<P>
BoundAsyncObjectEventHandler<P>

Interfaces
javax.realtime.BoundAsyncBaseEventHandler

Description

A bound asynchronous event handler is an instance of AsyncObjectEventHand-
ler184 that is permanently bound to a dedicated realtime thread. Bound asyn-
chronous object event handlers are for use in situations where the added timeliness
is worth the overhead of dedicating an individual realtime thread to the handler.
Individual server realtime threads can only be dedicated to a single bound event
handler.

Available since RTSJ 2.0

184Section 8.3.3.9

RTSJ 2.0 (Draft 48) 333

8 Asynchrony BoundAsyncObjectEventHandler

8.3.3.12.1 Constructors

BoundAsyncObjectEventHandler(SchedulingParameters, Re-
leaseParameters, MemoryParameters, MemoryArea, Proces-
singGroup, ConfigurationParameters, Consumer)

Signature
public
BoundAsyncObjectEventHandler(SchedulingParameters scheduling,

ReleaseParameters release,
MemoryParameters memory,
MemoryArea area,
ProcessingGroup group,
ConfigurationParameters config,
java.util.function.Consumer<P> logic)

Description
Create an instance of BoundAsyncObjectEventHandler which specifies all possi-
ble parameters. The newly-created handler inherits the affinity of its creator.

Parameters
scheduling A SchedulingParameters185 object which will be associated with the

constructed instance. When null, and the creator is not an instance of Sched-
ulable186, a SchedulingParameters object is created which has the default
SchedulingParameters for the scheduler associated with the current thread.
When null, and the creator is a schedulable object, the SchedulingParameters
are inherited from the current schedulable (a new SchedulingParameters object
is cloned).

release A ReleaseParameters187 object which will be associated with the constructed
instance. When null, this will have default ReleaseParameters for the BAEH’s
scheduler.

memory A MemoryParameters188 object which will be associated with the con-
structed instance. When null, this will have no MemoryParameters and the
handler can access the heap.

185Section 6.3.3.14
186Section 6.3.1.3
187Section 6.3.3.10
188Section 11.3.2.4

334 RTSJ 2.0 (Draft 48)

BoundAsyncObjectEventHandler javax.realtime 8.3

area The MemoryArea189 for this. When null, the memory area will be that of the
current thread/schedulable.

group A SchedulingGroup190 object which will be associated with the constructed
instance. When null, this will not be associated with any scheduling group.

config The ConfigurationParameters191 associated with this (and possibly other in-
stances of Schedulable192. When config is null, this BoundAsyncEventHandler
will reserve no space for preallocated exceptions and implementation-specific
values will be set to their implementation-defined defaults.

logic The Consumer object whose accept()method is executed byAsyncObjectEventHandler.
handleAsyncEvent193. When null, the default handleAsyncEvent method in-
vokes nothing.

Throws
IllegalArgumentException when mayUseHeap in memory is true and logic, any

parameter object, or this is in heap memory. Also when noheap is true and
area is heap memory.

IllegalAssignmentError when the new AsyncEventHandler instance cannot hold a
reference to non-null values of scheduling release memory and group, or when
those parameters cannot hold a reference to the new AsyncEventHandler. Also
when the new AsyncEventHandler instance cannot hold a reference to non-null
values of area and logic.

BoundAsyncObjectEventHandler(SchedulingParameters, Re-
leaseParameters, Consumer)

Signature
public
BoundAsyncObjectEventHandler(SchedulingParameters scheduling,

ReleaseParameters release,
java.util.function.Consumer<P> logic)

Description

189Section 11.3.2.3
190Section 6.3.3.13
191Section 5.3.2.1
192Section 6.3.1.3
193Section 8.3.3.9.2

RTSJ 2.0 (Draft 48) 335

8 Asynchrony

BoundAsyncObjectEventHandler(SchedulingParameters, Re-
leaseParameters)

Signature
public
BoundAsyncObjectEventHandler(SchedulingParameters scheduling,

ReleaseParameters release)

Description

BoundAsyncObjectEventHandler(Consumer)

Signature
public
BoundAsyncObjectEventHandler(java.util.function.Consumer<P> logic)

Description

BoundAsyncObjectEventHandler

Signature
public
BoundAsyncObjectEventHandler()

Description
Create an instance of BoundAsyncObjectEventHandler using default values. This
constructor is equivalent to BoundAsyncObjectEventHandler(null, null, null, null,
null, null)

8.4 Rationale
The design of the asynchronous event handling facilities was intended to provide the
necessary functionality while allowing efficient implementations and catering for a

336 RTSJ 2.0 (Draft 48)

Rationale 8.4

variety of realtime applications. In particular, in some realtime systems there may be
a large number of potential events and event handlers (numbering in the thousands
or perhaps even the tens of thousands), although at any given time only a small
number will be used. Thus it would not be appropriate to dedicate a realtime thread
to each event handler. The RTSJ addresses this issue by allowing the programmer
to specify an event handler either as not bound to a specific realtime thread (the
class AsyncBaseEventHandler) or alternatively as bound to a dedicated realtime
thread (the interface BoundAsyncBaseEventHandler). The RTSJ does not define at
what point a nonbound event handler is bound to a realtime thread for its execution.
Events are dataless: the fire method does not pass any data to the handler. This
was intentional in the interest of simplicity and efficiency.

The ability to trigger an ATC in a schedulable is necessary in many kinds of
realtime applications but must be designed carefully in order to minimize the risks
of problems such as data structure corruption and deadlock. There is, invariably,
a tension between the desire to cause an ATC to be immediate, and the desire to
ensure that certain sections of code are executed to completion.

One basic decision was to allow ATC in a method only if the method explicitly
permits this. The default of no ATC is reasonable, since legacy code might be written
expecting no ATC, and asynchronously aborting the execution of such a method
could lead to unpredictable results. Since the natural way to model ATC is with an
exception (AsynchronouslyInterruptedException), the way that a method indicates
its susceptibility to ATC is by including AsynchronouslyInterruptedException in its
throws clause. Causing this exception to be thrown in a schedule s as an effect of
calling s.interrupt() was a natural extension of the semantics of interrupt as currently
defined by java.lang.Thread.

One ATC-deferred section is synchronized code. This is a context that needs
to be executed completely in order to ensure a program operates correctly. If
synchronized code were aborted, a shared object could be left in an inconsistent
state. Note that by making synchronized code ATC-deferred, this specification avoids
the problems that caused Thread.stop() to be deprecated and that have made the
use of Thread.destroy(), (now also deprecated in Java 1.5) prone to deadlock. If
synchronized code calls an AI-method and an associated AIE is generated, then if
no appropriate handler is present in the synchronized code, the AIE will propagate
through the code.

Constructors and finally clauses are subject to interruption if the program in-
dicates so. However, if a constructor is aborted, an object might be only partially
initialized. If the execution of a finally clause in an AI-method is aborted, needed
cleanup code might not be performed. Indeed, a finally clause in an aborted AI-
method will not be executed at all if the abort occurs before its execution begins. It is
the programmer’s responsibility to ensure that executing these constructs either does

RTSJ 2.0 (Draft 48) 337

8 Asynchrony

not induce unwanted ATC latency (if ATCs are not allowed) or does not produce
undesirable results (if ATCs are allowed).

A potential problem with using the exception mechanism to model ATC is that a
method with a “catch-all” handler (for example a catch clause identifying Exception
or even Throwable as the exception class) can inadvertently intercept an exception
intended for a caller. This problem is avoided by having special semantics for
catching an AIE. Even though a catch clause may catch an AIE, the exception will
be propagated unless the handler invokes the happened method from AIE. Thus, if
a schedulable is asynchronously interrupted while in a try block that has a handler
such as

catch (Throwable e) return;
the AIE will remain pending and will be thrown next time control enters or

returns to an AI method.
This specification does not provide a special mechanism for terminating a realtime

thread; ATC can be used to achieve this effect. This means that, by default, a
realtime thread cannot be asynchronously terminated; to support asynchronous
termination it needs to enter methods that are AI enabled at frequent intervals.
Allowing termination as the default would have been questionable, bringing the same
insecurities that are found in Thread.stop() and Thread.destroy().

338 RTSJ 2.0 (Draft 48)

Chapter 9

Time

Realtime systems must be able to handle both very short time durations and very
long ones. They also needs to distinguish between relative time—a duration of
time—and absolute time. Simply using a primitive integral value, such as int or long,
does not provide the necessary range. Floating point primitive values, such as float
and double, do not provide the necessary precision. Neither provides any type safety.
This specification addresses this by requiring three time classes: HighResolutionTime,
AbsoluteTime, and RelativeTime, where HighResolutionTime is the parent class of
the other two.

Instances of HighResolutionTime may not be created, as the class exists to
provide a common parent type for the other two classes. An instance of AbsoluteTime
encapsulates an absolute time. An instance of RelativeTime encapsulates a point in
time that is relative to some other absolute time value, which can be used to describe
a time duration.

All methods returning a time object come in both allocating and nonallocating
forms. The classes
• enable describing a point in time with up to nanosecond accuracy and precision
(actual accuracy and precision is dependent on the precision of the underlying
system),
• enable the distinction between absolute points in time, and times relative to

some starting point or a time duration, and
• provide simple arithmetic operations for using them.

All time handling is based on these classes.

9.1 Definitions
Time Object — An instance of AbsoluteTime or RelativeTime. A time object is

always associated with some Chronograph. By default, it is associated with

339

9 Time

the realtime clock.
Realtime Epoch — The time at which the realtime clock began ticking, defined

by fiat as January 1, 1970 00:00:00 UTC.
Epoch — The date and time relative to which times on an RTSJ Chronograph,

c are determined. The epoch for a chronograph is defined in terms of the
Realtime Epoch, and is represented as the time elapsed on the realtime clock
since the realtime Epoch at the time that c would have returned a timestamp
of 0 ms and 0 ns.

Time Value Representation — A compound format composed of 64 bits of mil-
lisecond timing, and 32 bits of nanoseconds within a millisecond. The millisec-
ond constituent uses the 64 bits of a Java long while the nanosecond constituent
uses the 32 bits of a Java int.

Normalized (Canonical) Time Value — Unique values for the millisecond and
nanosecond components of a point in time, including the case of 0 milliseconds
or 0 nanoseconds, and a negative time value, according to the following four
constraints:
1. when both millisecond and nanosecond components are nonzero, they

have the same sign;
2. the algebraic time values of the time object is the algebraic sum of the

two components;
3. the millisecond component represents the algebraic number of milliseconds

in the time object, within a range of [−263, 263 − 1]; and
4. the nanosecond component represents the algebraic number of nanoseconds

within a millisecond in the time object, that is [−106 + 1, 106 − 1].
Instances of HighResolutionTime classes always hold a normalized form of
a time value. Values that cannot be normalized are not valid; for example,
(MAX_LONG milliseconds, MAX_INT nanoseconds) cannot be normalized
and is an illegal value.
The following table has examples of normalized representations.

9.2 Semantics
The points below define the general semantics of the time classes. Semantics specific
to particular classes, constructors, methods, and fields are in the class description
and the constructor, method, and field detail sections.

1. All time objects must maintain nanosecond precision and report their values
in terms of millisecond and nanosecond constituents.

2. Time objects can be constructed from other time objects, from millisecond/-
nanosecond values, from a java.util.Date, or obtained as a result of invocations
of methods on instances of the Chronograph interface.

340 RTSJ 2.0 (Draft 48)

Semantics 9.2

Table 9.1: Examples of Normalized Times
time in ns millis nanos
2000000 2 0
1999999 1 999999
1000001 1 1

1 0 1
0 0 0
-1 0 -1

-999999 0 -999999
-1000000 -1 0
-1000001 -1 -1

3. Time objects maintain and report time values in normalized form, but the
normalized form is not required for input parameter values. This allows
computations individually with time constituent parts using the full signed
range and restrictions of the underlying type.
(a) Normalization is accomplished upon method invocation by methods that

accept a time object represented with individual component parts, and
executed as if the following hold.
i. The nanosecond parameter value, which may be negative, is alge-

braically added to the scaled millisecond parameter value. The sign
of the result provides the sign for any nonzero resulting component.

ii. The absolute of the result is then partitioned, giving the number
of integral milliseconds for the millisecond component, while the
remaining fractional part provides the number of nanoseconds for the
nanosecond component.

iii. The resulting components are then represented, and reported when
necessary, with the above computed sign.

(b) Normalization is also performed on the result of operations by methods
that perform time object addition and subtraction. Operations are exe-
cuted using the appropriate arithmetic precision. If the final result of an
operation can be represented in normalized form, then the operation must
not throw arithmetic exceptions while producing intermediate results.

(c) The results of time objects operations and the normalization of results
of operations performed with millis and nanos, individually as Java long
and Java int types respectively, are not always equivalent. This is due
to the possibility of overflow for nanos values outside of the normalized
nanosecond range, that is [−106 + 1, 106− 1], when performing operations
as int types, while the same values could be handled with no overflow in
time object operations.

RTSJ 2.0 (Draft 48) 341

9 Time

(d) When invoking setter methods that take as a parameter only one of the
two time value components, the other component has implicitly the value
of 0.

4. Although logically a negative time may represent time before the Epoch or
a negative time interval involved in time operations, an Exception may be
thrown if a negative absolute time or a negative time interval is given as a
parameter to methods. In general, the time values accepted by a method may
be a subset of the full time values range, and depend on the method.

5. A time object is always associated with a Chronograph. By default it is
associated with the realtime clock. Chronographs are involved both in the
setting as well as the usage of time objects, for example in comparisons.

6. Methods are provided to facilitate the handling of time objects generically via
the HighResolutionTime class. These methods enable converting, according
to a Chronograph, between AbsoluteTime objects and RelativeTime objects.
These methods also enable changing the Chronograph association of a time
object. Note that the conversions depend on the time at which they are
performed. The semantics of these operations are listed in the following table:

Table 9.2: Semantics of Time Conversion

Chronograph association & conversion returned/updated object
this has chronograph_a & ms,ns
an_absolute.absolute(chronograph_a) chronograph_a

ms,ns
an_absolute.absolute(chronograph_b) chronograph_b

ms,ns
an_absolute.absolute(null) realtime_clock

ms,ns
an_absolute.relative(chronograph_a) chronograph_a

chronograph_a.getTime().subtract(ms,ns)
an_absolute.relative(chronograph_b) chronograph_b

chronograph_b.getTime().subtract(ms,ns)
an_absolute.relative(null) realtime_clock

realtime_clock.getTime().subtract(ms,ns)
a_relative.relative(chronograph_a) chronograph_a

ms,ns
a_relative.relative(chronograph_b) chronograph_b

ms,ns
a_relative.relative(null) realtime_clock

ms,ns
a_relative.absolute(chronograph_a) chronograph_a

chronograph_a.getTime().add(ms,ns)
a_relative.absolute(clock_b) chronograph_b

chronograph_b.getTime().add(ms,ns)
a_relative.absolute(null) realtime_clock

realtime_clock.getTime().add(ms,ns)

7. Time objects must implement the Comparable interface.

342 RTSJ 2.0 (Draft 48)

AbsoluteTime javax.realtime 9.3

9.3 javax.realtime

9.3.1 Classes
9.3.1.1 AbsoluteTime

Inheritance
java.lang.Object
HighResolutionTime<AbsoluteTime>
AbsoluteTime

Description
An object that represents a specific point in time given by milliseconds plus
nanoseconds past some point in time fixed by its Chronograph. For the default
realtime clock, the fixed point is the Epoch (January 1, 1970, 00:00:00 GMT).
The correctness of the Epoch as a time base depends on the realtime clock
synchronization with an external world time reference. This representation was
designed to be compatible with the standard Java representation of an absolute
time in the java.util.Date class.

A time object in normalized form represents negative time when both compo-
nents are nonzero and negative, or one is nonzero and negative and the other is
zero. For add and subtract negative values behave as they do in arithmetic.

Caution: This class is explicitly unsafe for multithreading when being changed.
Code that mutates instances of this class should synchronize at a higher level.

9.3.1.1.1 Constructors

AbsoluteTime(long, int, Chronograph)

Signature
public
AbsoluteTime(long millis,

int nanos,
Chronograph chronograph)

throws IllegalArgumentException

Description

RTSJ 2.0 (Draft 48) 343

9 Time AbsoluteTime

Construct an AbsoluteTime object with time millisecond and nanosecond com-
ponents past the epoch for Chronograph.

The value of the AbsoluteTime instance is based on the parameter millis plus
the parameter nanos. The construction is subject to millis and nanos parameters
normalization. When, after normalization, the time object is negative, the time
represented by this is time before this chronograph’s epoch. The chronograph
association is made with the Chronograph parameter. When Chronograph is null
the association is made with the default realtime clock.

Note, the start of a chronograph’s epoch is an attribute of the chronograph.
It is defined as the Epoch (00:00:00 GMT on Jan 1, 1970) for the default realtime
clock, but other classes of chronograph may define other epochs.

Available since RTSJ 2.0

Parameters
millis The desired value for the millisecond component of this. The actual value is

the result of parameter normalization.
nanos The desired value for the nanosecond component of this. The actual value is

the result of parameter normalization.
chronograph The chronograph providing the association for the newly constructed

object. The realtime clock is used when this argument is null.
Throws
IllegalArgumentException when there is an overflow in the millisecond component

when normalizing.

AbsoluteTime(long, int)

Signature
public
AbsoluteTime(long millis,

int nanos)
throws IllegalArgumentException

Description
Equivalent to AbsoluteTime(long, int, Chronograph)1 with the argument list
(long, int, null)

Parameters
1Section 9.3.1.1.1

344 RTSJ 2.0 (Draft 48)

AbsoluteTime javax.realtime 9.3

millis is the desired value for the millisecond component of this. The actual value
is the result of parameter normalization.

nanos is the desired value for the nanosecond component of this. The actual value
is the result of parameter normalization.

Throws
IllegalArgumentException when there is an overflow in the millisecond component

when normalizing.

AbsoluteTime(Date, Chronograph)

Signature
public
AbsoluteTime(Date date,

Chronograph chronograph)
throws IllegalArgumentException

Description

Equivalent to AbsoluteTime(long, int, Chronograph)2 with the argument list
(date.getTime(), 0, chronograph).

Warning: While the date is used to set the milliseconds component of the
new AbsoluteTime object (with nanoseconds component set to 0), the new object
represents the date only when the Chronograph parameter has an epoch equal
to Epoch.

The chronograph association is made with the Chronograph parameter. When
Chronograph is null the association is made with the default realtime clock.

Available since RTSJ 2.0

Parameters
date The java.util.Date representation of the time past the Epoch.
chronograph The chronograph providing the association for the newly constructed

object.
Throws
IllegalArgumentException when the date parameter is null.

2Section 9.3.1.1.1

RTSJ 2.0 (Draft 48) 345

9 Time AbsoluteTime

AbsoluteTime(Date)

Signature
public
AbsoluteTime(Date date)
throws IllegalArgumentException

Description
Equivalent to AbsoluteTime(long, int, Chronograph)3 with the argument list
(date.getTime(), 0, null).

Parameters
date the java.util.Date representation of the time past the Epoch.

Throws
IllegalArgumentException when the date parameter is null.

AbsoluteTime(AbsoluteTime)

Signature
public
AbsoluteTime(AbsoluteTime time)
throws IllegalArgumentException

Description
Equivalent to AbsoluteTime(long, int, Chronograph)4 with the argument list
(time.getMilliseconds(), time.getNanoseconds(), time.getChronograph()).

Parameters
time The AbsoluteTime object which is the source for the copy.

Throws
IllegalArgumentException when the time parameter is null.

AbsoluteTime(Chronograph)

Signature
3Section 9.3.1.1.1
4Section 9.3.1.1.1

346 RTSJ 2.0 (Draft 48)

AbsoluteTime javax.realtime 9.3

public
AbsoluteTime(Chronograph chronograph)

Description
Equivalent to AbsoluteTime(long, int, Chronograph)5 with the argument list (0,
0, chronograph).

Available since RTSJ 2.0

Parameters
chronograph The chronograph providing the association for the newly constructed

object.

AbsoluteTime

Signature
public
AbsoluteTime()

Description
Equivalent to AbsoluteTime(long, int, Chronograph)6 with the argument list (0,
0, null).

9.3.1.1.2 Methods

absolute(Chronograph)

Signature
public javax.realtime.AbsoluteTime
absolute(Chronograph chronograph)

Description

5Section 9.3.1.1.1
6Section 9.3.1.1.1

RTSJ 2.0 (Draft 48) 347

9 Time AbsoluteTime

Return a copy of this modified when necessary to have the specified chronograph
association. A new object is allocated for the result. This method is the
implementation of the abstract method of the HighResolutionTime base class.
No conversion into AbsoluteTime is needed in this case. The result is associated
with the Chronograph passed as a parameter. When Chronograph is null the
association is made with the default realtime clock.

Parameters
chronograph The Chronograph parameter is used only as the new chronograph

association with the result, since no conversion is needed.
Returns
The copy of this in a newly allocated AbsoluteTime object, associated with the

Chronograph parameter.

absolute(Chronograph, AbsoluteTime)

Signature
public javax.realtime.AbsoluteTime
absolute(Chronograph chronograph,

AbsoluteTime dest)

Description
Convert the time of this to an absolute time, using the given instance of Chrono-
graph7 to determine the current time when necessary. When Chronograph is null
the realtime chronograph is assumed. When dest is not null, the result is placed
there and returned. Otherwise, a new object is allocated for the result. The
chronograph association of the result is the Chronograph passed as a parameter.
See the subclass comments for more specific information.

Parameters
chronograph The instance of Chronograph8 used to convert the time of this into

absolute time, and the new chronograph association for the result.
dest When dest is not null, the result is placed there and returned. Otherwise, a

new object is allocated for the result.
Returns
The AbsoluteTime conversion in dest when dest is not null, otherwise the result is

returned in a newly allocated object. It is associated with the Chronograph
parameter.

7Section 10.3.1.2
8Section 10.3.1.2

348 RTSJ 2.0 (Draft 48)

AbsoluteTime javax.realtime 9.3

relative(Chronograph)

Signature
public javax.realtime.RelativeTime
relative(Chronograph chronograph)

Description
Convert the time of this to a relative time, using the given instance of Chrono-
graph9 to determine the current time. The calculation is the current time indicated
by the given instance of Chronograph10 subtracted from the time given by this.
When Chronograph is null the default realtime clock is assumed. A destination
object is allocated to return the result. The chronograph association of the result
is with the Chronograph passed as a parameter.

Parameters
chronograph The instance of Chronograph11 used to convert the time of this into

relative time, and the new chronograph association for the result.
Throws
ArithmeticException when the result does not fit in the normalized format.

Returns
The RelativeTime conversion in a newly allocated object, associated with the

Chronograph parameter.
Available since RTSJ 2.0

relative(Chronograph, RelativeTime)

Signature
public javax.realtime.RelativeTime
relative(Chronograph chronograph,

RelativeTime dest)

Description
Convert the time of this to a relative time, using the given instance of Chrono-
graph12 to determine the current time. The calculation is the current time
indicated by the given instance of Chronograph13 subtracted from the time given

9Section 10.3.1.2
10Section 10.3.1.2
11Section 10.3.1.2
12Section 10.3.1.2
13Section 10.3.1.2

RTSJ 2.0 (Draft 48) 349

9 Time AbsoluteTime

by this. When Chronograph is null the default realtime clock is assumed. When
dest is not null, the result is placed there and returned. Otherwise, a new object
is allocated for the result. The chronograph association of the result is with the
Chronograph passed as a parameter.

Parameters
chronograph The instance of Chronograph14 used to convert the time of this into

relative time, and the new chronograph association for the result.
dest When dest is not null, the result is placed there and returned. Otherwise, a

new object is allocated for the result.
Throws
ArithmeticException when the result does not fit in the normalized format.

Returns
The RelativeTime conversion in dest when dest is not null, otherwise the result is

returned in a newly allocated object. It is associated with the Chronograph
parameter.

add(long, int)

Signature
public javax.realtime.AbsoluteTime
add(long millis,

int nanos)
throws ArithmeticException

Description
Create a new object representing the result of adding millis and nanos to the
values from this and normalizing the result. The result will have the same
chronograph association as this.

Parameters
millis The number of milliseconds to be added to this.
nanos The number of nanoseconds to be added to this.

Throws
ArithmeticException when the result does not fit in the normalized format.

Returns
A new AbsoluteTime object whose time is the normalization of this plus millis and

nanos.

14Section 10.3.1.2

350 RTSJ 2.0 (Draft 48)

AbsoluteTime javax.realtime 9.3

add(long, int, AbsoluteTime)

Signature
public javax.realtime.AbsoluteTime
add(long millis,

int nanos,
AbsoluteTime dest)

throws ArithmeticException

Description
Return an object containing the value resulting from adding millis and nanos
to the values from this and normalizing the result. When dest is not null, the
result is placed there and returned. Otherwise, a new object is allocated for the
result. The result will have the same chronograph association as this, and the
chronograph association with dest is ignored.

Parameters
millis The number of milliseconds to be added to this.
nanos The number of nanoseconds to be added to this.
dest When dest is not null, the result is placed there and returned. Otherwise, a

new object is allocated for the result.
Throws
ArithmeticException when the result does not fit in the normalized format.

Returns
the result of the normalization of this plus millis and nanos in dest when dest is

not null, otherwise the result is returned in a newly allocated object.

add(RelativeTime)

Signature
public javax.realtime.AbsoluteTime
add(RelativeTime time)
throws ArithmeticException,

IllegalArgumentException

Description
Create a new instance of AbsoluteTime representing the result of adding time to
the value of this and normalizing the result. The Chronograph associated with
this and the Chronograph associated with the time parameter must be the same,
and such association is used for the result.

RTSJ 2.0 (Draft 48) 351

9 Time AbsoluteTime

Parameters
time The time to add to this.

Throws
IllegalArgumentException when the Chronograph associated with this and the

Chronograph associated with the time parameter are different, or when the
time parameter is null.

ArithmeticException when the result does not fit in the normalized format.

Returns
A new AbsoluteTime object whose time is the normalization of this plus the

parameter time.

add(RelativeTime, AbsoluteTime)

Signature
public javax.realtime.AbsoluteTime
add(RelativeTime time,

AbsoluteTime dest)
throws ArithmeticException,

IllegalArgumentException

Description
Return an object containing the value resulting from adding time to the value
of this and normalizing the result. When dest is not null, the result is placed
there and returned. Otherwise, a new object is allocated for the result. The
Chronograph associated with this and the Chronograph associated with the time
parameter must be the same, and such association is used for the result. The
Chronograph associated with the dest parameter is ignored.

Parameters
time The time to add to this.
dest When dest is not null, the result is placed there and returned. Otherwise, a

new object is allocated for the result.
Throws
IllegalArgumentException when the Chronograph associated with this and the

Chronograph associated with the time parameter are different, or when the
time parameter is null.

ArithmeticException when the result does not fit in the normalized format.

Returns

352 RTSJ 2.0 (Draft 48)

AbsoluteTime javax.realtime 9.3

the result of the normalization of this plus the RelativeTime parameter time in
dest when dest is not null, otherwise the result is returned in a newly allocated
object.

getDate

Signature
public java.util.Date
getDate()
throws UnsupportedOperationException

Description
Convert the time given by this to a Date format. Note that Date represents time
as milliseconds so the nanoseconds of this will be lost.

Throws
UnsupportedOperationException when the chronograph associated with this does

not have the concept of date.

Returns
A newly allocated Date object with a value of the time past the Epoch represented

by this.

set(Date)

Signature
public javax.realtime.AbsoluteTime
set(Date date)
throws IllegalArgumentException

Description
Change the time represented by this to that given by the parameter. Note that
Date represents time as milliseconds so the nanoseconds of this will be set to 0.
The chronograph association is implicitly made with the default realtime clock.

Parameters
date A reference to a Date which will become the time represented by this after

the completion of this method.
Throws
IllegalArgumentException when the parameter date is null.

RTSJ 2.0 (Draft 48) 353

9 Time AbsoluteTime

Returns
this

subtract(AbsoluteTime)

Signature
public javax.realtime.RelativeTime
subtract(AbsoluteTime time)
throws IllegalArgumentException,

ArithmeticException

Description
Create a new instance of RelativeTime representing the result of subtracting time
from the value of this and normalizing the result. The Chronograph associated
with this and the Chronograph associated with the time parameter must be the
same, and such association is used for the result.

Parameters
time The time to subtract from this.

Throws
IllegalArgumentException when the Chronograph associated with this and the

Chronograph associated with the time parameter are different, or when the
time parameter is null.

ArithmeticException when the result does not fit in the normalized format.

Returns
A new RelativeTime object whose time is the normalization of this minus the

AbsoluteTime parameter time.

subtract(AbsoluteTime, RelativeTime)

Signature
public javax.realtime.RelativeTime
subtract(AbsoluteTime time,

RelativeTime dest)
throws IllegalArgumentException,

ArithmeticException

Description

354 RTSJ 2.0 (Draft 48)

AbsoluteTime javax.realtime 9.3

Return an object containing the value resulting from subtracting time from the
value of this and normalizing the result. When dest is not null, the result is
placed there and returned. Otherwise, a new object is allocated for the result.
The Chronograph associated with this and the Chronograph associated with the
time parameter must be the same, and such association is used for the result.
The Chronograph associated with the dest parameter is ignored.

Parameters
time The time to subtract from this.
dest When dest is not null, the result is placed there and returned. Otherwise, a

new object is allocated for the result.
Throws
IllegalArgumentException when the Chronograph associated with this and the

Chronograph associated with the time parameter are different, or when the
time parameter is null.

ArithmeticException when the result does not fit in the normalized format.
Returns
the result of the normalization of this minus the AbsoluteTime parameter time in

dest when dest is not null, otherwise the result is returned in a newly allocated
object.

subtract(RelativeTime)

Signature
public javax.realtime.AbsoluteTime
subtract(RelativeTime time)
throws IllegalArgumentException,

ArithmeticException

Description
Create a new instance of AbsoluteTime representing the result of subtracting time
from the value of this and normalizing the result. The Chronograph associated
with this and the Chronograph associated with the time parameter must be the
same, and such association is used for the result.

Parameters
time The time to subtract from this.

Throws
IllegalArgumentException when the Chronograph associated with this and the

Chronograph associated with the time parameter are different, or when the
time parameter is null.

RTSJ 2.0 (Draft 48) 355

9 Time AbsoluteTime

ArithmeticException when the result does not fit in the normalized format.
Returns
A new AbsoluteTime object whose time is the normalization of this minus the

parameter time.

subtract(RelativeTime, AbsoluteTime)

Signature
public javax.realtime.AbsoluteTime
subtract(RelativeTime time,

AbsoluteTime dest)
throws IllegalArgumentException,

ArithmeticException

Description
Return an object containing the value resulting from subtracting time from the
value of this and normalizing the result. When dest is not null, the result is
placed there and returned. Otherwise, a new object is allocated for the result.
The Chronograph associated with this and the Chronograph associated with the
time parameter must be the same, and such association is used for the result.
The Chronograph associated with the dest parameter is ignored.

Parameters
time The time to subtract from this.
dest When dest is not null, the result is placed there and returned. Otherwise, a

new object is allocated for the result.
Throws
IllegalArgumentException when the Chronograph associated with this and the

Chronograph associated with the time parameter are different, or when the
time parameter is null.

ArithmeticException when the result does not fit in the normalized format.
Returns
the result of the normalization of this minus the RelativeTime parameter time in

dest when dest is not null, otherwise the result is returned in a newly allocated
object.

toString

Signature

356 RTSJ 2.0 (Draft 48)

HighResolutionTime javax.realtime 9.3

public java.lang.String
toString()

Description

Create a printable string of the time given by this.
The string shall be a decimal representation of the milliseconds and nanosecond

values; formatted as follows "(2251 ms, 750000 ns)"

Returns
String object converted from the time given by this.

9.3.1.2 HighResolutionTime<T extends HighResolutionTime<T>>

Inheritance
java.lang.Object
HighResolutionTime<T extends HighResolutionTime<T>>

Interfaces
Comparable
Cloneable

Description

Class HighResolutionTime is the base class for AbsoluteTime and RelativeTime.
It can be used to express time with nanosecond resolution. This class is never
used directly; it is abstract and has no public constructor. Instead, one of its
subclasses AbsoluteTime15 or RelativeTime16 should be used. When an API is
defined that has a HighResolutionTime as a parameter, it can take either an
absolute or a relative time and will do something appropriate.

Caution: This class is explicitly unsafe for multithreading when being changed.
Code that mutates instances of this class should synchronize at a higher level.

9.3.1.2.1 Methods

15Section 9.3.1.1
16Section 9.3.1.3

RTSJ 2.0 (Draft 48) 357

9 Time HighResolutionTime

waitForObject(Object, HighResolutionTime)

Signature
public static boolean
waitForObject(Object target,

javax.realtime.HighResolutionTime<?> time)
throws InterruptedException,

IllegalMonitorStateException,
IllegalArgumentException,
UnsupportedOperationException

Description
Behaves like target.wait() but with the enhancement that it waits with a precision
of HighResolutionTime and returns true when the associated notify was received,
false when timeout occured. As for target.wait(), there is the possibility of
spurious wakeup behavior.

The wait time may be relative or absolute, and it is controlled by the clock
associated with it. When the wait time is relative, then the calling thread is
blocked waiting on target for the amount of time given by time, and measured
by the associated clock. When the wait time is absolute, then the calling thread
is blocked waiting on target until the indicated time value is reached by the
associated clock.

Parameters
target The object on which to wait. The current thread must have a lock on the

object.
time The time for which to wait. When it is RelativeTime(0,0) then wait indefinitely.

When it is null then wait indefinitely.
Throws
InterruptedException when this schedulable is interrupted by RealtimeThread.

interrupt17 or AsynchronouslyInterruptedException.fire18 while it is waiting.
IllegalArgumentException when time represents a relative time less than zero.
IllegalMonitorStateException when target is not locked by the caller.
UnsupportedOperationException when the wait operation is not supported using

the clock associated with time.

Returns
true when the notify was received before the timeout; false otherwise.
17Section 5.3.2.2.2
18Section 15.2.2.2.2

358 RTSJ 2.0 (Draft 48)

HighResolutionTime javax.realtime 9.3

Available since RTSJ 2.0 updated to add a return value.

equals(T)

Signature
public boolean
equals(T time)

Description
Returns true when the argument time has the same type and values as this.

Equality includes Chronograph association.

Parameters
time Value compared to this.

Returns
true when the parameter time is of the same type and has the same values as this.

getClock

Signature
public final javax.realtime.Clock
getClock()
throws UnsupportedOperationException

Description
Returns a reference to the clock associated with this.

Throws
UnsupportedOperationException when the time is based on a Chronograph19 that

is not a Clock20.

Returns
A reference to the clock associated with this.

Available since RTSJ 1.0.1

19Section 10.3.1.2
20Section 10.3.2.1

RTSJ 2.0 (Draft 48) 359

9 Time HighResolutionTime

getChronograph

Signature
public final javax.realtime.Chronograph
getChronograph()

Description
Get a reference to the Chronograph21 associated with this.

Returns
A reference to the Chronograph22 associated with this.
Available since RTSJ 2.0

getMilliseconds

Signature
public final long
getMilliseconds()

Description
Get the milliseconds component of this.

Returns
The milliseconds component of the time represented by this.

getNanoseconds

Signature
public final int
getNanoseconds()

Description
Get the nanoseconds component of this.

Returns
The nanoseconds component of the time represented by this.

21Section 10.3.1.2
22Section 10.3.1.2

360 RTSJ 2.0 (Draft 48)

HighResolutionTime javax.realtime 9.3

set(T)

Signature
public T extends javax.realtime.HighResolutionTime<T>
set(T time)

Description

Change the value represented by this to that of the given time. The Chronograph
associated with this is set to be the Chronograph associated with the time
parameter.

Parameters
time The new value for this.

Throws
IllegalArgumentException when the parameter time is null.
ClassCastException when the type of this and the type of the parameter time are

not the same.

Returns
this

Available since RTSJ 1.0.1 The description of the method in 1.0 was erroneous.

set(long)

Signature
public T extends javax.realtime.HighResolutionTime<T>
set(long millis)

Description

Sets the millisecond component of this to the given argument, and the nanosecond
component of this to 0. This method is equivalent to set(millis, 0).

Parameters
millis This value shall be the value of the millisecond component of this at the

completion of the call.
Returns
this

RTSJ 2.0 (Draft 48) 361

9 Time HighResolutionTime

set(long, int)

Signature
public T extends javax.realtime.HighResolutionTime<T>
set(long millis,

int nanos)
throws IllegalArgumentException

Description
Sets the millisecond and nanosecond components of this. The setting is subject
to parameter normalization. When after normalization the time is negative then
the time represented by this is set to a negative value, but note that negative
times are not supported everywhere. For instance, a negative relative time is an
invalid value for a periodic thread’s period.

Parameters
millis The desired value for the millisecond component of this at the completion of

the call. The actual value is the result of parameter normalization.
nanos The desired value for the nanosecond component of this at the completion of

the call. The actual value is the result of parameter normalization.
Throws
IllegalArgumentException when there is an overflow in the millisecond component

while normalizing.
Returns
this

hashCode

Signature
public int
hashCode()

Description
Returns a hash code for this object in accordance with the general contract of
Object.hashCode. Time objects that are equals23 equal have the same hash code.

Returns
The hashcode value for this instance.

23Section 9.3.1.2.1

362 RTSJ 2.0 (Draft 48)

HighResolutionTime javax.realtime 9.3

clone

Signature
public java.lang.Object
clone()

Description
Return a clone of this. This method should behave effectively as when it con-
structed a new object with the visible values of this. The new object is created
in the current allocation context.

Available since RTSJ 1.0.1

compareTo(T)

Signature
public int
compareTo(T time)

Description
Compares this HighResolutionTime with the specified HighResolutionTime time.

Parameters
time Compares with the time of this.

Throws
ClassCastException when the time parameter is not of the same class as this.
IllegalArgumentException when the time parameter is not associated with the same

chronograph as this, or when the time parameter is null.
Returns
a negative integer, zero, or a positive integer as this object is less than, equal to, or

greater than time.

equals(Object)

Signature
public boolean
equals(Object object)

Description

RTSJ 2.0 (Draft 48) 363

9 Time HighResolutionTime

Returns true when the argument object has the same type and values as this.
Equality includes Chronograph association.

Parameters
object Value compared to this.

Returns
true when the parameter object is of the same type and has the same values as this.

absolute(Chronograph, AbsoluteTime)

Signature
public abstract javax.realtime.AbsoluteTime
absolute(Chronograph chronograph,

AbsoluteTime dest)

Description
Convert the time of this to an absolute time, using the given instance of Chrono-
graph24 to determine the current time when necessary. When Chronograph is null
the realtime chronograph is assumed. When dest is not null, the result is placed
there and returned. Otherwise, a new object is allocated for the result. The
chronograph association of the result is the Chronograph passed as a parameter.
See the subclass comments for more specific information.

Parameters
chronograph The instance of Chronograph25 used to convert the time of this into

absolute time, and the new chronograph association for the result.
dest When dest is not null, the result is placed there and returned. Otherwise, a

new object is allocated for the result.
Returns
The AbsoluteTime conversion in dest when dest is not null, otherwise the result is

returned in a newly allocated object. It is associated with the Chronograph
parameter.

absolute(Chronograph)

Signature
24Section 10.3.1.2
25Section 10.3.1.2

364 RTSJ 2.0 (Draft 48)

HighResolutionTime javax.realtime 9.3

public abstract javax.realtime.AbsoluteTime
absolute(Chronograph chronograph)

Description
Convert the time of this to an absolute time, using the given instance of Chrono-
graph26 to determine the current time when necessary. When Chronograph is
null the realtime clock is assumed.

A destination object is allocated to return the result. The chronograph
association of the result is the Chronograph passed as a parameter. See the
subclass comments for more specific information.

Parameters
chronograph is the instance of Chronograph27 used to convert the time of this into

absolute time, and the new chronograph association for the result.
Returns
The AbsoluteTime conversion in a newly allocated object, associated with the

Chronograph parameter.

relative(Chronograph, RelativeTime)

Signature
public abstract javax.realtime.RelativeTime
relative(Chronograph chronograph,

RelativeTime dest)

Description
Convert the time of this to a relative time, using the given instance of Chrono-
graph28 to determine the current time when necessary. When Chronograph is null
the realtime chronograph is assumed. When dest is not null, the result is placed
there and returned. Otherwise, a new object is allocated for the result. The
chronograph association of the result is the Chronograph passed as a parameter.
See the subclass comments for more specific information.

Parameters
chronograph The instance of Chronograph29 used to convert the time of this into

relative time, and the new chronograph association for the result.
26Section 10.3.1.2
27Section 10.3.1.2
28Section 10.3.1.2
29Section 10.3.1.2

RTSJ 2.0 (Draft 48) 365

9 Time RelativeTime

dest When dest is not null, the result is placed there and returned. Otherwise, a
new object is allocated for the result.

Returns
The RelativeTime30 conversion in dest when dest is not null, otherwise the result

is returned in a newly allocated object.

relative(Chronograph)

Signature
public abstract javax.realtime.RelativeTime
relative(Chronograph chronograph)

Description
Convert the time of this to a relative time, using the given instance of Chrono-
graph31 to determine the current time when necessary. When Chronograph is
null the realtime chronograph is assumed. A destination object is allocated to
return the result. The chronograph association of the result is the Chronograph
passed as a parameter. See the subclass comments for more specific information.

Parameters
chronograph The instance of Chronograph32 used to convert the time of this into

relative time, and the new chronograph association for the result.
Returns
The RelativeTime conversion in a newly allocated object, associated with the

Chronograph parameter.

9.3.1.3 RelativeTime

Inheritance
java.lang.Object
HighResolutionTime<RelativeTime>
RelativeTime

Description
An object that represents a time interval milliseconds/103 + nanoseconds/109

seconds long. It generally is used to represent a time relative to now.
30Section 9.3.1.3
31Section 10.3.1.2
32Section 10.3.1.2

366 RTSJ 2.0 (Draft 48)

RelativeTime javax.realtime 9.3

The time interval is kept in normalized form. The range goes from [(-263)
milliseconds + (-106+1) nanoseconds] to [(263-1) milliseconds + (106-1) nanosec-
onds].

A negative interval relative to now represents time in the past. For add and
subtract negative values behave as they do in arithmetic.

Caution: This class is explicitly unsafe for multithreading when being changed.
Code that mutates instances of this class should synchronize at a higher level.

9.3.1.3.1 Constructors

RelativeTime(long, int, Chronograph)

Signature
public
RelativeTime(long millis,

int nanos,
Chronograph chronograph)

throws IllegalArgumentException

Description
Construct a RelativeTime object representing an interval based on the parameter
millis plus the parameter nanos. The construction is subject to millis and nanos
parameters normalization. When there is an overflow in the millisecond component
when normalizing then an IllegalArgumentException will be thrown.

The chronograph association is made with the chronograph parameter. When
chronograph is null the association is made with the default realtime clock.

Available since RTSJ 2.0

Parameters
millis The desired value for the millisecond component of this. The actual value is

the result of parameter normalization.
nanos The desired value for the nanosecond component of this. The actual value is

the result of parameter normalization.
chronograph The chronograph providing the association for the newly constructed

object. Defaults to the realtime clock when null.
Throws

RTSJ 2.0 (Draft 48) 367

9 Time RelativeTime

IllegalArgumentException when there is an overflow in the millisecond component
when normalizing.

RelativeTime(long, int)

Signature
public
RelativeTime(long millis,

int nanos)
throws IllegalArgumentException

Description
Equivalent to RelativeTime(long, int, Chronograph)33 with argument list (millis,
nanos, null).

Parameters
millis The desired value for the millisecond component of this. The actual value is

the result of parameter normalization.
nanos The desired value for the nanosecond component of this. The actual value is

the result of parameter normalization.
Throws
IllegalArgumentException when there is an overflow in the millisecond component

when normalizing.

RelativeTime(RelativeTime)

Signature
public
RelativeTime(RelativeTime time)

Description
Equivalent to RelativeTime(long, int, Chronograph)34 with argument list (time.
getMilliseconds(), time.getNanoseconds(), time.getChronograph()).

Parameters
time The RelativeTime object which is the source for the copy.
33Section 9.3.1.3.1
34Section 9.3.1.3.1

368 RTSJ 2.0 (Draft 48)

RelativeTime javax.realtime 9.3

RelativeTime(Chronograph)

Signature
public
RelativeTime(Chronograph chronograph)

Description
Equivalent to RelativeTime(long, int, Chronograph)35 with argument list (0, 0,
chronograph).

Available since RTSJ 2.0

Parameters
chronograph The chronograph providing the association for the newly constructed

object.

RelativeTime

Signature
public
RelativeTime()

Description
Equivalent to RelativeTime(long, int, Chronograph)36 with argument list (0, 0,
null).

9.3.1.3.2 Methods

absolute(Chronograph)

Signature
public javax.realtime.AbsoluteTime
absolute(Chronograph chronograph)

35Section 9.3.1.3.1
36Section 9.3.1.3.1

RTSJ 2.0 (Draft 48) 369

9 Time RelativeTime

Description
Convert the time of this to an absolute time, using the given instance of Chrono-
graph37 to determine the current time when necessary. When Chronograph is
null the realtime clock is assumed.

A destination object is allocated to return the result. The chronograph
association of the result is the Chronograph passed as a parameter. See the
subclass comments for more specific information.

Available since RTSJ 2.0

See Section HighResolutionTime.absolute(Chronograph)

absolute(Chronograph, AbsoluteTime)

Signature
public javax.realtime.AbsoluteTime
absolute(Chronograph chronograph,

AbsoluteTime dest)

Description
Convert the time of this to an absolute time, using the given instance of Chrono-
graph38 to determine the current time when necessary. When Chronograph is null
the realtime chronograph is assumed. When dest is not null, the result is placed
there and returned. Otherwise, a new object is allocated for the result. The
chronograph association of the result is the Chronograph passed as a parameter.
See the subclass comments for more specific information.

Available since RTSJ 2.0

See Section HighResolutionTime.absolute(Chronograph, AbsoluteTime)

relative(Chronograph)

Signature
public javax.realtime.RelativeTime
relative(Chronograph chronograph)

37Section 10.3.1.2
38Section 10.3.1.2

370 RTSJ 2.0 (Draft 48)

RelativeTime javax.realtime 9.3

Description
Convert the time of this to a relative time, using the given instance of Chrono-
graph39 to determine the current time when necessary. When Chronograph is
null the realtime chronograph is assumed. A destination object is allocated to
return the result. The chronograph association of the result is the Chronograph
passed as a parameter. See the subclass comments for more specific information.

Available since RTSJ 2.0

See Section HighResolutionTime.relative(Chronograph)

relative(Chronograph, RelativeTime)

Signature
public javax.realtime.RelativeTime
relative(Chronograph chronograph,

RelativeTime dest)

Description
Convert the time of this to a relative time, using the given instance of Chrono-
graph40 to determine the current time when necessary. When Chronograph is null
the realtime chronograph is assumed. When dest is not null, the result is placed
there and returned. Otherwise, a new object is allocated for the result. The
chronograph association of the result is the Chronograph passed as a parameter.
See the subclass comments for more specific information.

Available since RTSJ 2.0

See Section HighResolutionTime.relative(Chronograph, RelativeTime)

add(long, int)

Signature
public javax.realtime.RelativeTime
add(long millis,

int nanos)

39Section 10.3.1.2
40Section 10.3.1.2

RTSJ 2.0 (Draft 48) 371

9 Time RelativeTime

throws ArithmeticException

Description
Create a new object representing the result of adding millis and nanos to the
values from this and normalizing the result. The result will have the same
chronograph association as this. An ArithmeticException is when the result does
not fit in the normalized format.

Parameters
millis The number of milliseconds to be added to this.
nanos The number of nanoseconds to be added to this.

Throws
ArithmeticException when the result does not fit in the normalized format.

Returns
A new RelativeTime object whose time is the normalization of this plus millis and

nanos.

add(long, int, RelativeTime)

Signature
public javax.realtime.RelativeTime
add(long millis,

int nanos,
RelativeTime dest)

throws ArithmeticException

Description
Return an object containing the value resulting from adding millis and nanos
to the values from this and normalizing the result. When dest is not null, the
result is placed there and returned. Otherwise, a new object is allocated for the
result. The result will have the same chronograph association as this, and the
chronograph association with dest is ignored.

Parameters
millis The number of milliseconds to be added to this.
nanos The number of nanoseconds to be added to this.
dest When dest is not null, the result is placed there and returned. Otherwise, a

new object is allocated for the result.
Throws
ArithmeticException when the result does not fit in the normalized format.

372 RTSJ 2.0 (Draft 48)

RelativeTime javax.realtime 9.3

Returns
the result of the normalization of this plus millis and nanos in dest when dest is

not null, otherwise the result is returned in a newly allocated object.

add(RelativeTime)

Signature
public javax.realtime.RelativeTime
add(RelativeTime time)
throws IllegalArgumentException,

ArithmeticException

Description
Create a new instance of RelativeTime representing the result of adding time to
the value of this and normalizing the result.

The chronograph associated with this and the clock associated with the time
parameter are expected to be the same, and such association is used for the
result.

Parameters
time The time to add to this.

Throws
IllegalArgumentException when the Chronograph associated with this and the

Chronograph associated with the time parameter are different, or when the
time parameter is null.

ArithmeticException when the result does not fit in the normalized format.
Returns
A new RelativeTime object whose time is the normalization of this plus the param-

eter time.

add(RelativeTime, RelativeTime)

Signature
public javax.realtime.RelativeTime
add(RelativeTime time,

RelativeTime dest)
throws IllegalArgumentException,

ArithmeticException

RTSJ 2.0 (Draft 48) 373

9 Time RelativeTime

Description
Return an object containing the value resulting from adding time to the value of
this and normalizing the result. When dest is not null, the result is placed there
and returned. Otherwise, a new object is allocated for the result.

The Chronograph associated with this and the Chronograph associated with
the time parameter are expected to be the same, and such association is used for
the result.

The Chronograph associated with the dest parameter is ignored.

Parameters
time The time to add to this.
dest When dest is not null, the result is placed there and returned. Otherwise, a

new object is allocated for the result.
Throws
IllegalArgumentException when the Chronograph associated with this and the

Chronograph associated with the time parameter are different, or when the
time parameter is null.

ArithmeticException when the result does not fit in the normalized format.
Returns
the result of the normalization of this plus the RelativeTime parameter time in

dest when dest is not null, otherwise the result is returned in a newly allocated
object.

subtract(RelativeTime)

Signature
public javax.realtime.RelativeTime
subtract(RelativeTime time)
throws IllegalArgumentException,

ArithmeticException

Description
Create a new instance of RelativeTime representing the result of subtracting
time from the value of this and normalizing the result.

The Chronograph associated with this and the Chronograph associated with
the time parameter are expected to be the same, and such association is used for
the result.

Parameters
time The time to subtract from this.

374 RTSJ 2.0 (Draft 48)

RelativeTime javax.realtime 9.3

Throws
IllegalArgumentException when the Chronograph associated with this and the

Chronograph associated with the time parameter are different, or when the
time parameter is null.

ArithmeticException when the result does not fit in the normalized format.

Returns
A new RelativeTime object whose time is the normalization of this minus the

parameter time parameter time.

subtract(RelativeTime, RelativeTime)

Signature
public javax.realtime.RelativeTime
subtract(RelativeTime time,

RelativeTime dest)
throws IllegalArgumentException,

ArithmeticException

Description
Return an object containing the value resulting from subtracting the value of
time from the value of this and normalizing the result. When dest is not null,
the result is placed there and returned. Otherwise, a new object is allocated for
the result.

The Chronograph associated with this and the Chronograph associated with
the time parameter are expected to be the same, and such association is used for
the result.

The Chronograph associated with the dest parameter is ignored.

Parameters
time The time to subtract from this.
dest When dest is not null, the result is placed there and returned. Otherwise, a

new object is allocated for the result.
Throws
IllegalArgumentException when the when the Chronograph associated with this

and the Chronograph associated with the time parameter are different, or when
the time parameter is null.

ArithmeticException when the result does not fit in the normalized format.

Returns

RTSJ 2.0 (Draft 48) 375

9 Time RelativeTime

the result of the normalization of this minus the RelativeTime parameter time in
dest when dest is not null, otherwise the result is returned in a newly allocated
object.

scale(int)

Signature
public javax.realtime.RelativeTime
scale(int factor)

Description
Change the length of this relative time by multiplying it by factor.

Parameters
factor by which to increase the time interval.

Returns
a new object with value of this scaled by factor.

Available since RTSJ 2.0

scale(int, RelativeTime)

Signature
public javax.realtime.RelativeTime
scale(int factor,

RelativeTime time)

Description
Set time to the value of this time by multiplied by factor.

Parameters
factor by which to increase the time interval.
time in which to store the results.

Returns
time with the value of this scaled by factor

Available since RTSJ 2.0

376 RTSJ 2.0 (Draft 48)

RelativeTime javax.realtime 9.3

compareToZero

Signature
public int
compareToZero()

Description
Compare this to relative time zero returning the result of the comparison. Equiv-
alent to constantZero.compareTo(this)

Returns
negative when this is less than zero, 0, when it is equal to zero and a positive when

this is greater than zero.

Available since RTSJ 2.0

compareTo(RelativeTime)

Signature
public int
compareTo(RelativeTime time)

Description
Compares this HighResolutionTime with the specified HighResolutionTime time.

Parameters
time Compares with the time of this.

Throws
ClassCastException when the time parameter is not of the same class as this.
IllegalArgumentException when the time parameter is not associated with the same

chronograph as this, or when the time parameter is null.

Returns
a negative integer, zero, or a positive integer as this object is less than, equal to, or

greater than time.

toString

Signature

RTSJ 2.0 (Draft 48) 377

9 Time

public java.lang.String
toString()

Description
Create a printable string of the time given by this.

The string shall be a decimal representation of the milliseconds and nanosecond
values; formatted as follows "(2251 ms, 750000 ns)"

Returns
String object converted from the time given by this.

9.4 Rationale
Time is the essence of realtime systems, and a method of expressing absolute time
with sub-millisecond precision is an absolute minimum requirement. Expressing time
in terms of nanoseconds has precedent and allows the implementation to provide
time-based services, such as timers, using whatever precision it is capable of while
the application requirements are expressed to an arbitrary level of precision.

The standard Java java.util.Date class uses milliseconds as its basic unit in order
to provide sufficient range for a wide variety of applications. realtime programming
generally requires finer resolution, and nanosecond resolution is fine enough for
most purposes, but even a 64 bit realtime clock based in nanoseconds would have
insufficient range in some situations, so a compound format composed of 64 bits of
millisecond timing, and 32 bits of nanoseconds within a millisecond, was chosen.

The expression of millisecond and nanosecond constituents is consistent with
other Java interfaces.

The expression of relative times allows for time-based metaphors such as deadline-
based periodic scheduling where the cost of the task is expressed as a relative time and
deadlines are usually represented as times relative to the beginning of the period.

378 RTSJ 2.0 (Draft 48)

Chapter 10

Clocks and Timers

In order to reason about time, the RTSJ needs not only to be able to express times
and calculate with them; but it also needs to be able to determine the current time
and allow actions to be performed when a given time is reached. For this purpose,
the specification defines one interface and four classes: Chronograph, Clock, Timer,
PeriodicTimer, and OneShotTimer.

A chronograph is used to measure time, whereas a clock is used to both measure
time and react to its passage: a clock can get the current time and it can trigger
timing events. At least one instance of the abstract Clock class, which implements
Chronograph, is provided by the implementation, the system realtime clock, and this
instance is made available as a singleton. The creation and use of other clocks and
chronographs are discussed later (see Section 10.2.2).

The Timer classes provide the means of executing code at a particular point in
time or repeatedly at a given interval. Timer is an abstract class and consequently
only its subclasses can be instantiated. The Timer class provides the interface and
underlying implementation for both one-shot and periodic timers. Instances of
OneShotTimer and PeriodicTimer can be created and rescheduled specifying the
initial firing time either as an AbsoluteTime or as a RelativeTime, to be considered
from the application of the start command. The PhasingPolicy class defines the
relationship between a PeriodicTimer’s start time and its first release time when the
start time is in the past.

By attaching an AsyncBaseEventHandler to a Timer, the program can cause
the release of the handler at a given time or after a given interval. An instance
of OneShotTimer describes an event that is to be triggered at most once (unless
restarted after expiration). It may be used as the source for time-outs and watchdog
timing. An instance of PeriodicTimer fires on a periodic schedule. The period for a
PeriodicTimer is always specified as a RelativeTime.

379

10 Clocks and Timers

10.1 Definitions

Timing Mechanism —Something capable of representing and following the progress
of time, by means of time values.

Chronograph — A passive timing mechanism, which can only provide the current
time.

Clock — An active timing mechanism, which can both provide the current time
and cause some action when a particular time is reached. All clocks are, by
definition, chronographs, but not necessarily visa verse.

Monotonically Increasing Timing Mechanism — A timing mechanism whose
time values never decrease. Monotonicity is a Boolean property, while time
synchronization, uniformity, and accuracy are characteristics that depend on
agreed tolerances. All monotonic clocks referenced in this specification are
monotonically increasing timing mechanisms.

Time Synchronization —A relation between two timing mechanisms. Two chrono-
graphs are synchronized when the difference between their time values is less
than some specified offset. Synchronization in general degrades with time, and
may be lost, given a specified offset.

Accuracy — The agreement between a chronograph and the true value that it
measures (e.g., absolute wall clock time).

Resolution — The minimal time value interval that can be represented by the
clock model.

Precision — The smallest tick size that a particular chronograph will observe.
Uniformity — In this context, the measurement of the progress of time at a

consistent rate, with a tolerance on the variability. Uniformity is affected by
two other factors, jitter and stability.

Jitter — The distribution of the differences between when events are actually
fired or noticed by the software and when they should have really occurred
according to time in the real-world. Jitter might be caused by short-term and
noncumulative small time variation due to noise sources, such as thermal noise.

Stability — The resistance to jitter, in this case temporal jitter. Lack of stability
can account for large and often cumulative variations, due to such occurrences
such as supply voltage and temperature change.

Drift — The rate of change of the cumulative variation between two timing mecha-
nisms.

Counting Time — The time accumulated by a Timer, while active, when created
or rescheduled using a RelativeTime to specify the initial firing or skipping
time. Counting Time is zeroed at the beginning of an activation and when
rescheduled, while active, before the initial firing or skipping of an activation.

380 RTSJ 2.0 (Draft 48)

Semantics 10.2

10.2 Semantics
The semantics of chronographs, clocks and timers are not simply functional. Temporal
attributes dominate their behavior; therefore, the interaction between classes is
critical to the overall understanding of the API. The class descriptions as well as their
constructor, method, and field documentation given later provide detailed semantics
to support the overall behavior.

10.2.1 Clock Model
Clocks and chronographs are backed by a physical means of measuring time. In
practice, each one is driven by an oscillator that has susceptible variation due to its
environment. There is always some difference between the desired frequency and
the actual frequency of the oscillator, which is a major reason of synchronization
loss. The RTSJ Clock model must take this variability into account and therefore
establishes several invariants and expectations that can be relied upon by RTSJ
applications and in turn must be provided by RTSJ implementations.

1. The resolution of the RTSJ Clock model is 1 nanosecond. This is the smallest
unit of time that can be represented by a chronograph or timer via HighReso-
lutionTime and its subclasses.

2. The accuracy of RTSJ definable chronographs and clocks is outside the scope
of this specification. Accuracy is heavily dependent on hardware capabilities
and platform characteristics. RTSJ providers and system integrators should
characterize accuracy where possible.

3. The precision of RTSJ definable clock and chronograph (and, by proxy, the
precision of the timers associated with cocks) are defined in terms of nanoseconds
per observable tick, and provided to the application programmer via the various
precision setters on Clock and Chronograph.

4. The realtime clock shall be monotonically increasing, and other clocks and
chronographs should be monotonically increasing as well.

5. Time values returned by a chronograph should not be assumed to be comparable
to the time values from another chronograph unless the user has platform-
specific knowledge that the chronographs are compatible, except under specific
circumstances described below.

6. The system or any other realtime clock is not necessarily synchronized with the
external world, and the correctness of the epoch as a time base depends on such
synchronization. It is as uniform and accurate as allowed by the underlying
hardware.

If two Chronograph objects are both referenced to real time and return a value
from getEpochOffset(), then time values from those Chronographs can be compared
by applying their respective corrections. As documented in the getEpochOffset()

RTSJ 2.0 (Draft 48) 381

10 Clocks and Timers

method, its return value represents the offset of the associated Chronograph from the
realtime clock Epoch. However, the results of any such comparison must be treated
with caution as the accuracy of the two Chronograph objects may be different.

10.2.2 Clocks and Timables
A Clock is the basic mechanism of measuring time and triggering events based on the
passage of time. A Timer can request a signal from the clock when a given time is
reached. That signal should come as closed to the actual time requested as possible.
A schedulable also uses a clock to implement the realtime sleep methods. Each clock
instance shall be capable of reporting the achievable resolution of timers based on
that clock. Each implementation shall have a default clock that is used whenever no
other clock is specified. An application can also defined additional clocks.

A Timer uses a clock to measure time, which informs the timer’s TimeDispatcher
when the time has elapsed (relative time) or has been reached (absolute time). The
TimeDispatcher causes the release of any AsyncEventHandler associated with the
Timer. In the context of a Timer, triggering is the action that is performed by a
TimeDispatcher that informs the Timer that it is time to fire or skip, where skip
causes the normal action of fire not to be carried out.

A Timer is active when it has been started and not stopped since last started and
it has a time in the future at which it is expected to fire or skip, else it is not active.

In the context of a Timer, enabling cause the Timer to fire when it is triggered,
while disabling causes the Timer to skip when it is triggered. Enabling and disabling
act as a mask over firing.

The behavior of a OneShotTimer is that of a Timer that does not automatically
reschedule its triggering after an initial triggering, regardless of whether it fires or
skips (when disabled and active when triggered). It is specified using an initial firing
time.

The behavior of a PeriodicTimer is that of a Timer that automatically reschedules
after each triggering, regardless of whether the triggering results in a fire or a skip
due to being disabled when triggered. It is specified using an initial firing time and
an interval or period used for the self-rescheduling.

A Clock can also be used to regulate pauses in execution of any Schedulable
through a realtime sleep method, hence timers and schedulables are classified as
timables under the Timable interface.

Both OneShotTimer and PeriodTimer are given an initial firing time. A Peri-
odicTimer receives two clock references, within two HighResolutionTimer objects,
which must be to the same clock. Thus the specification of the initial firing time and
the interval or period must refer to the same clock.

A Timer is an ActiveEvent. This means that is has an associated dispatcher
called TimeDispatcher. As with other active events, the application can either use

382 RTSJ 2.0 (Draft 48)

Semantics 10.2

the default dispatcher or create a new one with its own priority and affinity. A
schedulable can also have a TimeDispatcher to manage sleeping.

At any given time, a timable, Timer or Schedulable, has at most one clock
associated with it, on which the measurement of time for blocking is based. Each
clock maintains a list of times, called alarms, that are provided to it from timables.
The clock is armed with the next alarm. When that time arrives, the clock signals
the TimeDispatcher associated with the alarm to signal its timable that the time
has arrived.

In the case of a timer, the dispatcher triggers the timer thereby indicating it should
fire or skip. In the case of a schedulable, the dispatcher triggers the schedulable
to wake up from its sleep. Figure 10.1 illustrates how a timer interacts with a
application-defined clock and Figure 10.2 depicts the same for using realtime sleep
in a schedulable.

Figure 10.1: Sequence Diagram for Using a Timer

In each case, an external schedulable, depicted on the right, initializes the objects
involved. A TimeDispatcher and a Clock are created. These are used when creating
the Timable as illustrated with step one and two respectively in both diagrams. A
developer can always use a pre-existing clock or dispatcher instead of creating new
ones.

RTSJ 2.0 (Draft 48) 383

10 Clocks and Timers

Figure 10.2: Sequence Diagram for Realtime Sleep

Each timable acts as if it had an internal object, depicted as an instance of Alarm,
to manage the relationship between a timable and its dispatcher and clock. Alarm is
shown simply to illustrate this relationship. It is created, step three in both diagrams,
when the timable is created and it represents the next alarm that the timable should
receive: a fire for a time or a wake up call for a realtime sleep on a schedulable.

At step four, the two sequences diverge. The application start a timer with the
start method, but a thread must call a realtime sleep method. In both cases, step
four sets the timing in motion.

Steps (5) through (8) set up the time interval. For initiating the trigger for the
first time, step (5) registers the timable with its dispatcher. Later starts or sleeps
skip this step. Then the time is set in the alarm and the alarm is added to the clock.

When the new alarm is the next alarm to be triggered, the clock arranges to
signal that time as in step (8). When the alarm is added anywhere else in the clock
queue, step (8) is delayed until the removal of an alarm causes the added alarm to
reach the top of the queue.

When the alarm time is reached, step (9), the clock triggers the alarm by calling
trigger on the alarm event, step (10). This in turn triggers the dispatcher, step (11).
This is an asynchronous call that causes the dispatcher’s thread to take over control

384 RTSJ 2.0 (Draft 48)

Semantics 10.2

from the clocks interrupt handler.
In step (12), the dispatcher thread removes the alarm from the clock queue,

possibly causing a new alarm to become active. In the periodic thread case, the
alarm is rescheduled by incrementing the time in the alarm by the interval and
adding it back into the queue. In all other cases, no new alarm is set.

In step (13) any subsequent alarms that were scheduled are also kicked off. The
Clock queue is a two dimensional queue that is organized by the time of the alarm
and, within any given time, the priority order, highest to lowest, of the dispatchers
associated with the alarms. The trigger in step (10) always goes to the alarm with
the highest priority dispatcher.

Finally in step (14), the dispatcher fires the alarm which results its timable being
fired or woken-up. In the case of a timer, this causes all its handlers to be released
or, in the case of a schedulable, a sleep being woken up; this is marked as (15) in the
diagrams.

Clocks and TimeDispatchers may be shared among many as timables as the needs
of the application dictate. Different dispatchers can be used with a given clock and
a dispatcher can service different clocks. The dispatcher should be chosen based on
its priority and affinity, whereas a clock should be chosen based on the temporal
reference, where the temporal reference may or may not be associated with clock
time. For instance, one could use a clock to represent the rotation of a shaft.

10.2.3 Timers
A timer must be associated with a clock. That clock acts as if it provides an interrupt
to each of its timers at the next instance of time at which the timer should do
something. In other words, a clock fires its timer at a requested time. Timers can be
modeled as counters, or as comparators.

10.2.3.1 Counter Model

In the timer model, a timer can be viewed as if every clock interrupt increments a
count up to the firing count, initially given by either an instance of RelativeTime or
computed as the difference between an instance of AbsoluteTime and a semantically
specified “now” (using the same clock).

1. start is understood as defining “now” and start counting, stop is understood
as stop counting. start after stop may be understood as start counting again
from where stopped, or start from scratch after resetting the count.

2. In both cases, a delay is introduced.
3. An RTSJ Timer, when using the counter model, resets the count when it is

restarted after being stopped.

RTSJ 2.0 (Draft 48) 385

10 Clocks and Timers

4. When a Timer is created or rescheduled using a RelativeTime to specify
the initial alarm time, the RTSJ keeps the specified initial trigger time as a
RelativeTime and behaves according to the counter model.

10.2.3.2 Comparator Model

In the comparator model, a Timer can be viewed as if every clock interrupt forces a
comparison between an absolute time and a firing time, initially given either as an
instance of AbsoluteTime or computed as the sum of an instance of RelativeTime
and a semantically specified “now” (using the same clock).

1. In this model, start is understood as start comparing, and possibly the first
start is understood as defining “now”. stop is understood as stop comparing.
start after stop may be understood as start comparing again.

2. In this case, no delay is introduced.
3. When a Timer is created or rescheduled using an AbsoluteTime to specify the

initial triggering time, the RTSJ keeps the specified initial firing time as an
AbsoluteTime and uses the comparator model.

10.2.3.3 Triggering

A clock signals to the associated timable that its alarm time has been reached
by triggering the dispatcher associated with the timable. This trigger causes the
dispatcher to fire the associated timer. When the timer is active, it releases it
handlers and is said to be fired. When the timer is inactive, nothing happens and
it is said to be skipped. A stopped timer is never triggered. For this it must be
running.

10.2.3.4 Behavior of Timers

There are two kinds of timers defined: OneShotTimer and PeriodicTimer. As their
names imply, the first is used to mark a single time interval and the second is to
mark a regularly repeating time interval.

The OneShotTimer class shall ensure that each instance is fired at most once at
the time specified unless restarted after expiration.

The PeriodicTimer class shall enable the period of a timer to be expressed in
terms of a RelativeTime. The initial firing of a PeriodicTimer occurs in response to
the invocation of its start method, in accordance with the start time passed to its
constructor. The PhasingPolicy class defines the relationship between the timer’s
start time and its first firing when the start time is in the past. This initial firing or
skipping, may be rescheduled by a call to the reschedule method, in accordance with
the time passed to that method.

386 RTSJ 2.0 (Draft 48)

Semantics 10.2

Given an instance of PeriodicTimer, let S be the effective time, as an absolute
time, at which the initial firing or skipping, of a PeriodicTimer is scheduled to occur:

1. when the start, or reschedule, time was given as an absolute time, A, and that
time is in the future when the timer is made active, then S equals A, otherwise

2. when the absolute time has passed when the timer is made active, then S
depends on the phasing mode of that instance of PeriodicTimer.

The firings of a PeriodicTimer are scheduled to occur according to S + nT , for
n = 0, 1, 2, ... where S is as just specified, and T is the interval of the periodic timer.

For all timers, when the start or reschedule time is given as a relative time, R, S
equals the time at which the counting time, started when the timer was made active,
equals R. The transition to not-active by this timer causes the counting time to
reset, effectively preventing this kind of timer from firing immediately, unless given a
time value of 0.

When in a not-active state a Timer retains the parameters given at construction
time or the parameters it had at de-activation time. Those are the parameters that
will be used upon invocation of start while in that state, unless the parameters are
explicitly changed before that, using reschedule and setInterval as appropriate.

When a Timer object is allocated in a scoped memory area, then it will increment
the reference count associated with that area. Such a reference count will only be
decremented when the Timer object is destroyed. (See semantics in the Memory
chapter for details.) A Timer object will not fire before its due time.

The states of a Timer are essentially the same as for an ActiveEvent as depicted
in Figure 8.3. The main difference is that the time used for the next fire may be
either an absolute time or a relative time. Figure 10.3 reflects this difference in a
UML state diagram.

10.2.3.5 Phasing

Phasing comes into play only when a periodic timer (with period T) starts after its
initial time. This can happen when an absolute start time (A) is specified and the
start method is called after that time. It is used to determine the effective start time
S:

1. S is the next multiple of A+ nT , when phasing is ADJUST_FORWARD,
2. S is the most recent multiple ofA+nT , when phasing isADJUST_BACKWARD,
3. S is “now,” when phasing is ADJUST_TO_START, and
4. S is undefined and an exception it thrown when phasing is STRICT_PHASING.

The default phasing is ADJUST_TO_START.

RTSJ 2.0 (Draft 48) 387

10 Clocks and Timers AsyncTimable

Figure 10.3: States of a Timer1

Inactive
Disabled Enabled DisabledActive

Absolute Time

RelativeTime

Active
Enabled
Absolute

Active
Disabled
Absolute

Inactive
Disabled
Absolute

Inactive
Disabled
Relative

Active
Disabled
Relative

Active
Enabled
Relative

reschedule
(relative time)

reschedule
(absolute time)

reschedule
(relative time)

reschedule
(absolute time)

new(absolute time)

stop
-> t rue

stop
-> false

stop -> false

startDisabled
-> IllegalStateException

start
-> IllegalStateException

start

startDisabled

enable

disable

new(relative time)

10.3 javax.realtime

10.3.1 Interfaces
10.3.1.1 AsyncTimable

Interfaces
javax.realtime.Timable

Description
A common type for Timer2 and RealtimeThread3 to indicate that they can be

1Note that the semantics of the fire transition differ among the subclasses of Timer.
2Section 10.3.2.6
3Section 5.3.2.2

388 RTSJ 2.0 (Draft 48)

Chronograph javax.realtime 10.3

associated with a Clock4 and be suspended waiting for time events based on that
clock.

Available since RTSJ 2.0

10.3.1.1.1 Methods

fire

Signature
public void
fire()

Description

Called by the dispatcher associated with this to indicate that a time event has
occured.

10.3.1.2 Chronograph

Description

The interface for all devices that support the measurement of time with great
accuracy.

Available since RTSJ 2.0

10.3.1.2.1 Methods

4Section 10.3.2.1

RTSJ 2.0 (Draft 48) 389

10 Clocks and Timers Chronograph

getEpochOffset

Signature
public javax.realtime.RelativeTime
getEpochOffset()
throws UnsupportedOperationException,

UninitializedStateException

Description
Determines the time on the UTC clock when this chronograph was zero.

Throws
UnsupportedOperationException when the chronograph does not have the concept

of date.
UninitializedStateException when UTC time is not yet available.

Returns
A newly allocated RelativeTime5 object in the current execution context with the

realtime clock as its chronograph and containing time when this chronograph
was zero.

Open issue 10.3.1
Should this also throw UninitializedStateException?

End of issue 10.3.1

getTime

Signature
public javax.realtime.AbsoluteTime
getTime()

Description
Determines the current time. This method returns an absolute time value
representing the chronograph’s notion of absolute time. For chronographs that
do not measure calendar time, this absolute time may not represent a wall clock
time.

Returns
A newly allocated instance of AbsoluteTime6 in the current allocation context,

representing the current time. The returned object has this its chronograph.

5Section 9.3.1.3
6Section 9.3.1.1

390 RTSJ 2.0 (Draft 48)

Chronograph javax.realtime 10.3

getTime(AbsoluteTime)

Signature
public javax.realtime.AbsoluteTime
getTime(AbsoluteTime dest)

Description

Obtain the current time. The time represented by the given AbsoluteTime7 is
changed at some time between the invocation of the method and the return of
the method. This method will return an absolute time value that represents
this chronographs’s notion of the absolute time. For chronographs that do not
measure calendar time, this absolute time may not represent a wall clock time.

Parameters
dest The instance of AbsoluteTime8 object which will be updated in place.

Returns
The instance of AbsoluteTime9 passed as parameter, or a new object when dest is

null. The returned object represents the current time and is associated with
this chronograph.

getQueryPrecision

Signature
public javax.realtime.RelativeTime
getQueryPrecision()

Description

Obtain the precision with which time can be read, i.e., the nominal interval
between ticks. It is the same as calling getQueryPrecision(RelativeTime)10 with
null as an argument.

Returns
a newly allocated time value holding the read precision.

7Section 9.3.1.1
8Section 9.3.1.1
9Section 9.3.1.1

10Section 10.3.1

RTSJ 2.0 (Draft 48) 391

10 Clocks and Timers Timable

getQueryPrecision(RelativeTime)

Signature
public javax.realtime.RelativeTime
getQueryPrecision(RelativeTime dest)

Description
Obtain the precision with which time can be read, i.e., the nominal interval
between ticks.

Parameters
dest is a time object in which to return the results.

Returns
the read precision in dest, when dest is not null, or in a newly created object

otherwise.

10.3.1.3 Timable

Interfaces
javax.realtime.Releasable

Description
A type for all classes that can use a Clock11 for timing, either for sleeping or for
being released at a given time.

10.3.1.3.1 Methods

getDispatcher

Signature
public javax.realtime.TimeDispatcher
getDispatcher()

Description
Get the dispatcher associated with this Timable.

11Section 10.3.2.1

392 RTSJ 2.0 (Draft 48)

Clock javax.realtime 10.3

Available since RTSJ 2.0

10.3.2 Classes
10.3.2.1 Clock

Inheritance
java.lang.Object
Clock

Interfaces
javax.realtime.Chronograph

Description
A clock marks the passing of time. It has a concept of now that can be queried
through Clock.getTime(), and it can have events queued on it which will be fired
when their appointed time is reached.

Note that while all Clock implementations use representations of time derived
from HighResolutionTime, which expresses its time in milliseconds and nanosec-
onds, a particular Clock may track time that is not delimited in seconds or not
related to wall clock time in any particular fashion (e.g., revolutions or event
detections). In this case, the Clock’s timebase should be mapped to milliseconds
and nanoseconds in a manner that is computationally appropriate.

10.3.2.1.1 Constructors

Clock

Signature
public
Clock()

Description
Constructor for the abstract class.

RTSJ 2.0 (Draft 48) 393

10 Clocks and Timers Clock

10.3.2.1.2 Methods

getRealtimeClock

Signature
public static javax.realtime.Clock
getRealtimeClock()

Description
There is always at least one clock object available: the system realtime clock.
This clock is monitonically increasing and does not need to start at the Epoch.
On a POSIX system, it is equivalent to @code CLOCK_MONOTONIC}. It is
the default Clock.

Returns
The singleton instance of the default Clock

getUniversalClock

Signature
public static javax.realtime.Clock
getUniversalClock()
throws UnsupportedOperationException,

UninitializedStateException

Description
A means of obtaining the Universal Time, which has no summer or winter time.
Local time can be obtained by adding the appropriate time zone offset. Such a
time source is not available on all systems and may take a while to set up on
some systems which support it.

Throws
UnsupportedOperationException when the system does not support UTC.
UninitializedStateException when UTC time is not yet available.

Returns
A Clock that tracts UTC, such as the POSIX CLOCK_REALTIME when the

timezone is set to UTC.

394 RTSJ 2.0 (Draft 48)

Clock javax.realtime 10.3

getEpochOffset

Signature
public final javax.realtime.RelativeTime
getEpochOffset()
throws UnsupportedOperationException,

UninitializedStateException

Description
Determines the time on the UTC clock when this chronograph was zero.

Throws
UnsupportedOperationException UnsupportedOperationException when the chrono-

graph does not have the concept of date.
UninitializedStateException UninitializedStateException when UTC time is not

yet available.
Available since RTSJ 1.0.1

getTime

Signature
public final javax.realtime.AbsoluteTime
getTime()

Description
Determines the current time. This method returns an absolute time value
representing the chronograph’s notion of absolute time. For chronographs that
do not measure calendar time, this absolute time may not represent a wall clock
time.

Returns
A newly allocated instance of AbsoluteTime12 in the current allocation context,

representing the current time. The returned object has this its chronograph.

getTime(AbsoluteTime)

Signature
12Section 9.3.1.1

RTSJ 2.0 (Draft 48) 395

10 Clocks and Timers Clock

public abstract javax.realtime.AbsoluteTime
getTime(AbsoluteTime dest)

Description
Obtain the current time. The time represented by the given AbsoluteTime13 is
changed at some time between the invocation of the method and the return of
the method. This method will return an absolute time value that represents
this chronographs’s notion of the absolute time. For chronographs that do not
measure calendar time, this absolute time may not represent a wall clock time.

Parameters
dest dest The instance of AbsoluteTime14 object which will be updated in place.

Returns
The instance of AbsoluteTime15 passed as parameter, or a new object when dest is

null. The returned object represents the current time and is associated with
this chronograph.

Available since RTSJ 1.0.1 The return value is updated from void to AbsoluteTime.

Available since RTSJ 2.0 When dest is null, a new object is allocated, when not
chronograph is overwritten with this.

getQueryPrecision

Signature
public abstract javax.realtime.RelativeTime
getQueryPrecision()

Description
Obtain the precision with which time can be read, i.e., the nominal interval
between ticks. It is the same as calling getQueryPrecision(RelativeTime)16 with
null as an argument.

Returns
a newly allocated time value holding the read precision.
Available since RTSJ 2.0

13Section 9.3.1.1
14Section 9.3.1.1
15Section 9.3.1.1
16Section 10.3.2.1.2

396 RTSJ 2.0 (Draft 48)

Clock javax.realtime 10.3

getQueryPrecision(RelativeTime)

Signature
public abstract javax.realtime.RelativeTime
getQueryPrecision(RelativeTime dest)

Description
Obtain the precision with which time can be read, i.e., the nominal interval
between ticks.

Parameters
dest dest is a time object in which to return the results.

Returns
the read precision in dest, when dest is not null, or in a newly created object

otherwise.

Available since RTSJ 2.0

getDrivePrecision

Signature
public abstract javax.realtime.RelativeTime
getDrivePrecision()

Description
Gets the precision of the clock for driving events, the nominal interval be-
tween ticks that can trigger an event. It is the same as calling getDrivePreci-
sion(RelativeTime)17 with null as its argument.

Returns
a value representing the drive precision.

Available since RTSJ 2.0

getDrivePrecision(RelativeTime)

Signature
17Section 10.3.2.1.2

RTSJ 2.0 (Draft 48) 397

10 Clocks and Timers Clock

public abstract javax.realtime.RelativeTime
getDrivePrecision(RelativeTime dest)

Description
Gets the precision of the clock for driving events, the nominal interval between
ticks that can trigger an event. The result may be larger than that of getQuery-
Precision(RelativeTime)18.

Parameters
dest return the relative time value in dest. When dest is null, it allocates a new

RelativeTime19 instance to hold the returned value.
Returns
dest set to values representing the drive precision.

Available since RTSJ 2.0

triggerAlarm

Signature
protected final void
triggerAlarm()

Description
Code in the abstract base Clock is called by a subclass to signal that the time of
the next alarm has been reached. It will trigger a TimeDispatcher20, which in
turn will cause a fire on an associated AsyncTimable21

This method should be implemented with a runtime complexity not exceeding
O(1). Implementations exceeding this bound shall explicitly document the complexity
their implementation. Available since RTSJ 2.0

setAlarm(long, int)

Signature
18Section 10.3.2.1.2
19Section 9.3.1.3
20Section 10.3.2.4
21Section 10.3.1.1

398 RTSJ 2.0 (Draft 48)

OneShotTimer javax.realtime 10.3

protected abstract void
setAlarm(long milliseconds,

int nanoseconds)

Description

Implemented by subclasses to set the time for the next alarm. When there is an
alarm outstanding when called, the subclass must override the old time. This
should never be called from application or library code. It is intended to be called
only from the javax.realtime package.

Parameters
milliseconds of the next alarm.
nanoseconds of the next alarm.
Available since RTSJ 2.0

clearAlarm

Signature
protected abstract void
clearAlarm()

Description

Implemented by subclasses to cancel the current outstanding alarm.

Available since RTSJ 2.0

10.3.2.2 OneShotTimer

Inheritance
java.lang.Object
AsyncBaseEvent
AsyncEvent
Timer
OneShotTimer

Description

RTSJ 2.0 (Draft 48) 399

10 Clocks and Timers OneShotTimer

A timed AsyncEvent22 that is driven by a Clock23. It will fire once, when the
clock time reaches the time-out time, unless restarted after expiration. When the
timer is disabled at the expiration of the indicated time, the firing is lost (skipped).
After expiration, the OneShotTimer becomes not-active and disabled. When the
clock time has already passed the time-out time, it will fire immediately after it
is started or after it is rescheduled while active.

Semantics details are described in the Timer24 pseudocode and compact
graphic representation of state transitions.

Caution: This class is explicitly unsafe for multithreading when being changed.
Code that mutates instances of this class should synchronize at a higher level.

10.3.2.2.1 Constructors

OneShotTimer(HighResolutionTime, TimeDispatcher)

Signature
public
OneShotTimer(javax.realtime.HighResolutionTime<?> time,

TimeDispatcher dispatcher)
throws IllegalArgumentException,

UnsupportedOperationException,
IllegalAssignmentError

Description
Create an instance of OneShotTimer25, based on the given clock, that will execute
its fire method according to the given time. The Clock26 association of the
parameter time is ignored.

Available since RTSJ 2.0

Parameters
22Section 8.3.3.4
23Section 10.3.2.1
24Section 10.3.2.6
25Section 10.3.2.2
26Section 10.3.2.1

400 RTSJ 2.0 (Draft 48)

OneShotTimer javax.realtime 10.3

time The time used to determine when to fire the event. A time value of null is
equivalent to a RelativeTime of 0, and in this case the Timer fires immediately
upon a call to start().

dispatcher The dispatcher used to interface between this timer and its associated
clock. When null, the system default dispatcher is used.

Throws
IllegalArgumentException when time is a RelativeTime instance less than zero.
UnsupportedOperationException when the Chronograph27 associated with time is

not a Clock28.
IllegalAssignmentError when this OneShotTimer cannot hold references to time,

handler, or clock.

OneShotTimer(HighResolutionTime, AsyncEventHandler)

Signature
public
OneShotTimer(javax.realtime.HighResolutionTime<?> time,

AsyncEventHandler handler)

Description
The equivalent of callingOneShotTimer(HighResolutionTime, TimeDispatcher)29

with arguments time, null followed by a call to setHandler(handler).

Parameters
time is the time to release its handlers.
handler is the hanndler to release.

10.3.2.2.2 Methods

fire

Signature
27Section 10.3.1.2
28Section 10.3.2.1
29Section 10.3.2.2.1

RTSJ 2.0 (Draft 48) 401

10 Clocks and Timers PeriodicTimer

public void
fire()

Description
This should not be called for application code, except for emulation. The fire
method is reserved for the use of the system. When this is enabled, it releases all
handlers and then calls Timer.stop()30. When distabled, but active, it only calls
Timer.stop(). Otherwise it does nothing.

Available since RTSJ 2.0 moved here from Timer, since OneShotTimer and Perio-
dicTimer have slightly different semantics.

10.3.2.3 PeriodicTimer

Inheritance
java.lang.Object
AsyncBaseEvent
AsyncEvent
Timer
PeriodicTimer

Description
An AsyncEvent31 whose fire method is executed periodically according to the
given parameters. The clock associated with the Timer start time must be
identical to the the clock associated with the Timer interval

The first firing is at the beginning of the first interval.
When an interval greater than 0 is given, the timer will fire periodically. When

an interval of 0 is given, the PeriodicTimer will only fire once, unless restarted
after expiration, behaving like a OneShotTimer. In all cases, when the timer is
disabled when the firing time is reached, that particular firing is lost (skipped).
When enabled at a later time, it will fire at its next scheduled time.

When the clock time has already passed the beginning of the first period, the
PeriodicTimer will first fire according to the PhasingPolicy32.

Semantics details are described in the Timer33 pseudo-code and compact
graphic representation of state transitions.

30Section 10.3.2.6.2
31Section 8.3.3.4
32Section 5.3.1.1
33Section 10.3.2.6

402 RTSJ 2.0 (Draft 48)

PeriodicTimer javax.realtime 10.3

Caution: This class is explicitly unsafe for multithreading when being changed.
Code that mutates instances of this class should synchronize at a higher level.

10.3.2.3.1 Constructors

PeriodicTimer(HighResolutionTime, RelativeTime, TimeDis-
patcher)

Signature
public
PeriodicTimer(javax.realtime.HighResolutionTime<?> start,

RelativeTime interval,
TimeDispatcher dispatcher)

throws IllegalArgumentException,
IllegalAssignmentError,
UnsupportedOperationException

Description
Create a timer that executes its fire method periodically.

Available since RTSJ 2.0

Parameters
start The time that specifies when the first interval begins, based on the clock

associated with it. The first firing of the timer is modified according the
PhasingPolicy when the timer is started. A start value of null is equivalent to
a RelativeTime of 0.

interval The period of the timer. Its usage is based on the clock specified by the
clock parameter. When interval is zero or null, the period is ignored and the
firing behavior of the PeriodicTimer is that of a OneShotTimer34.

dispatcher is the dispatcher to use for triggering this event.
Throws
IllegalArgumentException when start or interval is a RelativeTime instance with

a value less than zero; or the clocks associated with start and interval are not
the identical.

34Section 10.3.2.2

RTSJ 2.0 (Draft 48) 403

10 Clocks and Timers PeriodicTimer

IllegalAssignmentError when this PeriodicTimer cannot hold references to handler,
clock and interval.

UnsupportedOperationException when the Chronograph35 associated with time is
not a Clock36.

PeriodicTimer(HighResolutionTime, RelativeTime, AsyncEv-
entHandler)

Signature
public
PeriodicTimer(javax.realtime.HighResolutionTime<?> start,

RelativeTime interval,
AsyncEventHandler handler)

throws IllegalArgumentException,
IllegalAssignmentError

Description

Create a timer that executes its fire method periodically. Equivalent to Periodic-
Timer(start, interval, handler, null).

10.3.2.3.2 Methods

addHandler(AsyncBaseEventHandler)

Signature
public void
addHandler(AsyncBaseEventHandler handler)
throws IllegalArgumentException,

IllegalAssignmentError

Description

35Section 10.3.1.2
36Section 10.3.2.1

404 RTSJ 2.0 (Draft 48)

PeriodicTimer javax.realtime 10.3

Add a handler to the set of handlers associated with this event. It overrides the
method in AsyncBaseEvent37 to allow the use of handlers with PeriodicParam-
eters38, but these parameters must match the period of this timer, otherwise
IllegalArgumentException is thrown.

Parameters
handler a new handler to add to the list of handlers already associated with this.

When handler is already associated with the event, the call has no effect.
Throws
IllegalArgumentException when handler is null or the handler has PeriodicParam-

eters39 with a period that does not match the period of this.
IllegalAssignmentError when this AsyncEvent cannot hold a reference to handler.
Available since RTSJ 2.0

setHandler(AsyncBaseEventHandler)

Signature
public void
setHandler(AsyncBaseEventHandler handler)
throws IllegalArgumentException,

IllegalAssignmentError

Description
Associate a new handler with this event and remove all existing handlers. It
overrides the method in AsyncBaseEvent40 to allow the use of handlers with
PeriodicParameters41, but these parameters must match the period of this timer,
otherwise IllegalArgumentException is thrown.

Parameters
handler The instance of AsyncBaseEventHandler42 to be associated with this. When

handler is null, no handler will be associated with this, i.e., behave effectively
as when setHandler(null) invokes removeHandler(AsyncBaseEventHandler) for
each associated handler.

Throws
37Section 8.3.3.2
38Section 6.3.3.6
39Section 6.3.3.6
40Section 8.3.3.2
41Section 6.3.3.6
42Section 8.3.3.3

RTSJ 2.0 (Draft 48) 405

10 Clocks and Timers PeriodicTimer

IllegalArgumentException when handler has PeriodicParameters43 with a period
that does not match the period of this.

IllegalAssignmentError when this AsyncEvent cannot hold a reference to handler.
Available since RTSJ 2.0

start(PhasingPolicy)

Signature
public void
start(PhasingPolicy phasingPolicy)
throws LateStartException,

IllegalArgumentException

Description
Start the timer with the specified PhasingPolicy44.

Parameters
phasingPolicy determines what happens when the start is too late.

Throws
LateStartException when this method is called after its absolute start time and the

phasingPolicy is PhasingPolicy.STRICT_PHASING45.
IllegalArgumentException when the start time of this timer is not an absolute time,

or phasingPolicy is null.
Available since RTSJ 2.0

start(boolean, PhasingPolicy)

Signature
public void
start(boolean disabled,

PhasingPolicy phasingPolicy)
throws LateStartException,

IllegalArgumentException

43Section 6.3.3.6
44Section 5.3.1.1
45Section 5.3.1.1.1

406 RTSJ 2.0 (Draft 48)

PeriodicTimer javax.realtime 10.3

Description

Start the timer with the specified PhasingPolicy46 and the specified disabled
state.

Parameters
disabled deternine the mode of start: true for enabled and false for disabled for

consistency with Timer.start(boolean)47.
phasingPolicy determines what happens when the start is too late.

Throws
LateStartException when this method is called after its absolute start time and the

phasingPolicy is PhasingPolicy.STRICT_PHASING48.
IllegalArgumentException when the start time of this timer is not an absolute time,

or phasingPolicy is null.

Available since RTSJ 2.0

getClock

Signature
public javax.realtime.Clock
getClock()
throws IllegalStateException

Description

Each instance can only be associated with a single clock, which this method can
obtain.

Throws
IllegalStateException when this has been destroyed.

Returns
the instance of Clock49 that is associated with this.

Available since RTSJ 1.0.1

46Section 5.3.1.1
47Section 10.3.2.6.2
48Section 5.3.1.1.1
49Section 10.3.2.1

RTSJ 2.0 (Draft 48) 407

10 Clocks and Timers PeriodicTimer

createReleaseParameters

Signature
public javax.realtime.ReleaseParameters
createReleaseParameters()

Description
Create a release parameters object with new objects containing copies of the
values corresponding to this timer. When the PeriodicTimer interval is greater
than 0, create a PeriodicParameters50 object with a start time and period that
correspond to the next firing (or skipping) time, and interval, of this timer. When
the interval is 0, create an AperiodicParameters51 object, since in this case the
timer behaves like a OneShotTimer52.

When this timer is active, then the start time is the next firing (or skipping)
time returned as an AbsoluteTime53. Otherwise, the start time is the initial firing
(or skipping) time, as set by the last call to Timer.reschedule54, or when there
was no such call, by the constructor of this timer.

Throws
IllegalStateException when this Timer has been destroyed.

Returns
A new release parameters object with new objects containing copies of the values

corresponding to this timer. When the interval is greater than zero, return a
new instance of PeriodicParameters55. When the interval is zero return a new
instance of AperiodicParameters56.

getFireTime

Signature
public javax.realtime.AbsoluteTime
getFireTime()
throws ArithmeticException,

IllegalStateException

50Section 6.3.3.6
51Section 6.3.3.2
52Section 10.3.2.2
53Section 9.3.1.1
54Section 10.3.2.6.2
55Section 6.3.3.6
56Section 6.3.3.2

408 RTSJ 2.0 (Draft 48)

PeriodicTimer javax.realtime 10.3

Description
Get the time at which this PeriodicTimer is next expected to fire or to skip.
When the PeriodicTimer is disabled, the returned time is that of the skipping of
the firing. When the PeriodicTimer is not-active it throws IllegalStateException.

Throws
ArithmeticException when the result does not fit in the normalized format.
IllegalStateException when this Timer has been destroyed, or when it is not-active.

Returns
The absolute time at which this is next expected to fire or to skip, in a newly

allocated AbsoluteTime57 object. When the timer has been created or re-
scheduled (see Timer.reschedule(HighResolutionTime)58) using an instance of
RelativeTime for its time parameter then it will return the sum of the current
time and the RelativeTime remaining time before the timer is expected to
fire/skip. Within a periodic timer activation, the returned time is associated
with the start clock before the first fire (or skip) time, and associated with the
interval clock otherwise.

getFireTime(AbsoluteTime)

Signature
public javax.realtime.AbsoluteTime
getFireTime(AbsoluteTime dest)

Description
Get the time at which this PeriodicTimer is next expected to fire or to skip.
When the PeriodicTimer is disabled, the returned time is that of the skipping of
the firing. When the PeriodicTimer is not-active it throws IllegalStateException.

Parameters
dest The instance of AbsoluteTime59 which will be updated in place and returned.

The clock association of the dest parameter is ignored. When dest is null a
new object is allocated for the result.

Throws
ArithmeticException when the result does not fit in the normalized format.
IllegalStateException when this Timer has been destroyed, or when it is not-active.
57Section 9.3.1.1
58Section 10.3.2.6.2
59Section 9.3.1.1

RTSJ 2.0 (Draft 48) 409

10 Clocks and Timers PeriodicTimer

Returns
The instance of AbsoluteTime60 passed as parameter, with time values representing

the absolute time at which this is expected to fire or to skip. When the dest pa-
rameter is null the result is returned in a newly allocated object. When the timer
has been created or re-scheduled (see Timer.reschedule(HighResolutionTime)61)
using an instance of RelativeTime for its time parameter then it will return
the sum of the current time and the RelativeTime remaining time before the
timer is expected to fire/skip. Within a periodic timer activation, the returned
time is associated with the start clock before the first fire (or skip) time, and
associated with the interval clock otherwise.

Available since RTSJ 1.0.1

getInterval

Signature
public javax.realtime.RelativeTime
getInterval()

Description
Gets the interval of this Timer.

Throws
IllegalStateException when this Timer has been destroyed.

Returns
The RelativeTime instance assigned as this periodic timer’s interval by the con-

structor or setInterval(RelativeTime)62.

setInterval(RelativeTime)

Signature
public javax.realtime.PeriodicTimer
setInterval(RelativeTime interval)

Description
Reset the interval value of this.

60Section 9.3.1.1
61Section 10.3.2.6.2
62Section 10.3.2.3.2

410 RTSJ 2.0 (Draft 48)

TimeDispatcher javax.realtime 10.3

Parameters
interval A RelativeTime63 object which is the interval used to reset this Timer. A

null interval is interpreted as RelativeTime(0,0).
The interval does not affect the first firing (or skipping) of a timer’s activation.
At each firing (or skipping), the next fire (or skip) time of an active periodic
timer is established based on the interval currently in use. Resetting the
interval of an active periodic timer only effects future fire (or skip) times after
the next.

Throws
IllegalArgumentException when interval is a RelativeTime instance with a value

less than zero, or the clock associated with interval is different to the clock
associated with this.

IllegalAssignmentError when this PeriodicTimer cannot hold a reference to interval.
IllegalStateException when this Timer has been destroyed.

Returns
this

fire

Signature
public void
fire()

Description
This should not be called for application code, except for emulation. The fire
method is reserved for the use of the system. When this is enabled, it releases
all handlers and then reschedules itself for the next period without changing
state. When distabled, but active, it simply rescheduled itself. Otherwise it does
nothing.

Available since RTSJ 2.0 moved here from Timer, since OneShotTimer and Perio-
dicTimer have slightly different semantics.

10.3.2.4 TimeDispatcher

Inheritance
63Section 9.3.1.3

RTSJ 2.0 (Draft 48) 411

10 Clocks and Timers TimeDispatcher

java.lang.Object
ActiveEventDispatcher<TimeDispatcher, Timable>
TimeDispatcher

Description
A dispatcher for time events: Timer64 and RealtimeThread.sleep65.

Available since RTSJ 2.0

10.3.2.4.1 Constructors

TimeDispatcher(SchedulingParameters, SchedulingGroup)

Signature
public
TimeDispatcher(SchedulingParameters schedule,

SchedulingGroup group)

Description
Create a new dispatcher, whose dispatching thread runs with the given scheduling
parameters.

Parameters
schedule give the parameters for scheduling this dispatcher

TimeDispatcher(SchedulingParameters)

Signature
public
TimeDispatcher(SchedulingParameters schedule)

Description
Create a new dispatcher, whose dispatching thread runs with the given scheduling
parameters.

64Section 10.3.2.6
65Section 5.3.2.2.2

412 RTSJ 2.0 (Draft 48)

TimeDispatcher javax.realtime 10.3

Parameters
schedule give the parameters for scheduling this dispatcher

10.3.2.4.2 Methods

register(Timable)

Signature
public void
register(Timable target)
throws RegistrationException,

IllegalStateException,
IllegalArgumentException

Description
Register a AsyncTimable66 with this dispatcher.

Parameters
target to register

Throws
RegistrationException when target is already registered.
IllegalStateException when this object has been destroyed.
IllegalArgumentException when target is not stopped.

deregister(Timable)

Signature
public void
deregister(Timable target)
throws DeregistrationException,

IllegalStateException,
IllegalArgumentException

Description
Deregister a AsyncTimable67 from this dispatcher.

66Section 10.3.1.1
67Section 10.3.1.1

RTSJ 2.0 (Draft 48) 413

10 Clocks and Timers TimeDispatcher.Runner

Parameters
target to deregister

Throws
DeregistrationException when target is not already registered.
IllegalStateException when this object has been destroyed.
IllegalArgumentException when target is not stopped.

destroy

Signature
public void
destroy()
throws IllegalStateException

Description
Release all resources thereby making the dispatcher unusable.

Throws
IllegalStateException when called on a dispatcher that has one or more registered

AsyncTimable68 objects.

10.3.2.5 TimeDispatcher.Runner

Inheritance
java.lang.Object
java.lang.Thread
RealtimeThread
TimeDispatcher.Runner

Description

10.3.2.5.1 Methods

68Section 10.3.1.1

414 RTSJ 2.0 (Draft 48)

Timer javax.realtime 10.3

run

Signature
public void
run()

Description

10.3.2.6 Timer

Inheritance
java.lang.Object
AsyncBaseEvent
AsyncEvent
Timer

Interfaces
javax.realtime.AsyncTimable
javax.realtime.ActiveEvent

Description
A timer is a timed event that measures time according to a given Clock69. This
class defines basic functionality available to all timers. Applications will generally
use either PeriodicTimer70 to create an event that is fired repeatedly at regular
intervals, or OneShotTimer71 for an event that just fires once at a specific time.
A timer is always associated with at least one Clock72, which provides the basic
facilities of something that ticks along following some time line (realtime, CPU-
time, user-time, simulation-time, etc.). All timers are created disabled and do
nothing until start() is called.

10.3.2.6.1 Constructors

69Section 10.3.2.1
70Section 10.3.2.3
71Section 10.3.2.2
72Section 10.3.2.1

RTSJ 2.0 (Draft 48) 415

10 Clocks and Timers Timer

Timer(HighResolutionTime, TimeDispatcher)

Signature
protected
Timer(javax.realtime.HighResolutionTime<?> time,

TimeDispatcher dispatcher)
throws IllegalArgumentException,

UnsupportedOperationException,
IllegalAssignmentError

Description
Create a timer that fires according to the given time based on the Clock73

associated with time and is dispatched by the specified dispatcher.

Available since version 2.0

Parameters
time The time used to determine when to fire the event. A time value of null is

equivalent to a RelativeTime of 0, and in this case the Timer fires immediately
upon a call to start().

dispatcher The dispatcher used to interface between this timer and its associated
clock. When null, the system default dispatcher is used.

Throws
IllegalArgumentException when time is a negative RelativeTime value.
UnsupportedOperationException when time has a Chronograph74 is not a clock.
IllegalAssignmentError when this Timer cannot hold references to handler and

clock.

Timer(HighResolutionTime)

Signature
protected
Timer(javax.realtime.HighResolutionTime<?> time)

73Section 10.3.2.1
74Section 10.3.1.2

416 RTSJ 2.0 (Draft 48)

Timer javax.realtime 10.3

throws IllegalArgumentException,
UnsupportedOperationException,
IllegalAssignmentError

Description
Create a timer that fires according to the given time based on the Clock75

associated with time and is dispatched by the system default dispatcher.
This is equivalent to Timer(time, null).

Available since version 2.0

Parameters
time The time used to determine when to fire the event. A time value of null is

equivalent to a RelativeTime of 0, and in this case the Timer fires immediately
upon a call to start().

Throws
IllegalArgumentException when time is a negative RelativeTime value.
UnsupportedOperationException when time has a Chronograph76 is not a clock.
IllegalAssignmentError when this Timer cannot hold references to handler and

clock.

Timer(HighResolutionTime, Clock, AsyncEventHandler)

Signature
protected
Timer(javax.realtime.HighResolutionTime<?> time,

Clock clock,
AsyncEventHandler handler)

throws IllegalArgumentException,
UnsupportedOperationException,
IllegalAssignmentError

Description
Create a timer that fires according to the given time, which must be based on
the supplied Clock77 clock (if any), and is handled by the specified AsyncEvent-

75Section 10.3.2.1
76Section 10.3.1.2
77Section 10.3.2.1

RTSJ 2.0 (Draft 48) 417

10 Clocks and Timers Timer

Handler78 handler. The system default dispatcher will be used.
This constructor is slated for deprecation in a future release, and a constructor

that does not receive a Clock argument should be used in preference.

Parameters
time The time used to determine when to fire the event. A time value of null is

equivalent to a RelativeTime of 0, and in this case the Timer fires immediately
upon a call to start().

clock The clock on which to base this timer. When null, the clock associated with
time used.

handler The default handler to use for this event. When null, no handler is associated
with the timer and nothing will happen when this event fires unless a handler is
subsequently associated with the timer using the addHandler() or setHandler()
method.

Throws
IllegalArgumentException when time is a negative RelativeTime value or the sup-

plied clock is not the Clock associated with time.
UnsupportedOperationException when time has a Chronograph79 that is not an

instance of Clock.
IllegalAssignmentError when this Timer cannot hold references to handler and

clock.

10.3.2.6.2 Methods

getClock

Signature
public javax.realtime.Clock
getClock()
throws IllegalStateException

Description
Return the instance of Clock80 on which this timer is based.

Throws
78Section 8.3.3.5
79Section 10.3.1.2
80Section 10.3.2.1

418 RTSJ 2.0 (Draft 48)

Timer javax.realtime 10.3

IllegalStateException when this Timer has been destroyed.
Returns
The instance of Clock81 associated with this Timer.

getStart

Signature
public javax.realtime.HighResolutionTime<?>
getStart()

Description
Get the start time of this Timer. Note that the start time uses copy semantics,
so changes made to the value returned by this method do not effect the start
time of this Timer.

Returns
a reference to the time (or start) parameter used when constructing this Timer,

ensuring the content has the original values. Since RTSJ 2.0

getEffectiveStartTime

Signature
public javax.realtime.AbsoluteTime
getEffectiveStartTime()
throws IllegalStateException,

ArithmeticException

Description
Return a newly-created time representing the time the timer actually started, or
when the timer has been rescheduled, the effective start time after the reschedule.

Throws
IllegalStateException when the timer is not active or has been destroyed.
ArithmeticException when the result does not fit in the normalized format.

Returns
the time this actually started.
Available since RTSJ 2.0

81Section 10.3.2.1

RTSJ 2.0 (Draft 48) 419

10 Clocks and Timers Timer

getEffectiveStartTime(AbsoluteTime)

Signature
public javax.realtime.AbsoluteTime
getEffectiveStartTime(AbsoluteTime dest)
throws IllegalStateException,

ArithmeticException

Description
Update dest to represent the time the timer actually started, or when the timer
has been rescheduled, the effective start time after the reschedule. When dest is
null, behave as if getEffectiveStartTime()82 had been called.

Parameters
dest a place to store the time this actually started.

Throws
IllegalStateException when the timer is not active or has been destroyed.
ArithmeticException when the result does not fit in the normalized format.

Returns
The time the timer actually started, or when it has been rescheduled, the effective

start time after the reschedule.

Available since RTSJ 2.0

getLastReleaseTime

Signature
public final javax.realtime.AbsoluteTime
getLastReleaseTime()

Description
Get the last release time of this timer.

Throws
IllegalStateException when this timer has not been released since it was last started.

Returns
82Section 10.3.2.6.2

420 RTSJ 2.0 (Draft 48)

Timer javax.realtime 10.3

a reference to a newly-created AbsoluteTime83 object representing this timer’s last
release time. When the timer has not been released since it was last started,
throw an exception.

Available since RTSJ 2.0

getLastReleaseTime(AbsoluteTime)

Signature
public javax.realtime.AbsoluteTime
getLastReleaseTime(AbsoluteTime dest)

Description

Returns
When dest is null, return a reference to a newly-created AbsoluteTime84 object

representing this timer’s last release time. When dest is non-null, set dest to
this timer’s last release time. When the timer has not been released, return
null. Since RTSJ 2.0

getFireTime

Signature
public javax.realtime.AbsoluteTime
getFireTime()
throws IllegalStateException,

ArithmeticException

Description
Get the time at which this Timer is expected to fire. When the Timer is disabled,
the returned time is that of the skipping of the firing. When the Timer is
not-active it throws IllegalStateException.

Throws
ArithmeticException when the result does not fit in the normalized format.
IllegalStateException when this Timer has been destroyed, or when it is not-active.
83Section 9.3.1.1
84Section 9.3.1.1

RTSJ 2.0 (Draft 48) 421

10 Clocks and Timers Timer

Returns
The absolute time at which this is expected to fire (release handlers or skip), in

a newly allocated AbsoluteTime85 object. When the timer has been created
or re-scheduled (see Timer.reschedule86) using an instance of RelativeTime for
its time parameter then it will return the sum of the current time and the
RelativeTime remaining time before the timer is expected to fire/skip. The
clock association of the returned time is the clock on which this timer is based.

getFireTime(AbsoluteTime)

Signature
public javax.realtime.AbsoluteTime
getFireTime(AbsoluteTime dest)
throws IllegalStateException,

ArithmeticException

Description
Get the time at which this Timer is expected to fire. When the Timer is disabled,
the returned time is that of the skipping of the firing. When the Timer is
not-active it throws IllegalStateException.

Parameters
dest The instance of AbsoluteTime87 which will be updated in place and returned.

The clock association of the dest parameter is ignored. When dest is null a
new object is allocated for the result.

Throws
ArithmeticException when the result does not fit in the normalized format.
IllegalStateException when this Timer has been destroyed, or when it is not-active.

Returns
The instance of AbsoluteTime88 passed as parameter, with time values representing

the absolute time at which this is expected to fire (release its handlers or
skip). When the dest parameter is null the result is returned in a newly
allocated object. When the timer has been created or rescheduled (see Timer.
reschedule89) using an instance of RelativeTime for its time parameter then it
will return the sum of the current time and the RelativeTime remaining time

85Section 9.3.1.1
86Section 10.3.2.6.2
87Section 9.3.1.1
88Section 9.3.1.1
89Section 10.3.2.6.2

422 RTSJ 2.0 (Draft 48)

Timer javax.realtime 10.3

before the timer is expected to fire. The clock association of the returned time
is the clock on which this timer is based.

Available since RTSJ 1.0.1

getDispatcher

Signature
public javax.realtime.TimeDispatcher
getDispatcher()

Description
Get the dispatcher associated with this Timable.

Available since RTSJ 2.0

isActive

Signature
public boolean
isActive()

Description
Determine the activation state of this happening, i.e., it has been started.

Returns
true when active, false otherwise.

isRunning

Signature
public boolean
isRunning()
throws IllegalStateException

Description
Determines if this is active and is enabled such that when the given time occurs
it will fire the event. Given the Timer current state it answer the question "Is
firing expected?".

RTSJ 2.0 (Draft 48) 423

10 Clocks and Timers Timer

Throws
IllegalStateException when this Timer has been destroyed.

Returns
true when the timer is active and enabled; oyherwise false, when the timer has

either not been started, it has been started but it is disabled, or it has been
started and is now stopped.

handledBy(AsyncEventHandler)

Signature
public boolean
handledBy(AsyncEventHandler handler)
throws IllegalStateException

Description
Replaced by AsyncBaseEvent.handledBy(AsyncBaseEventHandler)90

Parameters
handler to add to the Timer

Throws
IllegalStateException when this Timer has been destroyed.

Returns
true when handler is associated with this, otherwise false.
Available since RTSJ 1.0.1

createReleaseParameters

Signature
public javax.realtime.ReleaseParameters
createReleaseParameters()
throws IllegalStateException

Description
Create a ReleaseParameters91 object appropriate to the timing characteristics of
this event. The default is the most pessimistic: AperiodicParameters92. This is

90Section 8.3.3.2.1
91Section 6.3.3.10
92Section 6.3.3.2

424 RTSJ 2.0 (Draft 48)

Timer javax.realtime 10.3

typically called by code that is setting up a handler for this event that will fill in
the parts of the release parameters for which it has values, e.g. cost.

Throws
IllegalStateException when this Timer has been destroyed.

Returns
A newly created ReleaseParameters93 object.

enable

Signature
public void
enable()
throws IllegalStateException

Description
Re-enable this timer after it has been disabled. (See Timer.disable()94.) When
the Timer is already enabled, this method does nothing. When the Timer is
not-active, this method does nothing.

Throws
IllegalStateException when this Timer has been destroyed.

disable

Signature
public void
disable()
throws IllegalStateException

Description
Disable this timer, preventing it from firing. It may subsequently be re-enabled.
When the timer is disabled when its fire time occurs then it will not release its
handlers. However, a disabled timer created using an instance of RelativeTime
for its time parameter continues to count while it is disabled, and no changes
take place in a disabled timer created using an instance of AbsoluteTime, in
both cases the potential firing is simply masked, or skipped. When the timer is

93Section 6.3.3.10
94Section 10.3.2.6.2

RTSJ 2.0 (Draft 48) 425

10 Clocks and Timers Timer

subsequently re-enabled before its fire time and it is enabled when its fire time
occurs, then it will fire. It is important to note that this method does not delay
the time before a possible firing. For example, when the timer is set to fire at
time 42 and the disable() is called at time 30 and enable() is called at time 40
the firing will occur at time 42 (not time 52). These semantics imply also that
firings are not queued. Using the above example, when enable was called at time
43 no firing will occur, since at time 42 this was disabled. When the Timer is
already disabled, whether it is active or inactive, this method does nothing.

Throws
IllegalStateException when this Timer has been destroyed.

start

Signature
public void
start()
throws IllegalStateException

Description
Start this timer. A timer starts measuring time from when it is started; this
method makes the timer active and enabled.

Throws
IllegalStateException when this Timer has been destroyed, or when this timer is

already active.

start(boolean)

Signature
public void
start(boolean disabled)
throws IllegalStateException

Description
Start this timer. A timer starts measuring time from when it is started. When
disabled is true start the timer making it active in a disabled state. When disabled
is false this method behaves like the start() method.

Parameters

426 RTSJ 2.0 (Draft 48)

Timer javax.realtime 10.3

disabled When true, the timer will be active but disabled after it is started. When
false this method behaves like the start() method.

Throws
IllegalStateException when this Timer has been destroyed, or when this timer is

active.
Available since RTSJ 1.0.1

stop

Signature
public boolean
stop()
throws IllegalStateException

Description
Stops a timer when it is active and changes its state to inactive and disabled.

Throws
IllegalStateException when this Timer has been destroyed.

Returns
true when this was enabled and false otherwise.

reschedule(HighResolutionTime)

Signature
public void
reschedule(javax.realtime.HighResolutionTime<?> time)
throws IllegalStateException,

IllegalArgumentException

Description
Change the scheduled time for this event. This method can take either an
AbsoluteTime or a RelativeTime for its argument, and the Timer will behave as
if created using that type for its time parameter. The rescheduling will take place
between the invocation and the return of the method.

Note that while the scheduled time is changed as described above, the reschedul-
ing itself is applied only on the first firing (or on the first skipping when disabled)
of a timer’s activation. When reschedule is invoked after the current activation

RTSJ 2.0 (Draft 48) 427

10 Clocks and Timers

timer’s firing, then the rescheduled time will be effective only upon the next start
or startDisabled command (which may need to be preceded by a stop command).

When reschedule is invoked with a RelativeTime time on an active timer before
its first firing/skipping, then the rescheduled firing/skipping time is relative to
the time of invocation.

Parameters
time The time to reschedule for this event firing. When time is null, the previous

time is still the time used for the Timer firing.
Throws
IllegalArgumentException when time is a negative RelativeTime value.
IllegalStateException when this Timer has been destroyed.

10.4 Rationale
Clocks differ because of monotonicity, synchronization, jitter, stability, accuracy,
precision, and resolution. There are many possible subclasses of clocks: realtime
clocks, user time clocks, simulation time clocks, wall clocks.
Open issue 10.4.1 (jjh)

The following rationale for using more than one clock is based on the faulty
tick rate argument, which is a bad way to design realtime systems. This should be
changed to an interrupt-based example. We should also mention UTC vs realtime
clocks here.
End of issue 10.4.1

The idea of using multiple clocks may at first seem strange, but it enables the
developer to accommodated systems with different resources. For instance, most
systems have an on board clock, which is provided as the default clock through the
operation system. This clock is the natural clock to use for the RTSJ default clock,
but this clock may not be stable or accurate enough for a given application. The
clock API can be used to provide a second realtime clock that is based on an external
clock source which can provide the needed accuracy and stability. For example, this
could be taken from an external board with a hardware occilator, a timing circuit
that can generate an interrupt, and a small battery. A more exotic example whould
be to associate a clock with an object that rotates, where one degree is a second, a
minute, or an hour depending on the rotation speed and accuracy needed, so long
as the clock can trigger something at some fraction of a turn. Without a triggering
mechanism, it could still be a chronograph.

The importance of the use of one-shot timers for time-out behavior and the
vagaries in the execution of code prior to starting the timer for short time-outs
dictate that the triggering of the timer should be guaranteed. The problem is

428 RTSJ 2.0 (Draft 48)

Rationale 10.4

exacerbated for periodic timers where the importance of the periodic triggering
outweighs the precision of the start time. In such cases, it is also convenient to allow,
for example, a relative time of zero to be used as the start time.

Clock resolution is a complicated topic, and clock implementations may have
differing precision for different purposes. For example, a clock for interacting with
humans need much less precision than for controlling the opening and closing of
values on an internal combustion engine. In this case, their relationship to wall clock
time may vary as well.

The precision of time returned by a hardware clock device when queried may be
greater than the precision at which that device can supply interrupts. (Consider, for
example, a high precision off-chip realtime clock device connected via a shared serial
bus.) A different device may provide pulse-per-second interrupts of very high precision,
but be unable to interrupt on any other interval. The RTSJ Clock class provides two
representation of precision: getDrivePrecission() and getQueryPrecission inherited
from Chronograph. Clocks should behave as if their tick (setAlarm()) precision is
the same as returned by getResolution().

RTSJ 2.0 (Draft 48) 429

10 Clocks and Timers

430 RTSJ 2.0 (Draft 48)

Chapter 11

Alternative Memory Areas

Conventional Java uses a single heap for storing all objects. The thread stacks hold
only primitive objects and references to objects. This is fine for desktop and server
systems, where there are no realtime, locality, or isolation requirements. For most
realtime systems, a single heap with a deterministic garbage collector is usually also
sufficient. For other situations, this specification defines classes directly related to
memory and memory management. These classes provide a more generalized means
of memory management than is available in a conventional Java VM.

In conventional Java, all of the memory needed for the allocation of an object is
taken from a garbage-collected heap. The RTSJ generalizes the concept of a heap to
that of a memory area. A memory area consists of two components: a Java object
that manages the memory area and the allocation area, which is the actual region
of memory from which objects are allocated. Every thread and schedulable has
a current allocation context. This context is the memory area which is managing
the allocation area that will be used when the thread/schedulable requests memory
allocation using the Java new operator.

There are three types of memory area, distinguished by object lifetime semantics,
defined by the RTSJ.
• Heap memory—the Java heap. Unreachable objects are collected by a garbage

collector. Individual schedulables can specify their rate of allocation of objects
on the heap.
• Immortal memory—an area defined by the JVM in which allocated objects

might never be collected. Access to the memory area must be independent of
garbage collection activity. Individual schedulables can specify the maximum
amount of memory they need in immortal memory.
• Scoped memory—multiple areas that can be created by the application; objects

are collected in scoped memory when there are no schedulables currently active
in that area and it is not pinned. These allow objects with well-defined lifetimes
to be created and efficiently collected in an easily-identified group.

431

11 Alternative Memory Areas

Given that objects can now be created in multiple memory areas, it is necessary
to ensure that an object cannot reference another object that might be collected at
an earlier time. For example, an object in immortal memory (that is never collected)
must not be allowed to reference an object in scoped memory. This is because the
scoped memory object will be collected when the scope is not pinned and there
is no schedulable active in its associated allocation area, rendering the immortal
object’s reference to the scoped memory object invalid. For this reason, the RTSJ
defines some memory assignment rules that are checked by the JVM on every object
assignment. If the program violates the memory assignment rules, an exception is
thrown.

Physical Memory
In embedded systems it is often the case that multiple directly addressable memory
types are available to the application. For example, SRAM, DRAM, and Flash
memory may all fall within the processor address space. Moreover, as the JVM
implementer may require the VM to be portable between systems within the same
processor family, the VM itself may not have detailed knowledge of the underlying
memory architecture. The RTSJ therefore provides a framework with which the
embedded systems integrator can define memory characteristics and specify ranges
of physical addresses that support those memory characteristics. These physical
memory regions can be allocated as either immortal or scoped memory areas.

Stacked Memory
RTSJ 2.0, adds a new type of scoped memory called stacked memory. Stacked
memory enables systems to maintain predictable memory performance over a long
period of time while still releasing memory at runtime. The older scoped memory
interfaces left sufficient ambiguity in the specification that the user may not have been
able to sufficiently characterize internal and external fragmentation upon creating or
destroying scoped memory areas. The StackedMemory class provides a safe interface
for creating and releasing scopes with a set of rules under which the VM must
guarantee fragmentation-free behavior with predictable memory overhead. These
guarantees are provided by constraining the order in which an application may enter
StackedMemory areas, as well as the manner in which they may be arranged on the
scope stack. These constraints are enforced by the implementation.

Summary
In summary, the classes and interfaces defined in this chapter enable

1. the definition of regions of memory outside of the conventional Java heap;

432 RTSJ 2.0 (Draft 48)

Definitions 11.1

2. the definition of regions of scoped memory, that is, memory regions with a
limited lifetime;

3. the definition of regions of memory containing objects whose lifetime matches
that of the application;

4. the definition of regions of memory mapped to specific physical addresses with
specific virtual memory characteristics;

5. the specification of maximum memory area consumption and maximum alloca-
tion rates for individual schedulables;

6. the programmer to query information characterizing the behavior of the garbage
collection algorithm, and to some limited ability, alter the behavior of that
algorithm.

11.1 Definitions
Allocation Context — An abstraction representing memory from which a new

object can be allocated. In conventional Java, this is the Java heap. The
MemoryArea class is the base class representing all allocation contexts in the
RTSJ, of which the heap (represented by HeapMemory) is just one type.

Current Allocation Context — The memory area which will be used when object
allocation is requested in the currently active thread of control.

Allocation Area — The area of memory that is managed by a MemoryArea from
which objects are allocated. The allocation area for a extraheap memory area
is logically and physically separate from the Java heap.

Backing Store — A range of memory addresses from which the allocation area of
a MemoryArea is drawn.

Explicit Initial Memory Area — A memory area given to a constructor of a
Schedulable type, when it is created.

Execution Context — A memory area upon which execution is dependent. This
includes areas in which a Schedulable or ActiveEvent is allocated. In order
to prevent references from becoming invalid, the memory associated with an
execution context may not be reclaimed. The following conditions cause a
memory area to be an execution context:
1. it contains a Thread instance that has been started but have not termi-

nated (including the RealtimeThread instances contained by ActiveEvent-
Dispatcher instances),

2. it contains an ActiveEvent instances that is active,
3. it contains a firable asynchronous event handlers1,
4. it is on the scope stack inherited by one of the schedulable or event types

listed above from the schedulable that created it, or
1Defined in Section 8.1

RTSJ 2.0 (Draft 48) 433

11 Alternative Memory Areas

5. it is on the scope stack of an active schedulable beyond its inherited stack.
Default Initial Memory Area — The initial memory area for a schedulable is

default when it is the memory area in which the schedulable was created.
Memory Assignment Rules — The rules for when a reference to an object may

be saved in another object. In general, an object created in a memory area may
only be stored in the current memory area or a more deeply nested memory
area (scoped memory). For these rules, instances of @code HeapMemory and
ImmortalMemory are equivalent.

Portal — A location for storing a reference to an object allocated in an instance
of ScopedMemory settable on that instance. A portal can be used to pass
information between instances of Schedulable executing in a given area.

Scope Stack — A sequence of the memory areas the an instance of Schedulable
has entered, in order of entry, where the first entered is the bottom of the stack
and the last entered is the top.

11.2 Semantics
The classes MemoryArea, HeapMemory, and ImmortalMemory are part of the base
module and the semantics below that apply to those modules must be fulfilled by
all RTSJ implementations. The rest of the features described here belong to the
Alternative Memory Areas Module introduced in Section 3.2.2.3 and are only required
for implementations that include that module. The following lists define the general
semantics of the classes of this section. Semantics of particular classes, constructors,
methods, and fields are the class description and the constructor, method, and field
detail sections further on.

11.2.1 Allocation Execution Time
The following two requirements apply to allocation in any memory area, including
the heap.

1. All nondeprecated MemoryArea classes are required to have allocation times
linear in the size of the object being allocated. The linear time attribute
requires that, ignoring performance variations due to hardware caches or
similar optimizations and ignoring execution time of any static initializers, the
execution time of new must be bounded by a polynomial, f(n), where n is the
size of the object and for all n > 0, f(n) ≤ Cn for some constant C.

2. The execution time of object constructors and time spent in class loading and
static initialization are not governed by the bounds on object allocation in
this specification, but setting default initial values for fields in the instance (as
specified in The Java Virtual Machine Specification, Second Edition, section

434 RTSJ 2.0 (Draft 48)

Semantics 11.2

2.5.1, “Each class variable, instance variable, and array component is initialized
with a default value when it is created.”) is considered part of object allocation
and included in the time bound.

11.2.2 Allocation Context
The following requirements apply to the allocation context represented by a memory
area.

3. A memory area is represented by an instance of a subclass of the MemoryArea
class. When a memory area, m, is entered by calling m.enter (or another
method from the family of enter-like methods defined in MemoryArea or its
subclasses), m becomes the allocation context of the current schedulable object.
When control returns from the enter method, the allocation context is restored
to the value it had immediately before enter was called.

4. When a memory area, m, is entered by calling m’s executeInArea method, m
becomes the current allocation context of the current schedulable. When control
returns from the executeInArea method, the allocation context is restored to
the value it had before executeInArea was called.

5. The initial allocation context for a schedulable is the memory area that was
designated the initial memory area when the schedulable was constructed.
This initial allocation context becomes the current allocation context for that
schedulable when the schedulable object first becomes eligible for execution.
For instances of AsyncBaseEventHandler, the initial allocation context is the
same on each release; for realtime threads, in releases subsequent to the first,
the allocation context is the same as it was when the realtime thread became
blocked-for-release-event.

6. All object allocation through the new keyword will use the current allocation
context, but note that allocation can be performed in a specific memory area
using the newInstance and newArray methods on MemoryArea.

7. Instances of schedulables behave as if they stored their memory area context
in a structure called the scope stack. This structure is manipulated by the
instantiation of a schedulables, and the following methods from MemoryArea
and its subclasses: all the enter and joinAndEnter methods, executeInArea,
and both newInstance methods. See the semantics in Maintaining the Scope
Stack for details.

8. The scope stack is accessible through a set of static methods on RealtimeThread.
These methods allow outer allocation contexts to be accessed by their index
number. Memory areas on a scope stack may be referred to as inner or outer
relative to other entries in that scope stack. An “outer scope” is further from
the current allocation context on the current scope stack and has a lower index.

9. The executeInArea, newInstance and newArray methods, when invoked on

RTSJ 2.0 (Draft 48) 435

11 Alternative Memory Areas

an instance of ScopedMemory require that instance to be an outer allocation
context on the current schedulable object’s current scope stack.

10. An instance of ScopedMemory is said to be in use if it has a positive reference
count as defined by semantic 17 below.

11.2.3 The Parent Scope
The following requirements apply to a scope’s parent.
11. Instances of ScopedMemory have special semantics, including a definition of

parent. If a ScopedMemory object is neither in use nor the initial memory area
for a schedulable, it has no parent scope.
(a) When a ScopedMemory object becomes in use, its parent is the nearest

ScopedMemory object outside it on the current scope stack. If there is
no outside ScopedMemory object in the current scope stack, the parent
is the primordial scope which is not actually a memory area, but only a
marker that constrains the parentage of ScopedMemory objects.

(b) At construction of a schedulable, if the initial memory area has no parent,
the initial memory area is assigned the parent it will have when the
schedulable is in execution. This rule determines the initial memory area’s
parent until the schedulable object is de-allocated or, in the case of a
RealtimeThread, it completes execution.

12. Instances of ScopedMemory must satisfy the single parent rule, which requires
that each scoped memory has a unique parent as defined in semantic 11.

11.2.4 Memory Areas and Schedulables
The following requirements govern the relationship between memory and execution.
13. Pushing a scoped memory onto a scope stack is always subject to the single

parent rule.
14. Each schedulable has a default initial memory area which is that object’s

initial allocation context. The default initial memory area is the current
allocation context in effect during execution of the schedulable’s constructor,
but a schedulable may supply constructors with an explicit initial memory area
that override the default.

15. A Java thread cannot have a scope stack; consequently it can only be created
and execute within heap or immortal memory. The thread starts execution
with its allocation context set to the memory area containing the Thread
object. An attempt to create a Java thread in a scoped memory area throws
IllegalAssignmentError.

16. A Java thread may use executeInArea, and the newInstance and newArray
methods from the ImmortalMemory and HeapMemory classes. These methods

436 RTSJ 2.0 (Draft 48)

Semantics 11.2

enable it to execute with an immortal current allocation context, but semantic
15 applies even during execution of these methods.

11.2.5 Scoped Memory Reference Counting
The following requirements apply to references to scoped memory.
17. Each instance of the class ScopedMemory, or its subclasses, must maintain

a reference count which is greater than zero when and only when it is an
execution contexts or more exactly, the reference count is the number of causes
for memory area to be an execution context.

18. Each instance of the PinnableMemory class must support a pinned count. This
count is incremented for each call of the pin method and decremented for each
call of the unpin method. The count is always greater than or equal to zero
(that is, calling the unpin method has no effect if the count equals zero).

19. When the reference count for an instance of the class ScopedMemory is ready
to be decremented from one to zero and the pinned count (if present) is
equal to zero, all unfinalized objects within that area are considered ready for
finalization.
(a) When after the finalizers for all such unfinalized objects in the scoped

memory area run to completion the reference count for the memory area
is still ready to be decremented to zero and the pinned count is still equal
to zero, any newly created unfinalized objects are considered ready for
finalization and the process is repeated until no new objects are created or
the scoped memory’s reference count is no longer ready to be decremented
from one to zero.

(b) When the scope contains no unfinalized objects and its reference count is
ready to be decremented from one to zero and the pinned count is equal
to zero, any asynchronous event in the scope is no longer treated as a
source of fireability for asynchronous event handlers.

(c) When that action causes object creation in the scope, the finalization
process resumes from the beginning;

(d) When the reference count is no longer ready to be decremented to zero,
the finalization process terminates.

(e) Otherwise, the reference count is decremented to zero and the memory
scope is emptied of all objects.

(f) The process of scope finalization starts when the scope’s reference count
is about to go to zero with a zero pin count and continues until the scope
is emptied or the process is terminated because the reference count is no
longer about to go to zero.

20. When the pinned count is ready to go to zero and the reference count is zero,
all unfinalized objects within that area are considered ready for finalization,

RTSJ 2.0 (Draft 48) 437

11 Alternative Memory Areas

and the same semantics as 19 above applies.
21. The RTSJ implementation must behave effectively as if during the finalization

process the schedulable executing the finalization of a scope holds a synchronized
lock that must also be acquired
(a) to increase the reference count when entering the scope,
(b) to increase the reference count during startup for a thread with the

finalizing scope as its explicit initial memory area, and
(c) to increase the reference count while making firable an asynchronous event

handler with the scope as its explicit initial memory area.
22. Although the steps in scope finalization are ordered, no order is specified

for finalization of objects or for disarming fireability of asynchronous event
handlers. The objects may be processed in any order or concurrently, but at no
time may a scope’s reference count be reduced to zero while it has one or more
child scopes. This semantic is a special case of the finalization implementation
specified in The Java Language Specification, second edition, section 12.6.1.

23. Finalization may start when all unfinalized objects in the scope are ready for
finalization. Finalizers are executed with the current allocation context set to
the finalizing scope and are executed by the schedulable in control of the scope
when its reference count is ready to be decremented from one to zero. If finalizers
are executed because a realtime thread terminates or an AsyncEventHandler
becomes unfirable, that realtime thread or AsyncEventHandler is considered
in control of the scope and must execute the finalizers.

24. From the time objects in a scope are deleted until the portal on the scope is
successfully set to a reference value (not null) with setPortal, the value returned
by getPortal on that scoped memory object must be null.

11.2.6 Immortal Memory
The following requirements apply to immortal memory.
25. Objects created in any immortal memory area are unexceptionally referencable

from all Java threads, and all schedulables, and the allocation and use of objects
in immortal memory is never subject to garbage collection delays.

26. An implementation may execute finalizers for immortal objects when it deter-
mines that the application has terminated. Finalizers will be executed by a
thread or schedulable whose current allocation context is not scoped memory.
Regardless of any call to runFinalizersOnExit, except as required to support
the base Java platform, the system need not execute finalizers for immortal
objects that remain unfinalized when the JVM begins termination.

27. Class objects, the associated static memory, and interned Strings behave
effectively as if they were allocated in immortal memory with respect to
memory reference and assignment rules, and preemption delays by schedulables

438 RTSJ 2.0 (Draft 48)

Semantics 11.2

which may not access the heap.
28. Static initializers are executed effectively as if the current thread performed

ImmortalMemory.instance().executeInArea(r) where r is a Runnable that exe-
cutes the <clinit> method of the class being initialized.

11.2.7 Maintaining Referential Integrity
The following rules apply to references to objects in scoped memory.
29. Memory assignment rules placed on reference assignments prevent the creation

of dangling references, and thus maintain the referential integrity of the Java
runtime. The restrictions are listed in the following table. For this table,

Table 11.1: Memory Area Referencing Restrictions
Stored in
Area

Reference
to Object
in Heap

Reference
to Object in
Immortal

Reference to Object
in Scoped

null

Heap Permit Permit Forbid Permit
Immortal Permit Permit Forbid Permit
Scoped Permit Permit Permit from same or less

deeply nested scope
Permit

Local
Variable

Permit Permit Permit Permit

ImmortalMemory and ImmortalPhysicalMemory are equivalent, and all sub-
classes of ScopedMemory are equivalent.

30. An implementation must ensure that the above checks are performed for each
assignment statement before the statement is executed, either by runtime
checks or by static analysis of the application logic. Checks for operations on
local variables are not required because a potentially invalid reference would
be captured by the other checks before it reached a local variable.

11.2.8 Object Initialization
The following requirements apply to object initialization.
31. The current allocation context in a constructor for an object is the memory

area in which the object is allocated. For new, this is the current allocation
context when new was called. For members of the m.newInstance family, the
current allocation context is memory area m.

RTSJ 2.0 (Draft 48) 439

11 Alternative Memory Areas

11.2.9 Maintaining the Scope Stack

This section describes maintenance of a data structure that is called the scope stack.
Implementations are not required to use a stack or implement the algorithms given
here. It is only required that an implementation behave with respect to the ordering
and accessibility of memory scopes effectively as if it implemented these algorithms.
The scope stack is implicitly visible through the memory assignment rules, and the
stack is explicitly visible through the static method getOuterMemoryArea(int) on
RealtimeThread.

Four operations affect the scope stack: the enter methods defined in MemoryArea
and its subclasses, instantiation of a new Schedulable, the executeInArea method in
MemoryArea, and the new instance methods in MemoryArea.

1. The memory area at the top of a schedulable object’s scope stack is the
schedulable’s current allocation context.

2. For an instance of Schedulable, n4, created by task t, the scope stack of nt is
determined by both t and nt:
(a) when nt is created in a heap or immortal memory area, nt is created with

a scope stack containing only that heap or immortal memory area,
(b) when the allocation area of t is a ScopedMemory instance, nt acquires a

copy of the scope stack associated with t at the time nt is constructed,
including all entries from up to and including the memory area containing
nt; and

(c) when nt has an explicit initial memory area, ima, then ima is pushed
on nt’s newly-created scope stack, e.g., a task executing with the scope
stack A → B → C creates a new Schedulable instance s with initial
memory area D which is not currently in use, s gets the scope stack
A→ B → C → D.

3. When a memory area, ma is entered by calling a ma.enter method, ma is
pushed onto the scope stack of the current schedulable object and becomes its
allocation context. When control returns from the enter method, the allocation
context is popped from the scope stack

4. When a memory area, m, is entered by calling m’s executeInArea method or
one of the m.newInstance methods, the scope stack before the method call is
preserved and replaced with a scope stack constructed as follows:
(a) when ma is a scoped memory area, the new scope stack is a copy of the

schedulable’s previous scope stack up to and including ma, and
(b) when ma is not a scoped memory area, the new scope stack includes only

ma.
When control returns from the executeInArea method, the scope stack is
restored to the value it had before ma.executeInArea or ma.newInstance was
called.

440 RTSJ 2.0 (Draft 48)

Semantics 11.2

For the purposes of these algorithms, stacks grow up. One should also note that
the representative algorithms ignore important issues like freeing objects in scopes.

1. In every case, objects in a scoped memory area are eligible to be freed when
the reference count for the area is zero after finalizers for that scope are run.

2. Informally, any objects in a scoped memory area must be freed and their
finalizers run before the reference count for the memory area is incremented
from zero to one.

11.2.10 The enter Method
For ma.enter(logic):

1 push ma on the scope stack belonging to the current schedulable
2 −− which may throw ScopedCycleException
3 execute logic.run method
4 pop ma from the scope stack

11.2.11 The executeInArea or newInstance Methods
For ma.executeInArea(logic), ma.newInstance(), or ma.newArray():

1 when ma is an instance of heap immortal or ImmortalPhysicalMemory,
2 start a new scope stack containing only ma.
3 make the new scope stack the scope stack for the current
4 schedulable.
5 else if ma is in the scope stack for the current schedulable,
6 start a new scope stack containing ma and all
7 scopes below ma on the scope stack.
8 make the new scope stack the scope stack for the current
9 schedulable.
10 else
11 throw InaccessibleAreaException, execute logic.run,
12 or construct the object.
13 restore the previous scope stack for the current schedulable.
14 discard the new scope stack.
15 end

11.2.12 Constructor Methods for Schedulables
For construction of a schedulable in memory area cma with initial memory area of
ima:

RTSJ 2.0 (Draft 48) 441

11 Alternative Memory Areas

1 if cma is heap, immortal or ImmortalPhysicalMemory,
2 create a new scope stack containing cma.
3 else
4 start a new scope stack containing the entire
5 current scope stack.
6
7 if ima != cma
8 push ima on the new scope stack
9 −− which may throw ScopedCycleException.

The above pseudocode illustrates a straightforward implementation of this specifi-
cation’s semantics, but any implementation that behaves effectively like this one with
respect to reference count values of zero and one is permissible. An implementation
may be eager or lazy in maintenance of its reference count provided that it correctly
implements the semantics for reference counts of zero and one.

11.2.13 The Single Parent Rule
Every push of a scoped memory type on a scope stack must obey the single parent
rule. This enforces the invariant that every scoped memory area has no more than
one parent.

The parent of a scoped memory area is identified by the following rules:
1. when the memory area is not currently on any scope stack, it has no parent;
2. when the memory area is the first scoped memory area on a scope stack, i.e.,

was entered from ImmortalMemory or Heap, its parent is the primordial scope,
3. otherwise, the parent is the first scoped memory area outside it on the scope

stack, i.e., the scope from which this scope was entered.
Except for the primordial scope, which represents heap, immortal and immortal

physical memory, only scoped memory areas are visible to the single parent rule.
The operational effect of the single parent rule is that when a scoped memory

area has a parent, the only legal change to that value is to “no parent.” Thus an
ordering imposed by the first assignments of parents of a series of nested scoped
memory areas is the only nesting order allowed until control leaves the scopes; then
a new nesting order is possible. Thus, a schedulable attempting to enter a scope can
only do so by entering in the established nesting order.

11.2.14 Scope Tree Maintenance
The single parent rule is enforced effectively as if there were a tree with the primordial
scope (representing heap, immortal, and immortal physical memory) at its root, and
other nodes corresponding to every scoped memory area that is currently on any
schedulable’s scope stack.

442 RTSJ 2.0 (Draft 48)

Semantics 11.2

Each scoped memory has a reference to its parent memory area, ma.parent. The
parent reference may indicate a specific scoped memory area, no parent, or the
primordial parent.

When a scoped memory area is the explicit initial memory area of a realtime
thread that has not terminated, it is referred to as reserved. A reserved area with a
reference and pin count of zero does not have any objects allocated in it, but is in
a scope stack. Since it is possible for more than one schedulable to have the same
explicit initial memory area, the memory are must behave as if a reference count for
reservation is also maintained.

11.2.14.1 Pushing a MemoryArea onto the Scope Stack

The following procedure could be used to maintain the scope tree and ensure that
push operations on a schedulable’s scope stack do not violate the single parent rule.

1 preconditions
2
3 ma.parent is set to the correct parent (either a scoped
4 memory area or the primordial scope) or to null (no parent).
5
6 t.scopeStack is the scope stack of the current schedulable
7
8 Action
9

10 if ma is scoped,
11 parent = findFirstScope(t.scopeStack)
12 if ma.parent == null
13 ma.parent = parent.
14 else if ma.parent != parent
15 throw ScopedCycleException.
16 else
17 t.scopeStack.push(ma).

findFirstScope is a convenience function that looks down the scope stack for the
next entry that is a reference to an instance of ScopedMemoryArea.

1 findFirstScope(scopeStack)
2 {
3 for s = top of scope stack to bottom of scope stack
4 if s is an instance of scopedMemory
5 return s return primordial scope
6 }

RTSJ 2.0 (Draft 48) 443

11 Alternative Memory Areas

11.2.14.2 Popping a MemoryArea off the Scope Stack

1 ma = t.scopeStack.pop.
2 if ma is scoped
3 if !(ma.in_use || (ma.reserve_count > 0))
4 ma.parent = noParent

11.2.14.3 Reservation Management

Reservation management is separate from managing the scope stack for a task. When
a realtime thread with an explicit initial scoped memory area (EISMA) is created
or an ASEH with an EISMA is added to an ASE, the following happens atomically
with respect to other tasks in the VM:
Open issue 11.2.1 (elb)

Clarify that this also applies to registration and unregistration of an ISR.
End of issue 11.2.1

1 ma = t.eisma // explicit initial scoped memory area
2
3 if (ma.parent == null),
4 ma.parent = findFirstScope(t.scopeStack)
5 ma.reserve_count++. // should now be equal one
6 else if (ma == findFirstScope(t.scopeStack)),
7 ma.reserve_count++. // should now be greater than zero
8 else
9 throw ScopedCycleException.

When a realtime thread with an EISMA terminates or an ASEH is removed from
an ASE, the following happens atomically with respect to other tasks in the VM:

1 ma = t.eisma // explicit initial scoped memory area
2
3 ma.reserve_count−−.
4 if ((ma.reserve_count == 0) &&
5 (ma.enter_count == 0) &&
6 (ma.pin_count == 0))
7 ma.parent = null.

11.2.15 Physical Memory
Physical memory provides a means of allocating Java objects in specific areas of a
system’s physical address space. This is accomplished by creating a memory area

444 RTSJ 2.0 (Draft 48)

Semantics 11.2

that resides in the desired address range. The memory area can be any of the memory
areas defined by this specification other than heap. A physical memory area is not
type distict from a normal memory area; it is just created by a different means.

1. Physical immortal memory—an immortal memory area that can be created
by the application such that their associated allocation areas have specified
physical and virtual memory characteristics. For example, the application
could specify that the physical characteristics of the backing store should be
Static RAM (SRAM) and that it should be mapped by the JVM into virtual
memory that is never paged out to disk.

2. Physical scoped memory—a scoped memory area, that can be created by the
application such that their associated backing store has specified physical and
virtual memory characteristics.

This physical memory model is based on two constraints.
1. Java objects can only be allocated in a memory area when the physical allocation

area supports the Java Memory Model (JMM) without the JVM having to
perform any operation additional to those that it performs when accessing the
main RAM for the host machine.
(a) No extra compiler or JVM interactions shall be required. Hence memory

regions (such as EEPROM) that potentially require special hardware
instructions to perform write operations cannot be used as the backing
store for physical memory areas.

(b) Similarly, nonvolatile memory cannot be used, as object lifetimes in such
an area may be longer than the lifetime of the VM.

Although memory having such characteristics incompatible with the JMM are
prohibited from being used as backing stores for object allocation, they can
contain objects of primitive Java types and be accessed via the RTSJ Raw
Memory facilities (see Section 12.2.1).

2. Any API must delegate detailed knowledge of the memory architecture to the
programmer/integrator of the specific embedded system to be implemented.
The model assumes that the programmer is aware of the memory map, either
through some native operating system interface2 or from some property file
read at program initialization time.

The RTSJ defines a physical memory factory, which maintains a mapping between
physical memory characteristics and the associated physical addresses of memory
that support those characteristics. The physical memory factory has no knowledge
of the meaning of the physical characteristics. It only provides a look-up service and
keeps track of which physical memory has been associated with a physical memory

2For example, the Advanced Configuration and Power Interface (ACPI) specification is an open
standard for device configuration and power management by the operating system. The ACPI
defines platform-independent interfaces for hardware discovery, configuration, power management
and monitoring. See http://www.acpi.info/

RTSJ 2.0 (Draft 48) 445

http://www.acpi.info/

11 Alternative Memory Areas

range by the application. The physical memory factory does, however, have detailed
knowledge of the types of virtual memory it can support. It advertises this knowledge
to the application. For example, it knows if the VM can lock memory pages into
memory to ensure that they are never swapped out to disk. The application can then
request that the physical memory manager create an association between physical
memory with certain characteristics and a virtual memory type (for example, SRAM
that is permanently resident in memory).

11.2.16 Stacked Memory
A StackedMemory area represents both an allocation area providing ScopedMemory
semantics and an explicit backing store from which the allocation area is drawn. The
backing store may be further subdivided into additional allocation areas and backing
stores. Such divisions behave as if new allocation areas are allocated contiguously
from the bottom of the container, while new backing stores are allocated contiguously
from the top, with allocation areas and backing stores meeting when the outer
backing store is completely occupied.

StackedMemory backing stores are explicitly created and sized, and have well-
defined lifetimes similar to objects in a ScopedMemory area. A StackedMemory
object can be created as either a host, which has its own backing store, or a guest,
which draws its allocation area directly from its parent’s backing store. When a
StackedMemory object is created in an allocation context other than StackedMemory,
it is necessarily a host and is called a root StackedMemory. In this case, its backing
store is drawn from a notional global backing store. A root StackedMemory’s backing
store will be freed under the same conditions as other host StackedMemory backing
stores, but applications should not assume that the implementation provides any
guarantees with respect to fragmentation should this occurs. When a StackedMemory
object is created in another StackedMemory’s allocation context, it may be created
as either a host or guest, as illustrated in Figure 11.1. When it is created as a host,
its backing store is drawn from its parent area’s backing store, and its allocation
area is created in the newly-divided backing store. When it is created as a guest, its
allocation area is created in its parent’s backing store.

Object lifetimes for objects allocated in StackedMemory allocation contexts are
the same as those in ScopedMemory allocation contexts. When a StackedMemory
object itself is finalized, its allocation area is returned to the backing store from
which it was drawn, and in the case of host StackedMemory areas, the associated
backing store is also returned to the parent’s backing store. Additionally, the
allocation area of a StackedMemory can be resized under certain conditions. These
semantics allow the memory represented by a root StackedMemory backing store
to be partitioned and re-partitioned as the application requires without danger of
fragmentation and without requiring memory allocation external to the container to

446 RTSJ 2.0 (Draft 48)

Semantics 11.2

Figure 11.1: Manipulation of StackedMemory Areas

Root Allocation

Area

Root Allocation

Area

Root Allocation

Area

Host Allocation

Area

Host Allocation

Area

Host Backing Store

Taken from Root

Host Backing Store

Taken from RootAlloc. Area

Guest

Backing Store

Root(b)

(c)

(a)

F
re

e

Root Backing Store

track the partitioning.
In order to preserve the fragmentation-free nature of this contract, certain rules

are enforced by the infrastructure. Those rules are
1. a nonroot StackedMemory area can only be entered by a schedulable when

its allocation context is the same as the allocation context in which that
StackedMemory area’s object was created;

2. a StackedMemory area may have at most one direct child in the scope stack
that is a guest StackedMemory area;

3. a guest StackedMemory area may not have a direct child area that is a host
StackedMemory area;

4. a host StackedMemory object cannot be created from another StackedMemory
allocation context unless its backing store is allocated from that area’s backing
store; and

5. a StackedMemory’s allocation area cannot be resized if there are unfinalized
guest StackedMemory allocation areas placed after it in the same backing store.

Figure 11.1 graphically depicts the behavior of StackedMemory backing stores
and allocation areas for a root StackedMemory as well as one host and one guest
child StackedMemory under that root. A code fragment that could create the stack
topology in Figure 11.1 is as follows. Assume that this fragment executes in an
allocation context other than a StackedMemory, and that zero overhead is required
for memory area creation. An implementation may require a constant amount of
overhead, drawn from the backing store, for each StackedMemory area created in
the store.

1 // Create a StackedMemory with a 10 kB backing store and
2 // 2 kB allocation area

RTSJ 2.0 (Draft 48) 447

11 Alternative Memory Areas

3 rootArea = new StackedMemory(2048, 10240); // (a)
4 rootArea.enter(new Runnable()
5 {
6 public void run()
7 {
8 // Create a host area with a 6 kB backing store and
9 2 kB allocation area

10 hostArea = new StackedMemory(2048, 6144); // (b)
11 // Create a guest area with a 2 kB allocation area
12 guestArea = new StackedMemory(1536); // (c)
13 }
14 });

Commented points (a), (b), and (c) correspond to their respective subfigures in
Figure 11.1. At point (a), a root StackedMemory has been created with its 10 kB
backing store drawn from the notional global store. It contains a 2 kB allocation
area, which is then entered. With that allocation area as the current allocation
context, a new host StackedMemory is created at (b), reserving 6 kB of the root
StackedMemory’s backing store for its own use and creating a second 2 kB allocation
area within that reservation. A new guest StackedMemory is then created at (c) in
the root area (without entering the host child), occupying 1.5 kB of the remaining
free 2 kB of the backing store in the root area. At this point, the root area’s backing
store is almost entirely occupied, with one 2 kB allocation area, one 1.5 kB store,
and a 6 kB host area backing store reservation, and 512 B of free backing store
in between. The host StackedMemory created at (b) has 4 kB of its backing store
remaining unoccupied in its reservation, which could be allocated to additional host
or guest StackedMemory areas beneath it in the stack.

448 RTSJ 2.0 (Draft 48)

HeapMemory javax.realtime 11.3

11.3 javax.realtime

11.3.1 Interfaces
11.3.1.1 MemoryAreaVisitor<R>

Description
This interface is used to visit memory areas. For example, the methodMemoryArea.
visitNestedMemory3 uses this visitor to process all memory areas nested the area
upon which it is called.

11.3.1.1.1 Methods

visit(MemoryArea)

Signature
public R
visit(MemoryArea memory)

Description
Visit the members of a collection of memory areas. It provides a means of
accessing all live scopes contained in a memory area, even those to which no
reference exits, such a javax.realtime.memory.PinnableMemory4 that is pinned or
another ScopedMemory that contains a Schedulable. The set may be concurrently
modified by other tasks, but the view seen by the visitor may not be updated to
reflect those changes.

Parameters
memory The memory area being visited.

Returns
Any object declared by the application or null. When visit returns an object,

no more memory areas are visited and the MemoryArea.visitNestedMemory5

method returns the object returned by visit(MemoryArea)6.

3Section 11.3.2.3.2
4Section 11.4.3.5
5Section 11.3.2.3.2
6Section 11.3.1.1.1

RTSJ 2.0 (Draft 48) 449

11 Alternative Memory Areas HeapMemory

11.3.2 Classes
11.3.2.1 HeapMemory

Inheritance
java.lang.Object
MemoryArea
HeapMemory

Description
The HeapMemory class is a singleton object that allows logic with a non-heap
allocation context to allocate objects in the Java heap.

11.3.2.1.1 Methods

enter

Signature
public void
enter()

Description
Associate this memory area with the current schedulable for the duration of
the execution of the run() method of the instance of Runnable given in the
constructor. During this period of execution, this memory area becomes the
default allocation context until another default allocation context is selected
(using enter, or executeInArea7) or the enter method exits.

Throws
IllegalSchedulableStateException when the caller context in not an instance of

Schedulable8.
IllegalArgumentException IllegalArgumentException when the caller is a sched-

ulable and a null value for logic was supplied when the memory area was
constructed.

MemoryAccessError when caller is a schedulable which may not use the heap.

7Section 11.3.2.1.1
8Section 6.3.1.3

450 RTSJ 2.0 (Draft 48)

HeapMemory javax.realtime 11.3

enter(Runnable)

Signature
public void
enter(Runnable logic)

Description
Associate this memory area with the current schedulable for the duration of the
execution of the run() method of the given Runnable. During this period of
execution, this memory area becomes the default allocation context until another
default allocation context is selected (using enter, or executeInArea9) or the enter
method exits.

Parameters
logic The Runnable object whose run() method should be invoked.

Throws
MemoryAccessError when caller is a schedulable which may not use the heap.
IllegalSchedulableStateException IllegalSchedulableStateException when the caller

context in not an instance of Schedulable10.
IllegalArgumentException IllegalArgumentException when the caller is a schedul-

able and logic is null.

instance

Signature
public static javax.realtime.HeapMemory
instance()

Description
Returns a reference to the singleton instance of HeapMemory11 representing
the Java heap. The singleton instance of this class shall be allocated in the
ImmortalMemory12 area.

Returns
The singleton HeapMemory13 object.

9Section 11.3.2.1.1
10Section 6.3.1.3
11Section 11.3.2.1
12Section 11.3.2.2
13Section 11.3.2.1

RTSJ 2.0 (Draft 48) 451

11 Alternative Memory Areas HeapMemory

executeInArea(Runnable)

Signature
public void
executeInArea(Runnable logic)

Description
Execute the run method from the logic parameter using heap as the current
allocation context. For a schedulable, this saves the current scope stack and
replaces it with one consisting only of the HeapMemory instance; restoring the
original scope stack upon completion.

Parameters
logic The runnable object whose run() method should be executed.

Throws
IllegalArgumentException when logic is null.
MemoryAccessError when caller is a schedulable which may not use the heap.

newArray(Class, int)

Signature
public java.lang.Object
newArray(java.lang.Class<?> type,

int number)

Description
Allocate an array of the given type in this memory area. This method may be
concurrently used by multiple threads.

Parameters
type type The class of the elements of the new array. To create an array of a

primitive type use a type such as Integer.TYPE (which would call for an array
of the primitive int type.)

number number The number of elements in the new array.
Throws
MemoryAccessError when caller is a schedulable which may not use the heap.
IllegalArgumentException IllegalArgumentException when number is less than zero,

type is null, or type is java.lang.Void.TYPE.
OutOfMemoryError OutOfMemoryError when space in the memory area is ex-

hausted.

452 RTSJ 2.0 (Draft 48)

HeapMemory javax.realtime 11.3

Returns
A new array of class type, of number elements.

newInstance(Class)

Signature
public T
newInstance(java.lang.Class<T> type)
throws IllegalAccessException,

InstantiationException

Description
Allocate an object in this memory area. This method may be concurrently used
by multiple threads.

Parameters
type type The class of which to create a new instance.

Throws
MemoryAccessError when caller is a schedulable which may not use the heap.
IllegalAccessException IllegalAccessException The class or initializer is inaccessible.
IllegalArgumentException IllegalArgumentException when type is null.
ExceptionInInitializerError ExceptionInInitializerError when an unexpected excep-

tion has occurred in a static initializer.
OutOfMemoryError OutOfMemoryError when space in the memory area is ex-

hausted.
InstantiationException InstantiationException when the specified class object could

not be instantiated. Possible causes are it is an interface, it is abstract, or it is
an array.

Returns
A new instance of class type.

newInstance(Constructor, Object)

Signature
public T
newInstance(java.lang.reflect.Constructor<T> c,

java.lang.Object[] args)

RTSJ 2.0 (Draft 48) 453

11 Alternative Memory Areas HeapMemory

throws IllegalAccessException,
InstantiationException,
InvocationTargetException

Description
Allocate an object in this memory area. This method may be concurrently used
by multiple threads.

Parameters
c Tc The constructor for the new instance.
args args An array of arguments to pass to the constructor.

Throws
MemoryAccessError when caller is a schedulable which may not use the heap.
IllegalAccessException IllegalAccessException when the class or initializer is inac-

cessible under Java access control.
InstantiationException InstantiationException when the specified class object could

not be instantiated. Possible causes are it is an interface, it is abstract, it is an
array.

OutOfMemoryError OutOfMemoryError when space in the memory area is ex-
hausted.

IllegalArgumentException IllegalArgumentException when c is null, or the args
array does not contain the number of arguments required by c. A null value of
args is treated like an array of length 0.

InvocationTargetException InvocationTargetException when the underlying con-
structor throws an exception.

Returns
A new instance of the object constructed by c.

visitNestedMemory(MemoryAreaVisitor)

Signature
public R
visitNestedMemory(javax.realtime.MemoryAreaVisitor<R> visitor)

Description
Visit each scoped memory area who’s parent is the primordial scope and was
created in heap memory.

Parameters

454 RTSJ 2.0 (Draft 48)

ImmortalMemory javax.realtime 11.3

visitor invoke the MemoryAreaVisitor.visit(MemoryArea)14 method for each mem-
ber of the set of scoped memory areas that was created in heap memory and
has the primordial scope as its parent.

Throws
IllegalArgumentException IllegalArgumentException when visitor is null.

Returns
null when all elements where visited and some object of type R when the visit is

forced to terminate at the end of visiting that element.

11.3.2.2 ImmortalMemory

Inheritance
java.lang.Object
MemoryArea
ImmortalMemory

Description

ImmortalMemory is a memory resource that is unexceptionally available to all
schedulables and Java threads for use and allocation.

An immortal object may not contain references to any form of scoped memory,
e.g., javax.realtime.memory.LTMemory15, javax.realtime.memory.StackedMemory16,
or javax.realtime.memory.PinnableMemory17.

Objects in immortal have the same states with respect to finalization as objects
in the standard Java heap, but there is no assurance that immortal objects will
be finalized even when the JVM is terminated.

Methods from ImmortalMemory should be overridden only by methods that
use super.

11.3.2.2.1 Methods

14Section 11.3.1.1.1
15Section 11.4.3.1
16Section 11.4.3.7
17Section 11.4.3.5

RTSJ 2.0 (Draft 48) 455

11 Alternative Memory Areas ImmortalMemory

instance

Signature
public static javax.realtime.ImmortalMemory
instance()

Description
Returns a pointer to the singleton ImmortalMemory18 object.

Returns
The singleton ImmortalMemory19 object.

executeInArea(Runnable)

Signature
public void
executeInArea(Runnable logic)

Description
Execute the run method from the logic parameter using this memory area as
the current allocation context. For a schedulable, this saves the current scope
stack and replaces it with one consisting only of the ImmortalMemory instance;
restoring the original scope stack upon completion.

Parameters
logic The runnable object whose run() method should be executed.

Throws
IllegalArgumentException when logic is null.

visitNestedMemory(MemoryAreaVisitor)

Signature
public R
visitNestedMemory(javax.realtime.MemoryAreaVisitor<R> visitor)

Description
Visit each scoped memory area who’s parent is the primordial scope and was
created in this memory area.

18Section 11.3.2.2
19Section 11.3.2.2

456 RTSJ 2.0 (Draft 48)

MemoryArea javax.realtime 11.3

Parameters
visitor invoke the MemoryAreaVisitor.visit(MemoryArea)20 method for each mem-

ber of the set of scoped memory areas that was created in this immortal memory
area and has the primordial scope as its parent.

Throws
IllegalArgumentException IllegalArgumentException when visitor is null.

Returns
null when all elements where visited and some object of type R when the visit is

forced to terminate at the end of visiting that element.

11.3.2.3 MemoryArea

Inheritance
java.lang.Object
MemoryArea

Description
MemoryArea is the abstract base class of all classes dealing with the representa-
tions of allocatable memory areas, including the immortal memory area, physical
memory and scoped memory areas. This is an abstract class, but no method in
this class is abstract. An application should not subclass MemoryArea without
complete knowledge of its implementation details.

11.3.2.3.1 Constructors

MemoryArea(long, Runnable)

Signature
protected
MemoryArea(long size,

Runnable logic)

20Section 11.3.1.1.1

RTSJ 2.0 (Draft 48) 457

11 Alternative Memory Areas MemoryArea

throws IllegalArgumentException,
OutOfMemoryError,
IllegalAssignmentError

Description
Create an instance of MemoryArea.

Parameters
size The size of MemoryArea to allocate, in bytes.
logic The run() method of this object will be called whenever enter()21 is called.

When logic is null, this constructor is equivalent to MemoryArea(long size).
Throws
IllegalArgumentException when the size parameter is less than zero.
OutOfMemoryError when there is insufficient memory for the MemoryArea object

or for the backing memory.
IllegalAssignmentError when storing logic in this would violate the assignment

rules.

MemoryArea(SizeEstimator, Runnable)

Signature
protected
MemoryArea(SizeEstimator size,

Runnable logic)
throws IllegalArgumentException,

OutOfMemoryError,
IllegalAssignmentError

Description
Equivalent toMemoryArea(long, Runnable)22 with the argument list (size.getEstimate(),
logic).

Parameters
size A SizeEstimator object which indicates the amount of memory required by this

MemoryArea.
21Section 11.3.2.3.2
22Section 11.3.2.3.1

458 RTSJ 2.0 (Draft 48)

MemoryArea javax.realtime 11.3

logic The run() method of this object will be called whenever enter()23 is called.
When logic is null, this constructor is equivalent to MemoryArea(SizeEstimator
size).

Throws
IllegalArgumentException when size is null or size.getEstimate() is negative.
OutOfMemoryError when there is insufficient memory for the MemoryArea object

or for the backing memory.
IllegalAssignmentError when storing logic in this would violate the assignment

rules.

MemoryArea(long)

Signature
protected
MemoryArea(long size)
throws IllegalArgumentException,

OutOfMemoryError

Description
Equivalent to MemoryArea(long, Runnable)24 with the argument list (size, null).

Parameters
size The size of MemoryArea to allocate, in bytes.

Throws
IllegalArgumentException when size is less than zero.
OutOfMemoryError when there is insufficient memory for the MemoryArea object

or for the backing memory.

MemoryArea(SizeEstimator)

Signature
protected
MemoryArea(SizeEstimator size)

23Section 11.3.2.3.2
24Section 11.3.2.3.1

RTSJ 2.0 (Draft 48) 459

11 Alternative Memory Areas MemoryArea

throws IllegalArgumentException,
OutOfMemoryError

Description
Equivalent toMemoryArea(long, Runnable)25 with the argument list (size.getEstimate(),
null).

Parameters
size A SizeEstimator26 object which indicates the amount of memory required by

this MemoryArea.
Throws
IllegalArgumentException when the size parameter is null, or size.getEstimate() is

negative.
OutOfMemoryError when there is insufficient memory for the MemoryArea object

or for the backing memory.

11.3.2.3.2 Methods

enter

Signature
public void
enter()
throws IllegalArgumentException,

OutOfMemoryError,
IllegalAssignmentError,
MemoryAccessError

Description
Associate this memory area with the current schedulable for the duration of
the execution of the run() method of the instance of Runnable given in the
constructor. During this period of execution, this memory area becomes the
default allocation context until another default allocation context is selected
(using enter, or executeInArea27) or the enter method exits.

25Section 11.3.2.3.1
26Section 11.3.2.5
27Section 11.3.2.3.2

460 RTSJ 2.0 (Draft 48)

MemoryArea javax.realtime 11.3

Throws
IllegalSchedulableStateException when the caller context in not an instance of

Schedulable28.
IllegalArgumentException when the caller is a schedulable and a null value for logic

was supplied when the memory area was constructed.
ThrowBoundaryError Thrown when the JVM needs to propagate an exception

allocated in this scope to (or through) the memory area of the caller. Stor-
ing a reference to that exception would cause an IllegalAssignmentError29, so
the JVM cannot be permitted to deliver the exception. The ThrowBound-
aryError30 instance is preallocated by the VM to avoid cascading creation of
ThrowBoundaryError31.

MemoryAccessError when caller is a schedulable that may not use the heap and
this memory area’s logic value is allocated in heap memory.

enter(Runnable)

Signature
public void
enter(Runnable logic)

Description
Associate this memory area with the current schedulable for the duration of the
execution of the run() method of the given Runnable. During this period of
execution, this memory area becomes the default allocation context until another
default allocation context is selected (using enter, or executeInArea32) or the
enter method exits.

Parameters
logic The Runnable object whose run() method should be invoked.

Throws
IllegalSchedulableStateException when the caller context in not an instance of

Schedulable33.
IllegalArgumentException when the caller is a schedulable and logic is null.
28Section 6.3.1.3
29Section 15.2.3.2
30Section 15.2.3.8
31Section 15.2.3.8
32Section 11.3.2.3.2
33Section 6.3.1.3

RTSJ 2.0 (Draft 48) 461

11 Alternative Memory Areas MemoryArea

ThrowBoundaryError Thrown when the JVM needs to propagate an exception
allocated in this scope to (or through) the memory area of the caller. Stor-
ing a reference to that exception would cause an IllegalAssignmentError34, so
the JVM cannot be permitted to deliver the exception. The ThrowBound-
aryError35 instance is preallocated by the VM to avoid cascading creation of
ThrowBoundaryError.

enter(Supplier)

Signature
public T
enter(java.util.function.Supplier<T> logic)

Description
Same as enter(Runnable)36 except that the executed method is called get and an
object is returned.

Parameters
logic the object who’s get method will be executed.

Returns
a result from the computation.

enter(BooleanSupplier)

Signature
public boolean
enter(BooleanSupplier logic)

Description
Same as enter(Runnable)37 except that the executed method is called get and a
boolean is returned.

Parameters
logic the object who’s get method will be executed.

Returns
a result from the computation.

34Section 15.2.3.2
35Section 15.2.3.8
36Section 11.3.2.3.2
37Section 11.3.2.3.2

462 RTSJ 2.0 (Draft 48)

MemoryArea javax.realtime 11.3

enter(IntSupplier)

Signature
public int
enter(IntSupplier logic)

Description
Same as enter(Runnable)38 except that the executed method is called get and an
int is returned.

Parameters
logic the object who’s get method will be executed.

Returns
a result from the computation.

enter(LongSupplier)

Signature
public long
enter(LongSupplier logic)

Description
Same as enter(Runnable)39 except that the executed method is called get and a
long is returned.

Parameters
logic the object who’s get method will be executed.

Returns
a result from the computation.

enter(DoubleSupplier)

Signature
public double
enter(DoubleSupplier logic)

Description
38Section 11.3.2.3.2
39Section 11.3.2.3.2

RTSJ 2.0 (Draft 48) 463

11 Alternative Memory Areas MemoryArea

Same as enter(Runnable)40 except that the executed method is called get and a
double is returned.

Parameters
logic the object who’s get method will be executed.

Returns
a result from the computation.

getMemoryArea(Object)

Signature
public static javax.realtime.MemoryArea
getMemoryArea(Object object)

Description
Gets the MemoryArea in which the given object is located.

Throws
IllegalArgumentException when the value of object is null.

Returns
The instance of MemoryArea from which object was allocated.

memoryConsumed

Signature
public long
memoryConsumed()

Description
For memory areas where memory is freed under program control this returns
an exact count, in bytes, of the memory currently used by the system for the
allocated objects. For memory areas (such as heap) where the definition of "used"
is imprecise, this returns the best value it can generate in constant time.

Returns
The amount of memory consumed in bytes.

40Section 11.3.2.3.2

464 RTSJ 2.0 (Draft 48)

MemoryArea javax.realtime 11.3

memoryRemaining

Signature
public long
memoryRemaining()

Description
An approximation to the total amount of memory currently available for future
allocated objects, measured in bytes.

Returns
The amount of remaining memory in bytes.

newArray(Class, int)

Signature
public java.lang.Object
newArray(java.lang.Class<?> type,

int number)
throws IllegalArgumentException,

OutOfMemoryError,
SecurityException

Description
Allocate an array of the given type in this memory area. This method may be
concurrently used by multiple threads.

Parameters
type The class of the elements of the new array. To create an array of a primitive

type use a type such as Integer.TYPE (which would call for an array of the
primitive int type.)

number The number of elements in the new array.
Throws
IllegalArgumentException when number is less than zero, type is null, or type is

java.lang.Void.TYPE.
OutOfMemoryError when space in the memory area is exhausted.
SecurityException when the caller does not have permission to create a new instance.

Returns
A new array of class type, of number elements.

RTSJ 2.0 (Draft 48) 465

11 Alternative Memory Areas MemoryArea

newInstance(Class)

Signature
public T
newInstance(java.lang.Class<T> type)
throws IllegalAccessException,

IllegalArgumentException,
InstantiationException,
OutOfMemoryError,
ExceptionInInitializerError,
SecurityException

Description
Allocate an object in this memory area. This method may be concurrently used
by multiple threads.

Parameters
type The class of which to create a new instance.

Throws
IllegalAccessException The class or initializer is inaccessible.
IllegalArgumentException when type is null.
InstantiationException when the specified class object could not be instantiated.

Possible causes are it is an interface, it is abstract, or it is an array.
ConstructorCheckedException a checked exception was thrown by the constructor.
OutOfMemoryError when space in the memory area is exhausted.
ExceptionInInitializerError when an unexpected exception has occurred in a static

initializer.
SecurityException when the caller does not have permission to create a new instance.

Returns
A new instance of class type.

newInstance(Constructor, Object)

Signature
public T
newInstance(java.lang.reflect.Constructor<T> c,

java.lang.Object[] args)

466 RTSJ 2.0 (Draft 48)

MemoryArea javax.realtime 11.3

throws ExceptionInInitializerError,
IllegalAccessException,
IllegalArgumentException,
InstantiationException,
InvocationTargetException,
OutOfMemoryError,
SecurityException

Description
Allocate an object in this memory area. This method may be concurrently used
by multiple threads.

Parameters
c The constructor for the new instance.
args An array of arguments to pass to the constructor.

Throws
ExceptionInInitializerError when an unexpected exception has occurred in a static

initializer
IllegalAccessException when the class or initializer is inaccessible under Java access

control.
IllegalArgumentException when c is null, or the args array does not contain the

number of arguments required by c. A null value of args is treated like an
array of length 0.

InstantiationException when the specified class object could not be instantiated.
Possible causes are it is an interface, it is abstract, it is an array.

InvocationTargetException when the underlying constructor throws an exception.
OutOfMemoryError when space in the memory area is exhausted.
SecurityException when the caller does not have permission to create a new instance.

Returns
A new instance of the object constructed by c.

size

Signature
public long
size()

Description

RTSJ 2.0 (Draft 48) 467

11 Alternative Memory Areas MemoryArea

Query the size of the memory area. The returned value is the current size.
Current size may be larger than initial size for those areas that are allowed to
grow.

Returns
The size of the memory area in bytes.

executeInArea(Runnable)

Signature
public void
executeInArea(Runnable logic)
throws IllegalArgumentException

Description
Execute the run method from the logic parameter using this memory area as
the current allocation context. The effect of executeInArea on the scope stack is
specified in the subclasses of MemoryArea.

Parameters
logic The runnable object whose run() method should be executed.

Throws
IllegalArgumentException when logic is null.

executeInArea(Supplier)

Signature
public T
executeInArea(java.util.function.Supplier<T> logic)

Description
Same as executeInArea(Runnable)41 except that the executed method is called
get and an object is returned.

Parameters
logic the object who’s get method will be executed.

Returns
a result from the computation.

41Section 11.3.2.3.2

468 RTSJ 2.0 (Draft 48)

MemoryArea javax.realtime 11.3

executeInArea(BooleanSupplier)

Signature
public boolean
executeInArea(BooleanSupplier logic)

Description
Same as executeInArea(Runnable)42 except that the executed method is called
get and a boolean is returned.

Parameters
logic the object who’s get method will be executed.

Returns
a result from the computation.

executeInArea(IntSupplier)

Signature
public int
executeInArea(IntSupplier logic)

Description
Same as executeInArea(Runnable)43 except that the executed method is called
get and an int is returned.

Parameters
logic the object who’s get method will be executed.

Returns
a result from the computation.

executeInArea(LongSupplier)

Signature
public long
executeInArea(LongSupplier logic)

Description
42Section 11.3.2.3.2
43Section 11.3.2.3.2

RTSJ 2.0 (Draft 48) 469

11 Alternative Memory Areas MemoryArea

Same as executeInArea(Runnable)44 except that the executed method is called
get and a long is returned.

Parameters
logic the object who’s get method will be executed.

Returns
a result from the computation.

executeInArea(DoubleSupplier)

Signature
public double
executeInArea(DoubleSupplier logic)

Description
Same as executeInArea(Runnable)45 except that the executed method is called
get and a double is returned.

Parameters
logic the object who’s get method will be executed.

Returns
a result from the computation.

visitNestedMemory(MemoryAreaVisitor)

Signature
public R
visitNestedMemory(javax.realtime.MemoryAreaVisitor<R> visitor)
throws IllegalArgumentException

Description
A means of accessing all live nested memory areas contained in this mem-
ory area, even those to which no reference exits, such a javax.realtime.memory.
PinnableMemory46 that is pinned or another javax.realtime.memory.ScopedMemory
that contains a Schedulable. The set may be concurrently modified by other tasks,
but the view seen by the visitor may not be updated to reflect those changes.
The following is guarantees even when the set is disturbed by other tasks:

44Section 11.3.2.3.2
45Section 11.3.2.3.2
46Section 11.4.3.5

470 RTSJ 2.0 (Draft 48)

MemoryArea javax.realtime 11.3

• the visitor shall visit no member more than once,
• it shall visit only scopes that were a member of the set at some time during

the enumeration of the set, and
• it shall visit all the scopes that are not deleted during the execution of the
visitor.

Perform an action on all children scopes of this memory area, so long as the
MemoryAreaVisitor.visit(MemoryArea)47 method returns null. When that method
returns an object, the visit is terminated and that object is returned by this
method,

When execution of the visitor’s visit method terminated abruptly by throwing
an exception, then execution of visitScopedChildren also terminates abruptly by
throwing the same exception.

Parameters
visitor determines the action to be performed on each of the children scopes.

Throws
IllegalArgumentException when visitor is null.

Returns
null when all elements where visited and some object of type R when the visit is

forced to terminate at the end of visiting that element.

mayHoldReferenceTo

Signature
public boolean
mayHoldReferenceTo()

Description
Determine whether an object A allocated in the memory area represented by this
can hold a reference to an object B allocated in the current memory area.

Returns
true when B can be assigned to a field of A, otherwise false.

mayHoldReferenceTo(Object)

Signature
47Section 11.3.1.1.1

RTSJ 2.0 (Draft 48) 471

11 Alternative Memory Areas MemoryParameters

public boolean
mayHoldReferenceTo(Object value)

Description
Determine whether an object A allocated in the memory area represented by this
can hold a reference to the object value.

Parameters
value is the object to test.

Returns
true when value can be assigned to a field of A, otherwise false.

11.3.2.4 MemoryParameters

Inheritance
java.lang.Object
MemoryParameters

Interfaces
Cloneable
Serializable

Description
Memory parameters can be given on the constructor of RealtimeThread48 and
AsyncEventHandler49. They provide limits on the behavior of their associated
schedulables with respect to allocation rate for garbage-collected objects and
total allocation for Immortal and certain scope-allocated objects.

The limits in a MemoryParameters instance are enforced when a schedulable
creates a new object (e.g., uses the new operation). When a schedulable exceeds
its allocation or allocation rate limit, the error is handled as if the allocation
failed because of insufficient memory. The failed object allocation throws an
OutOfMemoryError.

A MemoryParameters object may be bound to more than one schedulable,
but that does not cause the memory budgets reflected by the parameter to be
shared among the schedulables that are associated with the parameter object.

As of RTSJ 2.0, instances of MemoryParameters are immutable.

Open issue 11.3.1
Should we have a limit for backing store use?

48Section 5.3.2.2
49Section 8.3.3.5

472 RTSJ 2.0 (Draft 48)

MemoryParameters javax.realtime 11.3

End of issue 11.3.1
Caution: This class is explicitly unsafe for multithreading when being changed.

Code that mutates instances of this class should synchronize at a higher level.

11.3.2.4.1 Fields

NO_MAX

public static final NO_MAX

Description
Specifies no maximum limit.

11.3.2.4.2 Constructors

MemoryParameters(long, long, boolean)

Signature
public
MemoryParameters(long maxMemoryArea,

long maxImmortal,
boolean mayUseHeap)

Description
Create a MemoryParameters object with the given values.

Available since RTSJ 2.0

Parameters
maxMemoryArea A limit on the amount of memory the schedulable may allocate

in its initial memory area. Units are in bytes. When zero, no allocation allowed
in the memory area. To specify no limit, use NO_MAX.

maxImmortal A limit on the amount of memory the schedulable may allocate in
the immortal area. Units are in bytes. When zero, no allocation allowed in
immortal. To specify no limit, use NO_MAX.

RTSJ 2.0 (Draft 48) 473

11 Alternative Memory Areas MemoryParameters

mayUseHeap indicates whether or not the schedulable may use the heap. The
default is true when an instance of this class is not provided.

Throws
IllegalArgumentException when any value other than positive. zero, or NO_MAX

is passed as the value of maxMemoryArea or maxImmortal.

MemoryParameters(long, long, long)

Signature
public
MemoryParameters(long maxMemoryArea,

long maxImmortal,
long allocationRate)

Description

Create a MemoryParameters object with the given values and mayUseHeap50

returns true.

Parameters
maxMemoryArea A limit on the amount of memory the schedulable may allocate

in its initial memory area. Units are in bytes. When zero, no allocation allowed
in the memory area. To specify no limit, use NO_MAX.

maxImmortal A limit on the amount of memory the schedulable may allocate in
the immortal area. Units are in bytes. When zero, no allocation allowed in
immortal. To specify no limit, use NO_MAX.

allocationRate A limit on the rate of allocation in the heap. Units are in bytes
per second of wall clock time. When allocationRate is zero, no allocation is
allowed in the heap. To specify no limit, use NO_MAX. Measurement starts
when the schedulable is first released for execution (not when it is constructed.)
Enforcement of the allocation rate is an implementation option. When the
implementation does not enforce allocation rate limits, it treats all non-zero
allocation rate limits as NO_MAX.

Throws
IllegalArgumentException when any value other than positive. zero, or NO_MAX

is passed as the value of maxMemoryArea or maxImmortal, or allocationRate.

50Section 11.3.2.4.3

474 RTSJ 2.0 (Draft 48)

MemoryParameters javax.realtime 11.3

MemoryParameters(long, long)

Signature
public
MemoryParameters(long maxMemoryArea,

long maxImmortal)

Description
Create a MemoryParameters object with the given values and mayUseHeap51

returns false.

Parameters
maxMemoryArea A limit on the amount of memory the schedulable may allocate

in its initial memory area. Units are in bytes. When zero, no allocation allowed
in the memory area. To specify no limit, use NO_MAX.

maxImmortal A limit on the amount of memory the schedulable may allocate in
the immortal area. Units are in bytes. When zero, no allocation allowed in
immortal. To specify no limit, use NO_MAX.

Throws
IllegalArgumentException when any value other than positive. zero, or NO_MAX

is passed as the value of maxMemoryArea or maxImmortal.

MemoryParameters(boolean)

Signature
public
MemoryParameters(boolean mayUseHeap)

Description
Create a MemoryParameters object with the given values.

Available since RTSJ 2.0

Parameters
mayUseHeap indicates whether or not the schedulable may use the heap. The

default is true when an instance of this class is not provided.
51Section 11.3.2.4.3

RTSJ 2.0 (Draft 48) 475

11 Alternative Memory Areas MemoryParameters

11.3.2.4.3 Methods

clone

Signature
public java.lang.Object
clone()

Description
Return a clone of this. This method should behave effectively as if it constructed
a new object with the visible values of this.
• The new object is in the current allocation context.
• clone does not copy any associations from this and it does not implicitly

bind the new object to a SO.
•

Available since RTSJ 1.0.1

getAllocationRate

Signature
public long
getAllocationRate()

Description
Gets the limit on the rate of allocation in the heap. Units are in bytes per second.

Returns
The allocation rate in bytes per second. When zero, no allocation is allowed in the

heap. When the returned value is NO_MAX52 then the allocation rate on the
heap is uncontrolled.

getMaxImmortal

Signature
52Section 11.3.2.4.1

476 RTSJ 2.0 (Draft 48)

MemoryParameters javax.realtime 11.3

public long
getMaxImmortal()

Description
Gets the limit on the amount of memory the schedulable may allocate in the
immortal area. Units are in bytes.

Returns
The limit on immortal memory allocation. When zero, no allocation is allowed in

immortal memory. When the returned value is NO_MAX53 then there is no
limit for allocation in immortal memory.

getMaxMemoryArea

Signature
public long
getMaxMemoryArea()

Description
Gets the limit on the amount of memory the schedulable may allocate in its
initial memory area. Units are in bytes.

Returns
The allocation limit in the schedulable’s initial memory area. When zero, no

allocation is allowed in the initial memory area. When the returned value is
NO_MAX54 then there is no limit for allocation in the initial memory area.

mayUseHeap

Signature
public boolean
mayUseHeap()

Description
Determine whether or not this parameter object specifies that the heap may be
used.

Returns
true when heap may be used and false otherwise.

53Section 11.3.2.4.1
54Section 11.3.2.4.1

RTSJ 2.0 (Draft 48) 477

11 Alternative Memory Areas SizeEstimator

setAllocationRate(long)

Signature
public javax.realtime.MemoryParameters
setAllocationRate(long allocationRate)

Description
Sets the limit on the rate of allocation in the heap.

Changes to this parameter take place at the next object allocation for each
associated schedulable, on an individual basis. Schedulables which are in current
violation of the newly configured value will simply receive an OutOfMemoryError
on violating allocations. Because this MemoryParameters may be associated
with more than one schedulable, on a multiprocessor system there may be some
implementation-defined delay before executing schedulables detect the parameter
changes.

Parameters
allocationRate Units are in bytes per second of wall-clock time. When allocation-

Rate is zero, no allocation is allowed in the heap. To specify no limit, use
NO_MAX. Measurement starts when the schedulable starts (not when it is
constructed.) Enforcement of the allocation rate is an implementation option.
When the implementation does not enforce allocation rate limits, it treats all
non-zero allocation rate limits as NO_MAX.

Throws
IllegalArgumentException when any value other than positive, zero, or NO_MAX

is passed as the value of allocationRate.

Returns
this

Deprecated RTSJ 2.0

11.3.2.5 SizeEstimator

Inheritance
java.lang.Object
SizeEstimator

Description

478 RTSJ 2.0 (Draft 48)

SizeEstimator javax.realtime 11.3

This class maintains an estimate of the amount of memory required to store a
set of objects.

SizeEstimator is a floor on the amount of memory that should be allocated.
Many objects allocate other objects when they are constructed. SizeEstimator
only estimates the memory requirement of the object itself, it does not include
memory required for any objects allocated at construction time. When the
instance itself is allocated in several parts (when for instance the object and
its monitor are separate), the size estimate shall include the sum of the sizes
of all the parts that are allocated from the same memory area as the instance.
Alignment considerations, and possibly other order-dependent issues may cause
the allocator to leave a small amount of unusable space, consequently the size
estimate cannot be seen as more than a close estimate.

See Section MemoryArea.MemoryArea(SizeEstimator)

11.3.2.5.1 Constructors

SizeEstimator

Signature
public
SizeEstimator()

Description

11.3.2.5.2 Methods

reserve(Class, int)

Signature
public void
reserve(java.lang.Class<?> c,

int number)

RTSJ 2.0 (Draft 48) 479

11 Alternative Memory Areas SizeEstimator

Description

Take into account additional number instances of Class c when estimating the
size of the MemoryArea55.

Parameters
c The class to take into account.
number The number of instances of c to estimate.

Throws
IllegalArgumentException when c is null or number is negative.

Available since RTSJ 2.0 throws IllegalArgumentException also when number is
less than zero.

reserve(SizeEstimator, int)

Signature
public void
reserve(SizeEstimator estimator,

int number)

Description

Take into account additional number of the estimations from instances of SizeEs-
timator size when estimating the size of the MemoryArea56.

Parameters
estimator The given instance of SizeEstimator57.
number The number of times to reserve the size denoted by estimator.

Throws
IllegalArgumentException when estimator is null or number is less than zero.

Available since RTSJ 2.0 throws IllegalArgumentException also when number is
less than zero.

55Section 11.3.2.3
56Section 11.3.2.3
57Section 11.3.2.5

480 RTSJ 2.0 (Draft 48)

SizeEstimator javax.realtime 11.3

reserve(SizeEstimator)

Signature
public void
reserve(SizeEstimator size)

Description
Take into account an additional estimation from the instance of SizeEstimator
size when estimating the size of the MemoryArea58.

Parameters
size The given instance of SizeEstimator.

Throws
IllegalArgumentException when size is null.

reserveArray(int)

Signature
public void
reserveArray(int length)

Description
Take into account an additional instance of an array of length reference values
when estimating the size of the MemoryArea59.

Parameters
length The number of entries in the array.

Throws
IllegalArgumentException when length is negative.

Available since RTSJ 1.0.1

reserveArray(int, Class)

Signature

58Section 11.3.2.3
59Section 11.3.2.3

RTSJ 2.0 (Draft 48) 481

11 Alternative Memory Areas SizeEstimator

public void
reserveArray(int length,

java.lang.Class<?> type)

Description
Take into account an additional instance of an array of length primitive values
when estimating the size of the MemoryArea60.

Class values for the primitive types are available from the corresponding class
types; e.g., Byte.TYPE, Integer.TYPE, and Short.TYPE.

Parameters
length The number of entries in the array.
type The class representing a primitive type. The reservation will leave room for

an array of length of the primitive type corresponding to type.
Throws
IllegalArgumentException when length is negative, or type does not represent a

primitive type.
Available since RTSJ 1.0.1

getEstimate

Signature
public long
getEstimate()

Description
Gets an estimate of the number of bytes needed to store all the objects reserved.

Returns
The estimated size in bytes.

clear

Signature
public void
clear()

60Section 11.3.2.3

482 RTSJ 2.0 (Draft 48)

SizeEstimator javax.realtime 11.3

Description
Return the estimate to zero for reuse.

Available since rtsj 2.0

RTSJ 2.0 (Draft 48) 483

11 Alternative Memory Areas PhysicalMemorySelector.CachingBehavior

11.4 javax.realtime.memory

11.4.1 Interfaces
11.4.1.1 PhysicalMemoryCharacteristic

Description
A tagging interface used to identify physical memory characteristics. Applications
can give names to regions of memory that are described by PhysicalMemoryRe-
gion61. The names are defined by creating instances of this interface. For example,
final static PhysicalMemoryCharacteristic STATIC_RAM = ...;

Available since RTSJ 2.0

11.4.2 Enumerations
11.4.2.1 PhysicalMemorySelector.CachingBehavior

Inheritance
java.lang.Object
java.lang.Enum<PhysicalMemorySelector.CachingBehavior>
PhysicalMemorySelector.CachingBehavior

Description
Marker for standard caching behaviors. Not all need be supported. For example,
a VM running in Kernel mode might only support DISABLED.

11.4.2.1.1 Enumeration Constants

DISABLED

public static final DISABLED

Description

61Section 11.4.3.3

484 RTSJ 2.0 (Draft 48)

PhysicalMemorySelector.PagingBehavior javax.realtime.memory 11.4

WRITE_THROUGH

public static final WRITE_THROUGH

Description

WRITE_BACK

public static final WRITE_BACK

Description

11.4.2.1.2 Methods

values

Signature
public static javax.realtime.memory.PhysicalMemorySelector.CachingBehavior[]
values()

Description

valueOf(String)

Signature
public static javax.realtime.memory.PhysicalMemorySelector.CachingBehavior
valueOf(String name)

Description

RTSJ 2.0 (Draft 48) 485

11 Alternative Memory Areas PhysicalMemorySelector.PagingBehavior

11.4.2.2 PhysicalMemorySelector.PagingBehavior

Inheritance
java.lang.Object
java.lang.Enum<PhysicalMemorySelector.PagingBehavior>
PhysicalMemorySelector.PagingBehavior

Description
Marker for standard paging behaviors. Not all need be supported. For example,
a VM running in Kernel mode might only support DIRECT.

11.4.2.2.1 Enumeration Constants

DIRECT

public static final DIRECT

Description

FIXED

public static final FIXED

Description

SWAPPABLE

public static final SWAPPABLE

Description

11.4.2.2.2 Methods

486 RTSJ 2.0 (Draft 48)

LTMemory javax.realtime.memory 11.4

values

Signature
public static javax.realtime.memory.PhysicalMemorySelector.PagingBehavior[]
values()

Description

valueOf(String)

Signature
public static javax.realtime.memory.PhysicalMemorySelector.PagingBehavior
valueOf(String name)

Description

11.4.3 Classes
11.4.3.1 LTMemory

Inheritance
java.lang.Object
javax.realtime.MemoryArea
ScopedMemory
LTMemory

Description
LTMemory represents a memory area guaranteed by the system to have linear
time allocation when memory consumption from the memory area is less than
the memory area’s initial size. Execution time for allocation is allowed to vary
when memory consumption is between the initial size and the maximum size for
the area. Furthermore, the underlying system is not required to guarantee that
memory between initial and maximum will always be available.

The memory area described by a LTMemory instance does not exist in the
Java heap, and is not subject to garbage collection. Thus, it is safe to use a
LTMemory object as the initial memory area for a javax.realtime.Schedulable62

62Section 6.3.1.3

RTSJ 2.0 (Draft 48) 487

11 Alternative Memory Areas LTMemory

instance which may not use the javax.realtime.HeapMemory63 or to enter the
memory area using the ScopedMemory.enter64 method within such an instance.

Enough memory must be committed by the completion of the constructor to
satisfy the initial memory requirement. (Committed means that this memory
must always be available for allocation). The initial memory allocation must
behave, with respect to successful allocation, as if it were contiguous; i.e., a
correct implementation must guarantee that any sequence of object allocations
that could ever succeed without exceeding a specified initial memory size will
always succeed without exceeding that initial memory size and succeed for any
instance of LTMemory with that initial memory size.

Note, to ensure that all requested memory is available set initial and maximum
to the same value.

Methods from LTMemory should be overridden only by methods that use
super.

See Section javax.realtime.MemoryArea

See Section ScopedMemory

See Section javax.realtime.Schedulable

Available since RTSJ 2.0 moved to this package.

11.4.3.1.1 Constructors

LTMemory(long, Runnable)

Signature
public
LTMemory(long size,

Runnable logic)

Description

63Section 11.3.2.1
64Section 11.4.3.6.1

488 RTSJ 2.0 (Draft 48)

LTMemory javax.realtime.memory 11.4

Create a scoped memory of the given size and with the give logic to run upon
entry when no other logic is given.

Available since RTSJ 1.0.1

Parameters
size The size in bytes of the memory to allocate for this area. This memory must

be committed before the completion of the constructor.
logic The run() of the given Runnable will be executed using this as its initial

memory area. When logic is null, this constructor is equivalent to LTMem-
ory(long)65.

Throws
IllegalArgumentException when size is less than zero.
javax.realtime.StaticOutOfMemoryError when there is insufficient memory for the

LTMemory object or for the backing memory.
javax.realtime.IllegalAssignmentError when storing logic in this would violate the

assignment rules.

LTMemory(SizeEstimator, Runnable)

Signature
public
LTMemory(SizeEstimator size,

Runnable logic)

Description
Equivalent to LTMemory(long, Runnable)66 with argument list (size.getEstimate(),
runnable).

Available since RTSJ 1.0.1

Parameters
size An instance of javax.realtime.SizeEstimator67 used to give an estimate of the

initial size. This memory must be committed before the completion of the
constructor.

65Section 11.4.3.1.1
66Section 11.4.3.1.1
67Section 11.3.2.5

RTSJ 2.0 (Draft 48) 489

11 Alternative Memory Areas LTMemory

logic The run() of the given Runnable will be executed using this as its initial
memory area. When logic is null, this constructor is equivalent to LTMem-
ory(SizeEstimator)68.

Throws
IllegalArgumentException when size is null.
javax.realtime.StaticOutOfMemoryError when there is insufficient memory for the

LTMemory object or for the backing memory.
javax.realtime.IllegalAssignmentError when storing logic in this would violate the

assignment rules.

LTMemory(long)

Signature
public
LTMemory(long size)

Description
Equivalent to LTMemory(long, Runnable)69 with the argument list ((size, null).

Available since RTSJ 1.0.1

Parameters
size The size in bytes of the memory to allocate for this area. This memory must

be committed before the completion of the constructor.
Throws
IllegalArgumentException when size is less than zero.
javax.realtime.StaticOutOfMemoryError when there is insufficient memory for the

LTMemory object or for the backing memory.

LTMemory(SizeEstimator)

Signature
public
LTMemory(SizeEstimator size)

68Section 11.4.3.1.1
69Section 11.4.3.1.1

490 RTSJ 2.0 (Draft 48)

PhysicalMemoryFactory javax.realtime.memory 11.4

Description
Equivalent to LTMemory(long, Runnable)70 with argument list (size.getEstimate(),
null).

Available since RTSJ 1.0.1

Parameters
size An instance of javax.realtime.SizeEstimator71 used to give an estimate of the

initial size. This memory must be committed before the completion of the
constructor.

Throws
IllegalArgumentException when size is null.
javax.realtime.StaticOutOfMemoryError when there is insufficient memory for the

LTMemory object or for the backing memory.

11.4.3.1.2 Methods

toString

Signature
public java.lang.String
toString()

Description
Create a string representation of this object. The string is of the form
(LTMemory) Scoped memory # num
where num uniquely identifies the LTMemory area.

Returns
A string representing the value of this.

11.4.3.2 PhysicalMemoryFactory

Inheritance
70Section 11.4.3.1.1
71Section 11.3.2.5

RTSJ 2.0 (Draft 48) 491

11 Alternative Memory Areas PhysicalMemoryFactory

java.lang.Object
PhysicalMemoryFactory

Description

Both associate memory ranges, in the form of PhysicalMemoryRegion72 instances
with physical memory characteristics in the form of PhysicalMemoryCharacteris-
tic73 instances, and create memory areas in those modules.

Each physical memory module can have more than one physical memory
characteristic. A physical memory characteristic can apply to many physical
memory modules. The range of physical addresses of modules shall not overlap.
A memory that spans more than one physical memory module may not be create.

The PhysicalMemoryFactory determines the physical addresses from the mod-
ules and keeps a relation between instances of PhysicalMemoryRegion and Phys-
ical Memory Addresses. The range of physical addresses of modules shall not
overlap. A created memory are may not span more than one physical memory
module. To find a memory range that supports PMC A and PMC B uses set
intersection modules(A) $
cap$ modules(B)

Available since RTSJ 2.0

11.4.3.2.1 Constructors

PhysicalMemoryFactory

Signature
public
PhysicalMemoryFactory()

Description

Create an empty factory, but when only one factor is required, use getDefault74

instead.

72Section 11.4.3.3
73Section 11.4.1.1
74Section 11.4.3.2.2

492 RTSJ 2.0 (Draft 48)

PhysicalMemoryFactory javax.realtime.memory 11.4

11.4.3.2.2 Methods

getDefault

Signature
public static javax.realtime.memory.PhysicalMemoryFactory
getDefault()

Description

associate(PhysicalMemoryCharacteristic, PhysicalMemoryRe-
gion)

Signature
public void
associate(PhysicalMemoryCharacteristic name,

PhysicalMemoryRegion module)
throws IllegalArgumentException,

IllegalStateException

Description
Associates a programmer-defined name with a physical address range.

Parameters
name is the physical memory characteristic. e.g STATIC_RAM.
module is the object representing a range of contiguous physical addresses

Throws
IllegalArgumentException when either name or module is null
IllegalStateException when module overlaps a previously associated PhysicalMem-

oryRegion instance.

associate(PhysicalMemoryCharacteristic, PhysicalMemoryRe-
gion)

Signature

RTSJ 2.0 (Draft 48) 493

11 Alternative Memory Areas PhysicalMemoryFactory

public void
associate(javax.realtime.memory.PhysicalMemoryCharacteristic[] names,

PhysicalMemoryRegion module)
throws IllegalArgumentException,

IllegalStateException

Description
Associates am array of programmer-defined names with a physical address range.

Parameters
names is the array of physical memory characteristics. e.g { STATIC_RAM }.
module is the object representing a range of contiguous physical addresses

Throws
IllegalArgumentException when either names or module is null
IllegalStateException when module overlaps a previously associated PhysicalMem-

oryRegion instance.

associate(PhysicalMemoryCharacteristic, PhysicalMemoryRe-
gion)

Signature
public static void
associate(PhysicalMemoryCharacteristic name,

javax.realtime.memory.PhysicalMemoryRegion[] modules)
throws IllegalArgumentException,

IllegalStateException

Description
Associates a programmer-defined name with an array of physical address ranges.

Parameters
name is the physical memory characteristic. e.g STATIC_RAM.
modules is an array of objects each representing a range of contiguous physical

addresses
Throws
IllegalArgumentException when either name or modules is null
IllegalStateException when module overlaps a previously associated PhysicalMem-

oryRegion instance.

494 RTSJ 2.0 (Draft 48)

PhysicalMemoryFactory javax.realtime.memory 11.4

createImmortalMemory(PhysicalMemorySelector, long, Run-
nable)

Signature
public javax.realtime.ImmortalMemory
createImmortalMemory(PhysicalMemorySelector selector,

long size,
Runnable logic)

throws SecurityException,
SizeOutOfBoundsException,
UnsupportedPhysicalMemoryException,
MemoryTypeConflictException,
IllegalArgumentException

Description
Instantiate a javax.realtime.ImmortalMemory75 object in a PhysicalMemoryRe-
gion76 matching the PhysicalMemoryCharacteristic77 in selector and then with
virtual memory parameters of selector applied.

Parameters
selector to use to choose the memory module and set the virtual mapping
size is the size of memory to be taken out of the selected module
logic the logic to execute on entry (may be null

Throws
SecurityException when the application does not have permissions to access physical

memory or the given range of memory.
javax.realtime.SizeOutOfBoundsException when the implementation detects that

size extends beyond a physically addressable memory module.
javax.realtime.UnsupportedPhysicalMemoryException when the underlying hard-

ware does not support the given type, or when no matching PhysicalMemo-
ryCharacteristic78 has been registered with this PhysicalMemoryFactory.

MemoryTypeConflictException when the specified base does not point to memory
that matches the requested type, or when type specifies incompatible memory
attributes.

IllegalArgumentException when size is less than zero.
Returns

75Section 11.3.2.2
76Section 11.4.3.3
77Section 11.4.1.1
78Section 11.4.1.1

RTSJ 2.0 (Draft 48) 495

11 Alternative Memory Areas PhysicalMemoryFactory

the new memory area

createLTMemory(PhysicalMemorySelector, long, Runnable)

Signature
public javax.realtime.memory.PinnableMemory
createLTMemory(PhysicalMemorySelector selector,

long size,
Runnable logic)

throws SecurityException,
SizeOutOfBoundsException,
UnsupportedPhysicalMemoryException,
MemoryTypeConflictException,
IllegalArgumentException

Description
Instantiate a LTMemory79 object in a PhysicalMemoryRegion80 matching the
PhysicalMemoryCharacteristic81 in selector and then with virtual memory pa-
rameters of selector applied.

Parameters
selector to use to choose the memory module and set the virtual mapping
size is the size of memory to be taken out of the selected module
logic the logic to execute on entry (may be null

Throws
SecurityException when the application does not have permissions to access physical

memory or the given range of memory.
javax.realtime.SizeOutOfBoundsException when the implementation detects that

size extends beyond a physically addressable memory module.
javax.realtime.UnsupportedPhysicalMemoryException when the underlying hard-

ware does not support the given type, or when no matching PhysicalMemo-
ryCharacteristic82 has been registered with this PhysicalMemoryFactory.

MemoryTypeConflictException when the specified base does not point to memory
that matches the requested type, or when type specifies incompatible memory
attributes.

79Section 11.4.3.1
80Section 11.4.3.3
81Section 11.4.1.1
82Section 11.4.1.1

496 RTSJ 2.0 (Draft 48)

PhysicalMemoryFactory javax.realtime.memory 11.4

IllegalArgumentException when size is less than zero.

Returns
the new memory area

createPinnableMemory(PhysicalMemorySelector, long, Run-
nable)

Signature
public javax.realtime.memory.PinnableMemory
createPinnableMemory(PhysicalMemorySelector selector,

long size,
Runnable logic)

throws SecurityException,
SizeOutOfBoundsException,
UnsupportedPhysicalMemoryException,
MemoryTypeConflictException,
IllegalArgumentException

Description
Instantiate a PinnableMemory83 object in a PhysicalMemoryRegion84 matching
the PhysicalMemoryCharacteristic85 in selector and then with virtual memory
parameters of selector applied.

Parameters
selector to use to choose the memory module and set the virtual mapping
size is the size of memory to be taken out of the selected module
logic the logic to execute on entry (may be null

Throws
SecurityException when the application does not have permissions to access physical

memory or the given range of memory.
javax.realtime.SizeOutOfBoundsException when the implementation detects that

size extends beyond a physically addressable memory module.
javax.realtime.UnsupportedPhysicalMemoryException when the underlying hard-

ware does not support the given type, or when no matching PhysicalMemo-
ryCharacteristic86 has been registered with this PhysicalMemoryFactory.

83Section 11.4.3.5
84Section 11.4.3.3
85Section 11.4.1.1
86Section 11.4.1.1

RTSJ 2.0 (Draft 48) 497

11 Alternative Memory Areas PhysicalMemoryFactory

MemoryTypeConflictException when the specified base does not point to memory
that matches the requested type, or when type specifies incompatible memory
attributes.

IllegalArgumentException when size is less than zero.

Returns
the new memory area

createStackedMemory(PhysicalMemorySelector, long, long,
Runnable)

Signature
public javax.realtime.memory.StackedMemory
createStackedMemory(PhysicalMemorySelector selector,

long scopeSize,
long backingSize,
Runnable logic)

throws SecurityException,
SizeOutOfBoundsException,
UnsupportedPhysicalMemoryException,
MemoryTypeConflictException,
IllegalArgumentException

Description
Instantiate a StackedMemory87 object in a PhysicalMemoryRegion88 matching
the PhysicalMemoryCharacteristic89 in selector and then with virtual memory
parameters of selector applied.

Parameters
selector to use to choose the memory module and set the virtual mapping
scopeSize is the size of the scope to be created
backingSize is the size of the backing store to take out of the selected module
logic the logic to execute on entry (may be null

Throws
SecurityException when the application does not have permissions to access physical

memory or the given range of memory.
87Section 11.4.3.7
88Section 11.4.3.3
89Section 11.4.1.1

498 RTSJ 2.0 (Draft 48)

PhysicalMemoryRegion javax.realtime.memory 11.4

javax.realtime.SizeOutOfBoundsException when the implementation detects that
size extends beyond a physically addressable memory module.

javax.realtime.UnsupportedPhysicalMemoryException when the underlying hard-
ware does not support the given type, or when no matching PhysicalMemo-
ryCharacteristic90 has been registered with this PhysicalMemoryFactory.

MemoryTypeConflictException when the specified base does not point to memory
that matches the requested type, or when type specifies incompatible memory
attributes.

IllegalArgumentException when scopeSize or backingSize is less than zero.
Returns
the new memory area

11.4.3.3 PhysicalMemoryRegion

Inheritance
java.lang.Object
PhysicalMemoryRegion

Description
Enable an application to define a range of physical memory addresses.

Available since RTSJ 2.0

11.4.3.3.1 Constructors

PhysicalMemoryRegion(long, long)

Signature
public
PhysicalMemoryRegion(long base,

long length)

Description
90Section 11.4.1.1

RTSJ 2.0 (Draft 48) 499

11 Alternative Memory Areas PhysicalMemorySelector

Creates an instance representing a range of contiguous physical memory.

Parameters
base is a physical address
length is size of contiguous memory from that base

Throws
IllegalArgumentException when length is less than or equal to 0, or when base is

less than 0 or when this module overlaps with another memory module.
javax.realtime.SizeOutOfBoundsException when base + length is greater than the

physical address range of the processor

11.4.3.3.2 Methods

getBase

Signature
public long
getBase()

Description
Gets the base address of the contiguous memory represented by this.

Returns
the base address

getLength

Signature
public long
getLength()

Description
Gets the length of the contiguous memory represented by this.

Returns
the length

500 RTSJ 2.0 (Draft 48)

PhysicalMemorySelector javax.realtime.memory 11.4

11.4.3.4 PhysicalMemorySelector

Inheritance
java.lang.Object
PhysicalMemorySelector

Description

Provides both characteristics both for physical memory, used to select a memory
range from a memory module, and for virtual memory to be used for setting the
characteristics of the mapped pages.

Available since RTSJ 2.0

11.4.3.4.1 Constructors

PhysicalMemorySelector(PhysicalMemoryCharacteristic, Phys-
icalMemoryCharacteristic, CachingBehavior, PagingBehavior)

Signature
public
PhysicalMemorySelector(javax.realtime.memory.PhysicalMemoryCharacteristic[] request,

javax.realtime.memory.PhysicalMemoryCharacteristic[] reject,
PhysicalMemorySelector.CachingBehavior caching,
PhysicalMemorySelector.PagingBehavior paging)

Description

11.4.3.4.2 Methods

RTSJ 2.0 (Draft 48) 501

11 Alternative Memory Areas PhysicalMemorySelector

getSupportedCachingBehavior

Signature
public static javax.realtime.memory.PhysicalMemorySelector.CachingBehavior[]
getSupportedCachingBehavior()

Description

Get the caching behaviors that are supported by this JVM

Returns
an array of the supported caching behaviors.

getSupportedPagingBehavior

Signature
public static javax.realtime.memory.PhysicalMemorySelector.PagingBehavior[]
getSupportedPagingBehavior()

Description

Get the paging behaviors that are supported by this JVM

Returns
an array of the supported paging behaviors.

getRequestSet

Signature
public javax.realtime.memory.PhysicalMemoryCharacteristic[]
getRequestSet()

Description

A getter for the PhysicalMemoryCharacteristic list to be requested

Returns
the PhysicalMemoryCharacteristic list

502 RTSJ 2.0 (Draft 48)

PinnableMemory javax.realtime.memory 11.4

getRejectSet

Signature
public javax.realtime.memory.PhysicalMemoryCharacteristic[]
getRejectSet()

Description

A getter for the PhysicalMemoryCharacteristic list to be excluded

Returns
the PysicalMemoryCharacteristic list

getCachingBehavior

Signature
public javax.realtime.memory.PhysicalMemorySelector.CachingBehavior
getCachingBehavior()

Description

A getter for the CachingBehavior to be requested

Returns
the CachingBehavior

getPagingPagingBehavior

Signature
public javax.realtime.memory.PhysicalMemorySelector.PagingBehavior
getPagingPagingBehavior()

Description

A getter for the PagingBehavior to be requested

Returns
the PagingBehavior

RTSJ 2.0 (Draft 48) 503

11 Alternative Memory Areas PinnableMemory

11.4.3.5 PinnableMemory

Inheritance
java.lang.Object
javax.realtime.MemoryArea
ScopedMemory
PinnableMemory

Description
This class is for passing information between different threads as in the producer
consumer pattern. One thread can enter an empty PinnableMemory, allocate
some data structure, put a reference in the portal, pin the scope, exit it, and then
pass it to another thread for further processing or consumption. Once the last
thread is done, the memory can be unpinned, causing its contents to be freed.

Available since RTSJ 2.0

11.4.3.5.1 Constructors

PinnableMemory(long)

Signature
public
PinnableMemory(long size)
throws IllegalArgumentException,

StaticOutOfMemoryError

Description
Create a scoped memory of fixed size that can be held open when no javax.
realtime.Schedulable91 has it on its scoped memory stack.

Parameters
size is the number of bytes in the memory area.

Throws
IllegalArgumentException when size is less than zero.
91Section 6.3.1.3

504 RTSJ 2.0 (Draft 48)

PinnableMemory javax.realtime.memory 11.4

javax.realtime.StaticOutOfMemoryError when there is insufficient memory for the
PinnalbeMemory object or for its backing memory.

PinnableMemory(SizeEstimator)

Signature
public
PinnableMemory(SizeEstimator size)
throws IllegalArgumentException,

StaticOutOfMemoryError

Description

Equivalent to PinnableMemory(long)92 with size.getEstimate() as its argument.

Parameters
size is an estimator for determining the number of bytes in the memory area.

Throws
IllegalArgumentException when size is null.
javax.realtime.StaticOutOfMemoryError when there is insufficient memory for the

PinnalbeMemory object or for its backing memory.

11.4.3.5.2 Methods

pin

Signature
public void
pin()

Description

Prevent the contents from being freed.

92Section 11.4.3.5.1

RTSJ 2.0 (Draft 48) 505

11 Alternative Memory Areas PinnableMemory

unpin

Signature
public void
unpin()

Description

Allow the contents to be freed the next time no javax.realtime.Schedulable93 is
active within the scope.

isPinned

Signature
public boolean
isPinned()

Description

Determine whether the scope may be cleared on last exit.

Returns
true when yes, otherwise false.

getPinCount

Signature
public int
getPinCount()

Description

Find out how many times the scope has been pinned, but not unpinned.

Returns
the number of outstanding pins.

93Section 6.3.1.3

506 RTSJ 2.0 (Draft 48)

PinnableMemory javax.realtime.memory 11.4

joinPinned

Signature
public void
joinPinned()
throws InterruptedException

Description

Wait until the scope has been cleared and then pin it.

Throws
InterruptedExceptionWhen this schedulable is interrupted by javax.realtime.Schedulable.

interrupt()94 or javax.realtime.AsynchronouslyInterruptedException.fire()95 while
waiting for the reference count to go to zero.

joinPinned(HighResolutionTime)

Signature
public void
joinPinned(javax.realtime.HighResolutionTime<T> limit)
throws InterruptedException

Description

Wait until the scope has been cleared and then pin it, within a specified time
frame.

Parameters
limit is the maximum time to wait

Throws
InterruptedException when this schedulable is interrupted by javax.realtime.Schedulable.

interrupt()96 or javax.realtime.AsynchronouslyInterruptedException.fire()97 while
waiting for the reference count to go to zero.

94Section 6.3.1
95Section 15.2.2.2.2
96Section 6.3.1
97Section 15.2.2.2.2

RTSJ 2.0 (Draft 48) 507

11 Alternative Memory Areas PinnableMemory

joinPinnedAndEnter(Runnable)

Signature
public void
joinPinnedAndEnter(Runnable logic)
throws InterruptedException,

ScopedCycleException

Description
Wait until the scope has been cleared and then pin it and enter it.

Parameters
logic is the logic to execute upon entry

Throws
InterruptedExceptionWhen this schedulable is interrupted by javax.realtime.Schedulable.

interrupt()98 or javax.realtime.AsynchronouslyInterruptedException.fire()99 while
waiting for the reference count to go to zero.

ScopedCycleException when the caller is a schedulable and this invocation would
break the single parent rule.

joinPinnedAndEnter(Runnable, HighResolutionTime)

Signature
public void
joinPinnedAndEnter(Runnable logic,

javax.realtime.HighResolutionTime<T> limit)
throws InterruptedException,

ScopedCycleException

Description
Wait until the scope has been cleared and then pin it and enter it, within a
specified time frame.

Parameters
logic is the logic to execute upon entry
limit is the maximum time to wait.

Throws
98Section 6.3.1
99Section 15.2.2.2.2

508 RTSJ 2.0 (Draft 48)

PinnableMemory javax.realtime.memory 11.4

InterruptedExceptionWhen this schedulable is interrupted by javax.realtime.Schedulable.
interrupt()100 or javax.realtime.AsynchronouslyInterruptedException.fire()101

while waiting for the reference count to go to zero.
ScopedCycleException when the caller is a schedulable and this invocation would

break the single parent rule.

joinPinnedAndEnter

Signature
public void
joinPinnedAndEnter()
throws InterruptedException,

IllegalSchedulableStateException,
ThrowBoundaryError,
ScopedCycleException,
MemoryAccessError

Description
Wait until the scope has been cleared and then pin it and enter it.

Throws
ThrowBoundaryError Thrown when the JVM needs to propagate an exception allo-

cated in this scope to (or through) the memory area of the caller. Storing a refer-
ence to that exception would cause an javax.realtime.IllegalAssignmentError102,
so the JVM cannot be permitted to deliver the exception. The javax.realtime.
ThrowBoundaryError103 is allocated in the current allocation context and
contains information about the exception it replaces.

ScopedCycleException when the caller is a schedulable and this invocation would
break the single parent rule.

InterruptedExceptionWhen this schedulable is interrupted by javax.realtime.Schedulable.
interrupt()104 or javax.realtime.AsynchronouslyInterruptedException.fire()105

while waiting for the reference count to go to zero.
IllegalSchedulableStateException when the caller is a Java thread, or when this

method is invoked during finalization of objects in scoped memory and enter-
100Section 6.3.1
101Section 15.2.2.2.2
102Section 15.2.3.2
103Section 15.2.3.8
104Section 6.3.1
105Section 15.2.2.2.2

RTSJ 2.0 (Draft 48) 509

11 Alternative Memory Areas PinnableMemory

ing this scoped memory area would force deletion of the SO that triggered
finalization. This would include the scope containing the SO, and the scope (if
any) containing the scope containing the SO.

MemoryAccessError when calling schedulable may not use the heap and this memory
area’s logic value is allocated in heap memory.

joinPinnedAndEnter(HighResolutionTime)

Signature
public void
joinPinnedAndEnter(javax.realtime.HighResolutionTime<T> limit)
throws InterruptedException,

IllegalSchedulableStateException,
IllegalArgumentException,
UnsupportedOperationException,
ThrowBoundaryError,
ScopedCycleException,
MemoryAccessError

Description
Wait until the scope has been cleared and then pin it and enter it, within a
specified time frame.

Parameters
limit is the maximum time to wait.

Throws
ThrowBoundaryError Thrown when the JVM needs to propagate an exception allo-

cated in this scope to (or through) the memory area of the caller. Storing a refer-
ence to that exception would cause an javax.realtime.IllegalAssignmentError106,
so the JVM cannot be permitted to deliver the exception. The javax.realtime.
ThrowBoundaryError107 is allocated in the current allocation context and
contains information about the exception it replaces.

ScopedCycleException when the caller is a schedulable and this invocation would
break the single parent rule.

InterruptedExceptionWhen this schedulable is interrupted by javax.realtime.Schedulable.
interrupt()108 or javax.realtime.AsynchronouslyInterruptedException.fire()109

106Section 15.2.3.2
107Section 15.2.3.8
108Section 6.3.1
109Section 15.2.2.2.2

510 RTSJ 2.0 (Draft 48)

ScopedMemory javax.realtime.memory 11.4

while waiting for the reference count to go to zero.
IllegalSchedulableStateException when the caller is a Java thread, or when this

method is invoked during finalization of objects in scoped memory and enter-
ing this scoped memory area would force deletion of the SO that triggered
finalization. This would include the scope containing the SO, and the scope (if
any) containing the scope containing the SO.

IllegalArgumentException when the caller is a schedulable, and time is null or no
non-null logic value was supplied to the memory area’s constructor.

MemoryAccessError when calling schedulable may not use the heap and this memory
area’s logic value is allocated in heap memory.

UnsupportedOperationException when the wait operation is not supported using
the clock associated with time.

11.4.3.6 ScopedMemory

Inheritance
java.lang.Object
javax.realtime.MemoryArea
ScopedMemory

Description
ScopedMemory is the abstract base class of all classes dealing with representations
of memory spaces which have a limited lifetime. In general, objects allocated in
scoped memory are freed when (and only when) no schedulable object has access
to the objects in the scoped memory.

A ScopedMemory area is a connection to a particular region of memory and
reflects the current status of that memory. The object does not necessarily contain
direct references to the region of memory. That is implementation dependent.

When a ScopedMemory area is instantiated, the object itself is allocated
from the current memory allocation context, but the memory space that object
represents (it’s backing store) is allocated from memory that is not otherwise
directly visible to Java code; e.g., it might be allocated with the C malloc function.
This backing store behaves effectively as if it were allocated when the associated
scoped memory object is constructed and freed at that scoped memory object’s
finalization.

The ScopedMemory.enter110 method of ScopedMemory is one mechanism used
to make a memory area the current allocation context. The other mechanism

110Section 11.4.3.6.1

RTSJ 2.0 (Draft 48) 511

11 Alternative Memory Areas ScopedMemory

for activating a memory area is making it the initial memory area for a realtime
thread or async event handler. Entry into the scope is accomplished, for example,
by calling the method:

public void enter(Runnable logic)

where logic is a instance of Runnable whose run() method represents the
entry point of the code that will run in the new scope. Exit from the scope
occurs between the time the runnable.run() method completes and the time
control returns from the enter method. By default, allocations of objects within
runnable.run() are taken from the backing store of the ScopedMemory.

ScopedMemory is an abstract class, but all specified methods include imple-
mentations. The responsibilities of MemoryArea, ScopedMemory and the classes
that extend ScopedMemory are not specified. Application code should not extend
ScopedMemory without detailed knowledge of its implementation. since RTSJ
2.0, moved from javax.realtime.

11.4.3.6.1 Methods

enter

Signature
public void
enter()
throws ScopedCycleException,

ThrowBoundaryError,
IllegalSchedulableStateException,
IllegalArgumentException,
MemoryAccessError

Description
Associate this memory area with the current schedulable for the duration of
the execution of the run() method of the instance of Runnable given in the
constructor. During this period of execution, this memory area becomes the
default allocation context until another default allocation context is selected
(using enter, or executeInArea111) or the enter method exits.

111Section 11.4.3.6.1

512 RTSJ 2.0 (Draft 48)

ScopedMemory javax.realtime.memory 11.4

Throws
ScopedCycleException when this invocation would break the single parent rule.
ThrowBoundaryError Thrown when the JVM needs to propagate an exception allo-

cated in this scope to (or through) the memory area of the caller. Storing a refer-
ence to that exception would cause an javax.realtime.IllegalAssignmentError112,
so the JVM cannot be permitted to deliver the exception. The javax.realtime.
ThrowBoundaryError113 is allocated in the current allocation context and
contains information about the exception it replaces.

IllegalSchedulableStateException when the execution context is not an instance of
javax.realtime.Schedulable114 or when this method is invoked during finalization
of objects in scoped memory and entering this scoped memory area would force
deletion of the execution context that triggered finalization. This would include
the scope containing the execution context, and the scope (if any) containing
the scope containing execution context.

IllegalArgumentException IllegalArgumentException when the caller is a sched-
ulable and a null value for logic was supplied when the memory area was
constructed.

MemoryAccessError MemoryAccessError when caller is a schedulable that may not
use the heap and this memory area’s logic value is allocated in heap memory.

enter(Runnable)

Signature
public void
enter(Runnable logic)
throws ScopedCycleException,

ThrowBoundaryError,
IllegalSchedulableStateException,
IllegalArgumentException

Description
Associate this memory area with the current schedulable for the duration of the
execution of the run() method of the given Runnable. During this period of
execution, this memory area becomes the default allocation context until another
default allocation context is selected (using enter, or executeInArea115) or the

112Section 15.2.3.2
113Section 15.2.3.8
114Section 6.3.1.3
115Section 11.4.3.6.1

RTSJ 2.0 (Draft 48) 513

11 Alternative Memory Areas ScopedMemory

enter method exits.

Parameters
logic logic The Runnable object whose run() method should be invoked.

Throws
ScopedCycleException when this invocation would break the single parent rule.
ThrowBoundaryError Thrown when the JVM needs to propagate an exception allo-

cated in this scope to (or through) the memory area of the caller. Storing a refer-
ence to that exception would cause an javax.realtime.IllegalAssignmentError116,
so the JVM cannot be permitted to deliver the exception. The javax.realtime.
ThrowBoundaryError117 is allocated in the current allocation context and
contains information about the exception it replaces.

IllegalSchedulableStateException when the execution context is not an instance of
javax.realtime.Schedulable118 or when this method is invoked during finalization
of objects in scoped memory and entering this scoped memory area would force
deletion of the task that triggered finalization. This would include the scope
containing the task, and the scope (if any) containing the scope containing
task.

IllegalArgumentException IllegalArgumentException when the caller is a schedul-
able and logic is null.

enter(Supplier)

Signature
public T
enter(java.util.function.Supplier<T> logic)
throws ScopedCycleException,

ThrowBoundaryError,
IllegalSchedulableStateException,
IllegalArgumentException

Description
Same as enter(Runnable)119 except that the executed method is called get and
an object is returned.

Parameters
116Section 15.2.3.2
117Section 15.2.3.8
118Section 6.3.1.3
119Section 11.4.3.6.1

514 RTSJ 2.0 (Draft 48)

ScopedMemory javax.realtime.memory 11.4

logic the object who’s get method will be executed.
Returns
a result from the computation.

enter(BooleanSupplier)

Signature
public boolean
enter(BooleanSupplier logic)
throws ScopedCycleException,

ThrowBoundaryError,
IllegalSchedulableStateException,
IllegalArgumentException

Description
Same as enter(Runnable)120 except that the executed method is called get and a
boolean is returned.

Parameters
logic the object who’s get method will be executed.

Returns
a result from the computation.

enter(IntSupplier)

Signature
public int
enter(IntSupplier logic)
throws ScopedCycleException,

ThrowBoundaryError,
IllegalSchedulableStateException,
IllegalArgumentException

Description
Same as enter(Runnable)121 except that the executed method is called get and
an int is returned.

Parameters
120Section 11.4.3.6.1
121Section 11.4.3.6.1

RTSJ 2.0 (Draft 48) 515

11 Alternative Memory Areas ScopedMemory

logic the object who’s get method will be executed.
Returns
a result from the computation.

enter(LongSupplier)

Signature
public long
enter(LongSupplier logic)
throws ScopedCycleException,

ThrowBoundaryError,
IllegalSchedulableStateException,
IllegalArgumentException

Description
Same as enter(Runnable)122 except that the executed method is called get and a
long is returned.

Parameters
logic the object who’s get method will be executed.

Returns
a result from the computation.

enter(DoubleSupplier)

Signature
public double
enter(DoubleSupplier logic)
throws ScopedCycleException,

ThrowBoundaryError,
IllegalSchedulableStateException,
IllegalArgumentException

Description
Same as enter(Runnable)123 except that the executed method is called get and a
double is returned.

Parameters
122Section 11.4.3.6.1
123Section 11.4.3.6.1

516 RTSJ 2.0 (Draft 48)

ScopedMemory javax.realtime.memory 11.4

logic the object who’s get method will be executed.
Returns
a result from the computation.

executeInArea(Runnable)

Signature
public void
executeInArea(Runnable logic)
throws IllegalSchedulableStateException,

IllegalArgumentException,
InaccessibleAreaException

Description
Execute the run method from the logic parameter using this memory area as the
current allocation context. This method behaves as if it moves the allocation
context down the scope stack to the occurrence of this.

Parameters
logic the runnable object whose run() method should be executed.

Throws
IllegalSchedulableStateException when the execution context is not an instance of

javax.realtime.Schedulable124.
InaccessibleAreaException when the memory area is not in the schedulable’s scope

stack.
IllegalArgumentException when the execution context is an instance of javax.realtime.

Schedulable125 schedulable and logic is null.

executeInArea(Supplier)

Signature
public T
executeInArea(java.util.function.Supplier<T> logic)
throws IllegalSchedulableStateException,

IllegalArgumentException,
InaccessibleAreaException

124Section 6.3.1.3
125Section 6.3.1.3

RTSJ 2.0 (Draft 48) 517

11 Alternative Memory Areas ScopedMemory

Description
Same as executeInArea(Runnable)126 except that the executed method is called
get and an object is returned.

Parameters
logic the object who’s get method will be executed.

Returns
a result from the computation.

executeInArea(BooleanSupplier)

Signature
public boolean
executeInArea(BooleanSupplier logic)
throws IllegalSchedulableStateException,

IllegalArgumentException,
InaccessibleAreaException

Description
Same as executeInArea(Runnable)127 except that the executed method is called
get and a boolean is returned.

Parameters
logic the object who’s get method will be executed.

Returns
a result from the computation.

executeInArea(IntSupplier)

Signature
public int
executeInArea(IntSupplier logic)
throws IllegalSchedulableStateException,

IllegalArgumentException,
InaccessibleAreaException

Description
126Section 11.4.3.6.1
127Section 11.4.3.6.1

518 RTSJ 2.0 (Draft 48)

ScopedMemory javax.realtime.memory 11.4

Same as executeInArea(Runnable)128 except that the executed method is called
get and an int is returned.

Parameters
logic the object who’s get method will be executed.

Returns
a result from the computation.

executeInArea(LongSupplier)

Signature
public long
executeInArea(LongSupplier logic)
throws IllegalSchedulableStateException,

IllegalArgumentException,
InaccessibleAreaException

Description
Same as executeInArea(Runnable)129 except that the executed method is called
get and a long is returned.

Parameters
logic the object who’s get method will be executed.

Returns
a result from the computation.

executeInArea(DoubleSupplier)

Signature
public double
executeInArea(DoubleSupplier logic)
throws IllegalSchedulableStateException,

IllegalArgumentException,
InaccessibleAreaException

Description
128Section 11.4.3.6.1
129Section 11.4.3.6.1

RTSJ 2.0 (Draft 48) 519

11 Alternative Memory Areas ScopedMemory

Same as executeInArea(Runnable)130 except that the executed method is called
get and a double is returned.

Parameters
logic the object who’s get method will be executed.

Returns
a result from the computation.

getPortal

Signature
public java.lang.Object
getPortal()
throws IllegalAssignmentError,

IllegalSchedulableStateException

Description
Return a reference to the portal object in this instance of ScopedMemory.

Assignment rules are enforced on the value returned by getPortal as if the
return value were first stored in an object allocated in the current allocation
context, then moved to its final destination.

Throws
javax.realtime.IllegalAssignmentError when a reference to the portal object cannot

be stored in the caller’s allocation context; that is, when this is "inner" relative
to the current allocation context or not on the caller’s scope stack.

IllegalSchedulableStateException when the execution context is not an instance of
javax.realtime.Schedulable131.

Returns
A reference to the portal object or null when there is no portal object. The portal

value is always set to null when the contents of the memory are deleted.

getReferenceCount

Signature
public int
getReferenceCount()

130Section 11.4.3.6.1
131Section 6.3.1.3

520 RTSJ 2.0 (Draft 48)

ScopedMemory javax.realtime.memory 11.4

Description
Returns the reference count of this ScopedMemory.

Note, a reference count of 0 reliably means that the scope is not referenced,
but other reference counts are subject to artifacts of lazy/eager maintenance by
the implementation.

Returns
The reference count of this ScopedMemory.

join

Signature
public void
join()
throws InterruptedException

Description
Wait until the reference count of this ScopedMemory goes down to zero. Return
immediately when the memory is unreferenced.

Throws
InterruptedExceptionWhen this schedulable is interrupted by javax.realtime.RealtimeThread.

interrupt()132 or javax.realtime.AsynchronouslyInterruptedException.fire()133

while waiting for the reference count to go to zero.
IllegalSchedulableStateException when the execution context is not an instance of

javax.realtime.Schedulable134.

join(HighResolutionTime)

Signature
public void
join(javax.realtime.HighResolutionTime<?> time)
throws InterruptedException

Description
132Section 5.3.2.2.2
133Section 15.2.2.2.2
134Section 6.3.1.3

RTSJ 2.0 (Draft 48) 521

11 Alternative Memory Areas ScopedMemory

Wait at most until the time designated by the time parameter for the reference
count of this ScopedMemory to drop to zero. Return immediately when the
memory area is unreferenced.

Since the time is expressed as a javax.realtime.HighResolutionTime135, this
method is an accurate timer with nanosecond granularity. The actual resolution
of the timer and even the quantity it measures depends on the clock associated
with time. The delay time may be relative or absolute. When relative, then the
delay is the amount of time given by time, and measured by its associated clock.
When absolute, then the delay is until the indicated value is reached by the clock.
When the given absolute time is less than or equal to the current value of the
clock, the call to join returns immediately.

Parameters
time When this time is an absolute time, the wait is bounded by that point in time.

When the time is a relative time (or a member of the RationalTime subclass of
RelativeTime) the wait is bounded by a the specified interval from some time
between the time join is called and the time it starts waiting for the reference
count to reach zero.

Throws
InterruptedExceptionWhen this schedulable is interrupted by javax.realtime.RealtimeThread.

interrupt()136 or javax.realtime.AsynchronouslyInterruptedException.fire()137

while waiting for the reference count to go to zero.
IllegalSchedulableStateException when the execution context is not an instance of

javax.realtime.Schedulable138.
IllegalArgumentException when the execution context is a schedulable and time is

null.
UnsupportedOperationException when the wait operation is not supported using

the clock associated with time.

joinAndEnter

Signature
public void
joinAndEnter()
throws InterruptedException

135Section 9.3.1.2
136Section 5.3.2.2.2
137Section 15.2.2.2.2
138Section 6.3.1.3

522 RTSJ 2.0 (Draft 48)

ScopedMemory javax.realtime.memory 11.4

Description
In the error-free case, joinAndEnter combines join();enter(); such that no enter()
from another schedulable can intervene between the two method invocations.
The resulting method will wait for the reference count on this ScopedMemory
to reach zero, then enter the ScopedMemory and execute the run method from
logic passed in the constructor. When no instance of Runnable was passed to
the memory area’s constructor, the method throws IllegalArgumentException
immediately.

When multiple threads are waiting in joinAndEnter family methods for a
memory area, at most one of them will be released each time the reference count
goes to zero.

Note that although joinAndEnter guarantees that the reference count is zero
when the schedulable is released for entry, it does not guarantee that the reference
count will remain one for any length of time. A subsequent enter could raise the
reference count to two.

Throws
InterruptedExceptionWhen this schedulable is interrupted by javax.realtime.RealtimeThread.

interrupt()139 or javax.realtime.AsynchronouslyInterruptedException.fire()140

while waiting for the reference count to go to zero.
IllegalSchedulableStateException when the execution context is not an instance of

javax.realtime.Schedulable141 or when this method is invoked during finalization
of objects in scoped memory and entering this scoped memory area would force
deletion of the task that triggered finalization. This would include the scope
containing the task, and the scope (if any) containing the scope containing the
task.

ThrowBoundaryError Thrown when the JVM needs to propagate an exception allo-
cated in this scope to (or through) the memory area of the caller. Storing a refer-
ence to that exception would cause an javax.realtime.IllegalAssignmentError142,
so the JVM cannot be permitted to deliver the exception. The javax.realtime.
ThrowBoundaryError143 is allocated in the current allocation context and
contains information about the exception it replaces.

javax.realtime.ScopedCycleException when this invocation would break the single
parent rule.

IllegalArgumentException when the execution context is a schedulable and no
non-null logic value was supplied to the memory area’s constructor.

139Section 5.3.2.2.2
140Section 15.2.2.2.2
141Section 6.3.1.3
142Section 15.2.3.2
143Section 15.2.3.8

RTSJ 2.0 (Draft 48) 523

11 Alternative Memory Areas ScopedMemory

MemoryAccessError when caller is a non-heap schedulable and this memory area’s
logic value is allocated in heap memory.

joinAndEnter(HighResolutionTime)

Signature
public void
joinAndEnter(javax.realtime.HighResolutionTime<?> time)
throws InterruptedException

Description

In the error-free case, joinAndEnter combines join();enter(); such that no enter()
from another schedulable can intervene between the two method invocations.
The resulting method will wait for the reference count on this ScopedMemory
to reach zero, or for the current time to reach the designated time, then enter
the ScopedMemory and execute the run method from Runnable object passed
to the constructor. When no instance of Runnable was passed to the memory
area’s constructor, the method throws IllegalArgumentException immediately. *

When multiple threads are waiting in joinAndEnter family methods for a
memory area, at most one of them will be released each time the reference count
goes to zero.

Since the time is expressed as a javax.realtime.HighResolutionTime144, this
method has an accurate timer with nanosecond granularity. The actual resolution
of the timer and even the quantity it measures depends on the clock associated
with time. The delay time may be relative or absolute. When relative, then
the calling thread is blocked for at most the amount of time given by time, and
measured by its associated clock. When absolute, then the time delay is until
the indicated value is reached by the clock. When the given absolute time is less
than or equal to the current value of the clock, the call to joinAndEnter behaves
effectively like enter145.

Note that expiration of time may cause control to enter the memory area
before its reference count has gone to zero.

Parameters
time The time that bounds the wait.

Throws
144Section 9.3.1.2
145Section 11.4.3.6.1

524 RTSJ 2.0 (Draft 48)

ScopedMemory javax.realtime.memory 11.4

ThrowBoundaryError Thrown when the JVM needs to propagate an exception allo-
cated in this scope to (or through) the memory area of the caller. Storing a refer-
ence to that exception would cause an javax.realtime.IllegalAssignmentError146,
so the JVM cannot be permitted to deliver the exception. The javax.realtime.
ThrowBoundaryError147 is allocated in the current allocation context and
contains information about the exception it replaces.

InterruptedExceptionWhen this schedulable is interrupted by javax.realtime.RealtimeThread.
interrupt()148 or javax.realtime.AsynchronouslyInterruptedException.fire()149

while waiting for the reference count to go to zero.
IllegalSchedulableStateException when the execution context is not an instance of

javax.realtime.Schedulable150 or when this method is invoked during finalization
of objects in scoped memory and entering this scoped memory area would force
deletion of the task that triggered finalization. This would include the scope
containing the task, and the scope (if any) containing the scope containing the
task.

javax.realtime.ScopedCycleException when the execution context is a schedulable
and this invocation would break the single parent rule.

IllegalArgumentException when the execution context is a schedulable, and time is
null or no non-null logic value was supplied to the memory area’s constructor.

UnsupportedOperationException when the wait operation is not supported using
the clock associated with time.

MemoryAccessError when calling schedulable may not use the heap and this memory
area’s logic value is allocated in heap memory.

joinAndEnter(Runnable)

Signature
public void
joinAndEnter(Runnable logic)
throws InterruptedException

Description
In the error-free case, joinAndEnter combines join();enter(); such that no enter()
from another schedulable can intervene between the two method invocations.

146Section 15.2.3.2
147Section 15.2.3.8
148Section 5.3.2.2.2
149Section 15.2.2.2.2
150Section 6.3.1.3

RTSJ 2.0 (Draft 48) 525

11 Alternative Memory Areas ScopedMemory

The resulting method will wait for the reference count on this ScopedMemory to
reach zero, then enter the ScopedMemory and execute the run method from logic

When logic is null, throw IllegalArgumentException immediately.
When multiple threads are waiting in joinAndEnter family methods for a

memory area, at most one of them will be released each time the reference count
goes to zero.

Note that although joinAndEnter guarantees that the reference count is zero
when the schedulable is released for entry, it does not guarantee that the reference
count will remain one for any length of time. A subsequent enter could raise the
reference count to two.

Parameters
logic The Runnable object which contains the code to execute.

Throws
InterruptedExceptionWhen this schedulable is interrupted by javax.realtime.RealtimeThread.

interrupt()151 or javax.realtime.AsynchronouslyInterruptedException.fire()152

while waiting for the reference count to go to zero.
IllegalSchedulableStateException when the execution context is not an instance of

javax.realtime.Schedulable153 or when this method is invoked during finalization
of objects in scoped memory and entering this scoped memory area would force
deletion of the task that triggered finalization. This would include the scope
containing the task, and the scope (if any) containing the scope containing the
task.

ThrowBoundaryError thrown when the JVM needs to propagate an exception allo-
cated in this scope to (or through) the memory area of the caller. Storing a refer-
ence to that exception would cause an javax.realtime.IllegalAssignmentError154,
so the JVM cannot be permitted to deliver the exception. The javax.realtime.
ThrowBoundaryError155 is allocated in the current allocation context and
contains information about the exception it replaces.

javax.realtime.ScopedCycleException when this invocation would break the single
parent rule.

IllegalArgumentException when the execution context is a schedulable and logic is
null.

151Section 5.3.2.2.2
152Section 15.2.2.2.2
153Section 6.3.1.3
154Section 15.2.3.2
155Section 15.2.3.8

526 RTSJ 2.0 (Draft 48)

ScopedMemory javax.realtime.memory 11.4

joinAndEnter(Supplier)

Signature
public T
joinAndEnter(java.util.function.Supplier<T> logic)

Description
Same as joinAndEnter(Runnable)156 except that the executed method is called
get and an object is returned.

Parameters
logic the object who’s get method will be executed.

Returns
a result from the computation.

joinAndEnter(BooleanSupplier)

Signature
public boolean
joinAndEnter(BooleanSupplier logic)

Description
Same as joinAndEnter(Runnable)157 except that the executed method is called
get and a boolean is returned.

Parameters
logic the object who’s get method will be executed.

Returns
a result from the computation.

joinAndEnter(IntSupplier)

Signature
public int
joinAndEnter(IntSupplier logic)

Description
156Section 11.4.3.6.1
157Section 11.4.3.6.1

RTSJ 2.0 (Draft 48) 527

11 Alternative Memory Areas ScopedMemory

Same as joinAndEnter(Runnable)158 except that the executed method is called
get and an int is returned.

Parameters
logic the object who’s get method will be executed.

Returns
a result from the computation.

joinAndEnter(LongSupplier)

Signature
public long
joinAndEnter(LongSupplier logic)

Description
Same as joinAndEnter(Runnable)159 except that the executed method is called
get and a long is returned.

Parameters
logic the object who’s get method will be executed.

Returns
a result from the computation.

joinAndEnter(DoubleSupplier)

Signature
public double
joinAndEnter(DoubleSupplier logic)

Description
Same as joinAndEnter(Runnable)160 except that the executed method is called
get and a double is returned.

Parameters
logic the object who’s get method will be executed.

Returns
a result from the computation.

158Section 11.4.3.6.1
159Section 11.4.3.6.1
160Section 11.4.3.6.1

528 RTSJ 2.0 (Draft 48)

ScopedMemory javax.realtime.memory 11.4

joinAndEnter(Runnable, HighResolutionTime)

Signature
public void
joinAndEnter(Runnable logic,

javax.realtime.HighResolutionTime<?> time)
throws InterruptedException

Description
In the error-free case, joinAndEnter combines join();enter(); such that no enter()
from another schedulable can intervene between the two method invocations.
The resulting method will wait for the reference count on this ScopedMemory to
reach zero, or for the current time to reach the designated time, then enter the
ScopedMemory and execute the run method from logic.

Since the time is expressed as a javax.realtime.HighResolutionTime161, this
method is an accurate timer with nanosecond granularity. The actual resolution
of the timer and even the quantity it measures depends on the clock associated
with time. The delay time may be relative or absolute. When relative, then the
delay is the amount of time given by time, and measured by its associated clock.
When absolute, then the delay is until the indicated value is reached by the clock.
When the given absolute time is less than or equal to the current value of the
clock, the call to joinAndEnter behaves effectively like enter(Runnable)162.

Throws IllegalArgumentException immediately when logic is null.
When multiple threads are waiting in joinAndEnter family methods for a

memory area, at most one of them will be released each time the reference count
goes to zero.

Note that expiration of time may cause control to enter the memory area
before its reference count has gone to zero.

Parameters
logic The Runnable object which contains the code to execute.
time The time that bounds the wait.

Throws
InterruptedExceptionWhen this schedulable is interrupted by javax.realtime.RealtimeThread.

interrupt()163 or javax.realtime.AsynchronouslyInterruptedException.fire()164

while waiting for the reference count to go to zero.
161Section 9.3.1.2
162Section 11.4.3.6.1
163Section 5.3.2.2.2
164Section 15.2.2.2.2

RTSJ 2.0 (Draft 48) 529

11 Alternative Memory Areas ScopedMemory

IllegalSchedulableStateException when the execution context is not an instance of
javax.realtime.Schedulable165 or when this method is invoked during finalization
of objects in scoped memory and entering this scoped memory area would force
deletion of the task that triggered finalization. This would include the scope
containing the task, and the scope (if any) containing the scope containing the
task.

ThrowBoundaryError Thrown when the JVM needs to propagate an exception allo-
cated in this scope to (or through) the memory area of the caller. Storing a refer-
ence to that exception would cause a javax.realtime.IllegalAssignmentError166,
so the JVM cannot be permitted to deliver the exception. The javax.realtime.
ThrowBoundaryError167 is preallocated and saves information about the ex-
ception it replaces.

javax.realtime.ScopedCycleException when the execution context is a schedulable
and this invocation would break the single parent rule.

IllegalArgumentException when the execution context is a schedulable and time or
logic is null.

UnsupportedOperationException when the wait operation is not supported using
the clock associated with time.

joinAndEnter(Supplier, HighResolutionTime)

Signature
public P
joinAndEnter(java.util.function.Supplier<P> logic,

javax.realtime.HighResolutionTime<?> time)

Description
Same as joinAndEnter(Runnable, HighResolutionTime)168 except that the exe-
cuted method is called get and an object is returned.

Parameters
logic the object who’s get method will be executed.

Returns
a result from the computation.

165Section 6.3.1.3
166Section 15.2.3.2
167Section 15.2.3.8
168Section 11.4.3.6.1

530 RTSJ 2.0 (Draft 48)

ScopedMemory javax.realtime.memory 11.4

joinAndEnter(BooleanSupplier, HighResolutionTime)

Signature
public boolean
joinAndEnter(BooleanSupplier logic,

javax.realtime.HighResolutionTime<?> time)

Description

Same as joinAndEnter(Runnable, HighResolutionTime)169 except that the exe-
cuted method is called get and a boolean is returned.

Parameters
logic the object who’s get method will be executed.

Returns
a result from the computation.

joinAndEnter(IntSupplier, HighResolutionTime)

Signature
public int
joinAndEnter(IntSupplier logic,

javax.realtime.HighResolutionTime<?> time)

Description

Same as joinAndEnter(Runnable, HighResolutionTime)170 except that the exe-
cuted method is called get and an int is returned.

Parameters
logic the object who’s get method will be executed.

Returns
a result from the computation.

joinAndEnter(LongSupplier, HighResolutionTime)

Signature

169Section 11.4.3.6.1
170Section 11.4.3.6.1

RTSJ 2.0 (Draft 48) 531

11 Alternative Memory Areas ScopedMemory

public long
joinAndEnter(LongSupplier logic,

javax.realtime.HighResolutionTime<?> time)

Description
Same as joinAndEnter(Runnable, HighResolutionTime)171 except that the exe-
cuted method is called get and a long is returned.

Parameters
logic the object who’s get method will be executed.

Returns
a result from the computation.

joinAndEnter(DoubleSupplier, HighResolutionTime)

Signature
public double
joinAndEnter(DoubleSupplier logic,

javax.realtime.HighResolutionTime<?> time)

Description
Same as joinAndEnter(Runnable, HighResolutionTime)172 except that the exe-
cuted method is called get and a double is returned.

Parameters
logic the object who’s get method will be executed.

Returns
a result from the computation.

getParent

Signature
public javax.realtime.MemoryArea
getParent()

Description
Return a reference to this scopes parent scope (e.g., its parent in the single-parent-
rule tree).

171Section 11.4.3.6.1
172Section 11.4.3.6.1

532 RTSJ 2.0 (Draft 48)

ScopedMemory javax.realtime.memory 11.4

Returns
a reference to the next outer scoped memory region on the caller’s scope stack.

• When there is no outer scoped memory and the primordial parent is heap
memory, return a reference to this.
• When there is no outer scoped memory and the primordial parent is

immortal, or when this is unreferenced and unpinned, return null
Problem. The single-parent tree is RTT-independent except for the primordial
scope. The type of the primordial scope is RTT-dependent. What should we
do about that? When called from a RTT that has entered this, the above rules
make some sense, but what if the caller has not even entered the scope, should
we throw an exception? Or just return null? I think the right solution is to
return this whatever the type of the primordial scope. The app can then know
that null means the scope is not pinned and not referenced, and this means
the parent is either heap or immortal. At that point, the app can learn what it
wants to know by just finding what memory area contains the scope object.

Available since RTSJ 2.0

visitNestedMemory(MemoryAreaVisitor)

Signature
public R
visitNestedMemory(javax.realtime.MemoryAreaVisitor<R> visitor)

Description
A means of accessing all live nested memory areas contained in this memory
area, even those to which no reference exits, such a javax.realtime.memory.
PinnableMemory173 that is pinned or another javax.realtime.memory.ScopedMemory
that contains a Schedulable. The set may be concurrently modified by other tasks,
but the view seen by the visitor may not be updated to reflect those changes.
The following is guarantees even when the set is disturbed by other tasks:
• the visitor shall visit no member more than once,
• it shall visit only scopes that were a member of the set at some time during

the enumeration of the set, and
• it shall visit all the scopes that are not deleted during the execution of the
visitor.

Perform an action on all children scopes of this memory area, so long as the
MemoryAreaVisitor.visit(MemoryArea)174 method returns null. When that method

173Section 11.4.3.5
174Section 11.3.1.1.1

RTSJ 2.0 (Draft 48) 533

11 Alternative Memory Areas ScopedMemory

returns an object, the visit is terminated and that object is returned by this
method,

When execution of the visitor’s visit method terminated abruptly by throwing
an exception, then execution of visitScopedChildren also terminates abruptly by
throwing the same exception.

Throws
IllegalArgumentException when visitor is null.

newArray(Class, int)

Signature
public java.lang.Object
newArray(java.lang.Class<?> type,

int number)

Description

Allocate an array of the given type in this memory area. This method may be
concurrently used by multiple threads.

Parameters
type type The class of the elements of the new array. To create an array of a

primitive type use a type such as Integer.TYPE (which would call for an array
of the primitive int type.)

number number The number of elements in the new array.
Throws
IllegalArgumentException IllegalArgumentException when number is less than zero,

type is null, or type is java.lang.Void.TYPE.
javax.realtime.StaticOutOfMemoryError null
IllegalSchedulableStateException when the execution context is not an instance of

javax.realtime.Schedulable175.
InaccessibleAreaException when the memory area is not in the schedulable’s scope

stack.

Returns
A new array of class type, of number elements.

175Section 6.3.1.3

534 RTSJ 2.0 (Draft 48)

ScopedMemory javax.realtime.memory 11.4

newInstance(Class)

Signature
public T
newInstance(java.lang.Class<T> type)
throws IllegalAccessException,

InstantiationException

Description
Allocate an object in this memory area. This method may be concurrently used
by multiple threads.

Parameters
type type The class of which to create a new instance.

Throws
IllegalAccessException IllegalAccessException The class or initializer is inaccessible.
IllegalArgumentException IllegalArgumentException when type is null.
ExceptionInInitializerError ExceptionInInitializerError when an unexpected excep-

tion has occurred in a static initializer.
javax.realtime.StaticOutOfMemoryError null
InstantiationException InstantiationException when the specified class object could

not be instantiated. Possible causes are it is an interface, it is abstract, or it is
an array.

IllegalSchedulableStateException when the execution context is not an instance of
javax.realtime.Schedulable176.

InaccessibleAreaException when the memory area is not in the schedulable’s scope
stack.

Returns
A new instance of class type.

newInstance(Constructor, Object)

Signature
public T
newInstance(java.lang.reflect.Constructor<T> c,

java.lang.Object[] args)

176Section 6.3.1.3

RTSJ 2.0 (Draft 48) 535

11 Alternative Memory Areas ScopedMemory

throws IllegalAccessException,
InstantiationException,
InvocationTargetException

Description
Allocate an object in this memory area. This method may be concurrently used
by multiple threads.

Parameters
c T c The constructor for the new instance.
args args An array of arguments to pass to the constructor.

Throws
IllegalAccessException IllegalAccessException when the class or initializer is inac-

cessible under Java access control.
InstantiationException InstantiationException when the specified class object could

not be instantiated. Possible causes are it is an interface, it is abstract, it is an
array.

javax.realtime.StaticOutOfMemoryError null
IllegalArgumentException IllegalArgumentException when c is null, or the args

array does not contain the number of arguments required by c. A null value of
args is treated like an array of length 0.

IllegalSchedulableStateException when the execution context is not an instance of
javax.realtime.Schedulable177.

InvocationTargetException InvocationTargetException when the underlying con-
structor throws an exception.

InaccessibleAreaException when the memory area is not in the schedulable’s scope
stack.

Returns
A new instance of the object constructed by c.

setPortal(Object)

Signature
public void
setPortal(Object object)

177Section 6.3.1.3

536 RTSJ 2.0 (Draft 48)

StackedMemory javax.realtime.memory 11.4

throws IllegalSchedulableStateException,
IllegalAssignmentError,
InaccessibleAreaException

Description

Sets the portal object of the memory area represented by this instance of Scoped-
Memory to the given object. The object must have been allocated in this
ScopedMemory instance.

Parameters
object The object which will become the portal for this. When null the previous

portal object remains the portal object for this or when there was no previous
portal object then there is still no portal object for this.

Throws
IllegalSchedulableStateException when the execution context is not an instance of

javax.realtime.Schedulable178.
IllegalAssignmentError when the execution context is an instance of javax.realtime.

Schedulable179, and object is not allocated in this scoped memory instance and
not null.

InaccessibleAreaException when the execution context is a schedulable, thismemory
area is not in the caller’s scope stack and object is not null.

toString

Signature
public java.lang.String
toString()

Description

Returns a user-friendly representation of this ScopedMemory of the form "Scoped-
Memory#<num>" where <num> is a number that uniquely identifies this scoped
memory area.

Returns
The string representation

178Section 6.3.1.3
179Section 6.3.1.3

RTSJ 2.0 (Draft 48) 537

11 Alternative Memory Areas StackedMemory

11.4.3.7 StackedMemory

Inheritance
java.lang.Object
javax.realtime.MemoryArea
ScopedMemory
StackedMemory

Description

StackedMemory implements a scoped memory allocation area and backing store
management system. It is designed to allow for safe, fragmentation-free manage-
ment of scoped allocation with certain strong guarantees provided by the virtual
machine and runtime libraries.

Each StackedMemory instance represents a single object allocation area and
additional memory associated with it in the form of a backing store. The backing
store associated with a StackedMemory is a fixed-size memory area allocated
at or before instantiation of the StackedMemory. The object allocation area is
taken from the associated backing store, and the backing store may be further
subdivided into additional StackedMemory allocation areas or backing stores by
instantiating additional StackedMemory objects.

When a StackedMemory is created with a backing store, the backing store
may be taken from a notional global backing store, in which case it is effectively
immortal, or it may be taken from the enclosing StackedMemory’s backing store
when the scope in which it is created is also a StackedMemory, in which case
it is returned to its enclosing scope’s backing store when the object is finalized.
Implementations are not required to return the space occupied by backing stores
taken from the global backing store when their associated StackedMemory object
is finalized.

These backing store semantics divide instances of StackedMemory into two
categories:
• host — this denotes a StackedMemory with an object allocation area created
in a new backing store, allocated either from the global store or from a
parent StackedMemory’s backing store, and
• guest — this in turn indicates a StackedMemory with an object allocation
area taken directly from a parent StackedMemory’s backing store without
creating a sub-store.

In addition, there is one distinguished status for StackedMemory objects, root.
A root StackedMemory is a host StackedMemory created with a backing store
drawn directly from the global backing store, created in an allocation context of
some type other than StackedMemory.

538 RTSJ 2.0 (Draft 48)

StackedMemory javax.realtime.memory 11.4

Allocations from a StackedMemory object allocation area are guaranteed to
run in time linear in the size of the allocation. All memory for the backing store
must be reserved at object construction time.

StackedMemory memory areas have two additional stacking constraints in
addition to the single parent rule, designed to enable fragmentation-free manipu-
lation:
• a StackedMemory that is created when another StackedMemory is the cur-

rent allocation context can only be entered from the same allocation context
in which it was created, and
• a guest StackedMemory cannot be created from a StackedMemory that

currently has another child area that is also a guest StackedMemory, i.e., a
StackedMemory can have at most one direct child that is a guest Stacked-
Memory.

The StackedMemory constructor semantics also enforce the property that
a StackedMemory cannot be created from another StackedMemory allocation
context unless it is allocated from that context’s backing store as either a host or
guest area.

The backing store of a StackedMemory behaves as if any StackedMemory
object allocation areas are at the “bottom” of the backing store, while the backing
stores for enclosed StackedMemory areas are taken from the “top” of the backing
store.

There may be an implementation-specific memory overhead for creating a
backing store of a given size. This means that creating a StackedMemory with
a backing store of exactly the remaining available backing store of the current
StackedMemory may fail with an javax.realtime.StaticOutOfMemoryError. This
overhead must be bounded by a constant.

Available since RTSJ 2.0

11.4.3.7.1 Constructors

StackedMemory(long, long, Runnable)

Signature
public
StackedMemory(long scopeSize,

long backingSize,

RTSJ 2.0 (Draft 48) 539

11 Alternative Memory Areas StackedMemory

Runnable logic)

Description
Create a host StackedMemory with an object allocation area and backing store
of the specified sizes, bound to the specified Runnable. The backing store is
allocated from the currently active memory area when it is also a StackedMemory,
and the global backing store otherwise. The object allocation area is allocated
from the backing store.

Parameters
scopeSize Size of the allocation area within the backing store
backingSize Size of the total backing store
logic Runnable to be entered using this as its current memory area when enter()180

is called.
Throws
IllegalArgumentException when either scopeSize or backingSize is less than zero,

or when scopeSize is too large to be allocated from a backing store of size
backingSize.

javax.realtime.StaticOutOfMemoryError when there is insufficient memory avail-
able to reserve the requested backing store.

StackedMemory(SizeEstimator, SizeEstimator, Runnable)

Signature
public
StackedMemory(SizeEstimator scopeSize,

SizeEstimator backingSize,
Runnable logic)

Description
Equivalent to StackedMemory(long, long, Runnable)181 with argument list (scopeSize.
getEstimate(), backingSize.getEstimate(), runnable).

Parameters
scopeSize SizeEstimator indicating the size of the object allocation area within the

backing store
backingSize SizeEstimator indicating the size of the total backing store
180Section 11.4.3.7.2
181Section 11.4.3.7.1

540 RTSJ 2.0 (Draft 48)

StackedMemory javax.realtime.memory 11.4

logic Runnable to be entered using this as its current memory area when enter()182

is called.
Throws
IllegalArgumentException when either scopeSize or backingSize is null, or when

scopeSize.getEstimate() is too large to be allocated from a backing store of
size backingSize.getEstimate().

javax.realtime.StaticOutOfMemoryError when there is insufficient memory avail-
able to reserve the requested backing store.

StackedMemory(long, long)

Signature
public
StackedMemory(long scopeSize,

long backingSize)

Description

Equivalent to StackedMemory(long, long, Runnable)183 with argument list (scope-
Size, backingSize, null).

Parameters
scopeSize Size of the allocation area within the backing store
backingSize Size of the total backing store

Throws
IllegalArgumentException when either scopeSize or backingSize is less than zero,

or when scopeSize is too large to be allocated from a backing store of size
backingSize.

javax.realtime.StaticOutOfMemoryError when there is insufficient memory avail-
able to reserve the requested backing store.

StackedMemory(SizeEstimator, SizeEstimator)

Signature

182Section 11.4.3.7.2
183Section 11.4.3.7.1

RTSJ 2.0 (Draft 48) 541

11 Alternative Memory Areas StackedMemory

public
StackedMemory(SizeEstimator scopeSize,

SizeEstimator backingSize)

Description
Equivalent to StackedMemory(long, long, Runnable)184 with argument list (scopeSize.
getEstimate(), backingSize.getEstimate(), null).

Parameters
scopeSize SizeEstimator indicating the size of the object allocation area within the

backing store
backingSize SizeEstimator indicating the size of the total backing store

Throws
IllegalArgumentException when either scopeSize or backingSize is null, or when

scopeSize.getEstimate() is too large to be allocated from a backing store of
size backingSize.getEstimate().

javax.realtime.StaticOutOfMemoryError when there is insufficient memory avail-
able to reserve the requested backing store.

StackedMemory(long, Runnable)

Signature
public
StackedMemory(long scopeSize,

Runnable logic)

Description
Create a guest StackedMemory with an object allocation area of the specified
size, bound to the specified Runnable. The object allocation area is drawn from
the same backing store as the parent scope’s object allocation area. The parent
scope must be a StackedMemory.

Parameters
scopeSize Size of the allocation area within the backing store
logic Runnable to be entered using this as its current memory area when enter()185

is called.
Throws

184Section 11.4.3.7.1
185Section 11.4.3.7.2

542 RTSJ 2.0 (Draft 48)

StackedMemory javax.realtime.memory 11.4

IllegalStateException when the parent memory area is not a StackedMemory, or
when the parent StackedMemory already has a child that is also a guest
StackedMemory.

IllegalArgumentException when scopeSize is less than zero.
javax.realtime.StaticOutOfMemoryError when there is insufficient memory avail-

able in the backing store of the parent StackedMemory’s object allocation area
to reserve the requested object allocation area.

StackedMemory(SizeEstimator, Runnable)

Signature
public
StackedMemory(SizeEstimator scopeSize,

Runnable logic)

Description
Equivalent to StackedMemory(long, Runnable)186 with argument list (scopeSize.
getEstimate(), runnable).

Parameters
scopeSize SizeEstimator indicating the size of the object allocation area within the

backing store
logic Runnable to be entered using this as its current memory area when enter()187

is called.
Throws
IllegalStateException when the parent memory area is not a StackedMemory, or

when the parent StackedMemory already has a child that is also a guest
StackedMemory.

IllegalArgumentException when scopeSize is null.
javax.realtime.StaticOutOfMemoryError when there is insufficient memory avail-

able in the backing store of the parent StackedMemory’s object allocation area
to reserve the requested object allocation area.

StackedMemory(long)

186Section 11.4.3.7.1
187Section 11.4.3.7.2

RTSJ 2.0 (Draft 48) 543

11 Alternative Memory Areas StackedMemory

Signature
public
StackedMemory(long scopeSize)

Description
Equivalent to StackedMemory(long, Runnable)188 with argument list (scopeSize,
null).

Parameters
scopeSize Size of the allocation area within the backing store

Throws
IllegalStateException when the parent memory area is not a StackedMemory, or

when the parent StackedMemory already has a child that is also a guest
StackedMemory.

IllegalArgumentException when scopeSize is less than zero.
javax.realtime.StaticOutOfMemoryError when there is insufficient memory avail-

able in the backing store of the parent StackedMemory’s object allocation area
to reserve the requested object allocation area.

StackedMemory(SizeEstimator)

Signature
public
StackedMemory(SizeEstimator scopeSize)

Description
Equivalent to StackedMemory(long, Runnable)189 with argument list (scopeSize.
getEstimate(), null).

Parameters
scopeSize SizeEstimator indicating the size of the object allocation area within the

backing store
Throws
IllegalStateException when the parent memory area is not a StackedMemory, or

when the parent StackedMemory already has a child that is also a guest
StackedMemory.

IllegalArgumentException when scopeSize is null.
188Section 11.4.3.7.1
189Section 11.4.3.7.1

544 RTSJ 2.0 (Draft 48)

StackedMemory javax.realtime.memory 11.4

javax.realtime.StaticOutOfMemoryError when there is insufficient memory avail-
able in the backing store of the parent StackedMemory’s object allocation area
to reserve the requested object allocation area.

11.4.3.7.2 Methods

resize(long)

Signature
public void
resize(long scopeSize)

Description
Change the size of the object allocation area for this scope. This method may
be used to either grow or shrink the allocation area when there are no objects
allocated in the scope and no Schedulable object has this area as its current
allocation context. It may be used to shrink the allocation area down to the size
of its current usage when the calling Schedulable object is the only object that
has this area on its scope stack and there are no guest StackedMemory object
allocation areas created after this area in the same backing store but not yet
finalized.

Parameters
scopeSize The new allocation area size for this scope

Throws
IllegalStateException when the caller is not permitted to perform the requested

adjustment or there are additional guest StackedMemory allocation areas after
this one in the backing store.

javax.realtime.StaticOutOfMemoryError when the remaining backing store is in-
sufficient for the requested adjustment.

getMaximumSize

Signature
public long
getMaximumSize()

RTSJ 2.0 (Draft 48) 545

11 Alternative Memory Areas StackedMemory

Description
Get the maximum size this memory area can attain. The value returned by
this function is the maximum size that can currently be passed to resize(long)190

without triggering an OutOfMemoryException.

Returns
The maximum size attainable.

enter

Signature
public void
enter()

Description
Associate this memory area with the current Schedulable object for the duration
of the run() method of the instance of Runnable given in this object’s constructor.
During this period of execution, this memory area becomes the default allocation
context until another default allocation context is selected.

This method may only be called from the memory area in which this scope
was created.

Throws
IllegalStateException when the currently active memory area is a StackedMemory

and is not the area in which this scope was created, or the current memory
area is not a StackedMemory and this StackedMemory is not a root area.

ThrowBoundaryError ThrowBoundaryError Thrown when the JVM needs to prop-
agate an exception allocated in this scope to (or through) the memory area
of the caller. Storing a reference to that exception would cause an javax.
realtime.IllegalAssignmentError191, so the JVM cannot be permitted to deliver
the exception. The javax.realtime.ThrowBoundaryError192 is allocated in the
current allocation context and contains information about the exception it
replaces.

IllegalSchedulableStateException IllegalSchedulableStateException when the exe-
cution context is not an instance of javax.realtime.Schedulable193 or when this
method is invoked during finalization of objects in scoped memory and entering

190Section 11.4.3.7.2
191Section 15.2.3.2
192Section 15.2.3.8
193Section 6.3.1.3

546 RTSJ 2.0 (Draft 48)

StackedMemory javax.realtime.memory 11.4

this scoped memory area would force deletion of the execution context that
triggered finalization. This would include the scope containing the execution
context, and the scope (if any) containing the scope containing execution
context.

MemoryAccessErrorMemoryAccessError MemoryAccessError when caller is a sched-
ulable that may not use the heap and this memory area’s logic value is allocated
in heap memory.

See Section ScopedMemory.enter()

enter(Runnable)

Signature
public void
enter(Runnable logic)

Description
Associate this memory area with the current Schedulable object for the duration
of the run() method of the given Runnable. During this period of execution,
this memory area becomes the default allocation context until another default
allocation context is selected.

This method may only be called from the memory area in which this scope
was created.

Throws
IllegalStateException when the currently active memory area is a StackedMemory

and is not the area in which this scope was created, or the current memory
area is not a StackedMemory and this StackedMemory is not a root area.

ThrowBoundaryError ThrowBoundaryError Thrown when the JVM needs to prop-
agate an exception allocated in this scope to (or through) the memory area
of the caller. Storing a reference to that exception would cause an javax.
realtime.IllegalAssignmentError194, so the JVM cannot be permitted to deliver
the exception. The javax.realtime.ThrowBoundaryError195 is allocated in the
current allocation context and contains information about the exception it
replaces.

IllegalSchedulableStateException IllegalSchedulableStateException when the exe-
cution context is not an instance of javax.realtime.Schedulable196 or when this

194Section 15.2.3.2
195Section 15.2.3.8
196Section 6.3.1.3

RTSJ 2.0 (Draft 48) 547

11 Alternative Memory Areas StackedMemory

method is invoked during finalization of objects in scoped memory and enter-
ing this scoped memory area would force deletion of the task that triggered
finalization. This would include the scope containing the task, and the scope
(if any) containing the scope containing task.

MemoryAccessError null
See Section ScopedMemory.enter(Runnable)

joinAndEnter

Signature
public void
joinAndEnter()

Description
In the error-free case, joinAndEnter combines join();enter(); such that no enter()
from another schedulable can intervene between the two method invocations.
The resulting method will wait for the reference count on this ScopedMemory
to reach zero, then enter the ScopedMemory and execute the run method from
logic passed in the constructor. When no instance of Runnable was passed to
the memory area’s constructor, the method throws IllegalArgumentException
immediately.

When multiple threads are waiting in joinAndEnter family methods for a
memory area, at most one of them will be released each time the reference count
goes to zero.

Note that although joinAndEnter guarantees that the reference count is zero
when the schedulable is released for entry, it does not guarantee that the reference
count will remain one for any length of time. A subsequent enter could raise the
reference count to two.

Throws
InterruptedExceptionWhen this schedulable is interrupted by javax.realtime.RealtimeThread.

interrupt()197 or javax.realtime.AsynchronouslyInterruptedException.fire()198

while waiting for the reference count to go to zero.
IllegalSchedulableStateException when the execution context is not an instance of

javax.realtime.Schedulable199 or when this method is invoked during finalization
of objects in scoped memory and entering this scoped memory area would force

197Section 5.3.2.2.2
198Section 15.2.2.2.2
199Section 6.3.1.3

548 RTSJ 2.0 (Draft 48)

StackedMemory javax.realtime.memory 11.4

deletion of the task that triggered finalization. This would include the scope
containing the task, and the scope (if any) containing the scope containing the
task.

ThrowBoundaryError Thrown when the JVM needs to propagate an exception allo-
cated in this scope to (or through) the memory area of the caller. Storing a refer-
ence to that exception would cause an javax.realtime.IllegalAssignmentError200,
so the JVM cannot be permitted to deliver the exception. The javax.realtime.
ThrowBoundaryError201 is allocated in the current allocation context and
contains information about the exception it replaces.

javax.realtime.ScopedCycleException when this invocation would break the single
parent rule.

IllegalArgumentException when the execution context is a schedulable and no
non-null logic value was supplied to the memory area’s constructor.

MemoryAccessError when caller is a non-heap schedulable and this memory area’s
logic value is allocated in heap memory.

joinAndEnter(HighResolutionTime)

Signature
public void
joinAndEnter(javax.realtime.HighResolutionTime<?> time)
throws InterruptedException

Description
In the error-free case, joinAndEnter combines join();enter(); such that no enter()
from another schedulable can intervene between the two method invocations.
The resulting method will wait for the reference count on this ScopedMemory
to reach zero, or for the current time to reach the designated time, then enter
the ScopedMemory and execute the run method from Runnable object passed
to the constructor. When no instance of Runnable was passed to the memory
area’s constructor, the method throws IllegalArgumentException immediately. *

When multiple threads are waiting in joinAndEnter family methods for a
memory area, at most one of them will be released each time the reference count
goes to zero.

Since the time is expressed as a javax.realtime.HighResolutionTime202, this
method has an accurate timer with nanosecond granularity. The actual resolution

200Section 15.2.3.2
201Section 15.2.3.8
202Section 9.3.1.2

RTSJ 2.0 (Draft 48) 549

11 Alternative Memory Areas StackedMemory

of the timer and even the quantity it measures depends on the clock associated
with time. The delay time may be relative or absolute. When relative, then
the calling thread is blocked for at most the amount of time given by time, and
measured by its associated clock. When absolute, then the time delay is until
the indicated value is reached by the clock. When the given absolute time is less
than or equal to the current value of the clock, the call to joinAndEnter behaves
effectively like enter203.

Note that expiration of time may cause control to enter the memory area
before its reference count has gone to zero.

Parameters
time The time that bounds the wait.

Throws
ThrowBoundaryError Thrown when the JVM needs to propagate an exception allo-

cated in this scope to (or through) the memory area of the caller. Storing a refer-
ence to that exception would cause an javax.realtime.IllegalAssignmentError204,
so the JVM cannot be permitted to deliver the exception. The javax.realtime.
ThrowBoundaryError205 is allocated in the current allocation context and
contains information about the exception it replaces.

InterruptedExceptionWhen this schedulable is interrupted by javax.realtime.RealtimeThread.
interrupt()206 or javax.realtime.AsynchronouslyInterruptedException.fire()207

while waiting for the reference count to go to zero.
IllegalSchedulableStateException when the execution context is not an instance of

javax.realtime.Schedulable208 or when this method is invoked during finalization
of objects in scoped memory and entering this scoped memory area would force
deletion of the task that triggered finalization. This would include the scope
containing the task, and the scope (if any) containing the scope containing the
task.

javax.realtime.ScopedCycleException when the execution context is a schedulable
and this invocation would break the single parent rule.

IllegalArgumentException when the execution context is a schedulable, and time is
null or no non-null logic value was supplied to the memory area’s constructor.

UnsupportedOperationException when the wait operation is not supported using
the clock associated with time.

203Section 11.4.3.7.2
204Section 15.2.3.2
205Section 15.2.3.8
206Section 5.3.2.2.2
207Section 15.2.2.2.2
208Section 6.3.1.3

550 RTSJ 2.0 (Draft 48)

StackedMemory javax.realtime.memory 11.4

MemoryAccessError when calling schedulable may not use the heap and this memory
area’s logic value is allocated in heap memory.

joinAndEnter(Runnable)

Signature
public void
joinAndEnter(Runnable logic)
throws InterruptedException

Description
In the error-free case, joinAndEnter combines join();enter(); such that no enter()
from another schedulable can intervene between the two method invocations.
The resulting method will wait for the reference count on this ScopedMemory to
reach zero, then enter the ScopedMemory and execute the run method from logic

When logic is null, throw IllegalArgumentException immediately.
When multiple threads are waiting in joinAndEnter family methods for a

memory area, at most one of them will be released each time the reference count
goes to zero.

Note that although joinAndEnter guarantees that the reference count is zero
when the schedulable is released for entry, it does not guarantee that the reference
count will remain one for any length of time. A subsequent enter could raise the
reference count to two.

Parameters
logic The Runnable object which contains the code to execute.

Throws
InterruptedExceptionWhen this schedulable is interrupted by javax.realtime.RealtimeThread.

interrupt()209 or javax.realtime.AsynchronouslyInterruptedException.fire()210

while waiting for the reference count to go to zero.
IllegalSchedulableStateException when the execution context is not an instance of

javax.realtime.Schedulable211 or when this method is invoked during finalization
of objects in scoped memory and entering this scoped memory area would force
deletion of the task that triggered finalization. This would include the scope
containing the task, and the scope (if any) containing the scope containing the
task.

209Section 5.3.2.2.2
210Section 15.2.2.2.2
211Section 6.3.1.3

RTSJ 2.0 (Draft 48) 551

11 Alternative Memory Areas StackedMemory

ThrowBoundaryError thrown when the JVM needs to propagate an exception allo-
cated in this scope to (or through) the memory area of the caller. Storing a refer-
ence to that exception would cause an javax.realtime.IllegalAssignmentError212,
so the JVM cannot be permitted to deliver the exception. The javax.realtime.
ThrowBoundaryError213 is allocated in the current allocation context and
contains information about the exception it replaces.

javax.realtime.ScopedCycleException when this invocation would break the single
parent rule.

IllegalArgumentException when the execution context is a schedulable and logic is
null.

joinAndEnter(Runnable, HighResolutionTime)

Signature
public void
joinAndEnter(Runnable logic,

javax.realtime.HighResolutionTime<?> time)
throws InterruptedException

Description

In the error-free case, joinAndEnter combines join();enter(); such that no enter()
from another schedulable can intervene between the two method invocations.
The resulting method will wait for the reference count on this ScopedMemory to
reach zero, or for the current time to reach the designated time, then enter the
ScopedMemory and execute the run method from logic.

Since the time is expressed as a javax.realtime.HighResolutionTime214, this
method is an accurate timer with nanosecond granularity. The actual resolution
of the timer and even the quantity it measures depends on the clock associated
with time. The delay time may be relative or absolute. When relative, then the
delay is the amount of time given by time, and measured by its associated clock.
When absolute, then the delay is until the indicated value is reached by the clock.
When the given absolute time is less than or equal to the current value of the
clock, the call to joinAndEnter behaves effectively like enter(Runnable)215.

Throws IllegalArgumentException immediately when logic is null.

212Section 15.2.3.2
213Section 15.2.3.8
214Section 9.3.1.2
215Section 11.4.3.7.2

552 RTSJ 2.0 (Draft 48)

javax.realtime.memory 11.5

When multiple threads are waiting in joinAndEnter family methods for a
memory area, at most one of them will be released each time the reference count
goes to zero.

Note that expiration of time may cause control to enter the memory area
before its reference count has gone to zero.

Parameters
logic The Runnable object which contains the code to execute.
time The time that bounds the wait.

Throws
InterruptedExceptionWhen this schedulable is interrupted by javax.realtime.RealtimeThread.

interrupt()216 or javax.realtime.AsynchronouslyInterruptedException.fire()217

while waiting for the reference count to go to zero.
IllegalSchedulableStateException when the execution context is not an instance of

javax.realtime.Schedulable218 or when this method is invoked during finalization
of objects in scoped memory and entering this scoped memory area would force
deletion of the task that triggered finalization. This would include the scope
containing the task, and the scope (if any) containing the scope containing the
task.

ThrowBoundaryError Thrown when the JVM needs to propagate an exception allo-
cated in this scope to (or through) the memory area of the caller. Storing a refer-
ence to that exception would cause a javax.realtime.IllegalAssignmentError219,
so the JVM cannot be permitted to deliver the exception. The javax.realtime.
ThrowBoundaryError220 is preallocated and saves information about the ex-
ception it replaces.

javax.realtime.ScopedCycleException when the execution context is a schedulable
and this invocation would break the single parent rule.

IllegalArgumentException when the execution context is a schedulable and time or
logic is null.

UnsupportedOperationException when the wait operation is not supported using
the clock associated with time.

216Section 5.3.2.2.2
217Section 15.2.2.2.2
218Section 6.3.1.3
219Section 15.2.3.2
220Section 15.2.3.8

RTSJ 2.0 (Draft 48) 553

11 Alternative Memory Areas

11.5 The Rationale

11.5.1 The Scoped Memory Model
Languages that employ automatic reclamation of blocks of memory allocated in what
is conventionally called the heap by program logic also typically use an algorithm
called a garbage collector. Garbage collection algorithms and implementations vary
in the amount of nondeterminacy they add to the execution of program logic. Rather
than require a garbage collector, and require it to meet realtime constraints that
would necessarily be a compromise, this specification constructs alternative systems
for “safe” management of memory. The scoped and immortal memory areas allow
program logic to allocate objects in a Java-like style, ignore the reclamation of those
objects, and not incur the latency of the implemented garbage collection algorithm.

The term scope stack might mislead a reader to infer that it contains only scoped
memory areas. This is incorrect. Although the scope stack may contain scoped
memory references, it may also contain heap and immortal memory areas. Also,
although the scope stack’s behavior is specified as a stack, an implementation is free
to use any data structure that preserves the stack semantics.

This specification does not specifically address the lifetime of objects allocated
in immortal memory areas. If they were reclaimed while they were still referenced,
the referential integrity of the JVM would be compromised which is not permissible.
Recovering immortal objects only at the termination of the application, or never
recovering them under any circumstances is consistent with this specification.

When a scoped memory area is used by both heap and extraheap tasks, there
could be cases where a finalizer executed in extraheap context could attempt to use
a heap reference left by a heap-using task. The code in the finalizer would throw
a memory access error. If that exception is not caught in the finalizer, it will be
handled by the implementation so finalization will continue undisturbed, but the
problem in finalizer that caused the illegal memory access could be hard to locate.
So, catch clauses in finalizers for objects allocated in scoped memory are even more
useful than they are for normal finalizers.

Support for explicit initial scoped memory areas (EISMAs) for schedulables has
repercussions.

1. The EISMA’s parent is set when it realtime thread is constructed or its ASEH
becomes firable, but its reference count is not incremented until the thread
is started or the async event handler is released. This lets a scope with a
zero reference count have a parent. This may cause unexpected scoped cycle
exceptions. The most surprising are from the joinAndEnter family of methods.

2. Any action that makes an event handler not firable must block until all all the
resulting finalization completes.

3. Any action that makes an event handler firable must block until any ongoing

554 RTSJ 2.0 (Draft 48)

The Rationale 11.5

finalization of its EISMA completes.
Since an EISMA is only entered upon release and exited at the completion of

release, the handler of the release can generally run finalization. A thread collecting
the event that triggers the handler will not have any affect on EISMA finalization.
Only another execution context can prevent finalization by the handler at release
end.

11.5.2 The Physical Memory Model
Embedded systems may have many different types of directly addressable memory
available to them. Each type has its own characteristics [2] that determine whether
it is

1. volatile – whether it maintains its state when the power is turned off;
2. writable – whether it can be written at all, written once or written many times

and whether writing is under program control,
3. synchronous or asynchronous – whether the memory is synchronized with the

system bus,
4. erasable at the byte level – if the memory can be overwritten whether this

is done at the byte level or whether whole sectors of the memory need to be
erased,

5. fast to access – both for reading and writing.
Examples include the following [2].

1. Dynamic Random Access Memory (DRAM) and Static Random Access Memory
(SRAM) – these are volatile memory types that are usually writable at the byte
level. There are no limits on the number of times the memory contents can be
written. From the embedded systems designer’s view point, the main differences
between the two are their access times and their costs per byte. SRAM has
faster access times and is more expensive. Both DRAM and SRAM are
example of asynchronous memory, SDRAM and SSRAM are their synchronized
counterparts. Another important difference is that DRAM requires periodic
refresh operations, which may interfere with execution time determinism.

2. Read-Only Memory (for example, Erasable Programmable Read-Only Memory
(EPROM)) – these are nonvolatile memory types that once initialized with
data can not be overwritten by the program (without recourse to some external
effect, usually ultraviolet light as in EPROM). They are fast to access and cost
less per byte than DRAM.

3. Hybrid Memory (for example, Electrically Erasable Programmable Read-Only
Memory (EEPROM), and Flash) – these have some properties of both random
access and read-only memory.
(a) EEPROM – this is nonvolatile memory that is writable at the byte level.

However, there are typically limits on how many time the same location

RTSJ 2.0 (Draft 48) 555

11 Alternative Memory Areas

can be overwritten. EEPROMs are expensive to manufacture, fast to read
but slow to write.

(b) FLASH memory – this is nonvolatile that is writable at the sector level.
Like EEPROM there are limits on how many times the same location can
be overwritten and they are fast to read but slow to write. Flash memory
is cheaper to manufacture than EEPROM.

Some embedded systems may have multiple types of random-access memory, and
multiple ways of accessing memory. For instance, there may be a small amount of
very fast RAM on the processor chip, memory that is on the same board as the
processor, memory that may be added and removed from the system dynamically,
memory that is accessed across a bus, access to memory that is mediated by a cache,
access where the cache is partially disabled so all stores are “write through”, memory
that is demand paged, and other types of memory and memory-access attributes
only limited by physics and the imagination of electrical engineers. Some of these
memory types will have no impact on the programmer, others will.

Individual computers are often targeted at a particular application domain. This
domain will often dictate the cost and performance requirements, and therefore,
the memory type used. Some embedded systems are highly optimized and need to
explore different options in memory to meet their performance requirements. Here
are five example scenarios.

1. Ninety percent of performance-critical memory access is to a set of objects that
could fit in a half the total memory.

2. The system enables the locking of a small amount of data in the cache, and a
small number of pages in the translation lookaside buffer (TLB). A few very
frequently accessed objects are to be locked in the cache and a larger number of
objects that have jitter requirements can be TLB-locked to avoid TLB faults.

3. The boards accept added memory on daughter boards, but that memory is
not accessible to DMA from the disk and network controllers and it cannot
be used for video buffers. Better performance is obtained if one ensures that
all data that might interact with disk, network, or video is not stored on the
daughter board.

4. Improved video performance can be obtained by using an array as a video buffer.
This will only be effective if a physically contiguous, unpagable, DMA-accessible
block of RAM is used for the buffer and all stores forced to write through the
cache. Of course, such an approach is dependent on the way the JVM lays out
arrays in memory, and it breaks the JVM abstraction by depending on that
layout.

5. The system has banks of SRAM and saves power by automatically putting
them to “sleep” whenever they stay unused for 100 ms or so. To exploit this,
the objects used by each phase of our program can be collected in a separate

556 RTSJ 2.0 (Draft 48)

The Rationale 11.5

bank of this special memory.
To be clear, few embedded systems are this aggressive in their hardware opti-

mization. The majority of embedded systems have only ROM, RAM, and maybe
flash memory. Configuration-controlled memory attributes (such as page locking,
and TLB behavior) are more common.

As well as having different types of memory, many computers map input and
output devices so that their registers can be accessed as if they were resident within the
computer memory (see Section 12.2.1). Hence, some parts of the processor’s address
space map to real memory and other parts map to device registers. Logically, even a
device’s memory can be considered part of the memory hierarchy, even where the
device’s interface is accessed through special assembly instructions. Multiprocessor
systems add a further dimension to the problem of memory access. Memory may be
local to a CPU, tightly shared between CPUs, or remotely accessible from the CPU
(but with a delay).

Traditionally, Java programmers are not concerned with these low-level issues;
they program at a higher level of abstraction and assume the JVM makes judicious
use of the underlying resources provided by the execution platform221. Embedded
systems programmers cannot afford this luxury. Consequently, any Java environment
that wishes to facilitate the programming of embedded systems must enable the
programmer to exercise more control over memory.

11.5.2.1 The Original Physical Memory Framework

The RTSJ 1.0.x supported three ways to allocate objects that can be placed in
particular types of memory.

1. ImmortalPhysicalMemory allocates immortal objects in memory with specified
characteristics.

2. LTPhysicalMemory allocates scoped memory objects in a memory with specified
characteristics using a linear time memory allocation algorithm.

3. VTPhysicalMemory allocates scoped memory objects in memory with specified
characteristics using an algorithm that may be worse than linear time but
could offer extra services (such as extensibility).

The only difference between the physical memory classes and the corresponding
standard memory classes is that the ordinary memory classes give access to normal
system RAM and the physical memory classes offer access to particular types of
memory.

Originally, the RTSJ supported access to physical memory via a memory manager
and one or more memory filters. The goal of the memory manager was to provide a
single interface with which the programmer can interact in order to access memory

221This is reflected by the OS support provided. For example, most POSIX systems only offer
programs a choice of demand paged or page-locked memory.

RTSJ 2.0 (Draft 48) 557

11 Alternative Memory Areas

with a particular characteristic. A memory filter provided access to a particular type
of physical memory. Memory filters could be dynamically added and removed from
the system, and there could only be a single filter for each memory type. The memory
manager was unaware of the physical addresses of each type of memory. This was
encapsulated by the filters. The filters also know the virtual memory characteristics
that had been allocated to their memory type. For example, whether the memory is
readable or writable.

In theory, any developer could create a new physical memory filter and register
it with the PMM. However, the programming of filters is difficult for the following
reasons.

1. Physical memory type filters included a memory allocation function that must
respond to allocation requests with whether a requested range of physical
memory is free and when it was not, the physical address of the next free
physical memory of the requested type. This is complex because requests for
compound types of physical memory must find a free segment that satisfies all
attributes of the compound type.

2. The Java runtime must continue to behave correctly under the Java memory
model when using physical memory. This is not a problem when a memory
type behaves like the system’s normal RAM with respect to the properties
addressed by the memory model, or is more restricted than normal RAM.
For instance, write-through cache is more restricted than copy-back cache.
When a new memory type does not obey the memory model using the same
instruction sequences as normal RAM, the memory filter must cooperate with
the interpreter, the JIT, and any ahead-of-time compilation to modify those
instruction sequences when accessing the new type of memory. That task
is difficult for someone who can easily modify the Java runtime and nearly
impossible for anyone else.

3. The physical memory filters where passed as type Object to physical memory
type constructors, so no type checking supported proper usage.

Hence, the utility of the physical memory filter framework at Version 1.0.2 is
questionable, and hence is replaced in 2.0 with a simpler, factory-based framework.

11.5.2.2 The RTSJ 2.0 Physical Memory Framework

The main problem with the 1.0.x framework is that it placed too great a burden on the
JVM implementer. Even for embedded systems, the JVM implementer requires the
VM to be portable between systems within the same processor family. It, therefore,
cannot have detailed knowledge of the underlying memory architecture. It is only
concerned with the standard RAM provided to it by the host operating system.

The design of 2.0 model is based on two constraints.
1. Java objects can only be allocated in a memory area if the physical backing

558 RTSJ 2.0 (Draft 48)

The Rationale 11.5

store supports the Java Memory Model without the JVM having to perform
any operation addition to those that it performs when accessing as the main
RAM for the host machine. No extra compiler or JVM interactions shall be
required. Hence memory types (such as EEPROM), which potentially require
special hardware instructions to perform write operations, cannot be used as
the backing store for physical memory areas. Similarly, nonvolatile memory
can be used any objects store therein may contain references to objects in
volatile memory. Although these memory types are prohibited from being used
as backing stores, they contain objects of primitive Java types and be accessed
via the RTSJ Raw Memory facilities (see Section 12.2.1).

2. Any API must delegates detailed knowledge of the memory architecture to the
programmer of the specific embedded system to be implemented. There is less
requirement for portability here, as embedded systems are usually optimized
for their host environment. The model assumes that the programmer is aware
of the memory map, either through some native operating system interface222

or from some property file read at program initialization time.
When accessing physical memory, there are two main considerations:
1. the characteristics of the required physical memory, and
2. how that memory is to be mapped into the virtual memory of the application.

The program must identify (and inform the RTSJ’s physical memory manager
of) the physical memory characteristics and the range of physical addresses those
characteristic apply to. For example, that there is SRAM between physical address
range 0x100000000 and 0xA0000000.

The physical memory manager supports options for mapping physical memory
into the virtual memory of the application. Examples include whether the range is
to be permanently resident in memory and whether data is written to the cache and
the main memory simultaneously, i.e., a write through caching. By default, memory
is subject to paging or swapping.

Given the required physical memory characteristics, the programmer creates
a PhysicalMemoryRegion for accessing this memory and registers it with a Phys-
icalMemoryFactory. This factory can then be used with new constructors on the
physical memory classes. For example,

1 PhysicalMemoryCharacteristic sram = new PhysicalMemoryCharacteristic(){};
2 PhysicalMemoryCharacteristic[] characteristics =
3 new PhysicalMemoryCharacteristic[]{ sram };
4 PhysicalMemorySelector selector =
5 new PhysicalMemorySelector(null, null, WRITE_THROUGH, FIXED);

222For example, the Advanced Configuration and Power Interface (ACPI) specification is an open
standard for device configuration and power management by the operating system. The ACPI
defines platform-independent interfaces for hardware discovery, configuration, power management
and monitoring. See http://www.acpi.info/

RTSJ 2.0 (Draft 48) 559

11 Alternative Memory Areas

6 MemoryArea memory = factory.createImmortalMemory(selectors, size, logic);

Use of this factory enables the programmer to specify the allocation of the backing
store in a particular type of memory with particular memory characteristics. The
selector is used to locate an area in physical memory with the required physical
memory characteristics and to direct its mapping into the virtual address space.

Hence, once physical memory regions have been created and registered, physical
memory areas can be created and objects can be allocated within those memory
regions using the usual RTSJ mechanisms for changing the allocation context of the
new operator.

11.5.2.3 An example

Consider an example of a system that has a SRAM physical memory module config-
ured at a physical base address of 0x10000000 and of length 0x20000000. Another
module (base address of 0xA0000000 and of length 0x10000000) also supports SRAM,
but this module has been configured so that it saves power by sleeping when not in
use. The following subsections illustrate how the embedded programmer informs the
PMM about the structure during the program’s initialization phase, and how the
memory may be subsequently used after this. The example assumes that the PMM
supports the virtual memory characteristics defined above.

11.5.2.3.1 Program Initialization

For simplicity, the example requires that the address of the memory modules are
known, rather than being read from a property file. The program needs to have a
class that implements the PhysicalMemoryCharacteristic. In this simple example,
this is empty.

1 public class SRAMType implements PhysicalMemoryCharacteristic {}

The initialization method must now create instances of the PhysicalMemory-
Region class to represent the physical memory module memory modules to represent

1 PhysicalMemoryRegion staticRam =
2 new PhysicalMemoryRegion(0x10000000L, 0x100000000L);
3 PhysicalMemoryRegion staticSleepableRam =
4 new PhysicalMemoryRegion(0xA0000000L, 0x100000000L);

It then creates names for the characteristics that the program wants to associate
with each memory module.

560 RTSJ 2.0 (Draft 48)

The Rationale 11.5

1 PhysicalMemoryCharacteristic STATIC_RAM = new MyMemoryType();
2 PhysicalMemoryCharacteristic AUTO_SLEEPABLE = new MyMemoryType();

It then informs the PMM of the appropriate associations:

1 PhysicalMemoryFactory factory = PhysicalMemoryFactory.getDefault();
2 factory.associate(STATIC_RAM, staticRam);
3 factory.associate(STATIC_RAM, staticSleepableRam);
4 factory.associate(AUTO_SLEEPABLE, staticSleepableRam);

Once this is done, the program can now create a selector with the required properties.
In this case, it is for some SRAM that must be auto sleepable.

1 PhysicalMemoryCharacteristic [] PMC =
2 new PhysicalMemoryCharacteristic[2];
3 PMC[0] = STATIC_RAM;
4 PMC[1] = AUTO_SLEEPABLE;
5
6 PhysicalMemorySelector selector =
7 new PhysicalMemorySelectory(PMC, null, DISABLED, FIXED);

If the program had just asked for SRAM then either of the memory modules could
satisfy the request.

The initialization is now complete, and the programmer can use the memory for
storing objects, as shown below.

11.5.2.3.2 Using Physical Memory

Once the programmer has configured the JVM so that it is aware of the physical
memory modules, and the programmer names for characteristics of those memory
modules, using the physical memory is straight forward. Here is an example.

1 ImmortalMemory IM = factory.createImmortalMemory(selector, 0x1000);
2 IM.enter(new Runnable()
3 {
4 public void run()
5 {
6 // The code executing here is running with its allocation
7 // context set to a physical immortal memory area that is
8 // mapped to RAM which is auto sleepable.
9 // Any objects created will be placed in that

10 // part of physical memory.
11 }
12 });

RTSJ 2.0 (Draft 48) 561

11 Alternative Memory Areas

The physical memory factory keeps track of previously allocated memory and is able
to determine whether memory is available with the appropriate characteristics. Of
course, the physical mememoy factory has no knowledge of what these names mean;
it is merely providing a look-up service.

562 RTSJ 2.0 (Draft 48)

Chapter 12

Devices and Triggering

Interacting with the external environment in a timely manner is an important
requirement for realtime, embedded systems. From an embedded systems’ perspective,
all interactions with the physical world are performed by input and output devices.
Hence, the problem is one of controlling and monitoring of devices. This is an
area insufficiently addressed by other Java standards. A conventional Java Virtual
Machine is not designed to support device access and interrupt handling. Programs
that need this functionality must resort to code written in another language and
called via the Java Native Interface (JNI). This specification addresses the problem
by providing APIs for interrupt handling and direct memory access without resorting
to JNI.

In contrast to earlier versions of this specification, version 2.0 has extended the
goals of the device interfaces to be type safe and user extensible, so that the user
can defined new devices without changing the underlying virtual machine.

There are at least four execution (runtime) environments for the RTSJ:
1. on a realtime operating system where the Java application runs in user mode;
2. on a realtime operating system where the Java application runs in a context

with a user space device driver;
3. as a “kernel module” incorporated into a realtime kernel where both kernel

and application run in supervisor mode; and
4. as part of an embedded device where the Java application runs stand-alone on

a hardware machine.
In execution environment 1, interaction with the embedded environment is usually

via operating system calls using Java’s connection-oriented APIs. The Java program
will typically have no direct access to the I/O devices. Although some limited access
to physical memory may be provided, it is unlikely that interrupts can be directly
handled. However, asynchronous interaction with the environment is still possible,
for example, via POSIX signals.

In execution environments 2, 3, and 4, the Java program may be able to directly

563

12 Devices and Triggering

access devices and handle interrupts.
A device can be anything from a simple set of registers wired to sensors and

actuators to a full processor performing some fixed task. The interface to a device
is usually through a set of device registers. Depending on the I/O architecture of
the processor, the programmer can either access these registers via predetermined
memory location (called memory mapped I/O) or via special assembler instructions
(called port-mapped I/O).

A computer system with processing devices can be considered to be a collection
of parallel threads. The device ‘thread’ can communicate and synchronize with the
tasks executing inside the main processor either by having the main processor poll
registers of the device or via a signal from the device. This signal is usually referred
to as an interrupt. All high-level models of device programming must provide [3]

1. facilities for representing, addressing and manipulating device registers; and
2. a suitable representation of interrupts (if interrupts are to be handled).
Version 1.0 of the RTSJ went some way towards supporting this model through

the notion of happenings and the raw memory access facilities. Unfortunately,
happenings were under defined and the mechanisms for physical and raw memory
were overly complex with no clear delineation of the separations of concerns between
application developers and JVM implementers.

Version 2.0 has significantly enhanced the support for happenings, and has pro-
vided a clearer separation between physical and raw memory. The interfaces for Hap-
pening, Timer, and Signal, as well as the new RealtimeSignal, are now unified under
ActiveEvent. This means that Happening, Signal, and RealtimeSignal, like Timer
are now subclasses of AsyncBaseEvent. As described in Chapter 8, ActiveEvent pro-
vides a common light-weight means of notifying that its event has occurred. Unlike
fire(), where dispatching of the associated handlers is done in context of the caller,
an ActiveEvent separates this notification that the event occurred, its triggering,
from the dispatching by providing its own execution context for the dispatching. As
with Timer, each class has its own ActiveEventDispatcher: HappeningDispatcher,
TimeDispatcher, SignalDispatcher, and RealtimeSignalDispatcher.

12.1 Definitions
Direct Memory Access (DMA) — A data transfer directly to memory without

CPU intervention, as in DMA controller.
DMA Controller — A device that can move data in memory without using the

CPU.
Happening —An event that takes place outside the Java runtime environment. The

triggers for happenings depend on the external environment, but happenings
might include signals and interrupts.

564 RTSJ 2.0 (Draft 48)

Semantics 12.2

Interrupt Service Routine (ISR) — A bit of code that is executed when an
interrupt happens. This code runs above the normal priorites and can only be
interrupted by another interrupt.

Raw Memory — An means of mapping memory locations, such as device registers,
into java objects for direct access from Java code without using JNI. The
memory to map can be in an arbirary address space.

Raw Memory Region — An address space for Raw Memory.
Stride — The distance between two memory locations. Adjacent memory locations

have a stride of one. Stride is messured as units of the memory location size.
For example, the stride between two bytes that are adjacent and two integers
that are adjacent is both one, but the actual address offsets are one and four
bytes respectively.

Open issue 12.1.1 (elb)
Pull in some relevant definitions from the JMM.

End of issue 12.1.1

12.2 Semantics
The classes in this Chapter are part of the Device Module introduced in Section
3.2.2.3 and are only required in implementations that include that module. There are
several aspects of the API for supporting devices. Raw Memory provides the means
of accessing the I/O register of a device. Direct Memory Access (DMA) support
provide a means of transferring data using a DMA controller. Active events and
dispatchers support releasing event handlers based on external events. Interrupt
service routines and application-defined clocks are for linking external events to the
interal active events.

12.2.1 Raw Memory
Raw Memory provides means of accessing particular physical memory addresses as
variables of Java’s primitive data types, and thereby provides an application with
direct access to physical memory, for example, for memory-mapped I/O.

Java objects or references therefore cannot be stored in raw memory. The following
specifies the RTSJ’s facilities for raw memory access.

1. Each area of memory supporting raw memory access is identified by a subclass
of RawMemoryRegion.
(a) The raw memory region RawMemoryFactory.MEMORY_MAPPED_REGION

facilitates access to memory location that are outside the main memory
used by the JVM. It is used to access input and output device registers
when such registers are memory mapped.

RTSJ 2.0 (Draft 48) 565

12 Devices and Triggering

Figure 12.1: Raw Memory Interface

Visibility
+ = publ ic
= protected
~ = package

javax.realtime::RawMemory
<< in te r f ace>>

javax.realtime::RawLong
<< in te r f ace>>

javax.realtime::RawLongReader
<< in te r f ace>>

+getLong():long
+getLong(int offset):long
+get(int offset, long[] v):int
+get(int offset, long[] v,
 int start, int count):int
+address():long

javax.realtime::RawLongWriter
<< in te r f ace>>

+setLong(long v)
+setLong(int offset, long v)
+set(int offset, long[] v):int
+set(int offset, long[] v,
 int start, int count):int
+address():long

javax.realtime::RawInt
<< in te r f ace>>

javax.realtime::RawIntReader
<< in te r f ace>>

+getInt() : int
+getInt(int offset): int
+get(int offset, int[] v): int
+get(int offset, int[] v,
 int start, int count):int
+address():long

javax.realtime::RawIntWriter
<< in te r f ace>>

+setInt(int v)
+setInt(int offset, int v)
+set(int offset, int[] v):int
+set(int offset, int[] v,
 int start, int count):int
+address():long

javax.realtime::RawShort
<< in te r f ace>>

javax.realtime::RawShortReader
<< in te r f ace>>

+getShort():short
+getShort(int offset):short
+get(int offset, short[] v):int
+get(int offset, short[] v,
 int start, int count):int
+address():long

javax.realtime::RawShortWriter
<< in te r f ace>>

+setShort(short v)
+setShort(int offset, short v)
+set(int offset, short[] v):int
+set(int offset, short[] v,
 int start, int count):int
+address():long

javax.realtime::RawByteReader
<< in te r f ace>>

+getByte():byte
+getByte(int offset):byte
+get(int offset, byte[] v): int
+get(int offset, byte[] v,
 int start, int count):int
+address():long

javax.realtime::RawByte
<< in te r f ace>>

javax.realtime::RawByteWriter
<< in te r f ace>>

+setByte(byte v)
+setByte(int offset, byte v)
+set(int offset, byte[] v):int
+set(int offset, byte[] v,
 int start, int count):int
+address():long

javax.realtime::RawDouble
<< in te r f ace>>

javax.realtime::RawDoubleReader
<< in te r f ace>>

+get():double
+getDouble(int offset):double
+get(int offset, double[] v): int
+get(int offset, double[] v,
 int start, int count): int
+address():long

javax.realtime::RawDoubleWriter
<< in te r f ace>>

+setDouble(double v)
+setDouble(int offset, double data)
+set(int offset, double[] v): int
+set(int offset, double[] v,
 int start, int count): int
+address():long

javax.realtime::RawFloatReader
<< in te r f ace>>

+getFloat():f loat
+getFloat(int offset):float
+get(int offset, f loat[] v): int
+get(int offset, f loat[] v,
 int start, int count): int
+address():long

javax.realtime::RawFloat
<< in te r f ace>>

javax.realtime::RawFloatWriter
<< in te r f ace>>

+setFloat(float v)
+setFloat(int offset, float data)
+set(int offset, f loat[] v): int
+set(int offset, f loat[] v,
 int start, int count): int
+address():long

566 RTSJ 2.0 (Draft 48)

Semantics 12.2

(b) The raw memory region RawMemoryFactory.IO_PORT_MAPPED_REGION
facilitates access to locations that are outside the main memory used by
the JVM. It is used to access input and output device registers when such
registers are port-based and can only be accessed by special hardware
instructions.

(c) The application developer can define and register additional regions to
support things like emulated access to devices or access to a bus over a
bus controller.

2. Access to raw memory is controlled by implementation-defined objects, called
accessor objects. These implement specification-defined interfaces (e.g., Raw-
Byte, RawShort, RawInt, etc.) and are created by implementation-defined
factory objects. Each factory implements the RawMemoryRegionFactory in-
terface, and is identified by its RawMemoryRegion.

3. The RawMemoryFactory class defines the applications programmers interface
to the raw memory facilities.

4. The RawMemoryRegionFactory interface defines the interface that all factories
must support for creating accessor objects.

Figure 12.2: Event Classes
Visibility
+ = publ ic
= protected
~ = package

javax.realtime::PeriodicTimer

...

javax.realtime::OneShotTimer

...

javax.realtime::ActiveEvent
<< in te r f ace>>

+isActive() : boolean
+isRunning() : boolean
+enable()
+disable()
+star t ()
+start(boolean disable)
+stop()

javax.realtime::Timer
Timer(HighResolutionTime,
 AsyncBaseEventHandler,
 TimeDispatcher)
+getDispatcher() : TimeDispatcher
...

javax.realtime::AsyncBaseEvent
< < a b s t r a c t > >

+isRunning() : boolean
+enable()
+disable()
+boolean hasHandlers() : boolean
+handledBy(AsyncBaseEventHandler) : boolean
+addHandler(AsyncBaseEventHandler)
+setHandler(AsyncBaseEventHandler)
+removeHandler(AsyncBaseEventHandler)
+createReleaseParameters() : ReleaseParameters

javax.realtime::AsyncObjectEvent

+fire(Object value)

javax.realtime::AsyncEvent

+f i re()

javax.realtime::POSIXRealtimeSignal

+isPOSIXRealtimeSignal() : boolean
+getId(String name): int
+get(String name): POSIXRealtimeSignal
+get(int id): POSIXRealtimeSignal
+getId() : int
+getName() : String
+getDispatcher() : POSIXRealtimeSignalDispatcher
+send(long, long) : boolean
...

javax.realtime::POSIXSignal

+isPOSIXSignal() : boolean
+getId(String name): int
+get(String name): POSIXSignal
+get(int id): POSIXSignal
+getProcessId(): long
+getId() : int
+getName() : String
+getDispatcher() : POSIXSignalDispatcher
+send(long) : boolean
...

javax.realtime::Happening
+Happening(String name)
+Happening(String, HappeningDispatcher)
+isHappening(String name) : boolean
+getHappening(String name): int
+createId(String name): int
+getId(String name): int
+get(String name): Happening
+get(int id): Happening
+trigger(int id)
+getId(): int
+getName() : String
+tr igger()
+getDispatcher() : HappeningDispatcher
...

javax.realtime::AsyncLongEvent

+fire(long value)

RTSJ 2.0 (Draft 48) 567

12 Devices and Triggering

12.2.1.1 Raw Memory Region

Raw memory is designed to support arbitrary I/O address spaces. The simplest is
through the processor address space and is accessible via standard memory access
instructions, such as load and store. This provide access to memory mapped I/O
devices, but there are others address spaces as well. Each of these address spaces is
referred to as a Raw Memory Region.

There are two raw memory regions that can be supported generically. Memory
mapped I/O is one. The other is port mapped I/O. The most common instance is
the I/O space provided by Intel x86 compatible processors through their in and out
instructions. The memory mapped I/O raw memory region must be supported by
all implementations, but the port mapped I/O raw memory region must only be
supported on processors that support it.

All other raw memory regions are optional and may be provided by a system
integrator or an application developer. The API provides an interface, RawMem-
oryRegionFactory, that can be implemented to provide a means of creating accessor
objects for that region. These additional regions can be anything from an I/O space
provided by a memory mapped device, using memory mapped I/O to implement it,
to a purely synthetic I/O space to emulated hardware that has not yet been built.

Each raw memory region is identified by its raw memory region object. These
“types” are defined by instances of RawMemoryRegion: RawMemoryFactory.MEMORY_MAPPED_REGION
for memory mapped devices and RawMemoryFactory.IO_PORT_MAPPED_REGION
for port mapped devices for processors that have instructions for reading and writing
an I/O bus directly. The instances are used to get accessors of a region instead of
using a RawMemoryRegionFactory directly.

12.2.1.2 Raw Memory Factory

In order to support a variety of device address spaces efficiently, raw memory objects
are created using the factory methods provided by RawMemoryFactory. This factory
provides static methods to get accessors for a region via a region’s type. Regions
created during runtime can be provided by registering their factory with the main raw
memory factory, so the application code only needs to have a reference to the object
identifying the required region. For instance, one could create an I2C raw memory
region by implementing a factory for it using a memory mapped I2C controller.

12.2.1.3 Stride

Since the word size of devices do not always match the word size of the memory or
I/O bus, the interface provides for the notion of stride. Stride defines the distance
between elements in a raw memory area. Normally elements of a memory area are
mapped sequentially, without any space between the elements. This is a stride of

568 RTSJ 2.0 (Draft 48)

Semantics 12.2

one. A stride of two, means that every other element in physical memory is mapped
into the raw memory area.

For example, it is often easier to map a 16 bit device into a 32 bit system by
mapping the 16 bit registers at 32 bit intervals. This enables 16 bit accesses to the
device to be atomic on 32 bit addressed systems, even when the bus always does 32
bit transfers. One can create a RawShort area with a stride of two. Then the area
can be accessed as if the registers where contiguous.

Since stride is designed to support mapping devices that have a smaller word size
than the host machine, the implementation is allowed to assume that the padding
between values is “do not care” data, and can be overwritten arbitrarily.

12.2.2 Direct Memory Access Support
Many embedded systems provide a means of moving data without direct involvement
of the main processor. This is typically programmed with a special device called a
DMA controller. DMA controllers are treated specially since they are central to bulk
transfer in device drivers. The data to be transferred is not in device registers, but
in normal RAM. Java already provides an API form managing this kind of memory
in java.nio. The DMA API defined here provides a seamless means of integrating
those features into a device driver for DMA.

There are various architectures for DMA controllers, each requiring its own
programming paradigm, so only common low level support is provided by this
specification. Raw memory can be used to program the DMA controller, but there
needs to be a means of representing bulk data. The java.nio.ByteBuffer provides just
such a representation. The only difference is that the restrictions on the memory
behind byte buffer objects is a bit different than for other java.nio mechanisms.

These differences are covered with a special byte buffer factory: DMABufferFac-
tory. An instance of this factory can produce direct byte buffers within a given
memory range. This range can be chosen by the programmer to be within the range
of a given DMA controller. The factory also provides methods for getting the start
address of a buffer’s memory and checking if a buffer’s memory is within a given
range. These addresses should be compatible with DMA controllers in the system,
though for controllers with a smaller address space than the processor, the DMA
address may have fixed offset from the processor physical address. The DMABuffer-
Factory class also provides static methods for ensuring that Java-generated changes
to DMA-mapped memory buffers are visible to native code, and vice-versa.

12.2.3 External Triggering
It is not enough to be able to read from and write to devices; many applications, need
a means of being interrupted when an event happens. This specification provides

RTSJ 2.0 (Draft 48) 569

12 Devices and Triggering

a two-level interrupt mechanism. For predefined interfaces, such as POSIX signals,
the first level handler is provided by the virtual machine and asynchronous events
provide the second level event handling. For external events and additional clocks,
where the programmer needs to be able to define new instances and provide for their
triggering, additional classes are provided to manage both the first level, as well as
the second level handling. In all cases, the user can control the priority and affinity
of the dispatching between the first level and second level handing.

Figure 12.3: Happening State Transition Diagram

12.2.3.1 Happenings

Whereas, in previous versions of this specification, happenings were represented as a
String, as of 2.0 they have become an object in their own right. This makes it easier
to properly type methods that use them and for the user to define new happening
for an application without the need to change the JVM. Furthermore, indirection is
minimized by making the new Happening class a subclass of AsyncEvent.

Since a Happening needs to be triggerrable from an external event, such as an
interrupt, the Happening class also implements ActiveEvent. As with other active

570 RTSJ 2.0 (Draft 48)

Semantics 12.2

events, Happening has its own dispatcher class: HappeningDispatcher. There is a
default happening dispatcher that is used when none is provided at creation time,
otherwise, the programmer can provide one to change the priority and affinity of
dispatching.

Normally, happenings are triggered either from an InterruptServiceRoutine or
from JNI code. For the later, the interface provides a means of linking a happening
by name. This enables native code to get a handle for triggering a happening without
have a direct reference. The given name must follow the Java naming conventions.
A happening name defined outside of this specification should not begin with java or
javax.

Figure 12.3 illustrates the sequence of actions necessary for defining and using a
Happening. When using an application-defined dispatcher, it must be created first
(1). When using an InterruptServiceRoutine to trigger the happening, it may be
created before (2) or after the happening is create. After creating the happening (3),
the happening must be started to be registered with it dispatcher to be triggered
from native code. Of course, the JVM must have direct access to an interrupt, either
by being directly bound in the kernel or by some other means, such as a system call,
for setting up user-space device drivers. Only after both an InterruptServiceRoutine
is registered and a Happening with the same name is started, can that happening
be triggered (6–8).

There are three main differences between this mechanism and the string based
API.

1. The Happening class is now a first-class entity, rather than being buried in the
implementation and identified only by a String object.

2. They include the Happening.trigger(int) method that enables a happening
to be explicitly triggered by Java code, and at the implementation’s option,
a native code function that permits native application code to trigger the
happening.

3. Finally, Happening is a subclass of AsyncEvent just as with Timer instead of
having a happening attached to an AsyncEvent.

12.2.4 Interrupt Service Routines
In Java-based systems, JNI is typically used to transfer control between the assem-
bler/C interrupt service routine (ISR) and the program. 2.0 of the RTSJ supports
the possibility of the ISR containing Java code. This is clearly an area where it
is difficult to maintain the portability goal of Java. Furthermore, not all RTSJ
deployments can support InterruptServiceRoutine. A JVM that runs in user space
does not generally have access to interrupts.

RTSJ 2.0 (Draft 48) 571

12 Devices and Triggering

Figure 12.4: Interrupt servicing

loop

Interrupt

:RealtimeThread:InterruptServiceRoutine

InterruptHandling

id5
+Happening:getID(name) // as needed

5
+Happening:trigger(id)

3
setUpLinkage

4
handle

2
register(interruptId)

isr

1
new()

The JVM must either be standalone, running in a kernel module, or running in
a special I/O partition on a partitioning OS where interrupts are passed through
using some virtualization technique. Hence, JVM support for ISR is not required for
RTSJ compliance.

Interrupt handling is necessarily machine dependent. However, the RTSJ provides
an abstract model that can be implemented on top of all architectures.

The following semantic model shall be supported by the RTSJ.
1. An occurrence of an interrupt consists of its generation and delivery.
2. Generation of the interrupt is the mechanism in the underlying hardware or

system that makes the interrupt available to the Java program.
3. Delivery is the action that invokes an interrupt service routine (ISR) in response

to the occurrence of the interrupt. This may be performed by the JVM or
application native code linked with the JVM, or directly by the hardware
interrupt mechanism.

4. Between generation and delivery, the interrupt is pending.
5. Some or all interrupt occurrences may be inhibited. While an interrupt oc-

currence is inhibited, all occurrences of that interrupt shall be prevented from
being delivered. Whether such occurrences remain pending or are lost is imple-

572 RTSJ 2.0 (Draft 48)

Semantics 12.2

mentation defined, but it is expected that the implementation shall make a
best effort to avoid losing pending interrupts.

6. Certain implementation-defined interrupts are reserved. Reserved interrupts
are either interrupts for which application-defined ISRs are not supported, or
those that already have ISRs by some other implementation-defined means.
For example, a clock interrupt, which is used for internal time keeping by the
JVM, is a reserved interrupt.

7. An application-defined ISR can be registered with one or more nonreserved
interrupts. Registering an ISR for an interrupt shall implicitly deregister any
already registered ISR for that interrupt. Any daisy-chaining of interrupt
handlers shall be performed explicitly by the application interrupt handlers.

8. While an ISR is registered to an interrupt, the handle method shall be called
once for each delivery of that interrupt. For locking out further interrupts
during interrupt handling, the handle method must be synchronized with a
priority high enough to lock out the requisite interrupts. This synchronized
uses priority ceiling emulation to inhibit the corresponding interrupt (and all
lower priority interrupts). The default allocation context of the handle method
is the memory area passed during construction.
Any exception propagated from the handle method shall be caught by the JVM
and ignored.

9. Code running in the context of an ISR may only attempt to acquire a lock that
has priority ceiling emulation as its monitor control policy. The behavior is
undefined, when an ISR attempt to acquire a lock that has a monitor control
policy other than priority ceiling emulation.

The model assumes that

1. the processor has a (logical) interrupt controller that monitors a number of
interrupt lines;

2. the interrupt controller may associate each interrupt line with a particular
interrupt priority;

3. associated with the interrupt lines is a (logical) interrupt vector that contains
the addresses of the ISRs;

4. the processor has instructions that allow interrupts from a particular line to
be disabled/masked irrespective of whether (or the type of) device attached;

5. disabling interrupts from a specific line may disables the interrupts from lines
of lower priority;

6. a device can be connected to an arbitrary interrupt line;
7. when an interrupt is signalled on an interrupt line by a device, the processor

uses the identity of the interrupt line to index into the interrupt vector and
jumps to the address of the ISR; the hardware automatically disables further
interrupts (either of the same priority and lower or, possibly, all interrupts);

RTSJ 2.0 (Draft 48) 573

12 Devices and Triggering

8. on return from the ISR, interrupts are automatically re-enabled.
For each of the interrupt, the RTSJ has an associated hardware priority that

can be used to set the ceiling of an ISR object. The RTSJ virtual machine may use
this to disable the interrupts from the associated interrupt line and lower priority
interrupts, when it is executing a synchronized method of the interrupt-handling
object. On a multicore system, the situation is more complex, since there may be
other cores available to handle other interrupts, even at lower priorities, and some
other locking mechanism may be necessary as well.

Though synchronization is not required in general, it is required to enforce
visibility of changes made to any variables shared between some normal Schedulable
and a handle method. For the handle method, this may be done automatically by the
hardware interrupt handling mechanism or it may require added support from the
realtime Java virtual machine. However, for clarity of the model, RTSJ recommends
that the handle method should be defined as synchronized.

Support for interrupt handling is encapsulated in the InterruptServiceRoutine
abstract class that has two main methods. The first is the final register method that
will register an instance of the class with the system so that the appropriate interrupt
vector can be initialized. The second is the abstract handle method that provides the
code to be executed in response to the interrupt occurring. An individual real-time
JVM may place restrictions of the code that can be written in this method. The
process is illustrated in Figure 12.4, and is described below.

1. The ISR is created by some application real-time thread.
2. The created ISR is registered with the JVM, the interrupt id is passed as a

parameter.
3. As part of the registration process, some internal interface is used to set up

the code that will set the underlying interrupt vectors to some C/assembler
code that will provide the necessary linkage to allow the callback to the Java
handler.

4. When the interrupt occurs, the handler is called.
In order to integrate further the interrupt handling with the Java application,

the handle method may trigger a happening or fire an event.
Typically an implementation of the RTSJ that supports first-level interrupt

handling will document the following items.
1. For each interrupt, its identifying integer value, the priority at which the

interrupt occurs and whether it can be inhibited or not, and the effects of
registering ISRs to non inhibitable interrupts (if this is permitted).

2. Which runtime stack the handle method uses when it executes.
3. Any implementation-specific or hardware-specific activity that happens before

the handle method is invoked, e.g., reading device registers or acknowledging
devices.

574 RTSJ 2.0 (Draft 48)

Semantics 12.2

4. The state (inhibited/uninhibited) of the nonreserved interrupts when the
program starts; if some interrupts are uninhibited, what the mechanism is that
a program can use to protect itself before it can register the corresponding ISR.

5. The treatment of interrupt occurrences that are generated while the interrupt
is inhibited, i.e., whether one or more occurrences are held for later delivery or
all are lost.

6. Whether predefined or implementation-defined exceptions are raised as a result
of the occurrence of any interrupt (for example, a hardware trap resulting
from a segmentation error), and the mapping between the interrupt and the
predefined exceptions.

7. On a multiprocessor, the rules governing the delivery of an interrupt occurrence
to a particular processor. For example, whether execution of the handle method
may spin if the lock of the associated object is held by another processor.

RTSJ 2.0 (Draft 48) 575

12 Devices and Triggering DirectMemoryByteBuffer

12.3 javax.realtime.device

12.3.1 Interfaces
12.3.1.1 DirectMemoryByteBuffer

Description
An interface that can be implemented by a subclass of ByteBuffer for supporting
DMA.

Available since RTSJ 2.0

12.3.1.1.1 Methods

isReadOnly

Signature
public boolean
isReadOnly()

Description
Determine whether or not one can write to the buffer.

Returns
true when and only when the buffer is read only.

duplicate

Signature
public javax.realtime.device.DirectMemoryByteBuffer
duplicate()

Description
Create a new memory buffer pointing to the same underlying memory. The
content of the new buffer will remain the same. Changes to this buffer’s content
will be visible in the new buffer and vice versa. Initially the two buffers’ position,

576 RTSJ 2.0 (Draft 48)

DirectMemoryByteBuffer javax.realtime.device 12.3

limit, and mark values will be the same, but independent of one another. Changes
to one will not be reflected in the other.

Returns
the new memory buffer

get

Signature
public byte
get()

Description
Obtain the byte at the current position and then increment the position.

Returns
the byte at the old position.

get(int)

Signature
public byte
get(int index)
throws IndexOutOfBoundsException

Description
Obtain the byte at index.

Throws
IndexOutOfBoundsException when index is negative or not smaller than the buffer’s

limit
Returns
the byte at index.

getChar

Signature
public char
getChar()

RTSJ 2.0 (Draft 48) 577

12 Devices and Triggering DirectMemoryByteBuffer

Description

getChar(int)

Signature
public char
getChar(int arg0)
throws IndexOutOfBoundsException

Description
Obtain the char at index.

Throws
IndexOutOfBoundsException when index is negative or not smaller than the buffer’s

limit

Returns
the byte at index.

getDouble

Signature
public double
getDouble()

Description

getDouble(int)

Signature
public double
getDouble(int arg0)

Description

578 RTSJ 2.0 (Draft 48)

DirectMemoryByteBuffer javax.realtime.device 12.3

getFloat

Signature
public float
getFloat()

Description

getFloat(int)

Signature
public float
getFloat(int arg0)

Description

getInt

Signature
public int
getInt()

Description

getInt(int)

Signature
public int
getInt(int arg0)

Description

RTSJ 2.0 (Draft 48) 579

12 Devices and Triggering DirectMemoryByteBuffer

getLong

Signature
public long
getLong()

Description

getLong(int)

Signature
public long
getLong(int arg0)

Description

getShort

Signature
public short
getShort()

Description

getShort(int)

Signature
public short
getShort(int arg0)

Description

580 RTSJ 2.0 (Draft 48)

DirectMemoryByteBuffer javax.realtime.device 12.3

put(byte)

Signature
public javax.realtime.device.DirectMemoryByteBuffer
put(byte value)
throws BufferOverflowException,

ReadOnlyBufferException

Description
Set the byte at the current position to value and then increment the position by
one.

Throws
BufferOverflowException when the current position is not smaller than its limit.
ReadOnlyBufferException when this buffer is read only.

Returns
this

put(int, byte)

Signature
public javax.realtime.device.DirectMemoryByteBuffer
put(int index,

byte value)
throws BufferOverflowException,

ReadOnlyBufferException

Description
Set the byte at the index to value.

Throws
BufferOverflowException when index is negative or not smaller than the buffer’s

limit.
ReadOnlyBufferException when this buffer is read only.

putChar(char)

Signature

RTSJ 2.0 (Draft 48) 581

12 Devices and Triggering DirectMemoryByteBuffer

public javax.realtime.device.DirectMemoryByteBuffer
putChar(char arg0)

Description

putChar(int, char)

Signature
public javax.realtime.device.DirectMemoryByteBuffer
putChar(int arg0,

char arg1)

Description

putDouble(double)

Signature
public javax.realtime.device.DirectMemoryByteBuffer
putDouble(double arg0)

Description

putDouble(int, double)

Signature
public javax.realtime.device.DirectMemoryByteBuffer
putDouble(int arg0,

double arg1)

Description

582 RTSJ 2.0 (Draft 48)

DirectMemoryByteBuffer javax.realtime.device 12.3

putFloat(float)

Signature
public javax.realtime.device.DirectMemoryByteBuffer
putFloat(float arg0)

Description

putFloat(int, float)

Signature
public javax.realtime.device.DirectMemoryByteBuffer
putFloat(int arg0,

float arg1)

Description

putInt(int)

Signature
public javax.realtime.device.DirectMemoryByteBuffer
putInt(int arg0)

Description

putInt(int, int)

Signature
public javax.realtime.device.DirectMemoryByteBuffer
putInt(int arg0,

int arg1)

Description

RTSJ 2.0 (Draft 48) 583

12 Devices and Triggering DirectMemoryByteBuffer

putLong(long)

Signature
public javax.realtime.device.DirectMemoryByteBuffer
putLong(long arg0)

Description

putLong(int, long)

Signature
public javax.realtime.device.DirectMemoryByteBuffer
putLong(int arg0,

long arg1)

Description

putShort(short)

Signature
public javax.realtime.device.DirectMemoryByteBuffer
putShort(short arg0)

Description

putShort(int, short)

Signature
public javax.realtime.device.DirectMemoryByteBuffer
putShort(int arg0,

short arg1)

Description

584 RTSJ 2.0 (Draft 48)

DirectMemoryByteBuffer javax.realtime.device 12.3

slice

Signature
public javax.realtime.device.DirectMemoryByteBuffer
slice()

Description

position

Signature
public int
position()

Description
Determine the reference position of this buffer.

Returns
the current position

position(int)

Signature
public javax.realtime.device.DirectMemoryByteBuffer
position(int position)
throws IllegalArgumentException

Description
Set the reference position for this buffer. When the mark is defined and is larger
than the new position then the mark become undefined.

Parameters
position the new current position, which must be a natural number no larger than

the current limit.
Throws
IllegalArgumentException when the preconditions on position do not hold.

Returns
the buffer itself.

RTSJ 2.0 (Draft 48) 585

12 Devices and Triggering DirectMemoryByteBuffer

limit

Signature
public int
limit()

Description
Determine the buffers limit.

Returns
the limit.

limit(int)

Signature
public javax.realtime.device.DirectMemoryByteBuffer
limit(int limit)
throws IllegalArgumentException

Description
Sets this buffer’s limit. When the position is larger than the new limit then
position is set to the new limit. When the mark is defined and is larger than the
new limit then the mark become undefined.

Parameters
limit the new limit value which must be a natural number no larger than this

buffer’s capacity
Throws
IllegalArgumentException when the preconditions on limit do not hold

Returns
the buffer itself

mark

Signature
public javax.realtime.device.DirectMemoryByteBuffer
mark()

Description

586 RTSJ 2.0 (Draft 48)

DirectMemoryByteBuffer javax.realtime.device 12.3

Sets this buffer’s mark to the current position.

Returns
the buffer itself.

reset

Signature
public javax.realtime.device.DirectMemoryByteBuffer
reset()
throws InvalidMarkException

Description
Reset this buffer’s position to the previously marked position leaving the mark
value unchanged.

Throws
InvalidMarkException When the mark is undefined

Returns
the buffer itself

flip

Signature
public javax.realtime.device.DirectMemoryByteBuffer
flip()
throws IllegalArgumentException

Description
Flip this buffer, i.e., the limit is set to the current position, then the position is
set to zero, and the mark becomes undefined. After a sequence of channel-read
or put operations, invoke this method to prepare for a sequence of channel-
write or relative get operations. For example: buf.put(magic); // Prepend
header in.read(buf); // Read data into rest of buffer buf.flip(); // Flip buffer
out.write(buf); // Write header + data to channel This method is often used in
conjunction with the compact method when transferring data from one place to
another.

Returns
the buffer itself.

RTSJ 2.0 (Draft 48) 587

12 Devices and Triggering RawByteReader

remaining

Signature
public int
remaining()

Description
Determine number of elements remaining in the buffer.

Returns
the number of elements between the current position and the limit.

hasRemaining

Signature
public boolean
hasRemaining()

Description
Determine whether or not there are any elements between the current position
and the limit.

Returns
true when and only when there is at least on element between the current position

and the limit.

12.3.1.2 RawByte

Interfaces
javax.realtime.device.RawByteReader
javax.realtime.device.RawByteWriter

Description
A marker for an object that can be used to access to a single byte. Read and
write access to that byte is checked by the factory that creates the instance;
therefore, no access checking is provided by this interface, only bounds checking.

Available since RTSJ 2.0

588 RTSJ 2.0 (Draft 48)

RawByteReader javax.realtime.device 12.3

12.3.1.3 RawByteReader

Interfaces
javax.realtime.device.RawMemory

Description
A marker for a byte accessor object encapsulating the protocol for reading bytes
from raw memory. A byte accessor can always access at least one byte. Each byte
is transfered in a single atomic operation. Groups of bytes may be transfered
together; however, this is not required.

Objects of this type are created with the method RawMemoryFactory.createRawByteReader1

and RawMemoryFactory.createRawByte2. Each object references a range of ele-
ments in the RawMemoryRegion3 starting at the base address provided to the
factory method. The size provided to the factor method determines the number
of elements accessable.

Caching of the memory access is controlled by the factory that created this
object. If the memory is not cached, this method guarantees serialized access. In
other words, the memory access at the memory occurs in the same order as in
the program. Multiple writes to the same location may not be coalesced.

Available since RTSJ 2.0

12.3.1.3.1 Methods

getByte

Signature
public byte
getByte()

Description
Get the value at the first position referenced by this instance, i.e., the value at
its start address. This operation must be atomic with respect to all other raw
memory accesses to the address.

1Section 12.3.2.6.3
2Section 12.3.2.6.3
3Section 12.3.2.7

RTSJ 2.0 (Draft 48) 589

12 Devices and Triggering RawByteReader

Returns
the value at the base address.

getByte(int)

Signature
public byte
getByte(int offset)
throws OffsetOutOfBoundsException

Description
Get the value at the address: base address + offset x stride x element size in
bytes. When an exception is thrown, no data is transfered.

Parameters
offset of byte in the memory region starting from the address specified in the

associated factory method.
Throws
OffsetOutOfBoundsException when offset is negative or greater than or equal to

the number of elements in the raw memory region.
Returns
the value at the address specified.

get(int, byte)

Signature
public int
get(int offset,

byte[] values)
throws OffsetOutOfBoundsException,

NullPointerException

Description
Fill values with elements from this instance, where the nth element is at the
address: base address + (offset+n) x stride x element size in bytes. Only the
bytes in the intersection of the start and end of values and the base address and
the end of the memory region are transfered. When an exception is thrown, no
data is transfered.

Parameters

590 RTSJ 2.0 (Draft 48)

RawByteReader javax.realtime.device 12.3

offset of the first byte in the memory region to transfere
values the array to receive the bytes

Throws
OffsetOutOfBoundsException when offset is negative or greater than or equal to

the number of elements in the raw memory region.
NullPointerException when values is null.

Returns
the number of elements actuall transferred to values

get(int, byte, int, int)

Signature
public int
get(int offset,

byte[] values,
int start,
int count)

throws OffsetOutOfBoundsException,
ArrayIndexOutOfBoundsException,
NullPointerException

Description
Fill values from index start with elements from this instance, where the nth
element is at the address: base address + (offset+n) x stride x element size in
bytes. The number of bytes transfered is the minimum of count, the size of
the memory region minus offset, and length of values minus start. When an
exception is thrown, no data is transfered.

Parameters
offset of the first byte in the memory region to transfere
values the array to receive the bytes
start the first index in array to fill
count the maximum number of bytes to copy

Throws
OffsetOutOfBoundsException when offset is negative or either offset or offset +

count is greater than or equal to the size of this raw memory area.
ArrayIndexOutOfBoundsException when start is negative or either start or start

+ count is greater than or equal to the size of values.
NullPointerException when values is null or count is negative.

RTSJ 2.0 (Draft 48) 591

12 Devices and Triggering RawByteWriter

Returns
the number of bytes actually transfered.

12.3.1.4 RawByteWriter

Interfaces
javax.realtime.device.RawMemory

Description
A marker for a byte accessor object encapsulating the protocol for writing bytes
to raw memory. A byte accessor can always access at least one byte. Each byte
is transfered in a single atomic operation. Groups of bytes may be transfered
together; however, this is not required.

Objects of this type are created with the method RawMemoryFactory.createRawByteWriter4

and RawMemoryFactory.createRawByte5. Each object references a range of ele-
ments in the RawMemoryRegion6 starting at the base address provided to the
factory method. The size provided to the factor method determines the number
of elements accessable.

Caching of the memory access is controlled by the factory that created this
object. If the memory is not cached, this method guarantees serialized access. In
other words, the memory access at the memory occurs in the same order as in
the program. Multiple writes to the same location may not be coalesced.

Available since RTSJ 2.0

12.3.1.4.1 Methods

setByte(byte)

Signature
public void
setByte(byte value)

4Section 12.3.2.6.3
5Section 12.3.2.6.3
6Section 12.3.2.7

592 RTSJ 2.0 (Draft 48)

RawByteWriter javax.realtime.device 12.3

Description
Set the value at the first position referenced by this instance, i.e., the value at
its start address. This operation must be atomic with respect to all other raw
memory accesses to the address.

Parameters
value is the new value for the element.

setByte(int, byte)

Signature
public void
setByte(int offset,

byte value)
throws OffsetOutOfBoundsException

Description
Set the value of the nth element referenced by this instance, where n is offset
and the address is base address + offset ∗ size of Byte. This operation must be
atomic with respect to all other raw memory accesses to the address. When an
exception is thrown, no data is transfered.

Parameters
offset of byte in the memory region.
value is the new value for the element.

Throws
OffsetOutOfBoundsException when offset is negative or greater than or equal to

the number of elements in the raw memory region.

set(int, byte)

Signature
public int
set(int offset,

byte[] values)
throws OffsetOutOfBoundsException,

NullPointerException

Description

RTSJ 2.0 (Draft 48) 593

12 Devices and Triggering RawByteWriter

Copy from values to the memory region from index start,to elements where the
nth element is at the address: base address + (offset+n) x stride x element size
in bytes. Only the bytes in the intersection of values and the end of the memory
region are transfered. When an exception is thrown, no data is transfered.

Parameters
offset of first byte in the memory region to be set.
values is the source of the data to write.

Throws
OffsetOutOfBoundsException when offset is negative or greater than or equal to

the number of elements in the raw memory region.
NullPointerException when values is null.

Returns
the number of elements actually transferred to values

set(int, byte, int, int)

Signature
public int
set(int offset,

byte[] values,
int start,
int count)

throws OffsetOutOfBoundsException,
ArrayIndexOutOfBoundsException,
NullPointerException

Description
Copy values to the memory region, where offset is first byte in the memory region
to write and start is the first index in values from which to read. The number of
bytes transfered is the minimum of count, the size of the memory region minus
offset, and length of values minus start. When an exception is thrown, no data
is transfered.

Parameters
offset of the first byte in the memory region to set
values the array from which to retrieve the bytes
start the first index in array to copy
count the maximum number of bytes to copy

594 RTSJ 2.0 (Draft 48)

RawDoubleReader javax.realtime.device 12.3

Throws
OffsetOutOfBoundsException when offset is negative or either offset or offset +

count is greater than or equal to the size of this raw memory area.
ArrayIndexOutOfBoundsException when start is negative or either start or start

+ count is greater than or equal to the size of values.
NullPointerException when values is null.

Returns
the number of bytes actually transfered.

12.3.1.5 RawDouble

Interfaces
javax.realtime.device.RawDoubleReader
javax.realtime.device.RawDoubleWriter

Description
A marker for an object that can be used to access to a single double. Read and
write access to that double is checked by the factory that creates the instance;
therefore, no access checking is provided by this interface, only bounds checking.

Available since RTSJ 2.0

12.3.1.6 RawDoubleReader

Interfaces
javax.realtime.device.RawMemory

Description
A marker for a double accessor object encapsulating the protocol for reading
doubles from raw memory. A double accessor can always access at least one
double. Each double is transfered in a single atomic operation. Groups of doubles
may be transfered together; however, this is not required.

Objects of this type are created with the method RawMemoryFactory.createRawDoubleReader7

and RawMemoryFactory.createRawDouble8. Each object references a range of
7Section 12.3.2.6.3
8Section 12.3.2.6.3

RTSJ 2.0 (Draft 48) 595

12 Devices and Triggering RawDoubleReader

elements in the RawMemoryRegion9 starting at the base address provided to the
factory method. The size provided to the factor method determines the number
of elements accessable.

Caching of the memory access is controlled by the factory that created this
object. If the memory is not cached, this method guarantees serialized access. In
other words, the memory access at the memory occurs in the same order as in
the program. Multiple writes to the same location may not be coalesced.

Available since RTSJ 2.0

12.3.1.6.1 Methods

getDouble

Signature
public double
getDouble()

Description
Get the value at the first position referenced by this instance, i.e., the value at
its start address. This operation must be atomic with respect to all other raw
memory accesses to the address.

Returns
the value at the base address.

getDouble(int)

Signature
public double
getDouble(int offset)
throws OffsetOutOfBoundsException

Description
Get the value at the address: base address + offset x stride x element size in
bytes. When an exception is thrown, no data is transfered.

9Section 12.3.2.7

596 RTSJ 2.0 (Draft 48)

RawDoubleReader javax.realtime.device 12.3

Parameters
offset of double in the memory region starting from the address specified in the

associated factory method.
Throws
OffsetOutOfBoundsException when offset is negative or greater than or equal to

the number of elements in the raw memory region.

Returns
the value at the address specified.

get(int, double)

Signature
public int
get(int offset,

double[] values)
throws OffsetOutOfBoundsException,

NullPointerException

Description
Fill values with elements from this instance, where the nth element is at the
address: base address + (offset+n) x stride x element size in bytes. Only the
doubles in the intersection of the start and end of values and the base address
and the end of the memory region are transfered. When an exception is thrown,
no data is transfered.

Parameters
offset of the first double in the memory region to transfere
values the array to receive the doubles

Throws
OffsetOutOfBoundsException when offset is negative or greater than or equal to

the number of elements in the raw memory region.
NullPointerException when values is null.

Returns
the number of elements actuall transferred to values

get(int, double, int, int)

Signature

RTSJ 2.0 (Draft 48) 597

12 Devices and Triggering RawDoubleWriter

public int
get(int offset,

double[] values,
int start,
int count)

throws OffsetOutOfBoundsException,
ArrayIndexOutOfBoundsException,
NullPointerException

Description
Fill values from index start with elements from this instance, where the nth
element is at the address: base address + (offset+n) x stride x element size in
bytes. The number of bytes transfered is the minimum of count, the size of
the memory region minus offset, and length of values minus start. When an
exception is thrown, no data is transfered.

Parameters
offset of the first double in the memory region to transfere
values the array to receive the doubles
start the first index in array to fill
count the maximum number of doubles to copy

Throws
OffsetOutOfBoundsException when offset is negative or either offset or offset +

count is greater than or equal to the size of this raw memory area.
ArrayIndexOutOfBoundsException when start is negative or either start or start

+ count is greater than or equal to the size of values.
NullPointerException when values is null or count is negative.

Returns
the number of doubles actually transfered.

12.3.1.7 RawDoubleWriter

Interfaces
javax.realtime.device.RawMemory

Description
A marker for a double accessor object encapsulating the protocol for writing
doubles to raw memory. A double accessor can always access at least one double.

598 RTSJ 2.0 (Draft 48)

RawDoubleWriter javax.realtime.device 12.3

Each double is transfered in a single atomic operation. Groups of doubles may
be transfered together; however, this is not required.

Objects of this type are created with the method RawMemoryFactory.createRawDoubleWriter10

and RawMemoryFactory.createRawDouble11. Each object references a range of
elements in the RawMemoryRegion12 starting at the base address provided to the
factory method. The size provided to the factor method determines the number
of elements accessable.

Caching of the memory access is controlled by the factory that created this
object. If the memory is not cached, this method guarantees serialized access. In
other words, the memory access at the memory occurs in the same order as in
the program. Multiple writes to the same location may not be coalesced.

Available since RTSJ 2.0

12.3.1.7.1 Methods

setDouble(double)

Signature
public void
setDouble(double value)

Description
Set the value at the first position referenced by this instance, i.e., the value at
its start address. This operation must be atomic with respect to all other raw
memory accesses to the address.

Parameters
value is the new value for the element.

setDouble(int, double)

Signature
10Section 12.3.2.6.3
11Section 12.3.2.6.3
12Section 12.3.2.7

RTSJ 2.0 (Draft 48) 599

12 Devices and Triggering RawDoubleWriter

public void
setDouble(int offset,

double value)
throws OffsetOutOfBoundsException

Description
Set the value of the nth element referenced by this instance, where n is offset and
the address is base address + offset ∗ size of Double. This operation must be
atomic with respect to all other raw memory accesses to the address. When an
exception is thrown, no data is transfered.

Parameters
offset of double in the memory region.
value is the new value for the element.

Throws
OffsetOutOfBoundsException when offset is negative or greater than or equal to

the number of elements in the raw memory region.

set(int, double)

Signature
public int
set(int offset,

double[] values)
throws OffsetOutOfBoundsException,

NullPointerException

Description
Copy from values to the memory region from index start,to elements where the
nth element is at the address: base address + (offset+n) x stride x element size in
bytes. Only the doubles in the intersection of values and the end of the memory
region are transfered. When an exception is thrown, no data is transfered.

Parameters
offset of first double in the memory region to be set.
values is the source of the data to write.

Throws
OffsetOutOfBoundsException when offset is negative or greater than or equal to

the number of elements in the raw memory region.
NullPointerException when values is null.

600 RTSJ 2.0 (Draft 48)

RawFloat javax.realtime.device 12.3

Returns
the number of elements actually transferred to values

set(int, double, int, int)

Signature
public int
set(int offset,

double[] values,
int start,
int count)

throws OffsetOutOfBoundsException,
ArrayIndexOutOfBoundsException,
NullPointerException

Description

Copy values to the memory region, where offset is first double in the memory
region to write and start is the first index in values from which to read. The
number of bytes transfered is the minimum of count, the size of the memory
region minus offset, and length of values minus start. When an exception is
thrown, no data is transfered.

Parameters
offset of the first double in the memory region to set
values the array from which to retrieve the doubles
start the first index in array to copy
count the maximum number of doubles to copy

Throws
OffsetOutOfBoundsException when offset is negative or either offset or offset +

count is greater than or equal to the size of this raw memory area.
ArrayIndexOutOfBoundsException when start is negative or either start or start

+ count is greater than or equal to the size of values.
NullPointerException when values is null.

Returns
the number of doubles actually transfered.

RTSJ 2.0 (Draft 48) 601

12 Devices and Triggering RawFloatReader

12.3.1.8 RawFloat

Interfaces
javax.realtime.device.RawFloatReader
javax.realtime.device.RawFloatWriter

Description
A marker for an object that can be used to access to a single float. Read and
write access to that float is checked by the factory that creates the instance;
therefore, no access checking is provided by this interface, only bounds checking.

Available since RTSJ 2.0

12.3.1.9 RawFloatReader

Interfaces
javax.realtime.device.RawMemory

Description
A marker for a float accessor object encapsulating the protocol for reading floats
from raw memory. A float accessor can always access at least one float. Each float
is transfered in a single atomic operation. Groups of floats may be transfered
together; however, this is not required.

Objects of this type are created with the method RawMemoryFactory.createRawFloatReader13

and RawMemoryFactory.createRawFloat14. Each object references a range of
elements in the RawMemoryRegion15 starting at the base address provided to the
factory method. The size provided to the factor method determines the number
of elements accessable.

Caching of the memory access is controlled by the factory that created this
object. If the memory is not cached, this method guarantees serialized access. In
other words, the memory access at the memory occurs in the same order as in
the program. Multiple writes to the same location may not be coalesced.

Available since RTSJ 2.0

13Section 12.3.2.6.3
14Section 12.3.2.6.3
15Section 12.3.2.7

602 RTSJ 2.0 (Draft 48)

RawFloatReader javax.realtime.device 12.3

12.3.1.9.1 Methods

getFloat

Signature
public float
getFloat()

Description
Get the value at the first position referenced by this instance, i.e., the value at
its start address. This operation must be atomic with respect to all other raw
memory accesses to the address.

Returns
the value at the base address.

getFloat(int)

Signature
public float
getFloat(int offset)
throws OffsetOutOfBoundsException

Description
Get the value at the address: base address + offset x stride x element size in
bytes. When an exception is thrown, no data is transfered.

Parameters
offset of float in the memory region starting from the address specified in the

associated factory method.
Throws
OffsetOutOfBoundsException when offset is negative or greater than or equal to

the number of elements in the raw memory region.

Returns
the value at the address specified.

RTSJ 2.0 (Draft 48) 603

12 Devices and Triggering RawFloatReader

get(int, float)

Signature
public int
get(int offset,

float[] values)
throws OffsetOutOfBoundsException,

NullPointerException

Description
Fill values with elements from this instance, where the nth element is at the
address: base address + (offset+n) x stride x element size in bytes. Only the
floats in the intersection of the start and end of values and the base address and
the end of the memory region are transfered. When an exception is thrown, no
data is transfered.

Parameters
offset of the first float in the memory region to transfere
values the array to receive the floats

Throws
OffsetOutOfBoundsException when offset is negative or greater than or equal to

the number of elements in the raw memory region.
NullPointerException when values is null.

Returns
the number of elements actuall transferred to values

get(int, float, int, int)

Signature
public int
get(int offset,

float[] values,
int start,
int count)

throws OffsetOutOfBoundsException,
ArrayIndexOutOfBoundsException,
NullPointerException

Description

604 RTSJ 2.0 (Draft 48)

RawFloatWriter javax.realtime.device 12.3

Fill values from index start with elements from this instance, where the nth
element is at the address: base address + (offset+n) x stride x element size in
bytes. The number of bytes transfered is the minimum of count, the size of
the memory region minus offset, and length of values minus start. When an
exception is thrown, no data is transfered.

Parameters
offset of the first float in the memory region to transfere
values the array to receive the floats
start the first index in array to fill
count the maximum number of floats to copy

Throws
OffsetOutOfBoundsException when offset is negative or either offset or offset +

count is greater than or equal to the size of this raw memory area.
ArrayIndexOutOfBoundsException when start is negative or either start or start

+ count is greater than or equal to the size of values.
NullPointerException when values is null or count is negative.

Returns
the number of floats actually transfered.

12.3.1.10 RawFloatWriter

Interfaces
javax.realtime.device.RawMemory

Description
A marker for a float accessor object encapsulating the protocol for writing floats
to raw memory. A float accessor can always access at least one float. Each float
is transfered in a single atomic operation. Groups of floats may be transfered
together; however, this is not required.

Objects of this type are created with the method RawMemoryFactory.createRawFloatWriter16

and RawMemoryFactory.createRawFloat17. Each object references a range of
elements in the RawMemoryRegion18 starting at the base address provided to the
factory method. The size provided to the factor method determines the number
of elements accessable.

16Section 12.3.2.6.3
17Section 12.3.2.6.3
18Section 12.3.2.7

RTSJ 2.0 (Draft 48) 605

12 Devices and Triggering RawFloatWriter

Caching of the memory access is controlled by the factory that created this
object. If the memory is not cached, this method guarantees serialized access. In
other words, the memory access at the memory occurs in the same order as in
the program. Multiple writes to the same location may not be coalesced.

Available since RTSJ 2.0

12.3.1.10.1 Methods

setFloat(float)

Signature
public void
setFloat(float value)

Description
Set the value at the first position referenced by this instance, i.e., the value at
its start address. This operation must be atomic with respect to all other raw
memory accesses to the address.

Parameters
value is the new value for the element.

setFloat(int, float)

Signature
public void
setFloat(int offset,

float value)
throws OffsetOutOfBoundsException

Description
Set the value of the nth element referenced by this instance, where n is offset
and the address is base address + offset ∗ size of Float. This operation must be
atomic with respect to all other raw memory accesses to the address. When an
exception is thrown, no data is transfered.

Parameters

606 RTSJ 2.0 (Draft 48)

RawFloatWriter javax.realtime.device 12.3

offset of float in the memory region.
value is the new value for the element.

Throws
OffsetOutOfBoundsException when offset is negative or greater than or equal to

the number of elements in the raw memory region.

set(int, float)

Signature
public int
set(int offset,

float[] values)
throws OffsetOutOfBoundsException,

NullPointerException

Description
Copy from values to the memory region from index start,to elements where the
nth element is at the address: base address + (offset+n) x stride x element size
in bytes. Only the floats in the intersection of values and the end of the memory
region are transfered. When an exception is thrown, no data is transfered.

Parameters
offset of first float in the memory region to be set.
values is the source of the data to write.

Throws
OffsetOutOfBoundsException when offset is negative or greater than or equal to

the number of elements in the raw memory region.
NullPointerException when values is null.

Returns
the number of elements actually transferred to values

set(int, float, int, int)

Signature
public int
set(int offset,

float[] values,
int start,
int count)

RTSJ 2.0 (Draft 48) 607

12 Devices and Triggering RawIntReader

throws OffsetOutOfBoundsException,
ArrayIndexOutOfBoundsException,
NullPointerException

Description
Copy values to the memory region, where offset is first float in the memory region
to write and start is the first index in values from which to read. The number of
bytes transfered is the minimum of count, the size of the memory region minus
offset, and length of values minus start. When an exception is thrown, no data
is transfered.

Parameters
offset of the first float in the memory region to set
values the array from which to retrieve the floats
start the first index in array to copy
count the maximum number of floats to copy

Throws
OffsetOutOfBoundsException when offset is negative or either offset or offset +

count is greater than or equal to the size of this raw memory area.
ArrayIndexOutOfBoundsException when start is negative or either start or start

+ count is greater than or equal to the size of values.
NullPointerException when values is null.

Returns
the number of floats actually transfered.

12.3.1.11 RawInt

Interfaces
javax.realtime.device.RawIntReader
javax.realtime.device.RawIntWriter

Description
A marker for an object that can be used to access to a single int. Read and write
access to that int is checked by the factory that creates the instance; therefore,
no access checking is provided by this interface, only bounds checking.

Available since RTSJ 2.0

608 RTSJ 2.0 (Draft 48)

RawIntReader javax.realtime.device 12.3

12.3.1.12 RawIntReader

Interfaces
javax.realtime.device.RawMemory

Description
A marker for a int accessor object encapsulating the protocol for reading ints
from raw memory. A int accessor can always access at least one int. Each int
is transfered in a single atomic operation. Groups of ints may be transfered
together; however, this is not required.

Objects of this type are created with the method RawMemoryFactory.createRawIntReader19

and RawMemoryFactory.createRawInt20. Each object references a range of ele-
ments in the RawMemoryRegion21 starting at the base address provided to the
factory method. The size provided to the factor method determines the number
of elements accessable.

Caching of the memory access is controlled by the factory that created this
object. If the memory is not cached, this method guarantees serialized access. In
other words, the memory access at the memory occurs in the same order as in
the program. Multiple writes to the same location may not be coalesced.

Available since RTSJ 2.0

12.3.1.12.1 Methods

getInt

Signature
public int
getInt()

Description
Get the value at the first position referenced by this instance, i.e., the value at
its start address. This operation must be atomic with respect to all other raw
memory accesses to the address.

19Section 12.3.2.6.3
20Section 12.3.2.6.3
21Section 12.3.2.7

RTSJ 2.0 (Draft 48) 609

12 Devices and Triggering RawIntReader

Returns
the value at the base address.

getInt(int)

Signature
public int
getInt(int offset)
throws OffsetOutOfBoundsException

Description
Get the value at the address: base address + offset x stride x element size in
bytes. When an exception is thrown, no data is transfered.

Parameters
offset of int in the memory region starting from the address specified in the associated

factory method.
Throws
OffsetOutOfBoundsException when offset is negative or greater than or equal to

the number of elements in the raw memory region.
Returns
the value at the address specified.

get(int, int)

Signature
public int
get(int offset,

int[] values)
throws OffsetOutOfBoundsException,

NullPointerException

Description
Fill values with elements from this instance, where the nth element is at the
address: base address + (offset+n) x stride x element size in bytes. Only the ints
in the intersection of the start and end of values and the base address and the
end of the memory region are transfered. When an exception is thrown, no data
is transfered.

Parameters

610 RTSJ 2.0 (Draft 48)

RawIntReader javax.realtime.device 12.3

offset of the first int in the memory region to transfere
values the array to receive the ints

Throws
OffsetOutOfBoundsException when offset is negative or greater than or equal to

the number of elements in the raw memory region.
NullPointerException when values is null.

Returns
the number of elements actuall transferred to values

get(int, int, int, int)

Signature
public int
get(int offset,

int[] values,
int start,
int count)

throws OffsetOutOfBoundsException,
ArrayIndexOutOfBoundsException,
NullPointerException

Description
Fill values from index start with elements from this instance, where the nth
element is at the address: base address + (offset+n) x stride x element size in
bytes. The number of bytes transfered is the minimum of count, the size of
the memory region minus offset, and length of values minus start. When an
exception is thrown, no data is transfered.

Parameters
offset of the first int in the memory region to transfere
values the array to receive the ints
start the first index in array to fill
count the maximum number of ints to copy

Throws
OffsetOutOfBoundsException when offset is negative or either offset or offset +

count is greater than or equal to the size of this raw memory area.
ArrayIndexOutOfBoundsException when start is negative or either start or start

+ count is greater than or equal to the size of values.
NullPointerException when values is null or count is negative.

RTSJ 2.0 (Draft 48) 611

12 Devices and Triggering RawIntWriter

Returns
the number of ints actually transfered.

12.3.1.13 RawIntWriter

Interfaces
javax.realtime.device.RawMemory

Description
A marker for a int accessor object encapsulating the protocol for writing ints
to raw memory. A int accessor can always access at least one int. Each int is
transfered in a single atomic operation. Groups of ints may be transfered together;
however, this is not required.

Objects of this type are created with the method RawMemoryFactory.createRawIntWriter22

and RawMemoryFactory.createRawInt23. Each object references a range of ele-
ments in the RawMemoryRegion24 starting at the base address provided to the
factory method. The size provided to the factor method determines the number
of elements accessable.

Caching of the memory access is controlled by the factory that created this
object. If the memory is not cached, this method guarantees serialized access. In
other words, the memory access at the memory occurs in the same order as in
the program. Multiple writes to the same location may not be coalesced.

Available since RTSJ 2.0

12.3.1.13.1 Methods

setInt(int)

Signature
public void
setInt(int value)

22Section 12.3.2.6.3
23Section 12.3.2.6.3
24Section 12.3.2.7

612 RTSJ 2.0 (Draft 48)

RawIntWriter javax.realtime.device 12.3

Description
Set the value at the first position referenced by this instance, i.e., the value at
its start address. This operation must be atomic with respect to all other raw
memory accesses to the address.

Parameters
value is the new value for the element.

setInt(int, int)

Signature
public void
setInt(int offset,

int value)
throws OffsetOutOfBoundsException

Description
Set the value of the nth element referenced by this instance, where n is offset and
the address is base address + offset ∗ size of Int. This operation must be atomic
with respect to all other raw memory accesses to the address. When an exception
is thrown, no data is transfered.

Parameters
offset of int in the memory region.
value is the new value for the element.

Throws
OffsetOutOfBoundsException when offset is negative or greater than or equal to

the number of elements in the raw memory region.

set(int, int)

Signature
public int
set(int offset,

int[] values)
throws OffsetOutOfBoundsException,

NullPointerException

Description

RTSJ 2.0 (Draft 48) 613

12 Devices and Triggering RawIntWriter

Copy from values to the memory region from index start,to elements where the
nth element is at the address: base address + (offset+n) x stride x element size
in bytes. Only the ints in the intersection of values and the end of the memory
region are transfered. When an exception is thrown, no data is transfered.

Parameters
offset of first int in the memory region to be set.
values is the source of the data to write.

Throws
OffsetOutOfBoundsException when offset is negative or greater than or equal to

the number of elements in the raw memory region.
NullPointerException when values is null.

Returns
the number of elements actually transferred to values

set(int, int, int, int)

Signature
public int
set(int offset,

int[] values,
int start,
int count)

throws OffsetOutOfBoundsException,
ArrayIndexOutOfBoundsException,
NullPointerException

Description
Copy values to the memory region, where offset is first int in the memory region
to write and start is the first index in values from which to read. The number of
bytes transfered is the minimum of count, the size of the memory region minus
offset, and length of values minus start. When an exception is thrown, no data
is transfered.

Parameters
offset of the first int in the memory region to set
values the array from which to retrieve the ints
start the first index in array to copy
count the maximum number of ints to copy

614 RTSJ 2.0 (Draft 48)

RawLongReader javax.realtime.device 12.3

Throws
OffsetOutOfBoundsException when offset is negative or either offset or offset +

count is greater than or equal to the size of this raw memory area.
ArrayIndexOutOfBoundsException when start is negative or either start or start

+ count is greater than or equal to the size of values.
NullPointerException when values is null.

Returns
the number of ints actually transfered.

12.3.1.14 RawLong

Interfaces
javax.realtime.device.RawLongReader
javax.realtime.device.RawLongWriter

Description
A marker for an object that can be used to access to a single long. Read and write
access to that long is checked by the factory that creates the instance; therefore,
no access checking is provided by this interface, only bounds checking.

Available since RTSJ 2.0

12.3.1.15 RawLongReader

Interfaces
javax.realtime.device.RawMemory

Description
A marker for a long accessor object encapsulating the protocol for reading longs
from raw memory. A long accessor can always access at least one long. Each long
is transfered in a single atomic operation. Groups of longs may be transfered
together; however, this is not required.

Objects of this type are created with the method RawMemoryFactory.createRawLongReader25

and RawMemoryFactory.createRawLong26. Each object references a range of el-
ements in the RawMemoryRegion27 starting at the base address provided to the

25Section 12.3.2.6.3
26Section 12.3.2.6.3
27Section 12.3.2.7

RTSJ 2.0 (Draft 48) 615

12 Devices and Triggering RawLongReader

factory method. The size provided to the factor method determines the number
of elements accessable.

Caching of the memory access is controlled by the factory that created this
object. If the memory is not cached, this method guarantees serialized access. In
other words, the memory access at the memory occurs in the same order as in
the program. Multiple writes to the same location may not be coalesced.

Available since RTSJ 2.0

12.3.1.15.1 Methods

getLong

Signature
public long
getLong()

Description
Get the value at the first position referenced by this instance, i.e., the value at
its start address. This operation must be atomic with respect to all other raw
memory accesses to the address.

Returns
the value at the base address.

getLong(int)

Signature
public long
getLong(int offset)
throws OffsetOutOfBoundsException

Description
Get the value at the address: base address + offset x stride x element size in
bytes. When an exception is thrown, no data is transfered.

Parameters

616 RTSJ 2.0 (Draft 48)

RawLongReader javax.realtime.device 12.3

offset of long in the memory region starting from the address specified in the
associated factory method.

Throws
OffsetOutOfBoundsException when offset is negative or greater than or equal to

the number of elements in the raw memory region.

Returns
the value at the address specified.

get(int, long)

Signature
public int
get(int offset,

long[] values)
throws OffsetOutOfBoundsException,

NullPointerException

Description
Fill values with elements from this instance, where the nth element is at the
address: base address + (offset+n) x stride x element size in bytes. Only the
longs in the intersection of the start and end of values and the base address and
the end of the memory region are transfered. When an exception is thrown, no
data is transfered.

Parameters
offset of the first long in the memory region to transfere
values the array to receive the longs

Throws
OffsetOutOfBoundsException when offset is negative or greater than or equal to

the number of elements in the raw memory region.
NullPointerException when values is null.

Returns
the number of elements actuall transferred to values

get(int, long, int, int)

Signature

RTSJ 2.0 (Draft 48) 617

12 Devices and Triggering RawLongWriter

public int
get(int offset,

long[] values,
int start,
int count)

throws OffsetOutOfBoundsException,
ArrayIndexOutOfBoundsException,
NullPointerException

Description
Fill values from index start with elements from this instance, where the nth
element is at the address: base address + (offset+n) x stride x element size in
bytes. The number of bytes transfered is the minimum of count, the size of
the memory region minus offset, and length of values minus start. When an
exception is thrown, no data is transfered.

Parameters
offset of the first long in the memory region to transfere
values the array to receive the longs
start the first index in array to fill
count the maximum number of longs to copy

Throws
OffsetOutOfBoundsException when offset is negative or either offset or offset +

count is greater than or equal to the size of this raw memory area.
ArrayIndexOutOfBoundsException when start is negative or either start or start

+ count is greater than or equal to the size of values.
NullPointerException when values is null or count is negative.

Returns
the number of longs actually transfered.

12.3.1.16 RawLongWriter

Interfaces
javax.realtime.device.RawMemory

Description
A marker for a long accessor object encapsulating the protocol for writing longs
to raw memory. A long accessor can always access at least one long. Each long

618 RTSJ 2.0 (Draft 48)

RawLongWriter javax.realtime.device 12.3

is transfered in a single atomic operation. Groups of longs may be transfered
together; however, this is not required.

Objects of this type are created with the method RawMemoryFactory.createRawLongWriter28

and RawMemoryFactory.createRawLong29. Each object references a range of el-
ements in the RawMemoryRegion30 starting at the base address provided to the
factory method. The size provided to the factor method determines the number
of elements accessable.

Caching of the memory access is controlled by the factory that created this
object. If the memory is not cached, this method guarantees serialized access. In
other words, the memory access at the memory occurs in the same order as in
the program. Multiple writes to the same location may not be coalesced.

Available since RTSJ 2.0

12.3.1.16.1 Methods

setLong(long)

Signature
public void
setLong(long value)

Description
Set the value at the first position referenced by this instance, i.e., the value at
its start address. This operation must be atomic with respect to all other raw
memory accesses to the address.

Parameters
value is the new value for the element.

setLong(int, long)

Signature
28Section 12.3.2.6.3
29Section 12.3.2.6.3
30Section 12.3.2.7

RTSJ 2.0 (Draft 48) 619

12 Devices and Triggering RawLongWriter

public void
setLong(int offset,

long value)
throws OffsetOutOfBoundsException

Description
Set the value of the nth element referenced by this instance, where n is offset
and the address is base address + offset ∗ size of Long. This operation must be
atomic with respect to all other raw memory accesses to the address. When an
exception is thrown, no data is transfered.

Parameters
offset of long in the memory region.
value is the new value for the element.

Throws
OffsetOutOfBoundsException when offset is negative or greater than or equal to

the number of elements in the raw memory region.

set(int, long)

Signature
public int
set(int offset,

long[] values)
throws OffsetOutOfBoundsException,

NullPointerException

Description
Copy from values to the memory region from index start,to elements where the
nth element is at the address: base address + (offset+n) x stride x element size
in bytes. Only the longs in the intersection of values and the end of the memory
region are transfered. When an exception is thrown, no data is transfered.

Parameters
offset of first long in the memory region to be set.
values is the source of the data to write.

Throws
OffsetOutOfBoundsException when offset is negative or greater than or equal to

the number of elements in the raw memory region.
NullPointerException when values is null.

620 RTSJ 2.0 (Draft 48)

RawMemory javax.realtime.device 12.3

Returns
the number of elements actually transferred to values

set(int, long, int, int)

Signature
public int
set(int offset,

long[] values,
int start,
int count)

throws OffsetOutOfBoundsException,
ArrayIndexOutOfBoundsException,
NullPointerException

Description

Copy values to the memory region, where offset is first long in the memory region
to write and start is the first index in values from which to read. The number of
bytes transfered is the minimum of count, the size of the memory region minus
offset, and length of values minus start. When an exception is thrown, no data
is transfered.

Parameters
offset of the first long in the memory region to set
values the array from which to retrieve the longs
start the first index in array to copy
count the maximum number of longs to copy

Throws
OffsetOutOfBoundsException when offset is negative or either offset or offset +

count is greater than or equal to the size of this raw memory area.
ArrayIndexOutOfBoundsException when start is negative or either start or start

+ count is greater than or equal to the size of values.
NullPointerException when values is null.

Returns
the number of longs actually transfered.

RTSJ 2.0 (Draft 48) 621

12 Devices and Triggering RawMemory

12.3.1.17 RawMemory

Description

A marker for all raw memory accessor objects.

Available since RTSJ 2.0

12.3.1.17.1 Methods

getAddress

Signature
public long
getAddress()

Description

Get the base physical address of this object.

Returns
the first physical address this raw memory object can access.

getSize

Signature
public int
getSize()

Description

Get the number of bytes that this object spans.

Returns
the size of this raw memory

622 RTSJ 2.0 (Draft 48)

RawMemoryRegionFactory javax.realtime.device 12.3

getStride

Signature
public int
getStride()

Description
Get the distance between elements in multiples of element size.

Returns
the span between elements of this raw memory

12.3.1.18 RawMemoryRegionFactory

Description
A class to give an application the ability to provide support for a RawMem-
oryRegion31 that is not already provided by the standard. An instance of this
call can be registered with a RawMemoryFactory32 and provides the object that
that factory should return for a given RawMemoryRegion. It is responsible for
checking all requests and throwing the proper exception when a request is invalid
or the requester is not authorized to make the request.

Available since RTSJ 2.0

12.3.1.18.1 Methods

getRegion

Signature
public javax.realtime.device.RawMemoryRegion
getRegion()

Description
31Section 12.3.2.7
32Section 12.3.2.6

RTSJ 2.0 (Draft 48) 623

12 Devices and Triggering RawMemoryRegionFactory

Determine for what region this factory creates raw memory objects.

Returns
the region of this factory.

getName

Signature
public java.lang.String
getName()

Description
Determine the name of the region for which this factory creates raw memory
objects.

Returns
the name of the region of this factory.

createRawByte(long, int, int)

Signature
public javax.realtime.device.RawByte
createRawByte(long base,

int count,
int stride)

throws SecurityException,
OffsetOutOfBoundsException,
SizeOutOfBoundsException,
UnsupportedRawMemoryRegionException,
MemoryTypeConflictException

Description
Create an instance of a class that implements RawByte33 and accesses memory
of getRegion34 in the address range described by base, stride, and count. The
actual extent of the memory addressed by the object is stride ∗ size of RawByte ∗
count. The object is allocated in the current memory area of the calling thread.

Parameters
33Section 12.3.1.2
34Section 12.3.1.18.1

624 RTSJ 2.0 (Draft 48)

RawMemoryRegionFactory javax.realtime.device 12.3

base The starting physical address accessible through the returned instance.
count The number of memory elements accessible through the returned instance.
stride The distance to the next element in mulitple of element count, where a value

of 1 means the elements are adjacent in memory.
Throws
IllegalArgumentException when base is negative, count is not greater than zero, or

stride is not greater than zero.
SecurityException when the caller does not have permissions to access the given

memory region or the specified range of addresses.
OffsetOutOfBoundsException when base is invalid.
SizeOutOfBoundsException when the memory addressed by the object would extend

into an invalid range of memory.
MemoryTypeConflictException when base does not point to memory that matches

the type served by this factory.
Returns
an object that implements RawByte35 and supports access to the specified range in

the memory region.
Available since RTSJ 2.0

createRawByteReader(long, int, int)

Signature
public javax.realtime.device.RawByteReader
createRawByteReader(long base,

int count,
int stride)

throws SecurityException,
OffsetOutOfBoundsException,
SizeOutOfBoundsException,
UnsupportedRawMemoryRegionException,
MemoryTypeConflictException

Description
Create an instance of a class that implements RawByteReader36 and accesses
memory of getRegion37 in the address range described by base, stride, and count.

35Section 12.3.1.2
36Section 12.3.1.3
37Section 12.3.1.18.1

RTSJ 2.0 (Draft 48) 625

12 Devices and Triggering RawMemoryRegionFactory

The actual extent of the memory addressed by the object is stride ∗ size of
RawByteReader ∗ count. The object is allocated in the current memory area of
the calling thread.

Parameters
base The starting physical address accessible through the returned instance.
count The number of memory elements accessible through the returned instance.
stride The distance to the next element in mulitple of element count, where a value

of 1 means the elements are adjacent in memory.
Throws
IllegalArgumentException when base is negative, count is not greater than zero, or

stride is not greater than zero.
SecurityException when the caller does not have permissions to access the given

memory region or the specified range of addresses.
OffsetOutOfBoundsException when base is invalid.
SizeOutOfBoundsException when the memory addressed by the object would extend

into an invalid range of memory.
MemoryTypeConflictException when base does not point to memory that matches

the type served by this factory.
Returns
an object that implements RawByteReader38 and supports access to the specified

range in the memory region.
Available since RTSJ 2.0

createRawByteWriter(long, int, int)

Signature
public javax.realtime.device.RawByteWriter
createRawByteWriter(long base,

int count,
int stride)

throws SecurityException,
OffsetOutOfBoundsException,
SizeOutOfBoundsException,
UnsupportedRawMemoryRegionException,
MemoryTypeConflictException

38Section 12.3.1.3

626 RTSJ 2.0 (Draft 48)

RawMemoryRegionFactory javax.realtime.device 12.3

Description
Create an instance of a class that implements RawByteWriter39 and accesses
memory of getRegion40 in the address range described by base, stride, and count.
The actual extent of the memory addressed by the object is stride ∗ size of
RawByteWriter ∗ count. The object is allocated in the current memory area of
the calling thread.

Parameters
base The starting physical address accessible through the returned instance.
count The number of memory elements accessible through the returned instance.
stride The distance to the next element in mulitple of element count, where a value

of 1 means the elements are adjacent in memory.
Throws
IllegalArgumentException when base is negative, count is not greater than zero, or

stride is not greater than zero.
SecurityException when the caller does not have permissions to access the given

memory region or the specified range of addresses.
OffsetOutOfBoundsException when base is invalid.
SizeOutOfBoundsException when the memory addressed by the object would extend

into an invalid range of memory.
MemoryTypeConflictException when base does not point to memory that matches

the type served by this factory.
Returns
an object that implements RawByteWriter41 and supports access to the specified

range in the memory region.
Available since RTSJ 2.0

createRawShort(long, int, int)

Signature
public javax.realtime.device.RawShort
createRawShort(long base,

int count,
int stride)

39Section 12.3.1.4
40Section 12.3.1.18.1
41Section 12.3.1.4

RTSJ 2.0 (Draft 48) 627

12 Devices and Triggering RawMemoryRegionFactory

throws SecurityException,
OffsetOutOfBoundsException,
SizeOutOfBoundsException,
UnsupportedRawMemoryRegionException,
MemoryTypeConflictException

Description
Create an instance of a class that implements RawShort42 and accesses memory
of getRegion43 in the address range described by base, stride, and count. The
actual extent of the memory addressed by the object is stride ∗ size of RawShort
∗ count. The object is allocated in the current memory area of the calling thread.

Parameters
base The starting physical address accessible through the returned instance.
count The number of memory elements accessible through the returned instance.
stride The distance to the next element in mulitple of element count, where a value

of 1 means the elements are adjacent in memory.
Throws
IllegalArgumentException when base is negative, count is not greater than zero, or

stride is not greater than zero.
SecurityException when the caller does not have permissions to access the given

memory region or the specified range of addresses.
OffsetOutOfBoundsException when base is invalid.
SizeOutOfBoundsException when the memory addressed by the object would extend

into an invalid range of memory.
MemoryTypeConflictException when base does not point to memory that matches

the type served by this factory.
Returns
an object that implements RawShort44 and supports access to the specified range

in the memory region.
Available since RTSJ 2.0

createRawShortReader(long, int, int)

Signature
42Section 12.3.1.19
43Section 12.3.1.18.1
44Section 12.3.1.19

628 RTSJ 2.0 (Draft 48)

RawMemoryRegionFactory javax.realtime.device 12.3

public javax.realtime.device.RawShortReader
createRawShortReader(long base,

int count,
int stride)

throws SecurityException,
OffsetOutOfBoundsException,
SizeOutOfBoundsException,
UnsupportedRawMemoryRegionException,
MemoryTypeConflictException

Description

Create an instance of a class that implements RawShortReader45 and accesses
memory of getRegion46 in the address range described by base, stride, and count.
The actual extent of the memory addressed by the object is stride ∗ size of
RawShortReader ∗ count. The object is allocated in the current memory area of
the calling thread.

Parameters
base The starting physical address accessible through the returned instance.
count The number of memory elements accessible through the returned instance.
stride The distance to the next element in mulitple of element count, where a value

of 1 means the elements are adjacent in memory.
Throws
IllegalArgumentException when base is negative, count is not greater than zero, or

stride is not greater than zero.
SecurityException when the caller does not have permissions to access the given

memory region or the specified range of addresses.
OffsetOutOfBoundsException when base is invalid.
SizeOutOfBoundsException when the memory addressed by the object would extend

into an invalid range of memory.
MemoryTypeConflictException when base does not point to memory that matches

the type served by this factory.

Returns
an object that implements RawShortReader47 and supports access to the specified

range in the memory region.

45Section 12.3.1.20
46Section 12.3.1.18.1
47Section 12.3.1.20

RTSJ 2.0 (Draft 48) 629

12 Devices and Triggering RawMemoryRegionFactory

Available since RTSJ 2.0

createRawShortWriter(long, int, int)

Signature
public javax.realtime.device.RawShortWriter
createRawShortWriter(long base,

int count,
int stride)

throws SecurityException,
OffsetOutOfBoundsException,
SizeOutOfBoundsException,
UnsupportedRawMemoryRegionException,
MemoryTypeConflictException

Description
Create an instance of a class that implements RawShortWriter48 and accesses
memory of getRegion49 in the address range described by base, stride, and count.
The actual extent of the memory addressed by the object is stride ∗ size of
RawShortWriter ∗ count. The object is allocated in the current memory area of
the calling thread.

Parameters
base The starting physical address accessible through the returned instance.
count The number of memory elements accessible through the returned instance.
stride The distance to the next element in mulitple of element count, where a value

of 1 means the elements are adjacent in memory.
Throws
IllegalArgumentException when base is negative, count is not greater than zero, or

stride is not greater than zero.
SecurityException when the caller does not have permissions to access the given

memory region or the specified range of addresses.
OffsetOutOfBoundsException when base is invalid.
SizeOutOfBoundsException when the memory addressed by the object would extend

into an invalid range of memory.
MemoryTypeConflictException when base does not point to memory that matches

the type served by this factory.
48Section 12.3.1.21
49Section 12.3.1.18.1

630 RTSJ 2.0 (Draft 48)

RawMemoryRegionFactory javax.realtime.device 12.3

Returns
an object that implements RawShortWriter50 and supports access to the specified

range in the memory region.

Available since RTSJ 2.0

createRawInt(long, int, int)

Signature
public javax.realtime.device.RawInt
createRawInt(long base,

int count,
int stride)

throws SecurityException,
OffsetOutOfBoundsException,
SizeOutOfBoundsException,
UnsupportedRawMemoryRegionException,
MemoryTypeConflictException

Description
Create an instance of a class that implements RawInt51 and accesses memory
of getRegion52 in the address range described by base, stride, and count. The
actual extent of the memory addressed by the object is stride ∗ size of RawInt ∗
count. The object is allocated in the current memory area of the calling thread.

Parameters
base The starting physical address accessible through the returned instance.
count The number of memory elements accessible through the returned instance.
stride The distance to the next element in mulitple of element count, where a value

of 1 means the elements are adjacent in memory.
Throws
IllegalArgumentException when base is negative, count is not greater than zero, or

stride is not greater than zero.
SecurityException when the caller does not have permissions to access the given

memory region or the specified range of addresses.
OffsetOutOfBoundsException when base is invalid.
50Section 12.3.1.21
51Section 12.3.1.11
52Section 12.3.1.18.1

RTSJ 2.0 (Draft 48) 631

12 Devices and Triggering RawMemoryRegionFactory

SizeOutOfBoundsException when the memory addressed by the object would extend
into an invalid range of memory.

MemoryTypeConflictException when base does not point to memory that matches
the type served by this factory.

Returns
an object that implements RawInt53 and supports access to the specified range in

the memory region.

Available since RTSJ 2.0

createRawIntReader(long, int, int)

Signature
public javax.realtime.device.RawIntReader
createRawIntReader(long base,

int count,
int stride)

throws SecurityException,
OffsetOutOfBoundsException,
SizeOutOfBoundsException,
UnsupportedRawMemoryRegionException,
MemoryTypeConflictException

Description
Create an instance of a class that implements RawIntReader54 and accesses
memory of getRegion55 in the address range described by base, stride, and count.
The actual extent of the memory addressed by the object is stride ∗ size of
RawIntReader ∗ count. The object is allocated in the current memory area of
the calling thread.

Parameters
base The starting physical address accessible through the returned instance.
count The number of memory elements accessible through the returned instance.
stride The distance to the next element in mulitple of element count, where a value

of 1 means the elements are adjacent in memory.
Throws

53Section 12.3.1.11
54Section 12.3.1.12
55Section 12.3.1.18.1

632 RTSJ 2.0 (Draft 48)

RawMemoryRegionFactory javax.realtime.device 12.3

IllegalArgumentException when base is negative, count is not greater than zero, or
stride is not greater than zero.

SecurityException when the caller does not have permissions to access the given
memory region or the specified range of addresses.

OffsetOutOfBoundsException when base is invalid.
SizeOutOfBoundsException when the memory addressed by the object would extend

into an invalid range of memory.
MemoryTypeConflictException when base does not point to memory that matches

the type served by this factory.

Returns
an object that implements RawIntReader56 and supports access to the specified

range in the memory region.

Available since RTSJ 2.0

createRawIntWriter(long, int, int)

Signature
public javax.realtime.device.RawIntWriter
createRawIntWriter(long base,

int count,
int stride)

throws SecurityException,
OffsetOutOfBoundsException,
SizeOutOfBoundsException,
UnsupportedRawMemoryRegionException,
MemoryTypeConflictException

Description
Create an instance of a class that implements RawIntWriter57 and accesses
memory of getRegion58 in the address range described by base, stride, and count.
The actual extent of the memory addressed by the object is stride ∗ size of
RawIntWriter ∗ count. The object is allocated in the current memory area of the
calling thread.

Parameters
56Section 12.3.1.12
57Section 12.3.1.13
58Section 12.3.1.18.1

RTSJ 2.0 (Draft 48) 633

12 Devices and Triggering RawMemoryRegionFactory

base The starting physical address accessible through the returned instance.
count The number of memory elements accessible through the returned instance.
stride The distance to the next element in mulitple of element count, where a value

of 1 means the elements are adjacent in memory.
Throws
IllegalArgumentException when base is negative, count is not greater than zero, or

stride is not greater than zero.
SecurityException when the caller does not have permissions to access the given

memory region or the specified range of addresses.
OffsetOutOfBoundsException when base is invalid.
SizeOutOfBoundsException when the memory addressed by the object would extend

into an invalid range of memory.
MemoryTypeConflictException when base does not point to memory that matches

the type served by this factory.
Returns
an object that implements RawIntWriter59 and supports access to the specified

range in the memory region.
Available since RTSJ 2.0

createRawLong(long, int, int)

Signature
public javax.realtime.device.RawLong
createRawLong(long base,

int count,
int stride)

throws SecurityException,
OffsetOutOfBoundsException,
SizeOutOfBoundsException,
UnsupportedRawMemoryRegionException,
MemoryTypeConflictException

Description
Create an instance of a class that implements RawLong60 and accesses memory
of getRegion61 in the address range described by base, stride, and count. The

59Section 12.3.1.13
60Section 12.3.1.14
61Section 12.3.1.18.1

634 RTSJ 2.0 (Draft 48)

RawMemoryRegionFactory javax.realtime.device 12.3

actual extent of the memory addressed by the object is stride ∗ size of RawLong
∗ count. The object is allocated in the current memory area of the calling thread.

Parameters
base The starting physical address accessible through the returned instance.
count The number of memory elements accessible through the returned instance.
stride The distance to the next element in mulitple of element count, where a value

of 1 means the elements are adjacent in memory.
Throws
IllegalArgumentException when base is negative, count is not greater than zero, or

stride is not greater than zero.
SecurityException when the caller does not have permissions to access the given

memory region or the specified range of addresses.
OffsetOutOfBoundsException when base is invalid.
SizeOutOfBoundsException when the memory addressed by the object would extend

into an invalid range of memory.
MemoryTypeConflictException when base does not point to memory that matches

the type served by this factory.
Returns
an object that implements RawLong62 and supports access to the specified range

in the memory region.
Available since RTSJ 2.0

createRawLongReader(long, int, int)

Signature
public javax.realtime.device.RawLongReader
createRawLongReader(long base,

int count,
int stride)

throws SecurityException,
OffsetOutOfBoundsException,
SizeOutOfBoundsException,
UnsupportedRawMemoryRegionException,
MemoryTypeConflictException

Description
62Section 12.3.1.14

RTSJ 2.0 (Draft 48) 635

12 Devices and Triggering RawMemoryRegionFactory

Create an instance of a class that implements RawLongReader63 and accesses
memory of getRegion64 in the address range described by base, stride, and count.
The actual extent of the memory addressed by the object is stride ∗ size of
RawLongReader ∗ count. The object is allocated in the current memory area of
the calling thread.

Parameters
base The starting physical address accessible through the returned instance.
count The number of memory elements accessible through the returned instance.
stride The distance to the next element in mulitple of element count, where a value

of 1 means the elements are adjacent in memory.
Throws
IllegalArgumentException when base is negative, count is not greater than zero, or

stride is not greater than zero.
SecurityException when the caller does not have permissions to access the given

memory region or the specified range of addresses.
OffsetOutOfBoundsException when base is invalid.
SizeOutOfBoundsException when the memory addressed by the object would extend

into an invalid range of memory.
MemoryTypeConflictException when base does not point to memory that matches

the type served by this factory.

Returns
an object that implements RawLongReader65 and supports access to the specified

range in the memory region.

Available since RTSJ 2.0

createRawLongWriter(long, int, int)

Signature
public javax.realtime.device.RawLongWriter
createRawLongWriter(long base,

int count,
int stride)

63Section 12.3.1.15
64Section 12.3.1.18.1
65Section 12.3.1.15

636 RTSJ 2.0 (Draft 48)

RawMemoryRegionFactory javax.realtime.device 12.3

throws SecurityException,
OffsetOutOfBoundsException,
SizeOutOfBoundsException,
UnsupportedRawMemoryRegionException,
MemoryTypeConflictException

Description
Create an instance of a class that implements RawLongWriter66 and accesses
memory of getRegion67 in the address range described by base, stride, and count.
The actual extent of the memory addressed by the object is stride ∗ size of
RawLongWriter ∗ count. The object is allocated in the current memory area of
the calling thread.

Parameters
base The starting physical address accessible through the returned instance.
count The number of memory elements accessible through the returned instance.
stride The distance to the next element in mulitple of element count, where a value

of 1 means the elements are adjacent in memory.
Throws
IllegalArgumentException when base is negative, count is not greater than zero, or

stride is not greater than zero.
SecurityException when the caller does not have permissions to access the given

memory region or the specified range of addresses.
OffsetOutOfBoundsException when base is invalid.
SizeOutOfBoundsException when the memory addressed by the object would extend

into an invalid range of memory.
MemoryTypeConflictException when base does not point to memory that matches

the type served by this factory.
Returns
an object that implements RawLongWriter68 and supports access to the specified

range in the memory region.
Available since RTSJ 2.0

createRawFloat(long, int, int)

66Section 12.3.1.16
67Section 12.3.1.18.1
68Section 12.3.1.16

RTSJ 2.0 (Draft 48) 637

12 Devices and Triggering RawMemoryRegionFactory

Signature
public javax.realtime.device.RawFloat
createRawFloat(long base,

int count,
int stride)

throws SecurityException,
OffsetOutOfBoundsException,
SizeOutOfBoundsException,
UnsupportedRawMemoryRegionException,
MemoryTypeConflictException

Description

Create an instance of a class that implements RawFloat69 and accesses memory
of getRegion70 in the address range described by base, stride, and count. The
actual extent of the memory addressed by the object is stride ∗ size of RawFloat
∗ count. The object is allocated in the current memory area of the calling thread.

Parameters
base The starting physical address accessible through the returned instance.
count The number of memory elements accessible through the returned instance.
stride The distance to the next element in mulitple of element count, where a value

of 1 means the elements are adjacent in memory.
Throws
IllegalArgumentException when base is negative, count is not greater than zero, or

stride is not greater than zero.
SecurityException when the caller does not have permissions to access the given

memory region or the specified range of addresses.
OffsetOutOfBoundsException when base is invalid.
SizeOutOfBoundsException when the memory addressed by the object would extend

into an invalid range of memory.
MemoryTypeConflictException when base does not point to memory that matches

the type served by this factory.

Returns
an object that implements RawFloat71 and supports access to the specified range

in the memory region.

69Section 12.3.1.8
70Section 12.3.1.18.1
71Section 12.3.1.8

638 RTSJ 2.0 (Draft 48)

RawMemoryRegionFactory javax.realtime.device 12.3

Available since RTSJ 2.0

createRawFloatReader(long, int, int)

Signature
public javax.realtime.device.RawFloatReader
createRawFloatReader(long base,

int count,
int stride)

throws SecurityException,
OffsetOutOfBoundsException,
SizeOutOfBoundsException,
UnsupportedRawMemoryRegionException,
MemoryTypeConflictException

Description
Create an instance of a class that implements RawFloatReader72 and accesses
memory of getRegion73 in the address range described by base, stride, and count.
The actual extent of the memory addressed by the object is stride ∗ size of
RawFloatReader ∗ count. The object is allocated in the current memory area of
the calling thread.

Parameters
base The starting physical address accessible through the returned instance.
count The number of memory elements accessible through the returned instance.
stride The distance to the next element in mulitple of element count, where a value

of 1 means the elements are adjacent in memory.
Throws
IllegalArgumentException when base is negative, count is not greater than zero, or

stride is not greater than zero.
SecurityException when the caller does not have permissions to access the given

memory region or the specified range of addresses.
OffsetOutOfBoundsException when base is invalid.
SizeOutOfBoundsException when the memory addressed by the object would extend

into an invalid range of memory.
MemoryTypeConflictException when base does not point to memory that matches

the type served by this factory.
72Section 12.3.1.9
73Section 12.3.1.18.1

RTSJ 2.0 (Draft 48) 639

12 Devices and Triggering RawMemoryRegionFactory

Returns
an object that implements RawFloatReader74 and supports access to the specified

range in the memory region.

Available since RTSJ 2.0

createRawFloatWriter(long, int, int)

Signature
public javax.realtime.device.RawFloatWriter
createRawFloatWriter(long base,

int count,
int stride)

throws SecurityException,
OffsetOutOfBoundsException,
SizeOutOfBoundsException,
UnsupportedRawMemoryRegionException,
MemoryTypeConflictException

Description
Create an instance of a class that implements RawFloatWriter75 and accesses
memory of getRegion76 in the address range described by base, stride, and count.
The actual extent of the memory addressed by the object is stride ∗ size of
RawFloatWriter ∗ count. The object is allocated in the current memory area of
the calling thread.

Parameters
base The starting physical address accessible through the returned instance.
count The number of memory elements accessible through the returned instance.
stride The distance to the next element in mulitple of element count, where a value

of 1 means the elements are adjacent in memory.
Throws
IllegalArgumentException when base is negative, count is not greater than zero, or

stride is not greater than zero.
SecurityException when the caller does not have permissions to access the given

memory region or the specified range of addresses.
74Section 12.3.1.9
75Section 12.3.1.10
76Section 12.3.1.18.1

640 RTSJ 2.0 (Draft 48)

RawMemoryRegionFactory javax.realtime.device 12.3

OffsetOutOfBoundsException when base is invalid.
SizeOutOfBoundsException when the memory addressed by the object would extend

into an invalid range of memory.
MemoryTypeConflictException when base does not point to memory that matches

the type served by this factory.

Returns
an object that implements RawFloatWriter77 and supports access to the specified

range in the memory region.

Available since RTSJ 2.0

createRawDouble(long, int, int)

Signature
public javax.realtime.device.RawDouble
createRawDouble(long base,

int count,
int stride)

throws SecurityException,
OffsetOutOfBoundsException,
SizeOutOfBoundsException,
UnsupportedRawMemoryRegionException,
MemoryTypeConflictException

Description
Create an instance of a class that implements RawDouble78 and accesses memory
of getRegion79 in the address range described by base, stride, and count. The
actual extent of the memory addressed by the object is stride ∗ size of RawDouble
∗ count. The object is allocated in the current memory area of the calling thread.

Parameters
base The starting physical address accessible through the returned instance.
count The number of memory elements accessible through the returned instance.
stride The distance to the next element in mulitple of element count, where a value

of 1 means the elements are adjacent in memory.
Throws

77Section 12.3.1.10
78Section 12.3.1.5
79Section 12.3.1.18.1

RTSJ 2.0 (Draft 48) 641

12 Devices and Triggering RawMemoryRegionFactory

IllegalArgumentException when base is negative, count is not greater than zero, or
stride is not greater than zero.

SecurityException when the caller does not have permissions to access the given
memory region or the specified range of addresses.

OffsetOutOfBoundsException when base is invalid.
SizeOutOfBoundsException when the memory addressed by the object would extend

into an invalid range of memory.
MemoryTypeConflictException when base does not point to memory that matches

the type served by this factory.

Returns
an object that implements RawDouble80 and supports access to the specified range

in the memory region.

Available since RTSJ 2.0

createRawDoubleReader(long, int, int)

Signature
public javax.realtime.device.RawDoubleReader
createRawDoubleReader(long base,

int count,
int stride)

throws SecurityException,
OffsetOutOfBoundsException,
SizeOutOfBoundsException,
UnsupportedRawMemoryRegionException,
MemoryTypeConflictException

Description
Create an instance of a class that implements RawDoubleReader81 and accesses
memory of getRegion82 in the address range described by base, stride, and count.
The actual extent of the memory addressed by the object is stride ∗ size of
RawDoubleReader ∗ count. The object is allocated in the current memory area
of the calling thread.

Parameters
80Section 12.3.1.5
81Section 12.3.1.6
82Section 12.3.1.18.1

642 RTSJ 2.0 (Draft 48)

RawMemoryRegionFactory javax.realtime.device 12.3

base The starting physical address accessible through the returned instance.
count The number of memory elements accessible through the returned instance.
stride The distance to the next element in mulitple of element count, where a value

of 1 means the elements are adjacent in memory.
Throws
IllegalArgumentException when base is negative, count is not greater than zero, or

stride is not greater than zero.
SecurityException when the caller does not have permissions to access the given

memory region or the specified range of addresses.
OffsetOutOfBoundsException when base is invalid.
SizeOutOfBoundsException when the memory addressed by the object would extend

into an invalid range of memory.
MemoryTypeConflictException when base does not point to memory that matches

the type served by this factory.
Returns
an object that implements RawDoubleReader83 and supports access to the specified

range in the memory region.
Available since RTSJ 2.0

createRawDoubleWriter(long, int, int)

Signature
public javax.realtime.device.RawDoubleWriter
createRawDoubleWriter(long base,

int count,
int stride)

throws SecurityException,
OffsetOutOfBoundsException,
SizeOutOfBoundsException,
UnsupportedRawMemoryRegionException,
MemoryTypeConflictException

Description
Create an instance of a class that implements RawDoubleWriter84 and accesses
memory of getRegion85 in the address range described by base, stride, and count.

83Section 12.3.1.6
84Section 12.3.1.7
85Section 12.3.1.18.1

RTSJ 2.0 (Draft 48) 643

12 Devices and Triggering RawShortReader

The actual extent of the memory addressed by the object is stride ∗ size of
RawDoubleWriter ∗ count. The object is allocated in the current memory area of
the calling thread.

Parameters
base The starting physical address accessible through the returned instance.
count The number of memory elements accessible through the returned instance.
stride The distance to the next element in mulitple of element count, where a value

of 1 means the elements are adjacent in memory.
Throws
IllegalArgumentException when base is negative, count is not greater than zero, or

stride is not greater than zero.
SecurityException when the caller does not have permissions to access the given

memory region or the specified range of addresses.
OffsetOutOfBoundsException when base is invalid.
SizeOutOfBoundsException when the memory addressed by the object would extend

into an invalid range of memory.
MemoryTypeConflictException when base does not point to memory that matches

the type served by this factory.
Returns
an object that implements RawDoubleWriter86 and supports access to the specified

range in the memory region.
Available since RTSJ 2.0

12.3.1.19 RawShort

Interfaces
javax.realtime.device.RawShortReader
javax.realtime.device.RawShortWriter

Description
A marker for an object that can be used to access to a single short. Read and
write access to that short is checked by the factory that creates the instance;
therefore, no access checking is provided by this interface, only bounds checking.

Available since RTSJ 2.0

86Section 12.3.1.7

644 RTSJ 2.0 (Draft 48)

RawShortReader javax.realtime.device 12.3

12.3.1.20 RawShortReader

Interfaces
javax.realtime.device.RawMemory

Description
A marker for a short accessor object encapsulating the protocol for reading
shorts from raw memory. A short accessor can always access at least one short.
Each short is transfered in a single atomic operation. Groups of shorts may be
transfered together; however, this is not required.

Objects of this type are created with the method RawMemoryFactory.createRawShortReader87

and RawMemoryFactory.createRawShort88. Each object references a range of
elements in the RawMemoryRegion89 starting at the base address provided to the
factory method. The size provided to the factor method determines the number
of elements accessable.

Caching of the memory access is controlled by the factory that created this
object. If the memory is not cached, this method guarantees serialized access. In
other words, the memory access at the memory occurs in the same order as in
the program. Multiple writes to the same location may not be coalesced.

Available since RTSJ 2.0

12.3.1.20.1 Methods

getShort

Signature
public short
getShort()

Description
Get the value at the first position referenced by this instance, i.e., the value at
its start address. This operation must be atomic with respect to all other raw
memory accesses to the address.

87Section 12.3.2.6.3
88Section 12.3.2.6.3
89Section 12.3.2.7

RTSJ 2.0 (Draft 48) 645

12 Devices and Triggering RawShortReader

Returns
the value at the base address.

getShort(int)

Signature
public short
getShort(int offset)
throws OffsetOutOfBoundsException

Description
Get the value at the address: base address + offset x stride x element size in
bytes. When an exception is thrown, no data is transfered.

Parameters
offset of short in the memory region starting from the address specified in the

associated factory method.
Throws
OffsetOutOfBoundsException when offset is negative or greater than or equal to

the number of elements in the raw memory region.
Returns
the value at the address specified.

get(int, short)

Signature
public int
get(int offset,

short[] values)
throws OffsetOutOfBoundsException,

NullPointerException

Description
Fill values with elements from this instance, where the nth element is at the
address: base address + (offset+n) x stride x element size in bytes. Only the
shorts in the intersection of the start and end of values and the base address and
the end of the memory region are transfered. When an exception is thrown, no
data is transfered.

Parameters

646 RTSJ 2.0 (Draft 48)

RawShortReader javax.realtime.device 12.3

offset of the first short in the memory region to transfere
values the array to receive the shorts

Throws
OffsetOutOfBoundsException when offset is negative or greater than or equal to

the number of elements in the raw memory region.
NullPointerException when values is null.

Returns
the number of elements actuall transferred to values

get(int, short, int, int)

Signature
public int
get(int offset,

short[] values,
int start,
int count)

throws OffsetOutOfBoundsException,
ArrayIndexOutOfBoundsException,
NullPointerException

Description
Fill values from index start with elements from this instance, where the nth
element is at the address: base address + (offset+n) x stride x element size in
bytes. The number of bytes transfered is the minimum of count, the size of
the memory region minus offset, and length of values minus start. When an
exception is thrown, no data is transfered.

Parameters
offset of the first short in the memory region to transfere
values the array to receive the shorts
start the first index in array to fill
count the maximum number of shorts to copy

Throws
OffsetOutOfBoundsException when offset is negative or either offset or offset +

count is greater than or equal to the size of this raw memory area.
ArrayIndexOutOfBoundsException when start is negative or either start or start

+ count is greater than or equal to the size of values.
NullPointerException when values is null or count is negative.

RTSJ 2.0 (Draft 48) 647

12 Devices and Triggering RawShortWriter

Returns
the number of shorts actually transfered.

12.3.1.21 RawShortWriter

Interfaces
javax.realtime.device.RawMemory

Description
A marker for a short accessor object encapsulating the protocol for writing shorts
to raw memory. A short accessor can always access at least one short. Each short
is transfered in a single atomic operation. Groups of shorts may be transfered
together; however, this is not required.

Objects of this type are created with the method RawMemoryFactory.createRawShortWriter90

and RawMemoryFactory.createRawShort91. Each object references a range of
elements in the RawMemoryRegion92 starting at the base address provided to the
factory method. The size provided to the factor method determines the number
of elements accessable.

Caching of the memory access is controlled by the factory that created this
object. If the memory is not cached, this method guarantees serialized access. In
other words, the memory access at the memory occurs in the same order as in
the program. Multiple writes to the same location may not be coalesced.

Available since RTSJ 2.0

12.3.1.21.1 Methods

setShort(short)

Signature
public void
setShort(short value)

90Section 12.3.2.6.3
91Section 12.3.2.6.3
92Section 12.3.2.7

648 RTSJ 2.0 (Draft 48)

RawShortWriter javax.realtime.device 12.3

Description
Set the value at the first position referenced by this instance, i.e., the value at
its start address. This operation must be atomic with respect to all other raw
memory accesses to the address.

Parameters
value is the new value for the element.

setShort(int, short)

Signature
public void
setShort(int offset,

short value)
throws OffsetOutOfBoundsException

Description
Set the value of the nth element referenced by this instance, where n is offset
and the address is base address + offset ∗ size of Short. This operation must be
atomic with respect to all other raw memory accesses to the address. When an
exception is thrown, no data is transfered.

Parameters
offset of short in the memory region.
value is the new value for the element.

Throws
OffsetOutOfBoundsException when offset is negative or greater than or equal to

the number of elements in the raw memory region.

set(int, short)

Signature
public int
set(int offset,

short[] values)
throws OffsetOutOfBoundsException,

NullPointerException

Description

RTSJ 2.0 (Draft 48) 649

12 Devices and Triggering RawShortWriter

Copy from values to the memory region from index start,to elements where the
nth element is at the address: base address + (offset+n) x stride x element size
in bytes. Only the shorts in the intersection of values and the end of the memory
region are transfered. When an exception is thrown, no data is transfered.

Parameters
offset of first short in the memory region to be set.
values is the source of the data to write.

Throws
OffsetOutOfBoundsException when offset is negative or greater than or equal to

the number of elements in the raw memory region.
NullPointerException when values is null.

Returns
the number of elements actually transferred to values

set(int, short, int, int)

Signature
public int
set(int offset,

short[] values,
int start,
int count)

throws OffsetOutOfBoundsException,
ArrayIndexOutOfBoundsException,
NullPointerException

Description
Copy values to the memory region, where offset is first short in the memory region
to write and start is the first index in values from which to read. The number of
bytes transfered is the minimum of count, the size of the memory region minus
offset, and length of values minus start. When an exception is thrown, no data
is transfered.

Parameters
offset of the first short in the memory region to set
values the array from which to retrieve the shorts
start the first index in array to copy
count the maximum number of shorts to copy

650 RTSJ 2.0 (Draft 48)

DMABufferFactory javax.realtime.device 12.3

Throws
OffsetOutOfBoundsException when offset is negative or either offset or offset +

count is greater than or equal to the size of this raw memory area.
ArrayIndexOutOfBoundsException when start is negative or either start or start

+ count is greater than or equal to the size of values.
NullPointerException when values is null.

Returns
the number of shorts actually transfered.

12.3.2 Classes
12.3.2.1 DMABufferFactory

Inheritance
java.lang.Object
DMABufferFactory

Description
A factory class for generating raw byte buffers. This enables the infrastructure
to limit the address ranges from which a buffer may be taken. The address
range managed by a DMABufferFactory instance may overlap that of another
DMABufferFactory instance.

12.3.2.1.1 Constructors

DMABufferFactory(DMARegion, long, long)

Signature
public
DMABufferFactory(DMARegion region,

long base,
long size)

throws MemoryInUseException

Description

RTSJ 2.0 (Draft 48) 651

12 Devices and Triggering DMABufferFactory

Create a factory for allocating buffers in a particular address range. Whether the
address is physical or virtual is system dependent.

Parameters
region is the area of memory a DMA controller can reference, from which this

factory takes its memory.
base is the base address of a memory range in region for buffer allocation
size is the number of bytes in the memory range

Throws
MemoryInUseException when the memory area provide is already in use by or

reserved for a javax.realtime.MemoryArea93, program code, or other sytem or
VM structure.

12.3.2.1.2 Methods

allocateDMAByteBuffer(int)

Signature
public java.nio.ByteBuffer
allocateDMAByteBuffer(int capacity)

Description
Create a direct byte buffer with the given capacity within the range of this factory.

Parameters
capacity the number of bytes in the buffer.

Throws
javax.realtime.StaticOutOfMemoryError when no memory is available

Returns
the new buffer.

free(ByteBuffer)

Signature
93Section 11.3.2.3

652 RTSJ 2.0 (Draft 48)

DMABufferFactory javax.realtime.device 12.3

public void
free(ByteBuffer buffer)

Description
Free the memory associated with the given ByteBuffer instance. The capacity
and limit of the buffer are both set to zero, so data can no longer be transfered
with the buffer. The buffer range can then be safely reallocated.

Parameters
buffer is the ByteBuffer to free.

Throws
IllegalArgumentException when buffer was not allocated from this factory.
IllegalStateException when buffer has already been freed.
Open issue 12.3.1

Should we have our own buffer class with this methods defined there instead of
here?
End of issue 12.3.1

inRange(ByteBuffer)

Signature
public boolean
inRange(ByteBuffer buffer)

Description
Check to see if the buffer’s data area is within the range of this factory.

Parameters
buffer to check

Returns
true when and only when buffer’s data area is within the range of this factory;

otherwise false

addressOf(ByteBuffer)

Signature
public long
addressOf(ByteBuffer buffer)

Description

RTSJ 2.0 (Draft 48) 653

12 Devices and Triggering DMABufferFactory

Give the location of this buffers data in memory. The address shall be in the
address space of the DMA controller.

Parameters
buffer of which to get the address

Returns
the start address of the data range of this buffer

writeFence(ByteBuffer)

Signature
public static void
writeFence(ByteBuffer buffer)

Description
Ensures that all changes to the DirectByteBuffer buffer by the current thread
have been flushed in a manner that makes them visible to other threads (including
native threads), and behaves as a volatile store with respect to the Java Memory
Model synchronization order.

This method shall invoke a memory barrier operation that is understood
by the VM, runtime, native compiler, and platform to provide visibility to all
changes to the associated buffer made before its invocation.

Parameters
buffer the byte buffer which will be flushed

readFence(ByteBuffer)

Signature
public static void
readFence(ByteBuffer buffer)

Description
Ensures that any previous changes to the memory represented by the given
DirectByteBuffer by other threads (including native threads) will be visible when
it is next accessed by the current thread, and behaves as a volatile load with
respect to the Java Memory Model synchronization order.

This method shall invoke a memory barrier operation that is understood by the
VM, runtime, native compiler, and platform to provide visibility for any changes

654 RTSJ 2.0 (Draft 48)

DMARegion javax.realtime.device 12.3

to the associated buffer previously flushed with a call to writeFence(ByteBuffer)94

or its native equivalent on the buffer’s memory.
Parameters
buffer the byte buffer which will be updated

12.3.2.2 DMARegion

Inheritance
java.lang.Object
DMARegion

Description
Define the reachable memory for a given DMA controller in terms of the physical
address space of the system.

12.3.2.2.1 Constructors

DMARegion(long, long)

Signature
public
DMARegion(long start,

long size)
throws IllegalArgumentException

Description
Create a DMA memory definition.

Parameters
start address of the DMA address space in the physical address address space of

the main processor.
size is the number of bytes in the DMA address space

Throws
IllegalArgumentException when start is less than zero or start + size is larger than

the physical memory of the system.
94Section 12.3.1

RTSJ 2.0 (Draft 48) 655

12 Devices and Triggering Happening

12.3.2.2.2 Methods

regionAddressOf(long)

Signature
public long
regionAddressOf(long address)
throws IllegalArgumentException

Description
Translate a physical address into a DMA region address.

Parameters
address to translate

Throws
IllegalArgumentException when the results is outside the DMA space.

Returns
the equivalent address in DMA space.

physicalAddressOf(long)

Signature
public long
physicalAddressOf(long address)
throws IllegalArgumentException

Description
Translate a DMA space address into a physical address.

Parameters
address to translate

Throws
IllegalArgumentException when the input is outside the DMA space.

Returns
the corresponding physical address

656 RTSJ 2.0 (Draft 48)

Happening javax.realtime.device 12.3

12.3.2.3 Happening

Inheritance
java.lang.Object
javax.realtime.AsyncBaseEvent
javax.realtime.AsyncEvent
Happening

Interfaces
javax.realtime.ActiveEvent

Description
This class provides second level handling for external events such as interrupts. A
happening can be triggered by an InterruptServiceRoutine95 or from native code.
Application-defined Happenings can be identified by an application-provided name
or a system-provided id, both of which must be unique. A system Happening
has a name provide by the system which is a string beginning with @.

Available since RTSJ 2.0

12.3.2.3.1 Constructors

Happening(String, HappeningDispatcher)

Signature
public
Happening(String name,

HappeningDispatcher dispatcher)
throws IllegalArgumentException

Description
Create a Happening with the given name.

Parameters
name of the happening.
dispatcher to use when being triggered.
95Section 12.3.2.5

RTSJ 2.0 (Draft 48) 657

12 Devices and Triggering Happening

Throws
IllegalArgumentException when name is null or does not match the pattern full

identifier naming convention, i.e., package plus name. An implementation may
throw this exception for all names starting with java. and javax.

Happening(String)

Signature
public
Happening(String name)
throws IllegalArgumentException

Description
Create a Happening with the given name and the default dispatcher.

Parameters
name of the happening.

Throws
IllegalArgumentException when name is null or does not match the pattern full

type naming convention, i.e., package plus name. An implementation may
throw this exception for all names starting with java. and javax.

12.3.2.3.2 Methods

getHappening(String)

Signature
public static javax.realtime.device.Happening
getHappening(String name)

Description
Find an active happening by its name.

Parameters
name of the happening to get.

Throws
IllegalArgumentException when name is null.

658 RTSJ 2.0 (Draft 48)

Happening javax.realtime.device 12.3

Returns
a reference to the happening with name name, or null if no happening is found.

isHappening(String)

Signature
public static boolean
isHappening(String name)

Description
Is there an active happening with name name?

Parameters
name A string that might name an active happening.

Throws
IllegalArgumentException when name is null.

Returns
True only when there is a registered happening with the name name.

createId(String)

Signature
public static int
createId(String name)
throws IllegalStateException

Description
Sets up a mapping between a name and a system dependent ID. This can be
called either in the constructor of an instance of InterruptServiceRoutine96 or in
native code that sets up an interrupt service routine to link it with a Happening.
Once created, it cannot be removed.

This must take no more than linear time in the number of ID (n) registered,
but should be O(log2(n)).

Parameters
name is a happing name string.

Throws
IllegalStateException when name is already registered.
96Section 12.3.2.5

RTSJ 2.0 (Draft 48) 659

12 Devices and Triggering Happening

IllegalArgumentException when name is null.

Returns
an ID assigned by the system

getId(String)

Signature
public static int
getId(String name)

Description

Return the ID of name, when one exists or -1, when name is not registered.
This must take no more than linear time in the number of ID (n) registered,

but should be O(log2(n)).

Parameters
name is a happening name string.

Throws
IllegalArgumentException when name is null.

Returns
The id, or -1 when no happening is found with that name.

get(int)

Signature
public static javax.realtime.device.Happening
get(int id)

Description

Get the external event corresponding to a given id.

Parameters
id of a registered signal

Returns
the signal corresponding to id.

660 RTSJ 2.0 (Draft 48)

Happening javax.realtime.device 12.3

get(String)

Signature
public static javax.realtime.device.Happening
get(String name)

Description
Get the external event corresponding to a given name.

Parameters
name of a registered signal

Throws
IllegalArgumentException when name is null.

Returns
the signal corresponding to name.

trigger(int)

Signature
public static boolean
trigger(int id)

Description
Causes the event dispatcher corresponding to happeningId to be scheduled for
execution. The implementation should be simple enough so that it can be done
in the context of an InterruptServiceRoutine.handle97 method.

trigger() and any native code analog to it interact with other javax.realtime.
ActiveEvent98 code effectively as if trigger() signals a POSIX counting semaphore
that the happening is waiting on.

The implementation is encouraged to create (and document) a native code
analog to this method that can be used without a Java context.

This method must execute in constant time.

Parameters
id identifies which happening to trigger.

Returns
true if a happening with id happeningId was found, false otherwise.

97Section 12.3.2.5.2
98Section 8.3.1.1

RTSJ 2.0 (Draft 48) 661

12 Devices and Triggering Happening

getId

Signature
public final int
getId()

Description
Get the number of this happening.

Returns
the happening number or -1, when not registered.

getName

Signature
public java.lang.String
getName()

Description
Get the name of this happening.

Returns
the name of this happening.

start

Signature
public void
start()
throws IllegalStateException

Description
Start this Happening, i.e., change to the active and enabled state. Once a
happening is started for the first time, when it is in a scoped memory it increments
the scope count of that scope; otherwise, it becomes a member of the root set.
An active and enabled happening dispatches its handlers when fired.

Throws
IllegalStateException when this Happening has already been started or its name is

already in use by another happening that has been started.

662 RTSJ 2.0 (Draft 48)

Happening javax.realtime.device 12.3

See Section stop()

start(boolean)

Signature
public void
start(boolean disabled)
throws IllegalStateException

Description

Start this Happening, but leave it in the disabled state. When fired before being
enabled, it does not dispatch its handlers.

Parameters
disabled true for starting in a disabled state.

Throws
IllegalStateException when this Happening has already been started.

See Section stop()

stop

Signature
public boolean
stop()
throws IllegalStateException

Description

Stop this happening from responding to the fire and trigger methods.

Throws
IllegalStateException when this Happening is not active.

Returns
true when this is in the enabled state false otherwise.

RTSJ 2.0 (Draft 48) 663

12 Devices and Triggering Happening

isActive

Signature
public boolean
isActive()

Description
Determine the activation state of this happening, i.e., it has been started.

Returns
true when active, false otherwise.

isRunning

Signature
public boolean
isRunning()

Description
Determine whether or not this Happening is both active an enabled.

Returns
true when this Happening is both active and enabled, false otherwise.

trigger

Signature
public void
trigger()

Description
Causes the event dispatcher associated with this to be scheduled for execution.
The implementation should be simple enough so that it can be done in the context
of an InterruptServiceRoutine.handle99 method.

This method must execute in constant time.

99Section 12.3.2.5.2

664 RTSJ 2.0 (Draft 48)

HappeningDispatcher javax.realtime.device 12.3

getDispatcher

Signature
public javax.realtime.device.HappeningDispatcher
getDispatcher()

Description
Obtain the dispatcher for this.

Returns
that dispatcher.

12.3.2.4 HappeningDispatcher

Inheritance
java.lang.Object
javax.realtime.ActiveEventDispatcher<HappeningDispatcher, Happening>
HappeningDispatcher

Description
This class provides a means of dispatching a set of Happening100.

12.3.2.4.1 Constructors

HappeningDispatcher(SchedulingParameters, SchedulingGroup)

Signature
public
HappeningDispatcher(SchedulingParameters schedule,

SchedulingGroup group)

Description
Create a new dispatcher, whose dispatching thread runs with the given scheduling
parameters.

100Section 12.3.2.3

RTSJ 2.0 (Draft 48) 665

12 Devices and Triggering HappeningDispatcher

Parameters
schedule give the parameters for scheduling this dispatcher

HappeningDispatcher(SchedulingParameters)

Signature
public
HappeningDispatcher(SchedulingParameters schedule)

Description
Create a new dispatcher, whose dispatching thread runs with the given scheduling
parameters.

Parameters
schedule give the parameters for scheduling this dispatcher

12.3.2.4.2 Methods

register(Happening)

Signature
public synchronized void
register(Happening happening)
throws RegistrationException,

IllegalStateException,
IllegalArgumentException

Description
Register a Happening101 with this dispatcher.

Parameters
happening to register

Throws
RegistrationException when happening is already registered.
IllegalStateException when this object has been destroyed.
IllegalArgumentException when happening is not stopped.

101Section 12.3.2.3

666 RTSJ 2.0 (Draft 48)

InterruptServiceRoutine javax.realtime.device 12.3

deregister(Happening)

Signature
public synchronized void
deregister(Happening happening)
throws DeregistrationException,

IllegalStateException,
IllegalArgumentException

Description
Unregister a Happening102 from this dispatcher.

Parameters
happening to unregister

Throws
DeregistrationException when happening is not already registered.
IllegalStateException when this object has been destroyed.
IllegalArgumentException when happening is not stopped.

destroy

Signature
public void
destroy()
throws IllegalStateException

Description
Release all reasources thereby making the dispatcher unusable.

Throws
IllegalStateException when called on a dispatcher that has one or more registered

Happening103 objects.

12.3.2.5 InterruptServiceRoutine

Inheritance
102Section 12.3.2.3
103Section 12.3.2.3

RTSJ 2.0 (Draft 48) 667

12 Devices and Triggering InterruptServiceRoutine

java.lang.Object
InterruptServiceRoutine

Interfaces
javax.realtime.RealtimeExecutionContext

Description
A class for defining a first level interrupt handler. The implementation must
override the handle104 method to provide the code to be run when an interrupt
occurs. This class must always be present in the Device module, but may do
nothing in a context that does not provide direct access to interrupts, e.g., in user
space on an operating system that does not support user space device drivers.

12.3.2.5.1 Constructors

InterruptServiceRoutine(MemoryArea)

Signature
public
InterruptServiceRoutine(MemoryArea area)
throws NullPointerException,

IllegalArgumentException

Description
Create an interrupt service routine with a particular memory area.

Parameters
area the allocation context in which the handle105 method runs.

Throws
NullPointerException when area is null.
IllegalArgumentException when area is a memory are that cannot be accessed from

an ISR.

12.3.2.5.2 Methods

104Section 12.3.2.5.2
105Section 12.3.2.5.2

668 RTSJ 2.0 (Draft 48)

InterruptServiceRoutine javax.realtime.device 12.3

validInterruptIds

Signature
public static int[]
validInterruptIds()

Description
Determine which interrupt identifiers are valid.

Returns
an ordered array of integers representing the valid interrupts in the system. On a

machine that does not support any interrupts, a zero length array is returned.

getHandler(int)

Signature
public static javax.realtime.device.InterruptServiceRoutine
getHandler(int interrupt)

Description
Find the InterruptServiceRoutine that is handling a given interrupt.

Parameters
interrupt for which to find the InterruptServiceRoutine

Returns
the InterruptServiceRoutine registered to the given interrupt. Null is returned when

nothing is registered for that interrupt.

getMaximumInterruptPriority

Signature
public static int
getMaximumInterruptPriority()

Description
Retrieve the maximum interrupt priority. It must be greater than or equal to the
result of getMinimumInterruptPriority106.

Returns
the maximum interrupt priority.
106Section 12.3.2.5.2

RTSJ 2.0 (Draft 48) 669

12 Devices and Triggering InterruptServiceRoutine

getMinimumInterruptPriority

Signature
public static int
getMinimumInterruptPriority()

Description
Retrieve the minimum interrupt priority. It must be higher than all other priorities
provided by the system.

Returns
the minimum interrupt priority.

getInterruptPriority(int)

Signature
public static int
getInterruptPriority(int interruptId)
throws IllegalArgumentException

Description
Get the interrupt priority of a given interrupt.

Throws
IllegalArgumentException when there is no interrupt corresponding to interruptId

Returns
the priority at which the handle107 method is involked. The returned value is always

greater than javax.realtime.PriorityScheduler.getMaxPriority()108.

isRegistered

Signature
public final boolean
isRegistered()

Description
A predicate for the registration state.

107Section 12.3.2.5.2
108Section 6.3.3.8.3

670 RTSJ 2.0 (Draft 48)

InterruptServiceRoutine javax.realtime.device 12.3

Returns
true when registered, otherwise false.

register(int)

Signature
public void
register(int interrupt)
throws RegistrationException

Description
Register this interrupt service routine with the system so that it can be triggered.

Parameters
interrupt a system dependent identifier for the interrupt.

Throws
RegistrationException when this is already registered or some other InterruptSer-

viceRoutine109 is registered for interrupt.

unregister

Signature
public void
unregister()
throws DeregistrationException

Description
Deregister this interrupt service routine with the system so that it can no longer
be triggered.

Throws
DeregistrationException when this interrupt service routine is not registered.

handle

Signature
109Section 12.3.2.5

RTSJ 2.0 (Draft 48) 671

12 Devices and Triggering RawMemoryFactory

protected abstract void
handle()

Description
The code to execute for first level interrupt handling. A subclass defines this to
give the required behavior. RawMemory110 classes may be used to access the
associated device registers and a Happening111 may be triggered for second level
interrupt handling.

The code used to implement this method should not block itself or induce a
context switch, e.g., sleeping or perform I/O. Only spin waits may be used. The
effects of unbounded blocking and inducing a context switch here are undefined
and could result in a deadlock. Object.notify() and Object.notifyAll() may be
called, but Object.wait() should not be called. This dictates that all monitors
attempted to be acquired in the interrupt context (i.e., in code called from this
handle() method) must use the priority ceiling emulation protocol and must have
a configured priority at least as high as the triggering interrupt. The result of an
attempt to acquire a monitor of any other configuration is undefined.

Unless the overridden method is synchronized, the infrastructure shall provide
no synchronization for the execution of this method. Synchronization always uses
priority ceiling emulation, where the default ceiling priority is getMaximumInter-
ruptPriority()112. The ceiling priority may not be less than getMinimumInter-
ruptPriority()113.

When a memory area is provided, that memory is entered before this method
is invoked and exited after it returns. When no memory area is provided, the
method may not allocate.

12.3.2.6 RawMemoryFactory

Inheritance
java.lang.Object
RawMemoryFactory

Description
This class is the hub of a system that constructs special purpose objects to access
particular types and ranges of raw memory. This facility is supported by the

110Section 12.3.1.17
111Section 12.3.2.3
112Section 12.3.2.5.2
113Section 12.3.2.5.2

672 RTSJ 2.0 (Draft 48)

RawMemoryFactory javax.realtime.device 12.3

register(RawMemoryRegionFactory)114 methods. An application developer can
use this method to add support for additional memory regions.

Each create method returns an object of the corresponding type, e.g., the
createRawByte(RawMemoryRegion, long, int, int)115 method returns a reference
to an object that implements the RawByte116 interface and supports access to the
requested type of memory and address range. Each create method is permitted
to optimize error checking and access based on the requested memory type and
address range.

The usage pattern for raw memory, assuming the necessary factory has been
registered, is illustrated by this example.

// Get an accessor object that can access memory starting at
// baseAddress, for size bytes.
RawInt memory =

RawMemoryFactory.createRawInt(RawMemoryFactory.MEMORY_MAPPED_REGION,
address, count, stride, false);

// Use the accessor to load from and store to raw memory.
int loadedData = memory.getInt(someOffset);
memory.setInt(otherOffset, intVal);

When an application needs to access a class of memory that is not already
supported by a registered factory, the developer must implement and register
a factory that implements the RawMemoryRegionFactory117) which can create
objects to access memory in that region.

A raw memory region factory is identified by a RawMemoryRegion118 that
is used by each create method, e.g., createRawByte(RawMemoryRegion, long,
int, int)119, to locate the appropriate factory. The name is provided to regis-
ter(RawMemoryRegionFactory)120 through the factory’s RawMemoryRegionFactory.
getName121 method.

The register(RawMemoryRegionFactory)122 method is only used when by
application code when it needs to add support for a new type of raw memory.

Whether a give offset addresses a high-order or low-order byte of an aligned

114Section 12.3.2.6.3
115Section 12.3.2.6.3
116Section 12.3.1.2
117Section 12.3.1.18
118Section 12.3.2.7
119Section 12.3.2.6.3
120Section 12.3.2.6.3
121Section 12.3.1.18.1
122Section 12.3.2.6.3

RTSJ 2.0 (Draft 48) 673

12 Devices and Triggering RawMemoryFactory

short in memory is determined by the value of the javax.realtime.RealtimeSystem.
BYTE_ORDER123 static byte variable in class javax.realtime.RealtimeSystem124,
the start address of the object, and the offset given the stride of the object.
Regardless of the byte ordering, accessor methods continue to select bytes starting
at offset from the base address and continuing toward greater addresses.

A raw memory region cannot contain references to Java objects. Such a
capability would be unsafe (since it could be used to defeat Java’s type checking)
and error prone (since it is sensitive to the specific representational choices made
by the Java compiler).

Atomic loads and stores on raw memory are defined in terms of physical
memory. This memory may be accessible to threads outside the JVM and to non-
programmed access (e.g., DMA). Consequently, atomic access must be supported
by hardware. This specification is written with the assumption that all suitable
hardware platforms support atomic loads from raw memory for aligned bytes,
shorts, and ints. Atomic access beyond the specified minimum may be supported
by the implementation.

Storing values into raw memory is more hardware-dependent than loading
values. Many processor architectures do not support atomic stores of variables
except for aligned stores of the processor’s word size. For instance, storing a byte
into memory might require reading a 32-bit quantity into a processor register,
updating the register to reflect the new byte value, then restoring the whole
32-bit quantity. Changes to other bytes in the 32-bit quantity that take place
between the load and the store are lost.

Some processors have mechanisms that can be used to implement an atomic
store of a byte, but those mechanisms are often slow and not universally supported.

This class need not support unaligned access to data; but if it does, it is not
require the implementation to make such access atomic. Accesses to data aligned
on its natural boundary will be atomic if the processor implements atomic loads
and stores of that data size.

Except where noted, accesses to raw memory are not atomic with respect to
the memory or with respect to schedulable objects. A raw memory region could
be updated by another schedulable object, or even unmapped in the middle of
an access method, or even removed mid method.

The characteristics of raw-memory access are necessarily platform dependent.
This specification provides a minimum requirement for the RTSJ platform, but
it also supports optional system properties that identify a platform’s level of
support for atomic raw put and get. The properties represent a four-dimensional
sparse array of access type, data type, alignment, and atomicity with boolean

123Section 14.2.2.5.1
124Section 14.2.2.5

674 RTSJ 2.0 (Draft 48)

RawMemoryFactory javax.realtime.device 12.3

values indicating whether that combination of access attributes is atomic. The
default value for array entries is false. The dimension are

Table 12.1: Properties Array
Attribute Values Comment

Access type read, write

Data type byte, short, int,
long, float, double

Alignment 0 aligned
1 to one less than
data type size

the first byte of the data is alignment
bytes away from natural alignment.

Atomicity
processor means access is atomic with respect

to other taska on processor.
smp means access is processor atomic,

and atomic with respect to all pro-
cessors in an SMP.

memory means that access is smp atomic,
and atomic with respect to all access
to the memory including DMA.

The true values in the table are represented by properties of the following form.
javax.realtime.atomicaccess_<access>_<type>_<alignment>_atomicity=true
for example,

javax.realtime.atomicaccess_read_byte_0_memory=true
Table entries with a value of false may be explicitly represented, but since false

is the default value, such properties are redundant.
All raw memory access is treated as volatile, and serialized. The infrastructure

must be forced to read memory or write to memory on each call to a raw memory
objects’s getter or setter method, and to complete the reads and writes in the
order they appear in the program order.

Available since RTSJ 2.0

12.3.2.6.1 Fields

RTSJ 2.0 (Draft 48) 675

12 Devices and Triggering RawMemoryFactory

MEMORY_MAPPED_REGION

public static final MEMORY_MAPPED_REGION

Description

This raw memory region is predefined for request access to memory mapped I/O
devices.

IO_PORT_MAPPED_REGION

public static final IO_PORT_MAPPED_REGION

Description

This raw memory region is predefined for access to I/O device space implemented
by processor instructions, such as the x86 in and out instructions.

12.3.2.6.2 Constructors

RawMemoryFactory

Signature
public
RawMemoryFactory()

Description

Create an empty factory. For a factory with support for the platform defined
regions, use getDefaultFactory125 instead.

12.3.2.6.3 Methods

125Section 12.3.2.6.3

676 RTSJ 2.0 (Draft 48)

RawMemoryFactory javax.realtime.device 12.3

getDefaultFactory

Signature
public static javax.realtime.device.RawMemoryFactory
getDefaultFactory()

Description
Get the factory with support for the platform defined regions.

Returns
the platform defined factory

register(RawMemoryRegionFactory)

Signature
public void
register(RawMemoryRegionFactory factory)
throws RegistrationException

Description
Add support for a new memory region

Parameters
factory is the RawMemoryRegionFactory126 to use for creating RawMemory127

objects for the RawMemoryRegion128s it makes available.
Throws
RegistrationException when the factory already is already registered.

deregister(RawMemoryRegionFactory)

Signature
public void
deregister(RawMemoryRegionFactory factory)
throws DeregistrationException

Description
Remove support for a new memory region

126Section 12.3.1.18
127Section 12.3.1.17
128Section 12.3.2.7

RTSJ 2.0 (Draft 48) 677

12 Devices and Triggering RawMemoryFactory

Parameters
factory is the RawMemoryRegionFactory129 to make unavailable.

Throws
RegistrationException when the factory is not registered.

createRawByte(RawMemoryRegion, long, int, int)

Signature
public javax.realtime.device.RawByte
createRawByte(RawMemoryRegion region,

long base,
int count,
int stride)

throws SecurityException,
OffsetOutOfBoundsException,
SizeOutOfBoundsException,
MemoryTypeConflictException,
UnsupportedRawMemoryRegionException

Description
Create an instance of a class that implements RawByte130 and accesses memory
of region in the address range described by base, stride, and count. The actual
extent of the memory addressed by the object is stride ∗ size of RawByte ∗ count.
The object is allocated in the current memory area of the calling thread.

Parameters
region The address space from which the new instance should be taken.
base The starting physical address accessible through the returned instance.
count The number of memory elements accessible through the returned instance.
stride The distance to the next element as a mulitple of element size, where 1 means

the elements are adjacent in memory.
Throws
IllegalArgumentException when base is negative, count is not greater than zero, or

stride is less than one.
SecurityException when the caller does not have permissions to access the given

memory region or the specified range of addresses.
OffsetOutOfBoundsException when base is invalid.
129Section 12.3.1.18
130Section 12.3.1.2

678 RTSJ 2.0 (Draft 48)

RawMemoryFactory javax.realtime.device 12.3

SizeOutOfBoundsException when the memory addressed by the object would extend
into an invalid range of memory.

MemoryTypeConflictException when base does not point to a memory that matches
the type served by this factory.

Returns
an object that implements RawByte131 and supports access to the specified range

in the memory region.

createRawByteReader(RawMemoryRegion, long, int, int)

Signature
public javax.realtime.device.RawByteReader
createRawByteReader(RawMemoryRegion region,

long base,
int count,
int stride)

throws SecurityException,
OffsetOutOfBoundsException,
SizeOutOfBoundsException,
MemoryTypeConflictException,
UnsupportedRawMemoryRegionException

Description
Create an instance of a class that implements RawByteReader132 and accesses
memory of region in the address range described by base, stride, and count.
The actual extent of the memory addressed by the object is stride ∗ size of
RawByteReader ∗ count. The object is allocated in the current memory area of
the calling thread.

Parameters
region The address space from which the new instance should be taken.
base The starting physical address accessible through the returned instance.
count The number of memory elements accessible through the returned instance.
stride The distance to the next element as a mulitple of element size, where 1 means

the elements are adjacent in memory.
Throws

131Section 12.3.1.2
132Section 12.3.1.3

RTSJ 2.0 (Draft 48) 679

12 Devices and Triggering RawMemoryFactory

IllegalArgumentException when base is negative, count is not greater than zero, or
stride is less than one.

SecurityException when the caller does not have permissions to access the given
memory region or the specified range of addresses.

OffsetOutOfBoundsException when base is invalid.
SizeOutOfBoundsException when the memory addressed by the object would extend

into an invalid range of memory.
MemoryTypeConflictException when base does not point to a memory that matches

the type served by this factory.
Returns
an object that implements RawByteReader133 and supports access to the specified

range in the memory region.

createRawByteWriter(RawMemoryRegion, long, int, int)

Signature
public javax.realtime.device.RawByteWriter
createRawByteWriter(RawMemoryRegion region,

long base,
int count,
int stride)

throws SecurityException,
OffsetOutOfBoundsException,
SizeOutOfBoundsException,
MemoryTypeConflictException,
UnsupportedRawMemoryRegionException

Description
Create an instance of a class that implements RawByteWriter134 and accesses
memory of region in the address range described by base, stride, and count.
The actual extent of the memory addressed by the object is stride ∗ size of
RawByteWriter ∗ count. The object is allocated in the current memory area of
the calling thread.

Parameters
region The address space from which the new instance should be taken.
base The starting physical address accessible through the returned instance.
133Section 12.3.1.3
134Section 12.3.1.4

680 RTSJ 2.0 (Draft 48)

RawMemoryFactory javax.realtime.device 12.3

count The number of memory elements accessible through the returned instance.
stride The distance to the next element as a mulitple of element size, where 1 means

the elements are adjacent in memory.
Throws
IllegalArgumentException when base is negative, count is not greater than zero, or

stride is less than one.
SecurityException when the caller does not have permissions to access the given

memory region or the specified range of addresses.
OffsetOutOfBoundsException when base is invalid.
SizeOutOfBoundsException when the memory addressed by the object would extend

into an invalid range of memory.
MemoryTypeConflictException when base does not point to a memory that matches

the type served by this factory.

Returns
an object that implements RawByteWriter135 and supports access to the specified

range in the memory region.

createRawShort(RawMemoryRegion, long, int, int)

Signature
public javax.realtime.device.RawShort
createRawShort(RawMemoryRegion region,

long base,
int count,
int stride)

throws SecurityException,
OffsetOutOfBoundsException,
SizeOutOfBoundsException,
MemoryTypeConflictException,
UnsupportedRawMemoryRegionException

Description
Create an instance of a class that implements RawShort136 and accesses memory
of region in the address range described by base, stride, and count. The actual
extent of the memory addressed by the object is stride ∗ size of RawShort ∗
count. The object is allocated in the current memory area of the calling thread.

135Section 12.3.1.4
136Section 12.3.1.19

RTSJ 2.0 (Draft 48) 681

12 Devices and Triggering RawMemoryFactory

Parameters
region The address space from which the new instance should be taken.
base The starting physical address accessible through the returned instance.
count The number of memory elements accessible through the returned instance.
stride The distance to the next element as a mulitple of element size, where 1 means

the elements are adjacent in memory.
Throws
IllegalArgumentException when base is negative, count is not greater than zero, or

stride is less than one.
SecurityException when the caller does not have permissions to access the given

memory region or the specified range of addresses.
OffsetOutOfBoundsException when base is invalid.
SizeOutOfBoundsException when the memory addressed by the object would extend

into an invalid range of memory.
MemoryTypeConflictException when base does not point to a memory that matches

the type served by this factory.
Returns
an object that implements RawShort137 and supports access to the specified range

in the memory region.

createRawShortReader(RawMemoryRegion, long, int, int)

Signature
public javax.realtime.device.RawShortReader
createRawShortReader(RawMemoryRegion region,

long base,
int count,
int stride)

throws SecurityException,
OffsetOutOfBoundsException,
SizeOutOfBoundsException,
MemoryTypeConflictException,
UnsupportedRawMemoryRegionException

Description
Create an instance of a class that implements RawShortReader138 and accesses

137Section 12.3.1.19
138Section 12.3.1.20

682 RTSJ 2.0 (Draft 48)

RawMemoryFactory javax.realtime.device 12.3

memory of region in the address range described by base, stride, and count.
The actual extent of the memory addressed by the object is stride ∗ size of
RawShortReader ∗ count. The object is allocated in the current memory area of
the calling thread.

Parameters
region The address space from which the new instance should be taken.
base The starting physical address accessible through the returned instance.
count The number of memory elements accessible through the returned instance.
stride The distance to the next element as a mulitple of element size, where 1 means

the elements are adjacent in memory.
Throws
IllegalArgumentException when base is negative, count is not greater than zero, or

stride is less than one.
SecurityException when the caller does not have permissions to access the given

memory region or the specified range of addresses.
OffsetOutOfBoundsException when base is invalid.
SizeOutOfBoundsException when the memory addressed by the object would extend

into an invalid range of memory.
MemoryTypeConflictException when base does not point to a memory that matches

the type served by this factory.

Returns
an object that implements RawShortReader139 and supports access to the specified

range in the memory region.

createRawShortWriter(RawMemoryRegion, long, int, int)

Signature
public javax.realtime.device.RawShortWriter
createRawShortWriter(RawMemoryRegion region,

long base,
int count,
int stride)

throws SecurityException,
OffsetOutOfBoundsException,
SizeOutOfBoundsException,
MemoryTypeConflictException,

139Section 12.3.1.20

RTSJ 2.0 (Draft 48) 683

12 Devices and Triggering RawMemoryFactory

UnsupportedRawMemoryRegionException

Description
Create an instance of a class that implements RawShortWriter140 and accesses
memory of region in the address range described by base, stride, and count.
The actual extent of the memory addressed by the object is stride ∗ size of
RawShortWriter ∗ count. The object is allocated in the current memory area of
the calling thread.

Parameters
region The address space from which the new instance should be taken.
base The starting physical address accessible through the returned instance.
count The number of memory elements accessible through the returned instance.
stride The distance to the next element as a mulitple of element size, where 1 means

the elements are adjacent in memory.
Throws
IllegalArgumentException when base is negative, count is not greater than zero, or

stride is less than one.
SecurityException when the caller does not have permissions to access the given

memory region or the specified range of addresses.
OffsetOutOfBoundsException when base is invalid.
SizeOutOfBoundsException when the memory addressed by the object would extend

into an invalid range of memory.
MemoryTypeConflictException when base does not point to a memory that matches

the type served by this factory.

Returns
an object that implements RawShortWriter141 and supports access to the specified

range in the memory region.

createRawInt(RawMemoryRegion, long, int, int)

Signature
public javax.realtime.device.RawInt
createRawInt(RawMemoryRegion region,

long base,
int count,

140Section 12.3.1.21
141Section 12.3.1.21

684 RTSJ 2.0 (Draft 48)

RawMemoryFactory javax.realtime.device 12.3

int stride)
throws SecurityException,

OffsetOutOfBoundsException,
SizeOutOfBoundsException,
MemoryTypeConflictException,
UnsupportedRawMemoryRegionException

Description
Create an instance of a class that implements RawInt142 and accesses memory
of region in the address range described by base, stride, and count. The actual
extent of the memory addressed by the object is stride ∗ size of RawInt ∗ count.
The object is allocated in the current memory area of the calling thread.

Parameters
region The address space from which the new instance should be taken.
base The starting physical address accessible through the returned instance.
count The number of memory elements accessible through the returned instance.
stride The distance to the next element as a mulitple of element size, where 1 means

the elements are adjacent in memory.
Throws
IllegalArgumentException when base is negative, count is not greater than zero, or

stride is less than one.
SecurityException when the caller does not have permissions to access the given

memory region or the specified range of addresses.
OffsetOutOfBoundsException when base is invalid.
SizeOutOfBoundsException when the memory addressed by the object would extend

into an invalid range of memory.
MemoryTypeConflictException when base does not point to a memory that matches

the type served by this factory.

Returns
an object that implements RawInt143 and supports access to the specified range in

the memory region.

createRawIntReader(RawMemoryRegion, long, int, int)

Signature
142Section 12.3.1.11
143Section 12.3.1.11

RTSJ 2.0 (Draft 48) 685

12 Devices and Triggering RawMemoryFactory

public javax.realtime.device.RawIntReader
createRawIntReader(RawMemoryRegion region,

long base,
int count,
int stride)

throws SecurityException,
OffsetOutOfBoundsException,
SizeOutOfBoundsException,
MemoryTypeConflictException,
UnsupportedRawMemoryRegionException

Description
Create an instance of a class that implements RawIntReader144 and accesses
memory of region in the address range described by base, stride, and count.
The actual extent of the memory addressed by the object is stride ∗ size of
RawIntReader ∗ count. The object is allocated in the current memory area of
the calling thread.

Parameters
region The address space from which the new instance should be taken.
base The starting physical address accessible through the returned instance.
count The number of memory elements accessible through the returned instance.
stride The distance to the next element as a mulitple of element size, where 1 means

the elements are adjacent in memory.
Throws
IllegalArgumentException when base is negative, count is not greater than zero, or

stride is less than one.
SecurityException when the caller does not have permissions to access the given

memory region or the specified range of addresses.
OffsetOutOfBoundsException when base is invalid.
SizeOutOfBoundsException when the memory addressed by the object would extend

into an invalid range of memory.
MemoryTypeConflictException when base does not point to a memory that matches

the type served by this factory.
Returns
an object that implements RawIntReader145 and supports access to the specified

range in the memory region.

144Section 12.3.1.12
145Section 12.3.1.12

686 RTSJ 2.0 (Draft 48)

RawMemoryFactory javax.realtime.device 12.3

createRawIntWriter(RawMemoryRegion, long, int, int)

Signature
public javax.realtime.device.RawIntWriter
createRawIntWriter(RawMemoryRegion region,

long base,
int count,
int stride)

throws SecurityException,
OffsetOutOfBoundsException,
SizeOutOfBoundsException,
MemoryTypeConflictException,
UnsupportedRawMemoryRegionException

Description
Create an instance of a class that implements RawIntWriter146 and accesses
memory of region in the address range described by base, stride, and count.
The actual extent of the memory addressed by the object is stride ∗ size of
RawIntWriter ∗ count. The object is allocated in the current memory area of the
calling thread.

Parameters
region The address space from which the new instance should be taken.
base The starting physical address accessible through the returned instance.
count The number of memory elements accessible through the returned instance.
stride The distance to the next element as a mulitple of element size, where 1 means

the elements are adjacent in memory.
Throws
IllegalArgumentException when base is negative, count is not greater than zero, or

stride is less than one.
SecurityException when the caller does not have permissions to access the given

memory region or the specified range of addresses.
OffsetOutOfBoundsException when base is invalid.
SizeOutOfBoundsException when the memory addressed by the object would extend

into an invalid range of memory.
MemoryTypeConflictException when base does not point to a memory that matches

the type served by this factory.
Returns

146Section 12.3.1.13

RTSJ 2.0 (Draft 48) 687

12 Devices and Triggering RawMemoryFactory

an object that implements RawIntWriter147 and supports access to the specified
range in the memory region.

createRawLong(RawMemoryRegion, long, int, int)

Signature
public javax.realtime.device.RawLong
createRawLong(RawMemoryRegion region,

long base,
int count,
int stride)

throws SecurityException,
OffsetOutOfBoundsException,
SizeOutOfBoundsException,
MemoryTypeConflictException,
UnsupportedRawMemoryRegionException

Description
Create an instance of a class that implements RawLong148 and accesses memory
of region in the address range described by base, stride, and count. The actual
extent of the memory addressed by the object is stride ∗ size of RawLong ∗ count.
The object is allocated in the current memory area of the calling thread.

Parameters
region The address space from which the new instance should be taken.
base The starting physical address accessible through the returned instance.
count The number of memory elements accessible through the returned instance.
stride The distance to the next element as a mulitple of element size, where 1 means

the elements are adjacent in memory.
Throws
IllegalArgumentException when base is negative, count is not greater than zero, or

stride is less than one.
SecurityException when the caller does not have permissions to access the given

memory region or the specified range of addresses.
OffsetOutOfBoundsException when base is invalid.
SizeOutOfBoundsException when the memory addressed by the object would extend

into an invalid range of memory.
147Section 12.3.1.13
148Section 12.3.1.14

688 RTSJ 2.0 (Draft 48)

RawMemoryFactory javax.realtime.device 12.3

MemoryTypeConflictException when base does not point to a memory that matches
the type served by this factory.

Returns
an object that implements RawLong149 and supports access to the specified range

in the memory region.

createRawLongReader(RawMemoryRegion, long, int, int)

Signature
public javax.realtime.device.RawLongReader
createRawLongReader(RawMemoryRegion region,

long base,
int count,
int stride)

throws SecurityException,
OffsetOutOfBoundsException,
SizeOutOfBoundsException,
MemoryTypeConflictException,
UnsupportedRawMemoryRegionException

Description
Create an instance of a class that implements RawLongReader150 and accesses
memory of region in the address range described by base, stride, and count.
The actual extent of the memory addressed by the object is stride ∗ size of
RawLongReader ∗ count. The object is allocated in the current memory area of
the calling thread.

Parameters
region The address space from which the new instance should be taken.
base The starting physical address accessible through the returned instance.
count The number of memory elements accessible through the returned instance.
stride The distance to the next element as a mulitple of element size, where 1 means

the elements are adjacent in memory.
Throws
IllegalArgumentException when base is negative, count is not greater than zero, or

stride is less than one.
149Section 12.3.1.14
150Section 12.3.1.15

RTSJ 2.0 (Draft 48) 689

12 Devices and Triggering RawMemoryFactory

SecurityException when the caller does not have permissions to access the given
memory region or the specified range of addresses.

OffsetOutOfBoundsException when base is invalid.
SizeOutOfBoundsException when the memory addressed by the object would extend

into an invalid range of memory.
MemoryTypeConflictException when base does not point to a memory that matches

the type served by this factory.

Returns
an object that implements RawLongReader151 and supports access to the specified

range in the memory region.

createRawLongWriter(RawMemoryRegion, long, int, int)

Signature
public javax.realtime.device.RawLongWriter
createRawLongWriter(RawMemoryRegion region,

long base,
int count,
int stride)

throws SecurityException,
OffsetOutOfBoundsException,
SizeOutOfBoundsException,
MemoryTypeConflictException,
UnsupportedRawMemoryRegionException

Description
Create an instance of a class that implements RawLongWriter152 and accesses
memory of region in the address range described by base, stride, and count.
The actual extent of the memory addressed by the object is stride ∗ size of
RawLongWriter ∗ count. The object is allocated in the current memory area of
the calling thread.

Parameters
region The address space from which the new instance should be taken.
base The starting physical address accessible through the returned instance.
count The number of memory elements accessible through the returned instance.
151Section 12.3.1.15
152Section 12.3.1.16

690 RTSJ 2.0 (Draft 48)

RawMemoryFactory javax.realtime.device 12.3

stride The distance to the next element as a mulitple of element size, where 1 means
the elements are adjacent in memory.

Throws
IllegalArgumentException when base is negative, count is not greater than zero, or

stride is less than one.
SecurityException when the caller does not have permissions to access the given

memory region or the specified range of addresses.
OffsetOutOfBoundsException when base is invalid.
SizeOutOfBoundsException when the memory addressed by the object would extend

into an invalid range of memory.
MemoryTypeConflictException when base does not point to a memory that matches

the type served by this factory.
Returns
an object that implements RawLongWriter153 and supports access to the specified

range in the memory region.

createRawFloat(RawMemoryRegion, long, int, int)

Signature
public javax.realtime.device.RawFloat
createRawFloat(RawMemoryRegion region,

long base,
int count,
int stride)

throws SecurityException,
OffsetOutOfBoundsException,
SizeOutOfBoundsException,
MemoryTypeConflictException,
UnsupportedRawMemoryRegionException

Description
Create an instance of a class that implements RawFloat154 and accesses memory
of region in the address range described by base, stride, and count. The actual
extent of the memory addressed by the object is stride ∗ size of RawFloat ∗ count.
The object is allocated in the current memory area of the calling thread.

Parameters
153Section 12.3.1.16
154Section 12.3.1.8

RTSJ 2.0 (Draft 48) 691

12 Devices and Triggering RawMemoryFactory

region The address space from which the new instance should be taken.
base The starting physical address accessible through the returned instance.
count The number of memory elements accessible through the returned instance.
stride The distance to the next element as a mulitple of element size, where 1 means

the elements are adjacent in memory.
Throws
IllegalArgumentException when base is negative, count is not greater than zero, or

stride is less than one.
SecurityException when the caller does not have permissions to access the given

memory region or the specified range of addresses.
OffsetOutOfBoundsException when base is invalid.
SizeOutOfBoundsException when the memory addressed by the object would extend

into an invalid range of memory.
MemoryTypeConflictException when base does not point to a memory that matches

the type served by this factory.
Returns
an object that implements RawFloat155 and supports access to the specified range

in the memory region.

createRawFloatReader(RawMemoryRegion, long, int, int)

Signature
public javax.realtime.device.RawFloatReader
createRawFloatReader(RawMemoryRegion region,

long base,
int count,
int stride)

throws SecurityException,
OffsetOutOfBoundsException,
SizeOutOfBoundsException,
MemoryTypeConflictException,
UnsupportedRawMemoryRegionException

Description
Create an instance of a class that implements RawFloatReader156 and accesses
memory of region in the address range described by base, stride, and count.

155Section 12.3.1.8
156Section 12.3.1.9

692 RTSJ 2.0 (Draft 48)

RawMemoryFactory javax.realtime.device 12.3

The actual extent of the memory addressed by the object is stride ∗ size of
RawFloatReader ∗ count. The object is allocated in the current memory area of
the calling thread.

Parameters
region The address space from which the new instance should be taken.
base The starting physical address accessible through the returned instance.
count The number of memory elements accessible through the returned instance.
stride The distance to the next element as a mulitple of element size, where 1 means

the elements are adjacent in memory.
Throws
IllegalArgumentException when base is negative, count is not greater than zero, or

stride is less than one.
SecurityException when the caller does not have permissions to access the given

memory region or the specified range of addresses.
OffsetOutOfBoundsException when base is invalid.
SizeOutOfBoundsException when the memory addressed by the object would extend

into an invalid range of memory.
MemoryTypeConflictException when base does not point to a memory that matches

the type served by this factory.
Returns
an object that implements RawFloatReader157 and supports access to the specified

range in the memory region.

createRawFloatWriter(RawMemoryRegion, long, int, int)

Signature
public javax.realtime.device.RawFloatWriter
createRawFloatWriter(RawMemoryRegion region,

long base,
int count,
int stride)

throws SecurityException,
OffsetOutOfBoundsException,
SizeOutOfBoundsException,
MemoryTypeConflictException,
UnsupportedRawMemoryRegionException

157Section 12.3.1.9

RTSJ 2.0 (Draft 48) 693

12 Devices and Triggering RawMemoryFactory

Description
Create an instance of a class that implements RawFloatWriter158 and accesses
memory of region in the address range described by base, stride, and count.
The actual extent of the memory addressed by the object is stride ∗ size of
RawFloatWriter ∗ count. The object is allocated in the current memory area of
the calling thread.

Parameters
region The address space from which the new instance should be taken.
base The starting physical address accessible through the returned instance.
count The number of memory elements accessible through the returned instance.
stride The distance to the next element as a mulitple of element size, where 1 means

the elements are adjacent in memory.
Throws
IllegalArgumentException when base is negative, count is not greater than zero, or

stride is less than one.
SecurityException when the caller does not have permissions to access the given

memory region or the specified range of addresses.
OffsetOutOfBoundsException when base is invalid.
SizeOutOfBoundsException when the memory addressed by the object would extend

into an invalid range of memory.
MemoryTypeConflictException when base does not point to a memory that matches

the type served by this factory.

Returns
an object that implements RawFloatWriter159 and supports access to the specified

range in the memory region.

createRawDouble(RawMemoryRegion, long, int, int)

Signature
public javax.realtime.device.RawDouble
createRawDouble(RawMemoryRegion region,

long base,
int count,
int stride)

158Section 12.3.1.10
159Section 12.3.1.10

694 RTSJ 2.0 (Draft 48)

RawMemoryFactory javax.realtime.device 12.3

throws SecurityException,
OffsetOutOfBoundsException,
SizeOutOfBoundsException,
MemoryTypeConflictException,
UnsupportedRawMemoryRegionException

Description
Create an instance of a class that implements RawDouble160 and accesses memory
of region in the address range described by base, stride, and count. The actual
extent of the memory addressed by the object is stride ∗ size of RawDouble ∗
count. The object is allocated in the current memory area of the calling thread.

Parameters
region The address space from which the new instance should be taken.
base The starting physical address accessible through the returned instance.
count The number of memory elements accessible through the returned instance.
stride The distance to the next element as a mulitple of element size, where 1 means

the elements are adjacent in memory.
Throws
IllegalArgumentException when base is negative, count is not greater than zero, or

stride is less than one.
SecurityException when the caller does not have permissions to access the given

memory region or the specified range of addresses.
OffsetOutOfBoundsException when base is invalid.
SizeOutOfBoundsException when the memory addressed by the object would extend

into an invalid range of memory.
MemoryTypeConflictException when base does not point to a memory that matches

the type served by this factory.

Returns
an object that implements RawDouble161 and supports access to the specified range

in the memory region.

createRawDoubleReader(RawMemoryRegion, long, int, int)

Signature
160Section 12.3.1.5
161Section 12.3.1.5

RTSJ 2.0 (Draft 48) 695

12 Devices and Triggering RawMemoryFactory

public javax.realtime.device.RawDoubleReader
createRawDoubleReader(RawMemoryRegion region,

long base,
int count,
int stride)

throws SecurityException,
OffsetOutOfBoundsException,
SizeOutOfBoundsException,
MemoryTypeConflictException,
UnsupportedRawMemoryRegionException

Description
Create an instance of a class that implements RawDoubleReader162 and accesses
memory of region in the address range described by base, stride, and count.
The actual extent of the memory addressed by the object is stride ∗ size of
RawDoubleReader ∗ count. The object is allocated in the current memory area
of the calling thread.

Parameters
region The address space from which the new instance should be taken.
base The starting physical address accessible through the returned instance.
count The number of memory elements accessible through the returned instance.
stride The distance to the next element as a mulitple of element size, where 1 means

the elements are adjacent in memory.
Throws
IllegalArgumentException when base is negative, count is not greater than zero, or

stride is less than one.
SecurityException when the caller does not have permissions to access the given

memory region or the specified range of addresses.
OffsetOutOfBoundsException when base is invalid.
SizeOutOfBoundsException when the memory addressed by the object would extend

into an invalid range of memory.
MemoryTypeConflictException when base does not point to a memory that matches

the type served by this factory.
Returns
an object that implements RawDoubleReader163 and supports access to the specified

range in the memory region.

162Section 12.3.1.6
163Section 12.3.1.6

696 RTSJ 2.0 (Draft 48)

RawMemoryFactory javax.realtime.device 12.3

createRawDoubleWriter(RawMemoryRegion, long, int, int)

Signature
public javax.realtime.device.RawDoubleWriter
createRawDoubleWriter(RawMemoryRegion region,

long base,
int count,
int stride)

throws SecurityException,
OffsetOutOfBoundsException,
SizeOutOfBoundsException,
MemoryTypeConflictException,
UnsupportedRawMemoryRegionException

Description
Create an instance of a class that implements RawDoubleWriter164 and accesses
memory of region in the address range described by base, stride, and count.
The actual extent of the memory addressed by the object is stride ∗ size of
RawDoubleWriter ∗ count. The object is allocated in the current memory area of
the calling thread.

Parameters
region The address space from which the new instance should be taken.
base The starting physical address accessible through the returned instance.
count The number of memory elements accessible through the returned instance.
stride The distance to the next element as a mulitple of element size, where 1 means

the elements are adjacent in memory.
Throws
IllegalArgumentException when base is negative, count is not greater than zero, or

stride is less than one.
SecurityException when the caller does not have permissions to access the given

memory region or the specified range of addresses.
OffsetOutOfBoundsException when base is invalid.
SizeOutOfBoundsException when the memory addressed by the object would extend

into an invalid range of memory.
MemoryTypeConflictException when base does not point to a memory that matches

the type served by this factory.
164Section 12.3.1.7

RTSJ 2.0 (Draft 48) 697

12 Devices and Triggering RawMemoryRegion

Returns
an object that implements RawDoubleWriter165 and supports access to the specified

range in the memory region.

12.3.2.7 RawMemoryRegion

Inheritance
java.lang.Object
RawMemoryRegion

Description
RawMemoryRegion is a class for typing raw memory regions. It is returned
by the RawMemoryRegionFactory.getRegion166 methods of the raw memory re-
gion factory classes, and it is used with methods such as RawMemoryFactory.
createRawByte(RawMemoryRegion, long, int, int)167 and RawMemoryFactory.
createRawDouble(RawMemoryRegion, long, int, int)168 methods to identify the
region from which the application wants to get an accessor instance.

Available since RTSJ 2.0

12.3.2.7.1 Methods

getRegion(String)

Signature
public static javax.realtime.device.RawMemoryRegion
getRegion(String name)

Description
Get a region type when it already exists or creates a new one.

Parameters
name of the region
165Section 12.3.1.7
166Section 12.3.1.18.1
167Section 12.3.2.6.3
168Section 12.3.2.6.3

698 RTSJ 2.0 (Draft 48)

javax.realtime.device 12.4

Returns
the region type object.

isRawMemoryRegion(String)

Signature
public static boolean
isRawMemoryRegion(String name)

Description
Ask whether or not there is a memory region type of a given name.

Parameters
name for which to search

Returns
true when there is one and false otherwise.

getName

Signature
public final java.lang.String
getName()

Description
Obtains the name of this region type.

Returns
the region types name

toString

Signature
public final java.lang.String
toString()

Description
Gets a printable representation for a Region.

Returns
the name of this memory region type.

RTSJ 2.0 (Draft 48) 699

12 Devices and Triggering

12.4 Rationale

12.4.1 Raw Memory
Raw memory in the RTSJ refers to any memory in which only objects of primitive
types can be stored; Java objects or their references cannot be stored in raw memory.
RTSJ Version 2.0 provides two categories:

1. memory that is used to access memory-mapped device registers, and
2. logical memory that can be used to access port-based device registers.

Each of these categories of memory is represented by an instance of RawMemoryRe-
gion. In addition, the application can define other regions outside these two, either
for accessing devices registers in some other address space or for other purposes, such
as emulating device access.

Java’s primitive types are partitioned into two groups: integral (short, int, long,
byte) and real (float, double) types, including arrays of each type. For integral
types, individual interfaces are also defined to facilitate greater type security during
access. Objects that support these interfaces are created by factory methods, which
again have predefined interfaces. Such objects are called accessor objects as they
encapsulates the access protocol to the raw memory.

Control over all these objects is managed by the RawMemoryFactory class that
provides a set of static methods, as shown in Figure 12.5. There are two groups of
methods, those that

1. enable a factory to be registered, and
2. request the creation of accessor object for a particular memory type at a

particular address.
The latter consists of methods to create Java-primitive-type accessor objets, which
will throw exceptions if the appropriate addresses are not on correct boundaries to
enable the underlying machine instructions to be used without causing hardware
exceptions (e.g., createRawByteReader).

As with interrupt handling, some realtime JVMs may not be able to support all of
the memory categories. However, the expectation is that for all supported categories,
they will also provide and register the associated factories for object creation.

For the case of IO_PORT_MAPPED raw memory, the accessor objects will
need to arrange to execute the appropriate machine instructions to access the device
registers.

Consider, the simple case where a device has a two device registers: a control/sta-
tus register that is a 32 bits integer, and a data register that is a 64 bits long. The reg-
isters have been memory mapped to locations: 0x20 and 0x24 respectively. Assuming

700 RTSJ 2.0 (Draft 48)

Rationale 12.4

Figure 12.5: Creating Raw Memory Accessors

javax.realtime::RawMemoryRegion
RawMemoryRegion(String name)
+toString(): String

javax.realtime::RawMemoryFactory
+getDefaultFactory(): RawMemoryFactory
+register(RawMemoryRegionFactory creator)
+createRawLong(RawMemoryRegion type, long base, int size, int stride): RawLong
+createRawInt(RawMemoryRegion type, long base, int size, int stride): RawInt
+createRawShort(RawMemoryRegion type, long base, int size, int stride): RawShort
+createRawByte(RawMemoryRegion type, long base, int size, int stride): RawByte
+createRawFloat(RawMemoryRegion type, long base, int size, int stride): RawFloat
+createRawDouble(RawMemoryRegion type, long base, int size, int stride): RawDouble
...

javax.realtime::RawMemoryRegionFactory
<< in te r f ace>>

+createRawLong(long base, int size, int stride): RawLong
+createRawInt(long base, int size, int stride): RawInt
+createRawShort(long base, int size, int stride): RawShort
+createRawByte(long base, int size, int stride): RawByte
+createRawFloat(long base, int size, int stride): RawFloat
+createRawDouble(long base, int size, int stride): RawDouble
...

the realtime JVM has registered a factory for the IO_MEMORY_MAPPED_REGION
raw memory name, then the following code will create the objects that facilitate the
memory access

1 RawMemoryFactory factor = RawMemoryFactory.getDefault();
2 RawInt controlReg =
3 factory.createRawInt(RawMemoryFactory.IO_MEMORY_MAPPED_REGION, 0x20);
4 RawLong dataReg =
5 factory.createRawLong(RawMemoryFactory.IO_MEMORY_MAPPED_REGION, 0x24);

The above definitions reflect the structure of the actual registers. The JVM will
check that the memory locations are on the correct boundaries and that they can
be accessed without any hardware exceptions being generated. If they cannot, the
create methods will throw an appropriate exceptions. If successfully created, all
future access to the controlReg and dataReg will be exception free. The registers

RTSJ 2.0 (Draft 48) 701

12 Devices and Triggering

can be manipulated by calling the appropriate methods, as in the following example.

1 dataReg.setLong(l);
2 // where l is of type long and is data to be sent to the device
3 controlReg.setInt(i);
4 // where i is of type int and is the command to the device

In the general case, programmers themselves may create their own memory
categories and provide associated factories (that may use the implementation-defined
factories). These factories are written in Java and are, therefore, constrained by
what the language allows them to do. Typically, they will use the JVM-supplied raw
memory types to facilitate access to a device’s external memory.

The facilities provided by the RTSJ allow an application to supports the notion
of removable memory. When this memory is inserted or removed, an asynchronous
event can be set up to fire, thereby alerting the application that the device has
become active. Of course, any removable memory has to be treated with extreme
caution. Hence, the RTSJ facilities allows it only to be accessed as a raw memory
device. An example of this will be given in Section 12.4.3.

12.4.1.1 Direct memory access

DMA requires access to memory out side of the heap. It is often crucial for perfor-
mance in embedded systems; however, it does cause problems both from a realtime
analysis perspective and from a JVM-implementation perspective. The latter is the
primary concern here.

There are a few crucial points to note about DMA and the RTSJ.
1. The RTSJ does not address issues of persistent objects; so the input and

output of Java objects to devices (other than by using the Java serialization
mechanism) is not supported.

2. The RTSJ requires that RTSJ programs can be compiled by regular Java
compilers. Different bytecode compilers (and their supporting JVM) use
different representation for objects. Java arrays (even of primitive types) are
objects, and the data they contain might not be stored in contiguous memory.

3. The package java.nio.channels provides a mechanism for I/O that was not
specifically designed for DMA, but provides an applicable pattern for it.

For these reasons, without explicit knowledge of the compiler and JVM, allowing
any DMA into any RTSJ memory area is a very dangerous action; therefore, the
RTSJ provides some special support for DMA. Unfortunately, it would be difficult to
find a general pattern to fit all DMA controllers; however, with raw memory and raw
byte buffers, one could construct a higher level API that would cover most DMA
controllers. Even so, there will always odd cases that would still not fit the general

702 RTSJ 2.0 (Draft 48)

Rationale 12.4

pattern, especially for embedded systems. For this reason, only this low level API is
provided.

The DMA interface is designed to minimize the points where actual physical
addresses are provided. If nothing else, this reduces the number of places where
security checks are needed. Actual physical addresses are only needed when a
DMARegion is created. When a DMA buffer is needed, the application developer
can draw it from one of the previously defined regions. When exact addresses are
needed for each buffer, a DMARegion can be defined for each buffer. Otherwise, a
large region can be defined for each controller and the system can manage allocation
out of these regions.

Figure 12.6: Flash memory device
Flash Memory Stick

Flash Memory Socket

12.4.2 Interrupt Handling
Handling interrupts is a necessary part of many embedded systems. Interrupt
handlers have traditionally been implemented in assembler code or C. With the
growing popularity of high-level concurrent languages, there has been interest in
better integration between the interrupt handling code and the application. Ada, for
example, allows a “protected” procedure to be called directly from an interrupt [3].

Regehr [7] defines the terms used for the core components of interrupts and their
handlers as follows.

1. Interrupt—a hardware supported asynchronous transfer of control mechanism
initiated by an event external to the processor. Control of the processor is
transferred through an interrupt vector.

2. Interrupt vector—a dedicated (or configurable) location that specifies the
location of an interrupt handler.

3. Interrupt handler—code that is reachable from the interrupt vector.
4. An interrupt controller—a peripheral device that manages interrupts for the

processor.

RTSJ 2.0 (Draft 48) 703

12 Devices and Triggering

He further identifies the following problems with programming interrupt-driven
software on single processors:

1. Stack overflow—the difficulty determining how much call-chain stack is required
to handle an interrupt. The problem is compounded if the stack is borrowed
from the currently executing thread or process.

2. Interrupt overload—the problem of ensuring that noninterrupt driven processing
is not swamped by unexpected or misbehaving interrupts.

3. Real-time analysis—the need to have appropriate schedulability analysis models
to bound the impact of interrupt handlers.

The problems above are accentuated in multiprocessor systems where interrupts
can be handled globally. Fortunately, many multiprocessor systems allow interrupts
to be bound to particular processors. For example, the ARM Cortex A9-MPCore
supports the Arm Generic Interrupt Controller169. This enables a target list of CPUs
to be specified for each hardware interrupt. Software generated interrupts can also
be sent to the list or set up to be delivered to all but the requesting CPU or only
the requesting CPU.

Regehr’s problems are all generic and can be solved irrespective of the language
used to implement the handlers. In general they can be addressed by a combination
of techniques.

1. Stack overflow—static analysis techniques can usually be used to determine
the worst-case stack usage of all interrupt handlers. If stack is borrowed from
the executing thread then this amount must be added to the worst-case stack
usage of all threads.

2. Interrupt overload—this is typically managed by aperiodic server technology
in combination with interrupt masking (see Section 13.6 of [3]).

3. Real-time analysis—again this can be catered for in modern schedulability
analysis techniques, such as response-time analysis (see Section 14.6 of [3]).

From a RTSJ perspective, the following distinctions are useful
1. The first-level interrupt handlers are the code that the platform executes in

response to the hardware interrupts (or traps). A first-level interrupt is assumed
to be executed at an execution eligibility (priority) and by a processor dictated
by the underlying platform (which may be controllable at the platform level).
On some RTSJ implementations it will not be possible to write Java code
for these handlers. Implementations that do enable Java-level handlers may
restrict the code that can be written. For example, the handler code should
not suspend itself or throw unhandled exceptions. The RTSJ 2.0 optional
InterruptServiceRoutine class supports first level interrupt handling.

2. The external event handler is the code that the JVM executes as a result of
being notified that an external event (be it an operating system signal, an ISR

169 See http://infocenter.arm.com/help/index.jsp?topic=/com.arm.doc.ddi0375a/Cegbfjhf.html

704 RTSJ 2.0 (Draft 48)

Rationale 12.4

Figure 12.7: Flash memory classes

<< In te r face>>
RawIntegralAccess

<< In te r face>>
RawIntegralAccessFactory

<< In te r face>>
RemovableMemory

<<AsyncEventHandler>>
FAController

FMRemoved: AsyncEvent

FMInserted: AsyncEvent
FlashEvent: Happening

name="FlashHappening"
<<AsyncEventHandler>>

FMSocketController

handler for

handler for

fires

fires handler
 for

or some other program) is targeted at the RTSJ application. The programmer
should be able to specify the processor affinity and execution eligibility of this
code. In RTSJ 2.0, all external events are represented by instances of the
Happening interface. Every happening has an associated dispatcher which is
responsible for the initial response to an occurrence of the event.

3. A happening dispatcher is able to find one or more associated RTSJ asyn-
chronous events and fire them. This then releases the associated asynchronous
event handlers.

12.4.3 An Illustrative Example

Consider an embedded system that has a simple flash memory device that supports
a single type of removable flash memory stick, as illustrated in Figure 12.6.

When the memory stick is inserted or removed, an interrupt is generated. This
interrupt is known to the realtime JVM. The interrupt is also generated when
operations requested on the device are completed. For simplicity, it is assumed that
the application has associated this interrupt to an happening called FlashHappening
with a default happening dispatcher.

The example illustrates how
1. a programmer can use the RTSJ facilities to write a device handler,
2. a factory class can be constructed and how the accessor objects police the

access,
3. removable memory can be handled.
The flash memory device is accessed via several associated registers, which are

shown in Table 12.2. These have all been memory mapped to the indicated locations.

RTSJ 2.0 (Draft 48) 705

12 Devices and Triggering

Table 12.2: Device registers
Register Location Bit Positions Values
Command 0x20 0 0 = Disable device, 1 = Enable device

4 0 = Disable interrupts, 1 = Enable interrupts
5-8 1 = Read byte, 2 = Write byte

3 = Read short, 4 = Write short
5 = Read int, 6 = Write int
7 = Read long, 8 = Write long

9 0 = DMA Read, 1 = DMA
31-63 Offset into flash memory

Data 0x28 0-63 Simple data or memory address if DMA
Length 0x30 0-31 Length of data transfer
Status 0x38 0 1 = Device enabled

3 1 = Interrupts enabled
4 1 = Device in error
5 1 = Transfer complete
6 1 = Memory stick present

0 = Memory stick absent
7 1 = Memory stick inserted
8 0 = Memory stick removed

12.4.3.1 Software architecture

There are many ways in which the software architecture for the example could be
constructed. Here, for simplicity of representation, an architecture is chosen with
a minimal number of classes. It is illustrated in Figure 12.7. There are three key
components.

1. FlashHappening—This is the happening that has been associated with the
flash device’s interrupt. The RTSJ will provide a default dispatcher, which will
release any associated handler when the interrupt occurs and the happening is
triggered.

2. FMSocketController—This is the object that encapsulates the access to the
flash memory device. In essence, it is the device driver; it is also the handler
for the FlashHappening and is responsibly for firing the FMInserted and FM-
Removed asynchronous events.

3. FAController—This is the object that controls access to the flash memory, it
(a) acts as the factory for the creating objects that will facilitate access to

the flash memory itself (using the mechanisms provided by the FMSocket-
Controller),

706 RTSJ 2.0 (Draft 48)

Rationale 12.4

(b) is the asynchronous event handler that responds to the firing of the
FMInserted and FMRemoved asynchronous events, and

(c) also acts as the accessor object for the memory.

12.4.3.2 Device initialization

Figure 12.8 shows the sequence of operations that the program must perform to
initialize the flash memory device. The main steps are as follows.

Figure 12.8: Sequence diagram showing initialization operations

...

RawMemoryFactory FMEvent

Flash Memory
Inialisation

10 Set up device

FAControllerFlashEvent FMSocketController

getName

8 addHandler(FAController)
7 new

5 new
4 initDevice

3 addHandler(FMSocketController)

2 new

1 new("FlashHappening")

1 The happening (FlashEvent) associated with the flash happening must be
created.

2-3 The (FMSocketController) object is created and added as a handler for Fla-
shEvent.

4 An initialization method is called (initDevice) to perform all the operations
necessary to configure the infrastructure and initialize the hardware device.

5-6 Two new asynchronous events are created to represent insertion and removal
of the flash memory stick.

7-9 The FAController class is created. It is added as the handler for the two events
created in steps 5 and 6.

10 Setting up the device and registering the factory is shown in detail in Figure
12.9. It involves registering the FAController object via the static methods in

RTSJ 2.0 (Draft 48) 707

12 Devices and Triggering

Figure 12.9: Sequence diagrams showing operations to initialize the hardware device

statusRegAccess =

dataRegAccess =

commandRegAccess =

FAController:

Set up device

set bits to enable
the device and
 its interrupts

statusRegAccess:
RawByte

_

commandRegAccess:
RawLong

_

RawMemoryFactoryFMSocketController

Flash Memory
Initialization

getDefaultFactory

FLASH_MEMORY

getName
registerFactory
(FAController)

setLong

getLong

createRawByte
(IO_MEMORY_MAPPED, 0x38)

createRawLong
(IO_MEMORY_MAPPED, 0x28)

createRawLong
(IO_MEMORY_MAPPED, 0x20)

initDevice

the RawMemoryFactory class and creating and using the JVM-supplied factory
to access the memory-mapped I/O registers.

12.4.3.3 Responding to external happenings

In the example, interrupts are handled by the JVM, which turns them into an
external happening. The application code that indirectly responds to the happening
is provided in the handleAsyncEvent method in the FMSocketController object.
Figure 12.10 illustrates the approach. In this example, the actions in response to the
memory stick inserted and memory stick removed flash events is simply shown as
the execution of the FMInserted and FMRemoved handlers. These will inform the
application. The memory accessor classes themselves will ensure that the stick is
present when performing the required application accesses.

708 RTSJ 2.0 (Draft 48)

Rationale 12.4

Figure 12.10: The FMSocketController.handleAsync method

determine whether
stick inserted or
removed

Transfer
complete

FMEvent

see later

statusRegAccess:FMSocketController

Flash Memory
Interrupt
Handling

fire(EventType)

getByte

handleAsyncEvent

12.4.3.4 Access to the flash controller’s device registers

Figure 12.11 shows the sequence of events that the application follows. First it must
register a handler with the FMInserted asynchronous event. Here, the application
itself is an asynchronous event handler. When this is released, the memory has been
inserted.

In this simple example, the application simply reads a byte from an offset within
the memory stick. It, therefore, creates an accessor to access the data. When this
has been returned (it is the FAController itself), the application can now call the
getByte method (called FA getByte, in the following, for clarity). This method must
implement the sequence of raw memory access on the device’s registers to perform
the operation. In Figure 12.11, they are as follows.

1. FA getByte calls the getByte method of the status register’s accessor object.

RTSJ 2.0 (Draft 48) 709

12 Devices and Triggering

Figure 12.11: Application usage

FMEvent

 3. wait completion

Transfer Complete

Access the
device
register
to perform
the required
operation

dataRegAccess
_

FAController statusRegAccess
_

commandRegAccess
_

RawMemory< < A E H > >
Application

Flash
Memory
Access

handleAsyncEvent

addHandler
(This)

data

5 getByte

 4 getByte

3. notify
completion

 handleAsyncEvent

2. setLong

 1. getByte
getByte

FAController
FAController

newRawByte
(0x00,0x800)

 createRawByte
(FLASH_MEMORY,ox800)

This can check to make sure that the flash memory is present (bit 6, as shown
in Table 12.2). If it is not, an exception can be thrown.

2. Assuming the memory is present, it then sets the control register with the
offset required (bits 31–63, as shown in Table 12.2) and sets the read byte
request bit (bits 5-8, as shown in Table 12.2).

3. The FA getByte method must then wait for indication that the requested
operation has been completed by the device. This is detected by the han-
dleAsyncEvent method of the FMController, which performs the necessary
notify.

4. Once notified of completion, the FA getByte method, again reads the status
register to make sure there were no errors on the device (bit 4 in Table 12.2)
and that the memory is still present

5. The FA getLong then reads the data register to get the requested data, which
it returns.

710 RTSJ 2.0 (Draft 48)

Chapter 13

Interprocess Signalling

On many operating systems, it is possible for one process to signal another. POSIX
provides a well defined means of signalling other processes and receiving signals
from them, therefore one would like to be able to use this facility when it or a
similar mechanism is available. The POSIX module provides the means to do this.
It provides a common idiom for binding signals to instances of AsyncEventHandler.

13.1 Definitions
Signal — A notification between two system process, which may or may not contain

a data packet.
Realtime Signal — A special type of signal that carries a bit of data with it.

13.2 Semantics
The POSIX interface provides two main facilities: sending signals and receiving
signals. These are supported by a means of determining which signals are supported
on an implementation. In addition, not only stateless signals, but also signals with
data are also supported. All classes are in the javax.realtime.posix package.

13.2.1 POSIX Signals
The Signal class represents POSIX signals and is required on platforms that provide
POSIX signals. As with a Happening, it is a subclass of AsyncEvent and implements
ActiveEvent. Unlike Happening, it cannot be instantiated by the user. Instead, an
instance exists for each POSIX signal defined on the system. They can be retrieved
either by name or number using the Signal.get(int) and Signal.get(String) methods.

711

13 Interprocess Signalling

13.2.2 POSIX Realtime Signals
The RealtimeSignal class represents POSIX realtime events. It is also implements
ActiveEvent, but is a subclass of AsyncLongEvent, so that it can pass the data sent
with its signal. As with Signal, it cannot be instantiated by the user, rather an
instance exists for each POSIX signal defined on the system, which can be retrieves
either by name or number using the RealtimeSignal.get(int) and RealtimeSignal.
get(String) methods.

712 RTSJ 2.0 (Draft 48)

RealtimeSignal javax.realtime.posix 13.3

13.3 javax.realtime.posix

13.3.1 Classes
13.3.1.1 RealtimeSignal

Inheritance
java.lang.Object
javax.realtime.AsyncBaseEvent
javax.realtime.AsyncLongEvent
RealtimeSignal

Interfaces
javax.realtime.ActiveEvent

Description
A javax.realtime.ActiveEvent1 subclass for defining a POSIX realtime signal.

Available since RTSJ 2.0

13.3.1.1.1 Methods

isPOSIXRealtimeSignal(String)

Signature
public static boolean
isPOSIXRealtimeSignal(String name)

Description
Determine if a signal with a given name is registered.

Parameters
name of the signal

Returns
true when a signal with the given name is registered

1Section 8.3.1.1

RTSJ 2.0 (Draft 48) 713

13 Interprocess Signalling RealtimeSignal

getId(String)

Signature
public static int
getId(String name)

Description
Get the ID of a registered signal.

Parameters
name of the signal for which to search

Returns
the ID of the signal named by name

get(String)

Signature
public static javax.realtime.posix.RealtimeSignal
get(String name)

Description
Get the registered realtime signal with the given name.

Parameters
name of the signal to get.

Returns
the registered signal with name or null.

get(int)

Signature
public static javax.realtime.posix.RealtimeSignal
get(int id)

Description
Get the realtime signal corresponding to a given id.

Parameters
id of a registered signal

Returns
the signal corresponding to id.

714 RTSJ 2.0 (Draft 48)

RealtimeSignal javax.realtime.posix 13.3

getId

Signature
public int
getId()

Description

Get the name of this realtime signal.

Returns
the ID of this signal.

getName

Signature
public final java.lang.String
getName()

Description

Get the name of this signal.

Returns
the name of this signal.

getDispatcher

Signature
public javax.realtime.posix.RealtimeSignalDispatcher
getDispatcher()

Description

Obtain the dispatcher for this.

Returns
that dispatcher.

RTSJ 2.0 (Draft 48) 715

13 Interprocess Signalling RealtimeSignal

isActive

Signature
public boolean
isActive()

Description
Determine the activation state of this signal, i.e., it has been started.

Returns
true when active, false otherwise.

isRunning

Signature
public boolean
isRunning()

Description
Determine the firing state (releasing or skipping) of this signal, i.e., it is active
and enabled.

Returns
true when releasing, false when skipping.

start

Signature
public final synchronized void
start()
throws IllegalStateException

Description
Start this RealtimeSignal, i.e., change to a running state. A running realtime
signal is a source of activation when in a scoped memory and is a member of the
root set when in the heap. A running realtime signal can be triggered.

Throws
IllegalStateException when this RealtimeSignal has already been started.
See Section stop()

716 RTSJ 2.0 (Draft 48)

RealtimeSignal javax.realtime.posix 13.3

start(boolean)

Signature
public final synchronized void
start(boolean disabled)
throws IllegalStateException

Description
Start this RealtimeSignal, i.e., change to a running state. A running realtime
signal is a source of activation when in a scoped memory and is a member of the
root set when in the heap. A running realtime signal can be triggered.

Parameters
disabled true for starting in a disabled state.

Throws
IllegalStateException when this RealtimeSignal has already been started.

See Section stop()

stop

Signature
public final boolean
stop()
throws IllegalStateException

Description
Stop this RealtimeSignal. A stopped realtime signal ceases to be a source of
activation and no longer cause any AE attached to it to be a source of activation.

Throws
IllegalStateException when this RealtimeSignal is not running.

Returns
true when this was enabled and false otherwise.

send(long, long)

Signature

RTSJ 2.0 (Draft 48) 717

13 Interprocess Signalling RealtimeSignalDispatcher

public native boolean
send(long pid,

long payload)

Description
Send this signal to another process

Parameters
pid of the process to which to send the signal

Returns
true when signal can be sent, otherwise false.

13.3.1.2 RealtimeSignalDispatcher

Inheritance
java.lang.Object
javax.realtime.ActiveEventDispatcher<RealtimeSignalDispatcher, RealtimeSig-
nal>
RealtimeSignalDispatcher

Description
Provides a means of dispatching a set of RealtimeSignal2s. An application can
provide its own dispatcher, providing the priority for the internal dispatching
thread. This dispatching thread calls process() each time the signal is triggered.

Available since RTSJ 2.0

13.3.1.2.1 Constructors

RealtimeSignalDispatcher(SchedulingParameters, Scheduling-
Group)

Signature
2Section 13.3.1.1

718 RTSJ 2.0 (Draft 48)

RealtimeSignalDispatcher javax.realtime.posix 13.3

public
RealtimeSignalDispatcher(SchedulingParameters schedule,

SchedulingGroup group)

Description
Create a new dispatcher, whose dispatching thread runs with the given scheduling
parameters.

Parameters
schedule give the parameters for scheduling this dispatcher

RealtimeSignalDispatcher(SchedulingParameters)

Signature
public
RealtimeSignalDispatcher(SchedulingParameters schedule)

Description
Create a new dispatcher, whose dispatching thread runs with the given scheduling
parameters.

Parameters
schedule give the parameters for scheduling this dispatcher

13.3.1.2.2 Methods

register(RealtimeSignal)

Signature
public void
register(RealtimeSignal signal)
throws RegistrationException,

IllegalStateException,
IllegalArgumentException

Description
Register signal with this dispatcher.

RTSJ 2.0 (Draft 48) 719

13 Interprocess Signalling RealtimeSignalDispatcher

Parameters
signal to register

Throws
RegistrationException when signal is already registered.
IllegalStateException when this object has been destroyed.
IllegalArgumentException when signal is not stopped.

deregister(RealtimeSignal)

Signature
public void
deregister(RealtimeSignal signal)
throws DeregistrationException,

IllegalStateException,
IllegalArgumentException

Description
Deregister the signal form this dispatcher.

Parameters
signal to unregister

Throws
DeregistrationException when signal is not already registered.
IllegalStateException when this object has been destroyed.
IllegalArgumentException when signal is not stopped.

destroy

Signature
public void
destroy()
throws IllegalStateException

Description
Release all reasources thereby making the dispatcher unusable.

Throws

720 RTSJ 2.0 (Draft 48)

Signal javax.realtime.posix 13.3

IllegalStateException when called on a dispatcher that has one or more registered
RealtimeSignal3 objects.

13.3.1.3 Signal

Inheritance
java.lang.Object
javax.realtime.AsyncBaseEvent
javax.realtime.AsyncEvent
Signal

Interfaces
javax.realtime.ActiveEvent

Description

A javax.realtime.ActiveEvent4 subclass for defining a POSIX signal.

Available since RTSJ 2.0

13.3.1.3.1 Fields

MAX_NUM_SIGNALS

public static final MAX_NUM_SIGNALS

Description

this number of signals can be processed.

13.3.1.3.2 Methods

3Section 13.3.1.1
4Section 8.3.1.1

RTSJ 2.0 (Draft 48) 721

13 Interprocess Signalling Signal

isPOSIXSignal(String)

Signature
public static boolean
isPOSIXSignal(String name)

Description
Determine if a signal with a given name is registered.

Parameters
name of the signal

Returns
true when a signal with the given name is registered

getId(String)

Signature
public static int
getId(String name)

Description
Get the ID of a registered signal.

Parameters
name of the signal for which to search

Returns
the ID of the signal named by name

get(String)

Signature
public static javax.realtime.posix.Signal
get(String name)

Description
Get the registered signal with the given name.

Parameters
name of the signal to get.

Returns
the registered signal with name or null.

722 RTSJ 2.0 (Draft 48)

Signal javax.realtime.posix 13.3

get(int)

Signature
public static javax.realtime.posix.Signal
get(int id)

Description
Get the signal corresponding to a given id.

Parameters
id of a registered signal

Returns
the signal corresponding to id or null.

getProcessId

Signature
public static long
getProcessId()

Description
Obtain the OS Id of the JVM process. When running in kernel space, the result
is VM dependent and must be documented. This number returned is only usable
with Signal.send(long)5.

Returns
the OS process id.

getId

Signature
public int
getId()

Description
Get the number of this signal.

Returns
the signal number

5Section 13.3.1.3.2

RTSJ 2.0 (Draft 48) 723

13 Interprocess Signalling Signal

getName

Signature
public java.lang.String
getName()

Description

Get the name of this signal.

Returns
the name of this signal.

getDispatcher

Signature
public javax.realtime.posix.SignalDispatcher
getDispatcher()

Description

Obtain the dispatcher for this.

Returns
that dispatcher.

isActive

Signature
public boolean
isActive()

Description

Determine the activation state of this signal, i.e., it has been started.

Returns
true when active, false otherwise.

724 RTSJ 2.0 (Draft 48)

Signal javax.realtime.posix 13.3

isRunning

Signature
public boolean
isRunning()

Description
Determine the firing state (releasing or skipping) of this signal, i.e., it is active
and enabled.

Returns
true when releasing, false when skipping.

start

Signature
public void
start()
throws IllegalStateException

Description
Start this Signal, i.e., change to a running state. A running signal is a source of
activation when in a scoped memory and is a member of the root set when in the
heap. A running signal can be triggered.

Throws
IllegalStateException when this Signal has already been started.

See Section stop()

start(boolean)

Signature
public void
start(boolean disabled)
throws IllegalStateException

Description

RTSJ 2.0 (Draft 48) 725

13 Interprocess Signalling Signal

Start this Signal, i.e., change to a running state. A running signal is a source of
activation when in a scoped memory and is a member of the root set when in the
heap. A running signal can be triggered.

Parameters
disabled true for starting in a disabled state.

Throws
IllegalStateException when this Signal has already been started.
See Section stop()

stop

Signature
public boolean
stop()
throws IllegalStateException

Description
Stop this Signal. A stopped signal ceases to be a source of activation and no
longer cause any AE attached to it to be a source of activation.

Throws
IllegalStateException when this Signal is not running.

Returns
true when this was enabled and false otherwise.

send(long)

Signature
public void
send(long pid)
throws POSIXInvalidSignalException,

POSIXSignalPermissionException,
POSIXInvalidTargetException

Description
Send this signal to another process or process group.

On POSIX systems running in user space, the following holds:
• when pid is positive, the signal is sent to pid;

726 RTSJ 2.0 (Draft 48)

SignalDispatcher javax.realtime.posix 13.3

• when pid equals 0, the signal is sent to every process in the process group
of the current process;
• when pid equals -1, the signal is sent to every process for which the calling

process has permission to send signals, except for possibly OS-defined system
processes; otherwise
• when pid is less than -1, the signal is sent to every process in the process

group -pid.
POSIX.1-2001 requires the underlying mechanism of signal.send(-1) to send

signal to all processes for which the current process may signal, except possibly
for some OS-defined system processes.

For an RTVM running in kernel space, the meaning of the pid is implemen-
tation dependent, though it should be as closed to the standard definition as
possible.

Parameters
pid Id of the process to which to send the signal

Throws
POSIXInvalidSignalException when the signal number is not valid.
POSIXSignalPermissionException when the process does not have permission to

send the target.
POSIXInvalidTargetException when the target does not exist.

13.3.1.4 SignalDispatcher

Inheritance
java.lang.Object
javax.realtime.ActiveEventDispatcher<SignalDispatcher, Signal>
SignalDispatcher

Description
Provides a means of dispatching a set of Signal6s. An application can provide its
own dispatcher, providing the priority for the internal dispatching thread. This
dispatching thread calls process() each time the signal is triggered.

13.3.1.4.1 Constructors

6Section 13.3.1.3

RTSJ 2.0 (Draft 48) 727

13 Interprocess Signalling SignalDispatcher

SignalDispatcher(SchedulingParameters, SchedulingGroup)

Signature
public
SignalDispatcher(SchedulingParameters scheduling,

SchedulingGroup group)

Description
Create a new dispatcher, whose dispatching thread runs with the given scheduling
parameters.

Parameters
scheduling give the parameters for scheduling this dispatcher

SignalDispatcher(SchedulingParameters)

Signature
public
SignalDispatcher(SchedulingParameters scheduling)

Description
Create a new dispatcher, whose dispatching thread runs with the given scheduling
parameters.

Parameters
scheduling give the parameters for scheduling this dispatcher

13.3.1.4.2 Methods

register(Signal)

Signature
public synchronized void
register(Signal signal)

728 RTSJ 2.0 (Draft 48)

SignalDispatcher javax.realtime.posix 13.3

throws RegistrationException,
IllegalStateException,
IllegalArgumentException

Description
Register a POSIX signal with this dispatcher.

Parameters
signal to register

Throws
RegistrationException when signal is already registered.
IllegalStateException when this object has been destroyed.
IllegalArgumentException when signal is not stopped.

deregister(Signal)

Signature
public synchronized void
deregister(Signal signal)
throws DeregistrationException,

IllegalStateException,
IllegalArgumentException

Description
Deregister a POSIX Signal form this dispatcher. (This is a really naive imple-
mentation.)

Parameters
signal to deregister

Throws
DeregistrationException when signal not is already registered.
IllegalStateException when this object has been destroyed.
IllegalArgumentException when signal is not stopped.

destroy

Signature
public void
destroy()

RTSJ 2.0 (Draft 48) 729

13 Interprocess Signalling

throws IllegalStateException

Description
Release all reasources thereby making the dispatcher unusable.

Throws
IllegalStateException when called on a dispatcher that has one or more registered

Signal7 objects.

13.4 Rationale
POSIX is the most widely supported standard for operating systems, both con-
ventional and realtime. Providing support for sending and receiving signals as
encapsulated in the Signal and RealtimeSignal enables realtime java programs to
interact, not just with the environment, but also other processes in a system. Even
for systems that are not stictly POSIX compatible, one can implement this interface
for encapsulating similar functionality in a common API.

The signal and realtime signal classes are singletons for each underlying signal.
This provides minimum delay, but makes isolation more difficult. For OSGi and
other modular platform, this can be circumvented at a small additional cost. The
application just needs to provide a handler for each isolation group that just dispatches
to a seconday event for handlers in that group. This is the same mechanism that
can be used to emulate the deprecated AsyncEvent.bindTo.

7Section 13.3.1.3

730 RTSJ 2.0 (Draft 48)

Chapter 14

System and Options

Implementations of this specification run on many operating systems and this
specification itself supports several variants, therefore a means of querying and
handling this variation is required. For instance, though many realtime operating
systems support the POSIX standard, many do not. Even the ones that do vary in
their degree of compliance. Also, the type of garbage collection provided may also
vary from on implementation to another. The specification defines classes to help
manage these differences providing the following:
• a class that contains operations and semantics that affect the entire system;
• the security semantics required by the additional features in the entirety of

this specification, which are additional to those required by implementations
of the Java Language Specification; and
• a class that provides some basic information about the garbage collector.

14.1 Semantics
There are three classes with semantics that do not fall into other categories: Real-
timeSystem, RealtimeSecurity, and GarbageCollection. Their overall semantics is
detailed below. Thereafter, semantics applying to methods, constructors, and fields
of theses classes are provided.

14.1.1 RealtimeSystem
RealtimeSystem is a required class, which provides basic information about the
RTSJ extensions supported by the system. Via this class, a program can query the
default monitor policy, the realtime security manager, and other realtime properties
of the system. Starting from version 2.0, a program can also ask what modules are
supported. The enumeration RTSJModule supports this capability.

731

14 System and Options

14.1.2 RealtimeSecurity

The RealtimeSecurity class controls access to key realtime features. Particularly
critical is access to memory outside the heap. Core RTSJ features also have security
checks. This should enable an application to restrict the use of the RTSJ, particularly
for dynamically loaded code. Of particular concern are classes that can create or
control resources, such as creating threads, both explicitly and implicitly, controlling
scheduling and affinity, creating persistent objects, and accessing resources outside
RTSJ memory areas.

Detailed information is provided in the class documentation below.
Open issue 14.1.1 (jjh)

Look at security closely. Try to make this a Java Security Manager if possible.
Here is an initial list of methods that should have security checks.
End of issue 14.1.1
• AffinityPermission

Method Action Arguments
Affinity.applyTo control
Affinity.set control
Affinity.setProcessorAddedEvent change
Affinity.setProcessorRemovedEvent change

• TaskPermission

Method Action Arguments
ActiveEvent.start control
ActiveEvent.stop control
ActiveEventDispatcher.register dispatch
ActiveEventDispatcher.deregister dispatch
ActiveEventDispatcher.destroy dispatch
AsyncBaseEvent.enable control
AsyncBaseEvent.disable control
AsyncBaseEvent.addHandler handle
AsyncBaseEvent.removeHandler block
AsyncBaseEvent.setHandler handle & block
Timer.Timer create
RealtimeThread.RealtimeThread create
Schedulable.setDaemon create

• CoreMemoryPermission

732 RTSJ 2.0 (Draft 48)

Semantics 14.1

Method Action Arguments
MemoryArea.executeInArea enter
MemoryArea.enter enter
MemoryArea.newArray create
MemoryArea.newInstance create

• SchedulingPermission

Method Action Arguments
Scheduler.setDefaultScheduler change
PriorityScheduler.reschedule change
SchedulingGroup.setMaxEligibility limit
SchedulingGroup.setScheduler change
ProcessingGroup.ProcessingGroup limit
ProcessingGroup.setPeriod limit
ProcessingGroup.setMaximumCost limit
ProcessingGroup.setMinimumCost limit
ProcessingGroup.setCostOverrunHandler monitor
ProcessingGroup.setCostUnderrunHandler monitor
ProcessingGroup.setGranularity tune
ProcessingGroup.enforceCost enforce
MonitorControl.setMonitorControl tune
Clock.Clock create

• POSIXPermission

Method Action Arguments
RealtimeSignal.addHandler handle
RealtimeSignal.setHandler handle & block
RealtimeSignal.removeHandler block
RealtimeSignal.send send
RealtimeSignal.getDispatcher dispatch
RealtimeSignal.start control
RealtimeSignal.stop control
Signal.addHandler handle
Signal.setHandler handle & block
Signal.removeHandler block
Signal.send send
Signal.getDispatcher dispatch
Signal.start control
Signal.stop control

• PhysicalMemoryPermission

RTSJ 2.0 (Draft 48) 733

14 System and Options

Method Action Arguments
PhysicalMemoryFactory.associate associate
PhysicalMemoryFactory.createImmortalMemory physical
PhysicalMemoryFactory.createLTMemory physical
PhysicalMemoryFactory.createPinnableMemory physical
PhysicalMemoryFactory.createStackedMemory physical

• ScopedMemoryPermission

Method Action Arguments
LTMemory.LTMemory global
PinnableMemory.PinnableMemory global
StackedMemory.StackedMemory global
ScopedMemory.joinAndEnter enter

• DirectMemoryPermission

Method Action Arguments
DMABufferFactory.DMABufferFactory create

• HappeningPermission

Method Action Arguments
Happening.createId create
Happening.addHandler handle
Happening.setHandler handle & block
Happening.removeHandler block
Happening.Happening create

• RawMemoryPermission

Method Action Arguments
RawMemoryFactory.register assocate
RawMemoryFactory.deregister assocate
RawMemoryFactory.createRawByte create
RawMemoryFactory.createRawByteReader create
RawMemoryFactory.createRawByteWriter create
· · ·
RawMemoryFactory.createRawDouble create
RawMemoryFactory.createRawDoubleReader create
RawMemoryFactory.createRawDoubleWriter create

These are the original security checks:
• RealtimeSecurity.checkAEHSetDaemon
• RealtimeSecurity.checkSetMonitorControl
• RealtimeSecurity.checkCreateRealtimeThread
• RealtimeSecurity.checkCreateTimer

734 RTSJ 2.0 (Draft 48)

Semantics 14.1

• RealtimeSecurity.checkSetScheduler
• RealtimeSecurity.checkAccessPhysical
• RealtimeSecurity.checkAccessPhysicalRange

14.1.3 GarbageCollection
It is extremely difficult to characterize garbage collectors in a uniform manner. The
only information that can be provided by all collectors is the preemption latency.
Each implementation may provide its own subclass of GarbageCollector to provide
additional information, which may be queried via reflection.

14.1.4 Compliance Version
Determining the current version is supported by a system property. When an
application calls the method, System.getProperty(̈javax.realtime.version)̈, the return
value will be a string of the form, “x.y.z”. Where ‘x’ is the major version number
and ‘y’ and ‘z’ are minor version numbers. These version numbers state to which
version of the RTSJ the underlying implementation claims conformance. The first
release of the RTSJ, dated 11/2001, was numbered 1.0.0. A release conforming to
the version defined by this specification should return the string "2.0.0".

RTSJ 2.0 (Draft 48) 735

14 System and Options RTSJModule

14.2 javax.realtime

14.2.1 Enumerations
14.2.1.1 RTSJModule

Inheritance
java.lang.Object
java.lang.Enum<RTSJModule>
RTSJModule

Description
Modules an RTSJ implementation may provide.

14.2.1.1.1 Enumeration Constants

CORE

public static final CORE

Description
Indicates the presence of the core module.

DEVICE

public static final DEVICE

Description
Indicates the presence of the device access module.

MEMORY

public static final MEMORY

Description
Indicates the presence of the alternative memory areas module.

736 RTSJ 2.0 (Draft 48)

RTSJModule javax.realtime 14.2

POSIX

public static final POSIX

Description
Indicates the presence of the POSIX module.

SCJ

public static final SCJ

Description
Indicates the presence of the Safety-Critical Java module.

14.2.1.1.2 Methods

values

Signature
public static javax.realtime.RTSJModule[]
values()

Description

valueOf(String)

Signature
public static javax.realtime.RTSJModule
valueOf(String name)

Description

RTSJ 2.0 (Draft 48) 737

14 System and Options AffinityPermission

value

Signature
public int
value()

Description
Determine the nummeric value of an element of this enumeration. This value can
be used in bit sets to determine the presence of the given element.

Returns
a number with a single bit set representing this element.

in(int)

Signature
public boolean
in(int value)

Description
Given an int representing a set of enumeration elements via bit value, see whether
or not this element is contained within that set.

Parameters
value the set to test against

Returns
true when and only when value has the bit set that represents this.

14.2.2 Classes
14.2.2.1 AffinityPermission

Inheritance
java.lang.Object
java.security.Permission
java.security.BasicPermission
AffinityPermission

Description

738 RTSJ 2.0 (Draft 48)

AffinityPermission javax.realtime 14.2

The alternate memory management module provides one permission for the
security manager to use. The following table describes the actions to check. A
signal name can be given as an argument.

Action Name Description Risks of grant
control Change the affinity of

a task
An application could
interfere with critical
task by assigning too
many other tasks to
the same CPU.

change One could change the
event used to monitor
adding or removing a
processor.

An application could
prevent other task
from being notified of
a processor coming
online or going offline.

14.2.2.1.1 Constructors

AffinityPermission(String, String)

Signature
public
AffinityPermission(String argument,

String actions)

Description
Creates a new AffinityPermission object for a given action, i.e., the symbolic
name of an action. The argument string specifies additional limitations on the
action.

Parameters
argument are additional limitations to allow or * for no additional limitation.
actions the names of the actions to allow or * for all actions.

Throws

RTSJ 2.0 (Draft 48) 739

14 System and Options CoreMemoryPermission

NullPointerException when action is null.
IllegalArgumentException when action or signal is empty.

14.2.2.2 CoreMemoryPermission

Inheritance
java.lang.Object
java.security.Permission
java.security.BasicPermission
CoreMemoryPermission

Description
The alternate memory management module provides one permission for the
security manager to use. The following table describes the actions to check. A
signal name can be given as an argument.

Action Name Description Risks of grant
enter
create

The wildcard * is allowed for both signal and action.

14.2.2.2.1 Constructors

CoreMemoryPermission(String, String)

Signature
public
CoreMemoryPermission(String argument,

String actions)

Description
Creates a new CoreMemoryPermission object for a given action, i.e., the symbolic
name of an action. The argument string specifies additional limitations on the
action.

740 RTSJ 2.0 (Draft 48)

GarbageCollector javax.realtime 14.2

Parameters
argument are additional limitations to allow or * for no additional limitation.
actions the names of the actions to allow or * for all actions.

Throws
NullPointerException when action is null.
IllegalArgumentException when action or signal is empty.

14.2.2.3 GarbageCollector

Inheritance
java.lang.Object
GarbageCollector

Description
The system shall provide dynamic and static information characterizing the
temporal behavior and imposed overhead of any garbage collection algorithm
provided by the system. This information shall be made available to applications
via methods on subclasses of GarbageCollector. Implementations are allowed to
provide any set of methods in subclasses as long as the temporal behavior and
overhead are sufficiently categorized. The implementations are also required to
fully document the subclasses.

A reference to the garbage collector responsible for heap memory is available
from RealtimeSystem.currentGC()1.

14.2.2.3.1 Methods

getPreemptionLatency

Signature
public abstract javax.realtime.RelativeTime
getPreemptionLatency()

Description
1Section 14.2.2.5.2

RTSJ 2.0 (Draft 48) 741

14 System and Options RealtimeSecurity

Preemption latency is a measure of the maximum time a schedulable object may
have to wait for the collector to reach a preemption-safe point.

Schedulables which may not use the heap preempt garbage collection immedi-
ately, but other schedulables must wait until the collector reaches a preemption-
safe point. For many garbage collectors the only preemption safe point is at the
end of garbage collection, but an implementation of the garbage collector could
permit a schedulable to preempt garbage collection before it completes. The
getPreemptionLatency method gives such a garbage collector a way to report
the worst-case interval between release of a schedulable during garbage collection,
and the time the schedulable starts execution or gains full access to heap memory,
whichever comes later.

Returns
The worst-case preemption latency of the garbage collection algorithm represented

by this. The returned object is allocated in the current allocation context.
When there is no constant that bounds garbage collector preemption latency,
this method shall return a relative time with Long.MAX_VALUE milliseconds.
The number of nanoseconds in this special value is unspecified.

14.2.2.4 RealtimeSecurity

Inheritance
java.lang.Object
RealtimeSecurity

Description
Security policy object for realtime specific issues. Primarily used to control access
to physical memory.

Security requirements are generally application-specific. Every implemen-
tation shall have a default RealtimeSecurity instance, and a way to install a
replacement at run-time, RealtimeSystem.setSecurityManager2. The default se-
curity is minimal. All security managers should prevent access to JVM internal
data and the Java heap; additional protection is implementation-specific and
must be documented.

14.2.2.4.1 Constructors

2Section 14.2.2.5.2

742 RTSJ 2.0 (Draft 48)

RealtimeSecurity javax.realtime 14.2

RealtimeSecurity

Signature
public
RealtimeSecurity()

Description
Create an RealtimeSecurity object.

14.2.2.4.2 Methods

checkAccessPhysical

Signature
public void
checkAccessPhysical()
throws SecurityException

Description
Check whether the application is allowed to access physical memory.

Throws
SecurityException The application doesn’t have permission to access physical mem-

ory.

checkAccessPhysicalRange(long, long)

Signature
public void
checkAccessPhysicalRange(long base,

long size)
throws SecurityException

Description
Checks whether the application is allowed to access physical memory within the
specified range.

RTSJ 2.0 (Draft 48) 743

14 System and Options RealtimeSecurity

Parameters
base The beginning of the address range.
size The size of the address range.

Throws
SecurityException The application doesn’t have permission to access the memory

in the given range.

checkSetFilter

Signature
public void
checkSetFilter()
throws SecurityException

Description
Checks whether the application is allowed to register PhysicalMemoryTypeFilter3

objects with the PhysicalMemoryManager4.

Throws
SecurityException The application doesn’t have permission to register filter objects.

checkSetMonitorControl(MonitorControl)

Signature
public void
checkSetMonitorControl(MonitorControl policy)
throws SecurityException

Description
Checks whether the application is allowed to set the default monitor control
policy.

Parameters
policy The new policy

Throws
SecurityException when the application doesn’t have permission to change the

default monitor control policy to policy.
3Section A.2.1.1
4Section A.2.3.20

744 RTSJ 2.0 (Draft 48)

RealtimeSecurity javax.realtime 14.2

Available since RTSJ 1.0.1

checkAEHSetDaemon

Signature
public void
checkAEHSetDaemon()
throws SecurityException

Description
Checks whether the application is allowed to set the daemon status of an AEH.

Throws
SecurityException when the application is not permitted to alter the daemon status.
Available since RTSJ 1.0.1

checkSetScheduler

Signature
public void
checkSetScheduler()
throws SecurityException

Description
Checks whether the application is allowed to set the scheduler.

Throws
SecurityException The application doesn’t have permission to set the scheduler.

checkCreateRealtimeThread

Signature
public void
checkCreateRealtimeThread()
throws SecurityException

Description
Check if an application may create a realtime thread.

RTSJ 2.0 (Draft 48) 745

14 System and Options RealtimeSystem

Throws
SecurityException when not allowed

Available since RTSJ 2.0

checkCreateTimer

Signature
public void
checkCreateTimer()
throws SecurityException

Description
Check if an application may create a Timer.

Throws
SecurityException when not allowed.

Available since RTSJ 2.0

checkPOSIXSendSignal(Signal, long)

Signature
public void
checkPOSIXSendSignal(Signal signal,

long pid)
throws SecurityException

Description
Check if the given signal can be sent to the given process id.

Parameters
signal is the signal being sent
pid is the id to which the signal is being set.

Throws
SecurityException when the operation is not allowed.

Available since RTSJ 2.0

746 RTSJ 2.0 (Draft 48)

RealtimeSystem javax.realtime 14.2

14.2.2.5 RealtimeSystem

Inheritance
java.lang.Object
RealtimeSystem

Description
RealtimeSystem provides a means for tuning the behavior of the implementation
by specifying parameters such as the maximum number of locks that can be in
use concurrently, and the monitor control policy. In addition, RealtimeSystem
provides a mechanism for obtaining access to the security manager, garbage
collector, and scheduler, to query or set parameters.

14.2.2.5.1 Fields

BIG_ENDIAN

public static final BIG_ENDIAN

Description
Value indicating that the highest order byte of a bit word is stored at the lowest
byte address: the int 0x0A0B0C0D is stored in the byte sequence 0x0A, 0x0B,
0x0C, 0x0D. and the long 0x0102030405060708 is stored in the sequence 0x01,
0x02, 0x03, 0x04, 0x05, 0x06, 0x07, 0x08.

LITTLE_ENDIAN

public static final LITTLE_ENDIAN

Description
Value indicating that the lowest order byte of a word is stored at the lowest byte
address: the int 0x0A0B0C0D is stored in the byte sequence 0x0D, 0x0C, 0x0B,
0x0A and the long 0x0102030405060708 is stored in the sequence 0x08, 0x07,
0x06, 0x05, 0x04, 0x03, 0x02, 0x01.

RTSJ 2.0 (Draft 48) 747

14 System and Options RealtimeSystem

PDP_ENDIAN

public static final PDP_ENDIAN

Description
Value indicating a mixed endian mode used by among others the PDP-11: the
int 0x0A0B0C0D is stored in the byte sequence 0x0B, 0x0A, 0x0D, 0x0C, and
the long 0x0102030405060708 is stored in the sequence 0x03, 0x04, 0x01, 0x02,
0x07, 0x08, 0x05, 0x06.

CROSS_ENDIAN

public static final CROSS_ENDIAN

Description
Value indicating a mixed endian mode: the int 0x0A0B0C0D is stored in the byte
sequence 0x0D, 0x0C, 0x0B, 0x0A, and the long 0x0102030405060708 is stored
in the sequence 0x05, 0x06, 0x07, 0x08, 0x01, 0x02, 0x03, 0x04.

BYTE_ORDER

public static final BYTE_ORDER

Description
The byte ordering of the underlying hardware.

Deprecated RTSJ 2.0

14.2.2.5.2 Methods

getByteOrder

Signature
public static byte
getByteOrder()

Description

748 RTSJ 2.0 (Draft 48)

RealtimeSystem javax.realtime 14.2

Obtain the byte order of the byte order of the system.

Returns
one of the defined byte order constants.

currentGC

Signature
public static javax.realtime.GarbageCollector
currentGC()

Description

Return a reference to the currently active garbage collector for the heap.

Returns
A GarbageCollector5 object which is the current collector collecting objects on the

conventional Java heap.

getConcurrentLocksUsed

Signature
public static int
getConcurrentLocksUsed()

Description

Gets the maximum number of locks that have been used concurrently. This value
can be used for tuning the concurrent locks parameter, which is used as a hint by
systems that use a monitor cache.

Returns
An integer whose value is the maximum number of locks that have been used

concurrently. When the number of concurrent locks is not tracked by the
implementation, return -1. Note that when the number of concurrent locks is
not tracked, the number of available concurrent locks is effectively unlimited.

5Section 14.2.2.3

RTSJ 2.0 (Draft 48) 749

14 System and Options RealtimeSystem

getMaximumConcurrentLocks

Signature
public static int
getMaximumConcurrentLocks()

Description
Gets the maximum number of locks that can be used concurrently without
incurring an execution time increase as set by the setMaximumConcurrentLocks()
methods.

Note that any relationship between this method and setMaximumConcur-
rentLocks is implementation-specific. This method returns the actual maxi-
mum number of concurrent locks the platform can currently support, or Integer.
MAX_VALUE when there is no maximum. The setMaximumConcurrentLocks
method give the implementation a hint as to the maximum number of concurrent
locks it should expect.

Returns
An integer whose value is the maximum number of locks that can be in simultaneous

use.

getSecurityManager

Signature
public static javax.realtime.RealtimeSecurity
getSecurityManager()

Description
Gets a reference to the security manager used to control access to realtime system
features such as access to physical memory.

Returns
A RealtimeSecurity6 object representing the default realtime security manager.

setMaximumConcurrentLocks(int)

Signature
6Section 14.2.2.4

750 RTSJ 2.0 (Draft 48)

RealtimeSystem javax.realtime 14.2

public static void
setMaximumConcurrentLocks(int numLocks)

Description
Sets the anticipated maximum number of locks that may be held or waited on
concurrently. Provide a hint to systems that use a monitor cache as to how much
space to dedicate to the cache.

Parameters
numLocks An integer whose value becomes the number of locks that can be in

simultaneous use without incurring an execution time increase. When number
is less than or equal to zero nothing happens. When the system does not
use this hint this method has no effect other than on the value returned by
getMaximumConcurrentLocks()7.

setMaximumConcurrentLocks(int, boolean)

Signature
public static void
setMaximumConcurrentLocks(int number,

boolean hard)

Description
Sets the anticipated maximum number of locks that may be held or waited on
concurrently. Provide a limit for the size of the monitor cache on systems that
provide one when hard is true.

Parameters
number The maximum number of locks that can be in simultaneous use without

incurring an execution time increase. When number is less than or equal to
zero nothing happens. When the system does not use this hint this method has
no effect other than on the value returned by getMaximumConcurrentLocks()8.

hard When true, number sets a limit. When a lock is attempted which would cause
the number of locks to exceed number then a ResourceLimitError9 is thrown.
When the system does not limit use of concurrent locks, this parameter is
silently ignored.

7Section 14.2.2.5.2
8Section 14.2.2.5.2
9Section 15.2.3.4

RTSJ 2.0 (Draft 48) 751

14 System and Options RealtimeSystem

setSecurityManager(RealtimeSecurity)

Signature
public static void
setSecurityManager(RealtimeSecurity manager)

Description
Sets a new realtime security manager.

Parameters
manager A RealtimeSecurity10 object which will become the new security manager.

Throws
SecurityException when security manager has already been set.

getInitialMonitorControl

Signature
public static javax.realtime.MonitorControl
getInitialMonitorControl()

Description
Returns the monitor control object that represents the initial monitor control
policy.

Returns
The initial monitor control policy.
Available since RTSJ 1.0.1

supports(RTSJModule)

Signature
public static boolean
supports(RTSJModule module)

Description
Determine if a particular module is supported.

Parameters
10Section 14.2.2.4

752 RTSJ 2.0 (Draft 48)

RealtimeSystem javax.realtime 14.2

module of interest.
Returns
true when module is supported; otherwise false.
Available since RTSJ 2.0

modules

Signature
public static int
modules()

Description
The set of modules supported.

Returns
an integer representing all the modules supported.
Available since RTSJ 2.0

hasUniversalClock

Signature
public static boolean
hasUniversalClock()

Description
Determine whether or not this system supports a universal time clock.

Returns
true when the system can provide a universal time clock.

canEnforceCost

Signature
public static boolean
canEnforceCost()

Description

RTSJ 2.0 (Draft 48) 753

14 System and Options RealtimeSystem

Determine whether or not hard cost enforcement is supported.

Returns
true when cost enforcement is supported, otherwise false.

Available since RTSJ 2.0

canEnforceAllocationRate

Signature
public static boolean
canEnforceAllocationRate()

Description
Determine whether or not allocation rate enforcement is supported.

Returns
true when allocation rate enforcement is supported, otherwise false.

Available since RTSJ 2.0

setDefaultConfiguration(ConfigurationParameters)

Signature
public static void
setDefaultConfiguration(ConfigurationParameters parameters)

Description
Set the default configuration used to by tasks that are not explicitly provided
with one.

Parameters
parameters contains the new default configuration.
Available since RTSJ 2.0

getDefaultConfiguration

Signature

754 RTSJ 2.0 (Draft 48)

SchedulingPermission javax.realtime 14.2

public static javax.realtime.ConfigurationParameters
getDefaultConfiguration()

Description
Determine the current configurations used by tasks that are not explicitly provided
with one.

Returns
the current configurations.
Available since RTSJ 2.0

14.2.2.6 SchedulingPermission

Inheritance
java.lang.Object
java.security.Permission
java.security.BasicPermission
SchedulingPermission

Description
The alternate memory management module provides one permission for the
security manager to use. The following table describes the actions to check. A
signal name can be given as an argument.

Action Name Description Risks of grant
change
limit
monitor
tune
enforce
create

The wildcard * is allowed for both signal and action.

14.2.2.6.1 Constructors

RTSJ 2.0 (Draft 48) 755

14 System and Options TaskPermission

SchedulingPermission(String, String)

Signature
public
SchedulingPermission(String argument,

String actions)

Description
Creates a new SchedulingPermission object for a given action, i.e., the symbolic
name of an action. The argument string specifies additional limitations on the
action.

Parameters
argument are additional limitations to allow or * for no additional limitation.
actions the names of the actions to allow or * for all actions.

Throws
NullPointerException when action is null.
IllegalArgumentException when action or signal is empty.

14.2.2.7 TaskPermission

Inheritance
java.lang.Object
java.security.Permission
java.security.BasicPermission
TaskPermission

Description
The alternate memory management module provides one permission for the
security manager to use. The following table describes the actions to check. A
signal name can be given as an argument.

Action Name Description Risks of grant
control
dispatch
handle
block
create

756 RTSJ 2.0 (Draft 48)

TaskPermission javax.realtime 14.2

The wildcard * is allowed for both signal and action.

14.2.2.7.1 Constructors

TaskPermission(String, String)

Signature
public
TaskPermission(String argument,

String actions)

Description
Creates a new TaskPermission object for a given action, i.e., the symbolic name
of an action. The argument string specifies additional limitations on the action.

Parameters
argument are additional limitations to allow or * for no additional limitation.
actions the names of the actions to allow or * for all actions.

Throws
NullPointerException when action is null.
IllegalArgumentException when action or signal is empty.

RTSJ 2.0 (Draft 48) 757

14 System and Options DirectMemoryPermission

14.3 javax.realtime.device

14.3.1 Classes
14.3.1.1 DirectMemoryPermission

Inheritance
java.lang.Object
java.security.Permission
java.security.BasicPermission
DirectMemoryPermission

Description
The alternate memory management module provides one permission for the
security manager to use. The following table describes the actions to check. A
signal name can be given as an argument.

Action Name Description Risks of grant
create

The wildcard * is allowed for both signal and action.

14.3.1.1.1 Constructors

DirectMemoryPermission(String, String)

Signature
public
DirectMemoryPermission(String argument,

String actions)

Description
Creates a new DirectMemoryPermission object for a given action, i.e., the sym-
bolic name of an action. The argument string specifies additional limitations on
the action.

758 RTSJ 2.0 (Draft 48)

HappeningPermission javax.realtime.device 14.3

Parameters
argument are additional limitations to allow or * for no additional limitation.
actions the names of the actions to allow or * for all actions.

Throws
NullPointerException when action is null.
IllegalArgumentException when action or signal is empty.

14.3.1.2 HappeningPermission

Inheritance
java.lang.Object
java.security.Permission
java.security.BasicPermission
HappeningPermission

Description
The alternate memory management module provides one permission for the
security manager to use. The following table describes the actions to check. A
signal name can be given as an argument.

Action Name Description Risks of grant
create
handle
block

The wildcard * is allowed for both signal and action.

14.3.1.2.1 Constructors

HappeningPermission(String, String)

Signature

RTSJ 2.0 (Draft 48) 759

14 System and Options RawMemoryPermission

public
HappeningPermission(String argument,

String actions)

Description
Creates a new HappeningPermission object for a given action, i.e., the symbolic
name of an action. The argument string specifies additional limitations on the
action.

Parameters
argument are additional limitations to allow or * for no additional limitation.
actions the names of the actions to allow or * for all actions.

Throws
NullPointerException when action is null.
IllegalArgumentException when action or signal is empty.

14.3.1.3 RawMemoryPermission

Inheritance
java.lang.Object
java.security.Permission
java.security.BasicPermission
RawMemoryPermission

Description
The alternate memory management module provides one permission for the
security manager to use. The following table describes the actions to check. A
signal name can be given as an argument.

Action Name Description Risks of grant
associate
create

The wildcard * is allowed for both signal and action.

14.3.1.3.1 Constructors

760 RTSJ 2.0 (Draft 48)

RawMemoryPermission javax.realtime.device 14.3

RawMemoryPermission(String, String)

Signature
public
RawMemoryPermission(String argument,

String actions)

Description
Creates a new RawMemoryPermission object for a given action, i.e., the symbolic
name of an action. The argument string specifies additional limitations on the
action.

Parameters
argument are additional limitations to allow or * for no additional limitation.
actions the names of the actions to allow or * for all actions.

Throws
NullPointerException when action is null.
IllegalArgumentException when action or signal is empty.

RTSJ 2.0 (Draft 48) 761

14 System and Options PhysicalMemoryPermission

14.4 javax.realtime.memory

14.4.1 Classes
14.4.1.1 PhysicalMemoryPermission

Inheritance
java.lang.Object
java.security.Permission
java.security.BasicPermission
PhysicalMemoryPermission

Description
The alternate memory management module provides one permission for the
security manager to use. The following table describes the actions to check. A
signal name can be given as an argument.

Action Name Description Risks of grant
associate map a physical address

range for use by physi-
cal memory

An application could
map the wrong ad-
dresses for object stor-
age.

physical Use a given amount of
physical memory back-
ing store.

An application could
take the physical mem-
ory of another applica-
tion.

The wildcard * is allowed for both signal and action.

14.4.1.1.1 Constructors

PhysicalMemoryPermission(String, String)

Signature

762 RTSJ 2.0 (Draft 48)

ScopedMemoryPermission javax.realtime.memory 14.4

public
PhysicalMemoryPermission(String argument,

String actions)

Description
Creates a new DirectMemoryPermission object for a given action, i.e., the sym-
bolic name of an action. The argument string specifies additional limitations on
the action.

Parameters
argument are additional limitations to allow or * for no additional limitation.
actions the names of the actions to allow or * for all actions.

Throws
NullPointerException when action is null.
IllegalArgumentException when action or signal is empty.

14.4.1.2 ScopedMemoryPermission

Inheritance
java.lang.Object
java.security.Permission
java.security.BasicPermission
ScopedMemoryPermission

Description
The alternate memory management module provides one permission for the
security manager to use. The following table describes the actions to check. A
signal name can be given as an argument.

Action Name Description Risks of grant
global Use a given amount

of the global backing
store.

An application could
take the backing store
of another application.

enter

The wildcard * is allowed for both signal and action.

RTSJ 2.0 (Draft 48) 763

14 System and Options ScopedMemoryPermission

14.4.1.2.1 Constructors

ScopedMemoryPermission(String, String)

Signature
public
ScopedMemoryPermission(String argument,

String actions)

Description
Creates a new DirectMemoryPermission object for a given action, i.e., the sym-
bolic name of an action. The argument string specifies additional limitations on
the action.

Parameters
argument are additional limitations to allow or * for no additional limitation.
actions the names of the actions to allow or * for all actions.

Throws
NullPointerException when action is null.
IllegalArgumentException when action or signal is empty.

764 RTSJ 2.0 (Draft 48)

POSIXPermission javax.realtime.posix 14.5

14.5 javax.realtime.posix

14.5.1 Classes
14.5.1.1 POSIXPermission

Inheritance
java.lang.Object
java.security.Permission
java.security.BasicPermission
POSIXPermission

Description
The POSIX module provides one permission for the security manager to use.
This permission applies to both Signal11 and RealtimeSignal12. The following
table describes the actions to check. A signal name can be given as an argument.

Action Name Description Risks of grant
handle Add a handle to the

given signal
An application could
override the current be-
havior for a signal.

block Remove a handler that
belongs to another
scheduling group.

An application could
override the current be-
havior for a signal.

send Send a given signal An application could
interfere with another
process.

dispatch get the dispatcher for
this signal

The application could
malconfigure the dis-
patcher.

control start or stop this signal An application could
prevent another from
reacting to this signal.

The wildcard * is allowed for both signal and action.

11Section 13.3.1.3
12Section 13.3.1.1

RTSJ 2.0 (Draft 48) 765

14 System and Options

14.5.1.1.1 Constructors

POSIXPermission(String, String)

Signature
public
POSIXPermission(String signals,

String actions)

Description
Creates a new POSIXPermission object for a given action, i.e., the symbolic
name of an action. The signal string specifies for which POSIX signal the action
applies.

Parameters
signals the names of the signals to allow or * for all signals
actions the names of the actions to allow or * for all actions.

Throws
NullPointerException when action is null.
IllegalArgumentException when action or signal is empty.

14.6 Rationale
This specification accommodates the variation in underlying systems in a number of
ways. The RealtimeSystem class functions in similar capacity to java.lang.System.
Similarly, the RealtimeSecurity class functions similarly to java.lang.SecurityManager.

The concept of optionally required classes provides additional flexibility. Such
classes provide a commonality that can be relied upon by program logic that intends
to execute on implementations that supports a given function, such as Signal and
RealtimeSignal encapsulate common functionality for POSIX compliant systems.

Finally, the GarbageCollector class provides some basic information about the
garbage collector, but this information is necessarily very limited. The specification
does not require a deterministic garbage collector, and even with such a collector,
the variation between collectors is quite large. For example, work-based collectors
do not have garbage collector threads, so many of the parameters for thread-based
collectors would not make sense for a work-based collector. Data that is easy to

766 RTSJ 2.0 (Draft 48)

Rationale 14.6

collect with one type of collector can be quite costly to collect with another. For
this reason, collector information is provided via a factory method so that the return
class can be extended to provide additional, implementation-defined information.

RTSJ 2.0 (Draft 48) 767

14 System and Options

768 RTSJ 2.0 (Draft 48)

Chapter 15

Exceptions

As with other Java specifications, the RTSJ uses exceptions and errors to signal con-
ditions that are abnormal, incorrect, or disallowed. In cases where these exceptional
and error conditions are substantially the same as those defined in conventional
Java, those exceptions and errors are used. They are taken primarily from the
java.lang package, but also a few from the java.lang.reflect and java.io packages as
well. In other cases, new exceptions are defined in the javax.realtime package. These
exception classes provide
• additional exception classes required for other sections of this specification,
• the ability to throw exceptions without allocating memory, and
• the ability to asynchronously transfer the control of program logic (see Asyn-

chronouslyInterruptedException).
The ability to throw exceptions without memory allocation is important for using

scoped and immortal memory; otherwise, throwing an exception would use too much
memory to be useful.

15.1 Semantics
Except for how information associated with a Throwable is stored and managed, the
semantics of the subclasses of Error, Exception, and RuntimeException are the same
as for all other Java throwables. All classes in this section are required. Semantics
that apply to particular classes, constructors, methods, and fields will be found in
the class description and the constructor, method, and field detail sections.

All exceptions defined in this section, as opposed to those that are standard
exceptions used without change by the specification, are statically allocated (and
implement the StaticThrowable interface). There is at most one instance of each
of these exceptions and errors, managed by the runtime. The message and stack
information they would normally carry is held in a thread-local data structure. This

769

15 Exceptions

means this information is only valid within the context of the thread that threw the
StaticThrowable, and there only until a new StaticThrowable is thrown.

The thread-local storage used by StaticThrowables is controlled by the Configu-
rationParameters associated with the active task when the exception is thrown. This
may be the system default ConfigurationParameters (set on RealtimeSystem) in the
case of Java threads or a Schedulable for which no ConfigurationParameters was
provided, or it may be the ConfigurationParameters explicitly set for a Schedulable.

Though the AsynchronouslyInterruptedException class defines an exception, it
provides additional functionality for supporting ATC. This functionality is more
closely related to asynchronous operation than to exception handling. For this reason,
it is not included in this chapter, but rather in Chapter 8 on asynchrony.

770 RTSJ 2.0 (Draft 48)

StaticThrowable javax.realtime 15.2

15.2 javax.realtime

15.2.1 Interfaces
15.2.1.1 StaticThrowable

Description
A marker interface to indicate that a Throwable is intended to be created once
and reused. Throwables that implement this interface kept their state in a
RealtimeThread local data structure instead of the object itself. This means that
data is only valid until the next StaticThrowable is thrown in the context of the
current thread. Instances AsyncBaseEventHandler1 always have some instance
of RealtimeThread when executing. Having a marker interface makes it easier to
provide checking tools to ensure the proper throw sequence for all Throwables
thrown from application code.

Throwables which implement this interface should define a get() method that
returns the singleton throwable of that class. It should also initialize the stack
backtrace. The message and cause should be cleared.

An application which throws a static exception should use the following
paradigm:

throw LateStartException.get().initMessage("....").initCause(...);
The message must be initialized before the cause, because initMessage is

defined on StaticThrowable but not Throwable. Setting the message and the
cause are both optional.

Applications which define static throwables should extend one of StaticError2,
StaticCheckedException3, or StaticRuntimeException4

See Section ConfigurationParameters

Available since RTSJ 2.0

15.2.1.1.1 Methods

1Section 8.3.3.3
2Section 15.2.3.5
3Section 15.2.2.24
4Section 15.2.2.25

RTSJ 2.0 (Draft 48) 771

15 Exceptions StaticThrowable

initMessage(String)

Signature
public java.lang.Throwable
initMessage(String message)

Description
Set the message in SO local storage. This is the only method not defined in
java.lang.Throwable.

Parameters
message is the text to save.

getMessage

Signature
public java.lang.String
getMessage()

Description
get the message describing the problem from SO local memory.

Returns
the message given to the constructor or null when no message was set.

getLocalizedMessage

Signature
public java.lang.String
getLocalizedMessage()

Description
Subclasses may override this message to get an error message that is localized to
the default locale.

By default it returns getMessage().

Returns
the value of getMessage().

772 RTSJ 2.0 (Draft 48)

StaticThrowable javax.realtime 15.2

initCause(Throwable)

Signature
public java.lang.Throwable
initCause(Throwable causingThrowable)

Description
Initializes the cause to the given Throwable is SO local memory.

Parameters
causingThrowable the reason why this Throwable gets Thrown.

Throws
IllegalArgumentException when the cause is this Throwable itself.

Returns
the reference to this Throwable.

getCause

Signature
public java.lang.Throwable
getCause()

Description
getCause returns the cause of this exception or null when no cause was set. The
cause is another exception that was caught before this exception was created.

Returns
The cause or null.

fillInStackTrace

Signature
public java.lang.Throwable
fillInStackTrace()

Description
Calls into the virtual machine to capture the current stack trace in SO local
memory.

Returns
a reference to this Throwable.

RTSJ 2.0 (Draft 48) 773

15 Exceptions StaticThrowable

setStackTrace(StackTraceElement)

Signature
public void
setStackTrace(java.lang.StackTraceElement[] new_stackTrace)
throws NullPointerException

Description
This method allows overriding the stack trace that was filled during construction
of this object. It is intended to be used in a serialization context when the stack
trace of a remote exception should be treated like a local.

Parameters
new_stackTrace the stack trace to replace be used.

Throws
NullPointerException when new_stackTrace or any element of new_stackTrace is

null.

getStackTrace

Signature
public java.lang.StackTraceElement[]
getStackTrace()

Description
Get the stack trace created by fillInStackTrace for this Throwable as an array of
StackTraceElements.

The stack trace does not need to contain entries for all methods that are
actually on the call stack, the virtual machine may decide to skip some stack
trace entries. Even an empty array is a valid result of this function.

Repeated calls of this function without intervening calls to fillInStackTrace
will return the same result.

When memory areas of the RTSJ are used (see MemoryArea5), and this
Throwable was allocated in a different memory area than the current allocation
context, the resulting stack trace will be allocated in either the same memory
area this was allocated in or the current memory area, depending on which is
the least deeply nested, thereby creating objects that are assignment compatible
with both areas.

5Section 11.3.2.3

774 RTSJ 2.0 (Draft 48)

StaticThrowable javax.realtime 15.2

Returns
array representing the stack trace, never null.

printStackTrace

Signature
public void
printStackTrace()

Description
Print stack trace of this Throwable to System.err.

The printed stack trace contains the result of toString() as the first line
followed by one line for each stack trace element that contains the name of the
method or constructor, optionally followed by the source file name and source
file line number when available.

printStackTrace(PrintStream)

Signature
public void
printStackTrace(PrintStream stream)

Description
Print the stack trace of this Throwable to the given stream.

The printed stack trace contains the result of toString() as the first line
followed by one line for each stack trace element that contains the name of the
method or constructor, optionally followed by the source file name and source
file line number when available.

Parameters
stream the stream to print to.

printStackTrace(PrintWriter)

Signature
public void
printStackTrace(PrintWriter s)

Description

RTSJ 2.0 (Draft 48) 775

15 Exceptions ArrivalTimeQueueOverflowException

Print the stack trace of this Throwable to the given PrintWriter.
The printed stack trace contains the result of toString() as the first line

followed by one line for each stack trace element that contains the name of the
method or constructor, optionally followed by the source file name and source
file line number when available.

Parameters
s the PrintWriter to write to.

15.2.2 Exceptions

15.2.2.1 ArrivalTimeQueueOverflowException

Inheritance
java.lang.Object
java.lang.Throwable
java.lang.Exception
java.lang.RuntimeException
StaticRuntimeException
EventQueueOverflowException
ArrivalTimeQueueOverflowException

Description

When an arrival time occurs and should be queued, but the queue already holds
a number of times equal to the initial queue length, an instance of this class is
thrown.

Available since RTSJ 1.0.1 this is unchecked

Available since RTSJ 2.0 extends EventQueueOverflowException

Deprecated RTSJ 2.0 replaced by EventQueueOverflowException6

15.2.2.1.1 Constructors

6Section 15.2.2.6

776 RTSJ 2.0 (Draft 48)

AsynchronouslyInterruptedException javax.realtime 15.2

ArrivalTimeQueueOverflowException

Signature
public
ArrivalTimeQueueOverflowException()

Description
The default constructor for ArrivalTimeQueueOverflowException, but user code
should use get()7 instead.

15.2.2.1.2 Methods

get

Signature
public static javax.realtime.ArrivalTimeQueueOverflowException
get()

Description
Obtain the singleton of this static throwable. It is prepared for immediate
throwing.

Returns
the single instance of this throwable.
Available since RTSJ 2.0

15.2.2.2 AsynchronouslyInterruptedException

Inheritance
java.lang.Object
java.lang.Throwable
java.lang.Exception
java.lang.InterruptedException

7Section 15.2.2.1.2

RTSJ 2.0 (Draft 48) 777

15 Exceptions AsynchronouslyInterruptedException

AsynchronouslyInterruptedException
Description

A special exception that is thrown in response to an attempt to asynchronously
transfer the locus of control of a schedulable.

A schedulable that is executing a method or constructor, which is declared with
an AsynchronouslyInterruptedException8 in its throws clause, can be asynchron-
ously interrupted except when it is executing in the lexical scope of a synchronized
statement within that method/constructor. As soon as the schedulable object
leaves the lexical scope of the method by calling another method/constructor
it may be asynchronously interrupted when the called method/constructor is
asynchronously interruptible. (See this chapter’s introduction section for the
detailed semantics).

The asynchronous interrupt is generated for a schedulable, s, when the s.
interrupt() method is called or the fire9 method is called of an AIE for which s
has a doInterruptible method call in progress.

When an asynchronous interrupt is generated when the target schedulable
is executing within an ATC-deferred section, the asynchronous interrupt be-
comes pending. A pending asynchronous interrupt is delivered when the target
schedulable next attempts to enter asynchronously interruptible code.

Asynchronous transfers of control (ATCs) are intended to allow long-running
computations to be terminated without the overhead or latency of polling with
java.lang.Thread.interrupted().

When Schedulable.interrupt10, or AsynchronouslyInterruptedException.fire()
is called, the AsynchronouslyInterruptedException is compared against any cur-
rently pending AsynchronouslyInterruptedException on the schedulable. When
there is none, or when the depth of the AsynchronouslyInterruptedException is
less than the currently pending AsynchronouslyInterruptedException; (i.e., it is
targeted at a less deeply nested method call), the new AsynchronouslyInterrupted-
Exception becomes the currently pending AsynchronouslyInterruptedException
and the previously pending AsynchronouslyInterruptedException is discarded.
Otherwise, the new AsynchronouslyInterruptedException is discarded.

When an AsynchronouslyInterruptedException is caught, the catch clause
may invoke the clear() method on the AsynchronouslyInterruptedException in
which it is interested to see if the exception matches the pending Asynchron-
ouslyInterruptedException. When so, the pending AsynchronouslyInterrupted-
Exception is cleared for the schedulable and clear returns true. Otherwise, the
current AIE remains pending and clear returns false.

8Section 15.2.2.2
9Section 15.2.2.2.2

10Section 6.3.1

778 RTSJ 2.0 (Draft 48)

AsynchronouslyInterruptedException javax.realtime 15.2

Schedulable.interrupt() generates the generic AsynchronouslyInterruptedEx-
ception which will always propagate outward through interruptible methods until
the generic AsynchronouslyInterruptedException is identified and handled. The
pending state of the generic AIE is per-schedulable object.

Other sources (e.g., AsynchronouslyInterruptedException.fire() and Timed11)
will generate specific instances of AsynchronouslyInterruptedException which
applications can identify and thus limit propagation.

15.2.2.2.1 Constructors

AsynchronouslyInterruptedException

Signature
public
AsynchronouslyInterruptedException()

Description
Create an instance of AsynchronouslyInterruptedException.

15.2.2.2.2 Methods

getGeneric

Signature
public static javax.realtime.AsynchronouslyInterruptedException
getGeneric()
throws IllegalSchedulableStateException

Description
Gets the singleton system generic AsynchronouslyInterruptedException that is
generated when Schedulable.interrupt()12 is invoked.

11Section 8.3.2.1
12Section 6.3.1

RTSJ 2.0 (Draft 48) 779

15 Exceptions AsynchronouslyInterruptedException

Throws
IllegalSchedulableStateException when the current thread context in not an instance

of Schedulable13.
Returns
The generic AsynchronouslyInterruptedException.

enable

Signature
public boolean
enable()

Description
Enable the throwing of this exception. This method is valid only when the
caller has a call to doInterruptible in progress. When invoked when no call to
doInterruptible is in progress, enable returns false and does nothing.

Returns
true, when this was disabled before the method was called and the call was invoked

whilst the associated doInterruptible is in progress, and false otherwise.

disable

Signature
public synchronized boolean
disable()

Description
Disable the throwing of this exception. When the fire14 method is called on this
AIE whilst it is disabled, the fire is held pending and delivered as soon as the
AIE is enabled and the interruptible code is within an AI-method. When an
AIE is pending when the associated disable method is called, the AIE remains
pending, and is delivered as soon as the AIE is enabled and the interruptible
code is within an AI-method.

This method is valid only when the caller has a call to doInterruptible in
progress. If invoked when no call to doInterruptible is in progress, disable returns
false and does nothing.

13Section 6.3.1.3
14Section 15.2.2.2.2

780 RTSJ 2.0 (Draft 48)

AsynchronouslyInterruptedException javax.realtime 15.2

Returns
true, when this was enabled before the method was called and the call was invoked

with the associated doInterruptible in progress, and false otherwise.

isEnabled

Signature
public boolean
isEnabled()

Description
Query the enabled status of this exception.

This method is valid only when the caller has a call to doInterruptible in
progress. If invoked when no call to doInterruptible is in progress, enable returns
false and does nothing.

Returns
true, when this is enabled and the method call was invoked in the context of the

associated doInterruptible, and false otherwise.

fire

Signature
public boolean
fire()

Description
Generate this exception when its doInterruptible has been invoked and not
completed. When this is the only outstanding AIE on the schedulable object that
invoked this AIE’s doInterruptible(Interruptible)15 method, this AIE becomes
that schedulable’s current AIE. Otherwise, it only becomes the current AIE when
it is at a less deep level of nesting compared with the current outstanding AIE.

Behaves as if Thread.interrupt() were called on the task currently operating
within this exception’s {#code doInterruptible}.

Returns
true, when this is not disabled and it has an invocation of a doInterruptible in

progress and there is no outstanding fire request, and false otherwise.

15Section 15.2.2.2.2

RTSJ 2.0 (Draft 48) 781

15 Exceptions AsynchronouslyInterruptedException

doInterruptible(Interruptible)

Signature
public boolean
doInterruptible(Interruptible logic)

Description
Executes the run() method of the given Interruptible16. This method may be on
the stack in exactly one Schedulable17 object. An attempt to invoke this method
in a schedulable while it is on the stack of another or the same schedulable will
cause an immediate return with a value of false.

The run method of given Interruptible is always entered with the exception in
the enabled state, but that state can be modified with enable()18 and disable()19

and the state can be observed with isEnabled()20.
This AIE is cleared on return from doInterruptible.

Parameters
logic An instance of an Interruptible21 whose run method will be called.

Throws
IllegalSchedulableStateException when called on the generic AsynchronouslyInter-

ruptedException.
IllegalArgumentException when logic is null.

Returns
true, when the method call completed normally, and false, when another call to

doInterruptible has not completed.
Available since RTSJ 2.0 nolonger throws an exception when called from a Java
thread.

clear

Signature
public boolean
clear()

16Section 8.3.1.3
17Section 6.3.1.3
18Section 15.2.2.2.2
19Section 15.2.2.2.2
20Section 15.2.2.2.2
21Section 8.3.1.3

782 RTSJ 2.0 (Draft 48)

CeilingViolationException javax.realtime 15.2

Description
Atomically see if this is pending on the currently executing schedulable, and
when so, make it non-pending.

This method may be called at any time, and in particular need not be called
in a try or catch block.

Returns
true, when this was pending, and false, when this was not pending.
Available since RTSJ 1.0.1

Available since RTSJ 2.0 no longer throws an exception when called from a task
that is not an instance of Schedulable22.

throwPending

Signature
public static void
throwPending()
throws AsynchronouslyInterruptedException

Description
Cause a pending AsynchronouslyInterruptedException to be thrown as a syn-
chronous exception in an AI-deferred region if one exists.

Throws
AsynchronouslyInterruptedException if an AIE is pending.
Available since RTSJ 2.0

15.2.2.3 CeilingViolationException

Inheritance
java.lang.Object
java.lang.Throwable
java.lang.Exception

22Section 6.3.1.3

RTSJ 2.0 (Draft 48) 783

15 Exceptions CeilingViolationException

java.lang.RuntimeException
java.lang.IllegalArgumentException
java.lang.IllegalThreadStateException
IllegalSchedulableStateException
CeilingViolationException

Interfaces
javax.realtime.StaticThrowable

Description
This exception is thrown when a schedulable or java.lang.Thread attempts to
lock an object governed by an instance of PriorityCeilingEmulation23 and the
thread or SO’s base priority exceeds the policy’s ceiling.

Available since RTSJ 2.0 implements StaticThrowable

15.2.2.3.1 Methods

get

Signature
public static javax.realtime.CeilingViolationException
get()

Description
Obtain the singleton of this static throwable. It is prepared for immediate
throwing.

Returns
the single instance of this throwable.
Available since RTSJ 2.0

getCeiling

Signature
public int
getCeiling()

23Section 7.3.1.2

784 RTSJ 2.0 (Draft 48)

ConstructorCheckedException javax.realtime 15.2

Description
Gets the ceiling of the PriorityCeilingEmulation policy which was exceeded by
the base priority of an SO or thread that attempted to synchronize on an object
governed by the policy, which resulted in throwing of this.

Returns
The ceiling of the PriorityCeilingEmulation policy which caused this exception to

be thrown.

getCallerPriority

Signature
public int
getCallerPriority()

Description
Gets the base priority of the SO or thread whose attempt to synchronize resulted
in the throwing of this.

Returns
The synchronizing thread’s base priority.

15.2.2.4 ConstructorCheckedException

Inheritance
java.lang.Object
java.lang.Throwable
java.lang.Exception
java.lang.ReflectiveOperationException
java.lang.InstantiationException
ConstructorCheckedException

Description
To throw when MemoryArea.newInstance24 causes the constructor of the new
instance to throw a checked exception.

Available since RTSJ 2.0

24Section 11.3.2.3.2

RTSJ 2.0 (Draft 48) 785

15 Exceptions DeregistrationException

15.2.2.4.1 Constructors

ConstructorCheckedException(Throwable)

Signature
public
ConstructorCheckedException(Throwable cause)

Description
A constructor that can carry the original checked exception

Parameters
cause is the original checked exception.

15.2.2.5 DeregistrationException

Inheritance
java.lang.Object
java.lang.Throwable
java.lang.Exception
java.lang.RuntimeException
StaticRuntimeException
DeregistrationException

Description
An exception to throw when trying to deregister an ActiveEvent25 from an
ActiveEventDispatcher26 to which it is not registered.

Available since RTSJ 2.0

15.2.2.5.1 Methods

25Section 8.3.1.1
26Section 8.3.3.1

786 RTSJ 2.0 (Draft 48)

EventQueueOverflowException javax.realtime 15.2

get

Signature
public static javax.realtime.DeregistrationException
get()

Description
Obtain the singleton of this static throwable. It is prepared for immediate
throwing.

Returns
the single instance of this throwable.

15.2.2.6 EventQueueOverflowException

Inheritance
java.lang.Object
java.lang.Throwable
java.lang.Exception
java.lang.RuntimeException
StaticRuntimeException
EventQueueOverflowException

Description
When an arrival time occurs and should be queued, but the queue already holds
a number of times equal to the initial queue length, an instance of this class is
thrown.

Available since RTSJ 1.0.1 this is unchecked

Available since RTSJ 2.0 extends StaticRuntimeException

15.2.2.6.1 Methods

get

Signature

RTSJ 2.0 (Draft 48) 787

15 Exceptions IllegalSchedulableStateException

public static javax.realtime.EventQueueOverflowException
get()

Description

Obtain the singleton of this static throwable. It is prepared for immediate
throwing.

Returns
the single instance of this throwable.

Available since RTSJ 2.0

15.2.2.7 IllegalSchedulableStateException

Inheritance
java.lang.Object
java.lang.Throwable
java.lang.Exception
java.lang.RuntimeException
java.lang.IllegalArgumentException
java.lang.IllegalThreadStateException
IllegalSchedulableStateException

Interfaces
javax.realtime.StaticThrowable

Description

The exception thrown when a Schedulable27 instance attempts an operation
which is illegal in its current state. For instance, changing parameters on such
instances are only allowed when the scheduler is not active or the new parameters
are consistent with the current scheduler.

Available since RTSJ 2.0

15.2.2.7.1 Methods

27Section 6.3.1.3

788 RTSJ 2.0 (Draft 48)

IllegalSchedulableStateException javax.realtime 15.2

get

Signature
public static javax.realtime.IllegalSchedulableStateException
get()

Description
Get the preallocated version of this Throwable. Allocation is done in memory
that acts like ImmortalMemory28. The message and cause are cleared and the
stack trace is filled out.

Returns
the preallocated exception

initMessage(String)

Signature
public java.lang.Throwable
initMessage(String message)

Description
Set the message in SO local storage. This is the only method not defined in
java.lang.Throwable.

Parameters
message is the text to save.

getMessage

Signature
public java.lang.String
getMessage()

Description
get the message describing the problem from SO local memory.

Returns
the message given to the constructor or null when no message was set.

28Section 11.3.2.2

RTSJ 2.0 (Draft 48) 789

15 Exceptions IllegalSchedulableStateException

getLocalizedMessage

Signature
public java.lang.String
getLocalizedMessage()

Description
Subclasses may override this message to get an error message that is localized to
the default locale.

By default it returns getMessage().

Returns
the value of getMessage().

initCause(Throwable)

Signature
public java.lang.Throwable
initCause(Throwable causingThrowable)

Description
Initializes the cause to the given Throwable is SO local memory.

Parameters
causingThrowable the reason why this Throwable gets Thrown.

Throws
IllegalArgumentException when the cause is this Throwable itself.

Returns
the reference to this Throwable.

getCause

Signature
public java.lang.Throwable
getCause()

Description
getCause returns the cause of this exception or null when no cause was set. The
cause is another exception that was caught before this exception was created.

790 RTSJ 2.0 (Draft 48)

IllegalSchedulableStateException javax.realtime 15.2

Returns
The cause or null.

fillInStackTrace

Signature
public java.lang.Throwable
fillInStackTrace()

Description
Calls into the virtual machine to capture the current stack trace in SO local
memory.

Returns
a reference to this Throwable.

setStackTrace(StackTraceElement)

Signature
public void
setStackTrace(java.lang.StackTraceElement[] new_stackTrace)
throws NullPointerException

Description
This method allows overriding the stack trace that was filled during construction
of this object. It is intended to be used in a serialization context when the stack
trace of a remote exception should be treated like a local.

Parameters
new_stackTrace the stack trace to replace be used.

Throws
NullPointerException when new_stackTrace or any element of new_stackTrace is

null.

getStackTrace

Signature
public java.lang.StackTraceElement[]
getStackTrace()

RTSJ 2.0 (Draft 48) 791

15 Exceptions IllegalSchedulableStateException

Description
Get the stack trace created by fillInStackTrace for this Throwable as an array of
StackTraceElements.

The stack trace does not need to contain entries for all methods that are
actually on the call stack, the virtual machine may decide to skip some stack
trace entries. Even an empty array is a valid result of this function.

Repeated calls of this function without intervening calls to fillInStackTrace
will return the same result.

When memory areas of the RTSJ are used (see MemoryArea29), and this
Throwable was allocated in a different memory area than the current allocation
context, the resulting stack trace will be allocated in either the same memory
area this was allocated in or the current memory area, depending on which is
the least deeply nested, thereby creating objects that are assignment compatible
with both areas.

Returns
array representing the stack trace, never null.

printStackTrace

Signature
public void
printStackTrace()

Description
Print stack trace of this Throwable to System.err.

The printed stack trace contains the result of toString() as the first line
followed by one line for each stack trace element that contains the name of the
method or constructor, optionally followed by the source file name and source
file line number when available.

printStackTrace(PrintStream)

Signature
public void
printStackTrace(PrintStream stream)

Description
29Section 11.3.2.3

792 RTSJ 2.0 (Draft 48)

InaccessibleAreaException javax.realtime 15.2

Print the stack trace of this Throwable to the given stream.
The printed stack trace contains the result of toString() as the first line

followed by one line for each stack trace element that contains the name of the
method or constructor, optionally followed by the source file name and source
file line number when available.

Parameters
stream the stream to print to.

printStackTrace(PrintWriter)

Signature
public void
printStackTrace(PrintWriter writer)

Description
Print the stack trace of this Throwable to the given PrintWriter.

The printed stack trace contains the result of toString() as the first line
followed by one line for each stack trace element that contains the name of the
method or constructor, optionally followed by the source file name and source
file line number when available.

Parameters
s the PrintWriter to write to.

15.2.2.8 InaccessibleAreaException

Inheritance
java.lang.Object
java.lang.Throwable
java.lang.Exception
java.lang.RuntimeException
StaticRuntimeException
InaccessibleAreaException

Description
The specified memory area is not on the current thread’s scope stack.

Available since RTSJ 1.0.1 Becomes unchecked

Available since RTSJ 2.0 extends StaticRuntimeException

RTSJ 2.0 (Draft 48) 793

15 Exceptions InaccessibleAreaException

15.2.2.8.1 Constructors

InaccessibleAreaException

Signature
public
InaccessibleAreaException()

Description

A constructor for InaccessibleAreaException, but application code should use
get()30 instead.

InaccessibleAreaException(String)

Signature
public
InaccessibleAreaException(String description)

Description

A descriptive constructor for InaccessibleAreaException.

Deprecated since RTSJ 2.0; application code should use get()31 instead.

Parameters
description Description of the error.

15.2.2.8.2 Methods

30Section 15.2.2.8.2
31Section 15.2.2.8.2

794 RTSJ 2.0 (Draft 48)

LateStartException javax.realtime 15.2

get

Signature
public static javax.realtime.InaccessibleAreaException
get()

Description
Obtain the singleton of this static throwable. It is prepared for immediate
throwing.

Returns
the single instance of this throwable.

Available since RTSJ 2.0

15.2.2.9 LateStartException

Inheritance
java.lang.Object
java.lang.Throwable
java.lang.Exception
StaticCheckedException
LateStartException

Description
Exception thrown when a periodic realtime thread or timer is started after its
assigned, absolute, start time.

Available since RTSJ 2.0

Available since RTSJ 2.0 extends StaticRuntimeException

15.2.2.9.1 Methods

get

Signature

RTSJ 2.0 (Draft 48) 795

15 Exceptions MITViolationException

public static javax.realtime.LateStartException
get()

Description
Obtain the singleton of this static throwable. It is prepared for immediate
throwing.

Returns
the single instance of this throwable.

15.2.2.10 MITViolationException

Inheritance
java.lang.Object
java.lang.Throwable
java.lang.Exception
java.lang.RuntimeException
StaticRuntimeException
MITViolationException

Description
Thrown by the AsyncEvent.fire()32 on a minimum interarrival time violation.
More specifically, it is thrown under the semantics of the base priority scheduler’s
sporadic parameters’ mitViolationExcept policy when an attempt is made to
introduce a release that would violate the MIT constraint.

Available since RTSJ 1.0.1 became unchecked

Available since RTSJ 2.0 extends StaticRuntimeException

15.2.2.10.1 Constructors

MITViolationException

Signature
32Section 8.3.3.4.2

796 RTSJ 2.0 (Draft 48)

MemoryInUseException javax.realtime 15.2

public
MITViolationException()

Description
A constructor for MITViolationException.

MITViolationException(String)

Signature
public
MITViolationException(String description)

Description
A descriptive constructor for MITViolationException.

Parameters
description Description of the error.

15.2.2.10.2 Methods

get

Signature
public static javax.realtime.MITViolationException
get()

Description
Obtain the singleton of this static throwable. It is prepared for immediate
throwing.

Returns
the single instance of this throwable.

Available since RTSJ 2.0

RTSJ 2.0 (Draft 48) 797

15 Exceptions MemoryInUseException

15.2.2.11 MemoryInUseException

Inheritance
java.lang.Object
java.lang.Throwable
java.lang.Exception
java.lang.RuntimeException
StaticRuntimeException
MemoryInUseException

Description
There has been attempt to allocate a range of physical or virtual memory that is
already in use.

Available since RTSJ 2.0 extends StaticRuntimeException

15.2.2.11.1 Constructors

MemoryInUseException

Signature
public
MemoryInUseException()

Description
A constructor forMemoryInUseException, but application code should use get()33

instead.

MemoryInUseException(String)

Signature
public
MemoryInUseException(String description)

33Section 15.2.2.11.2

798 RTSJ 2.0 (Draft 48)

MemoryScopeException javax.realtime 15.2

Description
A descriptive constructor for MemoryInUseException.

Deprecated since RTSJ 2.0; application code should use get()34 instead.

Parameters
description Description of the error.

15.2.2.11.2 Methods

get

Signature
public static javax.realtime.MemoryInUseException
get()

Description
Obtain the singleton of this static throwable. It is prepared for immediate
throwing.

Returns
the single instance of this throwable.

Available since RTSJ 2.0

15.2.2.12 MemoryScopeException

Inheritance
java.lang.Object
java.lang.Throwable
java.lang.Exception
java.lang.RuntimeException
StaticRuntimeException
MemoryScopeException

Description
34Section 15.2.2.11.2

RTSJ 2.0 (Draft 48) 799

15 Exceptions MemoryScopeException

When construction of any of the wait-free queues is attempted with the ends
of the queue in incompatible memory areas. Also thrown by wait-free queue
methods when such an incompatibility is detected after the queue is constructed.

Available since RTSJ 2.0 extends StaticRuntimeException

15.2.2.12.1 Constructors

MemoryScopeException

Signature
public
MemoryScopeException()

Description
A constructor forMemoryScopeException, but application code should use get()35

instead.

15.2.2.12.2 Methods

get

Signature
public static javax.realtime.MemoryScopeException
get()

Description
Obtain the singleton of this static throwable. It is prepared for immediate
throwing.

Returns
the single instance of this throwable.
35Section 15.2.2.12.2

800 RTSJ 2.0 (Draft 48)

MemoryTypeConflictException javax.realtime 15.2

Available since RTSJ 2.0

15.2.2.13 MemoryTypeConflictException

Inheritance
java.lang.Object
java.lang.Throwable
java.lang.Exception
java.lang.RuntimeException
StaticRuntimeException
MemoryTypeConflictException

Description
This exception is thrown when the PhysicalMemoryManager36 is given conflicting
specifications for memory. The conflict can be between types in an array of
memory type specifiers, or between the specifiers and a specified base address.

Available since RTSJ 1.0.1 Changed to an unchecked exception.

Available since RTSJ 2.0 extends StaticRuntimeException

15.2.2.13.1 Constructors

MemoryTypeConflictException

Signature
public
MemoryTypeConflictException()

Description
A constructor for MemoryTypeConflictException, but application code should
use get()37 instead.

36Section A.2.3.20
37Section 15.2.2.13.2

RTSJ 2.0 (Draft 48) 801

15 Exceptions OffsetOutOfBoundsException

MemoryTypeConflictException(String)

Signature
public
MemoryTypeConflictException(String description)

Description
A descriptive constructor for MemoryTypeConflictException.

Deprecated since RTSJ 2.0; application code should use get()38 instead.

Parameters
description A description of the exception.

15.2.2.13.2 Methods

get

Signature
public static javax.realtime.MemoryTypeConflictException
get()

Description
Obtain the singleton of this static throwable. It is prepared for immediate
throwing.

Returns
the single instance of this throwable.
Available since RTSJ 2.0

15.2.2.14 OffsetOutOfBoundsException

Inheritance
38Section 15.2.2.13.2

802 RTSJ 2.0 (Draft 48)

OffsetOutOfBoundsException javax.realtime 15.2

java.lang.Object
java.lang.Throwable
java.lang.Exception
java.lang.RuntimeException
StaticRuntimeException
OffsetOutOfBoundsException

Description
when the constructor of an ImmortalPhysicalMemory39, LTPhysicalMemory40,
VTPhysicalMemory41, RawMemoryAccess42, or RawMemoryFloatAccess43 is given
an invalid address.

Available since RTSJ 1.0.1 became unchecked

Available since RTSJ 2.0 extends StaticRuntimeException

15.2.2.14.1 Constructors

OffsetOutOfBoundsException

Signature
public
OffsetOutOfBoundsException()

Description
A constructor for OffsetOutOfBoundsException, application code should use
get()44 instead.

15.2.2.14.2 Methods

39Section A.2.3.10
40Section A.2.3.12
41Section A.2.3.37
42Section A.2.3.25
43Section A.2.3.26
44Section 15.2.2.14.2

RTSJ 2.0 (Draft 48) 803

15 Exceptions POSIXInvalidSignalException

get

Signature
public static javax.realtime.OffsetOutOfBoundsException
get()

Description
Obtain the singleton of this static throwable. It is prepared for immediate
throwing.

Returns
the single instance of this throwable.
Available since RTSJ 2.0

15.2.2.15 POSIXException

Inheritance
java.lang.Object
java.lang.Throwable
java.lang.Exception
StaticCheckedException
POSIXException

Description
A base class for all POSIX exceptions.

Available since RTSJ 2.0

15.2.2.16 POSIXInvalidSignalException

Inheritance
java.lang.Object
java.lang.Throwable
java.lang.Exception
StaticCheckedException
POSIXException
POSIXInvalidSignalException

Description

804 RTSJ 2.0 (Draft 48)

POSIXInvalidTargetException javax.realtime 15.2

An invalid POSIX signal number has been specified.

Available since RTSJ 2.0

15.2.2.16.1 Methods

get

Signature
public static javax.realtime.POSIXInvalidSignalException
get()

Description
Obtain the singleton of this static throwable. It is prepared for immediate
throwing.

Returns
the single instance of this throwable.

15.2.2.17 POSIXInvalidTargetException

Inheritance
java.lang.Object
java.lang.Throwable
java.lang.Exception
StaticCheckedException
POSIXException
POSIXInvalidTargetException

Description
The target of the signal does not exist.

Available since RTSJ 2.0

15.2.2.17.1 Methods

RTSJ 2.0 (Draft 48) 805

15 Exceptions POSIXSignalPermissionException

get

Signature
public static javax.realtime.POSIXInvalidTargetException
get()

Description
Obtain the singleton of this static throwable. It is prepared for immediate
throwing.

Returns
the single instance of this throwable.

15.2.2.18 POSIXSignalPermissionException

Inheritance
java.lang.Object
java.lang.Throwable
java.lang.Exception
StaticCheckedException
POSIXException
POSIXSignalPermissionException

Description
The process does not have permission to send the given signal to the given target.

Available since RTSJ 2.0

15.2.2.18.1 Methods

get

Signature
public static javax.realtime.POSIXSignalPermissionException
get()

Description

806 RTSJ 2.0 (Draft 48)

RangeOutOfBoundsException javax.realtime 15.2

Obtain the singleton of this static throwable. It is prepared for immediate
throwing.

Returns
the single instance of this throwable.

15.2.2.19 ProcessorAffinityException

Inheritance
java.lang.Object
java.lang.Throwable
java.lang.Exception
StaticCheckedException
ProcessorAffinityException

Description

Exception used to report processor affinity-related errors.

Available since RTSJ 2.0

15.2.2.19.1 Methods

get

Signature
public static javax.realtime.ProcessorAffinityException
get()

Description

Obtain the singleton of this static throwable. It is prepared for immediate
throwing.

Returns
the single instance of this throwable.

RTSJ 2.0 (Draft 48) 807

15 Exceptions RegistrationException

15.2.2.20 RangeOutOfBoundsException

Inheritance
java.lang.Object
java.lang.Throwable
java.lang.Exception
StaticCheckedException
RangeOutOfBoundsException

Description

Available since RTSJ 2.0

15.2.2.20.1 Methods

get

Signature
public static javax.realtime.RangeOutOfBoundsException
get()

Description
Obtain the singleton of this static throwable. It is prepared for immediate
throwing.

Returns
the single instance of this throwable.

15.2.2.21 RegistrationException

Inheritance
java.lang.Object
java.lang.Throwable
java.lang.Exception
java.lang.RuntimeException
StaticRuntimeException

808 RTSJ 2.0 (Draft 48)

ScopedCycleException javax.realtime 15.2

RegistrationException
Description

An exception to throw when trying to register an ActiveEvent45 with an Ac-
tiveEventDispatcher46 to which it is already registered.

Available since RTSJ 2.0

15.2.2.21.1 Methods

get

Signature
public static javax.realtime.RegistrationException
get()

Description
Obtain the singleton of this static throwable. It is prepared for immediate
throwing.

Returns
the single instance of this throwable.

15.2.2.22 ScopedCycleException

Inheritance
java.lang.Object
java.lang.Throwable
java.lang.Exception
java.lang.RuntimeException
StaticRuntimeException
ScopedCycleException

Description
45Section 8.3.1.1
46Section 8.3.3.1

RTSJ 2.0 (Draft 48) 809

15 Exceptions ScopedCycleException

Thrown when a schedulable attempts to enter an instance of javax.realtime.
memory.ScopedMemory47 where that operation would cause a violation of the
single parent rule.

Available since RTSJ 2.0 extends StaticRuntimeException

15.2.2.22.1 Constructors

ScopedCycleException

Signature
public
ScopedCycleException()

Description
A constructor for ScopedCycleException, but application code should use get()48

instead.

ScopedCycleException(String)

Signature
public
ScopedCycleException(String description)

Description
A descriptive constructor for ScopedCycleException.

Deprecated since RTSJ 2.0; application code should use get()49 instead.

Parameters
description Description of the error.
47Section 11.4.3.6
48Section 15.2.2.22.2
49Section 15.2.2.22.2

810 RTSJ 2.0 (Draft 48)

SizeOutOfBoundsException javax.realtime 15.2

15.2.2.22.2 Methods

get

Signature
public static javax.realtime.ScopedCycleException
get()

Description
Obtain the singleton of this static throwable. It is prepared for immediate
throwing.

Returns
the single instance of this throwable.
Available since RTSJ 2.0

15.2.2.23 SizeOutOfBoundsException

Inheritance
java.lang.Object
java.lang.Throwable
java.lang.Exception
java.lang.RuntimeException
StaticRuntimeException
SizeOutOfBoundsException

Description
To throw when the constructor of an ImmortalPhysicalMemory50, LTPhysicalMem-
ory51, or VTPhysicalMemory52 is given an invalid size or when a memory ac-
cess generated by a raw memory accessor instance (See javax.realtime.device.
RawMemory53.) would cause access to an invalid address.

Available since RTSJ 1.0.1 became unchecked

50Section A.2.3.10
51Section A.2.3.12
52Section A.2.3.37
53Section 12.3.1.17

RTSJ 2.0 (Draft 48) 811

15 Exceptions SizeOutOfBoundsException

Available since RTSJ 2.0 extends StaticRuntimeException

15.2.2.23.1 Constructors

SizeOutOfBoundsException

Signature
public
SizeOutOfBoundsException()

Description
A constructor for SizeOutOfBoundsException, but application code should use
get()54 instead.

SizeOutOfBoundsException(String)

Signature
public
SizeOutOfBoundsException(String description)

Description
A descriptive constructor for SizeOutOfBoundsException.

Deprecated since RTSJ 2.0; application code should use get()55 instead.

Parameters
description The description of the exception.

15.2.2.23.2 Methods

54Section 15.2.2.23.2
55Section 15.2.2.23.2

812 RTSJ 2.0 (Draft 48)

StaticCheckedException javax.realtime 15.2

get

Signature
public static javax.realtime.SizeOutOfBoundsException
get()

Description
Obtain the singleton of this static throwable. It is prepared for immediate
throwing.

Returns
the single instance of this throwable.
Available since RTSJ 2.0

15.2.2.24 StaticCheckedException

Inheritance
java.lang.Object
java.lang.Throwable
java.lang.Exception
StaticCheckedException

Interfaces
javax.realtime.StaticThrowable

Description
A base class for all checked exceptions defined in the specification and do not
extend a conventional Java exception.

Available since RTSJ 2.0

15.2.2.24.1 Constructors

StaticCheckedException

Signature

RTSJ 2.0 (Draft 48) 813

15 Exceptions StaticCheckedException

protected
StaticCheckedException()

Description

15.2.2.24.2 Methods

initMessage(String)

Signature
public java.lang.Throwable
initMessage(String message)

Description
Set the message in SO local storage. This is the only method not defined in
java.lang.Throwable.

Parameters
message is the text to save.

getMessage

Signature
public java.lang.String
getMessage()

Description
get the message describing the problem from SO local memory.

Returns
the message given to the constructor or null when no message was set.

getLocalizedMessage

Signature

814 RTSJ 2.0 (Draft 48)

StaticCheckedException javax.realtime 15.2

public java.lang.String
getLocalizedMessage()

Description
Subclasses may override this message to get an error message that is localized to
the default locale.

By default it returns getMessage().

Returns
the value of getMessage().

initCause(Throwable)

Signature
public java.lang.Throwable
initCause(Throwable causingThrowable)

Description
Initializes the cause to the given Throwable is SO local memory.

Parameters
causingThrowable the reason why this Throwable gets Thrown.

Throws
IllegalArgumentException when the cause is this Throwable itself.

Returns
the reference to this Throwable.

getCause

Signature
public java.lang.Throwable
getCause()

Description
getCause returns the cause of this exception or null when no cause was set. The
cause is another exception that was caught before this exception was created.

Returns
The cause or null.

RTSJ 2.0 (Draft 48) 815

15 Exceptions StaticCheckedException

fillInStackTrace

Signature
public java.lang.Throwable
fillInStackTrace()

Description
Calls into the virtual machine to capture the current stack trace in SO local
memory.

Returns
a reference to this Throwable.

setStackTrace(StackTraceElement)

Signature
public void
setStackTrace(java.lang.StackTraceElement[] new_stackTrace)
throws NullPointerException

Description
This method allows overriding the stack trace that was filled during construction
of this object. It is intended to be used in a serialization context when the stack
trace of a remote exception should be treated like a local.

Parameters
new_stackTrace the stack trace to replace be used.

Throws
NullPointerException when new_stackTrace or any element of new_stackTrace is

null.

getStackTrace

Signature
public java.lang.StackTraceElement[]
getStackTrace()

Description

816 RTSJ 2.0 (Draft 48)

StaticCheckedException javax.realtime 15.2

Get the stack trace created by fillInStackTrace for this Throwable as an array of
StackTraceElements.

The stack trace does not need to contain entries for all methods that are
actually on the call stack, the virtual machine may decide to skip some stack
trace entries. Even an empty array is a valid result of this function.

Repeated calls of this function without intervening calls to fillInStackTrace
will return the same result.

When memory areas of the RTSJ are used (see MemoryArea56), and this
Throwable was allocated in a different memory area than the current allocation
context, the resulting stack trace will be allocated in either the same memory
area this was allocated in or the current memory area, depending on which is
the least deeply nested, thereby creating objects that are assignment compatible
with both areas.

Returns
array representing the stack trace, never null.

printStackTrace

Signature
public void
printStackTrace()

Description
Print stack trace of this Throwable to System.err.

The printed stack trace contains the result of toString() as the first line
followed by one line for each stack trace element that contains the name of the
method or constructor, optionally followed by the source file name and source
file line number when available.

printStackTrace(PrintStream)

Signature
public void
printStackTrace(PrintStream stream)

Description
56Section 11.3.2.3

RTSJ 2.0 (Draft 48) 817

15 Exceptions StaticRuntimeException

Print the stack trace of this Throwable to the given stream.
The printed stack trace contains the result of toString() as the first line

followed by one line for each stack trace element that contains the name of the
method or constructor, optionally followed by the source file name and source
file line number when available.

Parameters
stream the stream to print to.

printStackTrace(PrintWriter)

Signature
public void
printStackTrace(PrintWriter writer)

Description
Print the stack trace of this Throwable to the given PrintWriter.

The printed stack trace contains the result of toString() as the first line
followed by one line for each stack trace element that contains the name of the
method or constructor, optionally followed by the source file name and source
file line number when available.

Parameters
s the PrintWriter to write to.

15.2.2.25 StaticRuntimeException

Inheritance
java.lang.Object
java.lang.Throwable
java.lang.Exception
java.lang.RuntimeException
StaticRuntimeException

Interfaces
javax.realtime.StaticThrowable

Description
A base class for all unchecked exceptions defined in the specification and do not
extend a conventional Java exception.

Available since RTSJ 2.0

818 RTSJ 2.0 (Draft 48)

StaticRuntimeException javax.realtime 15.2

15.2.2.25.1 Constructors

StaticRuntimeException

Signature
protected
StaticRuntimeException()

Description

15.2.2.25.2 Methods

initMessage(String)

Signature
public java.lang.Throwable
initMessage(String message)

Description
Set the message in SO local storage. This is the only method not defined in
java.lang.Throwable.

Parameters
message is the text to save.

getMessage

Signature
public java.lang.String
getMessage()

Description
get the message describing the problem from SO local memory.

RTSJ 2.0 (Draft 48) 819

15 Exceptions StaticRuntimeException

Returns
the message given to the constructor or null when no message was set.

getLocalizedMessage

Signature
public java.lang.String
getLocalizedMessage()

Description
Subclasses may override this message to get an error message that is localized to
the default locale.

By default it returns getMessage().

Returns
the value of getMessage().

initCause(Throwable)

Signature
public java.lang.Throwable
initCause(Throwable causingThrowable)

Description
Initializes the cause to the given Throwable is SO local memory.

Parameters
causingThrowable the reason why this Throwable gets Thrown.

Throws
IllegalArgumentException when the cause is this Throwable itself.

Returns
the reference to this Throwable.

getCause

Signature
public java.lang.Throwable
getCause()

820 RTSJ 2.0 (Draft 48)

StaticRuntimeException javax.realtime 15.2

Description
getCause returns the cause of this exception or null when no cause was set. The
cause is another exception that was caught before this exception was created.

Returns
The cause or null.

fillInStackTrace

Signature
public java.lang.Throwable
fillInStackTrace()

Description
Calls into the virtual machine to capture the current stack trace in SO local
memory.

Returns
a reference to this Throwable.

setStackTrace(StackTraceElement)

Signature
public void
setStackTrace(java.lang.StackTraceElement[] new_stackTrace)
throws NullPointerException

Description
This method allows overriding the stack trace that was filled during construction
of this object. It is intended to be used in a serialization context when the stack
trace of a remote exception should be treated like a local.

Parameters
new_stackTrace the stack trace to replace be used.

Throws
NullPointerException when new_stackTrace or any element of new_stackTrace is

null.

RTSJ 2.0 (Draft 48) 821

15 Exceptions StaticRuntimeException

getStackTrace

Signature
public java.lang.StackTraceElement[]
getStackTrace()

Description

Get the stack trace created by fillInStackTrace for this Throwable as an array of
StackTraceElements.

The stack trace does not need to contain entries for all methods that are
actually on the call stack, the virtual machine may decide to skip some stack
trace entries. Even an empty array is a valid result of this function.

Repeated calls of this function without intervening calls to fillInStackTrace
will return the same result.

When memory areas of the RTSJ are used (see MemoryArea57), and this
Throwable was allocated in a different memory area than the current allocation
context, the resulting stack trace will be allocated in either the same memory
area this was allocated in or the current memory area, depending on which is
the least deeply nested, thereby creating objects that are assignment compatible
with both areas.

Returns
array representing the stack trace, never null.

printStackTrace

Signature
public void
printStackTrace()

Description

Print stack trace of this Throwable to System.err.
The printed stack trace contains the result of toString() as the first line

followed by one line for each stack trace element that contains the name of the
method or constructor, optionally followed by the source file name and source
file line number when available.

57Section 11.3.2.3

822 RTSJ 2.0 (Draft 48)

UninitializedStateException javax.realtime 15.2

printStackTrace(PrintStream)

Signature
public void
printStackTrace(PrintStream stream)

Description
Print the stack trace of this Throwable to the given stream.

The printed stack trace contains the result of toString() as the first line
followed by one line for each stack trace element that contains the name of the
method or constructor, optionally followed by the source file name and source
file line number when available.

Parameters
stream the stream to print to.

printStackTrace(PrintWriter)

Signature
public void
printStackTrace(PrintWriter writer)

Description
Print the stack trace of this Throwable to the given PrintWriter.

The printed stack trace contains the result of toString() as the first line
followed by one line for each stack trace element that contains the name of the
method or constructor, optionally followed by the source file name and source
file line number when available.

Parameters
s the PrintWriter to write to.

15.2.2.26 UninitializedStateException

Inheritance
java.lang.Object
java.lang.Throwable
java.lang.Exception
java.lang.RuntimeException
StaticRuntimeException

RTSJ 2.0 (Draft 48) 823

15 Exceptions UnsupportedPhysicalMemoryException

UninitializedStateException
Description

Thrown when a resource is not yet initialized, such as a Clock which cannot be
created yet because its data source is not yet available. This can happen when a
Java process starts early in the system startup process.

Available since RTSJ 2.0

15.2.2.26.1 Methods

get

Signature
public static javax.realtime.UninitializedStateException
get()

Description

15.2.2.27 UnsupportedPhysicalMemoryException

Inheritance
java.lang.Object
java.lang.Throwable
java.lang.Exception
java.lang.RuntimeException
StaticRuntimeException
UnsupportedPhysicalMemoryException

Description
Thrown when the underlying hardware does not support the type of physical
memory requested.

See Section PhysicalMemoryFactory

Available since RTSJ 1.0.1 became unchecked

824 RTSJ 2.0 (Draft 48)

UnsupportedRawMemoryRegionException javax.realtime 15.2

Available since RTSJ 2.0 extends StaticRuntimeException

15.2.2.27.1 Constructors

UnsupportedPhysicalMemoryException

Signature
public
UnsupportedPhysicalMemoryException()

Description
A constructor for UnsupportedPhysicalMemoryException, but application code
should use get()58 instead.

15.2.2.27.2 Methods

get

Signature
public static javax.realtime.UnsupportedPhysicalMemoryException
get()

Description
Obtain the singleton of this static throwable. It is prepared for immediate
throwing.

Returns
the single instance of this throwable.

Available since RTSJ 2.0

58Section 15.2.2.27.2

RTSJ 2.0 (Draft 48) 825

15 Exceptions AlignmentError

15.2.2.28 UnsupportedRawMemoryRegionException

Inheritance
java.lang.Object
java.lang.Throwable
java.lang.Exception
java.lang.RuntimeException
StaticRuntimeException
UnsupportedRawMemoryRegionException

Description
Indicates an invalid raw memory region.

Available since RTSJ 2.0

15.2.2.28.1 Methods

get

Signature
public static javax.realtime.UnsupportedRawMemoryRegionException
get()

Description
Obtain the singleton of this static throwable. It is prepared for immediate
throwing.

Returns
the single instance of this throwable.

15.2.3 Classes
15.2.3.1 AlignmentError

Inheritance
java.lang.Object

826 RTSJ 2.0 (Draft 48)

IllegalAssignmentError javax.realtime 15.2

java.lang.Throwable
java.lang.Error
StaticError
AlignmentError

Description
The exception thrown on an on a request for a raw memory factory to return
memory for a base address that is aligned such that the factory cannot guarantee
that loads and stores based on that address will meet the factory’s specifications.
For instance, on many processors, odd addresses are unsuitable for anything but
byte access.

Available since RTSJ 2.0 extends StaticError

15.2.3.1.1 Methods

get

Signature
public static javax.realtime.AlignmentError
get()

Description
Obtain the singleton of this static throwable. It is prepared for immediate
throwing.

Returns
the single instance of this throwable.
Available since RTSJ 2.0

15.2.3.2 IllegalAssignmentError

Inheritance
java.lang.Object
java.lang.Throwable
java.lang.Error
StaticError

RTSJ 2.0 (Draft 48) 827

15 Exceptions IllegalAssignmentError

IllegalAssignmentError
Description

The exception thrown on an attempt to make an illegal assignment. For example,
this will be thrown on any attempt to assign a reference to an object in scoped
memory, an area of memory identified be an instance of javax.realtime.memory.
ScopedMemory59, to a field of an object in immortal memory.

Available since RTSJ 2.0 extends StaticError

15.2.3.2.1 Constructors

IllegalAssignmentError

Signature
public
IllegalAssignmentError()

Description
A constructor for IllegalAssignmentError, but the application should use get()60

instead.

15.2.3.2.2 Methods

get

Signature
public static javax.realtime.IllegalAssignmentError
get()

Description
59Section 11.4.3.6
60Section 15.2.3.2.2

828 RTSJ 2.0 (Draft 48)

MemoryAccessError javax.realtime 15.2

Obtain the singleton of this static throwable. It is prepared for immediate
throwing.

Returns
the single instance of this throwable.

Available since RTSJ 2.0

15.2.3.3 MemoryAccessError

Inheritance
java.lang.Object
java.lang.Throwable
java.lang.Error
StaticError
MemoryAccessError

Description
This error is thrown on an attempt to refer to an object in an inaccessible Mem-
oryArea61. For example this will be when logic in a NoHeapRealtimeThread62

attempts to refer to an object in the traditional Java heap.

Available since RTSJ 2.0 extends StaticError

15.2.3.3.1 Constructors

MemoryAccessError

Signature
public
MemoryAccessError()

Description
61Section 11.3.2.3
62Section A.2.3.15

RTSJ 2.0 (Draft 48) 829

15 Exceptions ResourceLimitError

A constructor for MemoryAccessError, but application code should use get()63

instead.

15.2.3.3.2 Methods

get

Signature
public static javax.realtime.MemoryAccessError
get()

Description
Obtain the singleton of this static throwable. It is prepared for immediate
throwing.

Returns
the single instance of this throwable.

Available since RTSJ 2.0

15.2.3.4 ResourceLimitError

Inheritance
java.lang.Object
java.lang.Throwable
java.lang.Error
StaticError
ResourceLimitError

Description
When an attempt is made to exceed a system resource limit, such as the maximum
number of locks.

Available since RTSJ 2.0 extends StaticError

63Section 15.2.3.3.2

830 RTSJ 2.0 (Draft 48)

ResourceLimitError javax.realtime 15.2

15.2.3.4.1 Constructors

ResourceLimitError

Signature
public
ResourceLimitError()

Description

A constructor for ResourceLimitError, but application code should use get()64

instead.

ResourceLimitError(String)

Signature
public
ResourceLimitError(String description)

Description

A descriptive constructor for ResourceLimitError.

Deprecated since RTSJ 2.0; application code should use get()65 instead.

Parameters
description The description of the exception.

15.2.3.4.2 Methods

64Section 15.2.3.4.2
65Section 15.2.3.4.2

RTSJ 2.0 (Draft 48) 831

15 Exceptions StaticError

get

Signature
public static javax.realtime.ResourceLimitError
get()

Description
Obtain the singleton of this static throwable. It is prepared for immediate
throwing.

Returns
the single instance of this throwable.
Available since RTSJ 2.0

15.2.3.5 StaticError

Inheritance
java.lang.Object
java.lang.Throwable
java.lang.Error
StaticError

Interfaces
javax.realtime.StaticThrowable

Description
A base class for all errors defined in the specification and do not extend a
conventional Java error.

Available since RTSJ 2.0

15.2.3.5.1 Constructors

StaticError

Signature

832 RTSJ 2.0 (Draft 48)

StaticError javax.realtime 15.2

protected
StaticError()

Description

15.2.3.5.2 Methods

initMessage(String)

Signature
public java.lang.Throwable
initMessage(String message)

Description
Set the message in SO local storage. This is the only method not defined in
java.lang.Throwable.

Parameters
message is the text to save.

getMessage

Signature
public java.lang.String
getMessage()

Description
get the message describing the problem from SO local memory.

Returns
the message given to the constructor or null when no message was set.

getLocalizedMessage

Signature

RTSJ 2.0 (Draft 48) 833

15 Exceptions StaticError

public java.lang.String
getLocalizedMessage()

Description
Subclasses may override this message to get an error message that is localized to
the default locale.

By default it returns getMessage().

Returns
the value of getMessage().

initCause(Throwable)

Signature
public java.lang.Throwable
initCause(Throwable causingThrowable)

Description
Initializes the cause to the given Throwable is SO local memory.

Parameters
causingThrowable the reason why this Throwable gets Thrown.

Throws
IllegalArgumentException when the cause is this Throwable itself.

Returns
the reference to this Throwable.

getCause

Signature
public java.lang.Throwable
getCause()

Description
getCause returns the cause of this exception or null when no cause was set. The
cause is another exception that was caught before this exception was created.

Returns
The cause or null.

834 RTSJ 2.0 (Draft 48)

StaticError javax.realtime 15.2

fillInStackTrace

Signature
public java.lang.Throwable
fillInStackTrace()

Description
Calls into the virtual machine to capture the current stack trace in SO local
memory.

Returns
a reference to this Throwable.

setStackTrace(StackTraceElement)

Signature
public void
setStackTrace(java.lang.StackTraceElement[] new_stackTrace)
throws NullPointerException

Description
This method allows overriding the stack trace that was filled during construction
of this object. It is intended to be used in a serialization context when the stack
trace of a remote exception should be treated like a local.

Parameters
new_stackTrace the stack trace to replace be used.

Throws
NullPointerException when new_stackTrace or any element of new_stackTrace is

null.

getStackTrace

Signature
public java.lang.StackTraceElement[]
getStackTrace()

Description

RTSJ 2.0 (Draft 48) 835

15 Exceptions StaticError

Get the stack trace created by fillInStackTrace for this Throwable as an array of
StackTraceElements.

The stack trace does not need to contain entries for all methods that are
actually on the call stack, the virtual machine may decide to skip some stack
trace entries. Even an empty array is a valid result of this function.

Repeated calls of this function without intervening calls to fillInStackTrace
will return the same result.

When memory areas of the RTSJ are used (see MemoryArea66), and this
Throwable was allocated in a different memory area than the current allocation
context, the resulting stack trace will be allocated in either the same memory
area this was allocated in or the current memory area, depending on which is
the least deeply nested, thereby creating objects that are assignment compatible
with both areas.

Returns
array representing the stack trace, never null.

printStackTrace

Signature
public void
printStackTrace()

Description
Print stack trace of this Throwable to System.err.

The printed stack trace contains the result of toString() as the first line
followed by one line for each stack trace element that contains the name of the
method or constructor, optionally followed by the source file name and source
file line number when available.

printStackTrace(PrintStream)

Signature
public void
printStackTrace(PrintStream stream)

Description
66Section 11.3.2.3

836 RTSJ 2.0 (Draft 48)

StaticOutOfMemoryError javax.realtime 15.2

Print the stack trace of this Throwable to the given stream.
The printed stack trace contains the result of toString() as the first line

followed by one line for each stack trace element that contains the name of the
method or constructor, optionally followed by the source file name and source
file line number when available.

Parameters
stream the stream to print to.

printStackTrace(PrintWriter)

Signature
public void
printStackTrace(PrintWriter writer)

Description
Print the stack trace of this Throwable to the given PrintWriter.

The printed stack trace contains the result of toString() as the first line
followed by one line for each stack trace element that contains the name of the
method or constructor, optionally followed by the source file name and source
file line number when available.

Parameters
s the PrintWriter to write to.

15.2.3.6 StaticOutOfMemoryError

Inheritance
java.lang.Object
java.lang.Throwable
java.lang.Error
java.lang.VirtualMachineError
java.lang.OutOfMemoryError
StaticOutOfMemoryError

Interfaces
javax.realtime.StaticThrowable

Description
A version of OutOfMemoryError that does not require allocation. It should be
thrown from all RTSJ memory subclasses except HeapMemory67. It is up to the

67Section 11.3.2.1

RTSJ 2.0 (Draft 48) 837

15 Exceptions StaticOutOfMemoryError

implementation as to whether HeapMemory throws this exception or its parent.

Available since RTSJ 2.0

15.2.3.6.1 Methods

get

Signature
public static javax.realtime.StaticOutOfMemoryError
get()

Description

Get the preallocated version of this Throwable. Allocation is done in memory
that acts like ImmortalMemory68. The message and cause are cleared and the
stack trace is filled out.

Returns
the preallocated exception

initMessage(String)

Signature
public java.lang.Throwable
initMessage(String message)

Description

Set the message in SO local storage. This is the only method not defined in
java.lang.Throwable.

Parameters
message is the text to save.

68Section 11.3.2.2

838 RTSJ 2.0 (Draft 48)

StaticOutOfMemoryError javax.realtime 15.2

getMessage

Signature
public java.lang.String
getMessage()

Description
get the message describing the problem from SO local memory.

Returns
the message given to the constructor or null when no message was set.

getLocalizedMessage

Signature
public java.lang.String
getLocalizedMessage()

Description
Subclasses may override this message to get an error message that is localized to
the default locale.

By default it returns getMessage().
Returns
the value of getMessage().

initCause(Throwable)

Signature
public java.lang.Throwable
initCause(Throwable causingThrowable)

Description
Initializes the cause to the given Throwable is SO local memory.

Parameters
causingThrowable the reason why this Throwable gets Thrown.

Throws
IllegalArgumentException when the cause is this Throwable itself.

Returns
the reference to this Throwable.

RTSJ 2.0 (Draft 48) 839

15 Exceptions StaticOutOfMemoryError

getCause

Signature
public java.lang.Throwable
getCause()

Description
getCause returns the cause of this exception or null when no cause was set. The
cause is another exception that was caught before this exception was created.

Returns
The cause or null.

fillInStackTrace

Signature
public java.lang.Throwable
fillInStackTrace()

Description
Calls into the virtual machine to capture the current stack trace in SO local
memory.

Returns
a reference to this Throwable.

setStackTrace(StackTraceElement)

Signature
public void
setStackTrace(java.lang.StackTraceElement[] new_stackTrace)
throws NullPointerException

Description
This method allows overriding the stack trace that was filled during construction
of this object. It is intended to be used in a serialization context when the stack
trace of a remote exception should be treated like a local.

Parameters
new_stackTrace the stack trace to replace be used.

840 RTSJ 2.0 (Draft 48)

StaticOutOfMemoryError javax.realtime 15.2

Throws
NullPointerException when new_stackTrace or any element of new_stackTrace is

null.

getStackTrace

Signature
public java.lang.StackTraceElement[]
getStackTrace()

Description
Get the stack trace created by fillInStackTrace for this Throwable as an array of
StackTraceElements.

The stack trace does not need to contain entries for all methods that are
actually on the call stack, the virtual machine may decide to skip some stack
trace entries. Even an empty array is a valid result of this function.

Repeated calls of this function without intervening calls to fillInStackTrace
will return the same result.

When memory areas of the RTSJ are used (see MemoryArea69), and this
Throwable was allocated in a different memory area than the current allocation
context, the resulting stack trace will be allocated in either the same memory
area this was allocated in or the current memory area, depending on which is
the least deeply nested, thereby creating objects that are assignment compatible
with both areas.

Returns
array representing the stack trace, never null.

printStackTrace

Signature
public void
printStackTrace()

Description
Print stack trace of this Throwable to System.err.

The printed stack trace contains the result of toString() as the first line
followed by one line for each stack trace element that contains the name of the

69Section 11.3.2.3

RTSJ 2.0 (Draft 48) 841

15 Exceptions StaticThrowableStorage

method or constructor, optionally followed by the source file name and source
file line number when available.

printStackTrace(PrintStream)

Signature
public void
printStackTrace(PrintStream stream)

Description
Print the stack trace of this Throwable to the given stream.

The printed stack trace contains the result of toString() as the first line
followed by one line for each stack trace element that contains the name of the
method or constructor, optionally followed by the source file name and source
file line number when available.

Parameters
stream the stream to print to.

printStackTrace(PrintWriter)

Signature
public void
printStackTrace(PrintWriter s)

Description
Print the stack trace of this Throwable to the given PrintWriter.

The printed stack trace contains the result of toString() as the first line
followed by one line for each stack trace element that contains the name of the
method or constructor, optionally followed by the source file name and source
file line number when available.

Parameters
s the PrintWriter to write to.

15.2.3.7 StaticThrowableStorage

Inheritance
java.lang.Object

842 RTSJ 2.0 (Draft 48)

StaticThrowableStorage javax.realtime 15.2

java.lang.Throwable
StaticThrowableStorage

Interfaces
javax.realtime.StaticThrowable

Description
Provide the methods for managing the thread local memory used for storing the
data needed by preallocated throwables, i.e., exceptions and errors which imple-
ment StaticThrowable70. This call is visible so that an application can extend
an existing conventional Java throwable and still implement StaticThrowable; its
methods can be implemented using the methods defined in this class. An appli-
cation defined throwable that does not need to extend an existing conventional
Java throwable should extend on of StaticCheckedException71, StaticRuntime-
Exception72, or StaticError73 instead.

Available since RTSJ 2.0

15.2.3.7.1 Methods

getCurrent

Signature
public static javax.realtime.StaticThrowableStorage
getCurrent()

Description
A means of obtaining the storage object for the current task.

Returns
the storage object for the current task.

fillInStackTrace

Signature
70Section 15.2.1.1
71Section 15.2.2.24
72Section 15.2.2.25
73Section 15.2.3.5

RTSJ 2.0 (Draft 48) 843

15 Exceptions StaticThrowableStorage

public java.lang.Throwable
fillInStackTrace()

Description
Capture the current thread’s stack trace and save it in thread local storage. Only
the part of the stack trace that fits in the preallocated buffer is stored. This
method should be called by a preallocated exception to implement its method of
the same name.

Returns
this

getMessage

Signature
public java.lang.String
getMessage()

Description
Get the message from thread local storage that was saved by the last preallocated
exception thrown. This method should be called by a preallocated exception to
implement its method of the same name.

Returns
the message

initMessage(String)

Signature
public java.lang.Throwable
initMessage(String message)

Description
Save the message in thread local storage for later retrieval. Only the part of the
message that fits in the preallocated buffer is stored. This method should be
called by a preallocated exception to implement its method of the same name.

Parameters
message the message to save.

844 RTSJ 2.0 (Draft 48)

StaticThrowableStorage javax.realtime 15.2

getCause

Signature
public java.lang.Throwable
getCause()

Description
Get the cause from thread local storage that was saved by the last preallocated
exception thrown. The actual exception that of the cause is not saved, but just a
reference to its type. This returns a newly allocated exception without any valid
content, i.e., no valid stack trace. This method should be called by a preallocated
exception to implement its method of the same name.

Returns
the message

initCause(Throwable)

Signature
public java.lang.Throwable
initCause(Throwable causingThrowable)

Description
Save the message in thread local storage for later retrieval. Only a reference to
the exception class is stored. The rest of its information is lost. This method
should be called by a preallocated exception to implement its method of the same
name.

Parameters
causingThrowable

Returns
this

getStackTrace

Signature
public java.lang.StackTraceElement[]
getStackTrace()

Description

RTSJ 2.0 (Draft 48) 845

15 Exceptions StaticThrowableStorage

Get the stack trace from thread local storage that was saved by the last pre-
allocated exception thrown. This method should be called by a preallocated
exception to implement its method of the same name.

Returns
an array of the elements of the stack trace.

getLocalizedMessage

Signature
public java.lang.String
getLocalizedMessage()

Description

Subclasses may override this message to get an error message that is localized to
the default locale.

By default it returns getMessage().

Returns
the value of getMessage().

setStackTrace(StackTraceElement)

Signature
public void
setStackTrace(java.lang.StackTraceElement[] new_stackTrace)

Description

This method allows overriding the stack trace that was filled during construction
of this object. It is intended to be used in a serialization context when the stack
trace of a remote exception should be treated like a local.

Parameters
new_stackTrace the stack trace to replace be used.

Throws
NullPointerException when new_stackTrace or any element of new_stackTrace is

null.

846 RTSJ 2.0 (Draft 48)

StaticThrowableStorage javax.realtime 15.2

printStackTrace

Signature
public void
printStackTrace()

Description
Print stack trace of this Throwable to System.err.

The printed stack trace contains the result of toString() as the first line
followed by one line for each stack trace element that contains the name of the
method or constructor, optionally followed by the source file name and source
file line number when available.

printStackTrace(PrintStream)

Signature
public void
printStackTrace(PrintStream stream)

Description
Print the stack trace of this Throwable to the given stream.

The printed stack trace contains the result of toString() as the first line
followed by one line for each stack trace element that contains the name of the
method or constructor, optionally followed by the source file name and source
file line number when available.

Parameters
stream the stream to print to.

printStackTrace(PrintWriter)

Signature
public void
printStackTrace(PrintWriter writer)

Description
Print the stack trace of this Throwable to the given PrintWriter.

The printed stack trace contains the result of toString() as the first line
followed by one line for each stack trace element that contains the name of the

RTSJ 2.0 (Draft 48) 847

15 Exceptions ThrowBoundaryError

method or constructor, optionally followed by the source file name and source
file line number when available.

Parameters
s the PrintWriter to write to.

15.2.3.8 ThrowBoundaryError

Inheritance
java.lang.Object
java.lang.Throwable
java.lang.Error
StaticError
ThrowBoundaryError

Description
The error thrown by MemoryArea.enter(Runnable logic)74 when a Throwable
allocated from memory that is not usable in the surrounding scope tries to
propagate out of the scope of the enter.

Available since RTSJ 2.0 extends StaticError

15.2.3.8.1 Constructors

ThrowBoundaryError

Signature
public
ThrowBoundaryError()

Description
A constructor for ThrowBoundaryError, but application code should use get()75

instead.

74Section 11.3.2.3.2
75Section 15.2.3.8.2

848 RTSJ 2.0 (Draft 48)

Rationale 15.3

15.2.3.8.2 Methods

get

Signature
public static javax.realtime.ThrowBoundaryError
get()

Description
Get the preallocated instance of this exception.

Returns
the preallocated instance of this exception.

initMessage(String)

Signature
public java.lang.Throwable
initMessage(String message)

Description
Set the message in SO local storage. This is the only method not defined in
java.lang.Throwable.

Parameters
message is the text to save.

15.3 Rationale
The need for additional exceptions given the new semantics added by the other
sections of this specification is obvious. That the specification attaches new, noncon-
ventional, exception semantics to AsynchronouslyInterruptedException is, perhaps,
not so obvious. However, after careful thought, and given our self-imposed direc-
tive that only well-defined code blocks would be subject to having their control
asynchronously transferred, the chosen mechanism is logical.

RTSJ 2.0 (Draft 48) 849

15 Exceptions

850 RTSJ 2.0 (Draft 48)

Open Issues

List of Semantic Issues

Issue 6.3.1 . 122
Issue 7.2.1 . 230
Issue 8.3.1 . 293
Issue 10.3.1 . 390
Issue 10.4.1 (jjh) . 428
Issue 11.2.1 (elb) . 444
Issue 11.3.1 . 472
Issue 12.1.1 (elb) . 565
Issue 12.3.1 . 653
Issue 14.1.1 (jjh) . 732

Editorial Issues
• The \classref tag should suppress multiple footnotes on the same {page,section,whatever}.
• We should consider numbered pagaraphs.
• Make sure all other constructors are defined in terms of the complete constructor.
(Mostly done –jjh)
• Make the code environment use a monospaced font to fix the following test:

– | Test 1 abcdefghij |
– | Test 2 ABCDEFGHIJ |
– | 3 tset 9876543210 |

• Method reference do not generate footnotes
• We have a general issue of whether we signify when Illegal Assignment Excep-

851

tions can occur
• Generics do not display in the javadoc in latex.

List of Review Requests

852

Appendix A

Deprecated APIs

Since modules are new in 2.0 and this version introduces new ways of handling
happening, POSIX signals, and raw memory access, there is no need to include the
old API in the RTSJ subsets. Therefore the old classes are deprecated and appear
only here. Other deprecated methods, constructors, and fields are also here. Only
full implementation of the RTSJ should implement them.

A.1 Semantics
Implementations of the deprecated interfaces, classes, constructors, methods, and field
given below are optional. In some cases, classes have been moved to a new package.
In this case, the class appears here in its old place and in the documentation above in
its new place. The deprecated elements are only needed for backward compatibility.
They should not be included in implementations that do not include all modules.

853

A Deprecated APIs PhysicalMemoryTypeFilter

A.2 javax.realtime

A.2.1 Interfaces
A.2.1.1 PhysicalMemoryTypeFilter

Description
Implementation or device providers may include classes that implement Physi-
calMemoryTypeFilter which allow additional characteristics of memory in devices
to be specified. Implementations of PhysicalMemoryTypeFilter are intended to
be used by the PhysicalMemoryManager1, not directly from application code.

Deprecated as of RTSJ 2.0

A.2.1.1.1 Methods

contains(long, long)

Signature
public boolean
contains(long base,

long size)

Description
Queries the system about whether the specified range of memory contains any of
this type.

Parameters
base The physical address of the beginning of the memory region.
size The size of the memory region.

Throws
IllegalArgumentException when base or size is negative.
OffsetOutOfBoundsException when base is less than zero.
SizeOutOfBoundsException when base plus size would be greater than the physical

addressing range of the processor.
1Section A.2.3.20

854 RTSJ 2.0 (Draft 48)

PhysicalMemoryTypeFilter javax.realtime A.2

Returns
true when the specified range contains ANY of this type of memory.
See Section PhysicalMemoryManager.isRemovable

find(long, long)

Signature
public long
find(long base,

long size)

Description
Search for physical memory of the right type.

Parameters
base The physical address at which to start searching.
size The amount of memory to be found.

Throws
OffsetOutOfBoundsException when base is less than zero.
SizeOutOfBoundsException when base plus size would be greater than the physical

addressing range of the processor.
IllegalArgumentException when base or size is negative.

Returns
The address where memory was found or -1 when it was not found.

getVMAttributes

Signature
public int
getVMAttributes()

Description
Gets the virtual memory attributes of this. The value of this field is as defined
for the POSIX mmap function’s prot parameter for the platform. The meaning
of the bits is platform-dependent. POSIX defines constants for PROT_READ,
PROT_WRITE, PROT_EXEC, and PROT_NONE.

Returns
The virtual memory attributes as an integer.

RTSJ 2.0 (Draft 48) 855

A Deprecated APIs PhysicalMemoryTypeFilter

getVMFlags

Signature
public int
getVMFlags()

Description

Gets the virtual memory flags of this. The value of this field is as defined for
the POSIX mmap function’s flags parameter for the platform. The meaning of
the bits is platform-dependent. POSIX defines constants for MAP_SHARED,
MAP_PRIVATE, and MAP_FIXED.

Returns
The virtual memory flags as an integer.

initialize(long, long, long)

Signature
public void
initialize(long base,

long vBase,
long size)

Description

When configuration is required for memory to fit the attribute of this object, do
the configuration here.

Parameters
base The address of the beginning of the physical memory region.
vBase The address of the beginning of the virtual memory region.
size The size of the memory region.

Throws
IllegalArgumentException when base or size is negative.
OffsetOutOfBoundsException when base is less than zero.
SizeOutOfBoundsException when base plus size would be greater than the physical

addressing range of the processor, or vBase plus size would exceed the virtual
addressing range of the processor.

856 RTSJ 2.0 (Draft 48)

PhysicalMemoryTypeFilter javax.realtime A.2

isPresent(long, long)

Signature
public boolean
isPresent(long base,

long size)

Description

Queries the system about the existence of the specified range of physical memory.

Parameters
base The address of the beginning of the memory region.
size The size of the memory region.

Throws
IllegalArgumentException when the base and size do not fall into this type of

memory.
OffsetOutOfBoundsException when base is less than zero.
SizeOutOfBoundsException when base plus size would be greater than the physical

addressing range of the processor.

Returns
True when all of the memory is present. False when any of the memory has been

removed.

See Section PhysicalMemoryManager.isRemoved

isRemovable

Signature
public boolean
isRemovable()

Description

Queries the system about the removability of this memory.

Returns
true when this type of memory is removable.

RTSJ 2.0 (Draft 48) 857

A Deprecated APIs PhysicalMemoryTypeFilter

onInsertion(long, long, AsyncEvent)

Signature
public void
onInsertion(long base,

long size,
AsyncEvent ae)

Description
Register the specified AsyncEvent2 to fire when any memory of this type in the
range is added to the system.

Parameters
base The starting address in physical memory.
size The size of the memory area.
ae The async event to fire.

Throws
IllegalArgumentException when ae is null, or when the specified range contains no

removable memory of this type. IllegalArgumentException may also be thrown
when size is less than zero.

OffsetOutOfBoundsException when base is less than zero.
SizeOutOfBoundsException when base plus size would be greater than the physical

addressing range of the processor.
Available since RTSJ 1.0.1

onInsertion(long, long, AsyncEventHandler)

Signature
public void
onInsertion(long base,

long size,
AsyncEventHandler aeh)

Description
Register the specified AsyncEventHandler3 to run when any memory of this type,
and in the range is added to the system. When the size or the base is less than 0,
unregister all "onInsertion" references to the handler.

2Section 8.3.3.4
3Section 8.3.3.5

858 RTSJ 2.0 (Draft 48)

PhysicalMemoryTypeFilter javax.realtime A.2

Note that this method only removes handlers that were registered with the
same method. It has no effect on handlers that were registered using an associated
async event.

Parameters
base The starting address in physical memory.
size The size of the memory area.
aeh The handler to register.

Throws
IllegalArgumentException when the specified range contains no removable memory,

or when aeh is null and size and base are both greater than or equal to zero.
SizeOutOfBoundsException when base plus size would be greater than the physical

addressing range of the processor.
Deprecated as of RTSJ 1.0.1 Replace with onInsertion(long, long, AsyncEvent)

onRemoval(long, long, AsyncEvent)

Signature
public void
onRemoval(long base,

long size,
AsyncEvent ae)

Description
Register the specified AE to fire when any memory in the range is removed from
the system.

Parameters
base The starting address in physical memory.
size The size of the memory area.
ae The async event to register.

Throws
IllegalArgumentException when the specified range contains no removable memory

of this type, when ae is null, or when size is less than zero.
OffsetOutOfBoundsException when base is less than zero.
SizeOutOfBoundsException when base plus size would be greater than the physical

addressing range of the processor.
Available since RTSJ 1.0.1

RTSJ 2.0 (Draft 48) 859

A Deprecated APIs PhysicalMemoryTypeFilter

onRemoval(long, long, AsyncEventHandler)

Signature
public void
onRemoval(long base,

long size,
AsyncEventHandler aeh)

Description
Register the specified AEH to run when any memory in the range is removed
from the system. When size or base is less than 0, unregister all "onRemoval"
references to the handler parameter.

Note, that this method only removes handlers that were registered with the
same method. It has no effect on handlers that were registered using an associated
async event.

Parameters
base The starting address in physical memory.
size The size of the memory area.
aeh The handler to register.

Throws
IllegalArgumentException when the specified range contains no removable memory

known to this filter, when aeh is null and size and base are both greater than
or equal to zero.

SizeOutOfBoundsException when base plus size would be greater than the physical
addressing range of the processor.

Deprecated as of RTSJ 1.0.1

unregisterInsertionEvent(long, long, AsyncEvent)

Signature
public boolean
unregisterInsertionEvent(long base,

long size,
AsyncEvent ae)

Description
Unregister the specified insertion event. The event is only unregistered when all
three arguments match the arguments used to register the event, except that ae

860 RTSJ 2.0 (Draft 48)

PhysicalMemoryTypeFilter javax.realtime A.2

of null matches all values of ae and will unregister every ae that matches the
address range.

Note that this method has no effect on handlers registered directly as async
event handlers.

Parameters
base The starting address in physical memory associated with ae.
size The size of the memory area associated with ae.
ae The event to unregister.

Throws
IllegalArgumentException when size is less than 0.
OffsetOutOfBoundsException when base is less than zero.
SizeOutOfBoundsException when base plus size would be greater than the physical

addressing range of the processor.

Returns
True when at least one event matched the pattern, false when no such event was

found.

Available since RTSJ 1.0.1

unregisterRemovalEvent(long, long, AsyncEvent)

Signature
public boolean
unregisterRemovalEvent(long base,

long size,
AsyncEvent ae)

Description
Unregister the specified removal event. The async event is only unregistered
when all three arguments match the arguments used to register the event, except
that ae of null matches all values of ae and will unregister every ae that matches
the address range. Note that this method has no effect on handlers registered
directly as async event handlers.

Parameters
base The starting address in physical memory associated with ae.
size The size of the memory area associated with ae.
ae The async event to unregister.

RTSJ 2.0 (Draft 48) 861

A Deprecated APIs Schedulable

Throws
IllegalArgumentException when size is less than 0.
OffsetOutOfBoundsException when base is less than zero.
SizeOutOfBoundsException when base plus size would be greater than the physical

addressing range of the processor.

Returns
True when at least one event matched the pattern, false when no such event was

found.

Available since RTSJ 1.0.1

vFind(long, long)

Signature
public long
vFind(long base,

long size)

Description
Search for virtual memory of the right type. This is important for systems where
attributes are associated with particular ranges of virtual memory.

Parameters
base The address at which to start searching.
size The amount of memory to be found.

Throws
OffsetOutOfBoundsException when base is less than zero.
SizeOutOfBoundsException when base plus size would be greater than the physical

addressing range of the processor.
IllegalArgumentException when base or size is negative. IllegalArgumentException

may also be when base is an invalid virtual address.

Returns
The address where memory was found or -1 when it was not found.

A.2.1.2 SchedulableT

862 RTSJ 2.0 (Draft 48)

Schedulable javax.realtime A.2

e following elements of Schedulable are deprecated. The required elements are
documented in Section 6.3.1.3 above.

A.2.1.2.1 Methods

setScheduler(Scheduler, SchedulingParameters, ReleasePar-
ameters, MemoryParameters, ProcessingGroupParameters)

Signature
public void
setScheduler(Scheduler scheduler,

SchedulingParameters scheduling,
ReleaseParameters release,
MemoryParameters memoryParameters,
ProcessingGroupParameters group)

Description
Sets the scheduler and associated parameter objects. The timing of the change
must be agreed between the scheduler currently associated with this schedulable,
and scheduler.

Parameters
scheduler A reference to the scheduler that will manage the execution of this

schedulable. Null is not a permissible value.
scheduling A reference to the SchedulingParameters4 which will be associated with

this. When null, the default value is governed by scheduler (a new object is
created when the default value is not null). (See PriorityScheduler5.)

release A reference to the ReleaseParameters6 which will be associated with this.
When null, the default value is governed by scheduler (a new object is created
when the default value is not null). (See PriorityScheduler7.)

memoryParameters A reference to the MemoryParameters8 which will be associated
with this. When null, the default value is governed by scheduler (a new object

4Section 6.3.3.14
5Section 6.3.3.8
6Section 6.3.3.10
7Section 6.3.3.8
8Section 11.3.2.4

RTSJ 2.0 (Draft 48) 863

A Deprecated APIs Schedulable

is created when the default value is not null). (See PriorityScheduler9.)
group A reference to the ProcessingGroupParameters10 which will be associated

with this. When null, the default value is governed by scheduler (a new object
is created). (See PriorityScheduler11.)

Throws
IllegalArgumentException Thrown when scheduler is null or the parameter values

are not compatible with scheduler. Also thrown when this schedulable may not
use the heap and scheduler, scheduling release, memoryParameters, or group
is located in heap memory.

IllegalAssignmentError when this object cannot hold references to all the parameter
objects or the parameters cannot hold references to this.

IllegalThreadStateException when scheduler prohibits the changing of the scheduler
or a parameter at this time due to the state of the schedulable.

SecurityException when the caller is not permitted to set the scheduler for this
schedulable.

Deprecated since RTSJ 2.0

getProcessingGroupParameters

Signature
public javax.realtime.ProcessingGroupParameters
getProcessingGroupParameters()

Description
Gets a reference to the ProcessingGroupParameters12 object for this schedulable.

Returns
A reference to the current ProcessingGroupParameters13 object.
Deprecated since RTSJ 2.0

setProcessingGroupParameters(ProcessingGroupParameters)

9Section 6.3.3.8
10Section A.2.3.23
11Section 6.3.3.8
12Section A.2.3.23
13Section A.2.3.23

864 RTSJ 2.0 (Draft 48)

Schedulable javax.realtime A.2

Signature
public void
setProcessingGroupParameters(ProcessingGroupParameters group)

Description
Sets the ProcessingGroupParameters14 of this.

This change becomes effective under conditions determined by the scheduler
controlling the schedulable. For instance, the change may be immediate or it
may be delayed until the next release of the schedulable. See the documentation
for the scheduler for details.

Parameters
group A ProcessingGroupParameters15 object which will take effect as determined

by the associated scheduler. When null, the default value is governed by the
associated scheduler (a new object is created when the default value is not
null). (See PriorityScheduler16.)

Throws
IllegalArgumentException Thrown when group is not compatible with the scheduler

for this schedulable object. Also when this schedulable may not use the heap
and group is located in heap memory.

IllegalAssignmentError when this object cannot hold a reference to group or group
cannot hold a reference to this.

IllegalThreadStateException when the schedulable’s scheduler prohibits the chang-
ing of the processing group parameter at this time due to the state of the
schedulable object.

Deprecated since RTSJ 2.0; see ProcessingGroup17

setProcessingGroupParametersIfFeasible(ProcessingGroupParameters)

Signature
public boolean
setProcessingGroupParametersIfFeasible(ProcessingGroupParameters group)

Description
14Section A.2.3.23
15Section A.2.3.23
16Section 6.3.3.8
17Section 6.3.3.9

RTSJ 2.0 (Draft 48) 865

A Deprecated APIs Schedulable

This method first performs a feasibility analysis using the proposed parameter
object as replacement for the current parameter of this. When the resulting
system is feasible, this method replaces the current parameter of this with the
proposed one.

This change becomes effective under conditions determined by the scheduler
controlling the schedulable. For instance, the change may be immediate or it
may be delayed until the next release of the schedulable. See the documentation
for the scheduler for details.

This method does not require that the schedulable be in the feasibility set
before it is called. When it is not initially a member of the feasibility set it will
be added when the resulting system is feasible.

Parameters
group The proposed processing group parameters. When null, the default value is

governed by the associated scheduler (a new object is created when the default
value is not null). (See PriorityScheduler18.)

Throws
IllegalArgumentException Thrown when the parameter value is not compatible

with the schedulable’s scheduler. Also when this schedulable may not use the
heap and the proposed parameter object is located in heap memory.

IllegalAssignmentError when this cannot hold a reference to the proposed parameter
object, or the parameter object cannot hold a reference to this.

IllegalThreadStateException when the schedulable’s scheduler prohibits the chang-
ing of the processing group parameter at this time due to the state of the
schedulable object.

Returns
True, when the resulting system is feasible and the changes are made. False, when

the resulting system is not feasible and no changes are made.

Deprecated as of RTSJ 2.0 The framework for feasibility anlaysis is inadequate

addIfFeasible

Signature
public boolean
addIfFeasible()

Description
18Section 6.3.3.8

866 RTSJ 2.0 (Draft 48)

Schedulable javax.realtime A.2

This method first performs a feasibility analysis with this added to the system.
When the resulting system is feasible, inform the scheduler and cooperating
facilities that this instance of Schedulable19 should be considered in feasibility
analysis until further notified. When the analysis showed that the system including
this would not be feasible, this method does not admit this to the feasibility set.

When the object is already included in the feasibility set, do nothing.

Returns
True when inclusion of this in the feasibility set yields a feasible system, and false

otherwise. When true is returned then this is known to be in the feasibility
set. When false is returned, this was not added to the feasibility set, but it
may already have been present.

Available since RTSJ 1.0.1 Promoted to the Schedulable interface

Deprecated as of RTSJ 2.0, because the framework for feasibility anlaysis is inade-
quate.

addToFeasibility

Signature
public boolean
addToFeasibility()

Description
Inform the scheduler and cooperating facilities that this instance of Schedulable20

should be considered in feasibility analysis until further notified.
When the object is already included in the feasibility set, do nothing.

Returns
True, when the resulting system is feasible. False, when not.

Deprecated as of RTSJ 2.0 The framework for feasibility anlaysis is inadequate

removeFromFeasibility

Signature
19Section 6.3.1.3
20Section 6.3.1.3

RTSJ 2.0 (Draft 48) 867

A Deprecated APIs Schedulable

public boolean
removeFromFeasibility()

Description
Inform the scheduler and cooperating facilities that this instance of Schedulable21

should not be considered in feasibility analysis until it is further notified.

Returns
true when the removal was successful. false when the schedulable cannot be

removed from the scheduler’s feasibility set; e.g., the schedulable is not part of
the scheduler’s feasibility set.

Deprecated as of RTSJ 2.0 The framework for feasibility anlaysis is inadequate

setIfFeasible(ReleaseParameters, MemoryParameters)

Signature
public boolean
setIfFeasible(ReleaseParameters release,

MemoryParameters memory)
throws IllegalArgumentException,

IllegalAssignmentError,
IllegalThreadStateException

Description
This method first performs a feasibility analysis using the proposed parameter
objects as replacements for the current parameters of this. When the resulting
system is feasible, this method replaces the current parameters of this with the
proposed ones.

This change becomes effective under conditions determined by the scheduler
controlling the schedulable. For instance, the change may be immediate or it
may be delayed until the next release of the schedulable. See the documentation
for the scheduler for details.

This method does not require that the schedulable be in the feasibility set
before it is called. When it is not initially a member of the feasibility set it will
be added when the resulting system is feasible.

Parameters
21Section 6.3.1.3

868 RTSJ 2.0 (Draft 48)

Schedulable javax.realtime A.2

release The proposed release parameters. When null, the default value is governed
by the associated scheduler (a new object is created when the default value is
not null). (See PriorityScheduler22.)

memory The proposed memory parameters. When null, the default value is governed
by the associated scheduler (a new object is created when the default value is
not null). (See PriorityScheduler23.)

Throws
IllegalArgumentException Thrown when the parameter values are not compatible

with the schedulable’s scheduler. Also when this schedulable may not use the
heap and any of the proposed parameter objects are located in heap memory.

IllegalAssignmentError when this cannot hold references to the proposed parameter
objects, or the parameter objects cannot hold a reference to this.

IllegalThreadStateException when the schedulable’s scheduler prohibits this param-
eter change at this time due to the state of the schedulable.

Returns
True, when the resulting system is feasible and the changes are made. False, when

the resulting system is not feasible and no changes are made.
Available since RTSJ 1.0.1 Promoted to the Schedulable interface.

Deprecated as of RTSJ 2.0 The framework for feasibility anlaysis is inadequate

setIfFeasible(ReleaseParameters, MemoryParameters, Proces-
singGroupParameters)

Signature
public boolean
setIfFeasible(ReleaseParameters release,

MemoryParameters memory,
ProcessingGroupParameters group)

throws IllegalArgumentException,
IllegalAssignmentError,
IllegalThreadStateException

Description
This method first performs a feasibility analysis using the proposed parameter
objects as replacements for the current parameters of this. When the resulting

22Section 6.3.3.8
23Section 6.3.3.8

RTSJ 2.0 (Draft 48) 869

A Deprecated APIs Schedulable

system is feasible, this method replaces the current parameters of this with the
proposed ones.

This change becomes effective under conditions determined by the scheduler
controlling the schedulable. For instance, the change may be immediate or it
may be delayed until the next release of the schedulable. See the documentation
for the scheduler for details.

This method does not require that the schedulable be in the feasibility set
before it is called. When it is not initially a member of the feasibility set it will
be added when the resulting system is feasible.

Parameters
release The proposed release parameters. When null, the default value is governed

by the associated scheduler (a new object is created when the default value is
not null). (See PriorityScheduler24.)

memory The proposed memory parameters. When null, the default value is governed
by the associated scheduler (a new object is created when the default value is
not null). (See PriorityScheduler25.)

group The proposed processing group parameters. When null, the default value is
governed by the associated scheduler (a new object is created when the default
value is not null). (See PriorityScheduler26.)

Throws
IllegalArgumentException Thrown when the parameter values are not compatible

with the schedulable’s scheduler. Also when this schedulable may not use the
heap and any of the proposed parameter objects are located in heap memory.

IllegalAssignmentError when this cannot hold references to the proposed parameter
objects, or the parameter objects cannot hold a reference to this.

IllegalThreadStateException when the schedulable’s scheduler prohibits this param-
eter change at this time due to the state of the schedulable.

Returns
True, when the resulting system is feasible and the changes are made. False, when

the resulting system is not feasible and no changes are made.

Available since RTSJ 1.0.1 Promoted to the Schedulable interface.

Deprecated as of RTSJ 2.0 The framework for feasibility anlaysis is inadequate

24Section 6.3.3.8
25Section 6.3.3.8
26Section 6.3.3.8

870 RTSJ 2.0 (Draft 48)

Schedulable javax.realtime A.2

setIfFeasible(ReleaseParameters, ProcessingGroupParameters)

Signature
public boolean
setIfFeasible(ReleaseParameters release,

ProcessingGroupParameters group)
throws IllegalArgumentException,

IllegalAssignmentError,
IllegalThreadStateException

Description

This method first performs a feasibility analysis using the proposed parameter
objects as replacements for the current parameters of this. When the resulting
system is feasible, this method replaces the current parameters of this with the
proposed ones.

This change becomes effective under conditions determined by the scheduler
controlling the schedulable. For instance, the change may be immediate or it
may be delayed until the next release of the schedulable. See the documentation
for the scheduler for details.

This method does not require that the schedulable be in the feasibility set
before it is called. When it is not initially a member of the feasibility set it will
be added when the resulting system is feasible.

Parameters
release The proposed release parameters. When null, the default value is governed

by the associated scheduler (a new object is created when the default value is
not null). (See PriorityScheduler27.)

group The proposed processing group parameters. When null, the default value is
governed by the associated scheduler (a new object is created when the default
value is not null). (See PriorityScheduler28.)

Throws
IllegalArgumentException Thrown when the parameter values are not compatible

with the schedulable’s scheduler. Also when this schedulable may not use the
heap and any of the proposed parameter objects are located in heap memory.

IllegalAssignmentError when this cannot hold references to the proposed parameter
objects, or the parameter objects cannot hold a reference to this.

27Section 6.3.3.8
28Section 6.3.3.8

RTSJ 2.0 (Draft 48) 871

A Deprecated APIs Schedulable

IllegalThreadStateException when the schedulable’s scheduler prohibits this param-
eter change at this time due to the state of the schedulable.

Returns
True, when the resulting system is feasible and the changes are made. False, when

the resulting system is not feasible and no changes are made.
Available since RTSJ 1.0.1 Promoted to the Schedulable interface.

Deprecated as of RTSJ 2.0 The framework for feasibility anlaysis is inadequate

setIfFeasible(SchedulingParameters, ReleaseParameters, Mem-
oryParameters)

Signature
public boolean
setIfFeasible(SchedulingParameters scheduling,

ReleaseParameters release,
MemoryParameters memory)

throws IllegalArgumentException,
IllegalAssignmentError,
IllegalThreadStateException

Description
This method first performs a feasibility analysis using the proposed parameter
objects as replacements for the current parameters of this. When the resulting
system is feasible, this method replaces the current parameters of this with the
proposed ones.

This change becomes effective under conditions determined by the scheduler
controlling the schedulable. For instance, the change may be immediate or it
may be delayed until the next release of the schedulable. See the documentation
for the scheduler for details.

This method does not require that the schedulable be in the feasibility set
before it is called. When it is not initially a member of the feasibility set it will
be added when the resulting system is feasible.

Parameters
scheduling The proposed scheduling parameters. When null, the default value is

governed by the associated scheduler (a new object is created when the default
value is not null). (See PriorityScheduler29.)

29Section 6.3.3.8

872 RTSJ 2.0 (Draft 48)

Schedulable javax.realtime A.2

release The proposed release parameters. When null, the default value is governed
by the associated scheduler (a new object is created when the default value is
not null). (See PriorityScheduler30.)

memory The proposed memory parameters. When null, the default value is governed
by the associated scheduler (a new object is created when the default value is
not null). (See PriorityScheduler31.)

Throws
IllegalArgumentException Thrown when the parameter values are not compatible

with the schedulable’s scheduler. Also when this schedulable may not use the
heap and any of the proposed parameter objects are located in heap memory.

IllegalAssignmentError when this cannot hold references to the proposed parameter
objects, or the parameter objects cannot hold a reference to this.

IllegalThreadStateException when the schedulable’s scheduler prohibits this param-
eter change at this time due to the state of the schedulable.

Returns
True, when the resulting system is feasible and the changes are made. False, when

the resulting system is not feasible and no changes are made.
Available since RTSJ 1.0.1

Deprecated as of RTSJ 2.0 The framework for feasibility anlaysis is inadequate

setIfFeasible(SchedulingParameters, ReleaseParameters, Mem-
oryParameters, ProcessingGroupParameters)

Signature
public boolean
setIfFeasible(SchedulingParameters scheduling,

ReleaseParameters release,
MemoryParameters memory,
ProcessingGroupParameters group)

Description
This method first performs a feasibility analysis using the proposed parameter
objects as replacements for the current parameters of this. When the resulting
system is feasible, this method replaces the current parameters of this with the
proposed ones.

30Section 6.3.3.8
31Section 6.3.3.8

RTSJ 2.0 (Draft 48) 873

A Deprecated APIs Schedulable

This change becomes effective under conditions determined by the scheduler
controlling the schedulable. For instance, the change may be immediate or it
may be delayed until the next release of the schedulable. See the documentation
for the scheduler for details.

This method does not require that the schedulable be in the feasibility set
before it is called. When it is not initially a member of the feasibility set it will
be added when the resulting system is feasible.

Parameters
scheduling The proposed scheduling parameters. When null, the default value is

governed by the associated scheduler (a new object is created when the default
value is not null). (See PriorityScheduler32.)

release The proposed release parameters. When null, the default value is governed
by the associated scheduler (a new object is created when the default value is
not null). (See PriorityScheduler33.)

memory The proposed memory parameters. When null, the default value is governed
by the associated scheduler (a new object is created when the default value is
not null). (See PriorityScheduler34.)

group The proposed processing group parameters. When null, the default value is
governed by the associated scheduler (a new object is created when the default
value is not null). (See PriorityScheduler35.)

Throws
IllegalArgumentException Thrown when the parameter values are not compatible

with the schedulable’s scheduler. Also when this schedulable may not use the
heap and any of the proposed parameter objects are located in heap memory.

IllegalAssignmentError when this cannot hold references to the proposed parameter
objects, or the parameter objects cannot hold a reference to this.

IllegalThreadStateException when the schedulable’s scheduler prohibits this param-
eter change at this time due to the state of the schedulable.

Returns
True, when the resulting system is feasible and the changes are made. False, when

the resulting system is not feasible and no changes are made.
Available since RTSJ 1.0.1

Deprecated as of RTSJ 2.0 The framework for feasibility anlaysis is inadequate

32Section 6.3.3.8
33Section 6.3.3.8
34Section 6.3.3.8
35Section 6.3.3.8

874 RTSJ 2.0 (Draft 48)

Schedulable javax.realtime A.2

setMemoryParametersIfFeasible(MemoryParameters)

Signature
public boolean
setMemoryParametersIfFeasible(MemoryParameters memory)

Description

This method first performs a feasibility analysis using the proposed parameter
object as replacement for the current parameter of this. When the resulting
system is feasible, this method replaces the current parameter of this with the
proposed one.

This change becomes effective under conditions determined by the scheduler
controlling the schedulable. For instance, the change may be immediate or it
may be delayed until the next release of the schedulable. See the documentation
for the scheduler for details.

This method does not require that the schedulable be in the feasibility set
before it is called. When it is not initially a member of the feasibility set it will
be added when the resulting system is feasible.

Parameters
memory The proposed memory parameters. When null, the default value is governed

by the associated scheduler (a new object is created when the default value is
not null). (See PriorityScheduler36.)

Throws
IllegalArgumentException Thrown when the parameter value is not compatible

with the schedulable’s scheduler. Also when this schedulable may not use the
heap and the proposed parameter object is located in heap memory.

IllegalAssignmentError when this cannot hold a reference to the proposed parameter
object, or the parameter object cannot hold a reference to this.

IllegalThreadStateException when the schedulable’s scheduler prohibits the chang-
ing of the memory parameter at this time due to the state of the schedulable.

Returns
True, when the resulting system is feasible and the changes are made. False, when

the resulting system is not feasible and no changes are made.

Deprecated as of RTSJ 2.0 The framework for feasibility anlaysis is inadequate

36Section 6.3.3.8

RTSJ 2.0 (Draft 48) 875

A Deprecated APIs Schedulable

setReleaseParametersIfFeasible(ReleaseParameters)

Signature
public boolean
setReleaseParametersIfFeasible(ReleaseParameters release)

Description

This method first performs a feasibility analysis using the proposed parameter
object as replacement for the current parameter of this. When the resulting
system is feasible, this method replaces the current parameter of this with the
proposed one.

This change becomes effective under conditions determined by the scheduler
controlling the schedulable. For instance, the change may be immediate or it
may be delayed until the next release of the schedulable. See the documentation
for the scheduler for details.

This method does not require that the schedulable be in the feasibility set
before it is called. When it is not initially a member of the feasibility set it will
be added when the resulting system is feasible.

Parameters
release The proposed release parameters. When null, the default value is governed

by the associated scheduler (a new object is created when the default value is
not null). (See PriorityScheduler37.)

Throws
IllegalArgumentException Thrown when the parameter value is not compatible

with the schedulable’s scheduler. Also when this schedulable may not use the
heap and the proposed parameter object is located in heap memory.

IllegalAssignmentError when this cannot hold a reference to the proposed parameter
object, or the parameter object cannot hold a reference to this.

IllegalThreadStateException when the schedulable’s scheduler prohibits the chang-
ing of the release parameter at this time due to the state of the schedulable.

Returns
True, when the resulting system is feasible and the changes are made. False, when

the resulting system is not feasible and no changes are made.

Deprecated as of RTSJ 2.0 The framework for feasibility anlaysis is inadequate.

37Section 6.3.3.8

876 RTSJ 2.0 (Draft 48)

ArrivalTimeQueueOverflowException javax.realtime A.2

setSchedulingParametersIfFeasible(SchedulingParameters)

Signature
public boolean
setSchedulingParametersIfFeasible(SchedulingParameters scheduling)

Description

This method first performs a feasibility analysis using the proposed parameter
object as replacement for the current parameter of this. When the resulting
system is feasible, this method replaces the current parameter of this with the
proposed one.

This change becomes effective under conditions determined by the scheduler
controlling the schedulable. For instance, the change may be immediate or it
may be delayed until the next release of the schedulable. See the documentation
for the scheduler for details.

This method does not require that the schedulable be in the feasibility set
before it is called. When it is not initially a member of the feasibility set it will
be added when the resulting system is feasible.

Parameters
scheduling The proposed scheduling parameters. When null, the default value is

governed by the associated scheduler (a new object is created when the default
value is not null). (See PriorityScheduler38.)

Throws
IllegalArgumentException Thrown when the parameter value is not compatible

with the schedulable’s scheduler. Also when this schedulable may not use the
heap and the proposed parameter object is located in heap memory.

IllegalAssignmentError when this cannot hold a reference to the proposed parameter
object, or the parameter object cannot hold a reference to this.

IllegalThreadStateException when the schedulable’s scheduler prohibits the chang-
ing of the scheduling parameter at this time due to the state of the schedulable
object.

Returns
True, when the resulting system is feasible and the changes are made. False, when

the resulting system is not feasible and no changes are made.

Deprecated as of RTSJ 2.0 The framework for feasibility anlaysis is inadequate

38Section 6.3.3.8

RTSJ 2.0 (Draft 48) 877

A Deprecated APIs AsynchronouslyInterruptedException

A.2.2 Exceptions
A.2.2.1 ArrivalTimeQueueOverflowExceptionT

e following elements of ArrivalTimeQueueOverflowException are deprecated. The
required elements are documented in Section 15.2.2.1 above.

A.2.2.1.1 Constructors

ArrivalTimeQueueOverflowException(String)

Signature
public
ArrivalTimeQueueOverflowException(String description)

Description
A descriptive constructor for ArrivalTimeQueueOverflowException.

Deprecated since RTSJ 2.0; application code should use get()39 instead.

Parameters
description A description of the exception.

A.2.2.2 AsynchronouslyInterruptedExceptionT

e following elements of AsynchronouslyInterruptedException are deprecated. The
required elements are documented in Section 15.2.2.2 above.

A.2.2.2.1 Methods

39Section 15.2.2.1.2

878 RTSJ 2.0 (Draft 48)

AsynchronouslyInterruptedException javax.realtime A.2

happened(boolean)

Signature
public boolean
happened(boolean propagate)

Description
Used with an instance of this exception to see if the current exception is this excep-
tion. When an AsynchronouslyInterruptedException is caught, the catch clause
may invoke the happened() method on the AsynchronouslyInterruptedException
in which it is interested to see if it matches the pending AsynchronouslyInter-
ruptedException. When so, the pending AsynchronouslyInterruptedException is
cleared for the schedulable and happened returns true. Otherwise, the behavior
of happened depends on its propagation parameter. When propagation parame-
ter is true, the AsynchronouslyInterruptedException will continue to propagate
outward; i.e., it will be re-thrown by a mechanism that bypassed the normal
requirement that the checked exception be identified in the method’s signa-
ture. When propagation parameter is false, happened will return false and the
AsynchronouslyInterruptedException remains pending.

Parameters
propagate Control the behavior when this is not the current exception:

• When true and this exception is the current one, set the state of this to
non pending and return true.
• When true and this exception is not the current one, propagate the

exception; i.e., rethrow it.
• When false and this exception is the current one, the state of this is set

to nonpending (i.e., it will stop propagating) and return true.
• When false and this exception is not the current one, return false.

Throws
IllegalThreadStateException when not called from an instance of Schedulable40.

Returns
true, when this is the current exception, and false, when this is not the current

exception.

Deprecated as of RTSJ 1.0.1. This method seriously violates standard Java ex-
ception semantics, and while it is a convenience it is not required. The happened
method can be replaced with the clear method and application logic.

40Section 6.3.1.3

RTSJ 2.0 (Draft 48) 879

A Deprecated APIs DuplicateFilterException

propagate

Signature
public static void
propagate()

Description

Cause the pending exception to continue up the stack. The current AIE remains
pending and control is transferred immediately to the next suitable catch or
finally clause under the normal rules for AIE propagation.

When there is no current AIE, the method does nothing and simply returns.
This method is normally used in a catch clause that is handling an AIE,

but that is not required. The method may be invoked at any time (from a
schedulable).

Throws
IllegalThreadStateException when called from a Java thread.

Deprecated as of RTSJ 1.0.1. This method seriously violates standard Java excep-
tion semantics, and while it is a convenience it is not required. It should be replaced
with throw of an instance of AsynchronouslyInterruptedException.

A.2.2.3 DuplicateFilterException

Inheritance
java.lang.Object
java.lang.Throwable
java.lang.Exception
DuplicateFilterException

Description

PhysicalMemoryManager41 can only accommodate one filter object for each type
of memory. It throws this exception when an attempt is made to register more
than one filter for a type of memory.

Deprecated since RTSJ 2.0

41Section A.2.3.20

880 RTSJ 2.0 (Draft 48)

MemoryScopeException javax.realtime A.2

A.2.2.3.1 Constructors

DuplicateFilterException(String)

Signature
public
DuplicateFilterException(String description)

Description

A descriptive constructor for DuplicateFilterException.

Parameters
description Description of the error.

DuplicateFilterException

Signature
public
DuplicateFilterException()

Description

A constructor for DuplicateFilterException.

A.2.2.4 MemoryScopeExceptionT

e following elements of MemoryScopeException are deprecated. The required ele-
ments are documented in Section 15.2.2.12 above.

A.2.2.4.1 Constructors

RTSJ 2.0 (Draft 48) 881

A Deprecated APIs OffsetOutOfBoundsException

MemoryScopeException(String)

Signature
public
MemoryScopeException(String description)

Description
A descriptive constructor for MemoryScopeException.

Deprecated since RTSJ 2.0; application code should use get()42 instead.

Parameters
description A description of the exception.

A.2.2.5 OffsetOutOfBoundsExceptionT

e following elements of OffsetOutOfBoundsException are deprecated. The required
elements are documented in Section 15.2.2.14 above.

A.2.2.5.1 Constructors

OffsetOutOfBoundsException(String)

Signature
public
OffsetOutOfBoundsException(String description)

Description
A descriptive constructor for OffsetOutOfBoundsException.

Deprecated since RTSJ 2.0; pplication code should use get()43 instead.

Parameters
42Section 15.2.2.12.2
43Section 15.2.2.14.2

882 RTSJ 2.0 (Draft 48)

UnknownHappeningException javax.realtime A.2

description A description of the exception.

A.2.2.6 UnknownHappeningException

Inheritance
java.lang.Object
java.lang.Throwable
java.lang.Exception
java.lang.RuntimeException
UnknownHappeningException

Description
This exception is used to indicate a situation where an instance of AsyncEvent44

attempts to bind to a happening that does not exist.

Deprecated since RTSJ 2.0

A.2.2.6.1 Constructors

UnknownHappeningException

Signature
public
UnknownHappeningException()

Description
A constructor for UnknownHappeningException.

UnknownHappeningException(String)

Signature
public
UnknownHappeningException(String description)

44Section 8.3.3.4

RTSJ 2.0 (Draft 48) 883

A Deprecated APIs AbsoluteTime

Description
A descriptive constructor for UnknownHappeningException.

Parameters
description Description of the error.

A.2.2.7 UnsupportedPhysicalMemoryExceptionT

e following elements of UnsupportedPhysicalMemoryException are deprecated. The
required elements are documented in Section 15.2.2.27 above.

A.2.2.7.1 Constructors

UnsupportedPhysicalMemoryException(String)

Signature
public
UnsupportedPhysicalMemoryException(String description)

Description
A descriptive constructor for UnsupportedPhysicalMemoryException.

Deprecated since RTSJ 2.0; application code should use get()45 instead.

Parameters
description The description of the exception.

A.2.3 Classes
A.2.3.1 AbsoluteTimeT

e following elements of AbsoluteTime are deprecated. The required elements are
documented in Section 9.3.1.1 above.

45Section 15.2.2.27.2

884 RTSJ 2.0 (Draft 48)

AbsoluteTime javax.realtime A.2

A.2.3.1.1 Constructors

AbsoluteTime(long, int, Clock)

Signature
public
AbsoluteTime(long millis,

int nanos,
Clock clock)

throws IllegalArgumentException

Description
Superceeded by and equivalent to AbsoluteTime(long, int, Chronograph)46

Available since RTSJ 1.0.1

Deprecated since version 2.0

Parameters
millis The desired value for the millisecond component of this. The actual value is

the result of parameter normalization.
nanos The desired value for the nanosecond component of this. The actual value is

the result of parameter normalization.
clock The clock providing the association for the newly constructed object.

Throws
IllegalArgumentException when there is an overflow in the millisecond component

when normalizing.

AbsoluteTime(AbsoluteTime, Clock)

Signature
public
AbsoluteTime(AbsoluteTime time,

Clock clock)

46Section 9.3.1.1.1

RTSJ 2.0 (Draft 48) 885

A Deprecated APIs AbsoluteTime

throws IllegalArgumentException

Description
Equivalent to AbsoluteTime(long, int, Chronograph)47 with the arguments time.
getMilliseconds(), time.getNanoseconds(), clock().

Available since RTSJ 1.0.1

Deprecated since version 2.0

Parameters
time is the AbsoluteTime object which is the source for the copy.
clock is the clock providing the association for the newly constructed object.

Throws
IllegalArgumentException when the time parameter is null.

AbsoluteTime(Date, Clock)

Signature
public
AbsoluteTime(Date date,

Clock clock)
throws IllegalArgumentException

Description
Superceeded by and equivalent to AbsoluteTime(Date, Chronograph)48

Available since RTSJ 1.0.1

Deprecated since version 2.0

Parameters
date The java.util.Date representation of the time past the Epoch.
clock The clock providing the association for the newly constructed object.

Throws
IllegalArgumentException when the date parameter is null.

47Section 9.3.1.1.1
48Section 9.3.1.1.1

886 RTSJ 2.0 (Draft 48)

AbsoluteTime javax.realtime A.2

AbsoluteTime(Clock)

Signature
public
AbsoluteTime(Clock clock)

Description
Superceeded by and equivalent to AbsoluteTime(Chronograph)49

Available since RTSJ 1.0.1

Deprecated since version 2.0

Parameters
clock The clock providing the association for the newly constructed object.

A.2.3.1.2 Methods

absolute(Clock)

Signature
public javax.realtime.AbsoluteTime
absolute(Clock clock)

Description
Superceeded by and equivalent to absolute(Chronograph)50.

Parameters
clock The clock parameter is used only as the new clock association with the result,

since no conversion is needed.
Returns
The copy of this in a newly allocated AbsoluteTime object, associated with the

clock parameter.
Deprecated since version 2.0

49Section 9.3.1.1.1
50Section 9.3.1.1.2

RTSJ 2.0 (Draft 48) 887

A Deprecated APIs AbsoluteTime

absolute(Clock, AbsoluteTime)

Signature
public javax.realtime.AbsoluteTime
absolute(Clock clock,

AbsoluteTime dest)

Description
Superceeded by and equivalent to absolute(Chronograph, AbsoluteTime)51.

Parameters
clock The clock parameter is used only as the new clock association with the result,

since no conversion is needed.
dest When dest is not null, the result is placed there and returned. Otherwise, a

new object is allocated for the result.
Returns
The copy of this in dest when dest is not null, otherwise the result is returned in a

newly allocated object. It is associated with the clock parameter.
Deprecated since version 2.0

relative(Clock)

Signature
public javax.realtime.RelativeTime
relative(Clock clock)
throws ArithmeticException

Description
Superceeded by and equivalent to relative(Chronograph)52.

Parameters
clock The instance of Clock53 used to convert the time of this into relative time,

and the new clock association for the result.
Throws
ArithmeticException when the result does not fit in the normalized format.

Returns
51Section 9.3.1.1.2
52Section 9.3.1.1.2
53Section 10.3.2.1

888 RTSJ 2.0 (Draft 48)

AperiodicParameters javax.realtime A.2

The RelativeTime conversion in a newly allocated object, associated with the clock
parameter.

Deprecated since version 2.0

relative(Clock, RelativeTime)

Signature
public javax.realtime.RelativeTime
relative(Clock clock,

RelativeTime dest)
throws ArithmeticException

Description

Superceeded by and equivalent to relative(Chronograph, RelativeTime)54.

Parameters
clock The instance of Clock55 used to convert the time of this into relative time,

and the new clock association for the result.
dest When dest is not null, the result is placed there and returned. Otherwise, a

new object is allocated for the result.
Throws
ArithmeticException when the result does not fit in the normalized format.

Returns
The RelativeTime conversion in dest when dest is not null, otherwise the result is

returned in a newly allocated object. It is associated with the clock parameter.

Deprecated since version 2.0

A.2.3.2 AperiodicParametersT

e following elements of AperiodicParameters are deprecated. The required elements
are documented in Section 6.3.3.2 above.

54Section 9.3.1.1.2
55Section 10.3.2.1

RTSJ 2.0 (Draft 48) 889

A Deprecated APIs AperiodicParameters

A.2.3.2.1 Fields

arrivalTimeQueueOverflowExcept

public static final arrivalTimeQueueOverflowExcept

Description
Represents the “EXCEPT” policy for dealing with arrival time queue overflow.
Under this policy, when an arrival occurs and its time should be queued but the
queue already holds a number of times equal to the initial queue length defined by
this then the fire() method shall throw a ArrivalTimeQueueOverflowException56.
Any other associated semantics are governed by the schedulers for the schedulables
using these aperiodic parameters. When the arrival is a result of a happening
to which the instance of AsyncEventHandler57 is bound then the arrival time is
ignored.

Available since RTSJ 1.0.1 Moved here from SporadicParameters.

Deprecated since RTSJ 2.0

arrivalTimeQueueOverflowIgnore

public static final arrivalTimeQueueOverflowIgnore

Description
Represents the “IGNORE” policy for dealing with arrival time queue overflow.
Under this policy, when an arrival occurs and its time should be queued, but the
queue already holds a number of times equal to the initial queue length defined
by this then the arrival is ignored. Any other associated semantics are governed
by the schedulers for the schedulables using these aperiodic parameters.

Available since RTSJ 1.0.1 Moved here from SporadicParameters.

Deprecated since RTSJ 2.0

56Section 15.2.2.1
57Section 8.3.3.5

890 RTSJ 2.0 (Draft 48)

AperiodicParameters javax.realtime A.2

arrivalTimeQueueOverflowReplace

public static final arrivalTimeQueueOverflowReplace

Description
Represents the “REPLACE” policy for dealing with arrival time queue overflow.
Under this policy, when an arrival occurs and should be queued but the queue
already holds a number of times equal to the initial queue length defined by
this then the information for this arrival replaces a previous arrival. Any other
associated semantics are governed by the schedulers for the schedulables using
these aperiodic parameters.

Available since RTSJ 1.0.1 Moved here from SporadicParameters.

Deprecated since RTSJ 2.0

arrivalTimeQueueOverflowSave

public static final arrivalTimeQueueOverflowSave

Description
Represents the “SAVE” policy for dealing with arrival time queue overflow. Under
this policy, when an arrival occurs and should be queued but the queue is full,
then the queue is lengthened and the arrival time is saved. Any other associated
semantics are governed by the schedulers for the schedulables using these aperiodic
parameters. This policy does not update the “initial queue length” as it alters
the actual queue length. Since the SAVE policy grows the arrival time queue as
necessary, for the SAVE policy the initial queue length is only an optimization.

Available since RTSJ 1.0.1 Moved here from SporadicParameters.

Deprecated since RTSJ 2.0

A.2.3.2.2 Methods

getInitialArrivalTimeQueueLength

Signature

RTSJ 2.0 (Draft 48) 891

A Deprecated APIs AperiodicParameters

public int
getInitialArrivalTimeQueueLength()

Description
Gets the initial number of elements the arrival time queue can hold. This returns
the initial queue length currently associated with this parameter object. When
the overflow policy is SAVE the initial queue length may not be related to the
current queue lengths of schedulables associated with this parameter object.

Returns
The initial length of the queue.

Available since RTSJ 1.0.1 Moved here from SporadicParameters.

Deprecated since RTSJ 2.0 replaced by ReleaseParameters.getInitialQueueLength()58.

setInitialArrivalTimeQueueLength(int)

Signature
public void
setInitialArrivalTimeQueueLength(int initial)

Description
Sets the initial number of elements the arrival time queue can hold without
lengthening the queue. The initial length of an arrival queue is set when the
schedulable using the queue is constructed, after that time changes in the initial
queue length are ignored.

Parameters
initial The initial length of the queue.

Throws
IllegalArgumentException when initial is less than zero.

Available since RTSJ 1.0.1 Moved here from SporadicParameters.

Deprecated since RTSJ 2.0 replaced by ReleaseParameters.setInitialQueueLength(int
initial)59.

58Section 6.3.3.10.2
59Section 6.3.3.10.2

892 RTSJ 2.0 (Draft 48)

AperiodicParameters javax.realtime A.2

getArrivalTimeQueueOverflowBehavior

Signature
public java.lang.String
getArrivalTimeQueueOverflowBehavior()

Description
Gets the behavior of the arrival time queue in the event of an overflow.

Returns
The behavior of the arrival time queue as a string.

Available since RTSJ 1.0.1 Moved from SporadicParameters

Deprecated since RTSJ 2.0 and replaced by ReleaseParameters.getEventQueueOverflowPolicy60

setArrivalTimeQueueOverflowBehavior(String)

Signature
public void
setArrivalTimeQueueOverflowBehavior(String behavior)

Description
Sets the behavior of the arrival time queue in the case where the insertion of a
new element would make the queue size greater than the initial size given in this.

Values of behavior are compared using reference equality (==) not value
equality (equals()).

Parameters
behavior A string representing the behavior.

Throws
IllegalArgumentException when behavior is not one of the final queue overflow

behavior values defined in this class.

Available since RTSJ 1.0.1 Moved here from SporadicParameters.

Deprecated Since RTSJ 2.0

60Section 6.3.3.10.2

RTSJ 2.0 (Draft 48) 893

A Deprecated APIs AsyncEvent

setIfFeasible(RelativeTime, RelativeTime)

Signature
public boolean
setIfFeasible(RelativeTime cost,

RelativeTime deadline)

Description

This method first performs a feasibility analysis using the new cost, and deadline
as replacements for the matching attributes of this. When the resulting system is
feasible, the method replaces the current scheduling characteristics, of this with
the new scheduling characteristics.

Parameters
cost The proposed cost. to determine when any particular object exceeds cost.

When null, the default value is a new instance of RelativeTime(0,0).
deadline The proposed deadline. When null, the default value is a new instance of

RelativeTime(Long.MAX_VALUE, 999999).
Throws
IllegalArgumentException when the time value of cost is less than zero, or the time

value of deadline is less than or equal to zero, or the values are incompatible
with the scheduler for any of the schedulables which are presently using this
parameter object.

IllegalAssignmentError when cost or deadline cannot be stored in this.

Returns
false. Aperiodic parameters never yield a feasible system. (Subclasses of Aperiodic-

Parameters, such as SporadicParameters61, need not return false.)

Deprecated as of RTSJ 2.0

A.2.3.3 AsyncEventT

e following elements of AsyncEvent are deprecated. The required elements are
documented in Section 8.3.3.4 above.

61Section 6.3.3.15

894 RTSJ 2.0 (Draft 48)

AsyncEvent javax.realtime A.2

A.2.3.3.1 Methods

handledBy(AsyncEventHandler)

Signature
public boolean
handledBy(AsyncEventHandler handler)

Description
Replaced by AsyncBaseEvent.handledBy(AsyncBaseEventHandler)62

Parameters
handler to query its association with this.

Returns
true when and only whem handler is associated with this event.

Deprecated since RTSJ 2.0

addHandler(AsyncEventHandler)

Signature
public void
addHandler(AsyncEventHandler handler)

Description
Replaced by AsyncBaseEvent.addHandler(AsyncBaseEventHandler)63

Parameters
handler to add to this.
Deprecated since RTSJ 2.0

setHandler(AsyncEventHandler)

Signature
62Section 8.3.3.2.1
63Section 8.3.3.2.1

RTSJ 2.0 (Draft 48) 895

A Deprecated APIs AsyncEvent

public void
setHandler(AsyncEventHandler handler)

Description
Replaced by AsyncBaseEvent.setHandler(AsyncBaseEventHandler)64

Parameters
handler to be the sole handler for this.
Deprecated since RTSJ 2.0

removeHandler(AsyncEventHandler)

Signature
public void
removeHandler(AsyncEventHandler handler)

Description
Replaced by AsyncBaseEvent.removeHandler(AsyncBaseEventHandler)65

Parameters
handler to be removed.
Deprecated since RTSJ 2.0

bindTo(String)

Signature
public void
bindTo(String happening)

Description
Binds this to an external event, a happening. The meaningful values of happening
are implementation dependent. This instance of AsyncEvent is considered to
have occurred whenever the happening is triggered. More than one happening
can be bound to the same AsyncEvent. However, binding a happening to an
event has no effect when the happening is already bound to the event.

64Section 8.3.3.2.1
65Section 8.3.3.2.1

896 RTSJ 2.0 (Draft 48)

AsyncEventHandler javax.realtime A.2

When an event, which is declared in a scoped memory area, is bound to an
external happening, the reference count of that scoped memory area is incremented
(as if there is an external realtime thread accessing the area). The reference count
is decremented when the event is unbound from the happening.

Parameters
happening An implementation dependent value that binds this instance of Async-

Event to a happening.
Throws
UnknownHappeningException when the String value is not supported by the im-

plementation.
IllegalArgumentException when happening is null.
Deprecated since RTSJ 2.0

unbindTo(String)

Signature
public void
unbindTo(String happening)

Description
Removes a binding to an external event, a happening. The meaningful values of
happening are implementation dependent. When the associated event is declared
in a scoped memory area, the reference count for the memory area is decremented.

Parameters
happening An implementation dependent value representing some external event

to which this instance of AsyncEvent is bound.
Throws
UnknownHappeningException when this instance of AsyncEvent is not bound to

the given happening or the given happening is not supported by the implemen-
tation.

IllegalArgumentException when happening is null.
Deprecated since RTSJ 2.0

A.2.3.4 AsyncEventHandlerT

RTSJ 2.0 (Draft 48) 897

A Deprecated APIs AsyncEventHandler

e following elements of AsyncEventHandler are deprecated. The required elements
are documented in Section 8.3.3.5 above.

A.2.3.4.1 Constructors

AsyncEventHandler(SchedulingParameters, ReleaseParamet-
ers, MemoryParameters, MemoryArea, SchedulingGroup, boo-
lean, Runnable)

Signature
public
AsyncEventHandler(SchedulingParameters scheduling,

ReleaseParameters release,
MemoryParameters memory,
MemoryArea area,
SchedulingGroup group,
boolean nonheap,
Runnable logic)

Description
Calling this constructor is equivalent to callingAsyncEventHandler(SchedulingParameters,
ReleaseParameters, MemoryParameters, MemoryArea, SchedulingGroup, Con-
figurationParameters, Runnable)66 with arguments (scheduling, release, memory.
clone(!nonheap), group, null, logic).

Deprecated in version 2.0.

AsyncEventHandler(SchedulingParameters, ReleaseParamet-
ers, MemoryParameters, MemoryArea, ProcessingGroupPa-
rameters, Runnable)

Signature
public
AsyncEventHandler(SchedulingParameters scheduling,

66Section 8.3.3.5.1

898 RTSJ 2.0 (Draft 48)

AsyncEventHandler javax.realtime A.2

ReleaseParameters release,
MemoryParameters memory,
MemoryArea area,
ProcessingGroupParameters group,
Runnable logic)

Description

Calling this constructor is equivalent to callingAsyncEventHandler(SchedulingParameters,
ReleaseParameters, MemoryParameters, MemoryArea, SchedulingGroup, Con-
figurationParameters, Runnable)67 with arguments (scheduling, release, memory,
area, group, null, logic).

Deprecated in version 2.0.

AsyncEventHandler(SchedulingParameters, ReleaseParamet-
ers, MemoryParameters, MemoryArea, ProcessingGroupPa-
rameters, boolean)

Signature
public
AsyncEventHandler(SchedulingParameters scheduling,

ReleaseParameters release,
MemoryParameters memory,
MemoryArea area,
ProcessingGroupParameters group,
boolean nonheap)

Description

Calling this constructor is equivalent to callingAsyncEventHandler(SchedulingParameters,
ReleaseParameters, MemoryParameters, MemoryArea, SchedulingGroup, Con-
figurationParameters, Runnable)68 with arguments (scheduling, release, memory,
area, group.getProcessingGroup(), null, null).

Deprecated in version 2.0.

67Section 8.3.3.5.1
68Section 8.3.3.5.1

RTSJ 2.0 (Draft 48) 899

A Deprecated APIs AsyncEventHandler

AsyncEventHandler(boolean, Runnable)

Signature
public
AsyncEventHandler(boolean nonheap,

Runnable logic)

Description

Calling this constructor is equivalent to callingAsyncEventHandler(SchedulingParameters,
ReleaseParameters, MemoryParameters, MemoryArea, SchedulingGroup, Con-
figurationParameters, Runnable)69 with arguments (null, null, new MemoryPa-
rameters(!nonheap), null, null, null, logic).

Deprecated in version 2.0.

AsyncEventHandler(boolean)

Signature
public
AsyncEventHandler(boolean nonheap)

Description

Calling this constructor is equivalent to callingAsyncEventHandler(SchedulingParameters,
ReleaseParameters, MemoryParameters, MemoryArea, SchedulingGroup, Con-
figurationParameters, Runnable)70 with arguments (null, null, new MemoryPa-
rameters(!nonheap), null, null, null, null).

Deprecated in version 2.0.

A.2.3.4.2 Methods

69Section 8.3.3.5.1
70Section 8.3.3.5.1

900 RTSJ 2.0 (Draft 48)

AsyncEventHandler javax.realtime A.2

getAndIncrementPendingFireCount

Signature
protected int
getAndIncrementPendingFireCount()

Description
This is an accessor method for fireCount. This method atomically increments,
by one, the value of fireCount and returns the value from before the increment.

The effect of a call to getAndIncrementPendingFireCount on the arrival-time
queue and the scheduling of this AEH depends on the semantics of the scheduler
controlling this AEH.

Throws
MITViolationException Thrown when this AEH is controlled by sporadic schedul-

ing parameters under the base scheduler, the parameters specify the mitVi-
olationExcept policy, and this method would introduce a release that would
violate the specified minimum interarrival time.

ArrivalTimeQueueOverflowException Thrown when this AEH is controlled by ape-
riodic scheduling parameters under the base scheduler, the release parameters
specify the arrivalTimeQueueOverflowExcept policy, and this method would
cause the arrival time queue to overflow.

Returns
The value held by fireCount prior to incrementing it by one.
Deprecated as of RTSJ 2.0 Use ae.fire()

setScheduler(Scheduler, SchedulingParameters, ReleasePar-
ameters, MemoryParameters, ProcessingGroupParameters)

Signature
public void
setScheduler(Scheduler scheduler,

SchedulingParameters scheduling,
ReleaseParameters release,
MemoryParameters memoryParameters,
ProcessingGroupParameters group)

Description

RTSJ 2.0 (Draft 48) 901

A Deprecated APIs AsyncEventHandler

Sets the scheduler and associated parameter objects. The timing of the change
must be agreed between the scheduler currently associated with this schedulable,
and scheduler.

Parameters
scheduler scheduler A reference to the scheduler that will manage the execution of

this schedulable. Null is not a permissible value.
scheduling scheduling A reference to the SchedulingParameters71 which will be asso-

ciated with this. When null, the default value is governed by scheduler (a new
object is created when the default value is not null). (See PriorityScheduler72.)

release release A reference to the ReleaseParameters73 which will be associated with
this. When null, the default value is governed by scheduler (a new object is
created when the default value is not null). (See PriorityScheduler74.)

memoryParameters memoryParameters A reference to the MemoryParameters75

which will be associated with this. When null, the default value is governed
by scheduler (a new object is created when the default value is not null). (See
PriorityScheduler76.)

group group A reference to the ProcessingGroupParameters77 which will be associ-
ated with this. When null, the default value is governed by scheduler (a new
object is created). (See PriorityScheduler78.)

Throws
IllegalArgumentException IllegalArgumentException Thrown when scheduler is

null or the parameter values are not compatible with scheduler. Also thrown
when this schedulable may not use the heap and scheduler, scheduling release,
memoryParameters, or group is located in heap memory.

IllegalAssignmentError IllegalAssignmentError when this object cannot hold refer-
ences to all the parameter objects or the parameters cannot hold references to
this.

SecurityException SecurityException when the caller is not permitted to set the
scheduler for this schedulable.

Deprecated since RTSJ 2.0

71Section 6.3.3.14
72Section 6.3.3.8
73Section 6.3.3.10
74Section 6.3.3.8
75Section 11.3.2.4
76Section 6.3.3.8
77Section A.2.3.23
78Section 6.3.3.8

902 RTSJ 2.0 (Draft 48)

AsyncEventHandler javax.realtime A.2

getProcessingGroupParameters

Signature
public javax.realtime.ProcessingGroupParameters
getProcessingGroupParameters()

Description
Gets a reference to the ProcessingGroupParameters79 object for this schedulable.

Returns
A reference to the current ProcessingGroupParameters80 object.

Deprecated since RTSJ 2.0

setProcessingGroupParameters(ProcessingGroupParameters)

Signature
public void
setProcessingGroupParameters(ProcessingGroupParameters group)

Description
Sets the ProcessingGroupParameters81 of this.

This change becomes effective under conditions determined by the scheduler
controlling the schedulable. For instance, the change may be immediate or it
may be delayed until the next release of the schedulable. See the documentation
for the scheduler for details.

Parameters
group group A ProcessingGroupParameters82 object which will take effect as deter-

mined by the associated scheduler. When null, the default value is governed
by the associated scheduler (a new object is created when the default value is
not null). (See PriorityScheduler83.)

Throws
79Section A.2.3.23
80Section A.2.3.23
81Section A.2.3.23
82Section A.2.3.23
83Section 6.3.3.8

RTSJ 2.0 (Draft 48) 903

A Deprecated APIs AsyncEventHandler

IllegalArgumentException IllegalArgumentException Thrown when group is not
compatible with the scheduler for this schedulable object. Also when this
schedulable may not use the heap and group is located in heap memory.

IllegalAssignmentError IllegalAssignmentError when this object cannot hold a
reference to group or group cannot hold a reference to this.

IllegalThreadStateException IllegalThreadStateException when the schedulable’s
scheduler prohibits the changing of the processing group parameter at this
time due to the state of the schedulable object.

Deprecated since RTSJ 2.0

addToFeasibility

Signature
public boolean
addToFeasibility()

Description
Inform the scheduler and cooperating facilities that this instance of Schedulable84

should be considered in feasibility analysis until further notified.
When the object is already included in the feasibility set, do nothing.

Returns
True, when the resulting system is feasible. False, when not.
Deprecated as of RTSJ 2.0 The framework for feasibility analysis is inadequate

addIfFeasible

Signature
public boolean
addIfFeasible()

Description
This method first performs a feasibility analysis with this added to the system.
When the resulting system is feasible, inform the scheduler and cooperating
facilities that this instance of Schedulable85 should be considered in feasibility

84Section 6.3.1.3
85Section 6.3.1.3

904 RTSJ 2.0 (Draft 48)

AsyncEventHandler javax.realtime A.2

analysis until further notified. When the analysis showed that the system including
this would not be feasible, this method does not admit this to the feasibility set.

When the object is already included in the feasibility set, do nothing.

Returns
True when inclusion of this in the feasibility set yields a feasible system, and false

otherwise. When true is returned then this is known to be in the feasibility
set. When false is returned, this was not added to the feasibility set, but it
may already have been present.

Deprecated as of RTSJ 2.0 The framework for feasibility analysis is inadequate

removeFromFeasibility

Signature
public boolean
removeFromFeasibility()

Description
Inform the scheduler and cooperating facilities that this instance of Schedulable86

should not be considered in feasibility analysis until it is further notified.

Returns
true when the removal was successful. false when the schedulable cannot be

removed from the scheduler’s feasibility set; e.g., the schedulable is not part of
the scheduler’s feasibility set.

Deprecated as of RTSJ 2.0 The framework for feasibility analysis is inadequate

setIfFeasible(ReleaseParameters, MemoryParameters)

Signature
public boolean
setIfFeasible(ReleaseParameters release,

MemoryParameters memory)

Description
86Section 6.3.1.3

RTSJ 2.0 (Draft 48) 905

A Deprecated APIs AsyncEventHandler

This method first performs a feasibility analysis using the proposed parameter
objects as replacements for the current parameters of this. When the resulting
system is feasible, this method replaces the current parameters of this with the
proposed ones.

This change becomes effective under conditions determined by the scheduler
controlling the schedulable. For instance, the change may be immediate or it
may be delayed until the next release of the schedulable. See the documentation
for the scheduler for details.

This method does not require that the schedulable be in the feasibility set
before it is called. When it is not initially a member of the feasibility set it will
be added when the resulting system is feasible.

Parameters
release release The proposed release parameters. When null, the default value is

governed by the associated scheduler (a new object is created when the default
value is not null). (See PriorityScheduler87.)

memory memory The proposed memory parameters. When null, the default value
is governed by the associated scheduler (a new object is created when the
default value is not null). (See PriorityScheduler88.)

Throws
IllegalArgumentException IllegalArgumentException Thrown when the parameter

values are not compatible with the schedulable’s scheduler. Also when this
schedulable may not use the heap and any of the proposed parameter objects
are located in heap memory.

IllegalAssignmentError IllegalAssignmentError when this cannot hold references
to the proposed parameter objects, or the parameter objects cannot hold a
reference to this.

IllegalThreadStateException IllegalThreadStateException when the schedulable’s
scheduler prohibits this parameter change at this time due to the state of the
schedulable.

Returns
True, when the resulting system is feasible and the changes are made. False, when

the resulting system is not feasible and no changes are made.
Deprecated as of RTSJ 2.0 The framework for feasibility analysis is inadequate

setIfFeasible(SchedulingParameters, ReleaseParameters, Mem-
oryParameters)

87Section 6.3.3.8
88Section 6.3.3.8

906 RTSJ 2.0 (Draft 48)

AsyncEventHandler javax.realtime A.2

Signature
public boolean
setIfFeasible(SchedulingParameters scheduling,

ReleaseParameters release,
MemoryParameters memory)

Description
This method first performs a feasibility analysis using the proposed parameter
objects as replacements for the current parameters of this. When the resulting
system is feasible, this method replaces the current parameters of this with the
proposed ones.

This change becomes effective under conditions determined by the scheduler
controlling the schedulable. For instance, the change may be immediate or it
may be delayed until the next release of the schedulable. See the documentation
for the scheduler for details.

This method does not require that the schedulable be in the feasibility set
before it is called. When it is not initially a member of the feasibility set it will
be added when the resulting system is feasible.

Parameters
scheduling scheduling The proposed scheduling parameters. When null, the default

value is governed by the associated scheduler (a new object is created when
the default value is not null). (See PriorityScheduler89.)

release release The proposed release parameters. When null, the default value is
governed by the associated scheduler (a new object is created when the default
value is not null). (See PriorityScheduler90.)

memory memory The proposed memory parameters. When null, the default value
is governed by the associated scheduler (a new object is created when the
default value is not null). (See PriorityScheduler91.)

Throws
IllegalArgumentException IllegalArgumentException Thrown when the parameter

values are not compatible with the schedulable’s scheduler. Also when this
schedulable may not use the heap and any of the proposed parameter objects
are located in heap memory.

IllegalAssignmentError IllegalAssignmentError when this cannot hold references
to the proposed parameter objects, or the parameter objects cannot hold a

89Section 6.3.3.8
90Section 6.3.3.8
91Section 6.3.3.8

RTSJ 2.0 (Draft 48) 907

A Deprecated APIs AsyncEventHandler

reference to this.
IllegalThreadStateException IllegalThreadStateException when the schedulable’s

scheduler prohibits this parameter change at this time due to the state of the
schedulable.

Returns
True, when the resulting system is feasible and the changes are made. False, when

the resulting system is not feasible and no changes are made.

Deprecated as of RTSJ 2.0 The framework for feasibility analysis is inadequate

setIfFeasible(ReleaseParameters, MemoryParameters, Proces-
singGroupParameters)

Signature
public boolean
setIfFeasible(ReleaseParameters release,

MemoryParameters memory,
ProcessingGroupParameters group)

Description

This method first performs a feasibility analysis using the proposed parameter
objects as replacements for the current parameters of this. When the resulting
system is feasible, this method replaces the current parameters of this with the
proposed ones.

This change becomes effective under conditions determined by the scheduler
controlling the schedulable. For instance, the change may be immediate or it
may be delayed until the next release of the schedulable. See the documentation
for the scheduler for details.

This method does not require that the schedulable be in the feasibility set
before it is called. When it is not initially a member of the feasibility set it will
be added when the resulting system is feasible.

Parameters
release release The proposed release parameters. When null, the default value is

governed by the associated scheduler (a new object is created when the default
value is not null). (See PriorityScheduler92.)

92Section 6.3.3.8

908 RTSJ 2.0 (Draft 48)

AsyncEventHandler javax.realtime A.2

memory memory The proposed memory parameters. When null, the default value
is governed by the associated scheduler (a new object is created when the
default value is not null). (See PriorityScheduler93.)

group group The proposed processing group parameters. When null, the default
value is governed by the associated scheduler (a new object is created when
the default value is not null). (See PriorityScheduler94.)

Throws
IllegalArgumentException IllegalArgumentException Thrown when the parameter

values are not compatible with the schedulable’s scheduler. Also when this
schedulable may not use the heap and any of the proposed parameter objects
are located in heap memory.

IllegalAssignmentError IllegalAssignmentError when this cannot hold references
to the proposed parameter objects, or the parameter objects cannot hold a
reference to this.

IllegalThreadStateException IllegalThreadStateException when the schedulable’s
scheduler prohibits this parameter change at this time due to the state of the
schedulable.

Returns
True, when the resulting system is feasible and the changes are made. False, when

the resulting system is not feasible and no changes are made.

Deprecated as of RTSJ 2.0 The framework for feasibility analysis is inadequate

setIfFeasible(SchedulingParameters, ReleaseParameters, Mem-
oryParameters, ProcessingGroupParameters)

Signature
public boolean
setIfFeasible(SchedulingParameters scheduling,

ReleaseParameters release,
MemoryParameters memory,
ProcessingGroupParameters group)

Description
This method first performs a feasibility analysis using the proposed parameter
objects as replacements for the current parameters of this. When the resulting

93Section 6.3.3.8
94Section 6.3.3.8

RTSJ 2.0 (Draft 48) 909

A Deprecated APIs AsyncEventHandler

system is feasible, this method replaces the current parameters of this with the
proposed ones.

This change becomes effective under conditions determined by the scheduler
controlling the schedulable. For instance, the change may be immediate or it
may be delayed until the next release of the schedulable. See the documentation
for the scheduler for details.

This method does not require that the schedulable be in the feasibility set
before it is called. When it is not initially a member of the feasibility set it will
be added when the resulting system is feasible.

Parameters
scheduling scheduling The proposed scheduling parameters. When null, the default

value is governed by the associated scheduler (a new object is created when
the default value is not null). (See PriorityScheduler95.)

release release The proposed release parameters. When null, the default value is
governed by the associated scheduler (a new object is created when the default
value is not null). (See PriorityScheduler96.)

memory memory The proposed memory parameters. When null, the default value
is governed by the associated scheduler (a new object is created when the
default value is not null). (See PriorityScheduler97.)

group group The proposed processing group parameters. When null, the default
value is governed by the associated scheduler (a new object is created when
the default value is not null). (See PriorityScheduler98.)

Throws
IllegalArgumentException IllegalArgumentException Thrown when the parameter

values are not compatible with the schedulable’s scheduler. Also when this
schedulable may not use the heap and any of the proposed parameter objects
are located in heap memory.

IllegalAssignmentError IllegalAssignmentError when this cannot hold references
to the proposed parameter objects, or the parameter objects cannot hold a
reference to this.

IllegalThreadStateException IllegalThreadStateException when the schedulable’s
scheduler prohibits this parameter change at this time due to the state of the
schedulable.

Returns
95Section 6.3.3.8
96Section 6.3.3.8
97Section 6.3.3.8
98Section 6.3.3.8

910 RTSJ 2.0 (Draft 48)

AsyncEventHandler javax.realtime A.2

True, when the resulting system is feasible and the changes are made. False, when
the resulting system is not feasible and no changes are made.

Deprecated as of RTSJ 2.0 The framework for feasibility anlaysis is inadequate

setReleaseParametersIfFeasible(ReleaseParameters)

Signature
public boolean
setReleaseParametersIfFeasible(ReleaseParameters release)

Description
This method first performs a feasibility analysis using the proposed parameter
object as replacement for the current parameter of this. When the resulting
system is feasible, this method replaces the current parameter of this with the
proposed one.

This change becomes effective under conditions determined by the scheduler
controlling the schedulable. For instance, the change may be immediate or it
may be delayed until the next release of the schedulable. See the documentation
for the scheduler for details.

This method does not require that the schedulable be in the feasibility set
before it is called. When it is not initially a member of the feasibility set it will
be added when the resulting system is feasible.

Parameters
release release The proposed release parameters. When null, the default value is

governed by the associated scheduler (a new object is created when the default
value is not null). (See PriorityScheduler99.)

Throws
IllegalArgumentException IllegalArgumentException Thrown when the parameter

value is not compatible with the schedulable’s scheduler. Also when this
schedulable may not use the heap and the proposed parameter object is located
in heap memory.

IllegalAssignmentError IllegalAssignmentError when this cannot hold a reference to
the proposed parameter object, or the parameter object cannot hold a reference
to this.

IllegalThreadStateException IllegalThreadStateException when the schedulable’s
scheduler prohibits the changing of the release parameter at this time due to
the state of the schedulable.

99Section 6.3.3.8

RTSJ 2.0 (Draft 48) 911

A Deprecated APIs AsyncEventHandler

Returns
True, when the resulting system is feasible and the changes are made. False, when

the resulting system is not feasible and no changes are made.

Deprecated as of RTSJ 2.0 The framework for feasibility anlaysis is inadequate

setProcessingGroupParametersIfFeasible(ProcessingGroupParameters)

Signature
public boolean
setProcessingGroupParametersIfFeasible(ProcessingGroupParameters group)

Description
This method first performs a feasibility analysis using the proposed parameter
object as replacement for the current parameter of this. When the resulting
system is feasible, this method replaces the current parameter of this with the
proposed one.

This change becomes effective under conditions determined by the scheduler
controlling the schedulable. For instance, the change may be immediate or it
may be delayed until the next release of the schedulable. See the documentation
for the scheduler for details.

This method does not require that the schedulable be in the feasibility set
before it is called. When it is not initially a member of the feasibility set it will
be added when the resulting system is feasible.

Parameters
group group The proposed processing group parameters. When null, the default

value is governed by the associated scheduler (a new object is created when
the default value is not null). (See PriorityScheduler100.)

Throws
IllegalArgumentException IllegalArgumentException Thrown when the parameter

value is not compatible with the schedulable’s scheduler. Also when this
schedulable may not use the heap and the proposed parameter object is located
in heap memory.

IllegalAssignmentError IllegalAssignmentError when this cannot hold a reference to
the proposed parameter object, or the parameter object cannot hold a reference
to this.

100Section 6.3.3.8

912 RTSJ 2.0 (Draft 48)

AsyncEventHandler javax.realtime A.2

IllegalThreadStateException IllegalThreadStateException when the schedulable’s
scheduler prohibits the changing of the processing group parameter at this
time due to the state of the schedulable object.

Returns
True, when the resulting system is feasible and the changes are made. False, when

the resulting system is not feasible and no changes are made.

Deprecated as of RTSJ 2.0 The framework for feasibility anlaysis is inadequate

setIfFeasible(ReleaseParameters, ProcessingGroupParameters)

Signature
public boolean
setIfFeasible(ReleaseParameters release,

ProcessingGroupParameters group)

Description
This method first performs a feasibility analysis using the proposed parameter
objects as replacements for the current parameters of this. When the resulting
system is feasible, this method replaces the current parameters of this with the
proposed ones.

This change becomes effective under conditions determined by the scheduler
controlling the schedulable. For instance, the change may be immediate or it
may be delayed until the next release of the schedulable. See the documentation
for the scheduler for details.

This method does not require that the schedulable be in the feasibility set
before it is called. When it is not initially a member of the feasibility set it will
be added when the resulting system is feasible.

Parameters
release release The proposed release parameters. When null, the default value is

governed by the associated scheduler (a new object is created when the default
value is not null). (See PriorityScheduler101.)

group group The proposed processing group parameters. When null, the default
value is governed by the associated scheduler (a new object is created when
the default value is not null). (See PriorityScheduler102.)

101Section 6.3.3.8
102Section 6.3.3.8

RTSJ 2.0 (Draft 48) 913

A Deprecated APIs AsyncEventHandler

Throws
IllegalArgumentException IllegalArgumentException Thrown when the parameter

values are not compatible with the schedulable’s scheduler. Also when this
schedulable may not use the heap and any of the proposed parameter objects
are located in heap memory.

IllegalAssignmentError IllegalAssignmentError when this cannot hold references
to the proposed parameter objects, or the parameter objects cannot hold a
reference to this.

IllegalThreadStateException IllegalThreadStateException when the schedulable’s
scheduler prohibits this parameter change at this time due to the state of the
schedulable.

Returns
True, when the resulting system is feasible and the changes are made. False, when

the resulting system is not feasible and no changes are made.

Deprecated as of RTSJ 2.0 The framework for feasibility anlaysis is inadequate

setMemoryParametersIfFeasible(MemoryParameters)

Signature
public final boolean
setMemoryParametersIfFeasible(MemoryParameters memory)

Description
This method first performs a feasibility analysis using the proposed parameter
object as replacement for the current parameter of this. When the resulting
system is feasible, this method replaces the current parameter of this with the
proposed one.

This change becomes effective under conditions determined by the scheduler
controlling the schedulable. For instance, the change may be immediate or it
may be delayed until the next release of the schedulable. See the documentation
for the scheduler for details.

This method does not require that the schedulable be in the feasibility set
before it is called. When it is not initially a member of the feasibility set it will
be added when the resulting system is feasible.

Parameters
memory memory The proposed memory parameters. When null, the default value

is governed by the associated scheduler (a new object is created when the

914 RTSJ 2.0 (Draft 48)

AsyncEventHandler javax.realtime A.2

default value is not null). (See PriorityScheduler103.)
Throws
IllegalArgumentException IllegalArgumentException Thrown when the parameter

value is not compatible with the schedulable’s scheduler. Also when this
schedulable may not use the heap and the proposed parameter object is located
in heap memory.

IllegalAssignmentError IllegalAssignmentError when this cannot hold a reference to
the proposed parameter object, or the parameter object cannot hold a reference
to this.

IllegalThreadStateException IllegalThreadStateException when the schedulable’s
scheduler prohibits the changing of the memory parameter at this time due to
the state of the schedulable.

Returns
True, when the resulting system is feasible and the changes are made. False, when

the resulting system is not feasible and no changes are made.

Deprecated as of RTSJ 2.0 The framework for feasibility analysis is inadequate

setSchedulingParametersIfFeasible(SchedulingParameters)

Signature
public boolean
setSchedulingParametersIfFeasible(SchedulingParameters scheduling)

Description
This method first performs a feasibility analysis using the proposed parameter
object as replacement for the current parameter of this. When the resulting
system is feasible, this method replaces the current parameter of this with the
proposed one.

This change becomes effective under conditions determined by the scheduler
controlling the schedulable. For instance, the change may be immediate or it
may be delayed until the next release of the schedulable. See the documentation
for the scheduler for details.

This method does not require that the schedulable be in the feasibility set
before it is called. When it is not initially a member of the feasibility set it will
be added when the resulting system is feasible.

Parameters
103Section 6.3.3.8

RTSJ 2.0 (Draft 48) 915

A Deprecated APIs BoundAsyncEventHandler

scheduling scheduling The proposed scheduling parameters. When null, the default
value is governed by the associated scheduler (a new object is created when
the default value is not null). (See PriorityScheduler104.)

Throws
IllegalArgumentException IllegalArgumentException Thrown when the parameter

value is not compatible with the schedulable’s scheduler. Also when this
schedulable may not use the heap and the proposed parameter object is located
in heap memory.

IllegalAssignmentError IllegalAssignmentError when this cannot hold a reference to
the proposed parameter object, or the parameter object cannot hold a reference
to this.

IllegalThreadStateException IllegalThreadStateException when the schedulable’s
scheduler prohibits the changing of the scheduling parameter at this time due
to the state of the schedulable object.

Returns
True, when the resulting system is feasible and the changes are made. False, when

the resulting system is not feasible and no changes are made.

Deprecated as of RTSJ 2.0 The framework for feasibility anlaysis is inadequate

A.2.3.5 BoundAsyncEventHandlerT

e following elements of BoundAsyncEventHandler are deprecated. The required
elements are documented in Section 8.3.3.10 above.

A.2.3.5.1 Constructors

BoundAsyncEventHandler(SchedulingParameters, ReleasePar-
ameters, MemoryParameters, MemoryArea, ProcessingGroup-
Parameters, boolean, Runnable)

Signature
104Section 6.3.3.8

916 RTSJ 2.0 (Draft 48)

BoundAsyncEventHandler javax.realtime A.2

public
BoundAsyncEventHandler(SchedulingParameters scheduling,

ReleaseParameters release,
MemoryParameters memory,
MemoryArea area,
ProcessingGroupParameters group,
boolean nonheap,
Runnable logic)

Description
Create an instance of BoundAsyncEventHandler with the specified parameters.
The newly-created handler inherits the affinity of its creator.

Deprecated since RTSJ 2.0

Parameters
scheduling a SchedulingParameters105 object which will be associated with the

constructed instance. When null, and the creator is not an instance of Sched-
ulable106, a SchedulingParameters object is created which has the default
SchedulingParameters for the scheduler associated with the current thread.
When null, and the creator is a schedulable object, the SchedulingParameters
are inherited from the current schedulable (a new SchedulingParameters object
is cloned).

release a ReleaseParameters107 object which will be associated with the constructed
instance. When null, this will have default ReleaseParameters for the BAEH’s
scheduler.

memory a MemoryParameters108 object which will be associated with the con-
structed instance. When null, this will have no MemoryParameters.

area The MemoryArea109 for this. When null, the memory area will be that of the
current thread/schedulable.

group a ProcessingGroupParameters110 object which will be associated with the
constructed instance. When null, this will not be associated with any processing
group.

logic The Runnable object whose run() method is executed by AsyncEventHandler.

105Section 6.3.3.14
106Section 6.3.1.3
107Section 6.3.3.10
108Section 11.3.2.4
109Section 11.3.2.3
110Section A.2.3.23

RTSJ 2.0 (Draft 48) 917

A Deprecated APIs Clock

handleAsyncEvent()111. When null, the default handleAsyncEvent() method
invokes nothing.

nonheap when true, the code executed by this handler may not reference or store
objects in HeapMemory112; otherwise, that code may do so. When true and
the current handler tries to reference or store objects in HeapMemory or enter
the HeapMemory a IllegalArgumentException is thrown.

Throws
IllegalArgumentException when nonheap is true and logic, any parameter object,

or this is in heap memory. Also when noheap is true and area is heap memory.
IllegalAssignmentError when the new AsyncEventHandler instance cannot hold a

reference to non-null values of scheduling release memory and group, or when
those parameters cannot hold a reference to the new AsyncEventHandler. Also
when the new AsyncEventHandler instance cannot hold a reference to non-null
values of area and logic.

A.2.3.6 ClockT

e following elements of Clock are deprecated. The required elements are docu-
mented in Section 10.3.2.1 above.

A.2.3.6.1 Methods

setResolution(RelativeTime)

Signature
public abstract void
setResolution(RelativeTime resolution)

Description
Set the resolution of this. For some hardware clocks setting resolution is impossi-
ble and when this method is called on those clocks, then an UnsupportedOpera-
tionException is thrown.

Parameters
111Section 8.3.3.5.2
112Section 11.3.2.1

918 RTSJ 2.0 (Draft 48)

GarbageCollector javax.realtime A.2

resolution The new resolution of this, when the requested value is supported by
this clock. When resolution is smaller than the minimum resolution supported
by this clock then it throws IllegalArgumentException. When the requested
resolution is not available and it is larger than the minimum resolution, then
the clock will be set to the closest resolution that the clock supports, via
truncation. The value of the resolution parameter is not altered. The clock
association of the resolution parameter is ignored.

Throws
IllegalArgumentException when resolution is null, or when the requested resolution

is smaller than the minimum resolution supported by this clock.
UnsupportedOperationException when the clock does not support setting its reso-

lution.

Deprecated since RTSJ 2.0

getResolution

Signature
public final javax.realtime.RelativeTime
getResolution()

Description
Gets the resolution of the clock, the nominal interval between ticks.

Returns
A newly allocated RelativeTime113 object representing the resolution of this. The

returned object is associated with this clock.

Deprecated since RTSJ 2.0

See Section getDrivePrecision

See Section getQueryPrecision

A.2.3.7 GarbageCollectorT

113Section 9.3.1.3

RTSJ 2.0 (Draft 48) 919

A Deprecated APIs HighResolutionTime

e following elements of GarbageCollector are deprecated. The required elements are
documented in Section 14.2.2.3 above.

A.2.3.7.1 Constructors

GarbageCollector

Signature
public
GarbageCollector()

Description
Create an instance of this.

Deprecated as of RTSJ 1.0.1 This class and any subclasses should be singletons.

A.2.3.8 HighResolutionTimeT

e following elements of HighResolutionTime are deprecated. The required elements
are documented in Section 9.3.1.2 above.

A.2.3.8.1 Methods

absolute(Clock, AbsoluteTime)

Signature
public abstract javax.realtime.AbsoluteTime
absolute(Clock clock,

AbsoluteTime dest)

Description
Equivalent to and superseded by absolute(Chronograph, AbsoluteTime)114. When

114Section 9.3.1.2.1

920 RTSJ 2.0 (Draft 48)

HighResolutionTime javax.realtime A.2

dest is not null, the result is placed there and returned. Otherwise, a new object
is allocated for the result. The clock association of the result is the clock passed
as a parameter. See the subclass comments for more specific information.

Parameters
clock The instance of Clock115 used to convert the time of this into absolute time,

and the new clock association for the result.
dest when dest is not null, the result is placed it and returned. Otherwise, a new

object is allocated for the result.
Returns
The AbsoluteTime conversion in dest when dest is not null; otherwise the result is

returned in a newly allocated object. It is associated with the clock parameter.

Deprecated since version 2.0

absolute(Clock)

Signature
public abstract javax.realtime.AbsoluteTime
absolute(Clock clock)

Description
Equivalent to and superseded by absolute(Chronograph)116.

Parameters
clock is the instance of Clock117 used to convert the time of this into absolute time,

and the new clock association for the result.
Returns
The AbsoluteTime conversion in a newly allocated object, associated with the clock

parameter.

Deprecated since version 2.0

relative(Clock, RelativeTime)

Signature
115Section 10.3.2.1
116Section 9.3.1.2.1
117Section 10.3.2.1

RTSJ 2.0 (Draft 48) 921

A Deprecated APIs IllegalAssignmentError

public abstract javax.realtime.RelativeTime
relative(Clock clock,

RelativeTime dest)

Description
Equivalent to and superseded by relative(Chronograph, RelativeTime)118

Parameters
clock The instance of Clock119 used to convert the time of this into relative time,

and the new clock association for the result.
dest When dest is not null, the result is placed there and returned. Otherwise, a

new object is allocated for the result.
Returns
The RelativeTime120 conversion in dest when dest is not null, otherwise the result

is returned in a newly allocated object.

Deprecated since version 2.0

relative(Clock)

Signature
public abstract javax.realtime.RelativeTime
relative(Clock clock)

Description
Equivalent to and superseded by relative(Chronograph)121

Parameters
clock The instance of Clock122 used to convert the time of this into relative time,

and the new clock association for the result.
Returns
The RelativeTime conversion in a newly allocated object, associated with the clock

parameter.

Deprecated since version 2.0

118Section 9.3.1.2.1
119Section 10.3.2.1
120Section 9.3.1.3
121Section 9.3.1.2.1
122Section 10.3.2.1

922 RTSJ 2.0 (Draft 48)

ImmortalPhysicalMemory javax.realtime A.2

A.2.3.9 IllegalAssignmentErrorT

e following elements of IllegalAssignmentError are deprecated. The required el-
ements are documented in Section 15.2.3.2 above.

A.2.3.9.1 Constructors

IllegalAssignmentError(String)

Signature
public
IllegalAssignmentError(String description)

Description
A descriptive constructor for IllegalAssignmentError.

Deprecated since RTSJ 2.0; application code should use get()123 instead.

Parameters
description Description of the error.

A.2.3.10 ImmortalPhysicalMemory

Inheritance
java.lang.Object
MemoryArea
ImmortalPhysicalMemory

Description
An instance of ImmortalPhysicalMemory allows objects to be allocated from a
range of physical memory with particular attributes, determined by their memory
type. This memory area has the same restrictive set of assignment rules as

123Section 15.2.3.2.2

RTSJ 2.0 (Draft 48) 923

A Deprecated APIs ImmortalPhysicalMemory

ImmortalMemory124 memory areas, and may be used in any execution context
where ImmortalMemory is appropriate.

No provision is made for sharing object in ImmortalPhysicalMemory with
entities outside the JVM that creates them, and, while the memory backing an
instance of ImmortalPhysicalMemory could be shared by multiple JVMs, the
class does not support such sharing.

Methods from ImmortalPhysicalMemory should be overridden only by meth-
ods that use super.

Deprecated since RTSJ 2.0

A.2.3.10.1 Constructors

ImmortalPhysicalMemory(Object, long, long, Runnable)

Signature
public
ImmortalPhysicalMemory(Object type,

long base,
long size,
Runnable logic)

Description
Create an instance with the given parameters.

Parameters
type An instance of Object or an array of objects representing the type of memory

required (e.g., dma, shared) - used to define the base address and control the
mapping. When the required memory has more than one attribute type may
be an array of objects. When type is null or a reference to an array with no
entries, any type of memory is acceptable. Note that type values are compared
by reference (==), not by value (equals).

base The physical memory address of the area.
size The size of the area in bytes.
124Section 11.3.2.2

924 RTSJ 2.0 (Draft 48)

ImmortalPhysicalMemory javax.realtime A.2

logic The run()method of this object will be called wheneverMemoryArea.enter()125

is called. When logic is null, logic must be supplied when the memory area is
entered.

Throws
SecurityException when the application doesn’t have permissions to access physical

memory or the given type of memory.
OffsetOutOfBoundsException when the base address is invalid.
SizeOutOfBoundsException when size extends into an invalid range of memory.
UnsupportedPhysicalMemoryException when the underlying hardware does not

support the given type, or when no matching PhysicalMemoryTypeFilter126

has been registered with the PhysicalMemoryManager127.
MemoryTypeConflictException when the specified base does not point to memory

that matches the requested type, or when type specifies incompatible memory
attributes.

IllegalArgumentException when size is negative. IllegalArgumentException may
also be when base plus size would be greater than the maximum physical
address supported by the processor.

MemoryInUseException when the specified memory is already in use.
OutOfMemoryError when there is insufficient memory for the ImmortalPhysicalMem-

ory object or for the backing memory.
IllegalAssignmentError when storing logic in this would violate the assignment

rules.

ImmortalPhysicalMemory(Object, long, SizeEstimator, Run-
nable)

Signature
public
ImmortalPhysicalMemory(Object type,

long base,
SizeEstimator size,
Runnable logic)

Description
125Section 11.3.2.3.2
126Section A.2.1.1
127Section A.2.3.20

RTSJ 2.0 (Draft 48) 925

A Deprecated APIs ImmortalPhysicalMemory

Create an instance with the given parameters.

Parameters
type An instance of Object or an array of objects representing the type of memory

required (e.g., dma, shared) - used to define the base address and control the
mapping. When the required memory has more than one attribute type may
be an array of objects. When type is null or a reference to an array with no
entries, any type of memory is acceptable. Note that type values are compared
by reference (==), not by value (equals).

base The physical memory address of the area.
size A size estimator for this memory area.
logic The run()method of this object will be called wheneverMemoryArea.enter()128

is called. When logic is null, logic must be supplied when the memory area is
entered.

Throws
SecurityException when the application doesn’t have permissions to access physical

memory or the given type of memory.
OffsetOutOfBoundsException when the base address is invalid.
SizeOutOfBoundsException when the size estimate from size extends into an invalid

range of memory.
UnsupportedPhysicalMemoryException when the underlying hardware does not

support the given type, or when no matching PhysicalMemoryTypeFilter129

has been registered with the PhysicalMemoryManager130.
MemoryTypeConflictException when the specified base does not point to memory

that matches the requested type, or when type specifies incompatible memory
attributes.

IllegalArgumentException when size is null, or size.getEstimate() is negative. Il-
legalArgumentException may also be when base plus the size indicated by
size would be greater than the maximum physical address supported by the
processor.

MemoryInUseException when the specified memory is already in use.
OutOfMemoryError when there is insufficient memory for the ImmortalPhysicalMem-

ory object or for the backing memory.
IllegalAssignmentError when storing logic in this would violate the assignment

rules.

128Section 11.3.2.3.2
129Section A.2.1.1
130Section A.2.3.20

926 RTSJ 2.0 (Draft 48)

ImmortalPhysicalMemory javax.realtime A.2

ImmortalPhysicalMemory(Object, long, Runnable)

Signature
public
ImmortalPhysicalMemory(Object type,

long size,
Runnable logic)

Description
Create an instance with the given parameters.

Parameters
type An instance of Object or an array of objects representing the type of memory

required (e.g., dma, shared) - used to define the base address and control the
mapping. When the required memory has more than one attribute type may
be an array of objects. When type is null or a reference to an array with no
entries, any type of memory is acceptable. Note that type values are compared
by reference (==), not by value (equals).

size The size of the area in bytes.
logic The run()method of this object will be called wheneverMemoryArea.enter()131

is called. When logic is null, logic must be supplied when the memory area is
entered.

Throws
SecurityException when the application doesn’t have permissions to access physical

memory or the given type of memory.
SizeOutOfBoundsException when size extends into an invalid range of memory.
UnsupportedPhysicalMemoryException when the underlying hardware does not

support the given type, or when no matching PhysicalMemoryTypeFilter132

has been registered with the PhysicalMemoryManager133.
IllegalArgumentException when size is negative.
MemoryTypeConflictException when the specified base does not point to memory

that matches the requested type, or when type specifies incompatible memory
attributes.

OutOfMemoryError when there is insufficient memory for the ImmortalPhysicalMem-
ory object or for the backing memory.

131Section 11.3.2.3.2
132Section A.2.1.1
133Section A.2.3.20

RTSJ 2.0 (Draft 48) 927

A Deprecated APIs ImmortalPhysicalMemory

IllegalAssignmentError when storing logic in this would violate the assignment
rules.

ImmortalPhysicalMemory(Object, SizeEstimator, Runnable)

Signature
public
ImmortalPhysicalMemory(Object type,

SizeEstimator size,
Runnable logic)

Description
Create an instance with the given parameters.

Parameters
type An instance of Object or an array of objects representing the type of memory

required (e.g., dma, shared) - used to define the base address and control the
mapping. When the required memory has more than one attribute type may
be an array of objects. When type is null or a reference to an array with no
entries, any type of memory is acceptable. Note that type values are compared
by reference (==), not by value (equals).

size A size estimator for this area.
logic The run()method of this object will be called wheneverMemoryArea.enter()134

is called. When logic is null, logic must be supplied when the memory area is
entered.

Throws
SecurityException when the application doesn’t have permissions to access physical

memory or the given type of memory.
SizeOutOfBoundsException when the size extends into an invalid range of memory.
UnsupportedPhysicalMemoryException when the underlying hardware does not

support the given type, or when no matching PhysicalMemoryTypeFilter135

has been registered with the PhysicalMemoryManager136.
IllegalArgumentException when size is null, or size.getEstimate() is negative.
MemoryTypeConflictException when type specifies incompatible memory attributes.
134Section 11.3.2.3.2
135Section A.2.1.1
136Section A.2.3.20

928 RTSJ 2.0 (Draft 48)

ImmortalPhysicalMemory javax.realtime A.2

OutOfMemoryError when there is insufficient memory for the ImmortalPhysicalMem-
ory object or for the backing memory.

IllegalAssignmentError when storing logic in this would violate the assignment
rules.

ImmortalPhysicalMemory(Object, long, long)

Signature
public
ImmortalPhysicalMemory(Object type,

long base,
long size)

Description
Create an instance with the given parameters.

Parameters
type An instance of Object or an array of objects representing the type of memory

required (e.g., dma, shared) - used to define the base address and control the
mapping. When the required memory has more than one attribute type may
be an array of objects. When type is null or a reference to an array with no
entries, any type of memory is acceptable. Note that type values are compared
by reference (==), not by value (equals).

base The physical memory address of the area.
size The size of the area in bytes.

Throws
SecurityException when the application doesn’t have permissions to access physical

memory or the given range of memory.
OffsetOutOfBoundsException when the base address is invalid.
SizeOutOfBoundsException when the size extends into an invalid range of memory.
UnsupportedPhysicalMemoryException when the underlying hardware does not

support the given type, or when no matching PhysicalMemoryTypeFilter137

has been registered with the PhysicalMemoryManager138.
MemoryTypeConflictException when the specified base does not point to memory

that matches the requested type, or when type specifies incompatible memory
attributes.

137Section A.2.1.1
138Section A.2.3.20

RTSJ 2.0 (Draft 48) 929

A Deprecated APIs ImmortalPhysicalMemory

IllegalArgumentException when size is less than zero. IllegalArgumentException
may also be when base plus size would be greater than the maximum physical
address supported by the processor.

MemoryInUseException when the specified memory is already in use.
OutOfMemoryError when there is insufficient memory for the ImmortalPhysicalMem-

ory object or for the backing memory.

ImmortalPhysicalMemory(Object, long, SizeEstimator)

Signature
public
ImmortalPhysicalMemory(Object type,

long base,
SizeEstimator size)

Description
Create an instance with the given parameters.

Parameters
type An instance of Object or an array of objects representing the type of memory

required (e.g., dma, shared) - used to define the base address and control the
mapping. When the required memory has more than one attribute type may
be an array of objects. When type is null or a reference to an array with no
entries, any type of memory is acceptable. Note that type values are compared
by reference (==), not by value (equals).

base The physical memory address of the area.
size A size estimator for this memory area.

Throws
SecurityException when the application doesn’t have permissions to access physical

memory or the given type of memory.
OffsetOutOfBoundsException when the base address is invalid.
SizeOutOfBoundsException when the size estimate from size extends into an invalid

range of memory.
UnsupportedPhysicalMemoryException when the underlying hardware does not

support the given type, or when no matching PhysicalMemoryTypeFilter139

has been registered with the PhysicalMemoryManager140.
139Section A.2.1.1
140Section A.2.3.20

930 RTSJ 2.0 (Draft 48)

ImmortalPhysicalMemory javax.realtime A.2

MemoryTypeConflictException when the specified base does not point to memory
that matches the requested type, or when type specifies incompatible memory
attributes.

IllegalArgumentException when size is null, or size.getEstimate() is negative. Il-
legalArgumentException may also be when base plus the size indicated by
size would be greater than the maximum physical address supported by the
processor.

MemoryInUseException when the specified memory is already in use.
OutOfMemoryError when there is insufficient memory for the ImmortalPhysicalMem-

ory object or for the backing memory.

ImmortalPhysicalMemory(Object, long)

Signature
public
ImmortalPhysicalMemory(Object type,

long size)

Description
Create an instance with the given parameters.

Parameters
type An instance of Object representing the type of memory required (e.g., dma,

shared) - used to define the base address and control the mapping. When
the required memory has more than one attribute type may be an array of
objects. When type is null or a reference to an array with no entries, any type
of memory is acceptable. Note that type values are compared by reference
(==), not by value (equals).

size The size of the area in bytes.
Throws
SecurityException when the application doesn’t have permissions to access physical

memory or the given type of memory.
UnsupportedPhysicalMemoryException when the underlying hardware does not

support the given type, or when no matching PhysicalMemoryTypeFilter141

has been registered with the PhysicalMemoryManager142.
MemoryTypeConflictException when type specifies incompatible memory attributes.
141Section A.2.1.1
142Section A.2.3.20

RTSJ 2.0 (Draft 48) 931

A Deprecated APIs LTMemory

IllegalArgumentException when size is less than zero.
OutOfMemoryError when there is insufficient memory for the ImmortalPhysicalMem-

ory object or for the backing memory.
SizeOutOfBoundsException when the size extends into an invalid range of memory.

ImmortalPhysicalMemory(Object, SizeEstimator)

Signature
public
ImmortalPhysicalMemory(Object type,

SizeEstimator size)

Description
Create an instance with the given parameters.

Parameters
type An instance of Object or an array of objects representing the type of memory

required (e.g., dma, shared) - used to define the base address and control the
mapping. When the required memory has more than one attribute type may
be an array of objects. When type is null or a reference to an array with no
entries, any type of memory is acceptable. Note that type values are compared
by reference (==), not by value (equals).

size A size estimator for this area.
Throws
SecurityException when the application doesn’t have permissions to access physical

memory or the given type of memory.
SizeOutOfBoundsException when the size estimate from size extends into an invalid

range of memory.
UnsupportedPhysicalMemoryException when the underlying hardware does not

support the given type, or when no matching PhysicalMemoryTypeFilter143

has been registered with the PhysicalMemoryManager144.
MemoryTypeConflictException when type specifies incompatible memory attributes.
IllegalArgumentException when size is null, or size.getEstimate() is negative.
OutOfMemoryError when there is insufficient memory for the ImmortalPhysicalMem-

ory object or for the backing memory.

143Section A.2.1.1
144Section A.2.3.20

932 RTSJ 2.0 (Draft 48)

LTMemory javax.realtime A.2

A.2.3.11 LTMemory

Inheritance
java.lang.Object
MemoryArea
ScopedMemory
LTMemory

Description
Equivalent to and superseded by javax.realtime.memory.LTMemory145.

Deprecated since RTSJ 2.0; moved to package javax.realtime.memory.

A.2.3.11.1 Constructors

LTMemory(long, long, Runnable)

Signature
public
LTMemory(long initial,

long maximum,
Runnable logic)

Description
Create an LTMemory of the given size.

Parameters
initial The size in bytes of the memory to allocate for this area. This memory must

be committed before the completion of the constructor.
maximum The size in bytes of the memory to allocate for this area.
logic The run() of the given Runnable will be executed using this as its initial mem-

ory area. When logic is null, this constructor is equivalent to LTMemory(long
initial, long maximum)146.

Throws
145Section 11.4.3.1
146Section A.2.3.11.1

RTSJ 2.0 (Draft 48) 933

A Deprecated APIs LTMemory

IllegalArgumentException when initial is greater than maximum, or when initial
or maximum is less than zero.

OutOfMemoryError when there is insufficient memory for the LTMemory object
or for the backing memory.

IllegalAssignmentError when storing logic in this would violate the assignment
rules.

LTMemory(SizeEstimator, SizeEstimator, Runnable)

Signature
public
LTMemory(SizeEstimator initial,

SizeEstimator maximum,
Runnable logic)

Description
Equivalent to LTMemory(long, long, Runnable)147 with the argument list (initial.
getEstimate(), maximum.getEstimate(), logic).

Parameters
initial An instance of SizeEstimator148 used to give an estimate of the initial size.

This memory must be committed before the completion of the constructor.
maximum An instance of SizeEstimator149 used to give an estimate for the maximum

bytes to allocate for this area.
logic The run() of the given Runnable will be executed using this as its initial

memory area. When logic is null, this constructor is equivalent to LTMem-
ory(SizeEstimator initial, SizeEstimator maximum)150.

Throws
IllegalArgumentException when initial is null,maximum is null, initial.getEstimate()

is greater than maximum.getEstimate(), or when initial.getEstimate() is less
than zero.

OutOfMemoryError when there is insufficient memory for the LTMemory object
or for the backing memory.

IllegalAssignmentError when storing logic in this would violate the assignment
rules.

147Section A.2.3.11.1
148Section 11.3.2.5
149Section 11.3.2.5
150Section A.2.3.11.1

934 RTSJ 2.0 (Draft 48)

LTMemory javax.realtime A.2

LTMemory(long, long)

Signature
public
LTMemory(long initial,

long maximum)

Description
Equivalent to LTMemory(long, long, Runnable)151 with the argument list (initial,
maximum, null).

Parameters
initial The size in bytes of the memory to allocate for this area. This memory must

be committed before the completion of the constructor.
maximum The size in bytes of the memory to allocate for this area.

Throws
IllegalArgumentException when initial is greater than maximum, or when initial

or maximum is less than zero.
OutOfMemoryError when there is insufficient memory for the LTMemory object

or for the backing memory.

LTMemory(SizeEstimator, SizeEstimator)

Signature
public
LTMemory(SizeEstimator initial,

SizeEstimator maximum)

Description
Equivalent to LTMemory(long, long, Runnable)152 with the argument list (initial.
getEstimate(), maximum.getEstimate(), null).

Parameters
initial An instance of SizeEstimator153 used to give an estimate of the initial size.

This memory must be committed before the completion of the constructor.
151Section A.2.3.11.1
152Section A.2.3.11.1
153Section 11.3.2.5

RTSJ 2.0 (Draft 48) 935

A Deprecated APIs LTMemory

maximum An instance of SizeEstimator154 used to give an estimate for the maximum
bytes to allocate for this area.

Throws
IllegalArgumentException when initial is null,maximum is null, initial.getEstimate()

is greater than maximum.getEstimate(), or when initial.getEstimate() is less
than zero.

OutOfMemoryError when there is insufficient memory for the LTMemory object
or for the backing memory.

LTMemory(long, Runnable)

Signature
public
LTMemory(long size,

Runnable logic)

Description
Equivalent to LTMemory(long, long, Runnable)155 with the argument list (size,
size, logic).

Available since RTSJ 1.0.1

Parameters
size The size in bytes of the memory to allocate for this area. This memory must

be committed before the completion of the constructor.
logic The run() of the given Runnable will be executed using this as its initial mem-

ory area. When logic is null, this constructor is equivalent to LTMemory(long
size)156.

Throws
IllegalArgumentException when size is less than zero.
OutOfMemoryError when there is insufficient memory for the LTMemory object

or for the backing memory.
IllegalAssignmentError when storing logic in this would violate the assignment

rules.

154Section 11.3.2.5
155Section A.2.3.11.1
156Section A.2.3.11.1

936 RTSJ 2.0 (Draft 48)

LTMemory javax.realtime A.2

LTMemory(SizeEstimator, Runnable)

Signature
public
LTMemory(SizeEstimator size,

Runnable logic)

Description

Equivalent to LTMemory(long, long, Runnable)157 with the argument list (size.
getEstimate(), size.getEstimate(), logic).

Available since RTSJ 1.0.1

Parameters
size An instance of SizeEstimator158 used to give an estimate of the initial size.

This memory must be committed before the completion of the constructor.
logic The run() of the given Runnable will be executed using this as its initial

memory area. When logic is null, this constructor is equivalent to LTMem-
ory(SizeEstimator initial)159.

Throws
IllegalArgumentException when size is null, or size.getEstimate() is less than zero.
OutOfMemoryError when there is insufficient memory for the LTMemory object

or for the backing memory.
IllegalAssignmentError when storing logic in this would violate the assignment

rules.

LTMemory(long)

Signature
public
LTMemory(long size)

Description

157Section A.2.3.11.1
158Section 11.3.2.5
159Section A.2.3.11.1

RTSJ 2.0 (Draft 48) 937

A Deprecated APIs LTMemory

Equivalent to LTMemory(long, long, Runnable)160 with the argument list (size,
size, null).

Available since RTSJ 1.0.1

Parameters
size The size in bytes of the memory to allocate for this area. This memory must

be committed before the completion of the constructor.
Throws
IllegalArgumentException when size is less than zero.
OutOfMemoryError when there is insufficient memory for the LTMemory object

or for the backing memory.

LTMemory(SizeEstimator)

Signature
public
LTMemory(SizeEstimator size)

Description
Equivalent to LTMemory(long, long, Runnable)161 with the argument list (size.
getEstimate(), size.getEstimate(), null).

Available since RTSJ 1.0.1

Parameters
size An instance of SizeEstimator162 used to give an estimate of the initial size.

This memory must be committed before the completion of the constructor.
Throws
IllegalArgumentException when size is null, or size.getEstimate() is less than zero.
OutOfMemoryError when there is insufficient memory for the LTMemory object

or for the backing memory.

A.2.3.11.2 Methods

160Section A.2.3.11.1
161Section A.2.3.11.1
162Section 11.3.2.5

938 RTSJ 2.0 (Draft 48)

LTPhysicalMemory javax.realtime A.2

toString

Signature
public java.lang.String
toString()

Description
Create a string representation of this object. The string is of the form

(LTMemory) Scoped memory # num

where num uniquely identifies the LTMemory area.

Returns
A string representing the value of this.

A.2.3.12 LTPhysicalMemory

Inheritance
java.lang.Object
MemoryArea
ScopedMemory
LTPhysicalMemory

Description
An instance of LTPhysicalMemory allows objects to be allocated from a range
of physical memory with particular attributes, determined by their memory type.
This memory area has the same semantics as ScopedMemory163 memory areas,
and the same performance restrictions as LTMemory164.

No provision is made for sharing object in LTPhysicalMemory with entities
outside the JVM that creates them, and, while the memory backing an instance
of LTPhysicalMemory could be shared by multiple JVMs, the class does not
support such sharing.

Methods from LTPhysicalMemory should be overridden only by methods that
use super.

Deprecated since RTSJ 2.0

163Section A.2.3.32
164Section A.2.3.11

RTSJ 2.0 (Draft 48) 939

A Deprecated APIs LTPhysicalMemory

A.2.3.12.1 Constructors

LTPhysicalMemory(Object, long, long, Runnable)

Signature
public
LTPhysicalMemory(Object type,

long base,
long size,
Runnable logic)

Description
Create an instance of LTPhysicalMemory with the given parameters.

See Section PhysicalMemoryManager

Parameters
type An instance of Object representing the type of memory required (e.g., dma,

shared) - used to define the base address and control the mapping. When
the required memory has more than one attribute, type may be an array of
objects. When type is null or a reference to an array with no entries, any type
of memory is acceptable. Note that type values are compared by reference
(==), not by value (equals).

base The physical memory address of the area.
size The size of the area in bytes.
logic The run()method of this object will be called wheneverMemoryArea.enter()165

is called. When logic is null, logic must be supplied when the memory area is
entered.

Throws
SizeOutOfBoundsException when the implementation detects that base plus size

extends beyond physically addressable memory.
SecurityException when the application doesn’t have permissions to access physical

memory or the given type of memory.
IllegalArgumentException when size is less than zero.
OffsetOutOfBoundsException when the address is invalid.
165Section 11.3.2.3.2

940 RTSJ 2.0 (Draft 48)

LTPhysicalMemory javax.realtime A.2

UnsupportedPhysicalMemoryException when the underlying hardware does not
support the given type, or when no matching PhysicalMemoryTypeFilter166

has been registered with the PhysicalMemoryManager167.
MemoryTypeConflictException when the specified base does not point to memory

that matches the requested type, or when type specifies incompatible memory
attributes.

MemoryInUseException when the specified memory is already in use.
IllegalAssignmentError when storing logic in this would violate the assignment

rules.

LTPhysicalMemory(Object, long, SizeEstimator, Runnable)

Signature
public
LTPhysicalMemory(Object type,

long base,
SizeEstimator size,
Runnable logic)

Description
Equivalent to LTPhysicalMemory(Object, long, long, Runnable)168 with the ar-
gument list (type, base, size.getEstimate(), logic).

See Section PhysicalMemoryManager

Parameters
type An instance of Object representing the type of memory required (e.g., dma,

shared) - used to define the base address and control the mapping. When
the required memory has more than one attribute, type may be an array of
objects. When type is null or a reference to an array with no entries, any type
of memory is acceptable. Note that type values are compared by reference
(==), not by value (equals).

base The physical memory address of the area.
size A size estimator for this memory area.
166Section A.2.1.1
167Section A.2.3.20
168Section A.2.3.12.1

RTSJ 2.0 (Draft 48) 941

A Deprecated APIs LTPhysicalMemory

logic The run()method of this object will be called wheneverMemoryArea.enter()169

is called. When logic is null, logic must be supplied when the memory area is
entered.

Throws
SecurityException when the application doesn’t have permissions to access physical

memory or the given type of memory.
SizeOutOfBoundsException when the implementation detects that base plus the

size estimate extends beyond physically addressable memory.
OffsetOutOfBoundsException when the address is invalid.
UnsupportedPhysicalMemoryException when the underlying hardware does not

support the given type, or when no matching PhysicalMemoryTypeFilter170

has been registered with the PhysicalMemoryManager171.
MemoryTypeConflictException when the specified base does not point to memory

that matches the requested type, or when type specifies incompatible memory
attributes.

MemoryInUseException when the specified memory is already in use.
IllegalArgumentException when size is null, or size.getEstimate() is negative.
IllegalAssignmentError when storing logic in this would violate the assignment

rules.

LTPhysicalMemory(Object, long, long)

Signature
public
LTPhysicalMemory(Object type,

long base,
long size)

Description
Equivalent to LTPhysicalMemory(Object, long, long, Runnable)172 with the the
argument list (type, base, size, null).

See Section PhysicalMemoryManager

169Section 11.3.2.3.2
170Section A.2.1.1
171Section A.2.3.20
172Section A.2.3.12.1

942 RTSJ 2.0 (Draft 48)

LTPhysicalMemory javax.realtime A.2

Parameters
type An instance of Object representing the type of memory required (e.g., dma,

shared) - used to define the base address and control the mapping. When
the required memory has more than one attribute, type may be an array of
objects. When type is null or a reference to an array with no entries, any type
of memory is acceptable. Note that type values are compared by reference
(==), not by value (equals).

base The physical memory address of the area.
size The size of the area in bytes.

Throws
SecurityException when the application doesn’t have permissions to access physical

memory or the given type of memory.
SizeOutOfBoundsException when the size is less than zero, or the implementation

detects that base plus size extends beyond physically addressable memory.
OffsetOutOfBoundsException when the address is invalid.
UnsupportedPhysicalMemoryException when the underlying hardware does not

support the given type, or when no matching PhysicalMemoryTypeFilter173

has been registered with the PhysicalMemoryManager174.
MemoryTypeConflictException when the specified base does not point to memory

that matches the requested type, or when type specifies incompatible memory
attributes.

IllegalArgumentException when size is less than zero.
MemoryInUseException when the specified memory is already in use.

LTPhysicalMemory(Object, long, SizeEstimator)

Signature
public
LTPhysicalMemory(Object type,

long base,
SizeEstimator size)

Description
Equivalent to LTPhysicalMemory(Object, long, long, Runnable)175 with the ar-
gument list (type, base, size.getEstimate(), null).

173Section A.2.1.1
174Section A.2.3.20
175Section A.2.3.12.1

RTSJ 2.0 (Draft 48) 943

A Deprecated APIs LTPhysicalMemory

See Section PhysicalMemoryManager

Parameters
type An instance of Object representing the type of memory required (e.g., dma,

shared) - used to define the base address and control the mapping. When
the required memory has more than one attribute, type may be an array of
objects. When type is null or a reference to an array with no entries, any type
of memory is acceptable. Note that type values are compared by reference
(==), not by value (equals).

base The physical memory address of the area.
size A size estimator for this memory area.

Throws
SecurityException when the application doesn’t have permissions to access physical

memory or the given type of memory.
SizeOutOfBoundsException when the implementation detects that base plus the

size estimate extends beyond physically addressable memory.
OffsetOutOfBoundsException when the address is invalid.
UnsupportedPhysicalMemoryException when the underlying hardware does not

support the given type, or when no matching PhysicalMemoryTypeFilter176

has been registered with the PhysicalMemoryManager177.
MemoryTypeConflictException when the specified base does not point to memory

that matches the requested type, or when type specifies incompatible memory
attributes.

MemoryInUseException when the specified memory is already in use.
IllegalArgumentException when size is null, or size.getEstimate() is negative.

LTPhysicalMemory(Object, long, Runnable)

Signature
public
LTPhysicalMemory(Object type,

long size,
Runnable logic)

Description
176Section A.2.1.1
177Section A.2.3.20

944 RTSJ 2.0 (Draft 48)

LTPhysicalMemory javax.realtime A.2

Equivalent to LTPhysicalMemory(Object, long, long, Runnable)178 with the ar-
gument list (type, 0, size, logic).

See Section PhysicalMemoryManager

Parameters
type An instance of Object representing the type of memory required (e.g., dma,

shared) - used to define the base address and control the mapping. When
the required memory has more than one attribute, type may be an array of
objects. When type is null or a reference to an array with no entries, any type
of memory is acceptable. Note that type values are compared by reference
(==), not by value (equals).

size The size of the area in bytes.
logic The run()method of this object will be called wheneverMemoryArea.enter()179

is called. When logic is null, logic must be supplied when the memory area is
entered.

Throws
SecurityException when the application doesn’t have permissions to access physical

memory or the given type of memory.
IllegalArgumentException when size is less than zero.
SizeOutOfBoundsException when the implementation detects that size extends

beyond physically addressable memory.
UnsupportedPhysicalMemoryException when the underlying hardware does not

support the given type, or when no matching PhysicalMemoryTypeFilter180

has been registered with the PhysicalMemoryManager181.
MemoryTypeConflictException when the specified base does not point to memory

that matches the requested type, or when type specifies incompatible memory
attributes.

IllegalAssignmentError when storing logic in this would violate the assignment
rules.

LTPhysicalMemory(Object, SizeEstimator, Runnable)

Signature
178Section A.2.3.12.1
179Section 11.3.2.3.2
180Section A.2.1.1
181Section A.2.3.20

RTSJ 2.0 (Draft 48) 945

A Deprecated APIs LTPhysicalMemory

public
LTPhysicalMemory(Object type,

SizeEstimator size,
Runnable logic)

Description
Equivalent to LTPhysicalMemory(Object, long, long, Runnable)182 with the ar-
gument list (type, 0, size.getEstimate(), logic).

See Section PhysicalMemoryManager

Parameters
type An instance of Object representing the type of memory required (e.g., dma,

shared) - used to define the base address and control the mapping. When
the required memory has more than one attribute, type may be an array of
objects. When type is null or a reference to an array with no entries, any type
of memory is acceptable. Note that type values are compared by reference
(==), not by value (equals).

size A size estimator for this area.
logic The run()method of this object will be called wheneverMemoryArea.enter()183

is called. When logic is null, logic must be supplied when the memory area is
entered.

Throws
SecurityException when the application doesn’t have permissions to access physical

memory or the given type of memory.
SizeOutOfBoundsException when the implementation detects that base plus the

size estimate extends beyond physically addressable memory.
UnsupportedPhysicalMemoryException when the underlying hardware does not

support the given type, or when no matching PhysicalMemoryTypeFilter184

has been registered with the PhysicalMemoryManager185.
MemoryTypeConflictException when the specified base does not point to memory

that matches the request type, or when type specifies attributes with a conflict.
IllegalArgumentException when size is null, or size.getEstimate() is negative.
IllegalAssignmentError when storing logic in this would violate the assignment

rules.

182Section A.2.3.12.1
183Section 11.3.2.3.2
184Section A.2.1.1
185Section A.2.3.20

946 RTSJ 2.0 (Draft 48)

LTPhysicalMemory javax.realtime A.2

LTPhysicalMemory(Object, long)

Signature
public
LTPhysicalMemory(Object type,

long size)

Description
Equivalent to LTPhysicalMemory(Object, long, long, Runnable)186 with the ar-
gument list (type, 0, size, null).

See Section PhysicalMemoryManager

Parameters
type An instance of Object representing the type of memory required (e.g., dma,

shared) - used to define the base address and control the mapping. When
the required memory has more than one attribute, type may be an array of
objects. When type is null or a reference to an array with no entries, any type
of memory is acceptable. Note that type values are compared by reference
(==), not by value (equals).

size The size of the area in bytes.
Throws
SecurityException when the application doesn’t have permissions to access physical

memory or the given type of memory.
IllegalArgumentException when size is less than zero.
SizeOutOfBoundsException when the implementation detects size extends beyond

physically addressable memory.
UnsupportedPhysicalMemoryException when the underlying hardware does not

support the given type, or when no matching PhysicalMemoryTypeFilter187

has been registered with the PhysicalMemoryManager188.
MemoryTypeConflictException when type specifies incompatible memory attributes.

LTPhysicalMemory(Object, SizeEstimator)

Signature
186Section A.2.3.12.1
187Section A.2.1.1
188Section A.2.3.20

RTSJ 2.0 (Draft 48) 947

A Deprecated APIs LTPhysicalMemory

public
LTPhysicalMemory(Object type,

SizeEstimator size)

Description
Equivalent to LTPhysicalMemory(Object, long, long, Runnable)189 with the ar-
gument list (type, 0, size.getEstimate(), null).

See Section PhysicalMemoryManager

Parameters
type An instance of Object representing the type of memory required (e.g., dma,

shared) - used to define the base address and control the mapping. When
the required memory has more than one attribute, type may be an array of
objects. When type is null or a reference to an array with no entries, any type
of memory is acceptable. Note that type values are compared by reference
(==), not by value (equals).

size A size estimator for this area.
Throws
SecurityException when the application doesn’t have permissions to access physical

memory or the given type of memory.
SizeOutOfBoundsException when the implementation detects that size extends

beyond physically addressable memory.
UnsupportedPhysicalMemoryException when the underlying hardware does not

support the given type, or when no matching PhysicalMemoryTypeFilter190

has been registered with the PhysicalMemoryManager191.
MemoryTypeConflictException when type specifies incompatible memory attributes.
IllegalArgumentException when size is null, or size.getEstimate() is negative.

A.2.3.12.2 Methods

toString

Signature
189Section A.2.3.12.1
190Section A.2.1.1
191Section A.2.3.20

948 RTSJ 2.0 (Draft 48)

MemoryParameters javax.realtime A.2

public java.lang.String
toString()

Description
Creates a string describing this object. The string is of the form
(LTPhysicalMemory) Scoped memory # num
where num is a number that uniquely identifies this LTPhysicalMemory memory

area. representing the value of this.

Returns
A string representing the value of this.

A.2.3.13 MemoryAccessErrorT

e following elements of MemoryAccessError are deprecated. The required elements
are documented in Section 15.2.3.3 above.

A.2.3.13.1 Constructors

MemoryAccessError(String)

Signature
public
MemoryAccessError(String description)

Description
A descriptive constructor for MemoryAccessError.

Deprecated since RTSJ 2.0; application code should use get()192 instead.

Parameters
description Description of the error.
192Section 15.2.3.3.2

RTSJ 2.0 (Draft 48) 949

A Deprecated APIs MemoryParameters

A.2.3.14 MemoryParametersT

e following elements of MemoryParameters are deprecated. The required elements
are documented in Section 11.3.2.4 above.

A.2.3.14.1 Fields

A.2.3.14.2 Methods

setAllocationRateIfFeasible(long)

Signature
public boolean
setAllocationRateIfFeasible(long allocationRate)

Description
Sets the limit on the rate of allocation in the heap. When this MemoryParameters
object is currently associated with one or more schedulables that have been passed
admission control, this change in allocation rate will be submitted to admission
control. The scheduler (in conjunction with the garbage collector) will either
admit all the effected threads with the new allocation rate, or leave the allocation
rate unchanged and cause setAllocationRateIfFeasible to return false.

Changes to this parameter take place at the next object allocation for each
associated schedulable, on an individual basis. Schedulables which are in current
violation of the newly configured value will simply receive an OutOfMemoryError
on violating allocations. Because this MemoryParameters may be associated
with more than one schedulable, on a multiprocessor system there may be some
implementation-defined delay before executing schedulables detect the parameter
changes.

Parameters
allocationRate Units are in bytes per second of wall-clock time. When allocation-

Rate is zero, no allocation is allowed in the heap. To specify no limit, use
NO_MAX193. Enforcement of the allocation rate is an implementation option.

193Section 11.3.2.4.1

950 RTSJ 2.0 (Draft 48)

MemoryParameters javax.realtime A.2

When the implementation does not enforce allocation rate limits, it treats all
non-zero allocation rate limits as NO_MAX.

Throws
IllegalArgumentException when any value other than positive, zero, or NO_MAX

is passed as the value of allocationRate.

Returns
True when the request was fulfilled.

Deprecated as of RTSJ 2.0 The framework for feasibility anlaysis is inadequate.

setMaxImmortalIfFeasible(long)

Signature
public boolean
setMaxImmortalIfFeasible(long maximum)

Description
Sets the limit on the amount of memory the schedulable may allocate in the
immortal area.

Changes to this parameter take place at the next object allocation for each
associated schedulable, on an individual basis. Schedulables which are in current
violation of the newly configured value will simply receive an OutOfMemoryError
on violating allocations. Because this MemoryParameters may be associated
with more than one schedulable, on a multiprocessor system there may be some
implementation-defined delay before executing schedulables detect the parameter
changes.

Parameters
maximum Units are in bytes. When zero, no allocation allowed in immortal. To

specify no limit, use NO_MAX.
Throws
IllegalArgumentException when any value other than positive, zero, or NO_MAX

is passed as the value of maximum.

Returns
True when the value is set. False when any of the schedulables have already allocated

more than the given value. In this case the call has no effect.

Deprecated as of RTSJ 2.0 The framework for feasibility anlaysis is inadequate

RTSJ 2.0 (Draft 48) 951

A Deprecated APIs NoHeapRealtimeThread

setMaxMemoryAreaIfFeasible(long)

Signature
public boolean
setMaxMemoryAreaIfFeasible(long maximum)

Description

Sets the limit on the amount of memory the schedulable may allocate in its initial
memory area.

Changes to this parameter take place at the next object allocation for each
associated schedulable, on an individual basis. Schedulables which are in current
violation of the newly configured value will simply receive an OutOfMemoryError
on violating allocations. Because this MemoryParameters may be associated
with more than one schedulable, on a multiprocessor system there may be some
implementation-defined delay before executing schedulables detect the parameter
changes.

Parameters
maximum Units are in bytes. When zero, no allocation allowed in the initial memory

area. To specify no limit, use NO_MAX.
Throws
IllegalArgumentException when any value other than positive, zero, or NO_MAX

is passed as the value of maximum.

Returns
True when the value is set. False when any of the schedulables have already allocated

more than the given value. In this case the call has no effect.

Deprecated as of RTSJ 2.0 The framework for feasibility anlaysis is inadequate

A.2.3.15 NoHeapRealtimeThread

Inheritance
java.lang.Object
java.lang.Thread
RealtimeThread
NoHeapRealtimeThread

Description

952 RTSJ 2.0 (Draft 48)

NoHeapRealtimeThread javax.realtime A.2

A NoHeapRealtimeThread is a specialized form of RealtimeThread194. Because
an instance of NoHeapRealtimeThread may immediately preempt any imple-
mented garbage collector, logic contained in its run() is never allowed to allocate
or reference any object allocated in the heap. At the byte-code level, it is illegal
for a reference to an object allocated in heap to appear on a this realtime thread’s
operand stack.

Thus, it is always safe for a NoHeapRealtimeThread to interrupt the garbage
collector at any time, without waiting for the end of the garbage collection cycle
or a defined preemption point. Due to these restrictions, a NoHeapRealtime-
Thread object must be placed in a memory area such that thread logic may
unexceptionally access instance variables and such that Java methods on Thread
(e.g., enumerate and join) complete normally except where execution would cause
access violations. The constructors of NoHeapRealtimeThread require a reference
to ScopedMemory195 or ImmortalMemory196.

When the thread is started, all execution occurs in the scope of the given
memory area. Thus, all memory allocation performed with the new operator is
taken from this given area.

Deprecated since RTSJ 2.0

A.2.3.15.1 Constructors

NoHeapRealtimeThread(SchedulingParameters, ReleasePar-
ameters, MemoryParameters, MemoryArea, ProcessingGroup-
Parameters, Runnable)

Signature
public
NoHeapRealtimeThread(SchedulingParameters scheduling,

ReleaseParameters release,
MemoryParameters memory,
MemoryArea area,
ProcessingGroupParameters group,
Runnable logic)

194Section 5.3.2.2
195Section A.2.3.32
196Section 11.3.2.2

RTSJ 2.0 (Draft 48) 953

A Deprecated APIs NoHeapRealtimeThread

Description
Create a realtime thread with the given characteristics and a Runnable. The
thread group of the new thread is (effectively) null. The newly-created realtime
thread which may not use the heap is associated with the scheduler in effect
during execution of the constructor.

Parameters
scheduling the SchedulingParameters associated with this (and possibly other

instances of Schedulable). When scheduling is null, the default is a copy of the
creator’s scheduling parameters created in the same memory area as the new
NoHeapRealtimeThread.

release the ReleaseParameters associated with this (and possibly other instances
of Schedulable). When release is null the it defaults to the a copy of the
creator’s release parameters created in the same memory area as the new
NoHeapRealtimeThread.

memory the MemoryParameters associated with this (and possibly other instances
of Schedulable). When memory is null, the new NoHeapRealtimeThread will
have a null value for its memory parameters, and the amount or rate of memory
allocation is unrestricted.

area the MemoryArea associated with this. When area is null, an IllegalArgu-
mentException is thrown.

group the ProcessingGroupParameters associated with this (and possibly other
instances of Schedulable). When null, the new NoHeapRealtimeThread will
not be associated with any processing group.

logic the Runnable object whose run() method will serve as the logic for the new
NoHeapRealtimeThread. When logic is null, the run() method in the new
object will serve as its logic.

Throws
IllegalArgumentException when the parameters are not compatible with the as-

sociated scheduler, when area is null, when area is heap memory, when area,
scheduling release, memory or group is allocated in heap memory. when this is
in heap memory, or when logic is in heap memory.

IllegalAssignmentError when the new NoHeapRealtimeThread instance cannot hold
references to non-null values of the scheduling release, memory and group, or
when those parameters cannot hold a reference to the new NoHeapRealtime-
Thread.

NoHeapRealtimeThread(SchedulingParameters, ReleasePar-
ameters, MemoryArea)

954 RTSJ 2.0 (Draft 48)

NoHeapRealtimeThread javax.realtime A.2

Signature
public
NoHeapRealtimeThread(SchedulingParameters scheduling,

ReleaseParameters release,
MemoryArea area)

Description

Create a realtime thread which may not use the heap with the given Schedu-
lingParameters197, ReleaseParameters198 and MemoryArea199, and default values
for all other parameters. This constructor is equivalent to NoHeapRealtime-
Thread(scheduling, release, null, area, null, null, null).

NoHeapRealtimeThread(SchedulingParameters, MemoryArea)

Signature
public
NoHeapRealtimeThread(SchedulingParameters scheduling,

MemoryArea area)

Description

Create a realtime thread with the given SchedulingParameters200 and Memory-
Area201 and default values for all other parameters.

This constructor is equivalent to NoHeapRealtimeThread(scheduling, null,
null, area, null, null, null).

A.2.3.15.2 Methods

197Section 6.3.3.14
198Section 6.3.3.10
199Section 11.3.2.3
200Section 6.3.3.14
201Section 11.3.2.3

RTSJ 2.0 (Draft 48) 955

A Deprecated APIs OneShotTimer

start

Signature
public void
start()

Description
Set up the realtime thread’s environment and start it. The set up might include
delaying it until the assigned start time and initializing the thread’s scope stack.
(See ScopedMemory202.)

Throws
IllegalStateException when the configured Scheduler and SchedulingParameters for

this RealtimeThread are not compatible.
Available since RTSJ 2.0 adds new exception

startPeriodic(PhasingPolicy)

Signature
public void
startPeriodic(PhasingPolicy phasingPolicy)
throws LateStartException

Description
Start the thread with the specified phasing policy.

Available since RTSJ 2.0

A.2.3.16 OneShotTimerT

e following elements of OneShotTimer are deprecated. The required elements are
documented in Section 10.3.2.2 above.

A.2.3.16.1 Constructors

202Section A.2.3.32

956 RTSJ 2.0 (Draft 48)

OneShotTimer javax.realtime A.2

OneShotTimer(HighResolutionTime, Clock, AsyncEventHand-
ler)

Signature
public
OneShotTimer(javax.realtime.HighResolutionTime<?> time,

Clock clock,
AsyncEventHandler handler)

throws IllegalArgumentException,
UnsupportedOperationException,
IllegalAssignmentError

Description
Create an instance of OneShotTimer203, based on the given clock, that will
execute its fire method according to the given time. The Clock204 association of
the parameter time is ignored.

Deprecated since RTSJ 2.0

Parameters
time The time used to determine when to fire the event. A time value of null is

equivalent to a RelativeTime of 0, and in this case the Timer fires immediately
upon a call to start().

clock The clock on which to base this timer, overriding the clock associated with
the parameter time. When null, the system Realtime clock is used. The clock
associated with the parameter time is always ignored.

handler The AsyncEventHandler205 that will be released when fire is invoked. When
null, no handler is associated with this Timer and nothing will happen when
this event fires unless a handler is subsequently associated with the timer using
the addHandler() or setHandler() method.

Throws
IllegalArgumentException when time is a RelativeTime instance less than zero.
UnsupportedOperationException when the Chronograph206 associated with time

is not a Clock207.
203Section 10.3.2.2
204Section 10.3.2.1
205Section 8.3.3.5
206Section 10.3.1.2
207Section 10.3.2.1

RTSJ 2.0 (Draft 48) 957

A Deprecated APIs POSIXSignalHandler

IllegalAssignmentError when this OneShotTimer cannot hold references to time,
handler, or clock.

A.2.3.17 POSIXSignalHandler

Inheritance
java.lang.Object
POSIXSignalHandler

Description
This class enables the use of an AsyncEventHandler to react on the occurrence
of POSIX signals.

On systems that support POSIX signals fully, the 13 signals required by
POSIX will be supported. Any further signals defined in this class may be
supported by the system. On systems that do not support POSIX signals, even
the 13 standard signals may never be fired.

Deprecated since RTSJ 2.0

A.2.3.17.1 Fields

SIGHUP

public static final SIGHUP

Description
Hangup (POSIX).

SIGINT

public static final SIGINT

Description
interrupt (ANSI)

958 RTSJ 2.0 (Draft 48)

POSIXSignalHandler javax.realtime A.2

SIGQUIT

public static final SIGQUIT

Description
quit (POSIX)

SIGILL

public static final SIGILL

Description
illegal instruction (ANSI)

SIGTRAP

public static final SIGTRAP

Description
trace trap (POSIX), optional signal.

SIGABRT

public static final SIGABRT

Description
Abort (ANSI).

SIGBUS

public static final SIGBUS

Description
BUS error (4.2 BSD), optional signal.

SIGFPE

public static final SIGFPE

Description
floating point exception

RTSJ 2.0 (Draft 48) 959

A Deprecated APIs POSIXSignalHandler

SIGKILL

public static final SIGKILL

Description
Kill, unblockable (POSIX).

SIGUSR1

public static final SIGUSR1

Description
User-defined signal 1 (POSIX).

SIGSEGV

public static final SIGSEGV

Description
Segmentation violation (ANSI).

SIGUSR2

public static final SIGUSR2

Description
User-defined signal 2 (POSIX).

SIGPIPE

public static final SIGPIPE

Description
Broken pipe (POSIX).

SIGALRM

public static final SIGALRM

Description
Alarm clock (POSIX).

960 RTSJ 2.0 (Draft 48)

POSIXSignalHandler javax.realtime A.2

SIGTERM

public static final SIGTERM

Description
Termination (ANSI).

SIGCHLD

public static final SIGCHLD

Description
Child status has changed (POSIX).

SIGCONT

public static final SIGCONT

Description
Continue (POSIX), optional signal.

SIGSTOP

public static final SIGSTOP

Description
Stop, unblockable (POSIX), optional signal.

SIGTSTP

public static final SIGTSTP

Description
Keyboard stop (POSIX), optional signal.

SIGTTIN

public static final SIGTTIN

Description
Background read from tty (POSIX), optional signal.

RTSJ 2.0 (Draft 48) 961

A Deprecated APIs POSIXSignalHandler

SIGTTOU

public static final SIGTTOU
Description

Background write to tty (POSIX), optional signal.

SIGURG

public static final SIGURG
Description

Urgent condition on socket (4.2 BSD).
Deprecated as of RTSJ 1.0.1 not part of POSIX 9945-1-1996 standard

SIGXCPU

public static final SIGXCPU
Description

CPU limit exceeded (4.2 BSD).
Deprecated as of RTSJ 1.0.1 not part of POSIX 9945-1-1996 standard

SIGXFSZ

public static final SIGXFSZ
Description

File size limit exceeded (4.2 BSD).
Deprecated as of RTSJ 1.0.1 not part of POSIX 9945-1-1996 standard

SIGVTALRM

public static final SIGVTALRM
Description

Virtual alarm clock (4.2 BSD).
Deprecated as of RTSJ 1.0.1 not part of POSIX 9945-1-1996 standard

962 RTSJ 2.0 (Draft 48)

POSIXSignalHandler javax.realtime A.2

SIGPROF

public static final SIGPROF

Description

Profiling alarm clock (4.2 BSD).

Deprecated as of RTSJ 1.0.1 not part of POSIX 9945-1-1996 standard

SIGWINCH

public static final SIGWINCH

Description

Window size change (4.3 BSD, Sun).

Deprecated as of RTSJ 1.0.1 not part of POSIX 9945-1-1996 standard

SIGIO

public static final SIGIO

Description

I/O now possible (4.2 BSD).

Deprecated as of RTSJ 1.0.1 not part of POSIX 9945-1-1996 standard

SIGPWR

public static final SIGPWR

Description

Power failure restart (System V).

Deprecated as of RTSJ 1.0.1 not part of POSIX 9945-1-1996 standard

RTSJ 2.0 (Draft 48) 963

A Deprecated APIs POSIXSignalHandler

SIGSYS

public static final SIGSYS

Description
Bad system call, optional signal.

SIGIOT

public static final SIGIOT

Description
IOT instruction (4.2 BSD), optional signal.

SIGPOLL

public static final SIGPOLL

Description
Pollable event occurred (System V).

Deprecated as of RTSJ 1.0.1 not part of POSIX 9945-1-1996 standard

SIGCLD

public static final SIGCLD

Description
Same as SIGCHLD (System V), optional signal.

SIGEMT

public static final SIGEMT

Description
EMT instruction, optional signal.

964 RTSJ 2.0 (Draft 48)

POSIXSignalHandler javax.realtime A.2

SIGLOST

public static final SIGLOST

Description

Deprecated as of RTSJ 1.0.1 not part of POSIX 9945-1-1996 standard

SIGCANCEL

public static final SIGCANCEL

Description

Deprecated as of RTSJ 1.0.1 not part of POSIX 9945-1-1996 standard

SIGFREEZE

public static final SIGFREEZE

Description

Deprecated as of RTSJ 1.0.1 not part of POSIX 9945-1-1996 standard

SIGLWP

public static final SIGLWP

Description

Deprecated as of RTSJ 1.0.1 not part of POSIX 9945-1-1996 standard

RTSJ 2.0 (Draft 48) 965

A Deprecated APIs POSIXSignalHandler

SIGTHAW

public static final SIGTHAW

Description

Deprecated as of RTSJ 1.0.1 not part of POSIX 9945-1-1996 standard

SIGWAITING

public static final SIGWAITING

Description

Deprecated as of RTSJ 1.0.1 not part of POSIX 9945-1-1996 standard

A.2.3.17.2 Methods

addHandler(int, AsyncEventHandler)

Signature
public static void
addHandler(int signal,

AsyncEventHandler handler)

Description
addHandler adds the handler provided to the set of handlers that will be released
on the provided signal.

Parameters
signal The POSIX signal as defined in the constants SIG*.
handler the handler to be released on the given signal.

Throws
IllegalArgumentException iff signal is not defined by any of the constants in this

class or handler is null.

966 RTSJ 2.0 (Draft 48)

PeriodicParameters javax.realtime A.2

removeHandler(int, AsyncEventHandler)

Signature
public static void
removeHandler(int signal,

AsyncEventHandler handler)

Description

removeHandler removes a handler that was added for a given signal.

Parameters
signal The POSIX signal as defined in the constants SIG*.
handler the handler to be removed from the given signal. When this handler is null

or has not been added to the signal, nothing will happen.
Throws
IllegalArgumentException iff signal is not defined by any of the constants in this

class.

setHandler(int, AsyncEventHandler)

Signature
public static void
setHandler(int signal,

AsyncEventHandler handler)

Description

setHandler sets the set of handlers that will be released on the provided signal to
the set with the provided handler being the single element.

Parameters
signal The POSIX signal as defined in the constants SIG*.
handler the handler to be released on the given signal, null to remove all handlers

for the given signal.
Throws
IllegalArgumentException iff signal is not defined by any of the constants in this

class.

RTSJ 2.0 (Draft 48) 967

A Deprecated APIs PeriodicParameters

A.2.3.18 PeriodicParametersT

e following elements of PeriodicParameters are deprecated. The required elements
are documented in Section 6.3.3.6 above.

A.2.3.18.1 Methods

setIfFeasible(RelativeTime, RelativeTime, RelativeTime)

Signature
public boolean
setIfFeasible(RelativeTime period,

RelativeTime cost,
RelativeTime deadline)

Description
This method first performs a feasibility analysis using the new period, cost and
deadline attributes as replacements for the matching attributes of this. When
the resulting system is feasible the method replaces the current attributes of
this. When this parameter object is associated with any schedulable (by be-
ing passed through the schedulable’s constructor or set with a method such as
RealtimeThread.setReleaseParameters(ReleaseParameters)208) the parameters of
those schedulables are altered as specified by each schedulable’s respective sched-
uler.

Parameters
period The proposed period. There is no default value. When period is null an

exception is thrown.
cost The proposed cost. When null, the default value is a new instance of Relative-

Time(0,0).
deadline The proposed deadline. When null, the default value is new instance of

RelativeTime(period).
Throws
IllegalArgumentException when the period is null or its time value is not greater

than zero, or when the time value of cost is less than zero, or when the
208Section 5.3.2.2.2

968 RTSJ 2.0 (Draft 48)

PeriodicTimer javax.realtime A.2

time value of deadline is not greater than zero. Also when the values are
incompatible with the scheduler for any of the schedulables which are presently
using this parameter object.

IllegalAssignmentError when , period, cost or deadline cannot be stored in this.
Returns
True, when the resulting system is feasible and the changes are made. False, when

the resulting system is not feasible and no changes are made.
Deprecated as of RTSJ 2.0; the framework for feasibility anlaysis is inadequate

A.2.3.19 PeriodicTimerT

e following elements of PeriodicTimer are deprecated. The required elements are
documented in Section 10.3.2.3 above.

A.2.3.19.1 Constructors

PeriodicTimer(HighResolutionTime, RelativeTime, Clock, Async-
EventHandler)

Signature
public
PeriodicTimer(javax.realtime.HighResolutionTime<?> start,

RelativeTime interval,
Clock clock,
AsyncEventHandler handler)

throws IllegalArgumentException,
UnsupportedOperationException,
IllegalAssignmentError

Description
Create a timer that executes its fire method periodically.

Deprecated since RTSJ 2.0

RTSJ 2.0 (Draft 48) 969

A Deprecated APIs PhysicalMemoryManager

Parameters
start The time that specifies when the first interval begins, based on the clock

associated with it. The first firing of the timer is modified according the
PhasingPolicy when the timer is started. A start value of null is equivalent to
a RelativeTime of 0.

interval The period of the timer. Its usage is based on the clock specified by the
clock parameter. When interval is zero or null, the period is ignored and the
firing behavior of the PeriodicTimer is that of a OneShotTimer209.

clock The clock to be used to time the start and interval. When null, the system
Realtime clock is used. The Clock210 association of the parameters start and
interval is always ignored.

handler The AsyncEventHandler211 that will be released when fire is invoked. When
null, no handler is associated with this Timer and nothing will happen when
this event fires unless a handler is subsequently associated with the timer using
the addHandler() or setHandler() method.

Throws
IllegalArgumentException when start or interval is a RelativeTime instance with

a value less than zero; or the clocks associated with start and interval are not
the identical.

IllegalAssignmentError when this PeriodicTimer cannot hold references to handler,
clock and interval.

UnsupportedOperationException when the Chronograph212 associated with time
is not a Clock213.

A.2.3.20 PhysicalMemoryManager

Inheritance
java.lang.Object
PhysicalMemoryManager

Description
The PhysicalMemoryManager is not ordinarily used by applications, except
that the implementation may require the application to use the registerFilter214

209Section 10.3.2.2
210Section 10.3.2.1
211Section 8.3.3.5
212Section 10.3.1.2
213Section 10.3.2.1
214Section A.2.3.20.2

970 RTSJ 2.0 (Draft 48)

PhysicalMemoryManager javax.realtime A.2

method to make the physical memory manager aware of the memory types
on their platform. The PhysicalMemoryManager class is primarily intended
for use by the various physical memory accessor objects (VTPhysicalMemory215,
LTPhysicalMemory216, and ImmortalPhysicalMemory217) to create objects of the
types requested by the application. The physical memory manager is responsible
for finding areas of physical memory with the appropriate characteristics and
access rights, and moderating any required combination of physical and virtual
memory characteristics.

The Physical Memory Manager assumes that the physical adresss space
is linear but not necessarily contiguous. That is, addresses range from 0 ..
MAX_LONG but there may be holes in the memory space. Some of these holes
may be filled with removable memory.

The physical memory is partitioned into chunks (pages, segments, etc.). Each
chunk of memory has a base address and a length.

Each chunk of memory has certain properties. Some of these properties may
require actions to be performed by the Physical Memory Manager when the
memory is accessed. For example, access to IO_PAGE may require the use of
special instructions to even reach the devices, or it may require special code
sequences to ensure proper handling of processor write queues and caches.

Filters tell the Physical Memory Manager about the properties of the memory
that are available on the machine by registering with the Physical Memory
Manager.

When the program requests a physical memory area with particular properties,
the constructor communicates with the Physical Memory Manager through a
private interface. The Physical Memory Manager asks the filter if the the address
specified has the required properties and whether it is free, or asks for a chunk of
memory with the requested size.

The Physical Memory Manager then maps the physical memory chunk into
virtual memory (on systems that support virtual memory). and locks the virtual
memory to the memory chunk.

Examples of characteristics that might be specified are DMA memory, hard-
ware byte swapping, and non-cached access to memory. Standard "names" for
some memory characteristics are included in this class — DMA, SHARED,
ALIGNED, BYTESWAP, and IO_PAGE — support for these characteristics is
optional, but when they are supported they must use these names. Additional
characteristics may be supported, but only names defined in this specification
may be visible in the PhysicalMemoryManager API.

215Section A.2.3.37
216Section A.2.3.12
217Section A.2.3.10

RTSJ 2.0 (Draft 48) 971

A Deprecated APIs PhysicalMemoryManager

The base implementation will provide a PhysicalMemoryManager.
Original Equipment Manufacturers or other interested parties may provide

PhysicalMemoryTypeFilter218 classes that allow additional characteristics of mem-
ory devices to be specified.

Deprecated as of RTSJ 2.0

A.2.3.20.1 Fields

ALIGNED

public static final ALIGNED

Description
When aligned memory is supported by the implementation specify ALIGNED to
identify aligned memory. This type of memory ignores low-order bits in load and
store accesses to force accesses to fall on natural boundaries for the access type
even when the processor uses a poorly aligned address.

See Section javax.realtime.device.RawMemory

BYTESWAP

public static final BYTESWAP

Description
When automatic byte swapping is supported by the implementation specify
BYTESWAP when byte swapping should be used. Byte-swapping memory re-
orders the bytes in accesses for 16 bits or more such that little-endian data in
memory is accessed as big-endian, and vice-versa. Such memory would typically
be available in swapped mode in one physical address range and in un-swapped
mode in another address range.

See Section javax.realtime.device.RawMemory

218Section A.2.1.1

972 RTSJ 2.0 (Draft 48)

PhysicalMemoryManager javax.realtime A.2

DMA

public static final DMA

Description
When DMA (Direct Memory Access) memory is supported by the implementation,
specify DMA to identify DMA memory. This memory is visible to devices that use
DMA. In some systems, only a portion of the physical address space is available
to DMA devices. On such systems, memory that will be used for DMA must be
allocated from the range of addresses that DMA can reach.

See Section javax.realtime.device.RawMemory

IO_PAGE

public static final IO_PAGE

Description
When access to the system I/O space is supported by the implementation specify
IO_PAGE when I/O space should be used. Addresses tagged with the name
IO_PAGE are used for memory mapped I/O devices. Such addresses are almost
certainly not suitable for physical memory, but only for raw memory access.

Available since RTSJ 1.0.1

SHARED

public static final SHARED

Description
When shared memory is supported by the implementation specify SHARED to
identify shared memory. In a NUMA (Non-Uniform Memory Access) architecture,
processors may make some part of their local memory available to other processors.
This memory would be tagged with SHARED, as would memory that is shared
and non-local.

A fully built-out NUMA system might well need sub-classifications of SHARED
to reflect different paths to memory. Note that, as with other physical memory
names, a single byte of memory may be visible at several physical addresses with
different access properties at each address. For instance, a byte of shared memory
accesses at address x might be shared with high-performance access, but without

RTSJ 2.0 (Draft 48) 973

A Deprecated APIs PhysicalMemoryManager

the support of coherent caches. The same byte accessed at address y might be
shared with coherent cache support, but substantially longer access times.

A.2.3.20.2 Methods

isRemovable(long, long)

Signature
public static boolean
isRemovable(long base,

long size)

Description
Queries the system about the removability of the specified range of memory.

Parameters
base The starting address in physical memory.
size The size of the memory area.

Throws
IllegalArgumentException when size is less than zero.
SizeOutOfBoundsException when base plus size would be greater than the physical

addressing range of the processor.
OffsetOutOfBoundsException when base is less than zero.

Returns
true when any part of the specified range can be removed.

isRemoved(long, long)

Signature
public static boolean
isRemoved(long base,

long size)

Description
Queries the system about the removed state of the specified range of memory.
This method is used for devices that lie in the memory address space and can be
removed while the system is running. (Such as PC cards).

974 RTSJ 2.0 (Draft 48)

PhysicalMemoryManager javax.realtime A.2

Parameters
base The starting address in physical memory.
size The size of the memory area.

Throws
IllegalArgumentException when size is less than zero.
OffsetOutOfBoundsException when base is less than zero.
SizeOutOfBoundsException when base plus size would be greater than the physical

addressing range of the processor.
Returns
true when any part of the specified range is currently not usable.

onInsertion(long, long, AsyncEvent)

Signature
public static void
onInsertion(long base,

long size,
AsyncEvent ae)

Description
Register the specified AsyncEvent219 to fire when any memory in the range is
added to the system. When the specified range of physical memory contains
multiple different types of removable memory, the AE will be registered with
each of them.

Parameters
base The starting address in physical memory.
size The size of the memory area.
ae The async event to fire.

Throws
IllegalArgumentException when ae is null, or when the specified range contains no

removable memory, or when size is less than zero.
OffsetOutOfBoundsException when base is less than zero.
SizeOutOfBoundsException when base plus size would be greater than the physical

addressing range of the processor.
Available since RTSJ 1.0.1

219Section 8.3.3.4

RTSJ 2.0 (Draft 48) 975

A Deprecated APIs PhysicalMemoryManager

onInsertion(long, long, AsyncEventHandler)

Signature
public static void
onInsertion(long base,

long size,
AsyncEventHandler aeh)

Description
Register the specified AsyncEventHandler220 to run when any memory in the
range is added to the system. When the specified range of physical memory
contains multiple different types of removable memory, the AEH will be registered
with each of them. When the size or the base is less than 0, unregister all
"onInsertion" references to the handler.

Note that this method only removes handlers that were registered with the
same method. It has no effect on handlers that were registered using an associated
async event.

Parameters
base The starting address in physical memory.
size The size of the memory area.
aeh The handler to register.

Throws
IllegalArgumentException when aeh is null, or when the specified range contains

no removable memory, or when aeh is null and size and base are both greater
than or equal to zero.

SizeOutOfBoundsException when base plus size would be greater than the physical
addressing range of the processor.

onRemoval(long, long, AsyncEvent)

Signature
public static void
onRemoval(long base,

long size,
AsyncEvent ae)

Description
220Section 8.3.3.5

976 RTSJ 2.0 (Draft 48)

PhysicalMemoryManager javax.realtime A.2

Register the specified AE to fire when any memory in the range is removed from
the system. When the specified range of physical memory contains multiple
different types of removable memory, the AE will be registered with each of them.

Parameters
base The starting address in physical memory.
size The size of the memory area.
ae The async event to register.

Throws
IllegalArgumentException when the specified range contains no removable memory,

when ae is null, or when size is less than zero.
OffsetOutOfBoundsException when base is less than zero.
SizeOutOfBoundsException when base plus size would be greater than the physical

addressing range of the processor.

onRemoval(long, long, AsyncEventHandler)

Signature
public static void
onRemoval(long base,

long size,
AsyncEventHandler aeh)

Description
Register the specified AEH to run when any memory in the range is removed
from the system. When the specified range of physical memory contains multiple
different types of removable memory, the AEH will be registered with each of
them. When size or base is less than 0, unregister all "onRemoval" references to
the handler parameter.

Note that this method only removes handlers that were registered with the
same method. It has no effect on handlers that were registered using an associated
async event.

Parameters
base The starting address in physical memory.
size The size of the memory area.
aeh The handler to register.

Throws
IllegalArgumentException when the specified range contains no removable memory,

or when aeh is null and size and base are both greater than or equal to zero.

RTSJ 2.0 (Draft 48) 977

A Deprecated APIs PhysicalMemoryManager

SizeOutOfBoundsException when base plus size would be greater than the physical
addressing range of the processor.

registerFilter(Object, PhysicalMemoryTypeFilter)

Signature
public static final void
registerFilter(Object name,

PhysicalMemoryTypeFilter filter)
throws DuplicateFilterException

Description
Register a memory type filter with the physical memory manager.

Values of name are compared using reference equality (==) not value equality
(equals()).

Parameters
name The type of memory handled by this filter.
filter The filter object.

Throws
DuplicateFilterException when a filter for this type of memory already exists.
ResourceLimitError when the system is configured for a bounded number of filters.

This filter exceeds the bound.
IllegalArgumentException when the name parameter is an array of objects, when

the name and filter are not both in immortal memory, or when either name or
filter is null.

SecurityException when this operation is not permitted.

removeFilter(Object)

Signature
public static final void
removeFilter(Object name)

Description
Remove the identified filter from the set of registered filters. When the filter is
not registered, silently do nothing.

Values of name are compared using reference equality (==) not value equality
(equals()).

978 RTSJ 2.0 (Draft 48)

PhysicalMemoryManager javax.realtime A.2

Parameters
name The identifying object for this memory attribute.

Throws
IllegalArgumentException when name is null.
SecurityException when this operation is not permitted.

unregisterInsertionEvent(long, long, AsyncEvent)

Signature
public static boolean
unregisterInsertionEvent(long base,

long size,
AsyncEvent ae)

Description

Unregister the specified insertion event. The event is only unregistered when all
three arguments match the arguments used to register the event, except that ae
of null matches all values of ae and will unregister every ae that matches the
address range.

Note that this method has no effect on handlers registered directly as async
event handlers.

Parameters
base The starting address in physical memory associated with ae.
size The size of the memory area associated with ae.
ae The event to unregister.

Throws
IllegalArgumentException when size is less than 0.
OffsetOutOfBoundsException when base is less than zero.
SizeOutOfBoundsException when base plus size would be greater than the physical

addressing range of the processor.

Returns
True when at least one event matched the pattern, false when no such event was

found.

Available since RTSJ 1.0.1

RTSJ 2.0 (Draft 48) 979

A Deprecated APIs PriorityCeilingEmulation

unregisterRemovalEvent(long, long, AsyncEvent)

Signature
public static boolean
unregisterRemovalEvent(long base,

long size,
AsyncEvent ae)

Description

Unregister the specified removal event. The async event is only unregistered when
all three arguments match the arguments used to register the event, except that
ae of null matches all values of ae and will unregister every ae that matches the
address range.

Note that this method has no effect on handlers registered directly as async
event handlers.

Parameters
base The starting address in physical memory associated with ae.
size The size of the memory area associated with ae.
ae The async event to unregister.

Throws
IllegalArgumentException when size is less than 0.
OffsetOutOfBoundsException when base is less than zero.
SizeOutOfBoundsException when base plus size would be greater than the physical

addressing range of the processor.

Returns
True when at least one event matched the pattern, false when no such event was

found.

Available since RTSJ 1.0.1

A.2.3.21 PriorityCeilingEmulationT

e following elements of PriorityCeilingEmulation are deprecated. The required
elements are documented in Section 7.3.1.2 above.

980 RTSJ 2.0 (Draft 48)

PriorityScheduler javax.realtime A.2

A.2.3.21.1 Methods

getDefaultCeiling

Signature
public int
getDefaultCeiling()

Description
Gets the priority ceiling for this PriorityCeilingEmulation object.

Returns
The priority ceiling.

Deprecated as of RTSJ 1.0.1. The method name is misleading. Replaced with
getCeiling()

A.2.3.22 PrioritySchedulerT

e following elements of PriorityScheduler are deprecated. The required elements are
documented in Section 6.3.3.8 above.

A.2.3.22.1 Fields

MAX_PRIORITY

public static final MAX_PRIORITY

Description
The maximum priority value used by the implementation.

Deprecated as of RTSJ 1.0.1 Use the getMaxPriority221 method instead.

221Section 6.3.3.8.3

RTSJ 2.0 (Draft 48) 981

A Deprecated APIs PriorityScheduler

MIN_PRIORITY

public static final MIN_PRIORITY

Description
The minimum priority value used by the implementation.

Deprecated as of RTSJ 1.0.1 Use the getMinPriority222 method instead.

A.2.3.22.2 Methods

getMaxPriority(Thread)

Signature
public static int
getMaxPriority(Thread thread)

Description
Gets the maximum priority for the given thread. When the given thread is a
realtime thread that is scheduled by an instance of PriorityScheduler, then the
maximum priority for that scheduler is returned. When the given thread is not an
instance of Schedulable223, the maximum priority of its thread group is returned.
Otherwise an exception is thrown.

Parameters
thread An instance of Thread. When null, the maximum priority of this scheduler

is returned.
Throws
IllegalArgumentException when thread is a realtime thread that is not scheduled

by an instance of PriorityScheduler.

Returns
The maximum priority for thread

Deprecated since RTSJ 2.0

222Section 6.3.3.8.3
223Section 6.3.1.3

982 RTSJ 2.0 (Draft 48)

PriorityScheduler javax.realtime A.2

getMinPriority(Thread)

Signature
public static int
getMinPriority(Thread thread)

Description
Gets the minimum priority for the given thread. When the given thread is a
realtime thread that is scheduled by an instance of PriorityScheduler, then the
minimum priority for that scheduler is returned. When the given thread is not
an instance of Schedulable224, Thread.MIN_PRIORITY is returned. Otherwise
an exception is thrown.

Parameters
thread An instance of Thread. When null, the minimum priority of this scheduler

is returned.
Throws
IllegalArgumentException when thread is a realtime thread that is not scheduled

by an instance of PriorityScheduler.
Returns
The minimum priority for thread
Deprecated since RTSJ 2.0

getNormPriority(Thread)

Signature
public static int
getNormPriority(Thread thread)

Description
Gets the "norm" priority for the given thread. When the given thread is a
realtime thread that is scheduled by an instance of PriorityScheduler, then the
norm priority for that scheduler is returned. When the given thread is not an
instance of Schedulable225, Thread.NORM_PRIORITY is returned. Otherwise
an exception is thrown.

Parameters
224Section 6.3.1.3
225Section 6.3.1.3

RTSJ 2.0 (Draft 48) 983

A Deprecated APIs PriorityScheduler

thread An instance of Thread. When null, the norm priority for this scheduler is
returned.

Throws
IllegalArgumentException when thread is a realtime thread that is not scheduled

by an instance3 of PriorityScheduler.

Returns
The norm priority for thread

Deprecated since RTSJ 2.0

instance

Signature
public static javax.realtime.PriorityScheduler
instance()

Description
Return a reference to the distinguished instance of PriorityScheduler which is
the system’s base scheduler.

Returns
A reference to the distinguished instance PriorityScheduler.

Deprecated since RTSJ 2.0

isFeasible

Signature
public boolean
isFeasible()

Description
Queries this Scheduler about the feasibility of the set of schedulables currently in
the feasibility set.

Implementation Notes
The default feasibility test for the PriorityScheduler considers a set of schedu-

lables with bounded resource requirements, to always be feasible. This covers all

984 RTSJ 2.0 (Draft 48)

PriorityScheduler javax.realtime A.2

schedulable objects with release parameters of types PeriodicParameters226 and
SporadicParameters227.

When any schedulable within the feasibility set has release parameters of
the exact type AperiodicParameters228 (not a subclass thereof), then the feasi-
bility set is not feasible, as aperiodic release characteristics require unbounded
resources. In that case, this method will return false and all methods in the
setIfFeasible family of methods will also return false. Consequently, any call to
a setIfFeasible method that passes a schedulable which has release parameters
of type AperiodicParameters229, or passes proposed release parameters of type
AperiodicParameters230, will return false. The only time a setIfFeasible method
can return true, when there exists in the feasibility set a schedulable with release
parameters of type AperiodicParameters231, is when the method will change those
release parameters to not be AperiodicParameters232.

Implementations may provide a feasibility test other than the default test just
described. In which case the details of that test should be documented here in
place of this description of the default implementation.

Deprecated as of RTSJ 2.0 The framework for feasibility anlaysis is inadequate

setIfFeasible(Schedulable, ReleaseParameters, MemoryParam-
eters)

Signature
public boolean
setIfFeasible(Schedulable schedulable,

ReleaseParameters release,
MemoryParameters memory)

Description
This method first performs a feasibility analysis using the proposed parameter
objects as replacements for the current parameters of Schedulable. When the
resulting system is feasible, this method replaces the current parameters of
Schedulable with the proposed ones. This method does not require that the

226Section 6.3.3.6
227Section 6.3.3.15
228Section 6.3.3.2
229Section 6.3.3.2
230Section 6.3.3.2
231Section 6.3.3.2
232Section 6.3.3.2

RTSJ 2.0 (Draft 48) 985

A Deprecated APIs PriorityScheduler

schedulable be in the feasibility set before it is called. When it is not initially
a member of the feasibility set it will be added when the resulting system is
feasible.

Parameters
schedulable The schedulable for which the changes are proposed.
release The proposed release parameters. When null, the default value of this

scheduler is used (a new object is created when the default value is not null).
(See PriorityScheduler233.)

memory The proposed memory parameters. When null, the default value of this
scheduler is used (a new object is created when the default value is not null).
(See PriorityScheduler234.)

Throws
IllegalArgumentException when Schedulable is null, or Schedulable is not associated

with this scheduler, or the proposed parameters are not compatible with this
scheduler.

IllegalAssignmentError when Schedulable cannot hold references to the proposed
parameter objects, or the parameter objects cannot hold a reference to Sched-
ulable.

IllegalThreadStateException when the new release parameters change Schedul-
able from periodic scheduling to some other protocol and Schedulable is cur-
rently waiting for the next release in RealtimeThread.waitForNextPeriod()235

or RealtimeThread.waitForNextPeriodInterruptible()236.

Returns
True, when the resulting system is feasible and the changes are made. False, when

the resulting system is not feasible and no changes are made.

Deprecated as of RTSJ 2.0 The framework for feasibility anlaysis is inadequate

setIfFeasible(Schedulable, ReleaseParameters, MemoryParam-
eters, ProcessingGroupParameters)

Signature
public boolean
setIfFeasible(Schedulable schedulable,

233Section 6.3.3.8
234Section 6.3.3.8
235Section A.2.3.28.2
236Section A.2.3.28.2

986 RTSJ 2.0 (Draft 48)

PriorityScheduler javax.realtime A.2

ReleaseParameters release,
MemoryParameters memory,
ProcessingGroupParameters group)

Description
This method first performs a feasibility analysis using the proposed parameter
objects as replacements for the current parameters of Schedulable. When the
resulting system is feasible, this method replaces the current parameters of
Schedulable with the proposed ones.

This method does not require that the schedulable be in the feasibility set
before it is called. When it is not initially a member of the feasibility set it will
be added when the resulting system is feasible.

Parameters
schedulable The schedulable for which the changes are proposed.
release The proposed release parameters. When null, the default value of this

scheduler is used (a new object is created when the default value is not null).
(See PriorityScheduler237.)

memory The proposed memory parameters. When null, the default value of this
scheduler is used (a new object is created when the default value is not null).
(See PriorityScheduler238.)

group The proposed processing group parameters. When null, the default value of
this scheduler is used (a new object is created when the default value is not
null). (See PriorityScheduler239.)

Throws
IllegalArgumentException when Schedulable is null, or Schedulable is not associated

with this scheduler, or the proposed parameters are not compatible with this
scheduler.

IllegalAssignmentError when Schedulable cannot hold references to the proposed
parameter objects, or the parameter objects cannot hold a reference to Sched-
ulable.

IllegalThreadStateException when the new release parameters change Schedul-
able from periodic scheduling to some other protocol and Schedulable is cur-
rently waiting for the next release in RealtimeThread.waitForNextPeriod()240

or RealtimeThread.waitForNextPeriodInterruptible()241.
237Section 6.3.3.8
238Section 6.3.3.8
239Section 6.3.3.8
240Section A.2.3.28.2
241Section A.2.3.28.2

RTSJ 2.0 (Draft 48) 987

A Deprecated APIs PriorityScheduler

Returns
True, when the resulting system is feasible and the changes are made. False, when

the resulting system is not feasible and no changes are made.

Deprecated as of RTSJ 2.0 The framework for feasibility anlaysis is inadequate

setIfFeasible(Schedulable, SchedulingParameters, ReleasePar-
ameters, MemoryParameters, ProcessingGroupParameters)

Signature
public boolean
setIfFeasible(Schedulable schedulable,

SchedulingParameters scheduling,
ReleaseParameters release,
MemoryParameters memory,
ProcessingGroupParameters group)

Description
This method first performs a feasibility analysis using the proposed parameter
objects as replacements for the current parameters of Schedulable. When the
resulting system is feasible, this method replaces the current parameters of
Schedulable with the proposed ones.

This method does not require that the schedulable be in the feasibility set
before it is called. When it is not initially a member of the feasibility set it will
be added when the resulting system is feasible.

Parameters
schedulable The schedulable for which the changes are proposed.
scheduling The proposed scheduling parameters. When null, the default value of

this scheduler is used (a new object is created when the default value is not
null). (See PriorityScheduler242.)

release The proposed release parameters. When null, the default value of this
scheduler is used (a new object is created when the default value is not null).
(See PriorityScheduler243.)

memory The proposed memory parameters. When null, the default value of this
scheduler is used (a new object is created when the default value is not null).

242Section 6.3.3.8
243Section 6.3.3.8

988 RTSJ 2.0 (Draft 48)

PriorityScheduler javax.realtime A.2

(See PriorityScheduler244.)
group The proposed processing group parameters. When null, the default value of

this scheduler is used (a new object is created when the default value is not
null). (See PriorityScheduler245.)

Throws
IllegalArgumentException when Schedulable is null, or Schedulable is not associated

with this scheduler, or the proposed parameters are not compatible with this
scheduler.

IllegalAssignmentError when Schedulable cannot hold references to the proposed
parameter objects, or the parameter objects cannot hold a reference to Sched-
ulable.

IllegalThreadStateException when the new release parameters change Schedul-
able from periodic scheduling to some other protocol and Schedulable is cur-
rently waiting for the next release in RealtimeThread.waitForNextPeriod()246

or RealtimeThread.waitForNextPeriodInterruptible()247.

Returns
True, when the resulting system is feasible and the changes are made. False, when

the resulting system is not feasible and no changes are made.

Deprecated as of RTSJ 2.0 The framework for feasibility anlaysis is inadequate

addToFeasibility(Schedulable)

Signature
protected boolean
addToFeasibility(Schedulable schedulable)

Description
Inform this scheduler and cooperating facilities that the resource demands of the
given instance of Schedulable248 will be considered in the feasibility analysis of
the associated Scheduler249 until further notice. Whether the resulting system is
feasible or not, the addition is completed. When the object is already included in
the feasibility set, do nothing.

244Section 6.3.3.8
245Section 6.3.3.8
246Section A.2.3.28.2
247Section A.2.3.28.2
248Section 6.3.1.3
249Section 6.3.3.12

RTSJ 2.0 (Draft 48) 989

A Deprecated APIs PriorityScheduler

Parameters
schedulable A reference to the given instance of Schedulable250

Throws
IllegalArgumentException when schedulable is null, or when schedulable is not

associated with this; that is schedulable.getScheduler() != this.

Returns
True, when the system is feasible after the addition. False, when not.

Deprecated as of RTSJ 2.0 The framework for feasibility anlaysis is inadequate

removeFromFeasibility(Schedulable)

Signature
protected boolean
removeFromFeasibility(Schedulable schedulable)

Description

Inform this scheduler and cooperating facilities that the resource demands of the
given instance of Schedulable251 should no longer be considered in the feasibility
analysis of the associated Scheduler252. Whether the resulting system is feasible
or not, the removal is completed.

Parameters
schedulable A reference to the given instance of Schedulable253

Throws
IllegalArgumentException when schedulable is null.

Returns
True, when the removal was successful. False, when the schedulable cannot be

removed from the scheduler’s feasibility set; e.g., the schedulable is not part of
the scheduler’s feasibility set.

Deprecated as of RTSJ 2.0 The framework for feasibility anlaysis is inadequate

250Section 6.3.1.3
251Section 6.3.1.3
252Section 6.3.3.12
253Section 6.3.1.3

990 RTSJ 2.0 (Draft 48)

ProcessingGroupParameters javax.realtime A.2

fireSchedulable(Schedulable)

Signature
public void
fireSchedulable(Schedulable schedulable)

Description
Trigger the execution of a schedulable (like an AsyncEventHandler254).

Parameters
schedulable schedulable The schedulable to make active. When null, nothing

happens.
Throws
UnsupportedOperationException Thrown in all cases by the PriorityScheduler

Deprecated RTSJ 2.0

A.2.3.23 ProcessingGroupParameters

Inheritance
java.lang.Object
ProcessingGroupParameters

Interfaces
Cloneable
Serializable

Description
This is associated with one or more schedulables for which the system guarantees
that the associated objects will not be given more time per period than indicated
by cost. The motivation for this class is to allow the execution demands of
one or more aperiodic schedulables to be bound. However, periodic or sporadic
schedulables can also be associated with a processing group.

Processing groups have an associated affinity set that must contain only a single
processor. The default affinity set is given by Affinity.getGroupDefaultAffinity().

For all schedulables with a reference to an instance of ProcessingGroup-
Parameters p no more than p.cost will be allocated to the execution of these
schedulables on the processor associated with its processing group in each interval
of time given by p.period after the time indicated by p.start. No execution of the

254Section 8.3.3.5

RTSJ 2.0 (Draft 48) 991

A Deprecated APIs ProcessingGroupParameters

schedulables will be allowed on any processor other than this processor. When
there is no intersection between the a schedulable objects affinity set and its
processing group’s affinity set, then the schedulable execution is constrained by
the default processing group’s affinit set.

Logically a virtual server is associated with each instance of ProcessingGroup-
Parameters. This server has a start time, a period, a cost (budget) and a deadline.
The server can only logically execute when (a) it has not consumed more execu-
tion time in its current release than the cost (budget) parameter, (b) one of its
associated schedulables is executable and is the most eligible of the executable
schedulables. When the server is logically executable, the associated schedulable
is executed. When the cost has been consumed, any overrunHandler is released,
and the server is not eligible for logical execution until its next period is due. At
this point, its allocated cost (budget) is replenished. When the server is logically
executing when its deadline expires, any associated missHandler is released. The
deadline and cost parameters of all the associated schedulable objects have the
same impact as they would if the objects were not bound to a processing group.

Processing group parameters use HighResolutionTime255 values for cost, dead-
line, period and start time. Since those times are expressed as a HighResolu-
tionTime256, the values use accurate timers with nanosecond granularity. The
actual resolution available and even the quantity it measures depends on the
clock associated with each time value.

When a reference to a ProcessingGroupParameters object is given as a pa-
rameter to a schedulable’s constructor or passed as an argument to one of the
schedulable’s setter methods, the ProcessingGroupParameters object becomes the
processing group parameters object bound to that schedulable object. Changes
to the values in the ProcessingGroupParameters object affect that schedulable
object. When bound to more than one schedulable then changes to the values in
the ProcessingGroupParameters object affect all of the associated objects. Note
that this is a one-to-many relationship and not a many-to-many.

The implementation must use modified copy semantics for each HighResolu-
tionTime257 parameter value. The value of each time object should be treated as
if it were copied at the time it is passed to the parameter object, but the object
reference must also be retained. Only changes to a ProcessingGroupParameters
object caused by methods on that object are immediately visible to the scheduler.
For instance, invoking setPeriod() on a ProcessingGroupParameters object will
make the change, then notify that the scheduler that the parameter object has
changed. At that point the scheduler’s view of the processing group parameters

255Section 9.3.1.2
256Section 9.3.1.2
257Section 9.3.1.2

992 RTSJ 2.0 (Draft 48)

ProcessingGroupParameters javax.realtime A.2

object is updated. Invoking a method on the RelativeTime object that is the
period for this object may change the period but it does not pass the change
to the scheduler at that time. That new value for period must not change the
behavior of the SOs that use the parameter object until a setter method on the
ProcessingGroupParameters object is invoked, or the parameter object is used
in setProcessingGroupParameters() or a constructor for an SO.

The implementation may use copy semantics for each HighResolutionTime
parameter value. For instance the value returned by getCost() must be equal to
the value passed in by setCost, but it need not be the same object.

The following table gives the default parameter values for the constructors.

Table A.1: ProcessingGroupParameter Default Values
Attribute Default Value

start new RelativeTime(0,0)
period No default. A value must be sup-

plied
cost No default. A value must be sup-

plied
deadline new RelativeTime(period)
overrunHandler None
missHandler None

Caution: This class is explicitly unsafe in multithreaded situations when it
is being changed. No synchronization is done. It is assumed that users of this
class who are mutating instances will be doing their own synchronization at a
higher level.

Caution: The cost parameter time should be considered to be measured
against the target platform.

Deprecated as of RTSJ 2.0; replaced by ProcessingGroup258.

A.2.3.23.1 Constructors

258Section 6.3.3.9

RTSJ 2.0 (Draft 48) 993

A Deprecated APIs ProcessingGroupParameters

ProcessingGroupParameters(HighResolutionTime, Relative-
Time, RelativeTime, RelativeTime, AsyncEventHandler, Async-
EventHandler)

Signature
public
ProcessingGroupParameters(javax.realtime.HighResolutionTime<?> start,

RelativeTime period,
RelativeTime cost,
RelativeTime deadline,
AsyncEventHandler overrunHandler,
AsyncEventHandler missHandler)

throws IllegalArgumentException,
IllegalAssignmentError

Description
Create a ProcessingGroupParameters object.

Parameters
start Time at which the first period begins. When a RelativeTime, this time

is relative to the creation of this. When an AbsoluteTime, then the first
release of the logical server is at the start time (or immediately when the
absolute time is in the past). When null, the default value is a new instance of
RelativeTime(0,0).

period The period is the interval between successive replenishment of the logical
server’s associated cost budget. There is no default value. When period is null
an exception is thrown.

cost Processing time per period. The budget CPU time that the logical server can
consume each period. When null, an exception is thrown.

deadline The latest permissible completion time measured from the start of the
current period. Changing the deadline might not take effect after the expiration
of the current deadline. Specifying a deadline less than the period constrains
execution of all the members of the group to the beginning of each period.
When null, the default value is new instance of RelativeTime(period).

overrunHandler This handler is invoked when any schedulable object member of this
processing group attempts to use processor time beyond the group’s budget.
When null, no application async event handler is fired on the overrun condition.

missHandler This handler is invoked when the logical server is still executing after
the deadline has passed. When null, no application async event handler is fired

994 RTSJ 2.0 (Draft 48)

ProcessingGroupParameters javax.realtime A.2

on the deadline miss condition.
Throws
IllegalArgumentException when the period is null or its time value is not greater

than zero, when cost is null, or when the time value of cost is less than zero,
when start is an instance of RelativeTime and its value is negative, or when
the time value of deadline is not greater than zero and less than or equal to the
period. When the implementation does not support processing group deadline
less than period, deadline less than period will cause IllegalArgumentException
to be thrown.

IllegalAssignmentError when start, period, cost, deadline, overrunHandler or mis-
sHandler cannot be stored in this.

A.2.3.23.2 Methods

clone

Signature
public java.lang.Object
clone()
throws CloneNotSupportedException

Description
Create a clone of this. This method should behave effectively as when it con-
structed a new object with clones of the high-resolution time values of this.
• The new object is in the current allocation context.
• clone does not copy any associations from this and it does not implicitly

bind the new object to a SO.
• The new object has clones of all high-resolution time values (deep copy).
• References to event handlers are copied (shallow copy.)

Throws
CloneNotSupportedException never

Returns
the clone of this

Available since RTSJ 1.0.1

RTSJ 2.0 (Draft 48) 995

A Deprecated APIs ProcessingGroupParameters

getCost

Signature
public javax.realtime.RelativeTime
getCost()

Description
Gets the value of cost.

Returns
a reference to the value of cost.

getCostOverrunHandler

Signature
public javax.realtime.AsyncEventHandler
getCostOverrunHandler()

Description
Gets the cost overrun handler.

Returns
A reference to an instance of AsyncEventHandler259 that is cost overrun handler of

this.

getDeadline

Signature
public javax.realtime.RelativeTime
getDeadline()

Description
Gets the value of deadline.

Returns
A reference to an instance of RelativeTime260 that is the deadline of this.

259Section 8.3.3.5
260Section 9.3.1.3

996 RTSJ 2.0 (Draft 48)

ProcessingGroupParameters javax.realtime A.2

getDeadlineMissHandler

Signature
public javax.realtime.AsyncEventHandler
getDeadlineMissHandler()

Description
Gets the deadline miss handler.

Returns
A reference to an instance of AsyncEventHandler261that is deadline miss handler

of this.

getPeriod

Signature
public javax.realtime.RelativeTime
getPeriod()

Description
Gets the value of period.

Returns
A reference to an instance of RelativeTime262 that represents the value of period.

getStart

Signature
public javax.realtime.HighResolutionTime<?>
getStart()

Description
Gets the value of start. This is the value that was specified in the constructor or
by setStart(), not the actual absolute time the corresponding to the start of the
processing group.

Returns
261Section 8.3.3.5
262Section 9.3.1.3

RTSJ 2.0 (Draft 48) 997

A Deprecated APIs ProcessingGroupParameters

A reference to an instance of HighResolutionTime263 that represents the value of
start.

setCost(RelativeTime)

Signature
public void
setCost(RelativeTime cost)
throws IllegalArgumentException,

IllegalAssignmentError

Description
Sets the value of cost.

Parameters
cost The new value for cost. When null, an exception is thrown.

Throws
IllegalArgumentException when cost is null or its time value is less than zero.
IllegalAssignmentError when cost cannot be stored in this.

setCostOverrunHandler(AsyncEventHandler)

Signature
public void
setCostOverrunHandler(AsyncEventHandler handler)
throws IllegalAssignmentError

Description
Sets the cost overrun handler.

Parameters
handler This handler is invoked when the run()method of and of the the schedulables

attempt to execute for more than cost time units in any period. When null,
no handler is attached, and any previous handler is removed.

Throws
IllegalAssignmentError when handler cannot be stored in this.

263Section 9.3.1.2

998 RTSJ 2.0 (Draft 48)

ProcessingGroupParameters javax.realtime A.2

setDeadline(RelativeTime)

Signature
public void
setDeadline(RelativeTime deadline)
throws IllegalArgumentException,

IllegalAssignmentError

Description

Sets the value of deadline.

Parameters
deadline The new value for deadline. When null, the default value is new instance

of RelativeTime(period).
Throws
IllegalArgumentException when deadline has a value less than zero or greater than

the period. Unless the implementation supports deadline less than period in
processing groups, IllegalArgumentException is also when deadline is less than
the period.

IllegalAssignmentError when deadline cannot be stored in this.

setDeadlineMissHandler(AsyncEventHandler)

Signature
public void
setDeadlineMissHandler(AsyncEventHandler handler)
throws IllegalAssignmentError

Description

Sets the deadline miss handler.

Parameters
handler This handler is invoked when the run() method of any of the schedulables

still expect to execute after the deadline has passed. When null, no handler is
attached, and any previous handler is removed.

Throws
IllegalAssignmentError when handler cannot be stored in this.

RTSJ 2.0 (Draft 48) 999

A Deprecated APIs ProcessingGroupParameters

setIfFeasible(RelativeTime, RelativeTime, RelativeTime)

Signature
public boolean
setIfFeasible(RelativeTime period,

RelativeTime cost,
RelativeTime deadline)

throws IllegalArgumentException,
IllegalAssignmentError

Description
This method first performs a feasibility analysis using the period, cost and
deadline attributes as replacements for the matching attributes this. When the
resulting system is feasible the method replaces the current attributes of this
with the new attributes.

Parameters
period The proposed period. There is no default value. When period is null an

exception is thrown.
cost The proposed cost. When null, an exception is thrown.
deadline The proposed deadline. When null, the default value is new instance of

RelativeTime(period).
Throws
IllegalArgumentException when the period is null or its time value is not greater

than zero, or when the time value of cost is less than zero, or when the time
value of deadline is not greater than zero.

IllegalAssignmentError when period, cost, or deadline cannot be stored in this.

Returns
True, when the resulting system is feasible and the changes are made. False, when

the resulting system is not feasible and no changes are made.

setPeriod(RelativeTime)

Signature
public void
setPeriod(RelativeTime period)
throws IllegalArgumentException,

IllegalAssignmentError

1000 RTSJ 2.0 (Draft 48)

RationalTime javax.realtime A.2

Description
Sets the value of period.

Parameters
period The new value for period. There is no default value. When period is null

an exception is thrown.
Throws
IllegalArgumentException when period is null, or its time value is not greater than

zero. When the implementation does not support processing group deadline
less than period, and period is not equal to the current value of the processing
group’s deadline, the deadline is set to a clone of period created in the same
memory area as period.

IllegalAssignmentError when period cannot be stored in this.

setStart(HighResolutionTime)

Signature
public void
setStart(javax.realtime.HighResolutionTime<?> start)
throws IllegalArgumentException,

IllegalAssignmentError

Description
Sets the value of start. When the processing group is already started this method
alters the value of this object’s start time property, but has no other effect.

Parameters
start The new value for start. When null, the default value is a new instance of

RelativeTime(0,0).
Throws
IllegalAssignmentError when start cannot be stored in this.
IllegalArgumentException when start is a relative time value and less than zero.

A.2.3.24 RationalTime

Inheritance
java.lang.Object
HighResolutionTime<RelativeTime>

RTSJ 2.0 (Draft 48) 1001

A Deprecated APIs RationalTime

RelativeTime
RationalTime

Description
An object that represents a time interval milliseconds/103 + nanoseconds/109

seconds long that is divided into subintervals by some frequency. This is generally
used in periodic events, threads, and feasibility analysis to specify periods where
there is a basic period that must be adhered to strictly (the interval), but
within that interval the periodic events are supposed to happen frequency times,
as uniformly spaced as possible, but clock and scheduling jitter is moderately
acceptable.

Caution: This class is explicitly unsafe for multithreading when being changed.
Code that mutates instances of this class should synchronize at a higher level. Dep-
recated as of RTSJ 1.0.1

A.2.3.24.1 Constructors

RationalTime(int, long, int)

Signature
public
RationalTime(int frequency,

long millis,
int nanos)

Description
Construct an instance of RationalTime. All arguments must be greater than or
equal to zero.

Parameters
frequency The frequency value.
millis The milliseconds value.
nanos The nanoseconds value.

Throws
IllegalArgumentException When any of the argument values are less than zero, or

when frequency is equal to zero.

1002 RTSJ 2.0 (Draft 48)

RationalTime javax.realtime A.2

RationalTime(int, RelativeTime)

Signature
public
RationalTime(int frequency,

RelativeTime interval)

Description

Construct an instance of RationalTime from the given RelativeTime264.

Parameters
frequency The frequency value.
interval The given instance of RelativeTime265.

Throws
IllegalArgumentException When either of the argument values are less than zero,

or when frequency is equal to zero.

RationalTime(int)

Signature
public
RationalTime(int frequency)

Description

Construct an instance of RationalTime. Equivalent to new RationalTime(1000,
0, frequency)—essentially a cycles-per-second value.

Throws
IllegalArgumentException when frequency is less than or equal to zero.

A.2.3.24.2 Methods

264Section 9.3.1.3
265Section 9.3.1.3

RTSJ 2.0 (Draft 48) 1003

A Deprecated APIs RationalTime

absolute(Clock, AbsoluteTime)

Signature
public javax.realtime.AbsoluteTime
absolute(Clock clock,

AbsoluteTime destination)

Description
Convert time of this to an absolute time.

Parameters
clock The reference clock. When null, Clock.getRealTimeClock() is used.
destination A reference to the destination instance.

addInterarrivalTo(AbsoluteTime)

Signature
public void
addInterarrivalTo(AbsoluteTime destination)

Description
Add the time of this to an AbsoluteTime266 It is almost the same dest.add(this,
dest) except that it accounts for (i.e. divides by) the frequency.

Parameters
destination A reference to the destination instance.

getFrequency

Signature
public int
getFrequency()

Description
Gets the value of frequency.

Returns
The value of frequency as an integer.

266Section 9.3.1.1

1004 RTSJ 2.0 (Draft 48)

RationalTime javax.realtime A.2

getInterarrivalTime

Signature
public javax.realtime.RelativeTime
getInterarrivalTime()

Description
Gets the interarrival time. This time is (milliseconds/103 + nanoseconds/109)/frequency
rounded down to the nearest expressible value of the fields and their types of
RelativeTime267.

getInterarrivalTime(RelativeTime)

Signature
public javax.realtime.RelativeTime
getInterarrivalTime(RelativeTime dest)

Description
Gets the interarrival time. This time is (milliseconds/103 + nanoseconds/109)/frequency
rounded down to the nearest expressible value of the fields and their types of
RelativeTime268.

Parameters
dest Result is stored in dest and returned, when null, a new object is returned.

set(long, int)

Signature
public javax.realtime.RationalTime
set(long millis,

int nanos)

Description
Sets the indicated fields to the given values.

Parameters
millis The new value for the millisecond field.
267Section 9.3.1.3
268Section 9.3.1.3

RTSJ 2.0 (Draft 48) 1005

A Deprecated APIs RawMemoryAccess

nanos The new value for the nanosecond field.
Returns
this

setFrequency(int)

Signature
public javax.realtime.RationalTime
setFrequency(int frequency)

Description
Sets the value of the frequency field.

Parameters
frequency The new value for the frequency.

Throws
IllegalArgumentException when frequency is less than or equal to zero.

Returns
this

toString

Signature
public java.lang.String
toString()

Description
Create a printable string of the time given by this.

The string shall be a decimal representation of the frequency, milliseconds
and nanosecond values; formatted as follows "(100, 2251 ms, 750000 ns)"

Returns
String object converted from the time given by this.

A.2.3.25 RawMemoryAccess

Inheritance

1006 RTSJ 2.0 (Draft 48)

RawMemoryAccess javax.realtime A.2

java.lang.Object
RawMemoryAccess

Description

An instance of RawMemoryAccess models a range of physical memory as a fixed
sequence of bytes. A complement of accessor methods enable the contents of the
physical area to be accessed through offsets from the base, interpreted as byte,
short, int, or long data values or as arrays of these types.

Whether an offset addresses the high-order or low-order byte is normally based
on the value of the RealtimeSystem.BYTE_ORDER269 static byte variable in
class RealtimeSystem270. When the type of memory used for this RawMemo-
ryAccess region implements non-standard byte ordering, accessor methods in
this class continue to select bytes starting at offset from the base address and
continuing toward greater addresses. The memory type may control the mapping
of these bytes into the primitive data type. The memory type could even select
bytes that are not contiguous. In each case the documentation for the Physi-
calMemoryTypeFilter271 must document any mapping other than the "normal"
one specified above.

The RawMemoryAccess class allows a realtime program to implement device
drivers, memory-mapped I/O, flash memory, battery-backed RAM, and similar
low-level software.

A raw memory area cannot contain references to Java objects. Such a
capability would be unsafe (since it could be used to defeat Java’s type checking)
and error-prone (since it is sensitive to the specific representational choices made
by the Java compiler).

Many of the constructors and methods in this class throw OffsetOutOfBound-
sException272. This exception means that the value given in the offset parameter
is either negative or outside the memory area.

Many of the constructors and methods in this class throw SizeOutOfBound-
sException273. This exception means that the value given in the size parameter
is either negative, larger than an allowable range, or would cause an accessor
method to access an address outside of the memory area.

Unlike other integral parameters in this chapter, negative values are valid for
byte, short, int, and long values that are copied in and out of memory by the set
and get methods of this class.

All offset values used in this class are measured in bytes.

269Section 14.2.2.5.1
270Section 14.2.2.5
271Section A.2.1.1
272Section 15.2.2.14
273Section 15.2.2.23

RTSJ 2.0 (Draft 48) 1007

A Deprecated APIs RawMemoryAccess

Atomic loads and stores on raw memory are defined in terms of physical
memory. This memory may be accessible to threads outside the JVM and
to non-programmed access (e.g., DMA), consequently atomic access must be
supported by hardware. This specification is written with the assumption that
all suitable hardware platforms support atomic loads for aligned bytes, shorts,
and ints. Atomic access beyond the specified minimum may be supported by the
implementation.

Storing values into raw memory is more hardware-dependent than loading
values. Many processor architectures do not support atomic stores of variables
except for aligned stores of the processor’s word size. For instance, storing a byte
into memory might require reading a 32-bit quantity into a processor register,
updating the register to reflect the new byte value, then re-storing the whole
32-bit quantity. Changes to other bytes in the 32-bit quantity that take place
between the load and the store will be lost.

Some processors have mechanisms that can be used to implement an atomic
store of a byte, but those mechanisms are often slow and not universally supported.

This class supports unaligned access to data, but it does not require the
implementation to make such access atomic. Accesses to data aligned on its
natural boundary will be atomic when the processor implements atomic loads
and stores of that data size.

Except where noted, accesses to raw memory are not atomic with respect
to the memory or with respect to schedulables. A raw memory area could be
updated by another schedulable, or even unmapped in the middle of a method.

The characteristics of raw-memory access are necessarily platform dependent.
This specification provides a minimum requirement for the RTSJ platform, but
it also supports optional system properties that identify a platform’s level of
support for atomic raw put and get. The properties represent a four-dimensional
sparse array with boolean values indicating whether that combination of access
attributes is atomic. The default value for array entries is false. The dimension
are

The true values in the table are represented by properties of the following form.
javax.realtime.atomicaccess_<access>_<type>_<alignment>_atomicity=true
for example:

javax.realtime.atomicaccess_read_byte_0_memory=true
Table entries with a value of false may be explicitly represented, but since false

is the default value, such properties are redundant.
All raw memory access is treated as volatile, and serialized. The run-time

must be forced to re-read memory or write to memory on each call to a raw
memory getxxx or putxxx method, and to complete the reads and writes in the
order they appear in the program order.

1008 RTSJ 2.0 (Draft 48)

RawMemoryAccess javax.realtime A.2

Table A.2: Properties Array
Attribute Values Comment

Access type read, write

Data type byte, short, int,
long, float, double

Alignment 0 aligned
1 to one less than
data type size

the first byte of the data is alignment
bytes away from natural alignment.

Atomicity
processor means access is atomic with respect

to other taska on processor.
smp means access is processor atomic,

and atomic with respect to all pro-
cessors in an SMP.

memory means that access is smp atomic,
and atomic with respect to all access
to the memory including DMA.

Deprecated as of RTSJ 2.0. Use javax.realtime.device.RawMemoryFactory274 to
create the appropriate javax.realtime.device.RawMemory275 object.

A.2.3.25.1 Constructors

RawMemoryAccess(Object, long, long)

Signature
public
RawMemoryAccess(Object type,

long base,
long size)

Description
274Section 12.3.2.6
275Section 12.3.1.17

RTSJ 2.0 (Draft 48) 1009

A Deprecated APIs RawMemoryAccess

Construct an instance of RawMemoryAccess with the given parameters, and set
the object to the mapped state. When the platform supports virtual memory,
map the raw memory into virtual memory.

The run time environment is allowed to choose the virtual address where the
raw memory area corresponding to this object will be mapped. The attributes
of the mapping operation are controlled by the vMFlags and vMAttributes of
the PhysicalMemoryTypeFilter objects that matched this object’s type parameter.
(See PhysicalMemoryTypeFilter.getVMAttributes276 and PhysicalMemoryTypeFilter.
getVMFlags277.

Parameters
type An instance of Object representing the type of memory required (e.g., dma,

shared) - used to define the base address and control the mapping. When
the required memory has more than one attribute, type may be an array of
objects. When type is null or a reference to an array with no entries, any type
of memory is acceptable. Note that type values are compared by reference
(==), not by value (equals).

base The physical memory address of the region.
size The size of the area in bytes.

Throws
SecurityException when application doesn’t have permissions to access physical

memory, the specified range of addresses, or the given type of memory.
OffsetOutOfBoundsException when the address is invalid.
SizeOutOfBoundsException when the size is negative or extends into an invalid

range of memory.
UnsupportedPhysicalMemoryException when the underlying hardware does not

support the given type, or when no matching PhysicalMemoryTypeFilter278

has been registered with the PhysicalMemoryManager279.
MemoryTypeConflictException when the specified base does not point to memory

that matches the request type, or when type specifies incompatible memory
attributes.

OutOfMemoryError when the requested type of memory exists, but there is not
enough of it free to satisfy the request.

RawMemoryAccess(Object, long)

276Section A.2.1.1.1
277Section A.2.1.1.1
278Section A.2.1.1
279Section A.2.3.20

1010 RTSJ 2.0 (Draft 48)

RawMemoryAccess javax.realtime A.2

Signature
public
RawMemoryAccess(Object type,

long size)

Description
Construct an instance of RawMemoryAccess with the given parameters, and set
the object to the mapped state. When the platform supports virtual memory,
map the raw memory into virtual memory.

The run time environment is allowed to choose the virtual address where the
raw memory area corresponding to this object will be mapped. The attributes
of the mapping operation are controlled by the vMFlags and vMAttributes of
the PhysicalMemoryTypeFilter objects that matched this object’s type parameter.
(See PhysicalMemoryTypeFilter.getVMAttributes280 and PhysicalMemoryTypeFilter.
getVMFlags281.

Parameters
type An instance of Object representing the type of memory required (e.g., dma,

shared) - used to define the base address and control the mapping. When
the required memory has more than one attribute, type may be an array of
objects. When type is null or a reference to an array with no entries, any type
of memory is acceptable. Note that type values are compared by reference
(==), not by value (equals).

size The size of the area in bytes.
Throws
SecurityException when the application doesn’t have permissions to access physical

memory, the specified range of addresses, or the given type of memory.
SizeOutOfBoundsException when the size is negative or extends into an invalid

range of memory.
UnsupportedPhysicalMemoryException when the underlying hardware does not

support the given type, or when no matching PhysicalMemoryTypeFilter282

has been registered with the PhysicalMemoryManager283.
MemoryTypeConflictException when the specified base does not point to memory

that matches the request type, or when type specifies incompatible memory
attributes.

280Section A.2.1.1.1
281Section A.2.1.1.1
282Section A.2.1.1
283Section A.2.3.20

RTSJ 2.0 (Draft 48) 1011

A Deprecated APIs RawMemoryAccess

OutOfMemoryError when the requested type of memory exists, but there is not
enough of it free to satisfy the request.

SecurityException when the application doesn’t have permissions to access physical
memory or the given range of memory.

A.2.3.25.2 Methods

getByte(long)

Signature
public byte
getByte(long offset)

Description
Gets the byte at the given offset in the memory area associated with this object.
The byte is always loaded from memory in a single atomic operation.

Caching of the memory access is controlled by the memory type requested
when the RawMemoryAccess instance was created. When the memory is not
cached, this method guarantees serialized access (that is, the memory access at
the memory occurs in the same order as in the program. Multiple writes to the
same location may not be coalesced.)

Parameters
offset The offset in bytes from the beginning of the raw memory from which to load

the byte.
Throws
SizeOutOfBoundsException when the object is not mapped, or when the byte falls

in an invalid address range.
OffsetOutOfBoundsException when the offset is negative or greater than the size of

the raw memory area. The role of the SizeOutOfBoundsException284 somewhat
overlaps this exception since it is when the offset is within the object but outside
the mapped area.

SecurityException when this access is not permitted by the security manager.

Returns
The byte from raw memory.
284Section 15.2.2.23

1012 RTSJ 2.0 (Draft 48)

RawMemoryAccess javax.realtime A.2

See Section RawMemoryAccess.map(long,long)

getBytes(long, byte, int, int)

Signature
public void
getBytes(long offset,

byte[] bytes,
int low,
int number)

Description
Gets number bytes starting at the given offset in the memory area associated
with this object and assigns them to the byte array passed starting at position
low. Each byte is loaded from memory in a single atomic operation. Groups of
bytes may be loaded together, but this is unspecified.

Caching of the memory access is controlled by the memory type requested
when the RawMemoryAccess instance was created. When the memory is not
cached, this method guarantees serialized access (that is, the memory access at
the memory occurs in the same order as in the program. Multiple writes to the
same location may not be coalesced.)

Parameters
offset The offset in bytes from the beginning of the raw memory from which to start

loading.
bytes The array into which the loaded items are placed.
low The offset which is the starting point in the given array for the loaded items to

be placed.
number The number of items to load.

Throws
OffsetOutOfBoundsException when the offset is negative or greater than the size of

the raw memory area. The role of the SizeOutOfBoundsException285 somewhat
overlaps this exception since it is when the offset is within the object but outside
the mapped area.

SizeOutOfBoundsException when the object is not mapped, or when the byte falls
in an invalid address range. This is checked at every entry in the array to allow
for the possibility that the memory area could be unmapped or remapped. The

285Section 15.2.2.23

RTSJ 2.0 (Draft 48) 1013

A Deprecated APIs RawMemoryAccess

bytes array could, therefore, be partially updated when the raw memory is
unmapped or remapped mid-method.

ArrayIndexOutOfBoundsException when low is less than 0 or greater than bytes.length
- 1, or when low + number is greater than or equal to bytes.length.

SecurityException when this access is not permitted by the security manager.
See Section RawMemoryAccess.map(long,long)

getInt(long)

Signature
public int
getInt(long offset)

Description
Gets the int at the given offset in the memory area associated with this object.
When the integer is aligned on a "natural" boundary it is always loaded from
memory in a single atomic operation. When it is not on a natural boundary it
may not be loaded atomically, and the number and order of the load operations
is unspecified.

Caching of the memory access is controlled by the memory type requested
when the RawMemoryAccess instance was created. When the memory is not
cached, this method guarantees serialized access (that is, the memory access at
the memory occurs in the same order as in the program. Multiple writes to the
same location may not be coalesced.)

Parameters
offset The offset in bytes from the beginning of the raw memory area from which

to load the integer.
Throws
OffsetOutOfBoundsException when the offset is negative or greater than the size of

the raw memory area. The role of the SizeOutOfBoundsException286 somewhat
overlaps this exception since it is when the offset is within the object but outside
the mapped area.

SizeOutOfBoundsException when the object is not mapped, or when the integer
falls in an invalid address range.

SecurityException when this access is not permitted by the security manager.
Returns

286Section 15.2.2.23

1014 RTSJ 2.0 (Draft 48)

RawMemoryAccess javax.realtime A.2

The integer from raw memory.
See Section RawMemoryAccess.map(long,long)

getInts(long, int, int, int)

Signature
public void
getInts(long offset,

int[] ints,
int low,
int number)

Description
Gets number integers starting at the given offset in the memory area associated
with this object and assign them to the int array passed starting at position low.

When the integers are aligned on natural boundaries each integer is loaded
from memory in a single atomic operation. Groups of integers may be loaded
together, but this is unspecified. When the integers are not aligned on natural
boundaries they may not be loaded atomically and the number and order of load
operations is unspecified.

Caching of the memory access is controlled by the memory type requested
when the RawMemoryAccess instance was created. When the memory is not
cached, this method guarantees serialized access (that is, the memory access at
the memory occurs in the same order as in the program. Multiple writes to the
same location may not be coalesced.)

Parameters
offset The offset in bytes from the beginning of the raw memory area at which to

start loading.
ints The array into which the integers read from the raw memory are placed.
low The offset which is the starting point in the given array for the loaded items to

be placed.
number The number of integers to loaded.

Throws
OffsetOutOfBoundsException when the offset is negative or greater than the size of

the raw memory area. The role of the SizeOutOfBoundsException287 somewhat
overlaps this exception since it is when the offset is within the object but outside
the mapped area.

287Section 15.2.2.23

RTSJ 2.0 (Draft 48) 1015

A Deprecated APIs RawMemoryAccess

SizeOutOfBoundsException when the object is not mapped, or when the integers
fall in an invalid address range. This is checked at every entry in the array to
allow for the possibility that the memory area could be unmapped or remapped.
The ints array could, therefore, be partially updated when the raw memory is
unmapped or remapped mid-method.

ArrayIndexOutOfBoundsException when low is less than 0 or greater than bytes.length
- 1, or when low + number is greater than or equal to bytes.length.

SecurityException when this access is not permitted by the security manager.

See Section RawMemoryAccess.map(long,long)

getLong(long)

Signature
public long
getLong(long offset)

Description

Gets the long at the given offset in the memory area associated with this object.
The load is not required to be atomic even it is located on a natural boundary.
Caching of the memory access is controlled by the memory type requested

when the RawMemoryAccess instance was created. When the memory is not
cached, this method guarantees serialized access (that is, the memory access at
the memory occurs in the same order as in the program. Multiple writes to the
same location may not be coalesced.)

Parameters
offset The offset in bytes from the beginning of the raw memory area from which

to load the long.
Throws
OffsetOutOfBoundsException when the offset is invalid.
SizeOutOfBoundsException when the object is not mapped, or when the double

falls in an invalid address range.
SecurityException when this access is not permitted by the security manager.

Returns
The long from raw memory.

1016 RTSJ 2.0 (Draft 48)

RawMemoryAccess javax.realtime A.2

getLongs(long, long, int, int)

Signature
public void
getLongs(long offset,

long[] longs,
int low,
int number)

Description
Gets number longs starting at the given offset in the memory area associated
with this object and assign them to the long array passed starting at position
low.

The loads are not required to be atomic even when they are located on natural
boundaries.

Caching of the memory access is controlled by the memory type requested
when the RawMemoryAccess instance was created. When the memory is not
cached, this method guarantees serialized access (that is, the memory access at
the memory occurs in the same order as in the program. Multiple writes to the
same location may not be coalesced.)

Parameters
offset The offset in bytes from the beginning of the raw memory area at which to

start loading.
longs The array into which the loaded items are placed.
low The offset which is the starting point in the given array for the loaded items to

be placed.
number The number of longs to load.

Throws
OffsetOutOfBoundsException when the offset is negative or greater than the size of

the raw memory area. The role of the SizeOutOfBoundsException288 somewhat
overlaps this exception since it is when the offset is within the object but outside
the mapped area.

SizeOutOfBoundsException when the object is not mapped, or when a long falls in
an invalid address range. This is checked at every entry in the array to allow
for the possibility that the memory area could be unmapped or remapped. The
longs array could, therefore, be partially updated when the raw memory is
unmapped or remapped mid-method.

288Section 15.2.2.23

RTSJ 2.0 (Draft 48) 1017

A Deprecated APIs RawMemoryAccess

ArrayIndexOutOfBoundsException when low is less than 0 or greater than bytes.length
- 1, or when low + number is greater than or equal to bytes.length.

SecurityException when this access is not permitted by the security manager.

See Section RawMemoryAccess.map(long,long)

getMappedAddress

Signature
public long
getMappedAddress()

Description
Gets the virtual memory location at which the memory region is mapped.

Throws
IllegalStateException when the raw memory object is not in the mapped state.

Returns
The virtual address to which this is mapped (for reference purposes). Same as the

base address when virtual memory is not supported.

getShort(long)

Signature
public short
getShort(long offset)

Description
Gets the short at the given offset in the memory area associated with this object.
When the short is aligned on a natural boundary it is always loaded from memory
in a single atomic operation. When it is not on a natural boundary it may not be
loaded atomically, and the number and order of the load operations is unspecified.

Caching of the memory access is controlled by the memory type requested
when the RawMemoryAccess instance was created. When the memory is not
cached, this method guarantees serialized access (that is, the memory access at
the memory occurs in the same order as in the program. Multiple writes to the
same location may not be coalesced.)

Parameters

1018 RTSJ 2.0 (Draft 48)

RawMemoryAccess javax.realtime A.2

offset The offset in bytes from the beginning of the raw memory area from which
to load the short.

Throws
OffsetOutOfBoundsException when the offset is negative or greater than the size of

the raw memory area. The role of the SizeOutOfBoundsException289 somewhat
overlaps this exception since it is when the offset is within the object but outside
the mapped area.

SizeOutOfBoundsException when the object is not mapped, or when the short falls
in an invalid address range.

SecurityException when this access is not permitted by the security manager.
Returns
The short loaded from raw memory.
See Section RawMemoryAccess.map(long,long)

getShorts(long, short, int, int)

Signature
public void
getShorts(long offset,

short[] shorts,
int low,
int number)

Description
Gets number shorts starting at the given offset in the memory area associated
with this object and assign them to the short array passed starting at position
low.

When the shorts are located on natural boundaries each short is loaded from
memory in a single atomic operation. Groups of shorts may be loaded together,
but this is unspecified.

When the shorts are not located on natural boundaries the load may not be
atomic, and the number and order of load operations is unspecified. Caching
of the memory access is controlled by the memory type requested when the
RawMemoryAccess instance was created. When the memory is not cached, this
method guarantees serialized access (that is, the memory access at the memory
occurs in the same order as in the program. Multiple writes to the same location
may not be coalesced.)

289Section 15.2.2.23

RTSJ 2.0 (Draft 48) 1019

A Deprecated APIs RawMemoryAccess

Parameters
offset The offset in bytes from the beginning of the raw memory area from which

to start loading.
shorts The array into which the loaded items are placed.
low The offset which is the starting point in the given array for the loaded shorts

to be placed.
number The number of shorts to load.

Throws
OffsetOutOfBoundsException when the offset is negative or greater than the size of

the raw memory area. The role of the SizeOutOfBoundsException290 somewhat
overlaps this exception since it is when the offset is within the object but outside
the mapped area.

SizeOutOfBoundsException when the object is not mapped, or when a short falls
in an invalid address range. This is checked at every entry in the array to allow
for the possibility that the memory area could be unmapped or remapped. The
shorts array could, therefore, be partially updated when the raw memory is
unmapped or remapped mid-method.

ArrayIndexOutOfBoundsException when low is less than 0 or greater than bytes.length
- 1, or when low + number is greater than or equal to bytes.length.

SecurityException when this access is not permitted by the security manager.
See Section RawMemoryAccess.map(long,long)

map

Signature
public long
map()

Description
Maps the physical memory range into virtual memory. No-op when the system
doesn’t support virtual memory.

The run time environment is allowed to choose the virtual address where the
raw memory area corresponding to this object will be mapped. The attributes
of the mapping operation are controlled by the vMFlags and vMAttributes of
the PhysicalMemoryTypeFilter objects that matched this object’s type parameter.
(See PhysicalMemoryTypeFilter.getVMAttributes291 and PhysicalMemoryTypeFilter.

290Section 15.2.2.23
291Section A.2.1.1.1

1020 RTSJ 2.0 (Draft 48)

RawMemoryAccess javax.realtime A.2

getVMFlags292.
When the object is already mapped into virtual memory, this method does

not change anything.

Throws
OutOfMemoryError when there is insufficient free virtual address space to map the

object.
Returns
The starting point of the virtual memory range.

map(long)

Signature
public long
map(long base)

Description
Maps the physical memory range into virtual memory at the specified location.
No-op when the system doesn’t support virtual memory.

The attributes of the mapping operation are controlled by the vMFlags
and vMAttributes of the PhysicalMemoryTypeFilter objects that matched this
object’s type parameter. (See PhysicalMemoryTypeFilter.getVMAttributes293

and PhysicalMemoryTypeFilter.getVMFlags294.
When the object is already mapped into virtual memory at a different address,

this method remaps it to base.
When a remap is requested while another schedulable is accessing the raw

memory, the map will block until one load or store completes. It can interrupt
an array operation between entries.

Parameters
base The location to map at the virtual memory space.

Throws
OutOfMemoryError when there is insufficient free virtual memory at the specified

address.
IllegalArgumentException when base is not a legal value for a virtual address,

or the memory-mapping hardware cannot place the physical memory at the
designated address.

292Section A.2.1.1.1
293Section A.2.1.1.1
294Section A.2.1.1.1

RTSJ 2.0 (Draft 48) 1021

A Deprecated APIs RawMemoryAccess

Returns
The starting point of the virtual memory.

map(long, long)

Signature
public long
map(long base,

long size)

Description
Maps the physical memory range into virtual memory. No-op when the system
doesn’t support virtual memory.

The attributes of the mapping operation are controlled by the vMFlags
and vMAttributes of the PhysicalMemoryTypeFilter objects that matched this
object’s type parameter. (See PhysicalMemoryTypeFilter.getVMAttributes295

and PhysicalMemoryTypeFilter.getVMFlags296.
When the object is already mapped into virtual memory at a different address,

this method remaps it to base.
When a remap is requested while another schedulable is accessing the raw

memory, the map will block until one load or store completes. It can interrupt
an array operation between entries.

Parameters
base The location to map at the virtual memory space.
size The size of the block to map in. When the size of the raw memory area is

greater than size, the object is unchanged but accesses beyond the mapped
region will throw SizeOutOfBoundsException297. When the size of the raw
memory area is smaller than the mapped region access to the raw memory will
behave as if the mapped region matched the raw memory area, but additional
virtual address space will be consumed after the end of the raw memory area.

Throws
IllegalArgumentException when size is not greater than zero, base is not a legal

value for a virtual address, or the memory-mapping hardware cannot place the
physical memory at the designated address.

Returns
The starting point of the virtual memory.

295Section A.2.1.1.1
296Section A.2.1.1.1
297Section 15.2.2.23

1022 RTSJ 2.0 (Draft 48)

RawMemoryAccess javax.realtime A.2

setByte(long, byte)

Signature
public void
setByte(long offset,

byte value)

Description
Sets the byte at the given offset in the memory area associated with this object.

This memory access may involve a load and a store, and it may have unspecified
effects on surrounding bytes in the presence of concurrent access.

Caching of the memory access is controlled by the memory type requested
when the RawMemoryAccess instance was created. When the memory is not
cached, this method guarantees serialized access (that is, the memory access at
the memory occurs in the same order as in the program. Multiple writes to the
same location may not be coalesced.)

Parameters
offset The offset in bytes from the beginning of the raw memory area to which to

write the byte.
value The byte to write.

Throws
OffsetOutOfBoundsException when the offset is negative or greater than the size of

the raw memory area. The role of the SizeOutOfBoundsException298 somewhat
overlaps this exception since it is when the offset is within the object but outside
the mapped area.

SizeOutOfBoundsException when the object is not mapped, or when the byte falls
in an invalid address range.

SecurityException when this access is not permitted by the security manager.

See Section RawMemoryAccess.map(long,long)

setBytes(long, byte, int, int)

Signature
public void
setBytes(long offset,

byte[] bytes,

298Section 15.2.2.23

RTSJ 2.0 (Draft 48) 1023

A Deprecated APIs RawMemoryAccess

int low,
int number)

Description

Sets number bytes starting at the given offset in the memory area associated
with this object from the byte array passed starting at position low.

This memory access may involve multiple load and a store operations, and it
may have unspecified effects on surrounding bytes (even bytes in the range being
stored) in the presence of concurrent access.

Caching of the memory access is controlled by the memory type requested
when the RawMemoryAccess instance was created. When the memory is not
cached, this method guarantees serialized access (that is, the memory access at
the memory occurs in the same order as in the program. Multiple writes to the
same location may not be coalesced.)

Parameters
offset The offset in bytes from the beginning of the raw memory area to which to

start writing.
bytes The array from which the items are obtained.
low The offset which is the starting point in the given array for the items to be

obtained.
number The number of items to write.

Throws
OffsetOutOfBoundsException when the offset is negative or greater than the size of

the raw memory area. The role of the SizeOutOfBoundsException299 somewhat
overlaps this exception since it is when the offset is within the object but outside
the mapped area.

SizeOutOfBoundsException when the object is not mapped, or when the a short
falls in an invalid address range. This is checked at every entry in the array to
allow for the possibility that the memory area could be unmapped or remapped.
The store of the array into memory could, therefore, be only partially complete
when the raw memory is unmapped or remapped mid-method.

ArrayIndexOutOfBoundsException when low is less than 0 or greater than bytes.length
- 1, or when low + number is greater than or equal to bytes.length.

SecurityException when this access is not permitted by the security manager.

See Section RawMemoryAccess.map(long,long)

299Section 15.2.2.23

1024 RTSJ 2.0 (Draft 48)

RawMemoryAccess javax.realtime A.2

setInt(long, int)

Signature
public void
setInt(long offset,

int value)

Description
Sets the int at the given offset in the memory area associated with this object.
On most processor architectures an aligned integer can be stored in an atomic
operation, but this is not required.

This memory access may involve multiple load and a store operations, and it
may have unspecified effects on surrounding bytes (even bytes in the range being
stored) in the presence of concurrent access.

Caching of the memory access is controlled by the memory type requested
when the RawMemoryAccess instance was created. When the memory is not
cached, this method guarantees serialized access (that is, the memory access at
the memory occurs in the same order as in the program. Multiple writes to the
same location may not be coalesced.)

Parameters
offset The offset in bytes from the beginning of the raw memory area at which to

write the integer.
value The integer to write.

Throws
OffsetOutOfBoundsException when the offset is negative or greater than the size of

the raw memory area. The role of the SizeOutOfBoundsException300 somewhat
overlaps this exception since it is when the offset is within the object but outside
the mapped area.

SizeOutOfBoundsException when the object is not mapped, or when the integer
falls in an invalid address range.

SecurityException when this access is not permitted by the security manager.

See Section RawMemoryAccess.map(long,long)

setInts(long, int, int, int)

Signature
300Section 15.2.2.23

RTSJ 2.0 (Draft 48) 1025

A Deprecated APIs RawMemoryAccess

public void
setInts(long offset,

int[] ints,
int low,
int number)

Description
Sets number ints starting at the given offset in the memory area associated with
this object from the int array passed starting at position low. On most processor
architectures each aligned integer can be stored in an atomic operation, but this
is not required.

This memory access may involve multiple load and a store operations, and it
may have unspecified effects on surrounding bytes (even bytes in the range being
stored) in the presence of concurrent access.

Caching of the memory access is controlled by the memory type requested
when the RawMemoryAccess instance was created. When the memory is not
cached, this method guarantees serialized access (that is, the memory access at
the memory occurs in the same order as in the program. Multiple writes to the
same location may not be coalesced.)

Parameters
offset The offset in bytes from the beginning of the raw memory area at which to

start writing.
ints The array from which the items are obtained.
low The offset which is the starting point in the given array for the items to be

obtained.
number The number of items to write.

Throws
OffsetOutOfBoundsException when the offset is negative or greater than the size of

the raw memory area. The role of the SizeOutOfBoundsException301 somewhat
overlaps this exception since it is when the offset is within the object but outside
the mapped area.

SizeOutOfBoundsException when the object is not mapped, or when an int falls in
an invalid address range. This is checked at every entry in the array to allow
for the possibility that the memory area could be unmapped or remapped. The
store of the array into memory could, therefore, be only partially complete
when the raw memory is unmapped or remapped mid-method.

ArrayIndexOutOfBoundsException when low is less than 0 or greater than bytes.length
- 1, or when low + number is greater than or equal to bytes.length.

301Section 15.2.2.23

1026 RTSJ 2.0 (Draft 48)

RawMemoryAccess javax.realtime A.2

SecurityException when this access is not permitted by the security manager.
See Section RawMemoryAccess.map(long,long)

setLong(long, long)

Signature
public void
setLong(long offset,

long value)

Description
Sets the long at the given offset in the memory area associated with this object.
Even when it is aligned, the long value may not be updated atomically. It is
unspecified how many load and store operations will be used or in what order.

This memory access may involve multiple load and a store operations, and it
may have unspecified effects on surrounding bytes (even bytes in the range being
stored) in the presence of concurrent access.

Caching of the memory access is controlled by the memory type requested
when the RawMemoryAccess instance was created. When the memory is not
cached, this method guarantees serialized access (that is, the memory access at
the memory occurs in the same order as in the program. Multiple writes to the
same location may not be coalesced.)

Parameters
offset The offset in bytes from the beginning of the raw memory area at which to

write the long.
value The long to write.

Throws
OffsetOutOfBoundsException when the offset is negative or greater than the size of

the raw memory area. The role of the SizeOutOfBoundsException302 somewhat
overlaps this exception since it is when the offset is within the object but outside
the mapped area.

SizeOutOfBoundsException when the object is not mapped, or when the long falls
in an invalid address range.

SecurityException when this access is not permitted by the security manager.
See Section RawMemoryAccess.map(long,long)

302Section 15.2.2.23

RTSJ 2.0 (Draft 48) 1027

A Deprecated APIs RawMemoryAccess

setLongs(long, long, int, int)

Signature
public void
setLongs(long offset,

long[] longs,
int low,
int number)

Description
Sets number longs starting at the given offset in the memory area associated with
this object from the long array passed starting at position low. Even when they
are aligned, the long values may not be updated atomically. It is unspecified how
many load and store operations will be used or in what order.

This memory access may involve multiple load and a store operations, and it
may have unspecified effects on surrounding bytes (even bytes in the range being
stored) in the presence of concurrent access.

Caching of the memory access is controlled by the memory type requested
when the RawMemoryAccess instance was created. When the memory is not
cached, this method guarantees serialized access (that is, the memory access at
the memory occurs in the same order as in the program. Multiple writes to the
same location may not be coalesced.)

Parameters
offset The offset in bytes from the beginning of the raw memory area at which to

start writing.
longs The array from which the items are obtained.
low The offset which is the starting point in the given array for the items to be

obtained.
number The number of items to write.

Throws
OffsetOutOfBoundsException when the offset is negative or greater than the size of

the raw memory area. The role of the SizeOutOfBoundsException303 somewhat
overlaps this exception since it is when the offset is within the object but outside
the mapped area.

SizeOutOfBoundsException when the object is not mapped, or when the a short
falls in an invalid address range. This is checked at every entry in the array to
allow for the possibility that the memory area could be unmapped or remapped.

303Section 15.2.2.23

1028 RTSJ 2.0 (Draft 48)

RawMemoryAccess javax.realtime A.2

The store of the array into memory could, therefore, be only partially complete
when the raw memory is unmapped or remapped mid-method.

ArrayIndexOutOfBoundsException when low is less than 0 or greater than bytes.length
- 1, or when low + number is greater than or equal to bytes.length.

SecurityException when this access is not permitted by the security manager.

See Section RawMemoryAccess.map(long,long)

setShort(long, short)

Signature
public void
setShort(long offset,

short value)

Description
Sets the short at the given offset in the memory area associated with this object.

This memory access may involve a load and a store, and it may have unspecified
effects on surrounding shorts in the presence of concurrent access.

Caching of the memory access is controlled by the memory type requested
when the RawMemoryAccess instance was created. When the memory is not
cached, this method guarantees serialized access (that is, the memory access at
the memory occurs in the same order as in the program. Multiple writes to the
same location may not be coalesced.)

Parameters
offset The offset in bytes from the beginning of the raw memory area at which to

write the short.
value The short to write.

Throws
OffsetOutOfBoundsException when the offset is negative or greater than the size of

the raw memory area. The role of the SizeOutOfBoundsException304 somewhat
overlaps this exception since it is when the offset is within the object but outside
the mapped area.

SizeOutOfBoundsException when the object is not mapped, or when the short falls
in an invalid address range.

SecurityException when this access is not permitted by the security manager.
304Section 15.2.2.23

RTSJ 2.0 (Draft 48) 1029

A Deprecated APIs RawMemoryAccess

See Section RawMemoryAccess.map(long,long)

setShorts(long, short, int, int)

Signature
public void
setShorts(long offset,

short[] shorts,
int low,
int number)

Description
Sets number shorts starting at the given offset in the memory area associated
with this object from the short array passed starting at position low.

Each write of a short value may involve a load and a store, and it may have
unspecified effects on surrounding shorts in the presence of concurrent access -
even on other shorts in the array.

Caching of the memory access is controlled by the memory type requested
when the RawMemoryAccess instance was created. When the memory is not
cached, this method guarantees serialized access (that is, the memory access at
the memory occurs in the same order as in the program. Multiple writes to the
same location may not be coalesced.)

Parameters
offset The offset in bytes from the beginning of the raw memory area at which to

start writing.
shorts The array from which the items are obtained.
low The offset which is the starting point in the given array for the items to be

obtained.
number The number of items to write.

Throws
OffsetOutOfBoundsException when the offset is negative or greater than the size of

the raw memory area. The role of the SizeOutOfBoundsException305 somewhat
overlaps this exception since it is when the offset is within the object but outside
the mapped area.

SizeOutOfBoundsException when the object is not mapped, or when the a short
falls in an invalid address range. This is checked at every entry in the array to

305Section 15.2.2.23

1030 RTSJ 2.0 (Draft 48)

RawMemoryFloatAccess javax.realtime A.2

allow for the possibility that the memory area could be unmapped or remapped.
The store of the array into memory could, therefore, be only partially complete
when the raw memory is unmapped or remapped mid-method.

ArrayIndexOutOfBoundsException when low is less than 0 or greater than bytes.length
- 1, or when low + number is greater than or equal to bytes.length.

SecurityException when this access is not permitted by the security manager.
See Section RawMemoryAccess.map(long,long)

unmap

Signature
public void
unmap()

Description
Unmap the physical memory range from virtual memory. This changes the raw
memory from the mapped state to the unmapped state. When the platform
supports virtual memory, this operation frees the virtual addresses used for the
raw memory region.

When the object is already in the unmapped state, this method has no effect.
While a raw memory object is unmapped all attempts to set or get values in

the raw memory will throw SizeOutOfBoundsException306.
An unmapped raw memory object can be returned to mapped state with any

of the object’s map methods.
When an unmap is requested while another schedulable is accessing the raw

memory, the unmap will throw an IllegalStateException. The unmap method
can interrupt an array operation between entries.

A.2.3.26 RawMemoryFloatAccess

Inheritance
java.lang.Object
RawMemoryAccess
RawMemoryFloatAccess

Description
306Section 15.2.2.23

RTSJ 2.0 (Draft 48) 1031

A Deprecated APIs RawMemoryFloatAccess

This class holds the accessor methods for accessing a raw memory area by float
and double types. Implementations are required to implement this class when
and only when the underlying Java Virtual Machine supports floating point data
types.

See RawMemoryAccess307 for commentary on changes in the preferred use
of this class following RTSJ 2.0.

By default, the byte addressed by offset is the byte at the lowest address of
the floating point processor’s floating point representation. When the type of
memory used for this RawMemoryFloatAccess region implements a non-standard
floating point format, accessor methods in this class continue to select bytes
starting at offset from the base address and continuing toward greater addresses.
The memory type may control the mapping of these bytes into the primitive data
type. The memory type could even select bytes that are not contiguous. In each
case the documentation for the PhysicalMemoryTypeFilter308 must document
any mapping other than the "normal" one specified above.

All offset values used in this class are measured in bytes.
Atomic loads and stores on raw memory are defined in terms of physical

memory. This memory may be accessible to threads outside the JVM and to non-
programmed access (e.g., DMA), consequently atomic access must be supported
by hardware. This specification is written with the assumption that all suitable
hardware platforms support atomic loads for aligned floats. Atomic access beyond
the specified minimum may be supported by the implementation.

Storing values into raw memory is more hardware-dependent than loading
values. Many processor architectures do not support atomic stores of variables
except for aligned stores of the processor’s word size.

This class supports unaligned access to data, but it does not require the
implementation to make such access atomic. Accesses to data aligned on its
natural boundary will be atomic when the processor implements atomic loads
and stores of that data size.

Except where noted, accesses to raw memory are not atomic with respect to
the memory or with respect to threads. A raw memory area could be updated by
another thread, or even unmapped in the middle of a method.

The characteristics of raw-memory access are necessarily platform dependent.
This specification provides a minimum requirement for the RTSJ platform, but
it also supports a optional system properties that identify a platform’s level of
support for atomic raw put and get. (See RawMemoryAccess309.) The properties
represent a four-dimensional sparse array with boolean values whether that

307Section A.2.3.25
308Section A.2.1.1
309Section A.2.3.25

1032 RTSJ 2.0 (Draft 48)

RawMemoryFloatAccess javax.realtime A.2

combination of access attributes is atomic. The default value for array entries is
false.

Many of the constructors and methods in this class throw OffsetOutOfBound-
sException310. This exception means that the value given in the offset parameter
is either negative or outside the memory area.

Many of the constructors and methods in this class throw SizeOutOfBound-
sException311. This exception means that the value given in the size parameter
is either negative, larger than an allowable range, or would cause an accessor
method to access an address outside of the memory area.

Deprecated as of RTSJ 2.0. Use javax.realtime.device.RawMemory312.

A.2.3.26.1 Constructors

RawMemoryFloatAccess(Object, long, long)

Signature
public
RawMemoryFloatAccess(Object type,

long base,
long size)

Description
Construct an instance of RawMemoryFloatAccess with the given parameters,
and set the object to the mapped state. When the platform supports virtual
memory, map the raw memory into virtual memory.

The run time environment is allowed to choose the virtual address where the
raw memory area corresponding to this object will be mapped. The attributes
of the mapping operation are controlled by the vMFlags and vMAttributes of
the PhysicalMemoryTypeFilter objects that matched this object’s type parameter.
(See PhysicalMemoryTypeFilter.getVMAttributes313 and PhysicalMemoryTypeFilter.
getVMFlags314.

310Section 15.2.2.14
311Section 15.2.2.23
312Section 12.3.1.17
313Section A.2.1.1.1
314Section A.2.1.1.1

RTSJ 2.0 (Draft 48) 1033

A Deprecated APIs RawMemoryFloatAccess

Parameters
type An instance of Object representing the type of memory required (e.g., dma,

shared) - used to define the base address and control the mapping. When
the required memory has more than one attribute, type may be an array of
objects. When type is null or a reference to an array with no entries, any type
of memory is acceptable. Note that type values are compared by reference
(==), not by value (equals).

base The physical memory address of the region.
size The size of the area in bytes.

Throws
SecurityException when the application doesn’t have permissions to access physical

memory, the specified range of addresses, or the given type of memory.
OffsetOutOfBoundsException when the address is invalid.
SizeOutOfBoundsException when the size is negative or extends into an invalid

range of memory.
UnsupportedPhysicalMemoryException when the underlying hardware does not

support the given type, or when no matching PhysicalMemoryTypeFilter315

has been registered with the PhysicalMemoryManager316.
MemoryTypeConflictException when the specified base does not point to memory

that matches the request type, or when type specifies incompatible memory
attributes.

OutOfMemoryError when the requested type of memory exists, but there is not

RawMemoryFloatAccess(Object, long)

Signature
public
RawMemoryFloatAccess(Object type,

long size)

Description
Construct an instance of RawMemoryFloatAccess with the given parameters,
and set the object to the mapped state. When the platform supports virtual
memory, map the raw memory into virtual memory.

The run time environment is allowed to choose the virtual address where the
raw memory area corresponding to this object will be mapped. The attributes

315Section A.2.1.1
316Section A.2.3.20

1034 RTSJ 2.0 (Draft 48)

RawMemoryFloatAccess javax.realtime A.2

of the mapping operation are controlled by the vMFlags and vMAttributes of
the PhysicalMemoryTypeFilter objects that matched this object’s type parameter.
(See PhysicalMemoryTypeFilter.getVMAttributes317 and PhysicalMemoryTypeFilter.
getVMFlags318.

Parameters
type An instance of Object representing the type of memory required (e.g., dma,

shared) - used to define the base address and control the mapping. When
the required memory has more than one attribute, type may be an array of
objects. When type is null or a reference to an array with no entries, any type
of memory is acceptable. Note that type values are compared by reference
(==), not by value (equals).

size The size of the area in bytes.
Throws
SecurityException when the application doesn’t have permissions to access physical

memory, the specified range of addresses, or the given type of memory.
SizeOutOfBoundsException when the size is negative or extends into an invalid

range of memory.
UnsupportedPhysicalMemoryException when the underlying hardware does not

support the given type, or when no matching PhysicalMemoryTypeFilter319

has been registered with the PhysicalMemoryManager320.
MemoryTypeConflictException when the specified base does not point to memory

that matches the request type, or when type specifies incompatible memory
attributes.

OutOfMemoryError when the requested type of memory exists, but there is not
enough of it free to satisfy the request.

A.2.3.26.2 Methods

getDouble(long)

Signature
public double

317Section A.2.1.1.1
318Section A.2.1.1.1
319Section A.2.1.1
320Section A.2.3.20

RTSJ 2.0 (Draft 48) 1035

A Deprecated APIs RawMemoryFloatAccess

getDouble(long offset)

Description
Gets the double at the given offset in the memory area associated with this
object.

The load is not required to be atomic even it is located on a natural boundary.
Caching of the memory access is controlled by the memory type requested

when the RawMemoryAccess instance was created. When the memory is not
cached, this method guarantees serialized access (that is, the memory access at
the memory occurs in the same order as in the program. Multiple writes to the
same location may not be coalesced.)

Parameters
offset The offset in bytes from the beginning of the raw memory area from which

to load the long.
Throws
OffsetOutOfBoundsException when the offset is invalid.
SizeOutOfBoundsException when the object is not mapped, or when the double

falls in an invalid address range.
SecurityException when this access is not permitted by the security manager.

Returns
The double from raw memory.

getDoubles(long, double, int, int)

Signature
public void
getDoubles(long offset,

double[] doubles,
int low,
int number)

Description
Gets number doubles starting at the given offset in the memory area associated
with this object and assign them to the double array passed starting at position
low.

The loads are not required to be atomic even when they are located on natural
boundaries.

Caching of the memory access is controlled by the memory type requested
when the RawMemoryAccess instance was created. When the memory is not

1036 RTSJ 2.0 (Draft 48)

RawMemoryFloatAccess javax.realtime A.2

cached, this method guarantees serialized access (that is, the memory access at
the memory occurs in the same order as in the program. Multiple writes to the
same location may not be coalesced.)

Parameters
offset The offset in bytes from the beginning of the raw memory area at which to

start loading.
doubles The array into which the loaded items are placed.
low The offset which is the starting point in the given array for the loaded items to

be placed.
number The number of doubles to load.

Throws
OffsetOutOfBoundsException when the offset is negative or greater than the size of

the raw memory area. The role of the SizeOutOfBoundsException somewhat
overlaps this exception since it is when the offset is within the object but
outside the mapped area. (See RawMemoryAccess.map(long,long)321).

SizeOutOfBoundsException when the object is not mapped, or when a double falls
in an invalid address range. This is checked at every entry in the array to allow
for the possibility that the memory area could be unmapped or remapped. The
doubles array could, therefore, be partially updated when the raw memory is
unmapped or remapped mid-method.

ArrayIndexOutOfBoundsException when low is less than 0 or greater than bytes.length
- 1, or when low + number is greater than or equal to bytes.length.

SecurityException when this access is not permitted by the security manager.

getFloat(long)

Signature
public float
getFloat(long offset)

Description
Gets the float at the given offset in the memory area associated with this object.
When the float is aligned on a "natural" boundary it is always loaded from memory
in a single atomic operation. When it is not on a natural boundary it may not be
loaded atomically, and the number and order of the load operations is unspecified.

Caching of the memory access is controlled by the memory type requested
when the RawMemoryAccess instance was created. When the memory is not

321Section A.2.3.25.2

RTSJ 2.0 (Draft 48) 1037

A Deprecated APIs RawMemoryFloatAccess

cached, this method guarantees serialized access (that is, the memory access at
the memory occurs in the same order as in the program. Multiple writes to the
same location may not be coalesced.)

Parameters
offset The offset in bytes from the beginning of the raw memory area from which

to load the float.
Throws
OffsetOutOfBoundsException when the offset is negative or greater than the size of

the raw memory area. The role of the SizeOutOfBoundsException somewhat
overlaps this exception since it is when the offset is within the object but
outside the mapped area. (See RawMemoryAccess.map(long,long)322).

SizeOutOfBoundsException when the object is not mapped, or when the float falls
in an invalid address range.

SecurityException when this access is not permitted by the security manager.
Returns
The float from raw memory.

getFloats(long, float, int, int)

Signature
public void
getFloats(long offset,

float[] floats,
int low,
int number)

Description
Gets number floats starting at the given offset in the memory area associated
with this object and assign them to the int array passed starting at position low.

When the floats are aligned on natural boundaries each float is loaded from
memory in a single atomic operation. Groups of floats may be loaded together,
but this is unspecified.

When the floats are not aligned on natural boundaries they may not be loaded
atomically and the number and order of load operations is unspecified.

Caching of the memory access is controlled by the memory type requested
when the RawMemoryAccess instance was created. When the memory is not
cached, this method guarantees serialized access (that is, the memory access at

322Section A.2.3.25.2

1038 RTSJ 2.0 (Draft 48)

RawMemoryFloatAccess javax.realtime A.2

the memory occurs in the same order as in the program. Multiple writes to the
same location may not be coalesced.)

Parameters
offset The offset in bytes from the beginning of the raw memory area at which to

start loading.
floats The array into which the floats loaded from the raw memory are placed.
low The offset which is the starting point in the given array for the loaded items to

be placed.
number The number of floats to loaded.

Throws
OffsetOutOfBoundsException when the offset is negative or greater than the size of

the raw memory area. The role of the SizeOutOfBoundsException somewhat
overlaps this exception since it is when the offset is within the object but
outside the mapped area. (See RawMemoryAccess.map(long,long)323).

SizeOutOfBoundsException when the object is not mapped, or when a float falls in
an invalid address range. This is checked at every entry in the array to allow
for the possibility that the memory area could be unmapped or remapped. The
floats array could, therefore, be partially updated when the raw memory is
unmapped or remapped mid-method.

ArrayIndexOutOfBoundsException when low is less than 0 or greater than bytes.length
- 1, or when low + number is greater than or equal to bytes.length.

SecurityException when this access is not permitted by the security manager.

setDouble(long, double)

Signature
public void
setDouble(long offset,

double value)

Description
Sets the double at the given offset in the memory area associated with this object.
Even when it is aligned, the double value may not be updated atomically. It is
unspecified how many load and store operations will be used or in what order.

Caching of the memory access is controlled by the memory type requested
when the RawMemoryAccess instance was created. When the memory is not
cached, this method guarantees serialized access (that is, the memory access at

323Section A.2.3.25.2

RTSJ 2.0 (Draft 48) 1039

A Deprecated APIs RawMemoryFloatAccess

the memory occurs in the same order as in the program. Multiple writes to the
same location may not be coalesced.)

Parameters
offset The offset in bytes from the beginning of the raw memory area at which to

write the double.
value The double to write.

Throws
OffsetOutOfBoundsException when the offset is negative or greater than the size of

the raw memory area. The role of the SizeOutOfBoundsException somewhat
overlaps this exception since it is when the offset is within the object but
outside the mapped area. (See RawMemoryAccess.map(long,long)324).

SizeOutOfBoundsException when the object is not mapped, or when the double
falls in an invalid address range.

SecurityException when this access is not permitted by the security manager.

setDoubles(long, double, int, int)

Signature
public void
setDoubles(long offset,

double[] doubles,
int low,
int number)

Description
Sets number doubles starting at the given offset in the memory area associated
with this object from the double array passed starting at position low. Even
when they are aligned, the double values may not be updated atomically. It is
unspecified how many load and store operations will be used or in what order.

Caching of the memory access is controlled by the memory type requested
when the RawMemoryAccess instance was created. When the memory is not
cached, this method guarantees serialized access (that is, the memory access at
the memory occurs in the same order as in the program. Multiple writes to the
same location may not be coalesced.)

Parameters
offset The offset in bytes from the beginning of the raw memory area at which to

start writing.
324Section A.2.3.25.2

1040 RTSJ 2.0 (Draft 48)

RawMemoryFloatAccess javax.realtime A.2

doubles The array from which the items are obtained.
low The offset which is the starting point in the given array for the items to be

obtained.
number The number of items to write.

Throws
OffsetOutOfBoundsException when the offset is negative or greater than the size of

the raw memory area. The role of the SizeOutOfBoundsException somewhat
overlaps this exception since it is when the offset is within the object but
outside the mapped area. (See RawMemoryAccess.map(long,long)325).

SizeOutOfBoundsException when the object is not mapped, or when the a short
falls in an invalid address range. This is checked at every entry in the array to
allow for the possibility that the memory area could be unmapped or remapped.
The doubles array could, therefore, be partially updated when the raw memory
is unmapped or remapped mid-method.

ArrayIndexOutOfBoundsException when low is less than 0 or greater than bytes.length
- 1, or when low + number is greater than or equal to bytes.length.

SecurityException when this access is not permitted by the security manager.

setFloat(long, float)

Signature
public void
setFloat(long offset,

float value)

Description
Sets the float at the given offset in the memory area associated with this object.
On most processor architectures an aligned float can be stored in an atomic
operation, but this is not required.

Caching of the memory access is controlled by the memory type requested
when the RawMemoryAccess instance was created. When the memory is not
cached, this method guarantees serialized access (that is, the memory access at
the memory occurs in the same order as in the program. Multiple writes to the
same location may not be coalesced.)

Parameters
offset The offset in bytes from the beginning of the raw memory area at which to

write the integer.
325Section A.2.3.25.2

RTSJ 2.0 (Draft 48) 1041

A Deprecated APIs RawMemoryFloatAccess

value The float to write.
Throws
OffsetOutOfBoundsException when the offset is negative or greater than the size of

the raw memory area. The role of the SizeOutOfBoundsException somewhat
overlaps this exception since it is when the offset is within the object but
outside the mapped area. (See RawMemoryAccess.map(long,long)326).

SizeOutOfBoundsException when the object is not mapped, or when the float falls
in an invalid address range.

SecurityException when this access is not permitted by the security manager.

setFloats(long, float, int, int)

Signature
public void
setFloats(long offset,

float[] floats,
int low,
int number)

Description
Sets number floats starting at the given offset in the memory area associated with
this object from the float array passed starting at position low. On most processor
architectures each aligned float can be stored in an atomic operation, but this is
not required. Caching of the memory access is controlled by the memory type
requested when the RawMemoryAccess instance was created. When the memory
is not cached, this method guarantees serialized access (that is, the memory
access at the memory occurs in the same order as in the program. Multiple writes
to the same location may not be coalesced.)

Parameters
offset The offset in bytes from the beginning of the raw memory area at which to

start writing.
floats The array from which the items are obtained.
low The offset which is the starting point in the given array for the items to be

obtained.
number The number of floats to write.

Throws
326Section A.2.3.25.2

1042 RTSJ 2.0 (Draft 48)

RealtimeThread javax.realtime A.2

OffsetOutOfBoundsException when the offset is negative or greater than the size of
the raw memory area. The role of the SizeOutOfBoundsException somewhat
overlaps this exception since it is when the offset is within the object but
outside the mapped area. (See RawMemoryAccess.map(long, long)327).

SizeOutOfBoundsException when the object is not mapped, or when the float falls
in an invalid address range. This is checked at every entry in the array to allow
for the possibility that the memory area could be unmapped or remapped. The
store of the array into memory could, therefore, be only partially complete
when the raw memory is unmapped or remapped mid-method.

ArrayIndexOutOfBoundsException when low is less than 0 or greater than bytes.length
- 1, or when low + number is greater than or equal to bytes.length.

SecurityException when this access is not permitted by the security manager.

A.2.3.27 RealtimeSystemT

e following elements of RealtimeSystem are deprecated. The required elements
are documented in Section 14.2.2.5 above.

A.2.3.27.1 Fields

A.2.3.28 RealtimeThreadT

e following elements of RealtimeThread are deprecated. The required elements
are documented in Section 5.3.2.2 above.

A.2.3.28.1 Constructors

RealtimeThread(SchedulingParameters, ReleaseParameters,
MemoryParameters, MemoryArea, ProcessingGroupParame-
ters, Runnable)

327Section A.2.3.25.2

RTSJ 2.0 (Draft 48) 1043

A Deprecated APIs RealtimeThread

Signature
public
RealtimeThread(SchedulingParameters scheduling,

ReleaseParameters release,
MemoryParameters memory,
MemoryArea area,
ProcessingGroupParameters group,
Runnable logic)

Description
Create a realtime thread with the given characteristics and a Runnable. This
is equivalent to RealtimeThread(scheduling, release, memory, area, null, group,
null, null, logic).

Deprecated since RTSJ 2.0

A.2.3.28.2 Methods

sleep(Clock, HighResolutionTime)

Signature
public static void
sleep(Clock clock,

javax.realtime.HighResolutionTime<?> time)
throws InterruptedException,

ClassCastException,
UnsupportedOperationException,
IllegalArgumentException

Description
A sleep method that is controlled by a generalized clock. Since the time is
expressed as a HighResolutionTime328, this method is an accurate timer with
nanosecond granularity. The actual resolution available for the clock and even
the quantity it measures depends on clock associated with time. The time base

328Section 9.3.1.2

1044 RTSJ 2.0 (Draft 48)

RealtimeThread javax.realtime A.2

is the given Clock329 associated with time. The sleep time may be relative or
absolute. When relative, then the calling thread is blocked for the amount of
time given by time, and measured by clock. When absolute, then the calling
thread is blocked until the indicated value is reached by clock. When the given
absolute time is less than or equal to the current value of clock, the call to sleep
returns immediately.

It is permissible to call sleep when control is in an AsyncEventHandler330.
The method cause the handler to sleep.

This method must not throw IllegalAssignmentError. It must tolerate time
instances that may not be stored in this.

Parameters
clock The instance of Clock331 used as the base. When clock is null the realtime

clock (see Clock.getRealtimeClock332) is used. When time uses a time-base
other than clock, time is reassociated with clock for purposes of this method.

time The amount of time to sleep or the point in time at which to awaken.
Throws
InterruptedException when the thread is interrupted by interrupt()333 orAsynchronouslyInterruptedException.

fire()334 during the time between calling this method and returning from it.
ClassCastException when the current execution context is not an instance of Sched-

ulable335.
UnsupportedOperationException when the sleep operation is not supported by

clock.
IllegalArgumentException when time is null, or when time is a relative time less

than zero.

Deprecated in RTSJ 2.0

waitForNextPeriod

Signature
public static boolean
waitForNextPeriod()

329Section 10.3.2.1
330Section 8.3.3.5
331Section 10.3.2.1
332Section 10.3.2.1.2
333Section 5.3.2.2.2
334Section 15.2.2.2.2
335Section 6.3.1.3

RTSJ 2.0 (Draft 48) 1045

A Deprecated APIs RealtimeThread

throws ClassCastException,
IllegalThreadStateException

Description
Causes the current realtime thread to delay until the beginning of the next
period. Used by threads that have a reference to a ReleaseParameters336 type of
PeriodicParameters337 to block until the start of each period. The first period
starts when this thread is first released. Each time it is called this method will
block until the start of the next period unless the thread is in a deadline miss
condition. In that case the operation of waitForNextPeriod() is controlled by
this thread’s scheduler. (See PriorityScheduler338.)

Throws
IllegalThreadStateException when this does not have a reference to a ReleasePar-

ameters339 type of PeriodicParameters340.
ClassCastException when the current thread is not an instance of RealtimeThread.

Returns
Either false when the thread is in a deadline miss condition or true otherwise. When

a deadline miss condition occurs is defined by its thread’s scheduler.

Available since RTSJ 1.0.1 Changed from an instance method to a static method.

Deprecated RTSJ 2.0 Replaced by waitForNextRelease()341

waitForNextPeriodInterruptible

Signature
public static boolean
waitForNextPeriodInterruptible()
throws InterruptedException,

ClassCastException,
IllegalThreadStateException

Description
336Section 6.3.3.10
337Section 6.3.3.6
338Section 6.3.3.8
339Section 6.3.3.10
340Section 6.3.3.6
341Section 5.3.2.2.2

1046 RTSJ 2.0 (Draft 48)

RealtimeThread javax.realtime A.2

The waitForNextPeriodInterruptible() method is a duplicate of waitForNextPe-
riod()342 except that waitForNextPeriodInterruptible() is able to throw Interrupt-
edException.

Used by threads that have a reference to a ReleaseParameters343 type of
PeriodicParameters344 to block until the start of each period. The first period
starts when this thread is first released. Each time it is called this method
will block until the start of the next period unless the thread is in a deadline
miss condition. In that case the operation of waitForNextPeriodInterruptible()
is controlled by this thread’s scheduler. (See PriorityScheduler345)

Throws
InterruptedException when the thread is interrupted by interrupt()346 orAsynchronouslyInterruptedException.

fire()347 during the time between calling this method and returning from it.
An interrupt during waitForNextPeriodInterruptible() is treated as a release
for purposes of scheduling. This is likely to disrupt proper operation of the
periodic thread. The periodic behavior of the thread is unspecified until the
state is reset by altering the thread’s periodic parameters.

ClassCastException when the current thread is not an instance of RealtimeThread.
IllegalThreadStateException when this does not have a reference to a ReleasePar-

ameters348 type of PeriodicParameters349.

Returns
Either false when the thread is in a deadline miss condition or true otherwise. When

a deadline miss condition occurs is defined by its thread’s scheduler.

Available since RTSJ 1.0.1

Deprecated RTSJ 2.0 Replaced by waitForNextRelease350

addIfFeasible

Signature
342Section A.2.3.28.2
343Section 6.3.3.10
344Section 6.3.3.6
345Section 6.3.3.8
346Section 5.3.2.2.2
347Section 15.2.2.2.2
348Section 6.3.3.10
349Section 6.3.3.6
350Section 5.3.2.2.2

RTSJ 2.0 (Draft 48) 1047

A Deprecated APIs RealtimeThread

public boolean
addIfFeasible()

Description

This method first performs a feasibility analysis with this added to the system.
When the resulting system is feasible, inform the scheduler and cooperating
facilities that this instance of Schedulable351 should be considered in feasibility
analysis until further notified. When the analysis showed that the system including
this would not be feasible, this method does not admit this to the feasibility set.

When the object is already included in the feasibility set, do nothing.

Returns
True when inclusion of this in the feasibility set yields a feasible system, and false

otherwise. When true is returned then this is known to be in the feasibility
set. When false is returned, this was not added to the feasibility set, but it
may already have been present.

Deprecated as of RTSJ 2.0 The framework for feasibility anlaysis is inadequate

addToFeasibility

Signature
public boolean
addToFeasibility()

Description

Inform the scheduler and cooperating facilities that this instance of Schedulable352

should be considered in feasibility analysis until further notified.
When the object is already included in the feasibility set, do nothing.

Returns
True, when the resulting system is feasible. False, when not.

Deprecated as of RTSJ 2.0 The framework for feasibility anlaysis is inadequate

351Section 6.3.1.3
352Section 6.3.1.3

1048 RTSJ 2.0 (Draft 48)

RealtimeThread javax.realtime A.2

deschedulePeriodic

Signature
public void
deschedulePeriodic()

Description
When the ReleaseParameters353 object associated with this RealtimeThread is
an instance of PeriodicParameters354, perform any deschedulePeriodic actions
specified by this thread’s scheduler. When the type of the associated instance of
ReleaseParameters355 is not PeriodicParameters356 nothing happens.

Deprecated since RTSJ 2.0

getProcessingGroupParameters

Signature
public javax.realtime.ProcessingGroupParameters
getProcessingGroupParameters()

Description
Gets a reference to the ProcessingGroupParameters357 object for this schedulable.

Returns
A reference to the current ProcessingGroupParameters358 object.
Deprecated since RTSJ 2.0

removeFromFeasibility

Signature
public boolean
removeFromFeasibility()

353Section 6.3.3.10
354Section 6.3.3.6
355Section 6.3.3.10
356Section 6.3.3.6
357Section A.2.3.23
358Section A.2.3.23

RTSJ 2.0 (Draft 48) 1049

A Deprecated APIs RealtimeThread

Description
Inform the scheduler and cooperating facilities that this instance of Schedulable359

should not be considered in feasibility analysis until it is further notified.

Returns
true when the removal was successful. false when the schedulable cannot be

removed from the scheduler’s feasibility set; e.g., the schedulable is not part of
the scheduler’s feasibility set.

Deprecated as of RTSJ 2.0 The framework for feasibility anlaysis is inadequate

schedulePeriodic

Signature
public void
schedulePeriodic()

Description
Begin unblocking RealtimeThread.waitForNextPeriod()360 for a periodic thread.
When deadline miss detection is disabled, enable it. Typically used when a periodic
schedulable is in a deadline miss condition. The details of the interaction of this
method with deschedulePeriodic()361 and waitForNextPeriod()362 are dictated by
this thread’s scheduler.

When this RealtimeThread does not have a type of PeriodicParameters363 as
its ReleaseParameters364 nothing happens.

Deprecated since RTSJ 2.0

setIfFeasible(ReleaseParameters, MemoryParameters)

Signature
public boolean
setIfFeasible(ReleaseParameters release,

MemoryParameters memory)

359Section 6.3.1.3
360Section A.2.3.28.2
361Section A.2.3.28.2
362Section A.2.3.28.2
363Section 6.3.3.6
364Section 6.3.3.10

1050 RTSJ 2.0 (Draft 48)

RealtimeThread javax.realtime A.2

Description
This method first performs a feasibility analysis using the proposed parameter
objects as replacements for the current parameters of this. When the resulting
system is feasible, this method replaces the current parameters of this with the
proposed ones.

This change becomes effective under conditions determined by the scheduler
controlling the schedulable. For instance, the change may be immediate or it
may be delayed until the next release of the schedulable. See the documentation
for the scheduler for details.

This method does not require that the schedulable be in the feasibility set
before it is called. When it is not initially a member of the feasibility set it will
be added when the resulting system is feasible.

Parameters
release release The proposed release parameters. When null, the default value is

governed by the associated scheduler (a new object is created when the default
value is not null). (See PriorityScheduler365.)

memory memory The proposed memory parameters. When null, the default value
is governed by the associated scheduler (a new object is created when the
default value is not null). (See PriorityScheduler366.)

Throws
IllegalArgumentException IllegalArgumentException Thrown when the parameter

values are not compatible with the schedulable’s scheduler. Also when this
schedulable may not use the heap and any of the proposed parameter objects
are located in heap memory.

IllegalAssignmentError IllegalAssignmentError when this cannot hold references
to the proposed parameter objects, or the parameter objects cannot hold a
reference to this.

IllegalThreadStateException IllegalThreadStateException when the schedulable’s
scheduler prohibits this parameter change at this time due to the state of the
schedulable.

Returns
True, when the resulting system is feasible and the changes are made. False, when

the resulting system is not feasible and no changes are made.

Deprecated as of RTSJ 2.0 The framework for feasibility anlaysis is inadequate

365Section 6.3.3.8
366Section 6.3.3.8

RTSJ 2.0 (Draft 48) 1051

A Deprecated APIs RealtimeThread

setIfFeasible(ReleaseParameters, MemoryParameters, Proces-
singGroupParameters)

Signature
public boolean
setIfFeasible(ReleaseParameters release,

MemoryParameters memory,
ProcessingGroupParameters group)

Description
This method first performs a feasibility analysis using the proposed parameter
objects as replacements for the current parameters of this. When the resulting
system is feasible, this method replaces the current parameters of this with the
proposed ones.

This change becomes effective under conditions determined by the scheduler
controlling the schedulable. For instance, the change may be immediate or it
may be delayed until the next release of the schedulable. See the documentation
for the scheduler for details.

This method does not require that the schedulable be in the feasibility set
before it is called. When it is not initially a member of the feasibility set it will
be added when the resulting system is feasible.

Parameters
release release The proposed release parameters. When null, the default value is

governed by the associated scheduler (a new object is created when the default
value is not null). (See PriorityScheduler367.)

memory memory The proposed memory parameters. When null, the default value
is governed by the associated scheduler (a new object is created when the
default value is not null). (See PriorityScheduler368.)

group group The proposed processing group parameters. When null, the default
value is governed by the associated scheduler (a new object is created when
the default value is not null). (See PriorityScheduler369.)

Throws
IllegalArgumentException IllegalArgumentException Thrown when the parameter

values are not compatible with the schedulable’s scheduler. Also when this
schedulable may not use the heap and any of the proposed parameter objects
are located in heap memory.

367Section 6.3.3.8
368Section 6.3.3.8
369Section 6.3.3.8

1052 RTSJ 2.0 (Draft 48)

RealtimeThread javax.realtime A.2

IllegalAssignmentError IllegalAssignmentError when this cannot hold references
to the proposed parameter objects, or the parameter objects cannot hold a
reference to this.

IllegalThreadStateException IllegalThreadStateException when the schedulable’s
scheduler prohibits this parameter change at this time due to the state of the
schedulable.

Returns
True, when the resulting system is feasible and the changes are made. False, when

the resulting system is not feasible and no changes are made.

Deprecated as of RTSJ 2.0 The framework for feasibility anlaysis is inadequate

setIfFeasible(ReleaseParameters, ProcessingGroupParameters)

Signature
public boolean
setIfFeasible(ReleaseParameters release,

ProcessingGroupParameters group)

Description
This method first performs a feasibility analysis using the proposed parameter
objects as replacements for the current parameters of this. When the resulting
system is feasible, this method replaces the current parameters of this with the
proposed ones.

This change becomes effective under conditions determined by the scheduler
controlling the schedulable. For instance, the change may be immediate or it
may be delayed until the next release of the schedulable. See the documentation
for the scheduler for details.

This method does not require that the schedulable be in the feasibility set
before it is called. When it is not initially a member of the feasibility set it will
be added when the resulting system is feasible.

Parameters
release release The proposed release parameters. When null, the default value is

governed by the associated scheduler (a new object is created when the default
value is not null). (See PriorityScheduler370.)

370Section 6.3.3.8

RTSJ 2.0 (Draft 48) 1053

A Deprecated APIs RealtimeThread

group group The proposed processing group parameters. When null, the default
value is governed by the associated scheduler (a new object is created when
the default value is not null). (See PriorityScheduler371.)

Throws
IllegalArgumentException IllegalArgumentException Thrown when the parameter

values are not compatible with the schedulable’s scheduler. Also when this
schedulable may not use the heap and any of the proposed parameter objects
are located in heap memory.

IllegalAssignmentError IllegalAssignmentError when this cannot hold references
to the proposed parameter objects, or the parameter objects cannot hold a
reference to this.

IllegalThreadStateException IllegalThreadStateException when the schedulable’s
scheduler prohibits this parameter change at this time due to the state of the
schedulable.

Returns
True, when the resulting system is feasible and the changes are made. False, when

the resulting system is not feasible and no changes are made.
Deprecated as of RTSJ 2.0 The framework for feasibility anlaysis is inadequate

setIfFeasible(SchedulingParameters, ReleaseParameters, Mem-
oryParameters)

Signature
public boolean
setIfFeasible(SchedulingParameters scheduling,

ReleaseParameters release,
MemoryParameters memory)

Description
This method first performs a feasibility analysis using the proposed parameter
objects as replacements for the current parameters of this. When the resulting
system is feasible, this method replaces the current parameters of this with the
proposed ones.

This change becomes effective under conditions determined by the scheduler
controlling the schedulable. For instance, the change may be immediate or it
may be delayed until the next release of the schedulable. See the documentation
for the scheduler for details.

371Section 6.3.3.8

1054 RTSJ 2.0 (Draft 48)

RealtimeThread javax.realtime A.2

This method does not require that the schedulable be in the feasibility set
before it is called. When it is not initially a member of the feasibility set it will
be added when the resulting system is feasible.

Parameters
scheduling scheduling The proposed scheduling parameters. When null, the default

value is governed by the associated scheduler (a new object is created when
the default value is not null). (See PriorityScheduler372.)

release release The proposed release parameters. When null, the default value is
governed by the associated scheduler (a new object is created when the default
value is not null). (See PriorityScheduler373.)

memory memory The proposed memory parameters. When null, the default value
is governed by the associated scheduler (a new object is created when the
default value is not null). (See PriorityScheduler374.)

Throws
IllegalArgumentException IllegalArgumentException Thrown when the parameter

values are not compatible with the schedulable’s scheduler. Also when this
schedulable may not use the heap and any of the proposed parameter objects
are located in heap memory.

IllegalAssignmentError IllegalAssignmentError when this cannot hold references
to the proposed parameter objects, or the parameter objects cannot hold a
reference to this.

IllegalThreadStateException IllegalThreadStateException when the schedulable’s
scheduler prohibits this parameter change at this time due to the state of the
schedulable.

Returns
True, when the resulting system is feasible and the changes are made. False, when

the resulting system is not feasible and no changes are made.

Deprecated as of RTSJ 2.0 The framework for feasibility anlaysis is inadequate

setIfFeasible(SchedulingParameters, ReleaseParameters, Mem-
oryParameters, ProcessingGroupParameters)

Signature

372Section 6.3.3.8
373Section 6.3.3.8
374Section 6.3.3.8

RTSJ 2.0 (Draft 48) 1055

A Deprecated APIs RealtimeThread

public boolean
setIfFeasible(SchedulingParameters scheduling,

ReleaseParameters release,
MemoryParameters memory,
ProcessingGroupParameters group)

Description
This method first performs a feasibility analysis using the proposed parameter
objects as replacements for the current parameters of this. When the resulting
system is feasible, this method replaces the current parameters of this with the
proposed ones.

This change becomes effective under conditions determined by the scheduler
controlling the schedulable. For instance, the change may be immediate or it
may be delayed until the next release of the schedulable. See the documentation
for the scheduler for details.

This method does not require that the schedulable be in the feasibility set
before it is called. When it is not initially a member of the feasibility set it will
be added when the resulting system is feasible.

Parameters
scheduling scheduling The proposed scheduling parameters. When null, the default

value is governed by the associated scheduler (a new object is created when
the default value is not null). (See PriorityScheduler375.)

release release The proposed release parameters. When null, the default value is
governed by the associated scheduler (a new object is created when the default
value is not null). (See PriorityScheduler376.)

memory memory The proposed memory parameters. When null, the default value
is governed by the associated scheduler (a new object is created when the
default value is not null). (See PriorityScheduler377.)

group group The proposed processing group parameters. When null, the default
value is governed by the associated scheduler (a new object is created when
the default value is not null). (See PriorityScheduler378.)

Throws
IllegalArgumentException IllegalArgumentException Thrown when the parameter

values are not compatible with the schedulable’s scheduler. Also when this
schedulable may not use the heap and any of the proposed parameter objects
are located in heap memory.

375Section 6.3.3.8
376Section 6.3.3.8
377Section 6.3.3.8
378Section 6.3.3.8

1056 RTSJ 2.0 (Draft 48)

RealtimeThread javax.realtime A.2

IllegalAssignmentError IllegalAssignmentError when this cannot hold references
to the proposed parameter objects, or the parameter objects cannot hold a
reference to this.

IllegalThreadStateException IllegalThreadStateException when the schedulable’s
scheduler prohibits this parameter change at this time due to the state of the
schedulable.

Returns
True, when the resulting system is feasible and the changes are made. False, when

the resulting system is not feasible and no changes are made.

Deprecated as of RTSJ 2.0 The framework for feasibility anlaysis is inadequate

setMemoryParametersIfFeasible(MemoryParameters)

Signature
public boolean
setMemoryParametersIfFeasible(MemoryParameters memory)

Description
This method first performs a feasibility analysis using the proposed parameter
object as replacement for the current parameter of this. When the resulting
system is feasible, this method replaces the current parameter of this with the
proposed one.

This change becomes effective under conditions determined by the scheduler
controlling the schedulable. For instance, the change may be immediate or it
may be delayed until the next release of the schedulable. See the documentation
for the scheduler for details.

This method does not require that the schedulable be in the feasibility set
before it is called. When it is not initially a member of the feasibility set it will
be added when the resulting system is feasible.

Parameters
memory memory The proposed memory parameters. When null, the default value

is governed by the associated scheduler (a new object is created when the
default value is not null). (See PriorityScheduler379.)

Throws
IllegalArgumentException IllegalArgumentException Thrown when the parameter

value is not compatible with the schedulable’s scheduler. Also when this
379Section 6.3.3.8

RTSJ 2.0 (Draft 48) 1057

A Deprecated APIs RealtimeThread

schedulable may not use the heap and the proposed parameter object is located
in heap memory.

IllegalAssignmentError IllegalAssignmentError when this cannot hold a reference to
the proposed parameter object, or the parameter object cannot hold a reference
to this.

IllegalThreadStateException IllegalThreadStateException when the schedulable’s
scheduler prohibits the changing of the memory parameter at this time due to
the state of the schedulable.

Returns
True, when the resulting system is feasible and the changes are made. False, when

the resulting system is not feasible and no changes are made.
Deprecated as of RTSJ 2.0 The framework for feasibility anlaysis is inadequate

setProcessingGroupParameters(ProcessingGroupParameters)

Signature
public void
setProcessingGroupParameters(ProcessingGroupParameters group)

Description
Sets the ProcessingGroupParameters380 of this.

This change becomes effective under conditions determined by the scheduler
controlling the schedulable. For instance, the change may be immediate or it
may be delayed until the next release of the schedulable. See the documentation
for the scheduler for details.

Parameters
group group A ProcessingGroupParameters381 object which will take effect as de-

termined by the associated scheduler. When null, the default value is governed
by the associated scheduler (a new object is created when the default value is
not null). (See PriorityScheduler382.)

Throws
IllegalArgumentException IllegalArgumentException Thrown when group is not

compatible with the scheduler for this schedulable object. Also when this
schedulable may not use the heap and group is located in heap memory.

380Section A.2.3.23
381Section A.2.3.23
382Section 6.3.3.8

1058 RTSJ 2.0 (Draft 48)

RealtimeThread javax.realtime A.2

IllegalAssignmentError IllegalAssignmentError when this object cannot hold a
reference to group or group cannot hold a reference to this.

IllegalThreadStateException IllegalThreadStateException when the schedulable’s
scheduler prohibits the changing of the processing group parameter at this
time due to the state of the schedulable object.

Deprecated

setProcessingGroupParametersIfFeasible(ProcessingGroupParameters)

Signature
public boolean
setProcessingGroupParametersIfFeasible(ProcessingGroupParameters group)

Description

This method first performs a feasibility analysis using the proposed parameter
object as replacement for the current parameter of this. When the resulting
system is feasible, this method replaces the current parameter of this with the
proposed one.

This change becomes effective under conditions determined by the scheduler
controlling the schedulable. For instance, the change may be immediate or it
may be delayed until the next release of the schedulable. See the documentation
for the scheduler for details.

This method does not require that the schedulable be in the feasibility set
before it is called. When it is not initially a member of the feasibility set it will
be added when the resulting system is feasible.

Parameters
group group The proposed processing group parameters. When null, the default

value is governed by the associated scheduler (a new object is created when
the default value is not null). (See PriorityScheduler383.)

Throws
IllegalArgumentException IllegalArgumentException Thrown when the parameter

value is not compatible with the schedulable’s scheduler. Also when this
schedulable may not use the heap and the proposed parameter object is located
in heap memory.

383Section 6.3.3.8

RTSJ 2.0 (Draft 48) 1059

A Deprecated APIs RealtimeThread

IllegalAssignmentError IllegalAssignmentError when this cannot hold a reference to
the proposed parameter object, or the parameter object cannot hold a reference
to this.

IllegalThreadStateException IllegalThreadStateException when the schedulable’s
scheduler prohibits the changing of the processing group parameter at this
time due to the state of the schedulable object.

Returns
True, when the resulting system is feasible and the changes are made. False, when

the resulting system is not feasible and no changes are made.

Deprecated as of RTSJ 2.0 The framework for feasibility anlaysis is inadequate

setReleaseParametersIfFeasible(ReleaseParameters)

Signature
public boolean
setReleaseParametersIfFeasible(ReleaseParameters release)

Description
This method first performs a feasibility analysis using the proposed parameter
object as replacement for the current parameter of this. When the resulting
system is feasible, this method replaces the current parameter of this with the
proposed one.

This change becomes effective under conditions determined by the scheduler
controlling the schedulable. For instance, the change may be immediate or it
may be delayed until the next release of the schedulable. See the documentation
for the scheduler for details.

This method does not require that the schedulable be in the feasibility set
before it is called. When it is not initially a member of the feasibility set it will
be added when the resulting system is feasible.

Parameters
release release The proposed release parameters. When null, the default value is

governed by the associated scheduler (a new object is created when the default
value is not null). (See PriorityScheduler384.)

Throws
IllegalArgumentException IllegalArgumentException Thrown when the parameter

value is not compatible with the schedulable’s scheduler. Also when this
384Section 6.3.3.8

1060 RTSJ 2.0 (Draft 48)

RealtimeThread javax.realtime A.2

schedulable may not use the heap and the proposed parameter object is located
in heap memory.

IllegalAssignmentError IllegalAssignmentError when this cannot hold a reference to
the proposed parameter object, or the parameter object cannot hold a reference
to this.

IllegalThreadStateException IllegalThreadStateException when the schedulable’s
scheduler prohibits the changing of the release parameter at this time due to
the state of the schedulable.

Returns
True, when the resulting system is feasible and the changes are made. False, when

the resulting system is not feasible and no changes are made.
Deprecated as of RTSJ 2.0 The framework for feasibility anlaysis is inadequate

setScheduler(Scheduler, SchedulingParameters, ReleasePar-
ameters, MemoryParameters, ProcessingGroupParameters)

Signature
public void
setScheduler(Scheduler scheduler,

SchedulingParameters scheduling,
ReleaseParameters release,
MemoryParameters memoryParameters,
ProcessingGroupParameters group)

Description
Sets the scheduler and associated parameter objects. The timing of the change
must be agreed between the scheduler currently associated with this schedulable,
and scheduler.

Parameters
scheduler scheduler A reference to the scheduler that will manage the execution of

this schedulable. Null is not a permissible value.
scheduling scheduling A reference to the SchedulingParameters385 which will be as-

sociated with this. When null, the default value is governed by scheduler (a new
object is created when the default value is not null). (See PriorityScheduler386.)

385Section 6.3.3.14
386Section 6.3.3.8

RTSJ 2.0 (Draft 48) 1061

A Deprecated APIs RealtimeThread

release release A reference to the ReleaseParameters387 which will be associated
with this. When null, the default value is governed by scheduler (a new object
is created when the default value is not null). (See PriorityScheduler388.)

memoryParameters memoryParameters A reference to the MemoryParameters389

which will be associated with this. When null, the default value is governed
by scheduler (a new object is created when the default value is not null). (See
PriorityScheduler390.)

group group A reference to the ProcessingGroupParameters391 which will be asso-
ciated with this. When null, the default value is governed by scheduler (a new
object is created). (See PriorityScheduler392.)

Throws
IllegalArgumentException IllegalArgumentException Thrown when scheduler is

null or the parameter values are not compatible with scheduler. Also thrown
when this schedulable may not use the heap and scheduler, scheduling release,
memoryParameters, or group is located in heap memory.

IllegalAssignmentError IllegalAssignmentError when this object cannot hold refer-
ences to all the parameter objects or the parameters cannot hold references to
this.

IllegalThreadStateException IllegalThreadStateException when scheduler prohibits
the changing of the scheduler or a parameter at this time due to the state of
the schedulable.

SecurityException SecurityException when the caller is not permitted to set the
scheduler for this schedulable.

Deprecated since RTSJ 2.0

setSchedulingParametersIfFeasible(SchedulingParameters)

Signature
public boolean
setSchedulingParametersIfFeasible(SchedulingParameters scheduling)

Description

387Section 6.3.3.10
388Section 6.3.3.8
389Section 11.3.2.4
390Section 6.3.3.8
391Section A.2.3.23
392Section 6.3.3.8

1062 RTSJ 2.0 (Draft 48)

RelativeTime javax.realtime A.2

This method first performs a feasibility analysis using the proposed parameter
object as replacement for the current parameter of this. When the resulting
system is feasible, this method replaces the current parameter of this with the
proposed one.

This change becomes effective under conditions determined by the scheduler
controlling the schedulable. For instance, the change may be immediate or it
may be delayed until the next release of the schedulable. See the documentation
for the scheduler for details.

This method does not require that the schedulable be in the feasibility set
before it is called. When it is not initially a member of the feasibility set it will
be added when the resulting system is feasible.

Parameters
scheduling scheduling The proposed scheduling parameters. When null, the default

value is governed by the associated scheduler (a new object is created when
the default value is not null). (See PriorityScheduler393.)

Throws
IllegalArgumentException IllegalArgumentException Thrown when the parameter

value is not compatible with the schedulable’s scheduler. Also when this
schedulable may not use the heap and the proposed parameter object is located
in heap memory.

IllegalAssignmentError IllegalAssignmentError when this cannot hold a reference to
the proposed parameter object, or the parameter object cannot hold a reference
to this.

IllegalThreadStateException IllegalThreadStateException when the schedulable’s
scheduler prohibits the changing of the scheduling parameter at this time due
to the state of the schedulable object.

Returns
True, when the resulting system is feasible and the changes are made. False, when

the resulting system is not feasible and no changes are made.
Deprecated as of RTSJ 2.0 The framework for feasibility anlaysis is inadequate

A.2.3.29 RelativeTimeT

e following elements of RelativeTime are deprecated. The required elements are
documented in Section 9.3.1.3 above.

393Section 6.3.3.8

RTSJ 2.0 (Draft 48) 1063

A Deprecated APIs RelativeTime

A.2.3.29.1 Constructors

RelativeTime(long, int, Clock)

Signature
public
RelativeTime(long millis,

int nanos,
Clock clock)

throws IllegalArgumentException

Description
Construct a RelativeTime object representing an interval based on the parameter
millis plus the parameter nanos. The construction is subject to millis and nanos
parameters normalization. When there is an overflow in the millisecond component
when normalizing then an IllegalArgumentException will be thrown.

The clock association is made with the clock parameter. When clock is null
the association is made with the default realtime clock.

Available since RTSJ 1.0.1

Deprecated since version 2.0

Parameters
millis The desired value for the millisecond component of this. The actual value is

the result of parameter normalization.
nanos The desired value for the nanosecond component of this. The actual value is

the result of parameter normalization.
clock The clock providing the association for the newly constructed object.

Throws
IllegalArgumentException when there is an overflow in the millisecond component

when normalizing.

RelativeTime(RelativeTime, Clock)

Signature

1064 RTSJ 2.0 (Draft 48)

RelativeTime javax.realtime A.2

public
RelativeTime(RelativeTime time,

Clock clock)
throws IllegalArgumentException

Description

Make a new RelativeTime object from the given RelativeTime object.
The clock association is made with the clock parameter. When clock is null

the association is made with the realtime clock.

Available since RTSJ 1.0.1

Deprecated since version 2.0

Parameters
time The RelativeTime object which is the source for the copy.
clock The clock providing the association for the newly constructed object.

Throws
IllegalArgumentException when the time parameter is null.

RelativeTime(Clock)

Signature
public
RelativeTime(Clock clock)

Description

Equivalent to new RelativeTime(0,0,clock).
The clock association is made with the clock parameter. When clock is null

the association is made with the default realtime clock.

Available since RTSJ 1.0.1

Deprecated since version 2.0

Parameters
clock The clock providing the association for the newly constructed object.

RTSJ 2.0 (Draft 48) 1065

A Deprecated APIs RelativeTime

A.2.3.29.2 Methods

absolute(Clock)

Signature
public javax.realtime.AbsoluteTime
absolute(Clock clock)
throws ArithmeticException

Description
Convert the time of this to an absolute time, using the given instance of Clock394

to determine the current time. The calculation is the current time indicated by
the given instance of Clock395 plus the interval given by this. When clock is null
the realtime clock is assumed. A destination object is allocated for the result.
The clock association of the result is with the clock passed as a parameter.

Parameters
clock The instance of Clock396 used to convert the time of this into absolute time,

and the new clock association for the result.
Throws
ArithmeticException when the result does not fit in the normalized format.

Returns
The AbsoluteTime conversion in a newly allocated object, associated with the clock

parameter.
Deprecated since version 2.0

absolute(Clock, AbsoluteTime)

Signature
public javax.realtime.AbsoluteTime
absolute(Clock clock,

AbsoluteTime dest)
throws ArithmeticException

394Section 10.3.2.1
395Section 10.3.2.1
396Section 10.3.2.1

1066 RTSJ 2.0 (Draft 48)

RelativeTime javax.realtime A.2

Description
Convert the time of this to an absolute time, using the given instance of Clock397

to determine the current time. The calculation is the current time indicated by
the given instance of Clock plus the interval given by this. When clock is null
the default realtime clock is assumed. When dest is null, a destination object
is allocated for the result. The clock association of the result is with the clock
passed as a parameter.

Parameters
clock The instance of Clock398 used to convert the time of this into absolute time,

and the new clock association for the result.
dest When dest is not null, the result is placed there and returned. Otherwise, a

new object is allocated for the result.
Throws
ArithmeticException when the result does not fit in the normalized format.

Returns
The AbsoluteTime conversion in dest when dest is not null, otherwise the result is

returned in a newly allocated object. The result is associated with the clock
parameter.

Deprecated since version 2.0

relative(Clock)

Signature
public javax.realtime.RelativeTime
relative(Clock clock)

Description
Return a copy of this. A new object is allocated for the result. This method is
the implementation of the abstract method of the HighResolutionTime base class.
No conversion into RelativeTime is needed in this case. The clock association
of the result is with the clock passed as a parameter. When clock is null the
association is made with the realtime clock.

Parameters
clock The clock parameter is used only as the new clock association with the result,

since no conversion is needed.
397Section 10.3.2.1
398Section 10.3.2.1

RTSJ 2.0 (Draft 48) 1067

A Deprecated APIs RelativeTime

Returns
The copy of this in a newly allocated RelativeTime object, associated with the

clock parameter.

Deprecated since version 2.0

relative(Clock, RelativeTime)

Signature
public javax.realtime.RelativeTime
relative(Clock clock,

RelativeTime dest)

Description
Return a copy of this. When dest is not null, the result is placed there and
returned. Otherwise, a new object is allocated for the result. This method is the
implementation of the abstract method of the HighResolutionTime base class.
No conversion into RelativeTime is needed in this case. The clock association
of the result is with the clock passed as a parameter. When clock is null the
association is made with the realtime clock.

Parameters
clock The clock parameter is used only as the new clock association with the result,

since no conversion is needed.
dest When dest is not null, the result is placed there and returned. Otherwise, a

new object is allocated for the result.
Returns
The copy of this in dest when dest is not null, otherwise the result is returned in a

newly allocated object. It is associated with the clock parameter.

Deprecated since version 2.0

addInterarrivalTo(AbsoluteTime)

Signature
public void
addInterarrivalTo(AbsoluteTime timeAndDestination)

Description

1068 RTSJ 2.0 (Draft 48)

RelativeTime javax.realtime A.2

Add the interval of this to the given instance of AbsoluteTime399.

Parameters
timeAndDestination A reference to the given instance of AbsoluteTime400 and the

result.
Deprecated as of RTSJ 1.0.1

getInterarrivalTime

Signature
public javax.realtime.RelativeTime
getInterarrivalTime()

Description
Gets the interval defined by this. For an instance of RationalTime401 it is the
interval divided by the frequency.

Returns
A reference to a new instance of RelativeTime402 with the same interval as this.
Deprecated as of RTSJ 1.0.1

getInterarrivalTime(RelativeTime)

Signature
public javax.realtime.RelativeTime
getInterarrivalTime(RelativeTime destination)

Description
Gets the interval defined by this. For an instance of RationalTime403 it is the
interval divided by the frequency.

Parameters
destination A reference to the new object holding the result.

Returns
399Section 9.3.1.1
400Section 9.3.1.1
401Section A.2.3.24
402Section 9.3.1.3
403Section A.2.3.24

RTSJ 2.0 (Draft 48) 1069

A Deprecated APIs ReleaseParameters

A reference to an object holding the result.
Deprecated as of RTSJ 1.0.1

A.2.3.30 ReleaseParametersT

e following elements of ReleaseParameters are deprecated. The required elements
are documented in Section 6.3.3.10 above.

A.2.3.30.1 Methods

setIfFeasible(RelativeTime, RelativeTime)

Signature
public boolean
setIfFeasible(RelativeTime cost,

RelativeTime deadline)

Description
This method first performs a feasibility analysis using the new cost, and deadline
as replacements for the matching attributes of all schedulables associated with
this release parameters object. When the resulting system is feasible, the method
replaces the current scheduling characteristics of this release parameters object
with the new scheduling characteristics. The change in the release characteristics,
including the timing of the change, of any associated schedulables will take place
under the control of their schedulers.

Parameters
cost The proposed cost. Equivalent to RelativeTime(0,0) when null. (A new

instance of RelativeTime404 is created in the memory area containing this
ReleaseParameters instance). When null, the default value is a new instance
of RelativeTime(0,0).

deadline The proposed deadline. There is no default for deadline in this class. The
default must be determined by the subclasses.

Throws
404Section 9.3.1.3

1070 RTSJ 2.0 (Draft 48)

Scheduler javax.realtime A.2

IllegalArgumentException when the time value of cost is less than zero, or the time
value of deadline is less than or equal to zero.

IllegalAssignmentError when cost or deadline cannot be stored in this.

Returns
True, when the resulting system is feasible and the changes are made. False, when

the resulting system is not feasible and no changes are made.

Deprecated as of RTSJ 2.0

A.2.3.31 SchedulerT

e following elements of Scheduler are deprecated. The required elements are docu-
mented in Section 6.3.3.12 above.

A.2.3.31.1 Methods

addToFeasibility(Schedulable)

Signature
protected abstract boolean
addToFeasibility(Schedulable schedulable)

Description
Inform this scheduler and cooperating facilities that the resource demands of the
given instance of Schedulable405 will be considered in the feasibility analysis of
the associated Scheduler406 until further notice. Whether the resulting system is
feasible or not, the addition is completed. When the object is already included in
the feasibility set, do nothing.

Parameters
schedulable A reference to the given instance of Schedulable407

Throws
405Section 6.3.1.3
406Section 6.3.3.12
407Section 6.3.1.3

RTSJ 2.0 (Draft 48) 1071

A Deprecated APIs Scheduler

IllegalArgumentException when schedulable is null, or when schedulable is not
associated with this; that is schedulable.getScheduler() != this.

Returns
True, when the system is feasible after the addition. False, when not.
Deprecated as of RTSJ 2.0 The framework for feasibility anlaysis is inadequate

isFeasible

Signature
public abstract boolean
isFeasible()

Description
Queries the system about the feasibility of the system currently being consid-
ered. The definitions of "feasible" and "system" are the
responsibility of the feasibility algorithm of the actual Scheduler subclass.

Returns
True, when the system is feasible. False, when not.
Deprecated as of RTSJ 2.0 The framework for feasibility anlaysis is inadequate

setIfFeasible(Schedulable, ReleaseParameters, MemoryParam-
eters)

Signature
public abstract boolean
setIfFeasible(Schedulable schedulable,

ReleaseParameters release,
MemoryParameters memory)

Description
This method first performs a feasibility analysis using the proposed parameter
objects as replacements for the current parameters of Schedulable. When the
resulting system is feasible, this method replaces the current parameters of
Schedulable with the proposed ones. This method does not require that the
schedulable be in the feasibility set before it is called. When it is not initially
a member of the feasibility set it will be added when the resulting system is
feasible.

1072 RTSJ 2.0 (Draft 48)

Scheduler javax.realtime A.2

Parameters
schedulable The schedulable for which the changes are proposed.
release The proposed release parameters. When null, the default value of this

scheduler is used (a new object is created when the default value is not null).
(See PriorityScheduler408.)

memory The proposed memory parameters. When null, the default value of this
scheduler is used (a new object is created when the default value is not null).
(See PriorityScheduler409.)

Throws
IllegalArgumentException when Schedulable is null, or Schedulable is not associated

with this scheduler, or the proposed parameters are not compatible with this
scheduler.

IllegalAssignmentError when Schedulable cannot hold references to the proposed
parameter objects, or the parameter objects cannot hold a reference to Sched-
ulable.

IllegalThreadStateException when the new release parameters change Schedul-
able from periodic scheduling to some other protocol and Schedulable is cur-
rently waiting for the next release in RealtimeThread.waitForNextPeriod()410

or RealtimeThread.waitForNextPeriodInterruptible()411.
Returns
True, when the resulting system is feasible and the changes are made. False, when

the resulting system is not feasible and no changes are made.
Deprecated as of RTSJ 2.0 The framework for feasibility anlaysis is inadequate

setIfFeasible(Schedulable, ReleaseParameters, MemoryParam-
eters, ProcessingGroupParameters)

Signature
public abstract boolean
setIfFeasible(Schedulable schedulable,

ReleaseParameters release,
MemoryParameters memory,
ProcessingGroupParameters group)

408Section 6.3.3.8
409Section 6.3.3.8
410Section A.2.3.28.2
411Section A.2.3.28.2

RTSJ 2.0 (Draft 48) 1073

A Deprecated APIs Scheduler

Description
This method first performs a feasibility analysis using the proposed parameter
objects as replacements for the current parameters of Schedulable. When the
resulting system is feasible, this method replaces the current parameters of
Schedulable with the proposed ones.

This method does not require that the schedulable be in the feasibility set
before it is called. When it is not initially a member of the feasibility set it will
be added when the resulting system is feasible.

Parameters
schedulable The schedulable for which the changes are proposed.
release The proposed release parameters. When null, the default value of this

scheduler is used (a new object is created when the default value is not null).
(See PriorityScheduler412.)

memory The proposed memory parameters. When null, the default value of this
scheduler is used (a new object is created when the default value is not null).
(See PriorityScheduler413.)

group The proposed processing group parameters. When null, the default value of
this scheduler is used (a new object is created when the default value is not
null). (See PriorityScheduler414.)

Throws
IllegalArgumentException when Schedulable is null, or Schedulable is not associated

with this scheduler, or the proposed parameters are not compatible with this
scheduler.

IllegalAssignmentError when Schedulable cannot hold references to the proposed
parameter objects, or the parameter objects cannot hold a reference to Sched-
ulable.

IllegalThreadStateException when the new release parameters change Schedul-
able from periodic scheduling to some other protocol and Schedulable is cur-
rently waiting for the next release in RealtimeThread.waitForNextPeriod()415

or RealtimeThread.waitForNextPeriodInterruptible()416.

Returns
True, when the resulting system is feasible and the changes are made. False, when

the resulting system is not feasible and no changes are made.
412Section 6.3.3.8
413Section 6.3.3.8
414Section 6.3.3.8
415Section A.2.3.28.2
416Section A.2.3.28.2

1074 RTSJ 2.0 (Draft 48)

Scheduler javax.realtime A.2

Deprecated as of RTSJ 2.0 The framework for feasibility anlaysis is inadequate

setIfFeasible(Schedulable, SchedulingParameters, ReleasePar-
ameters, MemoryParameters, ProcessingGroupParameters)

Signature
public abstract boolean
setIfFeasible(Schedulable schedulable,

SchedulingParameters scheduling,
ReleaseParameters release,
MemoryParameters memory,
ProcessingGroupParameters group)

Description
This method first performs a feasibility analysis using the proposed parameter
objects as replacements for the current parameters of Schedulable. When the
resulting system is feasible, this method replaces the current parameters of
Schedulable with the proposed ones.

This method does not require that the schedulable be in the feasibility set
before it is called. When it is not initially a member of the feasibility set it will
be added when the resulting system is feasible.

Parameters
schedulable The schedulable for which the changes are proposed.
scheduling The proposed scheduling parameters. When null, the default value of

this scheduler is used (a new object is created when the default value is not
null). (See PriorityScheduler417.)

release The proposed release parameters. When null, the default value of this
scheduler is used (a new object is created when the default value is not null).
(See PriorityScheduler418.)

memory The proposed memory parameters. When null, the default value of this
scheduler is used (a new object is created when the default value is not null).
(See PriorityScheduler419.)

group The proposed processing group parameters. When null, the default value of
this scheduler is used (a new object is created when the default value is not

417Section 6.3.3.8
418Section 6.3.3.8
419Section 6.3.3.8

RTSJ 2.0 (Draft 48) 1075

A Deprecated APIs Scheduler

null). (See PriorityScheduler420.)
Throws
IllegalArgumentException when Schedulable is null, or Schedulable is not associated

with this scheduler, or the proposed parameters are not compatible with this
scheduler.

IllegalAssignmentError when Schedulable cannot hold references to the proposed
parameter objects, or the parameter objects cannot hold a reference to Sched-
ulable.

IllegalThreadStateException when the new release parameters change Schedul-
able from periodic scheduling to some other protocol and Schedulable is cur-
rently waiting for the next release in RealtimeThread.waitForNextPeriod()421

or RealtimeThread.waitForNextPeriodInterruptible()422.
Returns
True, when the resulting system is feasible and the changes are made. False, when

the resulting system is not feasible and no changes are made.
Deprecated as of RTSJ 2.0 The framework for feasibility anlaysis is inadequate

removeFromFeasibility(Schedulable)

Signature
protected abstract boolean
removeFromFeasibility(Schedulable schedulable)

Description
Inform this scheduler and cooperating facilities that the resource demands of the
given instance of Schedulable423 should no longer be considered in the feasibility
analysis of the associated Scheduler424. Whether the resulting system is feasible
or not, the removal is completed.

Parameters
schedulable A reference to the given instance of Schedulable425

Throws
IllegalArgumentException when schedulable is null.
420Section 6.3.3.8
421Section A.2.3.28.2
422Section A.2.3.28.2
423Section 6.3.1.3
424Section 6.3.3.12
425Section 6.3.1.3

1076 RTSJ 2.0 (Draft 48)

ScopedMemory javax.realtime A.2

Returns
True, when the removal was successful. False, when the schedulable cannot be

removed from the scheduler’s feasibility set; e.g., the schedulable is not part of
the scheduler’s feasibility set.

Deprecated as of RTSJ 2.0 The framework for feasibility anlaysis is inadequate

fireSchedulable(Schedulable)

Signature
public abstract void
fireSchedulable(Schedulable schedulable)

Description
Trigger the execution of a schedulable (like an AsyncEventHandler426).

Parameters
schedulable The schedulable to make active. When null, nothing happens.

Throws
UnsupportedOperationException when the scheduler cannot release schedulable for

execution.

Deprecated RTSJ 2.0

A.2.3.32 ScopedMemory

Inheritance
java.lang.Object
MemoryArea
ScopedMemory

Description
Equivalent to and superseded by javax.realtime.memory.ScopedMemory427.

Deprecated in RTSJ 2.0; moved to package javax.realtime.memory

426Section 8.3.3.5
427Section 11.4.3.6

RTSJ 2.0 (Draft 48) 1077

A Deprecated APIs ScopedMemory

A.2.3.32.1 Constructors

ScopedMemory(long, Runnable)

Signature
public
ScopedMemory(long size,

Runnable logic)

Description
Create a new ScopedMemory area with the given parameters.

Deprecated since RTSJ 2.0 no longer visible

Parameters
size The size of the new ScopedMemory area in bytes.
logic The Runnable to execute when this ScopedMemory is entered. When logic is

null, this constructor is equivalent to constructing the memory area without a
logic value.

Throws
IllegalArgumentException when size is less than zero.
IllegalAssignmentError when storing logic in this would violate the assignment

rules.
OutOfMemoryError when there is insufficient memory for the ScopedMemory object

or for the backing memory.

ScopedMemory(SizeEstimator, Runnable)

Signature
public
ScopedMemory(SizeEstimator size,

Runnable logic)

Description
Equivalent to ScopedMemory(long, Runnable)428 with the argument list (size.

428Section A.2.3.32.1

1078 RTSJ 2.0 (Draft 48)

ScopedMemory javax.realtime A.2

getEstimate(), logic).

Deprecated since RTSJ 2.0

Parameters
size The size of the new ScopedMemory area estimated by an instance of SizeEsti-

mator429.
logic The logic which will use the memory represented by this as its initial memory

area. When logic is null, this constructor is equivalent to constructing the
memory area without a logic value.

Throws
IllegalArgumentException when size is null, or size.getEstimate() is negative.
OutOfMemoryError when there is insufficient memory for the ScopedMemory object

or for the backing memory.
IllegalAssignmentError when storing logic in this would violate the assignment

rules.

ScopedMemory(long)

Signature
public
ScopedMemory(long size)

Description
Equivalent to ScopedMemory(long, Runnable)430 with the argument list (size,
null).

Deprecated since RTSJ 2.0 no longer visible.

Parameters
size of the new ScopedMemory area in bytes.

Throws
IllegalArgumentException when size is less than zero.
OutOfMemoryError when there is insufficient memory for the ScopedMemory object

or for the backing memory.

429Section 11.3.2.5
430Section A.2.3.32.1

RTSJ 2.0 (Draft 48) 1079

A Deprecated APIs ScopedMemory

ScopedMemory(SizeEstimator)

Signature
public
ScopedMemory(SizeEstimator size)

Description
Equivalent to ScopedMemory(long, Runnable)431 with the argument list (size.
getEstimate(), null).

Deprecated since RTSJ 2.0.

Parameters
size The size of the new ScopedMemory area estimated by an instance of SizeEsti-

mator432.
Throws
IllegalArgumentException when size is null, or size.getEstimate() is negative.
OutOfMemoryError when there is insufficient memory for the ScopedMemory object

or for the backing memory.

A.2.3.32.2 Methods

enter

Signature
public void
enter()

Description
Associate this memory area with the current schedulable for the duration of
the execution of the run() method of the instance of Runnable given in the
constructor. During this period of execution, this memory area becomes the
default allocation context until another default allocation context is selected
(using enter, or executeInArea433) or the enter method exits.

431Section A.2.3.32.1
432Section 11.3.2.5
433Section A.2.3.32.2

1080 RTSJ 2.0 (Draft 48)

ScopedMemory javax.realtime A.2

Throws
ScopedCycleException when this invocation would break the single parent rule.
ThrowBoundaryError Thrown when the JVM needs to propagate an exception

allocated in this scope to (or through) the memory area of the caller. Storing
a reference to that exception would cause an IllegalAssignmentError434, so the
JVM cannot be permitted to deliver the exception. The ThrowBoundaryEr-
ror435 is allocated in the current allocation context and contains information
about the exception it replaces.

IllegalThreadStateException when the caller is a Java thread, or when this method is
invoked during finalization of objects in scoped memory and entering this scoped
memory area would force deletion of the SO that triggered finalization. This
would include the scope containing the SO, and the scope (if any) containing
the scope containing the SO.

IllegalArgumentException IllegalArgumentException when the caller is a sched-
ulable and a null value for logic was supplied when the memory area was
constructed.

MemoryAccessError MemoryAccessError when caller is a schedulable that may not
use the heap and this memory area’s logic value is allocated in heap memory.

enter(Runnable)

Signature
public void
enter(Runnable logic)

Description
Associate this memory area with the current schedulable for the duration of the
execution of the run() method of the given Runnable. During this period of
execution, this memory area becomes the default allocation context until another
default allocation context is selected (using enter, or executeInArea436) or the
enter method exits.

Parameters
logic logic The Runnable object whose run() method should be invoked.

Throws
ScopedCycleException when this invocation would break the single parent rule.
434Section 15.2.3.2
435Section 15.2.3.8
436Section A.2.3.32.2

RTSJ 2.0 (Draft 48) 1081

A Deprecated APIs ScopedMemory

ThrowBoundaryError Thrown when the JVM needs to propagate an exception
allocated in this scope to (or through) the memory area of the caller. Storing
a reference to that exception would cause an IllegalAssignmentError437, so the
JVM cannot be permitted to deliver the exception. The ThrowBoundaryEr-
ror438 is allocated in the current allocation context and contains information
about the exception it replaces.

IllegalThreadStateException when the caller is a Java thread, or when this method is
invoked during finalization of objects in scoped memory and entering this scoped
memory area would force deletion of the SO that triggered finalization. This
would include the scope containing the SO, and the scope (if any) containing
the scope containing the SO.

IllegalArgumentException IllegalArgumentException when the caller is a schedul-
able and logic is null.

executeInArea(Runnable)

Signature
public void
executeInArea(Runnable logic)

Description
Execute the run method from the logic parameter using this memory area as the
current allocation context. This method behaves as if it moves the allocation
context down the scope stack to the occurrence of this.

Parameters
logic The runnable object whose run() method should be executed.

Throws
IllegalThreadStateException when the caller context in not an instance of Schedul-

able439.
InaccessibleAreaException when the memory area is not in the schedulable’s scope

stack.
IllegalArgumentException when the caller is a schedulable and logic is null.

getPortal

437Section 15.2.3.2
438Section 15.2.3.8
439Section 6.3.1.3

1082 RTSJ 2.0 (Draft 48)

ScopedMemory javax.realtime A.2

Signature
public java.lang.Object
getPortal()

Description

Return a reference to the portal object in this instance of ScopedMemory.
Assignment rules are enforced on the value returned by getPortal as if the

return value were first stored in an object allocated in the current allocation
context, then moved to its final destination.

Throws
IllegalAssignmentError when a reference to the portal object cannot be stored in

the caller’s allocation context; that is, when this is "inner" relative to the
current allocation context or not on the caller’s scope stack.

IllegalThreadStateException when the caller context in not an instance of Schedul-
able440.

Returns
A reference to the portal object or null when there is no portal object. The portal

value is always set to null when the contents of the memory are deleted.

getReferenceCount

Signature
public int
getReferenceCount()

Description

Returns the reference count of this ScopedMemory.
Note, a reference count of 0 reliably means that the scope is not referenced,

but other reference counts are subject to artifacts of lazy/eager maintenance by
the implementation.

Returns
The reference count of this ScopedMemory.

440Section 6.3.1.3

RTSJ 2.0 (Draft 48) 1083

A Deprecated APIs ScopedMemory

join

Signature
public void
join()
throws InterruptedException

Description
Wait until the reference count of this ScopedMemory goes down to zero. Return
immediately when the memory is unreferenced.

Throws
InterruptedException When this schedulable is interrupted by RealtimeThread.

interrupt()441 or AsynchronouslyInterruptedException.fire()442 while waiting
for the reference count to go to zero.

IllegalThreadStateException when the caller context in not an instance of Schedul-
able443.

join(HighResolutionTime)

Signature
public void
join(javax.realtime.HighResolutionTime<?> time)
throws InterruptedException

Description
Wait at most until the time designated by the time parameter for the reference
count of this ScopedMemory to drop to zero. Return immediately when the
memory area is unreferenced.

Since the time is expressed as a HighResolutionTime444, this method is an
accurate timer with nanosecond granularity. The actual resolution of the timer
and even the quantity it measures depends on the clock associated with time.
The delay time may be relative or absolute. When relative, then the delay is
the amount of time given by time, and measured by its associated clock. When
absolute, then the delay is until the indicated value is reached by the clock. When

441Section 5.3.2.2.2
442Section 15.2.2.2.2
443Section 6.3.1.3
444Section 9.3.1.2

1084 RTSJ 2.0 (Draft 48)

ScopedMemory javax.realtime A.2

the given absolute time is less than or equal to the current value of the clock, the
call to join returns immediately.

Parameters
time When this time is an absolute time, the wait is bounded by that point in time.

When the time is a relative time (or a member of the RationalTime subclass of
RelativeTime) the wait is bounded by a the specified interval from some time
between the time join is called and the time it starts waiting for the reference
count to reach zero.

Throws
InterruptedException When this schedulable is interrupted by RealtimeThread.

interrupt()445 or AsynchronouslyInterruptedException.fire()446 while waiting
for the reference count to go to zero.

IllegalThreadStateException when the caller context in not an instance of Schedul-
able447.

IllegalArgumentException when the caller is a schedulable and time is null.
UnsupportedOperationException when the wait operation is not supported using

the clock associated with time.

joinAndEnter

Signature
public void
joinAndEnter()
throws InterruptedException

Description
In the error-free case, joinAndEnter combines join();enter(); such that no enter()
from another schedulable can intervene between the two method invocations.
The resulting method will wait for the reference count on this ScopedMemory
to reach zero, then enter the ScopedMemory and execute the run method from
logic passed in the constructor. When no instance of Runnable was passed to
the memory area’s constructor, the method throws IllegalArgumentException
immediately.

When multiple threads are waiting in joinAndEnter family methods for a
memory area, at most one of them will be released each time the reference count
goes to zero.

445Section 5.3.2.2.2
446Section 15.2.2.2.2
447Section 6.3.1.3

RTSJ 2.0 (Draft 48) 1085

A Deprecated APIs ScopedMemory

Note that although joinAndEnter guarantees that the reference count is zero
when the schedulable is released for entry, it does not guarantee that the reference
count will remain one for any length of time. A subsequent enter could raise the
reference count to two.

Throws
InterruptedException When this schedulable is interrupted by RealtimeThread.

interrupt()448 or AsynchronouslyInterruptedException.fire()449 while waiting
for the reference count to go to zero.

IllegalThreadStateException when the caller is a Java thread, or when this method is
invoked during finalization of objects in scoped memory and entering this scoped
memory area would force deletion of the SO that triggered finalization. This
would include the scope containing the SO, and the scope (if any) containing
the scope containing the SO.

ThrowBoundaryError Thrown when the JVM needs to propagate an exception
allocated in this scope to (or through) the memory area of the caller. Storing
a reference to that exception would cause an IllegalAssignmentError450, so the
JVM cannot be permitted to deliver the exception. The ThrowBoundaryEr-
ror451 is allocated in the current allocation context and contains information
about the exception it replaces.

ScopedCycleException when this invocation would break the single parent rule.
IllegalArgumentException when the caller is a schedulable and no non-null logic

value was supplied to the memory area’s constructor.
MemoryAccessError when caller is a non-heap schedulable and this memory area’s

logic value is allocated in heap memory.

joinAndEnter(HighResolutionTime)

Signature
public void
joinAndEnter(javax.realtime.HighResolutionTime<?> time)
throws InterruptedException

Description
In the error-free case, joinAndEnter combines join();enter(); such that no enter()
from another schedulable can intervene between the two method invocations.

448Section 5.3.2.2.2
449Section 15.2.2.2.2
450Section 15.2.3.2
451Section 15.2.3.8

1086 RTSJ 2.0 (Draft 48)

ScopedMemory javax.realtime A.2

The resulting method will wait for the reference count on this ScopedMemory
to reach zero, or for the current time to reach the designated time, then enter
the ScopedMemory and execute the run method from Runnable object passed
to the constructor. When no instance of Runnable was passed to the memory
area’s constructor, the method throws IllegalArgumentException immediately. *

When multiple threads are waiting in joinAndEnter family methods for a
memory area, at most one of them will be released each time the reference count
goes to zero.

Since the time is expressed as a HighResolutionTime452, this method has an
accurate timer with nanosecond granularity. The actual resolution of the timer
and even the quantity it measures depends on the clock associated with time.
The delay time may be relative or absolute. When relative, then the calling
thread is blocked for at most the amount of time given by time, and measured
by its associated clock. When absolute, then the time delay is until the indicated
value is reached by the clock. When the given absolute time is less than or equal
to the current value of the clock, the call to joinAndEnter behaves effectively like
enter453.

Note that expiration of time may cause control to enter the memory area
before its reference count has gone to zero.

Parameters
time The time that bounds the wait.

Throws
ThrowBoundaryError Thrown when the JVM needs to propagate an exception

allocated in this scope to (or through) the memory area of the caller. Storing
a reference to that exception would cause an IllegalAssignmentError454, so the
JVM cannot be permitted to deliver the exception. The ThrowBoundaryEr-
ror455 is allocated in the current allocation context and contains information
about the exception it replaces.

InterruptedException When this schedulable is interrupted by RealtimeThread.
interrupt()456 or AsynchronouslyInterruptedException.fire()457 while waiting
for the reference count to go to zero.

IllegalThreadStateException when the caller context is not an instance of Schedul-
able458, or when this method is invoked during finalization of objects in scoped

452Section 9.3.1.2
453Section A.2.3.32.2
454Section 15.2.3.2
455Section 15.2.3.8
456Section 5.3.2.2.2
457Section 15.2.2.2.2
458Section 6.3.1.3

RTSJ 2.0 (Draft 48) 1087

A Deprecated APIs ScopedMemory

memory and entering this scoped memory area would force deletion of the
instance that triggered finalization. This would include the scope containing the
instance, and the scope (if any) containing the scope containing the instance.

ScopedCycleException when the caller is a schedulable and this invocation would
break the single parent rule.

IllegalArgumentException when the caller is a schedulable, and time is null or null
was supplied as logic value to the memory area’s constructor.

UnsupportedOperationException when the wait operation is not supported using
the clock associated with time.

MemoryAccessError when the calling schedulable may not use the heap and this
memory area’s logic value is allocated in heap memory.

joinAndEnter(Runnable)

Signature
public void
joinAndEnter(Runnable logic)
throws InterruptedException

Description
In the error-free case, joinAndEnter combines join();enter(); such that no enter()
from another schedulable can intervene between the two method invocations.
The resulting method will wait for the reference count on this ScopedMemory to
reach zero, then enter the ScopedMemory and execute the run method from logic

When logic is null, throw IllegalArgumentException immediately.
When multiple threads are waiting in joinAndEnter family methods for a

memory area, at most one of them will be released each time the reference count
goes to zero.

Note that although joinAndEnter guarantees that the reference count is zero
when the schedulable is released for entry, it does not guarantee that the reference
count will remain one for any length of time. A subsequent enter could raise the
reference count to two.

Parameters
logic The Runnable object which contains the code to execute.

Throws
InterruptedException When this schedulable is interrupted by RealtimeThread.

interrupt()459 or AsynchronouslyInterruptedException.fire()460 while waiting
459Section 5.3.2.2.2
460Section 15.2.2.2.2

1088 RTSJ 2.0 (Draft 48)

ScopedMemory javax.realtime A.2

for the reference count to go to zero.
IllegalThreadStateException when the caller is a Java thread, or when this method is

invoked during finalization of objects in scoped memory and entering this scoped
memory area would force deletion of the SO that triggered finalization. This
would include the scope containing the SO, and the scope (if any) containing
the scope containing the SO.

ThrowBoundaryError Thrown when the JVM needs to propagate an exception
allocated in this scope to (or through) the memory area of the caller. Storing
a reference to that exception would cause an IllegalAssignmentError461, so the
JVM cannot be permitted to deliver the exception. The ThrowBoundaryEr-
ror462 is allocated in the current allocation context and contains information
about the exception it replaces.

ScopedCycleException when this invocation would break the single parent rule.
IllegalArgumentException when the caller is a schedulable and logic is null.

joinAndEnter(Runnable, HighResolutionTime)

Signature
public void
joinAndEnter(Runnable logic,

javax.realtime.HighResolutionTime<?> time)
throws InterruptedException

Description

In the error-free case, joinAndEnter combines join();enter(); such that no enter()
from another schedulable can intervene between the two method invocations.
The resulting method will wait for the reference count on this ScopedMemory to
reach zero, or for the current time to reach the designated time, then enter the
ScopedMemory and execute the run method from logic.

Since the time is expressed as a HighResolutionTime463, this method is an
accurate timer with nanosecond granularity. The actual resolution of the timer
and even the quantity it measures depends on the clock associated with time.
The delay time may be relative or absolute. When relative, then the delay is
the amount of time given by time, and measured by its associated clock. When
absolute, then the delay is until the indicated value is reached by the clock. When

461Section 15.2.3.2
462Section 15.2.3.8
463Section 9.3.1.2

RTSJ 2.0 (Draft 48) 1089

A Deprecated APIs ScopedMemory

the given absolute time is less than or equal to the current value of the clock, the
call to joinAndEnter behaves effectively like enter(Runnable)464.

Throws IllegalArgumentException immediately when logic is null.
When multiple threads are waiting in joinAndEnter family methods for a

memory area, at most one of them will be released each time the reference count
goes to zero.

Note that expiration of time may cause control to enter the memory area
before its reference count has gone to zero.

Parameters
logic The Runnable object which contains the code to execute.
time The time that bounds the wait.

Throws
InterruptedException When this schedulable is interrupted by RealtimeThread.

interrupt()465 or AsynchronouslyInterruptedException.fire()466 while waiting
for the reference count to go to zero.

IllegalThreadStateException when the execution context in not an instance of
Schedulable467, or when this method is invoked during finalization of objects
in scoped memory and entering this scoped memory area would force deletion
of the task that triggered finalization. This would include the scope containing
the task, and the scope (if any) containing the scope containing the task.

ThrowBoundaryError Thrown when the JVM needs to propagate an exception
allocated in this scope to (or through) the memory area of the caller. Storing
a reference to that exception would cause an IllegalAssignmentError468, so the
JVM cannot be permitted to deliver the exception. The ThrowBoundaryEr-
ror469 is allocated in the current allocation context and contains information
about the exception it replaces.

ScopedCycleException when the caller is a schedulable and this invocation would
break the single parent rule.

IllegalArgumentException when the caller is a schedulable and time or logic is null.
UnsupportedOperationException when the wait operation is not supported using

the clock associated with time.

464Section A.2.3.32.2
465Section 5.3.2.2.2
466Section 15.2.2.2.2
467Section 6.3.1.3
468Section 15.2.3.2
469Section 15.2.3.8

1090 RTSJ 2.0 (Draft 48)

ScopedMemory javax.realtime A.2

newArray(Class, int)

Signature
public java.lang.Object
newArray(java.lang.Class<?> type,

int number)

Description
Allocate an array of the given type in this memory area. This method may be
concurrently used by multiple threads.

Parameters
type type The class of the elements of the new array. To create an array of a

primitive type use a type such as Integer.TYPE (which would call for an array
of the primitive int type.)

number number The number of elements in the new array.
Throws
IllegalArgumentException IllegalArgumentException when number is less than zero,

type is null, or type is java.lang.Void.TYPE.
OutOfMemoryError OutOfMemoryError when space in the memory area is ex-

hausted.
IllegalThreadStateException when the caller context in not an instance of Schedul-

able470.
InaccessibleAreaException when the memory area is not in the schedulable’s scope

stack.

Returns
A new array of class type, of number elements.

newInstance(Class)

Signature
public T
newInstance(java.lang.Class<T> type)
throws IllegalAccessException,

InstantiationException

Description
470Section 6.3.1.3

RTSJ 2.0 (Draft 48) 1091

A Deprecated APIs ScopedMemory

Allocate an object in this memory area. This method may be concurrently used
by multiple threads.

Parameters
type type The class of which to create a new instance.

Throws
IllegalAccessException IllegalAccessException The class or initializer is inaccessible.
IllegalArgumentException IllegalArgumentException when type is null.
ExceptionInInitializerError ExceptionInInitializerError when an unexpected excep-

tion has occurred in a static initializer.
OutOfMemoryError OutOfMemoryError when space in the memory area is ex-

hausted.
InstantiationException InstantiationException when the specified class object could

not be instantiated. Possible causes are it is an interface, it is abstract, or it is
an array.

IllegalThreadStateException when the caller context in not an instance of Schedul-
able471.

InaccessibleAreaException when the memory area is not in the schedulable’s scope
stack.

Returns
A new instance of class type.

newInstance(Constructor, Object)

Signature
public T
newInstance(java.lang.reflect.Constructor<T> c,

java.lang.Object[] args)
throws IllegalAccessException,

InstantiationException,
InvocationTargetException

Description
Allocate an object in this memory area. This method may be concurrently used
by multiple threads.

Parameters
c Tc The constructor for the new instance.
471Section 6.3.1.3

1092 RTSJ 2.0 (Draft 48)

ScopedMemory javax.realtime A.2

args args An array of arguments to pass to the constructor.
Throws
IllegalAccessException IllegalAccessException when the class or initializer is inac-

cessible under Java access control.
InstantiationException InstantiationException when the specified class object could

not be instantiated. Possible causes are it is an interface, it is abstract, it is an
array.

OutOfMemoryError OutOfMemoryError when space in the memory area is ex-
hausted.

IllegalArgumentException IllegalArgumentException when c is null, or the args
array does not contain the number of arguments required by c. A null value of
args is treated like an array of length 0.

IllegalThreadStateException when the caller context in not an instance of Schedul-
able472.

InvocationTargetException InvocationTargetException when the underlying con-
structor throws an exception.

InaccessibleAreaException when the memory area is not in the schedulable’s scope
stack.

Returns
A new instance of the object constructed by c.

setPortal(Object)

Signature
public void
setPortal(Object object)

Description
Sets the portal object of the memory area represented by this instance of Scoped-
Memory to the given object. The object must have been allocated in this
ScopedMemory instance.

Parameters
object The object which will become the portal for this. When null the previous

portal object remains the portal object for this or when there was no previous
portal object then there is still no portal object for this.

Throws
472Section 6.3.1.3

RTSJ 2.0 (Draft 48) 1093

A Deprecated APIs SporadicParameters

IllegalThreadStateException when the caller context in not an instance of Schedul-
able473.

IllegalAssignmentError when the caller is a schedulable, and object is not allocated
in this scoped memory instance and not null.

InaccessibleAreaException when the caller is a schedulable, this memory area is
not in the caller’s scope stack and object is not null.

toString

Signature
public java.lang.String
toString()

Description
Returns a user-friendly representation of this ScopedMemory of the form Scoped-
Memory#<num> where <num> is a number that uniquely identifies this scoped
memory area.

Returns
The string representation

A.2.3.33 SporadicParametersT

e following elements of SporadicParameters are deprecated. The required elements
are documented in Section 6.3.3.15 above.

A.2.3.33.1 Fields

mitViolationExcept

public static final mitViolationExcept
Description

Represents the “EXCEPT” policy for dealing with minimum interarrival time vio-
lations. Under this policy, when an arrival time for any instance of Schedulable474

473Section 6.3.1.3
474Section 6.3.1.3

1094 RTSJ 2.0 (Draft 48)

SporadicParameters javax.realtime A.2

which has this as its instance of ReleaseParameters475 occurs at a time less then
the minimum interarrival time defined here then the fire() method shall throw
MITViolationException476. Any other associated semantics are governed by the
schedulers for the schedulables using these sporadic parameters. When the arrival
time is a result of a happening to which the instance of AsyncEventHandler477 is
bound then the arrival time is ignored.

Deprecated since RTSJ 2.0

mitViolationIgnore

public static final mitViolationIgnore

Description
Represents the “IGNORE” policy for dealing with minimum interarrival time
violations. Under this policy, when an arrival time for any instance of Schedul-
able478 which has this as its instance of ReleaseParameters479 occurs at a time
less then the minimum interarrival time defined here then the new arrival time is
ignored. Any other associated semantics are governed by the schedulers for the
schedulables using these sporadic parameters.

Deprecated since RTSJ 2.0

mitViolationSave

public static final mitViolationSave

Description
Represents the “SAVE” policy for dealing with minimum interarrival time viola-
tions. Under this policy the arrival time for any instance of Schedulable480 which
has this as its instance of ReleaseParameters481 is not compared to the specified
minimum interarrival time. Any other associated semantics are governed by the
schedulers for the schedulable objects using these sporadic parameters.

475Section 6.3.3.10
476Section 15.2.2.10
477Section 8.3.3.5
478Section 6.3.1.3
479Section 6.3.3.10
480Section 6.3.1.3
481Section 6.3.3.10

RTSJ 2.0 (Draft 48) 1095

A Deprecated APIs SporadicParameters

Deprecated since RTSJ 2.0

mitViolationReplace

public static final mitViolationReplace

Description
Represents the “REPLACE” policy for dealing with minimum interarrival time
violations. Under this policy when an arrival time for any instance of Schedul-
able482 which has this as its instance of ReleaseParameters483 occurs at a time
less then the minimum interarrival time defined here then the information for this
arrival replaces a previous arrival. Any other associated semantics are governed
by the schedulers for the schedulables using these sporadic parameters.

Deprecated since RTSJ 2.0

A.2.3.33.2 Methods

setMitViolationBehavior(String)

Signature
public void
setMitViolationBehavior(String behavior)

Description
Sets the behavior of the arrival time queue in the case where the new arrival time
is closer to the previous arrival time than the minimum interarrival time given in
this.

Values of behavior are compared using reference equality (==) not value
equality (equals()).

Parameters
behavior A string representing the behavior.

Throws
482Section 6.3.1.3
483Section 6.3.3.10

1096 RTSJ 2.0 (Draft 48)

SporadicParameters javax.realtime A.2

IllegalArgumentException when behavior is not one of the final MIT violation
behavior values defined in this class.

Deprecated since RTSJ 2.0 and replaced by setMinimumInterarrivalPolicy484.

getMitViolationBehavior

Signature
public java.lang.String
getMitViolationBehavior()

Description
Gets the arrival time queue behavior in the event of a minimum interarrival time
violation.

Returns
The minimum interarrival time violation behavior as a string.
Deprecated since RTSJ 2.0 and replaced by getMinimumInterarrivalPolicy485.

setIfFeasible(RelativeTime, RelativeTime)

Signature
public boolean
setIfFeasible(RelativeTime cost,

RelativeTime deadline)

Description
This method first performs a feasibility analysis using the new cost, and deadline
as replacements for the matching attributes of this. When the resulting system is
feasible, the method replaces the current scheduling characteristics, of this with
the new scheduling characteristics.

Parameters
cost cost The proposed cost. to determine when any particular object exceeds cost.

When null, the default value is a new instance of RelativeTime(0,0).
deadline The proposed deadline. When null, the default value is a new instance of

RelativeTime(mit).
484Section 6.3.3.15.3
485Section 6.3.3.15.3

RTSJ 2.0 (Draft 48) 1097

A Deprecated APIs SporadicParameters

Throws
IllegalArgumentException IllegalArgumentException when the time value of cost

is less than zero, or the time value of deadline is less than or equal to zero,
or the values are incompatible with the scheduler for any of the schedulables
which are presently using this parameter object.

IllegalAssignmentError IllegalAssignmentError when cost or deadline cannot be
stored in this.

Returns
True, when the resulting system is feasible and the changes are made. False, when

the resulting system is not feasible and no changes are made.

Deprecated as of RTSJ 2.0 The framework for feasibility anlaysis is inadequate

setIfFeasible(RelativeTime, RelativeTime, RelativeTime)

Signature
public boolean
setIfFeasible(RelativeTime interarrival,

RelativeTime cost,
RelativeTime deadline)

Description
This method first performs a feasibility analysis using the new interarrival, cost
and deadline attributes as replacements for the matching attributes of this. When
the resulting system is feasible the method replaces the current attributes with
the new ones.

Changes to a SporadicParameters instance effect subsequent arrivals.

Parameters
interarrival The proposed interarrival time. There is no default value. When

minInterarrival is null an illegal argument exception is thrown.
cost The proposed cost. When null, the default value is a new instance of Relative-

Time(0,0).
deadline The proposed deadline. When null, the default value is a new instance of

RelativeTime(mit).
Throws
IllegalArgumentException when minInterarrival is null or its time value is not

greater than zero, or the time value of cost is less than zero, or the time value
of deadline is not greater than zero.

1098 RTSJ 2.0 (Draft 48)

Timer javax.realtime A.2

IllegalAssignmentError when interarrival, cost or deadline cannot be stored in this.
Returns
True, when the resulting system is feasible and the changes are made. False, when

the resulting system is not feasible and no changes are made.
Deprecated as of RTSJ 2.0 The framework for feasibility anlaysis is inadequate

A.2.3.34 ThrowBoundaryErrorT

e following elements of ThrowBoundaryError are deprecated. The required ele-
ments are documented in Section 15.2.3.8 above.

A.2.3.34.1 Constructors

ThrowBoundaryError(String)

Signature
public
ThrowBoundaryError(String description)

Description
A descriptive constructor for ThrowBoundaryError.

Deprecated since RTSJ 2.0; application code should use get()486 instead.

Parameters
description Description of the error.

A.2.3.35 TimerT

e following elements of Timer are deprecated. The required elements are docu-
mented in Section 10.3.2.6 above.

486Section 15.2.3.8.2

RTSJ 2.0 (Draft 48) 1099

A Deprecated APIs VTMemory

A.2.3.35.1 Methods

destroy

Signature
public void
destroy()
throws IllegalStateException

Description
Stop this from counting or comparing when active, remove from it all the associ-
ated handlers if any, and release as many of its resources as possible back to the
system. Every method invoked on a Timer that has been destroyed will throw
IllegalStateException.

Throws
IllegalStateException when this Timer has been destroyed.
Deprecated since RTSJ 2.0

bindTo(String)

Signature
public void
bindTo(String happening)
throws UnsupportedOperationException

Description
Should not be called.

Parameters
happening to which to bind

Throws
UnsupportedOperationException when bindTo is called on a Timer.
Available since RTSJ 1.0.1

Deprecated RTSJ 2.0

1100 RTSJ 2.0 (Draft 48)

VTMemory javax.realtime A.2

A.2.3.36 VTMemory

Inheritance
java.lang.Object
MemoryArea
ScopedMemory
VTMemory

Description
VTMemory is similar to LTMemory487 except that the execution time of an
allocation from a VTMemory area need not complete in linear time.

Methods from VTMemory should be overridden only by methods that use
super.

Deprecated as of RTSJ 2.0

A.2.3.36.1 Constructors

VTMemory(long, long, Runnable)

Signature
public
VTMemory(long initial,

long maximum,
Runnable logic)

Description
Creates a VTMemory with the given parameters.

Parameters
initial The size in bytes of the memory to initially allocate for this area.
maximum The maximum size in bytes this memory area to which the size may

grow.

487Section A.2.3.11

RTSJ 2.0 (Draft 48) 1101

A Deprecated APIs VTMemory

logic An instance of Runnable whose run() method will use this as its initial memory
area. When logic is null, this constructor is equivalent to VTMemory(long
initial, long maximum)488.

Throws
IllegalArgumentException when initial is greater than maximum, or when initial

or maximum is less than zero.
OutOfMemoryError when there is insufficient memory for the VTMemory object

or for the backing memory.
IllegalAssignmentError when storing logic in this would violate the assignment

rules.

VTMemory(SizeEstimator, SizeEstimator, Runnable)

Signature
public
VTMemory(SizeEstimator initial,

SizeEstimator maximum,
Runnable logic)

Description
Equivalent to VTMemory(long, long, Runnable)489 with the argument list (initial.
getEstimate(), maximum.getEstimate(), logic).

Parameters
initial The size in bytes of the memory to initially allocate for this area.
maximum The maximum size in bytes this memory area to which the size may

grow estimated by an instance of SizeEstimator490.
logic An instance of Runnable whose run() method will use this as its initial

memory area. When logic is null, this constructor is equivalent to VTMem-
ory(SizeEstimator initial, SizeEstimator maximum)491.

Throws
IllegalArgumentException when initial is null,maximum is null, initial.getEstimate()

is greater than maximum.getEstimate(), or when initial.getEstimate() is less
than zero.

488Section A.2.3.36.1
489Section A.2.3.36.1
490Section 11.3.2.5
491Section A.2.3.36.1

1102 RTSJ 2.0 (Draft 48)

VTMemory javax.realtime A.2

OutOfMemoryError when there is insufficient memory for the VTMemory object
or for the backing memory.

IllegalAssignmentError when storing logic in this would violate the assignment
rules.

VTMemory(long, long)

Signature
public
VTMemory(long initial,

long maximum)

Description
Equivalent to VTMemory(long, long, Runnable)492 with the argument list (initial,
maximum, null).

Parameters
initial The size in bytes of the memory to initially allocate for this area.
maximum The maximum size in bytes this memory area to which the size may

grow.
Throws
IllegalArgumentException when initial is greater than maximum or when initial or

maximum is less than zero.
OutOfMemoryError when there is insufficient memory for the VTMemory object

or for the backing memory.

VTMemory(SizeEstimator, SizeEstimator)

Signature
public
VTMemory(SizeEstimator initial,

SizeEstimator maximum)

Description

492Section A.2.3.36.1

RTSJ 2.0 (Draft 48) 1103

A Deprecated APIs VTMemory

Equivalent to VTMemory(long, long, Runnable)493 with the argument list (initial.
getEstimate(), maximum.getEstimate(), null).

Parameters
initial The size in bytes of the memory to initially allocate for this area.
maximum The maximum size in bytes this memory area to which the size may

grow estimated by an instance of SizeEstimator494.
Throws
IllegalArgumentException when initial is null,maximum is null, initial.getEstimate()

is greater than maximum.getEstimate(), or when initial.getEstimate() is less
than zero.

OutOfMemoryError when there is insufficient memory for the VTMemory object
or for the backing memory.

VTMemory(long, Runnable)

Signature
public
VTMemory(long size,

Runnable logic)

Description
Equivalent to VTMemory(long, long, Runnable)495 with the argument list (size,
size, logic).

Available since RTSJ 1.0.1

Parameters
size The size in bytes of the memory to allocate for this area. This memory must

be committed before the completion of the constructor.
logic The run() of the given Runnable will be executed using this as its initial mem-

ory area. When logic is null, this constructor is equivalent to VTMemory(long
size)496.

Throws
IllegalArgumentException when size is less than zero.
493Section A.2.3.36.1
494Section 11.3.2.5
495Section A.2.3.36.1
496Section A.2.3.36.1

1104 RTSJ 2.0 (Draft 48)

VTMemory javax.realtime A.2

OutOfMemoryError when there is insufficient memory for the VTMemory object
or for the backing memory.

IllegalAssignmentError when storing logic in this would violate the assignment
rules.

VTMemory(SizeEstimator, Runnable)

Signature
public
VTMemory(SizeEstimator size,

Runnable logic)

Description
Equivalent to VTMemory(long, long, Runnable)497 with the argument list (size.
getEstimate(), size.getEstimate(), logic).

Available since RTSJ 1.0.1

Parameters
size An instance of SizeEstimator498 used to give an estimate of the initial size.

This memory must be committed before the completion of the constructor.
logic The run() of the given Runnable will be executed using this as its initial

memory area. When logic is null, this constructor is equivalent to VTMem-
ory(SizeEstimator initial)499.

Throws
IllegalArgumentException when size is null, or size.getEstimate() is less than zero.
OutOfMemoryError when there is insufficient memory for the VTMemory object

or for the backing memory.
IllegalAssignmentError when storing logic in this would violate the assignment

rules.

VTMemory(long)

Signature
497Section A.2.3.36.1
498Section 11.3.2.5
499Section A.2.3.36.1

RTSJ 2.0 (Draft 48) 1105

A Deprecated APIs VTMemory

public
VTMemory(long size)

Description
Equivalent to VTMemory(long, long, Runnable)500 with the argument list (size,
size, null).

Available since RTSJ 1.0.1

Parameters
size The size in bytes of the memory to allocate for this area. This memory must

be committed before the completion of the constructor.
Throws
IllegalArgumentException when size is less than zero.
OutOfMemoryError when there is insufficient memory for the VTMemory object

or for the backing memory.

VTMemory(SizeEstimator)

Signature
public
VTMemory(SizeEstimator size)

Description
Equivalent to VTMemory(long, long, Runnable)501 with the argument list (size.
getEstimate(), size.getEstimate(), null).

Available since RTSJ 1.0.1

Parameters
size An instance of SizeEstimator502 used to give an estimate of the initial size.

This memory must be committed before the completion of the constructor.
Throws
IllegalArgumentException when size is null, or size.getEstimate() is less than zero.
OutOfMemoryError when there is insufficient memory for the VTMemory object

or for the backing memory.

500Section A.2.3.36.1
501Section A.2.3.36.1
502Section 11.3.2.5

1106 RTSJ 2.0 (Draft 48)

VTPhysicalMemory javax.realtime A.2

A.2.3.36.2 Methods

toString

Signature
public java.lang.String
toString()

Description
Create a string representing this object. The string is of the form
(VTMemory) Scoped memory # num
where num uniquely identifies the VTMemory area.

Returns
A string representing the value of this.

A.2.3.37 VTPhysicalMemory

Inheritance
java.lang.Object
MemoryArea
ScopedMemory
VTPhysicalMemory

Description
An instance of VTPhysicalMemory allows objects to be allocated from a range
of physical memory with particular attributes, determined by their memory type.
This memory area has the same semantics as ScopedMemory503 memory areas,
and the same performance restrictions as VTMemory.

No provision is made for sharing object in VTPhysicalMemory with entities
outside the JVM that creates them, and, while the memory backing an instance
of VTPhysicalMemory could be shared by multiple JVMs, the class does not
support such sharing.

Methods from VTPhysicalMemory should be overridden only by methods
that use super.

503Section A.2.3.32

RTSJ 2.0 (Draft 48) 1107

A Deprecated APIs VTPhysicalMemory

See Section MemoryArea

See Section ScopedMemory

See Section VTMemory

See Section LTMemory

See Section LTPhysicalMemory

See Section ImmortalPhysicalMemory

See Section RealtimeThread

See Section NoHeapRealtimeThread

Deprecated since RTSJ 2.0

A.2.3.37.1 Constructors

VTPhysicalMemory(Object, long, long, Runnable)

Signature
public
VTPhysicalMemory(Object type,

long base,
long size,
Runnable logic)

Description

Create an instance of VTPhysicalMemory with the given parameters.

See Section PhysicalMemoryManager

Parameters

1108 RTSJ 2.0 (Draft 48)

VTPhysicalMemory javax.realtime A.2

type An instance of Object representing the type of memory required (e.g., dma,
shared) - used to define the base address and control the mapping. When
the required memory has more than one attribute, type may be an array of
objects. When type is null or a reference to an array with no entries, any type
of memory is acceptable. Note that type values are compared by reference
(==), not by value (equals).

base The physical memory address of the area.
size The size of the area in bytes.
logic The run()method of this object will be called wheneverMemoryArea.enter()504

is called. When logic is null, logic must be supplied when the memory area is
entered.

Throws
SizeOutOfBoundsException when the implementation detects that size extends

beyond physically addressable memory.
SecurityException when the application does not have permissions to access physical

memory or the given range of memory.
OffsetOutOfBoundsException when the base address is invalid.
UnsupportedPhysicalMemoryException when the underlying hardware does not

support the given type, or when no matching PhysicalMemoryTypeFilter505

has been registered with the PhysicalMemoryManager506.
MemoryTypeConflictException when the specified base does not point to memory

that matches the requested type, or when type specifies incompatible memory
attributes.

MemoryInUseException when the specified memory is already in use.
IllegalAssignmentError when storing logic in this would violate the assignment

rules.

VTPhysicalMemory(Object, long, SizeEstimator, Runnable)

Signature
public
VTPhysicalMemory(Object type,

long base,

504Section 11.3.2.3.2
505Section A.2.1.1
506Section A.2.3.20

RTSJ 2.0 (Draft 48) 1109

A Deprecated APIs VTPhysicalMemory

SizeEstimator size,
Runnable logic)

Description
Equivalent to VTPhysicalMemory(Object, long, long, Runnable)507 with the
argument list (type, base, size.getEstimate(), logic).

See Section PhysicalMemoryManager

Parameters
type An instance of Object representing the type of memory required (e.g., dma,

shared) - used to define the base address and control the mapping. When
the required memory has more than one attribute, type may be an array of
objects. When type is null or a reference to an array with no entries, any type
of memory is acceptable. Note that type values are compared by reference
(==), not by value (equals).

base The physical memory address of the area.
size A size estimator for this memory area.
logic The run()method of this object will be called wheneverMemoryArea.enter()508

is called. When logic is null, logic must be supplied when the memory area is
entered.

Throws
SecurityException when the application doesn’t have permissions to access physical

memory or the given range of memory.
SizeOutOfBoundsException when the implementation detects that the size estimate

from size extends beyond physically addressable memory.
OffsetOutOfBoundsException when the base address is invalid.
UnsupportedPhysicalMemoryException when the underlying hardware does not

support the given type, or when no matching PhysicalMemoryTypeFilter509

has been registered with the PhysicalMemoryManager510.
MemoryTypeConflictException when the specified base does not point to memory

that matches the requested type, or when type specifies incompatible memory
attributes.

MemoryInUseException when the specified memory is already in use.
IllegalArgumentException when size is null.
507Section A.2.3.37.1
508Section 11.3.2.3.2
509Section A.2.1.1
510Section A.2.3.20

1110 RTSJ 2.0 (Draft 48)

VTPhysicalMemory javax.realtime A.2

IllegalAssignmentError when storing logic in this would violate the assignment
rules.

VTPhysicalMemory(Object, long, long)

Signature
public
VTPhysicalMemory(Object type,

long base,
long size)

Description
Equivalent to VTPhysicalMemory(Object, long, long, Runnable)511 with the
argument list (type, base, size, null).

See Section PhysicalMemoryManager

Parameters
type An instance of Object representing the type of memory required (e.g., dma,

shared) - used to define the base address and control the mapping. When
the required memory has more than one attribute, type may be an array of
objects. When type is null or a reference to an array with no entries, any type
of memory is acceptable. Note that type values are compared by reference
(==), not by value (equals).

base The physical memory address of the area.
size The size of the area in bytes.

Throws
SecurityException when the application doesn’t have permissions to access physical

memory or the given range of memory.
SizeOutOfBoundsException when the implementation detects that size extends

beyond physically addressable memory.
OffsetOutOfBoundsException when the base address is invalid.
UnsupportedPhysicalMemoryException when the underlying hardware does not

support the given type, or when no matching PhysicalMemoryTypeFilter512

has been registered with the PhysicalMemoryManager513.
511Section A.2.3.37.1
512Section A.2.1.1
513Section A.2.3.20

RTSJ 2.0 (Draft 48) 1111

A Deprecated APIs VTPhysicalMemory

MemoryTypeConflictException when the specified base does not point to memory
that matches the requested type, or when type specifies incompatible memory
attributes.

MemoryInUseException when the specified memory is already in use.

VTPhysicalMemory(Object, long, SizeEstimator)

Signature
public
VTPhysicalMemory(Object type,

long base,
SizeEstimator size)

Description
Equivalent to VTPhysicalMemory(Object, long, long, Runnable)514 with the
argument list (type, base, size.getEstimate(), null).

See Section PhysicalMemoryManager

Parameters
type An instance of Object representing the type of memory required (e.g., dma,

shared) - used to define the base address and control the mapping. When
the required memory has more than one attribute, type may be an array of
objects. When type is null or a reference to an array with no entries, any type
of memory is acceptable. Note that type values are compared by reference
(==), not by value (equals).

base The physical memory address of the area.
size A size estimator for this memory area.

Throws
SecurityException when the application doesn’t have permissions to access physical

memory or the given range of memory.
SizeOutOfBoundsException when the implementation detects that the size estimate

from size extends beyond physically addressable memory.
OffsetOutOfBoundsException when the base address is invalid.
UnsupportedPhysicalMemoryException when the underlying hardware does not

support the given type, or when no matching PhysicalMemoryTypeFilter515

514Section A.2.3.37.1
515Section A.2.1.1

1112 RTSJ 2.0 (Draft 48)

VTPhysicalMemory javax.realtime A.2

has been registered with the PhysicalMemoryManager516.
MemoryTypeConflictException when the specified base does not point to memory

that matches the requested type, or when type specifies incompatible memory
attributes.

MemoryInUseException when the specified memory is already in use.
IllegalArgumentException when size is null.

VTPhysicalMemory(Object, long, Runnable)

Signature
public
VTPhysicalMemory(Object type,

long size,
Runnable logic)

Description
Equivalent to VTPhysicalMemory(Object, long, long, Runnable)517 with the
argument list (type, 0, size, logic).

See Section PhysicalMemoryManager

Parameters
type An instance of Object representing the type of memory required (e.g., dma,

shared) - used to define the base address and control the mapping. When
the required memory has more than one attribute, type may be an array of
objects. When type is null or a reference to an array with no entries, any type
of memory is acceptable. Note that type values are compared by reference
(==), not by value (equals).

size The size of the area in bytes.
logic The run()method of this object will be called wheneverMemoryArea.enter()518

is called. When logic is null, logic must be supplied when the memory area is
entered.

Throws
SecurityException when the application does not have permissions to access physical

memory or the given range of memory.
516Section A.2.3.20
517Section A.2.3.37.1
518Section 11.3.2.3.2

RTSJ 2.0 (Draft 48) 1113

A Deprecated APIs VTPhysicalMemory

SizeOutOfBoundsException when the implementation detects that size extends
beyond physically addressable memory.

UnsupportedPhysicalMemoryException when the underlying hardware does not
support the given type, or when no matching PhysicalMemoryTypeFilter519

has been registered with the PhysicalMemoryManager520.
MemoryTypeConflictException when the specified base does not point to memory

that matches the requested type, or when type specifies incompatible memory
attributes.

IllegalAssignmentError when storing logic in this would violate the assignment
rules.

VTPhysicalMemory(Object, SizeEstimator, Runnable)

Signature
public
VTPhysicalMemory(Object type,

SizeEstimator size,
Runnable logic)

Description
Equivalent to VTPhysicalMemory(Object, long, long, Runnable)521 with the
argument list (type, 0, size.getEstimate(), logic).

See Section PhysicalMemoryManager

Parameters
type An instance of Object representing the type of memory required (e.g., dma,

shared) - used to define the base address and control the mapping. When
the required memory has more than one attribute, type may be an array of
objects. When type is null or a reference to an array with no entries, any type
of memory is acceptable. Note that type values are compared by reference
(==), not by value (equals).

size A size estimator for this area.
logic The run()method of this object will be called wheneverMemoryArea.enter()522

519Section A.2.1.1
520Section A.2.3.20
521Section A.2.3.37.1
522Section 11.3.2.3.2

1114 RTSJ 2.0 (Draft 48)

VTPhysicalMemory javax.realtime A.2

is called. When logic is null, logic must be supplied when the memory area is
entered.

Throws
SecurityException when the application doesn’t have permissions to access physical

memory or the given range of memory.
SizeOutOfBoundsException when the implementation detects that the size estimate

from size extends beyond physically addressable memory.
UnsupportedPhysicalMemoryException when the underlying hardware does not

support the given type, or when no matching PhysicalMemoryTypeFilter523

has been registered with the PhysicalMemoryManager524.
MemoryTypeConflictException when the specified base does not point to memory

that matches the requested type, or when type specifies incompatible memory
attributes.

IllegalArgumentException when size is null.
IllegalAssignmentError when storing logic in this would violate the assignment

rules.

VTPhysicalMemory(Object, long)

Signature
public
VTPhysicalMemory(Object type,

long size)

Description
Equivalent to VTPhysicalMemory(Object, long, long, Runnable)525 with the
argument list (type, 0, size, null).

See Section PhysicalMemoryManager

Parameters
type An instance of Object representing the type of memory required (e.g., dma,

shared) - used to define the base address and control the mapping. When
the required memory has more than one attribute, type may be an array of
objects. When type is null or a reference to an array with no entries, any type

523Section A.2.1.1
524Section A.2.3.20
525Section A.2.3.37.1

RTSJ 2.0 (Draft 48) 1115

A Deprecated APIs VTPhysicalMemory

of memory is acceptable. Note that type values are compared by reference
(==), not by value (equals).

size The size of the area in bytes.
Throws
SecurityException when the application doesn’t have permissions to access physical

memory or the given range of memory.
SizeOutOfBoundsException when the implementation detects that size extends

beyond physically addressable memory.
UnsupportedPhysicalMemoryException when the underlying hardware does not

support the given type, or when no matching PhysicalMemoryTypeFilter526

has been registered with the PhysicalMemoryManager527.
MemoryTypeConflictException when the specified base does not point to memory

that matches the requested type, or when type specifies incompatible memory
attributes.

IllegalArgumentException when size is less than zero.

VTPhysicalMemory(Object, SizeEstimator)

Signature
public
VTPhysicalMemory(Object type,

SizeEstimator size)

Description
Equivalent to VTPhysicalMemory(Object, long, long, Runnable)528 with the
argument list (type, 0, size.getEstimate(), null).

See Section PhysicalMemoryManager

Parameters
type An instance of Object representing the type of memory required (e.g., dma,

shared) - used to define the base address and control the mapping. When
the required memory has more than one attribute, type may be an array of
objects. When type is null or a reference to an array with no entries, any type
of memory is acceptable. Note that type values are compared by reference
(==), not by value (equals).

526Section A.2.1.1
527Section A.2.3.20
528Section A.2.3.37.1

1116 RTSJ 2.0 (Draft 48)

WaitFreeDequeue javax.realtime A.2

size A size estimator for this area.
Throws
SecurityException when the application doesn’t have permissions to access physical

memory or the given range of memory.
SizeOutOfBoundsException when the implementation detects that the size estimate

from size extends beyond physically addressable memory.
UnsupportedPhysicalMemoryException when the underlying hardware does not

support the given type, or when no matching PhysicalMemoryTypeFilter529

has been registered with the PhysicalMemoryManager530.
MemoryTypeConflictException when the specified base does not point to memory

that matches the requested type, or when type specifies incompatible memory
attributes.

IllegalArgumentException when size is null.

A.2.3.37.2 Methods

toString

Signature
public java.lang.String
toString()

Description
Creates a string representing this object. The string is of the form
(VTPhysicalMemory) Scoped memory # num
where num is a number that uniquely identifies this VTPhysicalMemory mem-

ory area.

Returns
A string representing the value of this.

A.2.3.38 WaitFreeDequeue

Inheritance
529Section A.2.1.1
530Section A.2.3.20

RTSJ 2.0 (Draft 48) 1117

A Deprecated APIs WaitFreeDequeue

java.lang.Object
WaitFreeDequeue

Description

A WaitFreeDequeue encapsulates a WaitFreeWriteQueue and a WaitFreeRead-
Queue. Each method on a WaitFreeDequeue corresponds to an equivalent opera-
tion on the underlying WaitFreeWriteQueue or WaitFreeReadQueue.

Incompatibility with V1.0: Three exceptions previously thrown by the con-
structor have been deleted from the throws clause. These are
• java.lang.IllegalAccessException,
• java.lang.ClassNotFoundException, and
• java.lang.InstantiationException.
Including these exceptions on the throws clause was an error. Their deletion

may cause compile-time errors in code using the previous constructor. The
repair is to remove the exceptions from the catch clause around the constructor
invocation.

WaitFreeDequeue is one of the classes allowing NoHeapRealtimeThreads and
regular Java threads to synchronize on an object without the risk of a NoHeap-
RealtimeThread incurring Garbage Collector latency due to priority inversion
avoidance management.

Deprecated as of RTSJ 1.0.1

A.2.3.38.1 Constructors

WaitFreeDequeue(Runnable, Runnable, int, MemoryArea)

Signature
public
WaitFreeDequeue(Runnable writer,

Runnable reader,
int maximum,
MemoryArea memory)

Description

1118 RTSJ 2.0 (Draft 48)

WaitFreeDequeue javax.realtime A.2

Constructs a queue, in memory, with an underlying WaitFreeWriteQueue531 and
WaitFreeReadQueue532, each of size maximum.

The writer and reader parameters, when non-null, are checked to insure that
they are compatible with the MemoryArea specified by memory (when non-null.)
When memory is null and both Runnables are non-null, the constructor will select
the nearest common scoped parent memory area, or when there is no such scope
it will use immortal memory. When all three parameters are null, the queue will
be allocated in immortal memory.

reader and writer are not necessarily the only threads or schedulables that
will access the queue; moreover, there is no check that they actually access the
queue at all.

Note that the wait free queues’ internal queues are allocated in memory, but
the memory area of the wait free dequeue instance itself is determined by the
current allocation context.

Parameters
writer An instance of Runnable or null.
reader An instance of Runnable or null.
maximum Then maximum number of elements in the both the WaitFreeRead-

Queue533 and the WaitFreeWriteQueue534.
memory The MemoryArea535 in which internal elements are allocated.

Throws
MemoryScopeException when either reader or writer is non-null and the mem-

ory argument is not compatible with reader and writer with respect to the
assignment and access rules for memory areas.

IllegalArgumentException When an argument holds an invalid value. The writer
argument must be null, a reference to a Thread, or a reference to a schedulable
(a RealtimeThread, or an AsyncEventHandler.) The reader argument must
be null, a reference to a Thread, or a reference to a schedulable object. The
maximum argument must be greater than zero.

InaccessibleAreaException when memory is a scoped memory that is not on the
caller’s scope stack.

A.2.3.38.2 Methods

531Section 7.3.1.5
532Section 7.3.1.4
533Section 7.3.1.4
534Section 7.3.1.5
535Section 11.3.2.3

RTSJ 2.0 (Draft 48) 1119

A Deprecated APIs WaitFreeDequeue

nonBlockingRead

Signature
public java.lang.Object
nonBlockingRead()

Description
An unsynchronized call of the read() method of the underlying WaitFreeRead-
Queue536.

Returns
A java.lang.Object object read from this. When there are no elements in this then

null is returned.

blockingWrite(Object)

Signature
public void
blockingWrite(Object object)
throws InterruptedException

Description
A synchronized call of the write() method of the underlying WaitFreeRead-
Queue537. This call blocks on queue full and waits until there is space in this.

Parameters
object The java.lang.Object to place in this.

Throws
MemoryScopeException when a memory access error or illegal assignment error

would occur while storing object in the queue.
InterruptedException when the thread is interrupted by interrupt() orAsynchronouslyInterruptedException.

fire()538 during the time between calling this method and returning from it.
Available since RTSJ 1.0.1 Return type changed from boolean to void because this
method always returned true, and added InterruptedException.

536Section 7.3.1.4
537Section 7.3.1.4
538Section 15.2.2.2.2

1120 RTSJ 2.0 (Draft 48)

WaitFreeDequeue javax.realtime A.2

nonBlockingWrite(Object)

Signature
public boolean
nonBlockingWrite(Object object)

Description
An unsynchronized call of the write() method of the underlying WaitFreeWrite-
Queue539. This call does not block on queue full.

Parameters
object The Object to attempt to place in this.

Throws
MemoryScopeException when a memory access error or illegal assignment error

would occur while storing object in the queue.
Returns
true when object was inserted (i.e., the queue was not full), false otherwise.

blockingRead

Signature
public java.lang.Object
blockingRead()
throws InterruptedException

Description
A synchronized call of the read() method of the underlying WaitFreeWrite-
Queue540. This call blocks on queue empty and will wait until there is an element
in the queue to return.

Throws
InterruptedException when the thread is interrupted by interrupt() orAsynchronouslyInterruptedException.

fire()541 during the time between calling this method and returning from it.
Returns
The java.lang.Object read.
Available since RTSJ 1.0.1 Added throws InterruptedException.

539Section 7.3.1.5
540Section 7.3.1.5
541Section 15.2.2.2.2

RTSJ 2.0 (Draft 48) 1121

A Deprecated APIs

force(Object)

Signature
public boolean
force(Object object)

Description
When this’s underlying WaitFreeWriteQueue542 is full, then overwrite with ob-
ject the most recently inserted element. Otherwise this call is equivalent to
nonBlockingWrite().

Parameters
object The object to be written.

Throws
MemoryScopeException when a memory access error or illegal assignment error

would occur while storing object in the queue.
Returns
true when an element was overwritten; false when there as an empty element into

which the write occurred.

A.3 Rationale
These are interface and classes that have been shown to be less the ideal. They have
been replaced by elements that better fulfill the requirements. Compatibility can
be provided by implemenations that use existing facilities so there is not reason to
continue requiring their inclusion new implementations.

542Section 7.3.1.5

1122 RTSJ 2.0 (Draft 48)

Appendix B

Bibliography

[1] Portable Operating System Interface (POSIX R©) Part 1: System Application
Program Interface, International Standard ISO/IEC 9945-1, 1996 (E) IEEE Std
1003.1, 1996 edition ed. The Institute of Electrical and Electronics Engineers,
Inc., 1996.

[2] Barr, M. Memory types. Embedded Systems Programming (2001), 103–104.

[3] Burns, A., and Wellings, A. J. Real-Time Systems and Programming
Languages:, 4th ed. Addison Wesley, 2010.

[4] Dos Santos, O. M., and Wellings, A. Cost enforcement in the real-time
specification for java. Real-Time Syst. 37, 2 (Nov. 2007), 139–179.

[5] Gosling, J., Joy, B., Steele, G., Bracha, G., and Buckley, A. The
Java Language Specification Java SE 8 Edition. Oracle, 2014.

[6] Lindholm, T., Yellin, F., Bracha, G., and Buckley, A. The Java
Virtual Machine Specification Java SE 8 Edition. Oracle, 2014.

[7] Regehr, J. Safe and structured use of interrupts in real-time and embedded
software. In Handbook of Real-Time and Embedded Systems, I. Lee, J. Y.-T. Leug,
and S. H. Son, Eds. Chapman and Hall/CRC, 2007, pp. 16–1–16–12.

1123

B Bibliography

1124 RTSJ 2.0 (Draft 48)

	Contents
	List of Figures
	List of Tables
	Introduction
	Guiding Principles
	Applicability to Particular Java Environments
	Backward Compatibility
	Write Once, Run Anywhere
	Current Practice vs. Advanced Features
	Predictable Execution
	No Syntactic Extension
	Allow Variation in Implementation Decisions
	Interoperability

	Areas of Enhancement
	Thread Scheduling and Dispatching
	Memory Management
	Synchronization and Resource Sharing
	Asynchronous Event Handling
	Task Interruption
	Raw Memory Access
	Physical Memory Access
	Modularization

	Overview
	Threads and Scheduling
	Synchronization
	Priority Inversion
	Priority Inversion Avoidance
	Execution Eligibility
	Wait-Free Queues

	Asynchrony
	Asynchronous Events
	Asynchronous Transfer of Control
	Principles
	Methodological Principles
	Expressibility Principles
	Semantic Principles
	Pragmatic Principles

	Asynchronous Realtime Thread Termination

	Clocks, Time, and Timers
	Memory Management
	Memory Areas
	Heap Memory
	Immortal Memory
	Scoped Memory
	Physical Memory Areas
	Budgeted Allocation

	Device Access and Raw Memory
	Raw Memory Access

	System Options
	Exceptions
	Summary

	General Requirements
	Definitions
	Semantics
	Base Requirements
	Modules
	Base Module
	Device Module
	Alternative Memory Areas Module

	POSIX module
	Optional Features
	Deprecated Classes
	Implementation types Allowed
	Realtime Deployment Implementation
	Simulation Implementation

	Required Documentation
	Rationale

	Realtime vs Conventional Java
	Definitions
	Semantics
	Scheduling
	Priority
	Thread Groups
	Current Thread

	InterruptedException
	Java Memory Model
	Memory Management
	Memory Areas
	Garbage Collection
	Realtime Garbage Collections

	Rationale

	Realtime Threads
	Definitions
	Semantics
	javax.realtime
	Enumerations
	PhasingPolicy

	Classes
	ConfigurationParameters
	RealtimeThread

	Rationale

	Scheduling
	Definitions
	Semantics
	Schedulers
	Parameter Values
	Release Control
	Dispatching
	Cost Monitoring and Cost Enforcement

	Priority Schedulers
	Priorities

	Associating Schedulables with Schedulers
	Managing Groups of Schedulables
	Scheduling Groups
	Processing Groups

	javax.realtime
	Interfaces
	BoundSchedulable
	RealtimeExecutionContext
	Schedulable

	Enumerations
	MinimumInterarrivalPolicy
	QueueOverflowPolicy

	Classes
	Affinity
	AperiodicParameters
	BackgroundParameters
	FirstInFirstOutScheduler
	ImportanceParameters
	PeriodicParameters
	PriorityParameters
	PriorityScheduler
	ProcessingGroup
	ReleaseParameters
	RoundRobinScheduler
	Scheduler
	SchedulingGroup
	SchedulingParameters
	SporadicParameters

	Rationale
	SchedulingGroup and ProcessingGroup
	Multiprocessor Support
	Impact of Clock Granularity
	Deadline Miss Detection

	Synchronization
	Definitions
	Semantics
	Monitor Control
	Priority Schedulers
	Additional Schedulers

	javax.realtime
	Classes
	MonitorControl
	PriorityCeilingEmulation
	PriorityInheritance
	WaitFreeReadQueue
	WaitFreeWriteQueue

	Rationale

	Asynchrony
	Definitions
	Semantics
	Asynchronous Events and their Handlers
	Active Events and Dispatching
	Termination
	Asynchronous Transfer of Control
	Extending Conventional Java Interrupts
	Nesting AsynchronouslyInterruptedExceptions

	javax.realtime
	Interfaces
	ActiveEvent
	BoundAsyncBaseEventHandler
	Interruptible
	Releasable

	Exceptions
	Timed

	Classes
	ActiveEventDispatcher
	AsyncBaseEvent
	AsyncBaseEventHandler
	AsyncEvent
	AsyncEventHandler
	AsyncLongEvent
	AsyncLongEventHandler
	AsyncObjectEvent
	AsyncObjectEventHandler
	BoundAsyncEventHandler
	BoundAsyncLongEventHandler
	BoundAsyncObjectEventHandler

	Rationale

	Time
	Definitions
	Semantics
	javax.realtime
	Classes
	AbsoluteTime
	HighResolutionTime
	RelativeTime

	Rationale

	Clocks and Timers
	Definitions
	Semantics
	Clock Model
	Clocks and Timables
	Timers
	Counter Model
	Comparator Model
	Triggering
	Behavior of Timers
	Phasing

	javax.realtime
	Interfaces
	AsyncTimable
	Chronograph
	Timable

	Classes
	Clock
	OneShotTimer
	PeriodicTimer
	TimeDispatcher
	TimeDispatcher.Runner
	Timer

	Rationale

	Alternative Memory Areas
	Definitions
	Semantics
	Allocation Execution Time
	Allocation Context
	The Parent Scope
	Memory Areas and Schedulables
	Scoped Memory Reference Counting
	Immortal Memory
	Maintaining Referential Integrity
	Object Initialization
	Maintaining the Scope Stack
	The enter Method
	The executeInArea or newInstance Methods
	Constructor Methods for Schedulables
	The Single Parent Rule
	Scope Tree Maintenance
	Pushing a MemoryArea onto the Scope Stack
	Popping a MemoryArea off the Scope Stack
	Reservation Management

	Physical Memory
	Stacked Memory

	javax.realtime
	Interfaces
	MemoryAreaVisitor

	Classes
	HeapMemory
	ImmortalMemory
	MemoryArea
	MemoryParameters
	SizeEstimator

	javax.realtime.memory
	Interfaces
	PhysicalMemoryCharacteristic

	Enumerations
	PhysicalMemorySelector.CachingBehavior
	PhysicalMemorySelector.PagingBehavior

	Classes
	LTMemory
	PhysicalMemoryFactory
	PhysicalMemoryRegion
	PhysicalMemorySelector
	PinnableMemory
	ScopedMemory
	StackedMemory

	The Rationale
	The Scoped Memory Model
	The Physical Memory Model
	The Original Physical Memory Framework
	The RTSJ 2.0 Physical Memory Framework
	An example

	Devices and Triggering
	Definitions
	Semantics
	Raw Memory
	Raw Memory Region
	Raw Memory Factory
	Stride

	Direct Memory Access Support
	External Triggering
	Happenings

	Interrupt Service Routines

	javax.realtime.device
	Interfaces
	DirectMemoryByteBuffer
	RawByte
	RawByteReader
	RawByteWriter
	RawDouble
	RawDoubleReader
	RawDoubleWriter
	RawFloat
	RawFloatReader
	RawFloatWriter
	RawInt
	RawIntReader
	RawIntWriter
	RawLong
	RawLongReader
	RawLongWriter
	RawMemory
	RawMemoryRegionFactory
	RawShort
	RawShortReader
	RawShortWriter

	Classes
	DMABufferFactory
	DMARegion
	Happening
	HappeningDispatcher
	InterruptServiceRoutine
	RawMemoryFactory
	RawMemoryRegion

	Rationale
	Raw Memory
	Direct memory access

	Interrupt Handling
	An Illustrative Example
	Software architecture
	Device initialization
	Responding to external happenings
	Access to the flash controller's device registers

	Interprocess Signalling
	Definitions
	Semantics
	POSIX Signals
	POSIX Realtime Signals

	javax.realtime.posix
	Classes
	RealtimeSignal
	RealtimeSignalDispatcher
	Signal
	SignalDispatcher

	Rationale

	System and Options
	Semantics
	RealtimeSystem
	RealtimeSecurity
	GarbageCollection
	Compliance Version

	javax.realtime
	Enumerations
	RTSJModule

	Classes
	AffinityPermission
	CoreMemoryPermission
	GarbageCollector
	RealtimeSecurity
	RealtimeSystem
	SchedulingPermission
	TaskPermission

	javax.realtime.device
	Classes
	DirectMemoryPermission
	HappeningPermission
	RawMemoryPermission

	javax.realtime.memory
	Classes
	PhysicalMemoryPermission
	ScopedMemoryPermission

	javax.realtime.posix
	Classes
	POSIXPermission

	Rationale

	Exceptions
	Semantics
	javax.realtime
	Interfaces
	StaticThrowable

	Exceptions
	ArrivalTimeQueueOverflowException
	AsynchronouslyInterruptedException
	CeilingViolationException
	ConstructorCheckedException
	DeregistrationException
	EventQueueOverflowException
	IllegalSchedulableStateException
	InaccessibleAreaException
	LateStartException
	MITViolationException
	MemoryInUseException
	MemoryScopeException
	MemoryTypeConflictException
	OffsetOutOfBoundsException
	POSIXException
	POSIXInvalidSignalException
	POSIXInvalidTargetException
	POSIXSignalPermissionException
	ProcessorAffinityException
	RangeOutOfBoundsException
	RegistrationException
	ScopedCycleException
	SizeOutOfBoundsException
	StaticCheckedException
	StaticRuntimeException
	UninitializedStateException
	UnsupportedPhysicalMemoryException
	UnsupportedRawMemoryRegionException

	Classes
	AlignmentError
	IllegalAssignmentError
	MemoryAccessError
	ResourceLimitError
	StaticError
	StaticOutOfMemoryError
	StaticThrowableStorage
	ThrowBoundaryError

	Rationale

	Open Issues
	Deprecated APIs
	Semantics
	javax.realtime
	Interfaces
	PhysicalMemoryTypeFilter
	Schedulable

	Exceptions
	ArrivalTimeQueueOverflowException
	AsynchronouslyInterruptedException
	DuplicateFilterException
	MemoryScopeException
	OffsetOutOfBoundsException
	UnknownHappeningException
	UnsupportedPhysicalMemoryException

	Classes
	AbsoluteTime
	AperiodicParameters
	AsyncEvent
	AsyncEventHandler
	BoundAsyncEventHandler
	Clock
	GarbageCollector
	HighResolutionTime
	IllegalAssignmentError
	ImmortalPhysicalMemory
	LTMemory
	LTPhysicalMemory
	MemoryAccessError
	MemoryParameters
	NoHeapRealtimeThread
	OneShotTimer
	POSIXSignalHandler
	PeriodicParameters
	PeriodicTimer
	PhysicalMemoryManager
	PriorityCeilingEmulation
	PriorityScheduler
	ProcessingGroupParameters
	RationalTime
	RawMemoryAccess
	RawMemoryFloatAccess
	RealtimeSystem
	RealtimeThread
	RelativeTime
	ReleaseParameters
	Scheduler
	ScopedMemory
	SporadicParameters
	ThrowBoundaryError
	Timer
	VTMemory
	VTPhysicalMemory
	WaitFreeDequeue

	Rationale

	Bibliography

