Realtime and Embedded

Specification for Java
Version 2.0

Draft 46

Sea of Tranquility Edition
20" of July 2016

Editor
James J. Hunt
aicas GmbH
Haid-und-Neu-Strafie 18
D-76131 Karlsruhe, Germany

Copyright (©) 1999-2012 TimeSys
Copyright (© 2012-2015 aicas GmbH

All rights reserved

The Realtime Specification for Java (RTSJ) is under development within the Java
Community Process (JCP) by the members of the JSR-282 Expert Group (EG).
This group, was lead by TimeSys Inc. Corporation, but has been taken over by aicas
GmbH.

JSR-282 Expert Group Membership

James J. Hunt aicas GmbH
Benjamin Brosgol
Andy Wellings
Kelvin Nilsen
Ethan Blanton

Past Expert Group Members

Peter Dibble TimeSys
David Holmes Oracle

ii

Table of Contents

Contents i
List of Figures xiii
List of Tables Xiv
1 Introduction 1
1.1 Guiding Principles o 2
1.1.1 Applicability to Particular Java Environments 2
1.1.2 Backward Compatibility 3
1.1.3 Write Once, Run Anywhere 3
1.1.4 Current Practice vs. Advanced Features 3
1.1.5 Predictable Execution 3
1.1.6 No Syntactic Extension 3
1.1.7 Allow Variation in Implementation Decisions 3
1.1.8 Interoperability oL 4

1.2 Areas of Enhancement oo 4
1.2.1 Thread Scheduling and Dispatching 4
1.2.2 Memory Management L.)
1.2.3 Synchronization and Resource Sharing)
1.2.4 Asynchronous Event Handling 5
1.2.5 Task Interruption Lo)
1.2.6 Raw Memory Access 6
1.2.7 Physical Memory Access 6
1.2.8 Modularization oo 6

2 Overview 7
2.1 Threads and Scheduling o oL 7
2.2 Synchronization 9
2.2.1 Priority Inversion L oo 9
2.2.2 Priority Inversion Avoidance 10
2.2.3 Execution Eligibility L. 11

TABLE OF CONTENTS

2.24 Wait-Free Queues 11
2.3 Asynchrony 11
2.3.1 Asynchronous Events 12
2.3.2 Asynchronous Transfer of Control 13
2.3.3 Principles 13
2.3.3.1 Methodological Principles 13
2.3.3.2 Expressibility Principles oL 14
2.3.3.3 Semantic Principles oo 0L 14
2.3.34 Pragmatic Principles L. 15
2.3.4 Asynchronous Realtime Thread Termination 15
2.4 Clocks, Time, and Timers 16
2.5 Memory Managemento L. 16
251 Memory Areas 16
2.5.2 Heap Memory 17
2.5.3 Immortal Memory Lo 17
254 Scoped Memory 17
2.5.5 Physical Memory Areas oL 18
2.5.6 Budgeted Allocation, 19
2.6 Device Access and Raw Memory, 19
2.6.1 Raw Memory Access 19
2.7 System Options L 20
2.8 Exceptions e 20
2.9 SUMMATY e e 20
3 General Requirements 23
3.1 Definitions 23
3.2 Semantics 24
3.2.1 Base Requirements o L. 24
3.22 Modules 25
3.2.2.1 Base Module 25
3.2.2.2 Device Module 28
3.2.2.3 Alternative Memory Areas Module 29
3.23 POSIXmodule 29
3.2.4 Optional Features 30
3.2.5 Deprecated Classes 31
3.2.6 Implementation types Allowed 31
3.2.6.1 Realtime Deployment Implementation 32
3.2.6.2 Simulation Implementation 33

3.3 Required Documentation 34
3.4 Rationale 36

ii RTSJ 2.0 (Draft 46)

TABLE OF CONTENTS

4 Realtime vs Conventional Java

4.1 Definitions
4.2 Semantics

4.2.1
4.2.1.1
4.2.1.2
4.2.1.3

4.2.2

4.2.3

4.24
4241
4.2.4.2
4.2.4.3

4.3 Rationale

Interrupted Exception

Java Memory Model

Memory Management

Memory Areas
Garbage Collection

Realtime Garbage Collections

5 Realtime Threads

5.1 Definitions
5.2 Semantics
5.3 javax.realtime

5.3.1
5.3.1.1

5.3.2
5.3.2.1
5.3.2.2

5.4 Rationale

6 Schedul

6.1 Definitions
6.2 Semantics
Schedulers
Parameter Values
Release Control
Dispatching
Cost Monitoring and Cost Enforcement

6.2.1
6.2.1.1
6.2.1.2
6.2.1.3
6.2.1.4

6.2.2
6.2.2.1

Enumerations

PhasingPolicy
Classes,

ConfigurationParameters
RealtimeThread

ing

Priority Schedulers

Priorities
6.2.3 Associating Schedulables with Schedulers

6.2.4 Managing Groups of Schedulables

6.2.4.1
6.2.4.2

Scheduling Groups
Processing Groups
6.3 javax.realtime

RTSJ 2.0 (Draft 46)

Scheduling
Priority
Thread Groups
Current Thread

1

TABLE OF CONTENTS

6.3.1 Interfaces 120
6.3.1.1 BoundSchedulable o000 120
6.3.1.2 RealtimeExecutionContext 120
6.3.1.3 Schedulable 120

6.3.2 Enumerations 132
6.3.2.1 MinimumlInterarrivalPolicy 132
6.3.2.2 QueueOverflowPolicy 135

6.3.3 Classes 139
6.3.3.1 Affinityo 139
6.3.3.2 AperiodicParameters oL 149
6.3.3.3 BackgroundParameters 0L 155
6.3.3.4 FirstInFirstOutScheduler 157
6.3.3.5 ImportanceParameters., 161
6.3.3.6 PeriodicParameters 163
6.3.3.7 PriorityParameters o oL 171
6.3.3.8 PriorityScheduler L. 174
6.3.3.9 ProcessingGroup 177
6.3.3.10 ReleaseParameters 191
6.3.3.11 RoundRobinScheduler 202
6.3.3.12 Scheduler 206
6.3.3.13 SchedulingGroup oL 209
6.3.3.14 SchedulingParameters, 214
6.3.3.15 SporadicParameters 216

6.4 Rationaleo 222

6.4.1 SchedulingGroup and ProcessingGroup 223

6.4.2 Multiprocessor Support 224

6.4.3 Impact of Clock Granularity 225

6.4.4 Deadline Miss Detection 226

7 Synchronization 227
7.1 Definitions 227
7.2 Semantics e e e 228

7.2.1 Monitor Control 228

7.2.2 Priority Schedulers 0o 229

7.2.3 Additional Schedulers oL 231

7.3 javax.realtimeo 233

7.3. 1 Classes v v v v e e 233
7.3.1.1 MonitorControl oo 233
7.3.1.2 PriorityCeilingEmulation 236
7.3.1.3 Prioritylnheritance 239
7.3.1.4 WaitFreeReadQueue<T> 240

v

RTSJ 2.0 (Draft 46)

TABLE OF CONTENTS

7.3.1.5 WaitFreeWriteQueue<T> 247
7.4 Rationale 253
8 Asynchrony 255
8.1 Definitions 257
8.2 Semantics 259
8.2.1 Asynchronous Events and their Handlers 259
8.2.2 Active Events and Dispatching 261
8.2.3 Termination Lo 262
8.2.4 Asynchronous Transfer of Control 262
8.24.1 Extending Conventional Java Interrupts 265
8.2.4.2 Nesting AsynchronouslylnterruptedExceptions 266
8.3 javax.realtime Lo 268
8.3.1 Imterfaces 268
8.3.1.1 ActiveEvent<T extends javax.realtime.Releasable<T, D>, D
extends javax.realtime.ActiveEventDispatcher<D, T» 268
8.3.1.2 BoundAsyncBaseEventHandler 271
8.3.1.3 Interruptible oo 271
8.3.1.4 Releasable<T extends javax.realtime.Releasable<T, D>, D
extends javax.realtime.ActiveEventDispatcher<D, T» 272
8.3.2 Exceptions 273
8.3.2.1 Timed 273
8.3.3 Classes e 276
8.3.3.1 ActiveEventDispatcher<D extends javax.realtime. ActiveEventDispatcher<D,
T>, T extends javax.realtime.Releasable<T, D» 276
8.3.3.2 AsyncBaseEvento oo 279
8.3.3.3 AsyncBaseEventHandler. 284
8.3.3.4 AsyncEvent oo 300
8.3.3.5 AsyncEventHandler L. 302
8.3.3.6 AsyncLongEvent oL 308
8.3.3.7 AsyncLongEventHandler 310
8.3.3.8 AsyncObjectEvent<P> 316
8.3.3.9 AsyncObjectEventHandler<P> 318
8.3.3.10 BoundAsyncEventHandler 324
8.3.3.11 BoundAsyncLongEventHandler 328
8.3.3.12 BoundAsyncObjectEventHandler<P> 331
8.4 Rationale 334
9 Time 337
9.1 Definitions 337
9.2 Semantics e e 338

RTSJ 2.0 (Draft 46) v

TABLE OF CONTENTS

9.3 javax.realtime Lo oo 341
9.3.1 Classes o e 341
9.3.1.1 AbsoluteTime 341
9.3.1.2 HighResolutionTime<T extends javax.realtime.HighResolutionTime<T» 355
9.3.1.3 RelativeTime o 364
9.4 Rationale 376
10 Clocks and Timers 377
10.1 Definitions e 378
10.2 Semantics e e e 379
10.2.1 Clock Model 379
10.2.2 Clocks and Timables 380
10.2.3 Timers e 383
10.2.3.1 Counter Model 383
10.2.3.2 Comparator Model 384
10.2.3.3 Triggering e 384
10.2.3.4 Behavior of Timers 384
10.2.3.5 Phasing 385
10.3 javax.realtime Lo 386
10.3.1 Interfaces 386
10.3.1.1 AsyncTimable, 386
10.3.1.2 Chronograph Lo 387
10.3.1.3 Timable 390
10.3.2 Classes e e 391
10.3.2.1 Clock 391
10.3.2.2 OmneShotTimer 397
10.3.2.3 PeriodicTimer 400
10.3.2.4 TimeDispatcher 409
10.3.2.5 TimeDispatcher.Runner 412
10.3.2.6 Timer 413
10.4 Rationale e 426
11 Alternative Memory Areas 429
11.1 Definitions e 431
11.2 Semantics e 432
11.2.1 Allocation Execution Time 432
11.2.2 Allocation Context 433
11.2.3 The Parent Scope 434
11.2.4 Memory Areas and Schedulables 434
11.2.5 Scoped Memory Reference Counting 435
11.2.6 Immortal Memory oo 436

vi RTSJ 2.0 (Draft 46)

TABLE OF CONTENTS

11.2.7 Maintaining Referential Integrity 437
11.2.8 Object Initialization 437
11.2.9 Maintaining the Scope Stack, 438
11.2.10 The enter Methodo L. 439
11.2.11 The executelnArea or newlnstance Methods 439
11.2.12 Constructor Methods for Schedulables. 439
11.2.13 The Single Parent Rule 440
11.2.14 Scope Tree Maintenance 440
11.2.14.1 Pushing a MemoryArea onto the Scope Stack 441
11.2.14.2 Popping a MemoryArea off the Scope Stack 442
11.2.14.3 Reservation Management 442
11.2.15 Physical Memory 442
11.2.16 Stacked Memoryo 444
11.3 javax.realtimeo 447
11.3.1 Interfaces 447
11.3.1.1 MemoryAreaVisitor<R> 447
11.3.2 Classes o oo i 448
11.3.2.1 HeapMemory o 448
11.3.2.2 ImmortalMemory 453
11.3.2.3 MemoryArea 455
11.3.2.4 MemoryParameters 470
11.3.2.5 SizeEstimator 476
11.4 javax.realtime.memory 482
11.4.1 Interfaces 482
11.4.1.1 PhysicalMemoryCharacteristic 482
11.4.2 Enumerations 482
11.4.2.1 PhysicalMemorySelector.CachingBehavior 482
11.4.2.2 PhysicalMemorySelector.PagingBehavior 484
11.4.3 Classes o o i e 485
11.4.3.1 LTMemory o o0 i e 485
11.4.3.2 MemoryPermission 489
11.4.3.3 PhysicalMemoryFactory 491
11.4.3.4 PhysicalMemoryRegion 498
11.4.3.5 PhysicalMemorySelector L. 500
11.4.3.6 PinnableMemoryo 503
11.4.3.7 ScopedMemory 510
11.4.3.8 StackedMemory L oL 537
11.5 The Rationale 552
11.5.1 The Scoped Memory Model 552
11.5.2 The Physical Memory Model 554

RTSJ 2.0 (Draft 46) vii

TABLE OF CONTENTS

11.5.2.1 The Original Physical Memory Framework 556
11.5.2.2 The RTSJ 2.0 Physical Memory Framework 557
11.5.2.3 Anexample. 559

12 Devices and Triggering 561
12.1 Definitions 562
12.2 Semanticso 563
12.2.1 Raw Memory 563
12.2.1.1 Raw Memory Region, 566
12.2.1.2 Raw Memory Factory 566
12.2.1.3 Strideo 566
12.2.2 Direct Memory Access Support 567
12.2.3 External Triggering L. 567
12.2.3.1 Happenings 568
12.2.4 Interrupt Service Routines 569
12.3 javax.realtime.deviceo D74
12.3.1 Imterfaces 074
12.3.1.1 DirectMemoryByteBuffer 574
12.3.1.2 RawByte 586
12.3.1.3 RawByteReader L. 587
12.3.1.4 RawByteWritero oL 590
12.3.1.5 RawDoubleo 593
12.3.1.6 RawDoubleReader00 593
12.3.1.7 RawDoubleWriter L 596
12.3.1.8 RawFloat 600
12.3.1.9 RawFloatReader L L. 600
12.3.1.10 RawFloatWriter 603
12.3.1.11 Rawlnt 606
12.3.1.12 RawlntReader 607
12.3.1.13 RawIntWriter oo 610
12.3.1.14 RawLong 613
12.3.1.15 RawLongReader 613
12.3.1.16 RawLongWriter 616
12.3.1.17 RawMemory L 620
12.3.1.18 RawMemoryRegionFactory 621
12.3.1.19 RawShort oo 642
12.3.1.20 RawShortReader L. 643
12.3.1.21 RawShortWriter oo 646
12.3.2 Classes o e 649
12.3.2.1 DMABufferFactory 649
12.3.2.2 DMARegion 653

viii

RTSJ 2.0 (Draft 46)

TABLE OF CONTENTS

12.3.2.3 Happening e 655
12.3.2.4 HappeningDispatcher 663
12.3.2.5 InterruptServiceRoutine 666
12.3.2.6 RawMemoryFactory oo oL 670
12.3.2.7 RawMemoryRegion 696
12.4 Rationale 698
12.4.1 Raw Memory 698
12.4.1.1 Direct memory access« .o v e e 700
12.4.2 Interrupt Handling L. 701
12.4.3 An Illustrative Example 703
12.4.3.1 Software architecture oL 704
12.4.3.2 Device initialization00 705
12.4.3.3 Responding to external happenings 706
12.4.3.4 Access to the flash controller’s device registers 707

13 Interprocess Signalling 709
13.1 Definitions 709
13.2 Semantics 709
13.2.1 POSIX Signals oo 709
13.2.2 POSIX Realtime Signals 710
13.3 javax.realtime.posix Lo 711
13.3.1 Classes o oo 711
13.3.1.1 POSIXPermission 711
13.3.1.2 RealtimeSignal oL 712
13.3.1.3 RealtimeSignalDispatcher 717
13.3.1.4 Signal 720
13.3.1.5 SignalDispatcher o000 726
13.4 Rationale 729
14 System and Options 731
14.1 Semantics L 731
14.1.1 RealtimeSystem 731
14.1.2 RealtimeSecurity oL 732
14.1.3 GarbageCollection 735
14.1.4 Compliance Version 735
14.2 javax.realtime L Lo 736
14.2.1 Enumerations o 736
14.2.1.1 RTSJModule o 736
14.2.2 Classes o o v e 738
14.2.2.1 GarbageCollector 738
14.2.2.2 RealtimeSecurity 740

RTSJ 2.0 (Draft 46) ix

TABLE OF CONTENTS

14.2.2.3 RealtimeSystem L. 744
14.3 Rationale 752
15 Exceptions 753
15.1 Semantics 753
15.2 javax.realtime Lo 755
15.2.1 Imterfaces 755
15.2.1.1 StaticThrowable 755
15.2.2 Exceptions 760
15.2.2.1 ArrivalTimeQueueOverflowException 760
15.2.2.2 AsynchronouslyInterruptedException 761
15.2.2.3 CeilingViolationException 767
15.2.2.4 ConstructorCheckedException 769
15.2.2.5 DeregistrationException Lo 770
15.2.2.6 EventQueueOverflowkxception 771
15.2.2.7 IlegalSchedulableStateException 772
15.2.2.8 InaccessibleAreaException T
15.2.2.9 LateStartException 779
15.2.2.10 MITViolationException 780
15.2.2.11 MemoryInUseException 782
15.2.2.12 MemoryScopeException L. 783
15.2.2.13 MemoryTypeConflictException 785
15.2.2.14 OffsetOutOfBoundsException 786
15.2.2.15 POSIXException 788
15.2.2.16 POSIXInvalidSignalException 788
15.2.2.17 POSIXInvalidTargetException 789
15.2.2.18 POSIXSignalPermissionException 790
15.2.2.19 ProcessorAffinityException 791
15.2.2.20 RangeOutOfBoundsException 792
15.2.2.21 RegistrationException 0oL 792
15.2.2.22 ScopedCycleException 793
15.2.2.23 SizeOutOfBoundskException 795
15.2.2.24 StaticCheckedException 797
15.2.2.25 StaticRuntimeException 802
15.2.2.26 UninitializedStateException 807
15.2.2.27 UnsupportedPhysicalMemoryException 808
15.2.2.28 UnsupportedRawMemoryRegionException 809
1523 Classes o e 810
15.2.3.1 AlignmentError L. 810
15.2.3.2 IlegalAssignmentError, 811
15.2.3.3 MemoryAccessError 813

RTSJ 2.0 (Draft 46)

TABLE OF CONTENTS

15.2.3.4 ResourceLimitError L. 814
15.2.3.5 StaticError 816
15.2.3.6 StaticOutOfMemoryError 821
15.2.3.7 StaticThrowableStorage 826
15.2.3.8 ThrowBoundaryError 831
15.3 Rationale 833
Open Issues 835
A Deprecated APIs 837
Al Semantics 837
A2 jJavaxrealtimeo 838
A2.1 Interfaces 838
A.2.1.1 PhysicalMemoryTypeFilter 838
A2.1.2 SchedulableTo 846
A2.2 Exceptions 862
A2.2.1 Arrival TimeQueueQuerflowFExceptionT 862
A.222 AsynchronouslyInterruptedExzceptionT 862
A.2.2.3 DuplicateFilterException 864
A224 MemoryScopeExceptionT 865
A.2.25 OffsetOutOfBoundsEzxceptionT 866
A.22.6 UnknownHappeningException 867
A2.2.7 Unsupported PhysicalMemoryFxceptionT 868
A23 Classes e 868
A23.1 Absolute TimeT 868
A.2.3.2 AperiodicParametersT 873
A.233 AsyncEventT 878
A23.4 AsyncEventHandlerT 881
A.2.3.5 BoundAsyncFEventHandlerT 900
A.2.3.6 ClockT e 902
A.2.3.7 GarbageCollectorT 903
A.2.3.8 HighResolutionTimeT 904
A.2.3.9 lllegalAssignmentErrorT oL 907
A.2.3.10 ImmortalPhysicalMemory 907
A23.11 LTMemory o v v ittt e e 917
A.2.3.12 LTPhysicalMemory, 923
A.2.3.13 MemoryAccessErrorTo oL 933
A.2.3.14 MemoryParametersT 934
A.2.3.15 NoHeapRealtimeThread 936
A.2.3.16 OneShotTimerT 940
A.2.3.17 POSIXSignalHandler 942

RTSJ 2.0 (Draft 46) xi

TABLE OF CONTENTS

A.2.3.18
A.2.3.19
A.2.3.20
A.2.3.21
A.2.3.22
A.2.3.23
A.2.3.24
A.2.3.25
A.2.3.26
A.2.3.27
A.2.3.28
A.2.3.29
A.2.3.30
A.2.3.31
A.2.3.32
A.2.3.33
A.2.3.34
A.2.3.35
A.2.3.36
A.2.3.37
A.2.3.38

PeriodicParametersT
PeriodicTimerT
PhysicalMemoryManager
PriorityCeilingEmulationT
PrioritySchedulerT
ProcessingGroupParameters
RationalTime.
RawMemoryAccess
RawMemoryFloatAccess
RealtimeSystemT
RealtimeThreadT
RelativeTimeT
ReleaseParametersT
SchedulerT
ScopedMemory
SporadicParametersT
ThrowBoundaryFErrorT
TimerT
VTMemory
VTPhysicalMemory
WaitFreeDequeue
A.3 Rationale

B Bibliography

xii

RTSJ 2.0 (Draft 46)

List of Figures

6.1 Sequence Diagram of Some Example Realtime Thread Releases. . . . 117
6.2 A State Chart for a Realtime Thread without a Deadline Miss Handler118
6.3 A State Chart for a Realtime Thread with a Deadline Miss Handler . 119
8.1 The Event Class Hierarchy 259
8.2 States of a Simple AsyncBaseEvent 261
8.3 States of an ActiveEvento Lo 263
10.1 Sequence Diagram for Using a Timer 381
10.2 Sequence Diagram for Realtime Sleep 382
10.3 Statesof a Timer 386
11.1 Manipulation of StackedMemory Areas 445
12.1 Raw Memory Interface 0L, 564
12.2 Event Classes e 565
12.3 Happening State Transition Diagram 568
12.4 Interrupt servicingo 570
12.5 Creating Raw Memory Accessors 699
12.6 Flash memory device o oL 701
12.7 Flash memory classes oL 703
12.8 Sequence diagram showing initialization operations 705
12.9 Sequence diagrams showing operations to initialize the hardware device706
12.10The FMSocketController.handleAsync method 707
12.11Application usage 708

Xiii

List of Tables

3.1 RTSJ Options 30
5.1 Effect of PhasingPolicy on the First Release of a RealtimeThread with
PeriodicParameters 51
6.3 AperiodicParameters Default Values 151
6.4 FirstInFirstOut Default PriorityParameter Values 158
6.5 PeriodicParameter Default Values 164
6.6 PriorityScheduler Default PriorityParameter Values 174
6.7 ProcessingGroup Default Values 179
6.8 ReleaseParameter Default Values 192
6.9 SporadicParameters Default Values 217
8.1 Event to Handler Matrix 256
9.1 Examples of Normalized Times 339
9.2 Semantics of Time Conversion 340
11.1 Memory Area Referencing Restrictions 437
12.1 Properties Array 673
12.2 Device registerso Lo 704
A.1 ProcessingGroupParameter Default Values 977
A.2 Properties Array 993

Xiv

Chapter 1

Introduction

The goal of the Real-Time Specification for Java (RTSJ) is to support the use of
Java technology in embedded and realtime systems. It provides a specification for
refining the Java Language Specification and the Java Virtual Machine Specification
and of providing an extended Application Programming Interface that facilitates
the creation, verification, analysis, execution, and management of realtime Java
programs such as control and sensor applications.

The Java Virtual Machine and the Java Language were conceived as a portable en-
vironment for desktop and server applications. The emphasis has been on throughput
and responsiveness. These are characteristics obtainable with time-sharing systems.
For this conventional Java environment, it is more important that each task makes
progress, than that a particular task completes within a predefined time slot.

In a realtime system, the system tries to schedule the most critical task that is
ready to run first. This task runs either until it is finished, or it needs to wait for
some event or data, or a more critical task is released or a more critical task becomes
schedulable after waiting for its event or data.

Realtime scheduling is commonly done with a priority preemptive scheduler,
where tasks that have short deadlines are given higher priority than tasks that have
longer deadlines. The programmer is responsible for encoding some notion of task
importance to priorities. The goal is to see that all tasks finish within their deadlines.
Scheduling analysis, such as Rate Monotonic Analysis, can be used to help determine
this.

Many realtime systems have nonrealtime components, so it is desirable to be able
to combine realtime and nonrealtime tasks in a single system. Realtime tasks are then
given preference over nonrealtime tasks. For Java, this means that realtime tasks
must be scheduled before threads with conventional Java priorities (1-10). Being
able to synchronize between tasks, both realtime and conventional Java threads,
adds additional requirements.

Providing realtime semantics and the additional programming interfaces required

1 Introduction

is a core part of this specification. So much so that the original specification provided
special memory areas to avoid the use of garbage collection. The availability of
various techniques for realtime garbage collection has changed the state of practice
since RTSJ Version 1.0. Though still part of the specification, these special memory
areas are no longer central to it. Realtime scheduling and priority inversion avoidance
for synchronization are the core of providing realtime response. These are provided
through refinements to the base Java semantics and additional classes.

Realtime tasks can be modeled both with realtime threads and with event handlers.
Realtime threads are much the same as conventional Java threads except for how
they are scheduled. Event handlers encapsulate a bit of work that is done every time
some event occurs. Events are referred to as asynchronous because they generally
occur independent of program flow. Thus, a periodic timed event is considered to be
an asynchronous event, but scheduled periodically. Event handling provides a less
resource intensive means of writing control applications because the underlying thread
mechanism can be shared between event handlers. Deadline analysis is also somewhat
simpler because the end of the work to be done is well bounded. Event handling
is ideal for periodic tasks and responding to external impulses. The specification
provides both paradigms.

Though realtime is necessary for many control tasks, it is not sufficient. A
significant part of the RTSJ API addresses communication with the outside world
through devices and signals. This makes it possible to write control applications
without resorting to JNI, thereby maintaining the integrity and safety that Java
offers.

Since not all applications need all aspects of the specification, there are now
modules to suite the major application scenarios. This should make it easier for
conventional JVM providers to include basic specification facilities without negatively
impacting their core application domains, but still be compatible with hard realtime
implementations. The goal is to make the transition between conventional JVMs
and realtime JVMs easier.

1.1 Guiding Principles

Providing a coherent semantics and set of programming interfaces requires some
guiding principles around which to organize the RTSJ. These principles delimit the
scope of the RTSJ and its compatibility requirements with conventional Java.

1.1.1 Applicability to Particular Java Environments

The RTSJ shall not include specifications that restrict its use to a particular Java
environment, such as a particular versions of the Java Development Kit, an Embedded

2 RTSJ 2.0 (Draft 46)

Guiding Principles 1.1

Java Application Environment, or a Java Edition, beyond the natural development
of the Java language.

1.1.2 Backward Compatibility

The RTSJ shall not prevent existing, properly written, conventional Java programs
from executing on implementations of the RTSJ.

1.1.3 Write Once, Run Anywhere

The RTSJ should recognize the importance of “Write Once, Run Anywhere”, but it
should also recognize the difficulty of achieving WORA for realtime programs and not
attempt to increase or maintain binary portability at the expense of predictability.
Hence, the goal should be “Write Once Carefully, Run Anywhere Conditionally”.

1.1.4 Current Practice vs. Advanced Features

The RTSJ should address current realtime system practice as well as allow future
implementations to include advanced features.

1.1.5 Predictable Execution

The RTSJ shall hold predictable execution as first priority in all trade-offs; this
may sometimes be at the expense of typical general-purpose computing performance
measures.

1.1.6 No Syntactic Extension

In order to facilitate the job of tool developers, and thus to increase the likelihood of
timely implementations, the RT'SJ shall not introduce new keywords or make other
syntactic extensions to the Java language.

1.1.7 Allow Variation in Implementation Decisions

Implementations of the RTSJ may vary in a number of implementation decisions,
such as the use of efficient or inefficient algorithms, trade-offs between time and
space efficiency, inclusion of scheduling algorithms not required in the minimum
implementation, and variation in code path length for the execution of byte codes.
The RTSJ should not mandate algorithms or specific time constants for such, but
require that the semantics of the implementation be met and where necessary put

RTSJ 2.0 (Draft 46) 3

1 Introduction

limits on execution time complexity. The RTSJ offers implementers the flexibility to
create implementations suited to meet the requirements of their customers.

1.1.8 Interoperability

It should be possible to implement all aspects of the RTSJ on a conventional JVM
with the exception that realtime response and pointer assignment rules would not
necessarily be guaranteed. This should ease the transition between conventional and
realtime programming and aid functional testing on a conventional JVM. The API
should support modules for this as well.

1.2 Areas of Enhancement

Each guiding principle has had a direct effect on the development of the specification.
There are eight aspects of these refinements and additions in the specification. Their
enumeration should aid the understanding of the rest of the specification.

1.2.1 Thread Scheduling and Dispatching

Portability dictates the specification of at least one standard realtime scheduler, but
in light of the significant diversity in scheduling and dispatching models and the
recognition that each model has wide applicability in the diverse realtime systems
industry, the specification provides an underlying scheduling infrastructure that can
be extended to use other scheduling algorithms for scheduling realtime Java threads
and event handlers.

To accommodate current practice, the RT'SJ shall require a base scheduler in all
implementations. The required base scheduler will be familiar to realtime system
programmers. It is a priority preemptive, first-in-first-out, scheduler. Since most
realtime systems also support round-robin scheduling, a round-robin scheduler shall
also be supplied. For compatibility with conventional Java implementations, both
schedulers shall use priorities above the conventional Java priorities (1-10).

The specification is constructed to allow implementations to provide unanticipated
scheduling algorithms. Implementations will enable the programmatic assignment
of parameters appropriate for the underlying scheduling mechanism as well as
provide any necessary methods for the creation, management and termination of
realtime Java threads. In the current specification, any other thread, scheduling, and
dispatching mechanism may be bound to an implementation; however, there should
be enough flexibility in the thread scheduling framework to enable future versions of
the specification to build on this release.

4 RTSJ 2.0 (Draft 46)

Areas of Enhancement 1.2

1.2.2 Memory Management

Automatic memory management is a particularly important feature of the Java
programming environment. The specification enables, as far as possible, the job of
memory management to be implemented automatically by the underlying system
and not intrude on the programming task. Many automatic memory management
algorithms, also known as garbage collection (GC), exist, and many of those apply
to certain classes of realtime programming styles and systems. In an attempt to
accommodate a diverse set of GC algorithms, the specification defines a memory
allocation and reclamation paradigm that
e is independent of any particular GC algorithm,
e requires the VM to precisely characterize its GC algorithm’s effect on the
preemption of realtime Java tasks, and
e cnables the allocation and reclamation of objects outside of any interference by
any GC algorithm.

1.2.3 Synchronization and Resource Sharing

Logic often requires serial access to resources, and realtime systems introduce an
additional complexity: the need to minimize priority inversion and hence the excessive
delay of more critical tasks. The least intrusive specification for enabling realtime safe
synchronization is to require that implementations of the Java keyword synchronized
implement one or more algorithms that prevent priority inversion among realtime
Java tasks that share the serialized resource. In addition, the specification provides
other data passing mechanisms to minimize the need for synchronization.

1.2.4 Asynchronous Event Handling

Realtime systems typically interact closely with the real world. With respect to
the execution of logic, the real world is asynchronous; therefore, the specification
includes efficient mechanisms for programming disciplines that would accommodate
this inherent asynchrony. The RT'SJ has a general mechanism for asynchronous event
handling. This specification provides classes that represent things that can happen
and logic that executes when those things happen. The execution of the logic is
scheduled and dispatched by the RTSJ runtime.

1.2.5 Task Interruption

Sometimes, the real world changes so drastically (and asynchronously) that the current
point of logic execution should be immediately, efficiently, and safely ended and control
transferred to another point of execution. The RTSJ provides a mechanism which

RTSJ 2.0 (Draft 46) 5

1 Introduction

extends Java’s interrupt and exception handling mechanisms to enable applications to
programmatically change the locus of control of another Java task. This mechanism
may restrict this asynchronous transfer of control to logic specifically written with
the assumption that its locus of control may asynchronously change. Due to the
inherent susceptibility to deadlock, the Thread.stop method cannot be used for this.

1.2.6 Raw Memory Access

Accessing device memory is not in and of itself a realtime issue; however, many
realtime systems require it for providing realtime control of a system. This requires
an API providing programmers with byte-level access to physical device registers,
whether in main memory or in some I/O space. This API must be as efficient as
possible, since such access is often under tight time constraints.

1.2.7 Physical Memory Access

Some systems provide memory areas that differ in important aspects, such as time
to read or write data and its persistence. Being able to take advantage of these areas
can have an impact on performance. This specification enables their efficient use.

1.2.8 Modularization

Not all applications require all aspects of the specification. In fact, having a core set
of the APIs presented is useful for conventional Java programming and aids overall
interoperability. To this end, the specification provides a core set of APIs and a
few optional modules as well as semantics for use in conventional JVMs that do
not offer realtime guarantees. This should enable implementations to be optimized
for particular use cases and enable conventional Java environments to be used to
help develop code that can be more easily shared between realtime and conventional
systems.

6 RTSJ 2.0 (Draft 46)

Chapter 2

Overview

The RTSJ comprises several areas of extended semantics. These areas are discussed
in approximate order of their relevance to realtime programming. The semantics and
mechanisms of each of threads and scheduling, synchronization, asynchrony, clocks
and timers, memory management, device access and raw memory, system options,
and exceptions are all crucial to the acceptance of the RTSJ as a viable realtime
development platform. Further details, exact requirements, class documentation,
and rationale for these extensions are given in subsequent chapters.

2.1 Threads and Scheduling

One of the concerns of realtime programming is to ensure the timely and predictable
execution of sequences of machine instructions. Various scheduling schemes name
these sequences of instructions differently, for example, thread, task, module, or
block. In Java, this computation is executed in the context of a thread. Since Java
threads were designed for fair execution' rather than predictable execution, the RTSJ
introduces the concept of a schedulable. These are the objects managed by the base
scheduler: RealtimeThread and its subclasses and AsyncBaseEventHandler and its
subclasses. RealtimeThread is a specialization of Java’s Thread.

Timely execution of schedulables means that the programmer can determine,
by analysis of the program, testing the program on particular implementations,
or both, whether particular threads will always complete execution before a given
timeliness constraint. This is the essence of realtime programming: the addition of
temporal constraints to the correctness conditions for computation. For example, for
a program to compute the sum of two numbers, it may no longer be acceptable to

!Actually, neither the Java Virtual Machine Specification[6] nor the Java Language
Specification[5] defines how Java threads should be scheduled, but most implementations, in-
cluding the reference implementations, use some sort of fair scheduling.

7

2 Overview

compute only the correct arithmetic answer but the answer must be computed within
a particular time interval. Typically, temporal constraints are deadlines expressed in
either relative or absolute time.

The term scheduling (or scheduling algorithm) refers to the production of a
sequence (or ordering) for the execution of a set of schedulables (a schedule). This
schedule attempts to optimize a particular metric (a metric that measures how well
the system is meeting the temporal constraints). A feasibility analysis determines
if a schedule has an acceptable value for the metric. For example in hard realtime
systems, the typical metric is “number of missed deadlines” and the only acceptable
value for that metric is zero. So called soft realtime systems use other metrics (such
as mean tardiness) and may accept various values for the metric in use.

Many systems, including most conventional Java implementations, use thread
priority to guide the determination of a schedule. Priority is typically an integer
associated with a thread; these integers convey to the system the order in which the
threads should execute. The generalization of the concept of priority is execution
eligibility. The term dispatching refers to that portion of the system which selects
the thread with the highest execution eligibility from the pool of threads that are
ready to run.

In current realtime system practice, the assignment of priorities is typically under
programmer control as opposed to under system control. As a base scheduler for
realtime tasks, the RT'SJ provides preemptive priority-based first-in-first-out (FIFO)
scheduler, which also leaves the assignment of priorities to programmer control. It
also provides a priority-based round-robin (RR) scheduler. Most realtime operating
systems (RTOS) are also based on priority preemptive scheduling and support both
FIFO and RR scheduling.

The RTSJ defines a number of classes with names of the format <string>Param-
eters such as ReleaseParameters, which provide parameters for resource management.
An instance of one of these parameter classes holds a particular resource-demand
characteristic for one or more schedulables. For example, the PriorityParameters
subclass of SchedulingParameters contains the execution eligibility metric of the
base scheduler, i.e., a priority. At some time (construction-time or later when the
parameters are replaced using setter methods), instances of parameter classes are
bound to a schedulable. The schedulable then assumes the characteristics of the
values in the parameter object. For example, a PriorityParameters instance with its
priority set to the value representing the highest priority available on a system is
bound to a schedulable, then that schedulable will assume the characteristic that it
will execute whenever it is ready in preference to all other schedulables (except, of
course, those also with the same priority).

The RTSJ provides implementers with the flexibility to install arbitrary scheduling
algorithms in an implementation of the specification. This is to support the widely

8 RTSJ 2.0 (Draft 46)

Synchronization 2.2

varying requirements of the realtime systems industry with respect to scheduling.
Use of the Java platform may help produce code written once but able to be executed
on many different computing platforms. The RTSJ contributes to this goal, but the
rigors of realtime systems detract from it. The RTSJ’s rigorous specification of the
required priority scheduler is critical for portability of time-critical code, but the
RTSJ permits and supports platform-specific schedulers which are not necessarily
portable.

2.2 Synchronization

If the computation in each thread were independent of the computation in all other
threads, scheduling alone would be enough to ensure timeliness; however, this is
usually not the case. Threads often need to communicate with one another or share
data. Resources must be shared as well. Two threads cannot read different data from
the disk at the same time nor write data to a disk at the same time. They cannot
send a message to another machine at the same time. They cannot update the same
in-memory data at the same time. One thread may have to wait for another thread
to get the data it needs. Just as in a normal system, synchronization is required.
In a realtime system, this synchronization must not prevent other threads from
completing their tasks on time.

2.2.1 Priority Inversion

The additional concern for synchronization in a realtime system, as opposed to a
conventional system, is that blocking can cause the wrong thread to run first. A
high priority thread can be blocked by a low priority thread that is vying for the
same resource. A priority queue can be used to ensure that a highest priority thread
goes first, when more than one thread is waiting to enter a synchronized block, but
this is not always sufficient.

Consider a single processor system with three threads, t;, to, and t3, where t;
has the highest priority and ¢3 has the lowest priority. It is possible that t, can
prevent ¢; from running by preempting t3. This is called priority inversion. It occurs
when ¢, is blocked by attempting to acquire a lock that is held by thread t3 and t3
is preempted by t5. When 5 does run, it may prevent t3 from running indefinitely,
thereby keeping ¢, blocked past its deadline.

What is needed is a mechanism the ensure that, while ¢; is waiting on a resource
in use by t3, thread t3 runs before all threads with a priority less than that of ¢;.

RTSJ 2.0 (Draft 46) 9

2 Overview

2.2.2 Priority Inversion Avoidance

Two of the most common mechanisms for avoiding priority inversion are priority
inheritance and priority ceiling emulation (a.k.a. highest locker protocol). Both
of these boost the priority of a thread holding the lock in order to prevent a
noncontending thread from transitively blocking a higher priority thread which is
waiting for the same lock. The difference is how high the priority is raised and when.
Both take effect when a thread is in a synchronized section of code.

The first is the default behavior for synchronized blocks and methods. It applies
to all code running within the implementation, not just to schedulables. The priority
inheritance protocol is a well-known algorithm in the realtime scheduling literature
and it has the following effect. If thread ¢; attempts to acquire a lock that is held
by a lower-priority thread t3, then t3’s priority is raised to that of ¢; as long as 3
holds the lock (and recursively if ¢3 is itself waiting to acquire a lock held by an even
lower-priority thread).

The specification also provides a mechanism by which the programmer can
override the default system-wide policy, or control the policy to be used for a
particular monitor, provided that policy is supported by the implementation. The
second policy, priority ceiling emulation protocol, can be set using this mechanism.
It is also a well-known algorithm in the literature. The following three points provide
a somewhat simplified description of its effect.

1. A monitor is given a “priority ceiling" when it is created; the programmer
should choose at least the highest priority of any thread that could attempt to
enter the monitor.

2. As soon as a thread enters synchronized code, its (active) priority is raised to
the monitor’s ceiling priority. If, through programming error, a thread has a
higher base priority than the ceiling of the monitor it is attempting to enter,
then an exception is thrown.

3. On leaving the monitor, the thread has its active priority reset. In simple
cases it will set be to the thread’s previous active priority, but under some
circumstances (e.g. a dynamic change to the thread’s base priority while it was
in the monitor) a different value is possible.

In addition, threads and asynchronous event handlers waiting to acquire a resource
must be released from highest to lowest priority (in priority order). This applies to
processors as well as to synchronized blocks. If schedulables with the same priority
are possible under the active scheduling policy, such schedulables are awakened in
FIFO order. This is exemplified in the following scenarios.

1. Threads waiting to enter synchronized blocks are granted access to the syn-

chronized block in priority order.

2. A blocked thread that becomes ready to run is given access to a processor in
priority order.

10 RTSJ 2.0 (Draft 46)

Asynchrony 2.3

3. A thread whose priority is explicitly set by itself or another thread is given
access to a processor in priority order.

4. A thread that performs a yield will be given access to the processor after
waiting for threads of the same priority to be given a processor.

5. Threads that are preempted in favor of a thread with higher priority may
be given access to a processor at any time as determined by a particular
implementation. The implementation is required to provide documentation
stating exactly the algorithm used for granting such access.

In any case, there needs to be a fixed upper bound on the time required to enter

a synchronized block for an unlocked monitor.

2.2.3 Execution Eligibility

Since an implementation of the RT'SJ may provide schedulers other than priority-
based schedulers, the notion of priority can be generalized to execution eligibility.
Execution eligibility defines a partial ordering over all tasks for determining which
task should run before which other tasks. Execution eligibility may be determined
dynamically. For example, earliest deadline first (EDF) scheduling determines
execution eligibility ordering by the order of the next deadlines for each of its tasks.
The notion of priority, as described above, can be generalized to execution eligibility
to integrate other schedulers into an RTSJ implementation.

2.2.4 Wait-Free Queues

While the RTSJ requires that the execution of schedulables which do not access
the heap must not be delayed by garbage collection on behalf of lower-priority
schedulables, an application can cause such a schedulable to wait for garbage collection
by synchronizing using an object shared with a heap-using thread or schedulable.
The RTSJ provides wait-free queue classes to provide protected, nonblocking, shared
access to objects accessed by both regular Java threads and schedulables, which do
not access the heap.

2.3 Asynchrony

Since a realtime system must be able to react to the outside world, the system needs
to be able to change its execution flow asynchronously to the current execution. All
external signals, whether interrupts, messages, or timed events, are asynchronous
with respect to ongoing computation. This means that computation must be both
startable and stoppable based on external stimuli.

RTSJ 2.0 (Draft 46) 11

2 Overview

2.3.1 Asynchronous Events

Asynchronous event provide a means of starting computation based on external
stimuli. The asynchronous event facility is based on two classes: AsyncBaseEvent
and AsyncBaseEventHandler. An AsyncBaseEvent object represents something
that can happen, like a POSIX signal, a hardware interrupt, or a computed event
like an airplane entering a specified region. When one of these events occurs,
which is indicated by the fire() method being called, the associated instances of
AsyncBaseEventHandler are scheduled and the handleAsyncEvent() methods are
invoked, thus the required logic is performed. Also, methods on AsyncBaseEvent
are provided to manage the set of instances of AsyncBaseEventHandler associated
with the instance of AsyncBaseEvent.

An instance of an AsyncBaseEventHandler can be thought of as something similar
to a thread. When an event fires, the associated handlers are scheduled and the
handleAsyncEvent() methods are invoked. What distinguishes an AsyncBaseEvent-
Handler from a simple Runnable is that an AsyncBaseEventHandler has associated
instances of ReleaseParameters, SchedulingParameters and MemoryParameters that
control the actual execution of the handler once the associated AsyncBaseEvent is
fired. When an event is fired, the handlers are executed asynchronously, scheduled
according to the associated ReleaseParameters and SchedulingParameters objects,
in a manner that looks like the handler has just been assigned to its own thread. It is
intended that the system can cope well with situations where there are large numbers
of instances of AsyncBaseEvent and AsyncBaseEventHandler (tens of thousands),
since the number of fired (in progress) handlers is expected to be much smaller.

There are specialized forms of AsyncBaseEvent: AsyncEvent, AsyncLongEvent,
and AsyncObjectEvent for events that are stateless, carry a long payload, and carry
an Object payload, respectively. They are matched by specialized forms of Async-
BaseEventHandler: AsyncEventHandler, AsyncLongEventHandler, and AsyncOb-
jectEventHandler. Most external events are stateless, but sometimes it is helpful
to be able to receive some information about the event or pass some data with the
event. The Long and Object variants enable this and the POSIXRealtimeSignal
takes advantage of it.

Another specialized form of an AsyncEvent is the Timer class, which represents
an event whose occurrence is driven by time. There are two forms of Timers: the
OneShotTimer and the PeriodicTimer. Instances of OneShotTimer fire once, at the
specified time. Periodic timers fire initially at the specified time, and then periodically
according to a specified interval.

Timers are driven by Clock objects. There is a special Clock object, Clock.
getRealtimeClock(), that represents the realtime clock. The Clock class may be
extended to represent other clocks, which the underlying system might make available
(such as an execution-time clock of some granularity).

12 RTSJ 2.0 (Draft 46)

Asynchrony 2.3

2.3.2 Asynchronous Transfer of Control

Many event-driven computer systems that tightly interact with external physical
systems (e.g., humans, machines, control processes, etc.) may require mode changes
in their computational behavior as a result of significant changes in the actual
real-world system. It simplifies the architecture of a system when a task can be
programmatically terminated when an external physical system change causes its
computation to be superfluous. Without this facility, a thread or set of threads
have to be coded so that their computational behavior anticipates all of the possible
transitions among possible states of the external system. When the external system
makes a state transition, the changes in computation behavior can be managed by
an oracle that terminates a set of threads required for the old state of the external
system, and invokes a new set of threads appropriate for the new state of the external
system. Since the possible state transitions of the external system are encoded in
only the oracle and not in each thread, the overall system design is simpler.

There is a second requirement for a mechanism to terminate some computation,
where a potentially unbounded computation needs to be done in a bounded period
of time. In this case, if that computation can be executed with an algorithm that
is iterative, and produces successively refined results, the system could abandon
the computation early and still have usable results. The RTSJ supports aborting
a computation by signalling from another thread, or the passage of time, with a
feature termed Asynchronous Transfer of Control (ATC).

An example of the second case is processing compressed video for a human
controller. The system knows that a new frame must be produced at a constant
update frequency. The cost of each iteration is highly variable and the minimum
required latency to terminate the computation and receive the last consistent result
is much less than the mean iteration cost and bound. Therefore, using ATC for
interrupting a computation to capture an intermediate result at the expiration of a
known time bound is a convenient programming style. Of course, there are other
kinds of programming tasks that may also benefit from ATC.

2.3.3 Principles

The RTSJ’s approach to ATC uses asynchronous interruptions and exceptions, and is
based on several guiding principles covering methodology, expressiveness, semantics,
and pragmatic concerns.

2.3.3.1 Methodological Principles

1. A method must explicitly indicate its susceptibility to ATC, i.e., it is asyn-
chronously interruptible. Since legacy code or library methods might have been

RTSJ 2.0 (Draft 46) 13

2 Overview

written assuming no ATC, by default ATC must be turned off (more precisely,
must be deferred as long as control is in such code).

. Even if a method allows ATC, some code sections must be executed to comple-

tion and thus ATC is deferred in such sections. These ATC-deferred sections
are synchronized methods, static initializers, and synchronized statements.

. Code that responds to an ATC does not return to the point in the schedulable

where the ATC was triggered; that is, an ATC is an unconditional transfer of
control. Resumptive semantics, which returns control from the handler to the
point of interruption, are not needed since they can be achieved through other
mechanisms (in particular, an AsyncEventHandler).

2.3.3.2 Expressibility Principles

1. A mechanism is needed through which an ATC can be explicitly triggered in

a target schedulable. This triggering may be direct (from a source thread or
schedulable) or indirect (through an asynchronously interrupted exception).

. It must be possible to trigger an ATC based on any asynchronous event

including an external happening or an explicit event firing from another thread
or schedulable. In particular, it must be possible to base an ATC on a timer
going off.

. Through ATC it must be possible to abort a realtime thread but in a manner

that does not carry the dangers of the Thread class’s stop() and destroy()
methods.

2.3.3.3 Semantic Principles

14

1. If ATC is modeled by exception handling, there must be some way to ensure

that an asynchronous exception is only caught by the intended handler and not,
for example, by an all-purpose handler that happens to be on the propagation
path.

. Nested ATCs must work properly. For example, consider two, nested ATC-

based timers and assume that the outer timer has a shorter time-out than the
nested, inner timer. If the outer timer times out while control is in the nested
code of the inner timer, then the nested code must be aborted (as soon as
it is outside an ATC-deferred section), and control must then transfer to the
appropriate catch clause for the outer timer. An implementation that either
handles the outer time-out in the nested code, or that waits for the longer
(nested) timer, is incorrect.

RTSJ 2.0 (Draft 46)

Asynchrony 2.4

2.3.3.4 Pragmatic Principles

1. There should be straightforward idioms for common cases such as timer handlers
and realtime thread termination.

2. If code with a time-out completes before the timer’s expiration, the timer needs
to be automatically stopped and its resources returned to the system.

2.3.4 Asynchronous Realtime Thread Termination

A special case of stopping a particular computation is stopping a thread. Earlier
versions of the Java language supplied mechanisms for achieving these effects: in
particular the methods stop() and destroy() in class Thread. However, since stop()
could leave shared objects in an inconsistent state, stop() has been deprecated. The
use of destroy() can lead to deadlock (if a thread is destroyed while it is holding a
lock) and although it was not deprecated until version 1.5 of the Java specification, its
usage has long been discouraged. A goal of the RT'SJ was to meet the requirements
of asynchronous thread termination without introducing the dangers of the stop() or
destroy() methods.

The RTSJ accommodates safe asynchronous realtime thread termination through
a combination of the asynchronous event handling and the asynchronous transfer of
control mechanisms. To create such a set of realtime threads consider the following
steps:

1. make all of the application methods of the realtime thread asynchronously
interruptible;

2. create an oracle which monitors the external world by setting up an asyn-
chronous event with a number of asynchronous event handlers, which is fired
when an appropriate mode change;

3. have the handlers call interrupt() on each of the realtime threads affected by
the change; then

4. after the handlers call interrupt(), have them create a new set of realtime
threads appropriate to the current state of the external world.

The effect of the event is to cause each interruptible method to abort abnormally by
transferring control to the appropriate catch clause. Ultimately the run() method of
the realtime thread will complete normally.

This idiom provides a quick (if coded to be so) but orderly clean up and termina-
tion of the realtime thread. Note that the oracle can comprise as many or as few
asynchronous event handlers as appropriate.

RTSJ 2.0 (Draft 46) 15

2 Overview

2.4 Clocks, Time, and Timers

Realtime systems require a high resolution notion of time. Both very small units
and very long periods of time must be uniformly representable, a range that is not
even representable with a long value. Furthermore, a time can represent an absolute
value, usually represented as some absolute fixed point in time plus an offset, or it
can represent an interval of time. The time classes defined in Chapter 9 support a
longs worth of seconds and another integer for nanoseconds.

2.5 Memory Management

The Java language is designed around automatic memory management, in particular
garbage collection. Unfortunately, though garbage collection is a functional safety and
security feature, conventional garbage collectors interrupt the normal flow of control
in a program. Therefore, garbage-collected memory heaps had been considered an
obstacle to realtime programming due to the potential for unpredictable latencies
introduced by the garbage collector. Though conventional collectors still have these
drawbacks, there are now realtime collectors that can be used for hard realtime
application. Still, the RT'SJ provides an alternative to garbage collection for systems
which require it, either because they do not have a garbage collector or deterministic
garbage collector, or require heap partitioning for some other reason. Extensions
to the memory model, which support memory management in a manner that does
not interfere with the ability of realtime code to provide deterministic behavior,
are provided to support these alternatives. This goal is accomplished by providing
memory areas for the allocation of objects outside of the garbage-collected heap for
both short-lived and long-lived objects. In order to provide additional separation
between the garbage collector and schedulables which do not require its services, a
schedulable can be marked to indicate that it never accesses the heap.

2.5.1 Memory Areas

The RTSJ introduces the concept of a memory area. A memory area represents an
area of memory that may be used for allocating objects. Some memory areas exist
outside of the heap and place restrictions on what the system and garbage collector
may do with objects allocated within. Objects in some memory areas are never
garbage collected; however, the garbage collector must be capable of scanning these
memory areas for references to any object within the heap to preserve the integrity
of the heap.

There are four basic types of memory areas:

16 RTSJ 2.0 (Draft 46)

Memory Management 2.5

1. Heap memory represents an area of memory that is the heap. The RTSJ does
not change the determinant of lifetime of objects on the heap. The lifetime is
still determined by visibility.

2. Immortal memory represents an area of memory containing objects that may
be referenced without exception or garbage collection delay by any schedul-
able, specifically including realtime threads and asynchronous event handlers
configured to not have access to the heap.

3. Scoped memory provides a mechanism for managing objects that have a lifetime
defined by their scope. It is akin to, but more general than, allocating objects
on the thread stack.

4. Physical memory allows objects to be created within specific physical memory
regions that have particular important characteristics, such as memory that
has substantially faster access.

2.5.2 Heap Memory

Heap memory is the memory area used by Java by default. It is garbage collected
and the access time to objects in this area are not guaranteed unless the implemen-
tation supports realtime garbage collection. The RTSJ, as with conventional Java,
supports only one Heap in a system. Multiple heaps are only practical in one of two
configurations: the heaps are completely independent of one another or there are
subsidiary heaps from which a program may not store references in the main heap.
In other words, the subsidiary heaps can reference the main heap but not vice versa.
Currently, the RTSJ does not address these cases.

2.5.3 Immortal Memory

ImmortalMemory is a memory resource shared among all schedulable objects and
threads in an application. Objects allocated in ImmortalMemory are always available
to extraheap threads and asynchronous event handlers without the possibility of a
delay for garbage collection.

2.5.4 Scoped Memory

The RTSJ introduces the concept of scoped memory. A memory scope is used to give
bounds to the lifetime of any objects allocated within it. When a scope is entered,
every use of new causes the memory to be allocated from the active memory scope.
A scope may be entered explicitly, or it can be attached to a schedulable which will
effectively enter the scope before it executes the object’s run() method.

The contents of a scoped memory are discarded when no object in the scope can
be accessed. This is done by a technique similar to reference counting the scope.

RTSJ 2.0 (Draft 46) 17

2 Overview

A conforming implementation might maintain a count of the number of external
references to each memory area. The reference count for a ScopedMemory area would
be increased by entering a new scope through the enter() method of MemoryArea,
by the creation of a schedulable using the particular ScopedMemory area, or by the
opening of an inner scope. The reference count for a ScopedMemory area would be
decreased when returning from the enter() method, when the schedulable using the
ScopedMemory terminates, or when an inner scope returns from its enter() method.
When the count drops to zero, the finalize method for each object in the memory
would be executed to completion. Reuse of the scope is blocked until finalization is
complete.

Scopes may be nested. When a nested scope is entered, all subsequent allocations
are taken from the memory associated with the new scope. When the nested scope
is exited, the previous scope is restored and subsequent allocations are again taken
from that scope.

Because of the lifetimes of scoped objects, it is necessary to limit the references
to scoped objects, by means of a restricted set of assignment rules. A reference to a
scoped object cannot be assigned to a variable from an outer scope, or to a field of an
object in either the heap or the immortal area. A reference to a scoped object may
only be assigned into the same scope or into an inner scope. The virtual machine
must detect illegal assignment attempts and must throw an appropriate exception
when they occur.

For cases where the usage of memory does not follow a stack discipline, in
particular code that uses the producer-consumer pattern, a special variant of scoped
memory is provided. This variant PinnableMemory has the same semantics as
LTMemory except that a task can “pin” the memory, thereby keeping it open, even
when no task is in the area. One task can fill the memory, put a reference in its
portal, and then pass it on to another task to consume the data therein. Thus one
does not have to have a dummy task to hold a pinned area open while it is passed
from producer to consumer.

The flexibility provided in choice of scoped memory types enables the application
to use a memory area that has characteristics that are appropriate to a particular
syntactically defined region of the code.

2.5.5 Physical Memory Areas

In many cases, systems needing the predictable execution of the RTSJ will also need
to access various kinds of memory at particular addresses for performance or other
reasons. Consider a system in which very fast static RAM was programmatically
available. A design that could optimize performance might wish to place various
frequently used Java objects in the fast static RAM. The PhysicalMemoryRegion
and PhysicalMemoryFactory classes provide the programmer this flexibility. The

18 RTSJ 2.0 (Draft 46)

Device Access and Raw Memory 2.7

programmer would construct a physical memory object on the memory addresses
occupied by the fast RAM.

2.5.6 Budgeted Allocation

The RTSJ also provides limited support for providing memory allocation budgets
for schedulables using memory areas. Maximum memory area consumption and
maximum allocation rates for individual schedulable objects may be specified when
they are created.

2.6 Device Access and Raw Memory

The RTSJ defines classes for programmers wishing to directly access physical memory
from code written in the Java language. The RawMemory<Size> types, where
<Size> is one of Byte, Short, Long, Float, or Double, define methods that enable
the programmer to construct an object that represents a vector of consecutive
positions in memory where the Size represents a primitive numerical data type, i.e.,
byte, short, int, long, float, and double repectively. Access to the physical memory
is then accomplished through get<Size>() and set<Size>() methods of that object.
No semantics other than the set<Size>() and get<Size>() methods are implied.
On the other hand, the PhysicalMemoryRegion and PhysicalMemoryFactory classes
enable programmers to construct an object that represents a range of physical
memory addresses. When this object is used as a MemoryArea other objects can be
constructed in the physical memory using the new keyword as appropriate. Factories
can be used to create the desired type of both physical and raw memory.

2.6.1 Raw Memory Access

An instance of RawMemory models a range of physical memory locations as a fixed
sequence of elements of a given size. The elements correspond to Java primitive
types. For objects that access more than a single physical address, elements can be
accessed through offsets from the base, where the offset is measured in multiples of
the element size, not necessarily the byte offset in memory.

The RawMemory interface enables a realtime program to implement device drivers,
memory-mapped registers, I/O space mapped registers, flash memory, battery-backed
RAM, and similar low-level hardware.

A raw memory area cannot contain references to Java objects. Such a capability
would be unsafe (since it could be used to defeat Java’s type checking) and error
prone (since it is sensitive to the specific representational choices made by the Java
compiler).

RTSJ 2.0 (Draft 46) 19

2 Overview

2.7 System Options

POSIX defines some convenient interfaces for interacting with the system. These
interactions include catching keyboard interrupts, user-to-process signaling, and
interprocess signaling. Many realtime operating systems support this POSIX signal
interface. For this reason, the RTSJ provides a POSIX signal interface. Though many
of the features POSIX signals provide are also available on most other operating
systems, the specification does not require the POSIX signal interface to be emulated
on these other platforms. Thus they are optional in the sense that they are only
required on systems that directly support POSIX signals.

2.8 Exceptions

Aside from several new exceptions, the RT'SJ provides a new interface for using
exceptions without creating ephemeral objects and some new treatment of exceptions
surrounding asynchronous transfer of control.

Using exceptions is resource intensive, since a new exception is allocated for each
throw. This is particularly a problem for scoped memory, since scopes may need to
be sized much larger than otherwise necessary to hold exceptions and their stack
traces. Additionally, the information they contain cannot be propagated beyond the
scope in which they are allocated. To better support scoped, immortal, and physical
memory, a new class of throwable has been included: StaticThrowable. Exceptions
and Errors which implement this interface are not thrown in the usual manner, but
with a style that does not require memory to be allocated at all.

Asynchronous transfer of control can cause the exception that triggered it to
be propagated even when it is caught but the underlying interrupt is not cleared.
The system rethrows the exception once the catch is finished. This is necessary
since the exception hierarchy is poorly designed. There is no common base class for
checked exceptions, so application code often contains a catch for Exception when
only checked exceptions need to be caught. Even the JVM specification wording
is awkward on this point, where a checked exception is an exception that is not a
subclass of RuntimeException and an error is a throwable that is not a subclass of
Exception.

2.9 Summary

The RTSJ refines the semantics of threads, scheduling, synchronization, memory
management, and exceptions and adds features to support realtime threads, realtime
scheduling, configuring synchronization, asynchrony, representing time, clocks and
timers, additional methods for memory management, device access and raw memory,

20 RTSJ 2.0 (Draft 46)

Summary 2.9

system options. These features and semantic refinements to the Java language and
virtual machine have been outlined above, but the description does not constitute a

definition for them. In other words, it is not normative. The normative chapters
follow.

RTSJ 2.0 (Draft 46) 21

2 Overview

22 RTSJ 2.0 (Draft 46)

Chapter 3

General Requirements

The RTSJ is both an Application Programmer Interface (API) and a refinement of
the semantics of the Java virtual machine. Both aspects are necessary to produce
a programming environment conducive to programming realtime systems. Most
realtime systems require features that go beyond simply being able to react within a
defined time bounds, they must also respond to something and take action thereon.
Therefore, the ability to interact with the external environment is a necessary part
of a realtime specification.

There are many applications that can benefit from the API and semantic re-
finements of the Java runtime environment that have been described above. Not
every application requires all parts, so some flexibility of implementation is necessary.
Therefore the RTSJ is divided into a core package and three optional packages.
Furthermore, it also provides for different usage modes to support both development
and deployment.

Finally, the vast majority of realtime systems are also embedded systems. The
constraints of such system must also be considered. The specification begins with
the overall requirements of these concerns.

3.1 Definitions

Code — Program text written in the Java programming language.

Java Language — A programming language defined through the Java Community
Process.

Heap — An area of memory for allocating data structures (objects) defined by the
Java Langauge.

Extraheap Memory — An area of memory for allocating data structures (objects)
other than the heap defined by the Java Langauge.

Thread — An instance of the java.lang. Thread class.

23

3 General Requirements

Realtime Thread — An instance of the javax.realtime.RealtimeThread class.

Java Thread — An instance of java.lang. Thread class, but does not extend the
javax.realtime.RealtimeThread class.

Heapless Realtime Thread — An instance of the javax.realtime.RealtimeThread
class that must not access the heap.

Event Handler — An instance of the javax.realtime.Abstract AsyncEventHandler
class.

Schedulable — Any object that is of type Schedulable, and is recognized as a
dispatchable entity by the required schedulers. The required schedulers’ set of
schedulables comprises instances of RealtimeThread and AbstractAsyncEven-
tHandler. Other schedulers may support a different set of schedulables, but
this specification only defines the behavior of the required schedulers so the
term schedulable should be understood as “schedulable by the base scheduler.”

Task — Any thread or schedulable, including Java threads.

Garbage Collection — A processes that reclaims memory on the heap that is no
longer reachable by the application program. It may be accomplished through
a dedicated set of threads or be distributed throughout the application.

3.2 Semantics

This specification is a contract between the specification implementer and the user
who writes a program to run on an implementation. To be able to support both
implementation and use, many chapters provide additional rationale to help both
the implementer and the user understand the intention behind the normative text.
The remainder of this specification, including this chapter, is normative, except for
the introductory text in each chapter and the sections named Rationale.

3.2.1 Base Requirements

The base requirements of this specification are as follows.

1. Except as specifically required by this specification, any implementation shall
fully conform to a Java platform configuration.

2. Any implementation of this specification shall implement all classes and methods
in the base module of this specification.

3. Except as noted in this chapter, all classes and methods in an implemented
module shall be implemented.

4. The javax.realtime package and it subpackages shall contain no public or
protected classes or methods not included in this specification.

5. A realtime JVM implementation shall not be implemented in a way that permits
unbounded priority inversion in any scheduling interaction it implements.

24 RTSJ 2.0 (Draft 46)

Semantics 3.2

6. All methods defined under javax.realtime can safely be used concurrently by
multiple threads unless otherwise documented.

7. Static final values, as found in AperiodicParameters, SporadicParameters, Real-
timeSystem, and PriorityScheduler, shall be implemented such that their values
cannot be resolved by a conformant Java compiler (Java source to byte code).

Many aspects of this specification set a minimum requirement, but permit the

implementation latitude in its implementation. For instance, the required priority
scheduler requires at least 28 consecutively numbered realtime priorities. It does
not, however, specify the numeric values of the maximum and minimum realtime
priorities. Implementations are encouraged to offer as many realtime priority levels
immediately above the conventional Java priorities as they can support.

Except where otherwise specified, when this specification requires object creation,

the object is created in the current allocation context.

3.2.2 Modules

The original RT'SJ specification was conceived, with the exception of some optional
features, as a monolith specification. This has inhibited the adoption of the RTSJ
beyond the hard realtime community, because some of the features were considered
to have an overly negative impact on overall JVM performance. Version 2.0 addresses
this by breaking the specification into modules.

Modules provide a means of grouping like functionality together in a way that
promotes maximal adoption for various implementation classes. A conventional
JVM may simply implement the Base Module API, without providing any realtime
guarantees at all, thereby providing programmers with the benefits of features such
as asynchronous event programming as an alternative to conventional threading. A
hard realtime implementation could implement all modules to provide the maximal
flexibility and functionality to the realtime programmer. Both would benefit from
easier migration of code to realtime systems.

Every RTSJ implementation shall provide the Base Module functionality, but
all other modules are optional. The optional modules are the Device Module, the
Alternative Memory Areas Module and the POSIX Module. In addition, there are a
couple of optional features as well. This give the implementation some choice over
which modules and features to include and which not.

3.2.2.1 Base Module

The Base Module adds the concepts of processor affinity, threads with realtime
scheduling, and asynchronous event handling. This includes the notion of executing
code at a given time interval, providing a much more stable response than using
sleep in a loop. These features should have no impact on the overall performance

RTSJ 2.0 (Draft 46) 25

3 General Requirements

of a system that implements them, but enrich the programming modules available
to the programmer. The classes and interfaces required in this module are all in
package javax.realtime and are listed below.

e AbsoluteTime (Section 9.3.1.1)
ActiveEvent (Section 8.3.1.1)
ActiveEventDispatcher (Section 8.3.3.1)
Affinity (Section 6.3.3.1)
AperiodicParameters (Section 6.3.3.2)
AsyncBaseEvent (Section 8.3.3.2)
AsyncBaseEventHandler (Section 8.3.3.3)
AsyncEvent (Section 8.3.3.4)
AsyncEventHandler (Section 8.3.3.5)
AsyncLongEvent (Section 8.3.3.6)
AsyncLongEventHandler (Section 8.3.3.7)
AsyncObjectEvent (Section 8.3.3.8)
AsyncTimable (Section 10.3.1.1)
AsyncObjectEventHandler (Section 8.3.3.9)
BoundAsyncBaseEventHandler (Section 8.3.1.2)
BoundAsyncEventHandler (Section 8.3.3.10)
BoundAsyncLongEventHandler (Section 8.3.3.11)
BoundAsyncObjectEventHandler (Section 8.3.3.12)
Clock (Section 10.3.2.1)
Chronograph (Section 10.3.1.2)
ConfigurationParameters (Section 5.3.2.1)
FirstInFirstOutScheduler (Section 6.3.3.4)
GarbageCollector (Section 14.2.2.1)
HeapMemory (Section 11.3.2.1)
HighResolutionTime (Section 9.3.1.2)
ImmortalMemory (Section 11.3.2.2)
ImportanceParameters (Section 6.3.3.5)
Interruptible (Section 8.3.1.3)
MemoryArea (Section 11.3.2.3)
MemoryAreaVisitor (Section 11.3.1.1)
MemoryParameters (Section 11.3.2.4)
MonitorControl (Section 7.3.1.1)
OneShotTimer (Section 10.3.2.2)
PeriodicParameters (Section 6.3.3.6)
PeriodicTimer (Section 10.3.2.3)
PhasingPolicy (Section 5.3.1.1)

!The mayUseHeap flag is present, but can only be set if the Memory Module is supported.

26 RTSJ 2.0 (Draft 46)

Semantics 3.2

PriorityCeilingEmulation (Section 7.3.1.2)
Prioritylnheritance (Section 7.3.1.3)
PriorityParameters (Section 6.3.3.7)
PriorityScheduler (Section 6.3.3.8)
ProcessingGroup (Section 6.3.3.9)
QueueOverflowPolicy (Section 6.3.2.2)
RealtimeExecutionContext (Section 6.3.1.2)
RealtimeSecurity (Section 14.2.2.2)
RealtimeSystem (Section 14.2.2.3)
RealtimeThread (Section 5.3.2.2)
RelativeTime (Section 9.3.1.3)
Releasable (Section 8.3.1.4)
ReleaseParameters (Section 6.3.3.10)
RoundRobinScheduler (Section 6.3.3.11)
RTSJModule (Section 14.2.1.1)
Schedulable (Section 6.3.1.3)

Scheduler (Section 6.3.3.12)
SchedulingParameters (Section 6.3.3.14)
SizeEstimator (Section 11.3.2.5)
SporadicParameters (Section 6.3.3.15)
Timable (Section 10.3.1.3)

Timed (Section 8.3.2.1)

TimeDispatcher (Section 10.3.2.4)
Timer (Section 10.3.2.6)
WaitFreeReadQueue (Section 7.3.1.4)
WaitFreeWriteQueue (Section 7.3.1.5)

All throwables defined in the RT'SJ are also in the javax.realtime package:

AlignmentError (Section 15.2.3.1)

Arrival TimeQueueOverflowException (Section 15.2.2.1)
CeilingViolationException (Section 15.2.2.3)
DeregistrationException (Section 15.2.2.5)

Illegal AssignmentError (Section 15.2.3.2)
InaccessibleAreaException (Section 15.2.2.8)
LateStartException (Section 15.2.2.9)
MemoryAccessError (Section 15.2.3.3)
MemoryInUseException (Section 15.2.2.11)
MemoryScopeException (Section 15.2.2.12)
MemoryTypeConflictException (Section 15.2.2.13)
MITViolationException (Section 15.2.2.10)
OffsetOutOfBoundsException (Section 15.2.2.14)

RTSJ 2.0 (Draft 46) 27

3 General Requirements

POSIXException (Section 15.2.2.15)
POSIXInvalidSignalException (Section 15.2.2.16)
POSIXInvalidTargetException (Section 15.2.2.17)
POSIXSignalPermissionException (Section 15.2.2.18)
ProcessorAffinityException (Section 15.2.2.19)
RangeOutOfBoundsException (Section 15.2.2.20)
RegistrationException (Section 15.2.2.21)
ResourceLimitError (Section 15.2.3.4)
ScopedCycleException (Section 15.2.2.22)
StaticCheckedException (Section 15.2.2.24)

StaticError (Section 15.2.3.5)

StaticOutOfMemoryError (Section 15.2.3.6)
StaticRuntimeException (Section 15.2.2.25)
StaticThrowable (Section 15.2.1.1)
StaticThrowableStorage (Section 15.2.3.7)
SizeOutOfBoundsException (Section 15.2.2.23)
ThrowBoundaryError (Section 15.2.3.8)
UnsupportedPhysicalMemoryException (Section 15.2.2.27)
UnsupportedRawMemoryRegionException (Section 15.2.2.28)

3.2.2.2 Device Module

The Device Module provides a low level interface for interacting with the real world.
Though realtime control systems need this kind of interaction, other systems can
benefit from it as well. Data collection, that is not time critical is a good example.
For instance, monitoring the temperature or humidity in a room could be done easily
with off-the-self hardware using this module. The classes required in this module are
all in the package javax.realtime.device and are listed below.
e Happening (Section 12.3.2.3)
HappeningDispatcher (Section 12.3.2.4)
InterruptServiceRoutine (Section 12.3.2.5)
DMABufferFactory (Section 12.3.2.1)
RawMemory (Section 12.3.1.17)
RawMemoryFactory (Section 12.3.2.6)
RawMemoryRegion (Section 12.3.2.7)
RawMemoryRegionFactory (Section 12.3.1.18)
RawByte (Section 12.3.1.2)
RawByteReader (Section 12.3.1.3)
RawByteWriter (Section 12.3.1.4)
RawDouble (Section 12.3.1.5)
RawDoubleReader (Section 12.3.1.6)

28 RTSJ 2.0 (Draft 46)

Semantics 3.2

RawDoubleWriter (Section 12.3.1.7)
RawFloat (Section 12.3.1.8)
RawFloatReader (Section 12.3.1.9)
RawFloatWriter (Section 12.3.1.10)
Rawlnt (Section 12.3.1.11)
RawIntReader (Section 12.3.1.12)
RawIntWriter (Section 12.3.1.13)
RawLong (Section 12.3.1.14)
RawLongReader (Section 12.3.1.15)
RawLongWriter (Section 12.3.1.16)
RawShort (Section 12.3.1.19)
RawShortReader (Section 12.3.1.20)
RawShortWriter (Section 12.3.1.21)

3.2.2.3 Alternative Memory Areas Module

The Alternative Memory Areas Module provides an alternative to a single heap with
garbage collection model for memory management. Most of the facilities are centered
around providing an alternative to garbage collection, but facilities for providing
what memory to use for Java objects is also addressed. The classes required in this
module are all in package javax.realtime.memory and are listed below.

e TMemory (Section 11.4.3.1)
PhysicalMemoryCharacteristic (Section 11.4.1.1)
PhysicalMemoryFactory (Section 11.4.3.3)
PhysicalMemoryRegion (Section 11.4.3.4)
PhysicalMemorySelector (Section 11.4.3.5)
PinnableMemory (Section 11.4.3.6)
ScopedMemory (Section 11.4.3.7)
StackedMemory (Section 11.4.3.8)

3.2.3 POSIX module

The POSIX module provides access to functionality particular to POSIX systems.
In particular, it addresses POSIX signals and POSIX realtime signals. This module
is optional, but it an implementation of this standard on a POSIX platform should
provide it. Implementations on platforms that are not POSIX compliant may provide
it. The classes in this module are in the package javax.realtime.posix and are listed
below.

e RealtimeSignal (Section 13.3.1.2)

e RealtimeSignalDispatcher (Section 13.3.1.3)

e Signal (Section 13.3.1.4)

RTSJ 2.0 (Draft 46) 29

3 General Requirements

e SignalDispatcher (Section 13.3.1.5)

3.2.4 Optional Features

Even with modules, it is difficult to eliminate all optional features. These features
are either not easy to implement on all platforms or have the potential to cause
a significant performance overhead. Therefore, an application cannot depend on
them to be present in every implementation. However, if an optional facility is
implemented, the application may rely on it to behave as specified here. Those
extensions are illustrated in Table 3.1.

Table 3.1: RTSJ Options

Hard cost enforcement Provides an automatic means of controlling the
processor usage of a task or group of tasks.
Processing Group deadline less | Enables the application to specify a processing

than period group deadline less than the processing group
period

Allocation-rate enforcement on | Enables the application to limit the rate at which

heap allocation a schedulable creates objects in the heap.

Interrupt Service Routine Provides first level interrupt processing in Java.

The ProcessingGroup class only intervenes in scheduling on systems that support
the hard cost enforcement option. The precision of intervention is limited by the
precision of the clock being used to measure time times the number of CPUs involved
in the enforcement. When cost enforcement is supported, the precision of enforcement
is the drive precision of the clock being used. In any event, cost and deadline overrun
handlers are fired with the resolution specified for hard cost enforcement.

In implementations where processing group deadline less than period is not
supported, values passed to the constructor for ProcessingGroup and its setDeadline
method are constrained to be equal to the period. If the option is supported,
processing group deadlines less than the period shall be supported and function as
specified.

In implementations where heap allocation rate enforcement is supported, it shall
be implemented as specified. If heap allocation rate enforcement is not supported,
the allocation rate attribute of MemoryParameters shall be checked for validity but
otherwise ignored by the implementation.

First level interrupt handling can only be supported in certain contexts, such
as in kernel space and in a device driver context in user space on systems that
support this feature. Normally user space programs cannot handle interrupts di-
rectly. The class should be present in every system that implements the device

30 RTSJ 2.0 (Draft 46)

Semantics 3.2

module, but in implementations that do not support first level interrupt handling,
the InterruptServiceRoutine.register should always throw an UnsupportedOpera-
tionException.

Extensions to this specification are allowed, but shall not require changes to the
public interfaces defined in the javax.realtime package tree in particular and the java
and javax package trees in general.

3.2.5 Deprecated Classes

(Classes and methods that have been deprecated as of this specification are not part of
any module, but may be implemented by a full RT'SJ implementation. The following
classes are deprecated:
e DuplicateFilterException (Section A.2.2.3)
ImmortalPhysicalMemory (Section A.2.3.10)
LTMemory (Section A.2.3.11)
LTPhysicalMemory (Section A.2.3.12)
NoHeapRealtimeThread (Section A.2.3.15)
PhysicalMemoryManager (Section A.2.3.20)
PhysicalMemoryTypeFilter (Section A.2.1.1)
ProcessingGroupParameters (Section A.2.3.23)
POSIXSignalHandler (Section A.2.3.17)
RationalTime (Section A.2.3.24)
RawMemoryAccess (Section A.2.3.25)
RawMemoryFloatAccess (Section A.2.3.26)
ScopedMemory (Section A.2.3.32)
UnknownHappeningException (Section A.2.2.6)
VTMemory (Section A.2.3.36)
VTPhysicalMemory (Section A.2.3.37)
WaitFreeDequeue (Section A.2.3.38)

They are documented fully in Chapter A.

3.2.6 Implementation types Allowed

As described in Section 3.2.2; the RTSJ now has modules. Every implementation,
except one supporting Safety Critical Java, must implement the Core module. Each
module provided by an implementation must be provided in full. None of the classes
of an unimplemented module should be present. Only an implementation of this
specification for Safety Critical Java, may subset classes and packages herein, but
must implement the methods and classes defined in that specification.

RTSJ 2.0 (Draft 46) 31

3 General Requirements

3.2.6.1 Realtime Deployment Implementation

A realtime deployment implementation must support all semantics described herein
necessary for deterministic programming. In addition to implementing the core
module, a realtime deployment implementation must have a realtime garbage collector
or implement the alternative memory areas module. All other modules are optional.

The minimum scheduling semantics that must be supported in all implementations
of the RTSJ are fixed-priority preemptive scheduling and at least 28 unique priority
levels. Fixed priority means that the system does not change the priority of any
Schedulable except, temporarily, for priority inversion avoidance. Priority change is
under control of the application.

What the RTSJ precludes by this statement is scheduling algorithms for realtime
priorities which change thread priorities according to policies for optimizing through-
put. An implementation may not increase the priority of a thread that has been
receiving few processor cycles because of higher priority threads (aging) or other
so-called fair scheduling algorithms. Fair scheduling operations are also prohibited.
These types of algorithms are reserved for conventional Java thread priorities. This
does not prohibit an application from implementing other realtime schedulers, such
as earliest deadline first, which use underlying OS priorities to support an application
meeting its deadlines.

The 28 unique priority levels are required to be unique to preclude implementations
from using fewer priority levels of underlying systems to implement the required 28
by simplistic algorithms (such as lumping four RTSJ priorities into seven buckets for
an underlying system that only supports seven priority levels). It is sufficient for
systems with fewer than 28 priority levels to use more sophisticated algorithms to
implement the required 28 unique levels as long as Schedulable behave as though
there were at least 28 unique levels. (e.g. if there were 28 RealtimeThreads (t1, ..., tag)
with priorities (p1, ..., p2g), respectively, where the value of p; was the highest priority
and the value of py the next highest priority, etc., then for all executions of threads
t; through tog thread t; would always execute in preference to threads ts, ..., tog and
thread ¢t would always execute in preference to threads ts, ..., tsg, etc.)

The minimum synchronization semantics that must be supported in all deployment
implementations of the RTSJ are detailed in the section on synchronization below
and repeated here. All deployment implementations of the RT'SJ must provide an
implementation of the synchronized primitive with default behavior that ensures
that there is no unbounded priority inversion. Furthermore, this must apply to code
if it is run within the implementation as well as to schedulables. Both the priority
inheritance and the priority ceiling emulation protocols must be implemented, but
priority inheritance is the default.

All instances of Schedulable waiting to acquire a resource must be queued in
priority order. This applies to the processor as well as to synchronized blocks. When

32 RTSJ 2.0 (Draft 46)

Semantics 3.2

schedulables with the same exact priority are possible under the active scheduling
policy, schedulables with the same priority are queued in FIFO order. Note that
these requirements apply only to the required scheduling policy and hence use the
specific term "priority". In particular,

1. schedulables waiting to enter synchronized blocks are granted access to the
synchronized block in priority order;

2. a blocked schedulable that becomes ready to run is given access to the processor
in priority order;

3. a schedulable whose execution eligibility is explicitly set by itself or another
schedulable is given access to the processor in priority order;

4. a schedulable that performs a yield() will be given access to the processor after
all other schedulables waiting at the same priority;

5. however, schedulables that are preempted in favor of a schedulable with higher
priority may be given access to the processor at any time as determined
by a particular implementation. The implementation is required to provide
documentation stating exactly the algorithm used for granting such access.

Other realtime schedulers must provide and document similar algorithms to expe-
dited schedulables with higher execution eligibility over those with lower execution
eligibility.

The RTSJ does not require any particular garbage collection algorithm; however,
every deployment implementation must either implement the alternate memory
area module or have a realtime garbage collection. In the later case, the realtime
limitations must be documented. All implementations of the RTSJ must support
the class GarbageCollector and implement all of its methods.

Notwithstanding the above, a program that uses the RTSJ and is deployed as an
executable, so that it does not provide general access to the virtual machine, but
solely runs that program code, need only include the RT'SJ methods and classes
needed by the application.

3.2.6.2 Simulation Implementation

An implementation that chooses not to provide realtime guarantees, is termed a
simulation implementation. Such an implementation does not need to provide the
realtime characteristic described above, but does need to at least provide all the
APIs of the core module. A simulation implementation can be a production system,
but not for realtime applications. This enables a conventional JVM to make the base
APIs available to a wider audience without changing its performance characteristics.
The following semantics are optional for an RTSJ implementation designed and

licensed exclusively as a development tool.
1. The priority scheduler need not support fixed-priority preemptive scheduling or
the priority inversion avoidance algorithms. This does not excuse an implemen-

RTSJ 2.0 (Draft 46) 33

3 General Requirements

tation from fully supporting the relevant APIs. It only reduces the required
behavior of the underlying scheduler to the level of the scheduler in the Java
specification extended to at least 28 priorities.

2. No semantics constraining timing beyond the requirements of the Java spec-
ifications need be supported. Specifically, garbage collection may delay any
thread without bound and any delay in delivering asynchronously interrup-
ted exceptions is permissible including never delivering the exception. Note,
however, that if any AIE other than the generic AIE is delivered, it shall
meet the AIE semantics, and all heap-memory-related semantics other than
preemption remain fully in effect. Further, relaxed timing does not imply
relaxed sequencing. For instance, semantics for scoped memory shall be fully
implemented.

3. The RTSJ semantics that alter standard Java method behavior, such as the
modified semantics for Thread.setPriority and Thread.interrupt, are not re-
quired for a development tool, but such deviations from the RTSJ shall be
documented, and the implementation shall be able to generate a runtime warn-
ing each time one of these methods deviates from standard RTSJ behavior.

These relaxed requirements set a floor for RT'SJ development system tool imple-

mentations. A development tool may choose to implement semantics that are not
required.

3.3 Required Documentation

In order to properly engineer a realtime system, an understanding of the cost
associated with any arbitrary code segment is required. This is especially important
for operations that are performed by the runtime system, largely hidden from the
programmer. An example of this is the maximum expected latency before the garbage
collector can be interrupted.

The RTSJ does not require specific performance or latency numbers to be matched.
Rather, to be conformant to this specification, an implementation must provide
documentation regarding the expected behavior of particular mechanisms. The
mechanisms requiring such documentation, and the specific data to be provided, will
be detailed in the class and method definitions.

Each implementation of the RTSJ is required to provide documentation for several
behaviors.

1. If schedulers other than the required first-in-first-out (FIFO) and round robin
(RR) schedulers are available to applications, the behavior of these schedulers
and their interaction with each other and the required schedulers as detailed
in Chapter 6, Scheduling, shall be documented.

(a) The documentation must define how its order of execution eligibility

34 RTSJ 2.0 (Draft 46)

Required Documentation 3.3

relates to that of the priority schedulers, where the order of execution
eligibility of a priority scheduler is the priority order.

(b) The list of classes whose instances constitute schedulables for the scheduler,
unless that list is the same as the list of schedulables for the required
schedulers, shall be included.

(c) If there are restrictions on use of the scheduler from a nonheap context,
such restrictions shall be documented as well.

. A scheduler that cannot place a schedulable at the front of the queue for its
active priority when it is preempted by a higher-priority schedulable must
document such a deviation from the specification.

. An implementation is required to document the granularity at which the current
CPU consumption is updated for cost monitoring and cost enforcement, when
the later is implemented.

. The implementation shall fully document the behavior of any subclasses of
GarbageCollector.

. An implementation that provides any MonitorControl subclasses not detailed
in this specification shall document their effects, particularly with respect to
priority inversion control and which (if any) schedulers fail to support the new
policy.

. If on losing “boosted” priority due to a priority inversion avoidance algorithm,
the schedulable is not placed at the front of its new queue, the implementation
shall document the queuing behavior.

. For any available scheduler other than the required schedulers, an implementa-
tion shall document how, if at all, the semantics of synchronization differ from
the rules defined for the default Prioritylnheritance monitor control policy.

(a) It shall supply documentation for the behavior of the new scheduler with
priority inheritance (and, if it is supported, priority ceiling emulation
protocol) equivalent to the semantics for the base priority scheduler found
in the Synchronization chapter.

(b) If there are restrictions on use of the scheduler from a extraheap context,
the documentation shall detail the effect of these restrictions for each
RTSJ API.

. The worst-case response interval between firing an AsyncEvent because of a
bound happening to releasing an associated AsyncEventHandler (assuming no
higher-priority schedulables are runnable) shall be documented for at least one
reference architecture.

. The interval between firing an AsynchronouslyInterruptedException at an ATC-
enabled thread and first delivery of that exception (assuming no higher-priority
schedulables are runnable) shall be documented for at least one reference
architecture.

RTSJ 2.0 (Draft 46) 35

3 General Requirements

10.

11.

12.

13.

14.

If cost enforcement is supported and the implementation assigns the cost of
running finalizers for objects in scoped memory to any schedulable other than
the one that caused the scope’s reference count to drop to zero by leaving the
scope, the rules for assigning the cost shall be documented.

If hard cost enforcement is supported and enforcement (blocked-by-cost-overrun)
can be delayed beyond the enforcement time granularity, the maximum such
delay shall be documented.

If the implementation of RealtimeSecurity is more restrictive than the required
implementation, or has run-time configuration options, those features shall be
documented.

For each supported clock, the documentation shall specify whether the res-
olution is settable, and if it is settable the documentation shall indicate the
supported values.

If an implementation includes any clocks other than the required realtime clock,
their documentation shall indicate in what contexts those clocks can be used.
If they cannot be used in extraheap context, the documentation shall detail the
consequences of passing the clock, or a time that uses the clock to a heapless
schedulable.

3.4 Rationale

The embedded market, especially for safety critical applications, is quite sensitive
to including code that is not needed by an application. Furthermore, different
application domains have differing needs on API. Flexibility is needed to ensure that
these diverse domains and requirements are met. Still, it is important to ensure
that when a given function is needed, it is included as defined herein. It is also
important that an open virtual machine deployment has a well-defined API set. This
has required moving a few classes into a new package, so that the resulting modules
will be consistent with the rules imposed by the JSR 376, the Java Platform Module
System. The above modules and deployment rules provide both this flexibility and
standardization.

36

RTSJ 2.0 (Draft 46)

Chapter 4

Realtime vs Conventional Java

Though compatibility with conventional Java (i.e., any Java runtime environments
that implement the Java Virtual Machine Specification and the Java Language
Specification but not the RTSJ) is the first concern of this specification, there
are several several cases where being able to meet realtime constraints requires a
tightening of the semantics of the virtual machine and some subtle changes to the
semantics of two key classes: java.lang. Thread and java.lang. ThreadGroup. These
constraints and changes place additional requirements on scheduling, the memory
model, and memory management. The specification additionally defines both an
extension to thread for realtime scheduling and a new type of concurrent activity called
an event handler; hence, the meaning of current thread has a different interpretation
than in conventional Java. The term task is used when refering to any of these three
types: conventional Java thread, realtime thread, and event handler.
Behaviors that may be different from conventional Java or may be surprising to
developers of conventional Java applications under the RTSJ can be divided into
three categories. The first category applies to conventional Java code that was not
developed with the RTSJ in mind and does not use RT'SJ features but runs under an
RTSJ implementation. The second is conventional Java code that was not developed
with the RTSJ in mind but is called by code developed for the RTSJ in an RTSJ
implementation. The final catagory is Java code that was developed for the RTSJ
and is being used in an RTSJ implementation.
The first category, conventional Java code running on an RT'SJ implementation
but not using any RTSJ features, may encounter the following behaviors that are
not (necessarily) experienced under a conventional Java VM.
e Any object allocated in a static initializer that later becomes garbage may be
unable to be collected by the VM. (See Section 11.2.6.)

e Some Throwables, in particular, those implementing StaticThrowable, which
includes StaticOutOfMemoryFError, which an RTSJ VM throws in preference
to OutOfMemoryError, have stack trace and message information which is

37

4 Realtime vs Conventional Java

38

valid only while the Throwable is in flight and in the thread which originally
threw the Throwable. (See Section 15.1.)

The second category, conventional Java code that is running on an RTSJ imple-
mentation and in use by code that was developed for the RTSJ, may encounter the
following differences in behavior.

[llegal AssignmentError may be thrown in non RTSJ-aware classes when the
Alternative Memory Management module (Chapter 11) is in use. (See Sec-
tion 11.2.7.)

Tasks in an RTSJ application might not be scheduled by a fair scheduler. The
result is that there may be thread starvation unexpected by conventional Java
applications. (See Section 6.2.1.)

A call to Thread.getPriority() may return a priority higher than
Thread. MAX PRIORITY. (See Section 6.3.3.8.3.)

Methods cannot rely on any thread local information when used in conjunction
with asynchronous event handlers. This includes thread local data and calls
to Thread.currentThread(). Hence, care must be taken when using thread
identifiers to determine the identity of callers. (This is analogous to the use of
ThreadPool in conventional Java.) (See Sections 8.2.1 and 8.3.3.5.)

The third and final category is behaviors experienced by code designed for the
RTSJ running on an RTSJ implementation that are departures from conventional
Java semantics or may be otherwise surprising.

Finally clauses in asynchronously interruptible methods are not executed
during propagation of an AsynchronouslylnterruptedException. However, syn-
chronized code is always ATC-deferred, and therefore monitor locks are released
normally. (See Section 8.2.4.)

Catch clauses that name AsynchronouslyInterruptedException (or its parent
classes) will not automatically stop the propagation of ATEs. An Asynchron-
ouslyInterruptedException must be explicitly cleared. (See Section 8.2.4.)
Exceptions propagating into asynchronously interruptible regions of code
will be lost if an AsynchronouslyInterruptibleException is pending. (See Sec-
tion 8.2.4.)

Subclasses of AsynchronouslyInterruptibleException indicated in the signature
of a method do not indicate that the method is asynchronously interruptible.
(See Section 8.2.4.)

Catch clauses for AsynchronouslylnterruptibleException or its subclasses in
asynchronously interruptible methods will not catch an AIE. (See Section 8.2.4.)
A Throwable crossing a MemoryArea boundary might be transformed into
a ThrowBoundaryError, and the original exception may be lost. (See Sec-
tion 15.2.3.8 and the enter family of methods on MemoryArea.)

RTSJ 2.0 (Draft 46)

Definitions 4.2

4.1 Definitions

Conventional Java — The language and runtime as defined by the “Java Language
Specification[5]” and “Java Virtual Machine Specification[6],” without any
realtime extensions.

Realtime Java — Conventional Java extended and refined according to this speci-
fication for programming realtime systems.

Fair Scheduling — A method of nonrealtime scheduling which tries to ensure that
all tasks get a chance to run, thus preventing starvation. Tasks with a higher
priority get a notionally larger share of execution time than lower priority tasks.
Tasks running at the same priority get notionally equal shares of the processor.

Happens-Before — The “Java Language Specification[5]” specifies the happens-
before relationship as “If one action happens-before another, then the first
is visible to and ordered before the second.” See the specification for the
implications of this relationship.

Priority — An indication of the relative scheduling eligibility of a task. A task
with a higher priority is scheduled before a task with a lower priority. The
priority assigned to a task is not necessarily the one used for scheduling, since
priority avoidance and cost enforcement mechanisms may transiently override
it. See Base Priority in Section 6.1 and Active Priority in Section 7.1.

Task — A conventional Java thread or an RTSJ Schedulable.

4.2 Semantics

The refinements and changes to the semantics of the Java runtime environment
and classes shall not affect the functional correctness of Java code written for a
conventional Java implementation when running on a Java runtime environment
which implements this specification. There may be changes in the relative timing of
threads, but these should not violate the conventional Java specifications. The use
of some RTSJ features with code written for a conventional Java implementation
may, however, cause unexpected behaviors. This is particularly true when using
alternate memory areas, asynchronous transfer of control, and thread local memory
in conjunction with unbound asynchronous event handlers.

4.2.1 Scheduling

How tasks are scheduled in a realtime system is quite different from what one expects
in a conventional Java virtual machine. For compatibility, this means that there
must be a domain where conventional Java threads are scheduled in a familiar way
and another domain that supports realtime scheduling. This separation is done in

RTSJ 2.0 (Draft 46) 39

4 Realtime vs Conventional Java

part via task priority.

Tasks running with the conventional ten priorities defined in Java should be
scheduled as expected. Unfortunately, in order to ease the porting of Java to different
environments, the scheduling of conventional Java threads is underspecified in [5].
This has been resolved in practice to avoid surprising the programmer by providing
some sort of fair scheduling for these threads, i.e, scheduling that at least prevents
task starvation, but may also try to balance CPU availability across threads. For
tasks running in these priorities an implementation of this specification shall provide
some notion of fair scheduling between tasks with priority between one and ten
inclusive.

Realtime threads and event handlers need a stronger notion of prioritization
than conventional Java threads, so this specification requires the implementation of
two priority-preemptive schedulers, one with run to completion (or next suspension
point) and one with round-robin semantics. Priorities above the conventional ten
priorities are used for these schedulers, and the interactions of the two schedulers are
well-defined. Multithreaded code that runs with the priority-preemptive scheduler
(or any other realtime scheduler) is more prone to deadlock or starvation than code
run with fair scheduling. The changes to Thread and ThreadGroup are to support
this realtime scheduling.

1. The semantics of set and get methods for priority in Thread differ for realtime

threads.

2. The ThreadGroup class’s behavior differs with respect to realtime threads.

3. The behavior of the ThreadGroup-related methods in Thread differ when they

are applied to realtime threads.
Code running at realtime priorities can also starve tasks scheduled on the conventional
Java scheduler, possibly indefinitely.

4.2.1.1 Priority

The methods setPriority and getPriority in java.lang.Thread are final. The realtime
thread classes are consequently not able to override them and modify their behavior
to suit the requirements of the RT'SJ scheduler. To bring the java.lang.Thread class
in line with its realtime subclasses, the semantics of the getPriority and setPriority
methods must be modified.

4.2.1.1.1 Setting Priority

The setPriority method has the following additional requirements.

1. Use of Thread.setPriority() shall not affect the correctness of the priority
inversion avoidance algorithms controlled by PriorityCeilingEmulation and
PriorityInheritance. Changes to the base priority of a realtime thread as a

40 RTSJ 2.0 (Draft 46)

Semantics 4.2

result of invoking Thread.setPriority() are governed by semantics from Chapter
7 on Synchronization.

2. Conventional Java threads may not use setPriority to apply the expanded
range of priorities defined by this specification.

3. When setPriority is called on a realtime thread, that thread’s Scheduling-
Parameters are set to null and the thread is scheduled as if it were a Java
thread.

4.2.1.1.2 Getting Priority

The getPriority method has the following additional requirements.

1. When called on a conventional Java thread, its assigned priority is returned
even if it has a higher priority than what would be allowed by conventional
Java. It may be higher only when set with an instance of SchedulingParameters
through a scheduler.

2. When called on a realtime thread with null SchedulingParameters, a value in
the conventional Java priority range is returned.

3. When called on a realtime thread (t) with PriorityParameters, getPriority
behaves effectively as if it included the following code snippet:

1 ((PriorityParameters)t.getSchedulingParameters()).getPriority();

4. When the scheduling parameters are of a type other than PriorityParameters,
a ClassCastException is thrown.

All supported monitor control policies must apply to Java threads as well as to all
schedulables.

4.2.1.2 Thread Groups

Conventional Java provides thread groups as a means of managing groups of threads.
Since the RTSJ provides additional classes for encapsulating control flow under
the umbrella of Schedulable, it makes sense to have facilities for managing groups
of these as well. The RTSJ provides an extension of ThreadGroup for this called
SchedulingGroup.

Every instance of ThreadGroup holds a reference to every member thread and
every subgroup instance of ThreadGroup, as well as a reference to its parent group.
This is problematic under the RTSJ, since realtime threads may be allocated in scoped
memory. Rather than making complicated changes to the semantics of ThreadGroup
(and, in particular, its enumerate methods), the RT'SJ requires that no Thread Group
or Java thread is allocated in scoped memory, and that no thread allocated in
ScopedMemory is referenced by a ThreadGroup. Instances of SchedulingGroup are

RTSJ 2.0 (Draft 46) 41

4 Realtime vs Conventional Java

instead used for these purposes, and an alternative to enumerate is provided on
SchedulingGroup in the form of a visitor.

Scheduling groups, i.e., instances of SchedulingGroup (a subclass of ThreadGroup,
are designed to be able to reference threads, schedulables, and other scheduling
groups, even when they are in scoped memory. These are only reachable using a
visitor with a lambda expression. Consequently schedulables and scheduling groups
are not part of any thread group and will hold a scheduling group reference as their
parent thread group. This requires that the thread group of the main thread is also
a schedulable group, so that schedulables and schedule groups can be created from
the main thread.

In order for this to work in a transparent manner, the following rules must hold.

1. An instance of ThreadGroup that is not an instance of SchedulingGroup cannot
contain any instances of Schedulable.

2. In an RTSJ implementation, both the ThreadGroup at the root of the Thread-
Group hierarchy and the ThreadGroup to which the initial thread belongs
must be instances of SchedulingGroup.

3. Call the SchedulingGroup.enumerate(Thread||) and SchedulingGroup.enumerate(Thread|],
boolean) only return Java threads.

4. Call the SchedulingGroup.enumerate(Thread Group||) and SchedulingGroup.enumerate(Thread Grouy
boolean) only return threads groups and scheduling groups allocated in heap
and immortal memory.

5. A Java thread (not a realtime thread) that is created from a realtime thread or
bound asynchronous event handler without an explicit thread group and that
is not assigned a thread group by the security manager, inherits the scheduling
group of it creator, when that group is allocated in heap or immortal memory;
otherwise an Illegal AssignmentError is thrown.

6. The thread group of a Java thread that is created from an unbound asyn-
chronous event handler without an explicit thread group and that is not assigned
a thread group by the security manager, is assigned to the scheduling group of
the handler’s dispatcher, when that dispatcher’s scheduling group is allocated
in heap or immortal memory; otherwise an IllegalAssignmentError is thrown.

7. A thread group cannot be created in scoped memory. The constructor shall
throw an Illegal AssignmentError.

8. Setting a maximum priority on a scheduling group, either explicitly via it parent
with a thread group specific method, has no influence on the schedulables in
that group.

9. Except as specified previously, realtime threads and bound asynchronous event
handlers have the same ThreadGroup membership rules as their parent Thread
class.

42 RTSJ 2.0 (Draft 46)

Semantics 4.2

4.2.1.3 Current Thread

In Java, the currently executing thread can always be determined by calling the static
method Thread.currentThread(). In the RTSJ, there are two types of schedulable
entities: threads and asynchronous event handlers. The latter may be mapped
dynamically by the realtime Java virtual machine onto the underlying thread model.
The method Thread.currentThread() when called from an unbound asynchronous
event handler will return the thread that is being used as the current execution
engine for that event handler. The program should not rely on this being constant
for the lifetime of the program. It can rely on it being constant for the current release
of the handler (see 6.1 for the definition of a release). It is not recommended that
the program perform any operations on this underlying thread as it may have an
impact beyond that of the current event handler. This also means that thread local
memory cannot be relied on when used with unbound event handlers, because data
saved in one release may not be available in the next release.

4.2.2 InterruptedException

The specification extends the use of the InterruptedException to support asyn-
chronous transfer of control.

The interruptible methods in the standard libraries (such as Object.wait, Thread.
sleep, and Thread.join) have their contract expanded slightly such that they will
respond to interruption not only when the interrupt method is invoked on the current
thread, but also, for schedulables, when executing within a call to AIE.doInterruptible
and that AIE is fired where AIE is an instance of the AsynchronouslyInterrupted-
Exception. See Chapter 8 on Asynchrony.

4.2.3 Java Memory Model

Some aspects of the Java Memory Model must be tightened for this specification, in
particular with regards to interactions with native code or when using the Device
Module. A conforming implementation must ensure that volatile loads and stores,
raw memory operations (see 12.2.1), and DMABufferFactory fence methods are all
ordered in a way that is consistent with respect to native code or hardware devices
that use platform-native memory coherence protocols to access raw memory or raw
byte buffers shared with the virtual machine. In particular, all Java code that
precedes a JNI call in the source happens-before the code executed during the JNI
call, which happens-before all Java code that follows its return.

Though not specified for conventional Java, most implementations provide explicit
fencing for JNT calls.

RTSJ 2.0 (Draft 46) 43

4 Realtime vs Conventional Java

4.2.4 Memory Management

The specification provides for two means of managing memory: garbage collection
and special memory areas. The latter are not collected by the garbage collector.
Since memory allocated in Java is always in the heap, or at least appears to be,
the initial allocation area is the heap. Furthermore, the allocation area can only
be changed either by entering another memory area or by calling a method that
explicitly causes allocation in another area. When the alternative memory areas
module is not present, the conventional Java semantics for allocation prevails.

4.2.4.1 Memory Areas

Using a conventional class in a memory area other than a heap can result in
unexpected behavior. This is particularly the case when a method of a class is
called when the current allocation context is different from the allocation context in
which the object was created; this can lead to exceptions. In general, memory areas
other than the heap may become full much faster than expected, because objects
that are no longer referenced will not be collected automatically.

A method that allocates an object or takes an object that was created in a
different memory area and tries to assign it to a field of its associated object can fail.
For example, creating a List on the heap and adding to it an object from a scoped
memory area will most likely cause an exception. Although using other memory
areas, such as scoped memory, is useful for helping to improving determinism, its
use complicates the logic of application and library code.

On systems that support memory areas other than heap and do not support
realtime garbage collection, some global resources must be put in immortal memory.
System properties and their String values allocated during system initialization shall
be allocated in immortal memory. For such a system, class objects should also be
stored there. Though this avoids priority inversion with the garbage collector, it can
cause higher memory use than expected.

4.2.4.2 Garbage Collection

Garbage collection is an important safety feature of the Java language and runtime
environment. Unfortunately, the garbage collection process can interfere with a
realtime program’s ability to always meet its timing deadlines. This specification
provides two main means of circumventing this problem: using a realtime garbage
collector or using the memory area module as an alternative to garbage collection
for realtime code. Additionally, an implementation may ignore the problem for an
implementation meant as a development system or for systems that choose not to
provide realtime guarantees. In any case, an implementation must document what
realtime guarantees it gives and which method it uses to do so.

44 RTSJ 2.0 (Draft 46)

Semantics 4.3

4.2.4.3 Realtime Garbage Collections

Industrial realtime garbage collectors are available with varying approaches to
providing realtime response. Though new collectors will undoubtably be developed,
all current ones use a variant of the mark-and-sweep algorithm. In all cases, the
collectors are incremental: realtime response is obtained by limiting how much of a
collection cycle is done each time the collector runs. Even on a multicore machine,
the garbage collector must be incremental, because it must tolerate changes to the
heap during garbage collection. Then CPU use is limited by tying the collector to
one ore more cores.

4.2.4.3.1 Thread-Based Collectors

A realtime thread-based collector is an incremental garbage collector that has its
own thread of control and runs at intervals. In this case, the garbage collector needs
to be scheduled to ensure that it runs often enough and long enough at each interval
to recycle discarded objects fast enough to keep up with allocations. There should
also be some maximum time after which the garbage collector can be interrupted.

4.2.4.3.2 Allocation-Based Collectors

A realtime allocation-based garbage collector does not have its own thread of
control. Instead, some interval of garbage collection work is done at each allocation.
This work is generally a function of the size of the object being allocated. This work
becomes part of the execution time of the program. Again, there should be some
maximum time after which the garbage collector can be interrupted.

4.2.4.3.3 Alternatives to Garbage Collection

This specification provides an Alternative Memory Areas Module for managing
memory without garbage collection. An implementation of this specification may
provide realtime response by requiring applications to use that module instead of
providing a realtime garbage collector. This means that all realtime threads would
have to run above the priority of the garbage collector and all communication with
conventional threads would have to use some nonblocking protocol.

4.2.4.3.4 Developer Implementation
An implementation that simply provides all the API but no realtime guarantee

is also permitted. This is useful as a development environment. Also, many of the
APIs are useful event in a conventional Java implementation.

RTSJ 2.0 (Draft 46) 45

4 Realtime vs Conventional Java

4.3 Rationale

The threading model of conventional Java was never meant for realtime programming.
Refinements to the virtual machine and new APIs are necessary to support the
additional requirements of applications, which have tasks that must complete in
a fixed amount of time. However, to ensure that any conventional Java program
can run on a virtual machine or runtime that implements this specification requires
careful consideration of each refinement to the Java programming model. Therefore,
conventional Java APIs and sematics have been extended, rather than replaced, to
facilitate compatibility with conventional Java runtime implementations.

46 RTSJ 2.0 (Draft 46)

Chapter 5

Realtime Threads

Conventional Java provides a thread class for its tasking model. Tasks can be
run simultaneously by creating multiple threads, but they do not provide realtime
scheduling semantics. For this, the specification provides a realtime thread class.
This class provides for the creation of

e realtime threads that have more precise scheduling semantics than java.lang.-
Thread, and
e realtime threads that have no dependency on the heap.

The RealtimeThread class extends java.lang.Thread. The ReleaseParameters,
SchedulingParameters, and MemoryParameters objects that can be passed to the
RealtimeThread constructor provide the temporal and processor configuration of
the thread to be communicated to the scheduler. ProcessingGroup, a class derived
from ThreadGroup provides cost enforcement on groups of tasks. The Configura-
tionParameters class defines, amongst other things, the size of Java thread stack.
The PhasingPolicy class defines the relationship between the threads start time and
its first release time when the start time is in the past.

The RTSJ provides two types of objects that implement the Schedulable interface:
realtime threads and asynchronous event handlers. This chapter defines the facilities
that are available to realtime threads. In many cases these facilities are also available
to asynchronous event handlers. In particular,

e the default scheduler must support the scheduling of both realtime threads
and asynchronous event handlers;

e realtime threads and asynchronous event handlers are allowed to enter into
memory areas and consequently they have associated scope stacks; and

e the flow of control of realtime threads and asynchronous event handlers are
affected by the RTSJ asynchronous transfer of control facilities.

Where the semantics apply to both realtime threads and asynchronous event handlers,
the term schedulable will be used.

47

5 Realtime Threads

5.1 Definitions

Exception — Both a mechanism of nonlocal transfer of control and a Java object

which carried information about the cause of the control transfer.

Scheduler — A module that manages the execution of tasks, as well as detecting

deadline misses and monitoring costs.

5.2 Semantics

Instances of RealtimeThread have the same semantics as conventional Java threads
except as noted below.

1.

48

Garbage collection executing in the context of a Java thread must not in itself
block execution of a schedulable with a higher execution eligibility that may
not access the heap; however application locks work as specified even when the
lock causes synchronization between a heap-using thread and a schedulable
that may not use the heap.

Each schedulable has an attribute which indicates whether an Asynchron-
ouslyInterruptedException is pending. This attribute is set when a call to
RealtimeThread.interrupt() is made on the associated realtime thread, when
a call is made to the interrupt method in one of the family of asynchronous
event handler classes, and when an asynchronously interrupted exception’s fire
method is invoked between the time the schedulable has entered that excep-
tion’s dolnterruptible method, and before it has return from dolnterruptible.
(See Chapter 8 on Asynchrony.)

A call to Schedulable.interrupt() generates the system’s generic Asynchronous-
lyInterruptedException. (See Chapter 8 on Asynchrony.)

The RealtimeThread.waitForNextRelease method is for use by realtime threads
that have periodic or aperiodic release parameters. In the absence of any
deadline miss or cost overrun, or an interrupt, the method returns when the
realtime thread’s next period is due or the next release happens.

In the presence of a cost overrun or a deadline miss, the behavior of wait-
ForNextRelease is governed by the thread’s scheduler.

The first release time of a realtime thread is governed by the value of any
start time in its associated ReleaseParameter object and the time at which
the RealtimeThread.start method is called and the value of any PhasingPolicy
parameter passed to it.

Instances of RealtimeThread may not be created with a thread group which is
not an instance of SchedulingGroup.

System-related termination activity (such as execution of finalizers for scoped
objects in scoped memory areas that become unreferenced) triggered by termi-

RTSJ 2.0 (Draft 46)

Semantics 5.2

nation of a realtime thread is not subject to cost enforcement or deadline miss
detection.

. The scheduling of a realtime thread is governed by its SchedulingParameters
and its Scheduler unless set explicitly with java.lang. Thread.setPriority(int),
which causes it to be treated as a conventional java thread until a new Schedu-
lingParameters object is set.

RTSJ 2.0 (Draft 46) 49

5 Realtime Threads PhasingPolicy

5.3 javax.realtime

5.3.1 Enumerations

5.3.1.1 PhasingPolicy

Inheritance

java.lang.Object
java.lang. Enum<E extends java.lang. Enum<E»
javax.realtime.PhasingPolicy

Description

This class defines a set of constants that specify the supported policies for starting
a periodic thread or periodic timer, when it is started later than the assigned
absolute time. The following table specifies the effective start time, that is, the
first release time of a periodic realtime thread. The effective start time of a
periodic timer is similar; where the first firing is equivalent to the first release,
and a call to the constructor is equivalent to a call to RealtimeThread.start().

Available since RTSJ 2.0

5.3.1.1.1 Enumeration Constants

ADJUST_IMMEDIATE

public static final ADJUST IMMEDIATE

Description

Indicates that a periodic thread started after the absolute time given for its start
time show be released immediately with the next release one period later.

ADJUST_FORWARD

public static final ADJUST FORWARD

Description

50 RTSJ 2.0 (Draft 46)

PhasingPolicy

javaz.realtime 5.3

Table 5.1: Effect of PhasingPolicy on the First Release of a RealtimeThread with

PeriodicParameters
ADJUST IM-| ADJUST ADJUST STRICT
MEDIATE FORWARD BACKWARD | PHASING
Relative Time | The time of | The time of | The time of | The time of
start method | start method | start method | start method
invocation invocation invocation invocation
plus start | plus start | plus start | plus start
time. time. time. time.
Absolute Release im-| All releases | The first | The start
Time, earlier | mediately before the | release occurs | method
than call to | and set next | time start | immediately | throws an
start release time | is called are | and the next | exception.
to be at the | ignored. The | release is at

time the start
method was
invoked plus
period.

first release is
at the start
time plus
the smallest
multiple of
period whose
time is after
the time start
was called.

the start time
plus the small-
est multiple of
period whose
time is after
the time start
was called.

is at time of
start method
invocation

is at time of
start method
invocation

Absolute First release is | First release is | First release is | First release is
Time, later | at time passed | at time passed | at time passed | at time passed
than call to | to start. to start. to start. to start.

start

Without Time | First release | First release | First release | First release

is at time of
start method
invocation

is at time of
start method
invocation

Indicates that a periodic thread started after the absolute time given for its start
time should be released at the next multiple of its period from its start time.

ADJUST_BACKWARD

public static final ADJUST BACKWARD

RTSJ 2.0 (Draft 46)

51

5 Realtime Threads ConfigurationParameters

Description

Indicates that a periodic thread started after the absolute time given for its start
time should be released immediately with the next release at the next multiple of
its period from its start time.

STRICT_PHASING

public static final STRICT PHASING

Description

Indicates that a periodic thread started after the absolute time given for its start
time should throw the LateStartException! exception instead of being released.

5.3.1.1.2 Methods

values
Signature
public static javax.realtime.PhasingPolicy|]

values()

Description

valueOf(String)
Signature
public static javax.realtime.PhasingPolicy

valueOf(String name)

Description

1Section 15.2.2.9

52 RTSJ 2.0 (Draft 46)

ConfigurationParameters javaz.realtime 5.3

5.3.2 Classes

5.3.2.1 ConfigurationParameters

Inheritance

java.lang.Object
javax.realtime.ConfigurationParameters

Description

Configuration parameters provide a way to specify various implementation-dependent
parameters such as the Java stack and native stack sizes, and to configure the
statically allocated ThrowBoundaryError? associated with a Schedulable?®.

Note that these parameters are immutable.

Available since RTSJ 2.0

5.3.2.1.1 Constructors

ConfigurationParameters(int, int, long)

Signature
public
ConfigurationParameters(int messageLength,
int stackTraceLength,
long|| sizes)
throws IllegalStateException

Description

Creates a parameter object for initializing the state of a Schedulable!. The
parameters provide the data for this initialization. For RealtimeThread® and
bound versions of AsyncBaseEventHandler®, the stack and message buffers can

2Section 15.2.3.8
3Section 6.3.1.3
4Section 6.3.1.3
5Section 5.3.2.2
6Section 8.3.3.3

RTSJ 2.0 (Draft 46) 53

5 Realtime Threads ConfigurationParameters

be set exactly, but for the unbound event handlers, the system cannot give any
guarentees to allow thread sharing.

Parameters

messageLength is the size of the buffer, in units of char, for storing an exception
message used by preallocated exceptions and errors thrown in the context of
an instance of Schedulable” which was created with this as its configuration
parameters. The value 0 indicates that no message should be stored. The value
of -1 uses the system default and is the default when an instance of this class
is not provided.

stackTraceLength Length of the stack trace buffer, in units of a number of Stack-
TraceElement instances, reserved use by preallocated exceptions and errors
thrown in the execution context of the Schedulable® object created with these
parameters. The amount of space this requires is implementation-specific. The
value 0 indicates that no stack trace should be stored. The value of -1 uses the
system default and is the default when an instance of this class is not provided.

sizes An array of implementation-specific values dictating memory parameters for
Schedulable objects created with these parameters, such as maximum Java and
native stack sizes. The sizes array will not be stored in the constructed object.
The default is system dependent, and indicated by setting this parameter to
null or by not providing an instance of this class.

ConfigurationParameters(long)

Signature
public
ConfigurationParameters(long|| sizes)

Description

Same as ConfigurationParameters(int,int,long||)? with arguments -1, -1, sizes.

5.3.2.1.2 Methods

"Section 6.3.1.3
8Section 6.3.1.3
9Section 5.3.2.1.1

54 RTSJ 2.0 (Draft 46)

ConfigurationParameters javaz.realtime 5.3

getMessageLength

Signature
public int
getMessageLength()

Description

Gets the size of the buffer dedicated to storing the message of the last thrown
throwable in the context of instances of Schedulable!® created with these param-
eters. The value 0 indicates that no message will be stored.

Returns
Reserved memory size in units of char.

getStackTraceLength

Signature
public int
getStackTraceLength()

Description

Gets the length of the stack trace buffer dedicated to Schedulable!! objects created
with these parameters’ preallocated exceptions, measured in number of Stack-
TraceElement instances. The amount of space this requires is implementation-
specific. The value 0 indicates that no stack trace will be stored.

Returns
Reserved memory size in implementation-dependent stack frames.

getSizes
Signature
public long|]|
getSizes()

Description

10Section 6.3.1.3
HSGection 6.3.1.3

RTSJ 2.0 (Draft 46) 55

5 Realtime Threads RealtimeThread

Gets the array of implementation-specific sizes associated with Schedulable!?
objects created with these parameters. This method may allocate memory.

Returns
A copy of the array of implementation-specific sizes.

5.3.2.2 RealtimeThread

Inheritance

java.lang.Object
java.lang.Thread
javax.realtime.RealtimeThread

Interfaces
javax.realtime.BoundSchedulable
javax.realtime.AsyncTimable
Description
Class RealtimeThread extends Thread and adds access to realtime services such
as asynchronous transfer of control, nonheap memory, and advanced scheduler
services.
As with java.lang. Thread, there are two ways to create a RealtimeThread.
e Create a new class that extends RealtimeThread and override the run()
method with the logic for the thread.
e Create an instance of RealtimeThread using one of the constructors with a
logic parameter. Pass a Runnable object whose run() method implements
the logic of the thread.

5.3.2.2.1 Constructors

RealtimeThread(SchedulingParameters, ReleaseParameters,
MemoryParameters, MemoryArea, ConfigurationParameters,
TimeDispatcher, SchedulingGroup, Runnable)

Signature

12Gaction 6.3.1.3

56 RTSJ 2.0 (Draft 46)

RealtimeThread javaz.realtime 5.3

public

RealtimeThread(SchedulingParameters scheduling,
ReleaseParameters release,
MemoryParameters memory,
MemoryArea area,
ConfigurationParameters config,
TimeDispatcher dispatcher,
SchedulingGroup group,
Runnable logic)

Description

Create a realtime thread with the given characteristics and a specified Runnable.
The scheduling group of the new thread is inherited from its parent task unless
group is set. The newly-created realtime thread is associated with the scheduler
in effect during execution of the constructor.

Available since RTSJ 2.0

Parameters
scheduling The SchedulingParameters'® associated with this (And possibly other
instances of Schedulable'*). When scheduling is null and the creator is a
schedulable, SchedulingParameters' is a clone of the creator’s value created
in the same memory area as this. When scheduling is null and the creator is a
Java thread, the contents and type of the new SchedulingParameters object is
governed by the associated scheduler.

release The ReleaseParameters'® associated with this (and possibly other instances
of Schedulable!”). When release is null the new RealtimeThread will use a
clone of the default ReleaseParameters for the associated scheduler created in
the memory area that contains the RealtimeThread object.

memory The MemoryParameters'® associated with this (and possibly other in-
stances of Schedulable'?). When memory is null, the new RealtimeThread
receives null value for its memory parameters, and the amount or rate of
memory allocation for the new thread is unrestricted, and it may access the
heap.

BSection 6.3.3.14
14Gection 6.3.1.3
15Gection 6.3.3.14
16Section 6.3.3.10
7Section 6.3.1.3
BSection 11.3.2.4
19Gection 6.3.1.3

RTSJ 2.0 (Draft 46) 57

5 Realtime Threads RealtimeThread

area the initial memory area of this handler.

config The ConfigurationParameters® associated with this (and possibly other

instances of Schedulable?'). When config is null, this RealtimeThread will
reserve no space for preallocated exceptions and implementation-specific values
will be set to their implementation-defined defaults.

dispatcher The TimeDispatcher?? to use for realtime sleep and determining the
period of a periodic thread.

group The SchedulingGroup of the newly created realtime thread or the parent’s
scheduling group when null.

logic The Runnable object whose run() method will serve as the logic for the new
RealtimeThread. When logic is null, the run() method in the new object will
serve as its logic.
Throws
[legal ArgumentException when the parameters are not compatible with the asso-
ciated scheduler or the current thread group is not a SchedulingGroup and
group is null.

[llegal AssignmentError when the new RealtimeThread instance cannot hold a refer-
ence to any of the values of scheduling, release, memory, or group, when those
parameters cannot hold a reference to the new RealtimeThread, when the new
RealtimeThread instance cannot hold a reference to the values of area or logic,
when the initial memory area is not specified and the new RealtimeThread
instance cannot hold a reference to the default initial memory area, and when
the thread may not use the heap, as specified by its memory parameters, and
any of the following is true:

e the initial memory ares is not specified,

e the initial memory is heap memory,

e the initial memory area, scheduling, release, memory, or group is allocated
in heap memory.

e when this is in heap memory, or

e logic is in heap memory.

ScopedCycleException when memory is a scoped memory area that has already
been entered from a memory area other than the current scope.

RealtimeThread(SchedulingParameters, ReleaseParameters,
MemoryParameters, MemoryArea, ConfigurationParameters,
Runnable)

20Section 5.3.2.1
21Gection 6.3.1.3
22Gection 10.3.2.4

58 RTSJ 2.0 (Draft 46)

RealtimeThread javaz.realtime 5.3

Signature

public

RealtimeThread(SchedulingParameters scheduling,
ReleaseParameters release,
MemoryParameters memory,
MemoryArea area,
ConfigurationParameters config,
Runnable logic)

Description

Create a realtime thread with the given SchedulingParameters*, ReleaseParam-
eters?*, MemoryParameters®, ConfigurationParameters?®, a specified Runnable,
and default values for all other parameters.

This constructor is equivalent to RealtimeThread(scheduling, release, memory,
area, config, null, null, logic).

Available since RTSJ 2.0

RealtimeThread(SchedulingParameters, ReleaseParameters,
ConfigurationParameters, Runnable)

Signature
public
RealtimeThread(SchedulingParameters scheduling,
ReleaseParameters release,
ConfigurationParameters config,
Runnable logic)

Description

Create a realtime thread with the given SchedulingParameters®”, ReleaseParam-

23Section 6.3.3.14
24Section 6.3.3.10
Z5Gection 11.3.2.4
26Section 5.3.2.1

27Section 6.3.3.14

RTSJ 2.0 (Draft 46) 59

5 Realtime Threads RealtimeThread

eters?®, MemoryArea?” and a specified Runnable and default values for all other
parameters.

This constructor is equivalent to RealtimeThread(scheduling, release, config,
null, null, null, logic).

Available since RTSJ 2.0

RealtimeThread(SchedulingParameters, ReleaseParameters,
ConfigurationParameters)

Signature
public
RealtimeThread(SchedulingParameters scheduling,
ReleaseParameters release,
ConfigurationParameters config)

Description
Create a realtime thread with the given SchedulingParameters®®, ReleaseParam-
eters®’ and MemoryArea®® and default values for all other parameters.
This constructor is equivalent to RealtimeThread(scheduling, release, null,
null, config, null, null, null).

Available since RTSJ 2.0

RealtimeThread (SchedulingParameters, ReleaseParameters,
Runnable)

Signature
public
RealtimeThread(SchedulingParameters scheduling,
ReleaseParameters release,
Runnable logic)

28Section 6.3.3.10
Gection 11.3.2.3
30Section 6.3.3.14
31Section 6.3.3.10
32Section 11.3.2.3

60 RTSJ 2.0 (Draft 46)

RealtimeThread javaz.realtime 5.3

Description

Create a realtime thread with the given SchedulingParameters®, ReleaseParam-
eters® and a specified Runnable and default values for all other parameters.

This constructor is equivalent to RealtimeThread(scheduling, release, null,
null, null, null, null, logic).

Available since RTSJ 2.0

RealtimeThread(SchedulingParameters, ReleaseParameters)

Signature
public
RealtimeThread(SchedulingParameters scheduling,
ReleaseParameters release)

Description

Create a realtime thread with the given SchedulingParameters® and ReleasePar-
ameters®® and default values for all other parameters.

This constructor is equivalent to RealtimeThread(scheduling, release, null,
null, null, null, null).

RealtimeThread(SchedulingParameters, TimeDispatcher)

Signature
public
RealtimeThread(SchedulingParameters scheduling,
TimeDispatcher dispatcher)

Description

33Section 6.3.3.14
34Section 6.3.3.10
35Section 6.3.3.14
36Section 6.3.3.10

RTSJ 2.0 (Draft 46) 61

5 Realtime Threads RealtimeThread

Create a realtime thread with the given SchedulingParameters®” and TimeDis-
patcher®® and default values for all other parameters. This constructor is equiva-
lent to RealtimeThread(scheduling, null, null, null, null, dispatcher, null, null).

Available since RTSJ 2.0

RealtimeThread(SchedulingParameters)

Signature
public
RealtimeThread(SchedulingParameters scheduling)

Description

Create a realtime thread with the given SchedulingParameters® and default
values for all other parameters. This constructor is equivalent to Realtime-
Thread(scheduling, null, null, null, null, null, null, null).

RealtimeThread

Signature
public
RealtimeThread|()
Description

Create a realtime thread with default values for all parameters. This constructor
is equivalent to RealtimeThread(null, null, null, null, null, null, null).

5.3.2.2.2 Methods

37Section 6.3.3.14
38Section 10.3.2.4
39Section 6.3.3.14

62 RTSJ 2.0 (Draft 46)

RealtimeThread javaz.realtime 5.3

currentRealtimeThread

Signature
public static javax.realtime.RealtimeThread
currentRealtimeThread ()
throws ClassCastException

Description

Gets a reference to the current instance of RealtimeThread.

It is permissible to call currentRealtimeThread when control is in an Async-
EventHandler®. The method will return a reference to the RealtimeThread
supporting that release of the async event handler.

Throws
ClassCastException when the current execution context is not an instance of Sched-
ulable®!.

Returns
A reference to the current instance of RealtimeThread.

currentSchedulable

Signature
public static javax.realtime.RealtimeThread
currentSchedulable()
throws ClassCastException

Description

Gets a reference to the current instance of Schedulable. It behaves the same when
the current thread is an instance of java.lang.Thread, but otherwise it returns
an instance of AsyncBaseEventHandler*?.

Throws
ClassCastException when the current execution context is that of a conventional
Java thread.

Returns
A reference to the current instance of Schedulable.

40Section 8.3.3.5
“Section 6.3.1.3
42Gection 8.3.3.3

RTSJ 2.0 (Draft 46) 63

5 Realtime Threads RealtimeThread

getCurrentMemoryArea

Signature
public static javax.realtime.MemoryArea
getCurrentMemoryAreal()

Description

Return a reference to the MemoryArea® object representing the current allocation
context. For a task that is not an instance of Schedulable?, the result can only
be heap or immortal memory.

Returns
A reference to the MemoryArea*® object representing the current allocation context.

getIlnitialMemoryArealndex

Signature
public static int
getInitialMemoryArealndex()
throws IllegalStateException,
ClassCastException

Description

Gets the position of the initial memory area for the current Schedulable®® in
the memory area stack. Memory area stacks may include inherited stacks from
parent threads. The initial memory area of a RealtimeThread” or an Async-
BaseEventHandler®® is the memory area specified in its constructor. The index
of the initial memory area in the initial memory area stack is a fixed property of
a Schedulable.

Throws
[llegalSchedulableStateException when the memory area stack of the current Sched-
ulable has changed from its initial configuration and the memory area at the
originally specified initial memory area index is not the initial memory area,
thus the index is invalid.

43Section 11.3.2.3
44Gection 6.3.1.3
45Section 11.3.2.3
46Gection 6.3.1.3
47Section 5.3.2.2
48Section 8.3.3.3

64 RTSJ 2.0 (Draft 46)

RealtimeThread javaz.realtime 5.3

This can only happen when the application uses the alternate memory module
and the initial memory area is a scoped memory area. The following is an ex-
ample of an event handler that will throw this exception when its initial memory
area is a scoped memory area.

public void handleAsyncEvent()
{
MemoryArea current = RealtimeThread.getCurrentMemoryArea();
if (current instanceof ScopedMemory)
{
MemoryArea parent = ((ScopedMemory) current).getParent();
parent.executelnArea(() ->
{
ScopedMemory scope
scope.enter(() ->
{
System.out.println("Initial Memory Area Index = " +
RealtimeThread.getInitialMemoryArealndex());
});
});

new LTMemory(1000);

}

ClassCastException when the current execution context is not an instance of Sched-
ulable®. An exception will be thrown on line 12, where the first opening
bracket is line one, of the handler above.

Returns
The index into the initial memory area stack of the initial memory area of the
current Schedulable.

getMemoryAreaStackDepth

Signature
public static int
getMemoryAreaStackDepth()
throws ClassCastException

Gection 6.3.1.3

RTSJ 2.0 (Draft 46) 65

5 Realtime Threads RealtimeThread

Description

Gets the size of the stack of MemoryArea®™ instances to which the current
schedulable has access.

Note, the current memory area (getCurrentMemoryArea()®') is found at
memory area stack index of getMemoryAreaStackDepth() - 1.

Throws

ClassCastException when the current execution context is not an instance of Sched-
ulable®?.

Returns
The size of the stack of MemoryArea® instances.

getOuterMemoryArea(int)

Signature
public static javax.realtime.MemoryArea
getOuterMemoryArea(int index)
throws ClassCastException,
MemoryAccessError

Description

Gets the instance of MemoryArea® in the memory area stack at the index given.
When the given index does not exist in the memory area scope stack then null is
returned.

Note, the current memory area (getCurrentMemoryArea()®) is found at
memory area stack index getMemoryAreaStackDepth() - 1, so getCurrentMemo-
ryArea() == getOutMemoryArea(getMemoryAreaStackDepth() - 1).

Parameters
index The offset into the memory area stack.
Throws

ClassCastException when the current execution context is not an instance of Sched-
ulable®.

50Section 11.3.2.3
51Gection 5.3.2.2.2
52Gection 6.3.1.3

%3Section 11.3.2.3
*Gection 11.3.2.3
5Section 5.3.2.2.2
56Section 6.3.1.3

66 RTSJ 2.0 (Draft 46)

RealtimeThread javaz.realtime 5.3

MemoryAccessError when the memory area is allocate in heap memory and the
caller is a schedulable that may not use the heap.

Returns
The instance of MemoryArea® at index or null when the given value does not
correspond to a position in the stack.

sleep(HighResolutionTime)

Signature
public static void
sleep(javax.realtime.HighResolutionTime<7> time)
throws InterruptedException,
ClassCastException,
[legal ArgumentException

Description

A sleep method that is controlled by a generalized clock. Since the time is
expressed as a HighResolutionTime®, this method is an accurate timer with
nanosecond granularity. The actual resolution available for the clock and even the
quantity it measures depends on clock. The time base is the given Clock®. The
sleep time may be relative or absolute. When relative, then the calling thread
is blocked for the amount of time given by time, and measured by clock. When
absolute, then the calling thread is blocked until the indicated value is reached
by clock. When the given absolute time is less than or equal to the current value
of clock, the call to sleep returns immediately.

It is permissible to call sleep when control is in an AsyncEventHandler®. The
method cause the handler to sleep.

This method must not throw IllegalAssignmentError. It must tolerate time
instances that may not be stored in this.

Parameters
time The amount of time to sleep or the point in time at which to awaken.
Throws
InterruptedException when the thread is interrupted by interrupt()®! or AsynchronouslyInterruptedE
fire()% during the time between calling this method and returning from it.

57Section 11.3.2.3
58Section 9.3.1.2
Gection 10.3.2.1
60Gection 8.3.3.5
61Section 5.3.2.2.2
62Section 15.2.2.2.2

RTSJ 2.0 (Draft 46) 67

5 Realtime Threads RealtimeThread

ClassCastException when the current execution context is not an instance of Sched-
ulablef3.

[llegal ArgumentException when time is null, when time is a relative time less than
zero, or when the Chronograph® of time is not a Clock®.

suspend (HighResolutionTime)

Signature
public static void
suspend (javax.realtime.HighResolutionTime<7?> time)

throws ClassCastException,
[legal Argument Exception

Description

The same as sleep(HighResolutionTime)% except that it is not interruptible.

Parameters
time an absolute or relative time until which to suspend.
Throws
ClassCastException when the current execution context is not an instance of Sched-
ulable®”.
[llegal Argument Exception when time is null, when time is a relative time less than
zero, or when the Chronograph® of time is not a Clock®.

Available since RTSJ 2.0

spin(HighResolutionTime)

Signature
public static void
spin(javax.realtime.HighResolutionTime<7> time)

63Section 6.3.1.3

64Section 10.3.1.2
65Section 10.3.2.1
66Section 5.3.2.2.2
67Section 6.3.1.3

68Section 10.3.1.2
69Section 10.3.2.1

68 RTSJ 2.0 (Draft 46)

RealtimeThread javaz.realtime 5.3

throws InterruptedException,
ClassCastException,
llegal Argument Exception

Description

Similar to sleep(HighResolutionTime)™ except it performs a busy wait by polling
on the Chronograph™ associated with time until time has been reached. Note
that interaction with other tasks, scheduling considerations, and other effects
may reduce the frequency of polling for long delays, so an application cannot

assume that the associated Chronograph will be polled as quickly as possible.

Parameters
time an absolute or relative time at which to stop spinning.
Throws
InterruptedException when the thread is interrupted by interrupt()™ or AsynchronouslyInterruptedE
fire()™ during the time between calling this method and returning from it.
ClassCastException when the current execution context is not an instance of Sched-
ulable™.
Illegal ArgumentException when time is null, or when time is a relative time less
than zero.

Available since RTSJ 2.0

spin(int)

Signature
public static void
spin(int nanos)
throws InterruptedException,
ClassCastException,
[legal ArgumentException

Description

70Section 5.3.2.2.2
"1Section 10.3.1.2
72Section 5.3.2.2.2
7Section 15.2.2.2.2
"Section 6.3.1.3

RTSJ 2.0 (Draft 46) 69

5 Realtime Threads RealtimeThread

The same as calling spin(HighResolutionTime)™ with a relative time to the
default realtime clock, zero milliseconds, and nanos nanoseconds, except no
relative time object is necessary.

Parameters
nanos a relative number of nanoseconds to wait.
Throws
InterruptedException when the thread is interrupted by interrupt ()™ or AsynchronouslyInterrupted Except
fire()™” during the time between calling this method and returning from it.

ClassCastException when the current execution context is not an instance of Sched-
ulable™.

[llegal Argument Exception when nanos is less than zero.

Available since RTSJ 2.0

waitForNextRelease

Signature
public static boolean
waitForNextRelease()
throws AsynchronouslylInterruptedException,
[legalStateException,
ClassCastException

Description

Causes the current realtime thread to delay until the next release. (See re-
lease()™.) Used by threads that have a reference to either periodic or aperiodic
ReleaseParameters®. The first release starts when this thread is released as a
consequence of the action of one of the start()®' family of methods. Each time
this method is called it will block until the next release unless the thread is in
a deadline miss condition. In that case, the operation of waitForNextRelease is
controlled by this thread’s scheduler. (See PriorityScheduler®?.)

"5Section 5.3.2.2.2
76Section 5.3.2.2.2
"7Section 15.2.2.2.2
"8Section 6.3.1.3
™Section 5.3.2.2.2
80Gection 6.3.3.10
81Section 5.3.2.2.2
82Section 6.3.3.8

70 RTSJ 2.0 (Draft 46)

RealtimeThread javaz.realtime 5.3

Throws

AsynchronouslyInterrupted Exception when the thread is interrupted by interrupt()%
or AsynchronouslyInterruptedException.fire()®* during the time between call-
ing this method and returning from it and the ReleaseParameters.isRousable()*”
on its release parameters returns true.
An interrupt during waitForNextPeriodInterruptible() is treated as a release
for purposes of scheduling. This is likely to disrupt proper operation of the
periodic thread. The timing behavior of the thread is unspecified until the
state is reset by altering the thread’s release parameters or the thread is no
longer in a deadline miss state.

IllegalStateException when this does not have a reference to a ReleaseParameters®
type of either PeriodicParameters®” or AperiodicParameters®®.

ClassCastException when the current thread is not an instance of RealtimeThread.

Returns
FEither false when the thread is in a deadline miss condition or true otherwise. When

a deadline miss condition occurs is defined by its thread’s scheduler.

Available since RTSJ 2.0

getMemoryArea

Signature
public javax.realtime.MemoryArea
getMemoryArea()

Description
Return the initial memory area for this RealtimeThread. When not specified
through the constructor, the default is a reference to the current allocation context
when this was constructed.

Returns
A reference to the initial memory area for this thread.

Available since RTSJ 1.0.1

83Section 5.3.2.2.2
84Gection 15.2.2.2.2
85Section 6.3.3.10.2
86GSection 6.3.3.10
87Section 6.3.3.6
88Section 6.3.3.2

RTSJ 2.0 (Draft 46) 71

5 Realtime Threads RealtimeThread

getMemoryParameters

Signature
public javax.realtime.MemoryParameters
getMemoryParameters()

Description

Gets a reference to the MemoryParameters® object for this schedulable.

Returns
A reference to the current MemoryParameters” object.

getSchedulingGroup

Signature
public javax.realtime.SchedulingGroup
getSchedulingGroup()

Description

Gets a reference to the SchedulingGroup”! instance of this schedulable.

Returns
A reference to the current SchedulingGroup”? object.

Available since since RTSJ 2.0

getConfigurationParameters

Signature
public javax.realtime.ConfigurationParameters
getConfigurationParameters()

Description

Gets a reference to the ConfigurationParameters” object for this schedulable.

89Gection 11.3.2.4
90Section 11.3.2.4
91Gection 6.3.3.13
92Gection 6.3.3.13
93Section 5.3.2.1

72 RTSJ 2.0 (Draft 46)

RealtimeThread javaz.realtime 5.3

Returns
A reference to the associated ConfigurationParameters” object.

Available since RTSJ 2.0

getReleaseParameters
Signature
public javax.realtime.ReleaseParameters

getReleaseParameters()

Description

Gets a reference to the ReleaseParameters” object for this schedulable.

Returns
A reference to the current ReleaseParameters” object.

getScheduler

Signature
public javax.realtime.Scheduler

getScheduler()
Description
Gets a reference to the Scheduler?” object for this schedulable.

Returns
A reference to the associated Scheduler” object.

getSchedulingParameters

Signature
public javax.realtime.SchedulingParameters
getSchedulingParameters()

94Section 5.3.2.1

95Section 6.3.3.10
96Gection 6.3.3.10
97Section 6.3.3.12
98Section 6.3.3.12

RTSJ 2.0 (Draft 46)

73

5 Realtime Threads RealtimeThread

Description

Gets a reference to the SchedulingParameters” object for this schedulable.

Returns
A reference to the current SchedulingParameters'®’ object.

release

Signature
public void
release()

Description

Generate a release for this RealtimeThread. The action of this release is governed
by the scheduler. It may, for instance, act immediately, or be queued, delayed, or
discarded.

Throws
IllegalStateException when this does not have a reference to a ReleaseParameters'!
type of AperiodicParameters'?2.

Available since RTSJ 2.0

interrupt

Signature
public void
interrupt()

Description

Make the generic AsynchronouslylnterruptedException!®® pending for this, and
sets the interrupted state to true. As with Thread.interrupt(), blocking operations
that are interruptible are interrupted. When this.isRousable() is true cause an
early release. In any case, AsynchronouslyInterruptedException is thrown once
a method is entered that implements AsynchronouslylnterruptedException.

99Section 6.3.3.14
100Gection 6.3.3.14
101Gection 6.3.3.10
102Gection 6.3.3.2

103Gection 15.2.2.2

74 RTSJ 2.0 (Draft 46)

RealtimeThread javaz.realtime 5.3

Behaves as if Thread.interrupt() were called on the implementation thread
underlying this Schedulable. throws IllegalSchedulableStateException when this
is not currently releasable, i.e., is disabled, not firable, its start method has not
been called, or it has terminated.

Available since RTSJ 2.0

isInterrupted

Signature
public boolean
isInterrupted()

Description
Determines whether or not any AsynchronouslylnterruptedException'* is pend-

ing.

Returns
true when and only when the generic AsynchronouslyInterruptedException is pend-
ing.

Available since RTSJ 2.0

deschedule

Signature
public void
deschedule()

Description

Perform any deschedule actions specified by this thread’s scheduler, either im-
mediately when in waitForNextRelease()'"” or the next time the thread enters
waitForNextRelease().

Available since RTSJ 2.0

104Gaction 15.2.2.2
105Gaction 5.3.2.2.2

RTSJ 2.0 (Draft 46) 75

5 Realtime Threads RealtimeThread

reschedule

Signature
public void
reschedule()
throws IllegalSchedulableStateException

Description

Returns the thread to the blocked-for-next-release state. This causes the next
event release the thread and waitForNextRelease!" to return. Deadline miss and
cost enforcement are re-enabled.

The details of the interaction of this method with deschedule!®”, waitForNex-
tRelease!"® and release!” are dictated by this thread’s scheduler.

Throws
[llegalSchedulableStateException when the configured Scheduler and Scheduling-
Parameters for this RealtimeThread are not compatible.

Available since RTSJ 2.0

startPeriodic(PhasingPolicy)

Signature
public void
startPeriodic(PhasingPolicy phasingPolicy)
throws LateStartException,
IllegalSchedulableStateException,
[legal ArgumentException

Description

Start the thread with the specified phasing policy.

Parameters
phasingPolicy The phasing policy to be applied when the start time given in the
realtime thread’s associated PeriodicParameters''? is in the past.
Throws

106Gection 5.3.2.2.2
107Section 5.3.2.2.2
108Gection 5.3.2.2.2
109Gection 5.3.2.2.2
110Gection 6.3.3.6

76 RTSJ 2.0 (Draft 46)

RealtimeThread javaz.realtime 5.3

javax.realtime.LateStartException when the actual start time is after the assigned
start time and the phasing policy is PhasingPolicy.STRICT PHASING!!,

[llegal ArgumentException when the thread is not periodic, or when its start time
is not absolute.

[llegalSchedulableStateException when the configured Scheduler and Scheduling-
Parameters for this RealtimeThread are not compatible.

Available since RTSJ 2.0

start

Signature
public void
start()

Description

Set up the realtime thread’s environment and start it. The set up might include
delaying it until the assigned start time and initializing the thread’s scope stack.
(See ScopedMemory!!2.)

Throws
[llegalStateException when the configured Scheduler and SchedulingParameters for
this RealtimeThread are not compatible.

Available since RTSJ 2.0 adds new exception

getLastReleaseTime

Signature
public javax.realtime.AbsoluteTime
getLastReleaseTime()

Description

Equivalent to getLastReleaseTime(null)
Available since RTSJ 2.0

1HGection 5.3.1.1.1
H2Gection A.2.3.32

RTSJ 2.0 (Draft 46) 77

5 Realtime Threads RealtimeThread

getLastReleaseTime(AbsoluteTime)

Signature
public javax.realtime.AbsoluteTime
getLastReleaseTime(AbsoluteTime dest)

Description

Return the absolute time of this thread’s last release, whether periodic or aperi-
odic.

The clock in the returned absolute time shall be the realtime clock for aperiodic
releases and the clock used for the periodic release for periodic releases.

Returns
the last release time in dest. When dest is null, create a new absolute time instance
in the current memory area.

Available since RTSJ 2.0

getEffectiveStartTime

Signature
public javax.realtime.AbsoluteTime
getEffectiveStartTime()

Description

Equivalent to getEffectiveStartTime(null).

Available since RTSJ 2.0

getEffectiveStartTime(AbsoluteTime)

Signature
public javax.realtime.AbsoluteTime
getEffectiveStart Time(AbsoluteTime dest)

Description

Determine the effective start time of this realtime thread. This is not necessarily
the same as the start time in the release parameters.

78 RTSJ 2.0 (Draft 46)

RealtimeThread javaz.realtime 5.3

e When the release parameters’ start time is relative, the effective start time
is the time of the first release.

e When the release parameters’ start time is an absolute time after start() is
invoked, the effective start time is the same as the release parameters’ start
time.

e When the release parameters’ start time is an absolute time before start()
is invoked, the effective start time depends on the phasing policy.

The default is to set the effective start time equal to the time start() is invoked.

Returns
The effective start time in dest. When dest is null, return the effective start time
in an AbsoluteTime!!?

Available since RTSJ 2.0

instance created in the current memory area.

getCurrentConsumption(RelativeTime)

Signature
public static javax.realtime.RelativeTime
getCurrentConsumption(RelativeTime dest)

Description

Determine the CPU consumption for this release.

Throws

IllegalStateException when the caller is not a Schedulable!!*,

Returns
When dest is null, return the CPU consumption in a RelativeTime *° instance
created in the current execution context. When dest is not null, return the
CPU consumption in dest

Available since RTSJ 2.0

115

getCurrentConsumption

Signature

13Gection 9.3.1.1
14Gection 6.3.1.3
115Gaction 9.3.1.3

RTSJ 2.0 (Draft 46) 79

5 Realtime Threads RealtimeThread

public static javax.realtime.RelativeTime
getCurrentConsumption()

Description
Equivalent to getCurrentConsumption(null).

Available since RTSJ 2.0

getMinConsumption(RelativeTime)

Signature
public javax.realtime.RelativeTime
getMinConsumption(RelativeTime dest)

Description

Get the minimum CPU consumption measured for any completed release of this
schedulable.

Throws

IllegalStateException when the caller is not a Schedulable!'°,

Returns
the minimum CPU consumption in dest. When dest is null return the minimum
CPU consumption in a RelativeTime!!” instance created in the current memory
area.

Available since RTSJ 2.0

getMinConsumption

Signature
public javax.realtime.RelativeTime
getMinConsumption()

Description
Equivalent to getMinConsumption(null).

Available since RTSJ 2.0

116Gection 6.3.1.3
17Gection 9.3.1.3

80 RTSJ 2.0 (Draft 46)

RealtimeThread javaz.realtime 5.3

getMaxConsumption(RelativeTime)

Signature
public javax.realtime.RelativeTime
getMaxConsumption(RelativeTime dest)

Description

Get the maximum CPU consumption measured for any completed release of this
schedulable.

Throws

IllegalStateException when the caller is not a Schedulable!'®.

Returns
the maximum CPU consumption in dest. When dest is null return the maximum
CPU consumption in a RelativeTime!! instance created in the current memory
area.

Available since RTSJ 2.0

getMaxConsumption

Signature
public javax.realtime.RelativeTime
getMaxConsumption()

Description

Equivalent to getMaxConsumption(null).
Available since RTSJ 2.0

getDispatcher
Signature
public javax.realtime.TimeDispatcher

getDispatcher()

Description

H8Section 6.3.1.3
119Gection 9.3.1.3

RTSJ 2.0 (Draft 46) 81

5 Realtime Threads RealtimeThread

Get the dispatcher responsible for handling sleep requests issued by this thread

See Section Timable.getDispatcher()

Available since RTSJ 2.0

fire

Signature
public final void

fire()

Description

Used by the Clock! infrastructure to cause a call to waitForNextRelease'?! to
return.

See Section AsyncTimable.fire()

Available since RTSJ 2.0

mayUseHeap

Signature
public boolean
may UseHeap()

Description
Determine whether or not this schedulable may use the heap.
Returns

true only when this Schedulable may allocate on the heap and may enter Heap-
Memory.

Available since RTSJ 2.0

120Gection 10.3.2.1
121Gaction 5.3.2.2.2

82 RTSJ 2.0 (Draft 46)

RealtimeThread javaz.realtime 5.3

awaken

Signature
public final void
awaken ()

Description

Used by the Clock!'? infrastructure to cause a call to sleep'®® to return.

See Section Schedulable.awaken()

Available since RTSJ 2.0

setMemoryParameters(MemoryParameters)

Signature
public javax.realtime.RealtimeThread
setMemoryParameters(MemoryParameters memory)

Description

Sets the memory parameters associated with this instance of Schedulable.

This change becomes effective under conditions determined by the scheduler
controlling the schedulable. For instance, the change may be immediate or it may
be delayed until the next release of the schedulable object. See the documentation
for the scheduler for details.

Parameters
memory memory A MemoryParameters'?* object which will become the memory
parameters associated with this after the method call. When null, the default
value is governed by the associated scheduler (a new object is created when
the default value is not null). (See PriorityScheduler!'?.)
Throws
[legal ArgumentException Illegal ArgumentException when memory is not compat-
ible with the schedulable’s scheduler. Also when this schedulable may not use
the heap and memory is located in heap memory.

122Gection 10.3.2.1
123Gection 5.3.2.2.2
124GQection 11.3.2.4
125GQection 6.3.3.8

RTSJ 2.0 (Draft 46) 83

5 Realtime Threads RealtimeThread

[llegalAssignmentError Illegal AssignmentError when the schedulable cannot hold
a reference to memory, or when memory cannot hold a reference to this
schedulable instance.

[legalStateException null

Returns
this

setReleaseParameters(ReleaseParameters)

Signature
public javax.realtime.RealtimeThread
setReleaseParameters(ReleaseParameters release)

Description

Sets the release parameters associated with this instance of Schedulable.

This change becomes effective under conditions determined by the scheduler
controlling the schedulable. For instance, the change may be immediate or it may
be delayed until the next release of the schedulable. The different properties of
the release parameters may take effect at different times. See the documentation
for the scheduler for details.

Parameters
release A ReleaseParameters!'?® object which will become the release parameters
associated with this after the method call, and take effect as determined by
the associated scheduler. When null, the default value is governed by the
associated scheduler (a new object is created when the default value is not
null). (See PriorityScheduler'?7.)
Throws
[llegal ArgumentException Thrown when release is not compatible with the associ-
ated scheduler. Also when this schedulable may not use the heap and release
is located in heap memory.

26

[llegal Assignment Error when this object cannot hold a reference to release or release
cannot hold a reference to this.

[llegalSchedulableStateException when the task is running and the new release
parameters are not compatible with the current scheduler.

Returns
this

126GQection 6.3.3.10
127GQection 6.3.3.8

84 RTSJ 2.0 (Draft 46)

RealtimeThread javaz.realtime 5.3

setScheduler(Scheduler)

Signature
public javax.realtime.RealtimeThread

setScheduler(Scheduler scheduler)

Description

Sets the reference to the Scheduler object. The timing of the change must be
agreed between the scheduler currently associated with this schedulable, and
scheduler. If the Schedulable is running, its associated SchedulingParameters (if
any) must be compatible with scheduler.

For an instance of RealtimeThread, the Schedulable is running when RealtimeThread.
start()!'?® has been called on it and RealtimeThread.join() would block.

Parameters
scheduler scheduler A reference to the scheduler that will manage execution of this
schedulable. Null is not a permissible value.
Throws
Mllegal ArgumentException Illegal ArgumentException Thrown when scheduler is
null, or the schedulable’s existing parameter values are not compatible with
scheduler. Also when this schedulable may not use the heap and scheduler is
located in heap memory.

[llegal AssignmentError Illegal AssignmentError when the schedulable cannot hold a
reference to scheduler or the current Schedulable is running and its associated
SchedulingParameters are incompatible with scheduler.

SecurityException SecurityException when the caller is not permitted to set the
scheduler for this schedulable.

[llegalSchedulableStateException IllegalSchedulableStateException when scheduler
has scheduling or release parameters that are not compatible with the new
scheduler and this schedulable is running.

Returns
this

setScheduler(Scheduler, SchedulingParameters, ReleasePar-
ameters, MemoryParameters)

Signature

128Gaction 5.3.2.2.2

RTSJ 2.0 (Draft 46) 85

5 Realtime Threads RealtimeThread

public javax.realtime.RealtimeThread

setScheduler(Scheduler scheduler,
SchedulingParameters scheduling,
ReleaseParameters release,
MemoryParameters memoryParameters)

Description

Sets the scheduler and associated parameter objects. The timing of the change
must be agreed between the scheduler currently associated with this schedulable,
and scheduler.

Parameters
scheduler A reference to the scheduler that will manage the execution of this
schedulable. Null is not a permissible value.

scheduling A reference to the SchedulingParameters’® which will be associated
with this. When null, the default value is governed by scheduler (a new object
is created when the default value is not null). (See PriorityScheduler'®’.)

release A reference to the ReleaseParameters'®! which will be associated with this.
When null, the default value is governed by scheduler (a new object is created

when the default value is not null). (See PriorityScheduler'®?.)

memoryParameters A reference to the MemoryParameters'®® which will be associ-
ated with this. When null, the default value is governed by scheduler (a new
object is created when the default value is not null). (See PriorityScheduler'®*.)

Throws

Mllegal ArgumentException Thrown when scheduler is null or the parameter values
are not compatible with scheduler. Also thrown when this schedulable may not
use the heap and scheduler, scheduling release, memoryParameters, or group
is located in heap memory.

[llegal Assignment Error when this object cannot hold references to all the parameter
objects or the parameters cannot hold references to this.

SecurityException when the caller is not permitted to set the scheduler for this
schedulable.

Returns
this

129Gection 6.3.3.14
130Gection 6.3.3.8
131Gection 6.3.3.10
132Gection 6.3.3.8
133Section 11.3.2.4
134GQection 6.3.3.8

86 RTSJ 2.0 (Draft 46)

Rationale 5.4

setSchedulingParameters(SchedulingParameters)

Signature
public javax.realtime.RealtimeThread
setSchedulingParameters(SchedulingParameters scheduling)

Description

Sets the scheduling parameters associated with this instance of Schedulable.

This change becomes effective under conditions determined by the scheduler
controlling the schedulable. For instance, the change may be immediate or it
may be delayed until the next release of the schedulable. See the documentation
for the scheduler for details.

Parameters
scheduling A reference to the SchedulingParameters'® object. When null, the
default value is governed by the associated scheduler (a new object is created
when the default value is not null). (See PriorityScheduler'®0.)
Throws
Mlegal ArgumentException Thrown when scheduling is not compatible with the
associated scheduler. Also when this schedulable may not use the heap and
scheduling is located in heap memory.
[llegal AssignmentError when this object cannot hold a reference to scheduling or
scheduling cannot hold a reference to this.

[llegalSchedulableStateException when the task is active and the new scheduling
parameters are not compatible with the current scheduler.

Returns
this

5.4 Rationale

Realtime programming requires a schedule method radically different than what
a conventional Java programmer would expect, but most other aspects of thread
behavior is the same, it is reasonable to model a realtime thread as a java.lang.Thread.
The main additions that where needed are for adding additional scheduling control
such as release control for asynchronous event handling. Here asynchronous includes
periodic releases, since release is asynchronous with regards to the executing code.

135Gection 6.3.3.14
136Gection 6.3.3.8

RTSJ 2.0 (Draft 46) 87

5 Realtime Threads

The RTSJ platform’s priority-preemptive dispatching model is very similar to the
dispatching model found in the majority of commercial realtime operating systems.
The ReleaseParameters and MemoryParameters provided to the RealtimeThread
constructor provide a number of common realtime thread types, including periodic
threads. However, conventional Java thread scheduling is supported. The realtime
priorities are all above the conventional Java priorities to ensure the realtime threads
take precedence over normal tasks.

The MemoryParameters class is provided with a may-use-heap option in order
to enable time-critical schedulables to execute in preference to the garbage collector
given appropriate assignment of execution eligibility when false. The memory access
and assignment semantics of these heapless schedulables are designed to guarantee
that the execution of such threads does not lead to an inconsistent heap state.

88 RTSJ 2.0 (Draft 46)

Chapter 6

Scheduling

Scheduling is a key differentiator between a conventional Java implementation and a
realtime Java implementation. Whereas conventional Java implementations relies on
some sort of fair scheduling, a realtime Java implementation must provide a realtime
scheduler. In a realtime scheduler, ensuring that critical tasks finish on time is more
important than overall throughput or fairness.

The scheduler required by this specification is fixed-priority preemptive with at
least 28 unique priority levels. It is represented by the class FirstInFirstOutScheduler,
a subclass of PriorityScheduler, and is called the base scheduler. As the name implies,
this scheduler does not time-slice threads at a given priority, but rather runs each to
completion, so long as no higher priority thread becomes ready to run and no other
processor is available for the higher priority thread. In that case, the current thread
is preempted by the higher priority thread.

The schedulables required by this specification are denoted by the Schedulable
interface and include the classes RealtimeThread and AsyncBaseEventHandler along
with its subclasses. The base scheduler assigns processor resources according to the
schedulables’ release characteristics, execution eligibility, affinity, and processing
group values. Subclasses of these schedulables are also schedulables and behave as
these required classes.

The scheduler dispatches a schedulable, that is ready to run, on a CPU. Some
systems, such as multicore systems, have more than one CPU to choose from. By
default, a ready schedulable would be dispatched on the next available CPU; however,
the specification provides an interface, Affinity, to control on which sets of CPUs a
given schedulable may run.

An instance of the SchedulingParameters class contains values of execution el-
igibility. A schedulable is considered to have the execution eligibility represented
by the SchedulingParameters object currently bound to it. For implementations
providing only the base scheduler, the scheduling parameters object is an instance of
PriorityParameters (a subclass of SchedulingParameters).

89

6 Scheduling

An instance of the ReleaseParameters class or its subclasses, PeriodicParame-
ters, AperiodicParameters, and SporadicParameters, contains values that define a
particular release characteristic. A schedulable is considered to have the release
characteristics of a single associated instance of the ReleaseParameters class.

For a realtime thread, the scheduler defines the behavior of the realtime thread’s
waitForNextRelease methods. For all Schedulables, the scheduler monitors cost
overrun and deadline miss conditions based on its release parameters. Release
parameters also govern the treatment of the minimum interarrival time for sporadic

schedulables.

The ThreadGroup class has special significance in an RTSJ implementation. As
in conventional Java, the maximum priority of a thread is governed in part by its
thread group, but the CPU affinity of a thread is also governed by its thread group
along with the Affinity class. Furthermore, there are two important subclasses:
SchedulingGroup and ProcessingGroup. These classes provide additional means of
managing tasks.

An instance of the SchedulingGroup provides scheduling constraints for schedula-
bles similar to how a TheadGroup does for conventional Java threads. The scheduler
and maximum SchedulingParameters can be set. A schedulable can only be created
in an instance of SchedulingGroup or its subclass. Therefore the root thread group
and the thread group of the initial thread must both be scheduling groups in an
RTSJ implementation.

The ProcessingGroup class is a subclass of SchedulingGroup. An instance of the
ProcessingGroup class contains values that define a temporal scope for a processing
group. When a schedulable has an associated instance of the ProcessingGroup
class, it is said to execute within the temporal scope defined by that instance. A
single instance of the ProcessingGroup class can be, and typically is, associated
with many schedulables. In an implementation that supports cost enforcement, the
combined processor demand of all of the schedulables associated with an instance
of the ProcessingGroup class must not exceed the values in that instance (i.e., the
defined temporal scope). The processor demand is determined by the Scheduler.

The scheduling classes provide the necessary support for realtime scheduling.
These classes

e enable the definition of schedulables,

e manage the assignment of execution eligibility to schedulable objects,

e manage the execution of instances of the AsyncBaseEventHandler and Real-
timeThread classes,

e assign release characteristics to schedulables,

e assign execution eligibility values to schedulables, and

e manage the execution of groups of schedulables that collectively exhibit addi-
tional release characteristics.

90 RTSJ 2.0 (Draft 46)

Definitions 6.1

6.1 Definitions

Task — A unit of independent execution. In conventional Java, this is a thread.
The Schedulable interface marks realtime tasks. The classes that implement
Schedulable are subject to the scheduling behavior of realtime schedulers.
Instances of these classes are referred to as Schedulables (SO) and provide four
execution states: executing, eligible-for-execution, blocked, and descheduled.

1. Ezecuting refers to the state where the schedulable is currently running
on & Processor.
2. Blocked refers to the state where the schedulable is not among those
schedulables that could be selected to have their state changed to executing.
The blocked state will have a reason associated with it, e.g., blocked-for-
[/O-completion, blocked-for-release-event, or blocked-by-cost-overrun.
3. FEligible-for-execution refers to the state where the schedulable could be
selected to have its state changed to executing.
4. Descheduled refers to the state where the schedulable is ineligible to be
released.
Each type of schedulable defines its own release events, for example, the release
events for a periodic schedulable are caused by the passage of time and occur
at programmatically specified intervals.

Release — The changing of the state of a schedulable from blocked-for-release-event
to eligible-for-execution. When the state of a schedulable is blocked-for-release-
event and a release event occurs then the state of the schedulable is changed
to eligible-for-execution. Otherwise, a state transition from blocked-for-release-
event to eligible-for-execution is queued; this is known as a pending release.
When the next transition of the schedulable into state blocked-for-release-
event occurs, and there is a pending release, the state of the schedulable is
immediately changed to eligible-for-execution. (Some actions implicitly clear
any pending releases.)

Completion — The changing of the state of a schedulable from executing to
blocked-for-release-event. Each completion corresponds to a release. A realtime
thread is deemed to complete its most recent release when it terminates.

Deadline — A time before which a schedulable should complete. The ** deadline
is associated with the i** release event and a deadline miss occurs when the %
completion would occur after the i deadline.

Deadline Monitoring — The process by which the implementation responds to
deadline misses. When a deadline miss occurs for a schedulable object, the
deadline miss handler, if any, for that schedulable is released. This behaves
as if there were an asynchronous event associated with the schedulable, to
which the miss handler was bound, and which was fired when the deadline miss
occurred.

RTSJ 2.0 (Draft 46) 91

6 Scheduling

Periodic, Sporadic, and Aperiodic — Adjectives applied to schedulables which
describe the temporal relationship between consecutive release events. Let R;
denote the time at which a schedulable has had the i** release event occur.
Ignoring the effect of release jitter:

1. a schedulable is periodic when there exists a value T" > 0 such that for all
1, Riy1 — R; =T, where T is called the period;

2. a schedulable that is not periodic is said to be aperiodic; and

3. an aperiodic schedulable is said to be sporadic when there is a known
value T" > 0 such that for all i, R;;y — R; >=T. T is then called the
minimum interarrival time (MIT).

Cost — The maximum amount of CPU time that a schedulable is allowed between
a release and its associated completion.

Current CPU Consumption — The amount of CPU time that the schedulable
has consumed since its last release.

Cost Overrun — The time at which a schedulable’s current CPU consumption
becomes greater than, or equal to, its cost.

Cost Monitoring — The process by which the implementation tracks CPU con-
sumption and responds to cost overruns. When a cost overrun occurs for a
schedulable, its cost overrun handler, if any, is released. This behaves as if
there were an asynchronous event associated with the schedulable, to which
the overrun handler was bound, and which is fired when a cost overrun occurrs.

Cost Enforcement — The process by which the implementation ensures that
the CPU consumption of a schedulable is no more than the value of the
cost parameter in its associated ReleaseParameters. (Cost enforcement is an
optional facility in an implementation of the RTSJ.)

Base Priority — The priority assigned to a task, either in its associated Priority-
Parameters object or by Thread.setPriority; the base priority of a Java thread
is the priority returned by its getPriority method.

Enforced Priority — A priority below the idle priority, which ensures the sched-
ulable has no execution eligibility.

Active Priority — The execution eligibility criterion for the priority-based sched-
ulers. It is the maximum of the base (or enforced priority) and any priority a
task has acquired due to the action of priority inversion avoidance algorithms
(see the Synchronization Chapter).

Processing Group — A collection of tasks whose combined execution has further
execution time constraints which the scheduler uses to govern the group’s
execution eligibility.

Base Scheduler — An instance of the FirstInFirstOutScheduler class as defined
in this specification. This is the initial default scheduler.

Round-Robin Scheduler — An instance of the RoundRobinScheduler class as

92 RTSJ 2.0 (Draft 46)

Semantics 6.2

defined in this specification. It is specified to execute in tandem with the base
scheduler in a predictable fashion.

Processor — A logical processing element that is capable of physically executing a
single thread of control at any point in time. Hence, multicore platforms have
multiple processors, platforms that support hyperthreading also have more
than one processor. It is assumed that all processors are capable of executing
the same instruction sets.

Affinity — A set of processors on which the global scheduling of a schedulable can
be supported.

Idle Task — A notional system or VM-provided task that consumes all CPU time
not used by other tasks. It may be an actual process or thread, or it may be
a power-saving mode that halts or slows the CPU, or it may be an artificial
construction. For the purposes of this specification, it has a priority below that
of all nonblocked tasks and above that of tasks blocked due to cost overrun.
Details of its implementation are not specified here.

6.2 Semantics

Scheduling semantics determines when each task runs. Both The Java Virtual
Machine Specification[6] and The Java Language Specification[5] are silent on the
semantics for scheduling; only the semantics for synchronization is provided. Since
scheduling is central to realtime programming, a detail semantic applicable across all
available scheduler algorithms is defined below, along with definitions of the required
scheduling algorithms. Semantics that apply to particular classes, constructors,
methods, and fields can be found in the class description and the constructor,
method, and field detail sections.

6.2.1 Schedulers

There are four basic requirements for schedulers.

1. A scheduler may only change the execution eligibility of the schedulables which
it manages and only in accordance with its scheduling algorithm.

2. Each scheduler provided for application code by an RT'SJ implementation must
have documentation describing its semantics including at least the following:
the algorithm used to determine eligibility, what schedulables may be scheduled
by it, the subclasses of Scheduler and SchedulingParameters used to control
the scheduler, and any other classes needed by the scheduler.

3. Every implementation must provide a round-robin scheduler and a first in first
out scheduler using priorities above the ten (1-10) conventional Java priorities
as documented below.

RTSJ 2.0 (Draft 46) 93

6 Scheduling

4. Tasks with a conventional Java priority (1-10) must be scheduled such that
when two or more threads run at the same priority, one thread cannot block
another indefinitely or violate the requirements dictated by java.lang.Thread.

5. Tasks with a conventional Java priority must be scheduled using some sort of
fair scheduler such that higher-priority Java tasks cannot starve lower-priority
Java tasks indefinitely.

The scheduler can be changed independently of the SchedulingParameters and
vice versa only when the Schedulable in question is descheduled. Rescheduling will
throw an IllegalSchedulableStateException when called on a Schedulable scheduling
parameters that are inconsistent with its scheduler. Trying to add a handler with
SchedulingParameters that do not match its scheduler to an event will also result in
an IllegalSchedulableStateException being thrown.

6.2.1.1 Parameter Values

A scheduler uses the values contained in the different parameter objects associated
with a schedulable to control the behavior of the schedulable. The scheduler deter-
mines what values are valid for the schedulables it manages, which defaults apply and
how changes to parameter values are acted upon by the scheduler. Invalid parameter
values result in exceptions, as documented in the relevant classes and methods.

1. The default values for the priority schedulers are as follows.

(a) Scheduling parameters are copied from the creating schedulable when
possible; when the creating schedulable does not have scheduling parame-
ters, the default is an instance of the default parameters for the prevailing
scheduler when the schedulable starts.

(b) The default for release depend on the type of schedulable:

i. for instance of RealtimeThread the default is an instance of Back-
groundParameters with default values (see AperiodicParameters), and
ii. for instance of AsyncBaseEventHandler the default is an instance of
aperiodic parameters with default values (see AperiodicParameters).

(¢) Memory parameters default to null which signifies that memory allocation
by the schedulable is not constrained by the scheduler.

(d) The default scheduling parameter values for parameter objects created by
a schedulable controlled by the base scheduler are given by the following
table (see FirstInFirstOutScheduler).

Attribute Default Value
Priority parameters
priority norm priority
Importance parameters
importance No default.
A value must be supplied.

94 RTSJ 2.0 (Draft 46)

Semantics 6.2

w

. All numeric or RelativeTime attributes in parameter values must be greater

than or equal to zero.

. Values of period must be greater than zero.
. Changes to scheduling, release, memory, and processing group parameters,

either by methods on the schedulables bound to the parameters or by altering
the parameter objects themselves, potentially modify the behavior of the
scheduler with regard to those schedulables. When such changes in behavior
take effect depends on the parameter in question, and the type of schedulable,
as described below.

When changes to a parameter type—scheduling, release, memory, and process-
ing group—take effect depends on the parameter type.

(a) Changes to scheduling parameters take effect immediately except when
constrained by priority inversion avoidance algorithms.

(b) Changes to release parameters depend on the parameter being changed,
the type of release parameter object, and the type of schedulable.

i. Changes to the deadline and the deadline miss handler take effect at
each release event as follows: when the iy, release event occurred at
a time ¢;, then the " deadline is the time t; + D,, where D; is the
value of the deadline stored in the schedulable’s release parameters
object at the time ¢;. When a deadline miss occurs then it is the
deadline miss handler that was installed in the schedulable’s release
parameters at time ¢; that is released.

ii. Changes to cost and the cost overrun handler take effect immediately.
iii. Changes to the period and start time values in PeriodicParameters
objects are described in “Release of a Realtime Thread” below.

iv. Changes to the additional values in ReleaseParameters objects and
SporadicParameters are described, respectively, in “General Release
Control” and “Sporadic Release Control”, below.

v. Changes to the type of release parameters object generally take effect
after completion, except as documented in the following sections.

(c) Changes to memory parameters take effect immediately.

(d) Changes to processing group parameters take effect as described in “Pro-
cessing Groups” below.

(e) Changes to the scheduler responsible for a schedulable object take effect
at completion.

(f) Changes to cost enforcement state, i.e., enabling or disabling cost enforce-
ment on a processing group or release parameters object associated with
one or more schedulables, take effect at the next release of the associated
ProcessingGroup or associated Schedulable, respectively.

RTSJ 2.0 (Draft 46) 95

6 Scheduling

6.2.1.2 Release Control

Schedulables are released in response to the occurance of events, such as starting
a realtime thread, calling the release method of a realtime thread, or firing the
asynchronous event associated with an asynchronous event handler. The occurrence
of these events, each of which is a potential release event, is termed an arrival, and
the time that they occur is termed the arrival time. The only difference between a
periodic and an aperiodic event is the regularity of the arrival times.

A scheduler behaves effectively as if it maintained a queue, called the arrival time
queue, for each schedulable object. This queue maintains information related to each
release event, including any parameters passed with the release mechanism, from its
“arrival” time until the associated release completes, or another release event occurs,
whichever is later. When an arrival is accepted into the arrival time queue, then it is
a release event and the time of the release event is the arrival time. The initial size
of this queue is an attribute of the schedulable’s aperiodic parameters, and is set
when an aperiodic parameter object is first associated with the schedulable. Over
time, the queue may become full and its behavior in this situation is determined by
the queue overflow policy specified in the schedulable’s aperiodic parameters. The
enumeration class QueueOverflowPolicy defines four overflow policies.

Policy Action on Overflow

IGNORE | Silently ignore the arrival. The arrival is not accepted, no
release event occurs, and, when the arrival was caused pro-
grammatically, such as by invoking fire on an asynchronous
event, the caller is not informed that the arrival has been
ignored.

EXCEPT | Throw an ArrivalTimeQueueOverflowException. The ar-
rival is not accepted, and no release event occurs, but when
the arrival was caused programmatically, the caller will have
Arrival TimeQueueOverflowException thrown.

REPLACE | The arrival replaces the latest release in the queue, when
there is one, but no new release event occurs. When the
completion associated with the last release event in the
queue has not yet occurred, and the deadline has not been
missed, the release event time for that release event is re-
placed with the arrival time of the new arrival and any
associated parameters overwritten. This will alter the dead-
line for that release event. When the deadline has already

been missed or the queue length is zero, the behavior of the
REPLACE policy is equivalent to the IGNORE policy.

96 RTSJ 2.0 (Draft 46)

Semantics 6.2

SAVE Behave effectively as if the queue were expanded as nec-
essary to accommodate the new arrival. This expansion
is permanent. The arrival is accepted and a release event
occurs.

DISABLE | No queuing takes place. All incoming events increment the
pending fire or release count. I may only be used where
there is no payload and the release parameters are not
sporadic.

Changes to the queue overflow policy take effect immediately. When an arrival
occurs, and the queue is full, the policy applied is the policy as defined at that time.

6.2.1.2.1 Sporadic Release Control

“Sporadic Release Control” is a special case of “Release Control,” where the arrival
time or execution time may be additionaly regulated. Sporadic parameters include
a minimum interarrival time (MIT) which characterizes the expected frequency of
releases. When an arrival is accepted, the implementation behaves as if it calculates
the earliest time at which the next arrival could be accepted, by adding the current
MIT to the arrival time of this accepted arrival. The scheduler guarantees that each
sporadic schedulable it manages, is released at most once in any MIT.

Two mechanisms are specified for enforcing this rule: arrival-Time regulation and
release-time requlation. Arrival-time regulation controls the work-load by considering
the time between arrivals. When a new arrival occurs earlier than the expected next
arrival time then a MIT violation has occurred, and the scheduler acts to prevent
a release from occurring that would break the “one release per MIT” guarantee.
Release-time regulation controls when events are released. Under this policy all
arrivals that can be queued under the current QueueOverflowPolicy are accepted,
but the scheduler behaves effectively as if released schedulable objects were further
constrained by a scheduling policy that restricts releases to at most one release per
MIT. As described in the following tables, three types of arrival-time regulation and
one type of release-time regulation are supported.

Arrival-Time Regulation
Policy Action on Violation
IGNORE | Silently ignore the violating arrival. The arrival is not
accepted, no release event occurs, and, when the arrival
was caused programmatically (such as by invoking fire on
an asynchronous event), the caller is not informed that the
arrival has been ignored.

RTSJ 2.0 (Draft 46) 97

6 Scheduling

EXCEPT | Throw a MITViolationException. The arrival is not ac-
cepted, and no release event occurs, but when the arrival
was caused programmatically, the caller will have MITVio-
lationException thrown.

REPLACE | The arrival is not accepted and no release event occurs.
When the completion associated with the last release event
in the queue has not yet occurred, and the deadline has not
been missed, then the release event time for that release
event is replaced with the arrival time of the new arrival and
any associated parameters overwritten. This will alter the
deadline for that release event. When the completion associ-
ated with the last release event has occurred, or the deadline
has already been missed, the behavior of the REPLACE
policy is equivalent to the IGNORE policy.

Arrival-Time Regulation

Policy | Action on Violation

SAVE | The arrival time is delayed until after the current MIT
interval. This policy is only able to delay the effective
release of a schedulable. The deadline of each release event
is always set relative to its arrival time. This policy might
not schedule the effective release of an async event handler
until after its deadline has passed. In this case, the deadline
miss handler is released at the deadline time even though the
related async event has not yet reached its effective release.
Once an arrival is queued, the SAVE policy makes no direct
use of the next expected arrival time, but it maintains the
value in case the MIT violation policy is changed from
SAVE to one of the arrival-time regulation policies.

The effective release time of a release event 7 is the earliest time that the handler
can be released in response to that release event. It is determined for each release
event based on the MIT policy in force at the release event time.

1. For IGNORE, EXCEPT and REPLACE the effective release time is the release

event time.

2. For SAVE the effective release time of release event 7 is the effective release

time of release event i-1 plus the current value of the MIT.
The scheduler will delay the release associated with the release event at the head of
the arrival time queue until the current time is greater than or equal to the effective
release time of that release event.

Changes to minimum interarrival time and the MIT violation policy take effect

98 RTSJ 2.0 (Draft 46)

Semantics 6.2

immediately, but only affect the next expected arrival time, and effective release
time, for release events that occur after the change.

6.2.1.2.2 Releasing a Realtime Thread

The repeated release of a realtime thread is achieved by executing in a loop
and invoking the RealtimeThread.waitForNextRelease! methods, or its interruptible
equivalent RealtimeThread.waitForNextReleaselnterruptible) within that loop. For
simplicity, unless otherwise stated, the semantics in this section apply to both forms
of this method.

1. A realtime thread’s release characteristics are determined by the following:

(a) the invocation of the realtime thread’s start method and the value of its
phasing policy parameter (if applicable);

(b) the action of the RealtimeThread methods waitForNextRelease, schedule,
and deschedule;

(¢) the occurrence of deadline misses and whether or not a miss handler is
installed; and

(d) whether the passing of time generates periodic release events or calls to
the release method generates aperiodic release events.

2. The initial release event depends on the type of release parameters given the
realtime thread:

(a) for a realtime thread with periodic parameters, the initial release event
occurs in response to the invocation of its start method in accordance
with the start time specified in its release parameters and its assigned
phasing policy—see PeriodicParameters and PhasingPolicy;

(b) For a realtime thread with aperiodic parameters, the initial release event
occurs immediately in response to the invocation of its start method.

3. Changes to the start time in a realtime thread’s PeriodicParameters object
only have an effect on its initial release time. Consequently, when a Periodic-
Parameters object is bound to multiple realtime threads, a change in the start
time may affect all, some or none, of those threads, depending on whether or
not start has been invoked on them.

4. When subsequent release events occur also depends on the type of release
parameters given to the realtime thread:

(a) for periodic realtime threads, each period (and hence each release) falls
due, except as described below (in 6d), at regular intervals such that when
the " release event occurred at a time ¢;, the 7 + 1 release event occurs at
the time t; + T;, where T; is the value of the period stored in the realtime

!The method RealtimeThread.waitForNextPeriod has been replaced by RealtimeThread.wait-
ForNextRelease as of RTSJ 2.0. The same goes for its interruptible equivalent.

RTSJ 2.0 (Draft 46) 99

6 Scheduling

thread’s PeriodicParameters object at the time t;;

(b) for aperiodic realtime threads, a release occurs with each call of the release
method, except as described below (in 6d); and

(¢) for sporadic realtime threads, a release occurs with each call of the release
method, except, as described below (in 6d), when additional regulation is
required to enforce MIT as defined in Sporadic Release Control below.

5. Each release of an aperiodic realtime thread is an arrival.

(a) When the thread has release parameters of type ReleaseParameters, then
the arrival may become a release event for the thread according to the
semantics given in “General Release Control” below.

(b) When the thread has release parameters of type SporadicParameters, then
the arrival may become a release event for the thread according to the
semantics given in “Sporadic Release Control” below.

6. The implementation should behave effectively as if the following state variables
were added to a realtime thread’s state,

boolean deschedule,

integer pendingReleases,

integer missCount, and

boolean lastReturn;

and manipulated by the actions as described below.
(a) Initially

deschedule = false,
pendingReleases = 0,
missCount =0, and
lastReturn = true.

(b) The function of the deschedule method depends on the current state of
the realtime thread.

i. When current state is a blocked state, either blocked-for-release-event
or blocked-for-missed-release, it sets the value of deschedule to true
and set the thread’s state to descheduled.

ii. When the current state is not a blocked state, it just sets the value
of deschedule to true.

(¢) The function of the reschedule method also depends on the current state
of the realtime thread.

i. When the realtime thread is in the Descheduled state, it sets the
value of deschedule to false, sets the values of pendingReleases and
missCount to zero, changes the thread’s state to descheduled, and tell
the cost monitoring and enforcement system to reset for this thread.

ii. When the realtime thread is not in the Descheduled state, it just sets
the value of deschedule to false.

(d) A realtime thread that is in the Descheduled state will not receive any

100 RTSJ 2.0 (Draft 46)

Semantics 6.2

further release events until after it has been rescheduled by a call to

reschedule; this means that no deadline misses can occur.

(e) What happens when a release event occurs depends on the current state.

i. When the state of the realtime thread is descheduled, do nothing.

ii. When the state is blocked-for-release-event, i.e., it is waiting in wait-
ForNextRelease, increment the value of pendingReleases, inform cost
monitoring and enforcement that the next release event has occurred,
and notify the thread to make it eligible for execution;

iii. Otherwise, when the thread is in a release, increment the value of
pendingReleases, and inform cost monitoring and enforcement that
the next release event has occurred.

(f) On each deadline miss, one of two things happen:

i. when the realtime thread has a deadline miss handler, the value
of deschedule is set to true, the handler is atomically released with
its fireCount increased by the value of missCount + 1, and zero for
missCount;

ii. otherwise, one is added to the missCount value.

(g) When the waitForNextRelease method is invoked by the current realtime
thread there are three possible behaviors depending on the value of
missCount and lastReturn.

i. When missCount is zero, any pending parameter changes are applied,
cost monitoring and enforcement are informed of completion, and
then the thread waits while deschedule is true, or pendingReleases
is zero. Then the lastReturn value is set to true, pendingReleases is
decremented, and true is returned.

ii. When missCount is greater than zero and the lastReturn value is
false, completion occurs: the missCount value is decremented; then
any pending parameter changes are applied, pendingReleases is decre-
mented, cost monitoring and enforcement is informed that the realtime
thread has completed, and false is returned;

iii. Otherwise, when missCount is greater than zero and the lastReturn
value is true, the missCount value is decremented and the lastReturn
value is set to false and false is returned.

7. An invocation of the RealtimeThread.waitForNextRelease method with re-
lease parameters where ReleaseParameters.isRousable return true behaves as
described above with the following differences.

(a) When the invocation commences with an instance of Asynchronouslyln-
terruptedException (AIE) is pending on the realtime thread, then the
invocation immediately completes abruptly by throwing that pending
instance as an InterruptedException. When this occurs, the most recent

RTSJ 2.0 (Draft 46) 101

6 Scheduling

release has not completed. When the pending instance is the generic AIE
instance, then the interrupt state of the realtime thread is cleared.

(b) What happens when an instance of AIE becomes pending on a realtime
thread is dependent on the state of the thread.

i. When the thread is descheduled, the AIE remains pending until the
realtime thread is no longer descheduled. The associated reschedule
acts as a release event. Execution then continues as in 7c¢ where
the time value used as t;,; is the time at which the schedulable was
rescheduled.

ii. When it is blocked-for-release-event, then this acts as a release event.
Execution then continues as in 7c, where the time value used as t;,;
is the time at which the AIE becomes pending.

(¢c) i. The realtime thread is made eligible for execution.

ii. Upon execution, the invocation completes abruptly by throwing the
pending AIE instance as an InterruptedException. When the pending
instance is the generic AIE instance, the interrupt state of the realtime
thread is cleared.

iii. The deadline associated with this release is the time t;,;+D;,:, where
D;,.: is the value of the deadline stored in the realtime thread’s release
parameters object at the time t;,;.

iv. The next release time for the realtime thread will be t;,;+7T;,;, where
T is the value of the period stored in the realtime thread’s release
parameters object at the time t;,;.

v. Cost monitoring and enforcement is informed of the release event.
When the thrown AIE instance is caught, the AIE becomes pending again (as
per the usual semantics for AIE) until it is explicitly cleared.

8. Changes to release parameter types are treated as a pseudo RESTART of the
realtime thread and
(a) any old pending releases are cleared,
(b) any old arrival queue is flushed,
(c) any outstanding call to deschedule is cleared, and
(d) any outstanding deadline misses are cleared.
9. The effect of the change on the thread falls into one of four main cases.
(a) When the realtime thread is not waiting for next release event and is not
descheduled,

i. there is no effect until the end of current release, and

ii. when the change occurs, it is a pseudo restart of the thread, i.e., when
the new parameters are aperiodic, the release is immediate and when
the parameters are periodic, the periodic start time algorithm is used.

(b) When the realtime thread is not waiting for next release event, but there

102 RTSJ 2.0 (Draft 46)

Semantics 6.2

is an outstanding deschedule,
i. there is an immediate “schedule” of the thread,
ii. there is no further effect until end of current release, and
iii. when change occurs, it is a pseudo restart of the thread, i.e., when
new parameters are aperiodic, the release is immediate, and when new
parameters are periodic, the periodic start time algorithm is used.
(¢) When the realtime thread state is blocked-for-release-event, i.e., it is
waiting in waitForNextRelease, and the release parameter type is changed,

i. from Periodic to Aperiodic, at the next periodic release event occurs,
the thread becomes aperiodic with an immediate release, or

ii. from Aperiodic to Periodic, there is an immediate pseudo restart of
the thread using the periodic start time algorithm.

(d) When the realtime thread state is descheduled and the of release parame-
ters is changed,

i. the change is from Periodic to Aperiodic, there is an immediate
“schedule” of the thread, and when the next periodic release event
occurs, the thread becomes aperiodic with an immediate release, or

ii. the change is from Aperiodic to Periodic, there is an immediate
“schedule” of the thread and there is an immediate pseudo restart of
the thread using the periodic start time algorithm.

6.2.1.2.3 UML Diagrams for Realtime Thread Releases

The three UML diagrams in Figures 6.1, 6.2, and 6.3, are provided to illustrate
the foregoing rules for releasing realtime threads. The first two figures are for a
thread without a deadline miss handler. The first is a UML sequence diagram of
some example Realtime Thread releases. The second is a UML state chart of the
release process for a realtime thread. The third is a UML state chart of the release
process for a realtime thread with a deadline miss handler.

In Figure 6.1, a yellow background marks the execution of a normal release, an
orange background marks the execution of a miss handler, and a red background
marks the execution of a missed release. Both the miss handler and all missed
releases are eligible to run as soon as the previous release is finish. A normal release,
which encounters a deadline miss during its execution is not complete until its miss
handler completes.

In the other two figures, a yellow background marks releases and a pink background
marks blocked states. There are three release states: normal release, miss handler,
and missed release. They can only be left by a call to waitForNextRelease or its
equivalent. The miss handler state is part of a normal release that misses its deadline
during the release. There are two blocked-for-release-event states: blocked for normal

RTSJ 2.0 (Draft 46) 103

6 Scheduling

release and blocked for missed release. It is only in these states that descheduling
can occur, because only completion occurs upon their entry. In addition, the blocked
for missed release is a ephemeral state, since the deadline miss has already occurred
before the state is entered, so state is left immediately. It is there to enable all
actions that occur on completion.

6.2.1.2.4 Releasing an Asynchronous Event Handlers

Asynchronous event handlers can be associated with one or more asynchronous

events. When an asynchronous event is fired, all handlers associated with it are
released, according to the semantics below.

1. Each firing of an associated asynchronous event is an arrival. Unless the handler

104

has release parameters of type SporadicParameters, the arrival becomes a
release event for the handler in strict accordance with the semantics given in
“General Release Control” above. When the handler has release parameters of
type SporadicParameters, the arrival becomes a release event for the handler
in strict accordance with the semantics given in “Sporadic Release Control”
above.

For each release event that occurs for a handler, an entry is made in the
arrival-time queue and the handler’s fireCount is incremented by one.
Initially, a handler is considered to be blocked-for-release-event and its fireCount
is zero.

. Releases of a handler are serialized by having its handleAsyncEvent method

invoked repeatedly while its fireCount is greater than zero:

(a) before invoking handleAsyncEvent, the fireCount is decremented and the
front entry (when still present) removed from the arrival-time queue;

(b) each invocation of handleAsyncEvent, in this way, is a release;

(c) the return from handleAsyncEvent is the completion of a release; and

(d) processing of any exceptions thrown by handleAsyncEvent occurs prior
to completion.

The deadline for a release is relative to the release event time and determined
at the release event time according to the value of the deadline contained
in the handler’s release parameters. This value does not change, except as
described previously for handlers using a REPLACE policy for MIT violation
or arrival-time queue overflow.

The application code can directly modify the fireCount.

(a) The getAndDecrementPendingFireCount method decreases the fireCount
by one (when it is greater than zero), and returns the old value. This
removes the front entry from the arrival-time queue but otherwise has no
effect on the scheduling of the current schedulable, nor the handler itself.

RTSJ 2.0 (Draft 46)

Semantics 6.2

Any data parameter passed with the associated fire request is lost.

(b) The getAndClearPendingFireCount method is functionally equivalent to
invoking getAndDecrementPendingFireCount until it returns zero, and
returning the original fireCount value. Any data parameters passed with
the associated fire requests are lost.

7. The scheduler may delay the invocation of handleAsyncEvent to ensure the
effective release time honors any restrictions imposed by the MIT violation
policy, when applicable, of that release event.

8. Cost monitoring and enforcement for an asynchronous event handler interacts
with release events and completions as previously defined with the added
requirement that at the completion of handleAsyncEvent, when the fireCount
is now zero, then the cost monitoring and enforcement system is told to reset
for this handler.

9. The value of ReleaseParameters.isRousable controls whether a call to Schedul-
able.interrupt causes a premature release or only affects a running schedulable.

(a) When interrupt is called on an instance of Schedulable and the schedulable
is running, the interrupt is made pending and as soon as Al code is entered,
an AIE is thrown.

(b) Depending on the value of the isRousable property, start will prematurely
complete, i.e., start user code, or simply wait for the start time to occur.

(¢) Depending on the value of the isRousable property, the next release of a
firable handler, i.e., an enabled instance of AsyncBaseEventHandler which
is attached to an instance of AsyncBaseEvent, will occur immediately or
not, but in both cases an AIE will be pending until the next AI method.

6.2.1.3 Dispatching

The execution scheduling semantics described in this section are defined in terms of
a conceptual model that contains a set of queues of schedulables that are eligible for
execution. There is, conceptually, one queue for each scheduler eligibility on each
processor. No implementation structures are necessarily implied by the use of this
conceptual model. It is assumed that no time elapses during operations described
using this model, and therefore no simultaneous operations are possible.

The RTSJ dispatching model specifies its dispatching rules in terms of task
priority for priority schedulers, but other schedulers should act simularly with respect
to their own scheduler eligibility levels.

1. A Schedulable can become a running schedulable only when it is ready and

one of the processors in its requested affinity is available.

2. When two schedulables have different active priorities and request the same

processor, the schedulable with the higher active priority will always execute
in preference to the schedulable with the lower value when both are eligible for

RTSJ 2.0 (Draft 46) 105

6 Scheduling

10.

106

execution.
Processors are allocated to schedulables based on each schedulable’s active
priority and their associated affinity.

. Schedulable dispatching is the process by which one ready schedulable is

selected for execution on a processor. This selection is done at certain points
during the execution of a schedulable called schedulable dispatching points.

A schedulable reaches a schedulable dispatching point whenever it becomes
blocked, when it terminates, or when a higher priority schedulable becomes
ready for execution on its processor. That is, a schedulable that is executing
will continue to execute until it either blocks, terminates or is preempted by a
higher-priority schedulable.

The dispatching policy is specified in terms of ready queues and schedulable
states. The ready queues are purely conceptual; there is no requirement that
such lists physically exist in an implementation. A ready queue is an ordered
list of ready schedulable objects. The first position in a queue is called the
head of the queue, and the last position is called the tail of the queue.

A schedulable is ready when it is in a ready queue, or when it is running. Each
processor has one ready queue for each priority value. At any instant, each
ready queue of a processor contains exactly the set of schedulables of that
priority that are ready for execution on that processor, but are not running on
any processor; that is, those schedulables that are ready, are not running on
any processor, and can be executed using that processor.

Each processor has one running schedulable, which is the schedulable currently
being executed by that processor. Whenever a schedulable running on a
processor reaches a schedulable dispatching point, a new schedulable object
is selected to run on that processor. The schedulable selected is the one at
the head of the highest priority nonempty ready queue for that processor; this
schedulable is then removed from all ready queues to which it belongs.

In a multiprocessor system, a schedulable can be on the ready queues of more
than one processor. At the extreme, when several processors share the same set
of ready schedulables, the contents of their ready queues are identical, and so
they can be viewed as sharing one ready queue, and can be implemented that
way. Thus, the dispatching model covers multiprocessors where dispatching
is implemented using a single ready queue, as well as those with separate
dispatching domains.

The dispatching mechanism must enable the preemption of the execution of
schedulables and Java threads with a bounded delay at a point not governed
by the preempted object. The bound on this delay may be implementation-
defined, and could be the time to the next point in execution that the heap is
in a consistent state or some similar restriction. The implementation should

RTSJ 2.0 (Draft 46)

Semantics 6.2

11.

12.

13.

14.

15.

document this bound.

A schedulable that is preempted by a higher priority schedulable is placed in
the queue for its active priority, at a position determined by the implementation.
The implementation must document the algorithm used for such placement. It
is recommended that a preempted schedulable be placed at the front of the
appropriate queue.

A realtime thread that performs a yield() is placed at the tail of the queue
(dictated by its affinity) for its active priority level.

A blocked schedulable that becomes eligible for execution is added to the tail
of the queues (dictated by its affinity) for that priority. This behavior also
applies to the initial release of a schedulable.

A schedulable whose active priority is raised as a result of explicitly setting
its base priority (through the PriorityParameters setPriority() method, the
RealtimeThread setSchedulingParameters() method, or Thread’s setPriority()
method) is added to the tail of the queues (dictated by its affinity) for its new
priority level.

Queuing when priorities are adjusted by priority inversion avoidance algorithms
is governed by semantics specified in the Synchronization chapter.

6.2.1.4 Cost Monitoring and Cost Enforcement

The cost of a schedulable is defined by the value returned by invoking the getCost
method of the schedulable’s release parameters object. When a schedulable is initially
released, its current CPU consumption is zero, and as the schedulable executes, the
current CPU consumption increases. For cost monitoring, an implementation must
conform to the following requirements.

1.

3.

4.

If, at any time, due to either execution of the schedulable or a change in the
schedulable’s cost, the current CPU consumption becomes greater than or
equal to the current cost of the schedulable, then a cost overrun is triggered.

. The implementation is required to document the granularity at which the

current CPU consumption is updated.

When a cost overrun is triggered, the cost overrun handler associated with the
schedulable, if any, is released. No further action is taken.

The current CPU consumption is reset to zero when the schedulable is next
released (i.e. it moves from the blocked-for-release-event state to the eligible-
for-execution state).

When cost enforcement is supported, an implementation must conform to the
following requirements.

1.

When a cost overrun is triggered, in addition to releasing any cost overrun
handler, the following actions must be performed.
(a) When the most recent release of the schedulable is the 7' release, and the

RTSJ 2.0 (Draft 46) 107

6 Scheduling

1 + 1 release event has not yet occurred, the following must hold.

i

il

When the state of the schedulable is either executing or eligible-for-
execution, the schedulable is placed into the state blocked-by-cost-
overrun. There may be a bounded delay between the time at which a
cost overrun occurs and the time at which the schedulable becomes
blocked-by-cost-overrun.

Otherwise, the schedulable must have been blocked for a reason
other than blocked-by-cost-overrun. In this case, the state change to
blocked-by-cost-overrun is left pending; when the blocking condition
for the schedulable is removed, then its state changes to blocked-by-
cost-overrun. There may be a bounded delay between the time at
which the blocking condition is removed and the time at which the
schedulable becomes blocked-by-cost-overrun.

(b) When the most recent release of the schedulable is the i release, and the

7 + 1 release event has occurred, the current CPU consumption is set to
zero, the schedulable remains in its current state and the cost monitoring
system considers the most recent release to now be the 7 + 1 release.

2. When the " release event occurs for a schedulable, the action taken depends

on the state of the schedulable.
(a) When the schedulable is blocked-by-cost-overrun then the cost monitoring

system considers the most recent release to be the " release, the current
CPU consumption is set to zero and the schedulable is made eligible for
execution;

(b) When the schedulable is blocked for a reason other than blocked-by-cost-

overrun then

i.

when there is a pending state change to blocked-by-cost-overrun then
the pending state change is removed, the cost monitoring system
considers the most recent release to be the i'* release, the current
CPU consumption is set to zero, and the schedulable remains in its
current blocked state;

ii. otherwise, no cost monitoring action occurs.

(c) When the schedulable is not blocked, no cost monitoring action occurs.

3. When the ** release of a schedulable completes, and the cost monitoring system

considers the most recent release to be the i" release, then the current CPU
consumption is set to zero and the cost monitoring system considers the most
recent release to be the i 4+ 1 release. Otherwise, no cost monitoring action
occurs.

4. Changes to the cost parameter take effect immediately.

108

(a) When the new cost is less than or equal to the current CPU consumption,

and the old cost was greater than the current CPU consumption, then a

RTSJ 2.0 (Draft 46)

Semantics 6.2

cost overrun is triggered.
(b) When the new cost is greater than the current CPU consumption,

i. in the case that the schedulable is blocked-by-cost-overrun, the sched-
ulable is made eligible for execution;

ii. in the case that the schedulable is blocked for a reason other than
blocked-by-cost-overrun and there is a pending state change to blocked-
by-cost-overrun, the pending state change is removed;

iii. in all other cases, no cost monitoring action occurs.

5. When a schedulable changes state to blocked-by-cost-overrun, it must behave
as if its base priority has been reduced to the enforced priority. In other words,
unless its active priority has been modified by a priority inversion avoidance
algorithm as defined in this specification, it should not be scheduled on any
CPU. Upon moving out of this state, it will resume execution as if its base
priority had been restored to its configured base priority.

6. The state of the cost monitoring system for a schedulable can be reset by
the scheduler (see 6.2.1.2.2 in the Release of a Realtime Thread section,
below). When the most recent release of the schedulable is considered to be
the m'™ release and the most recent release event for the schedulable was the

" release event (where n > m), a reset causes the cost monitoring system to
consider the most recent release to be the n'” release, and to zero the current
CPU consumption.

6.2.2 Priority Schedulers

This specification defines a class of scheduler that are priority preemptive. There
sematics assumes a uniprocessor or shared memory multiprocessor execution environ-
ment. Two subclasses are defined: the base scheduler and a round-robin scheduler.

The semantics for the base scheduler is priority preemptive with run to completion
sematics, also known as first-in-first-out (FIFO) semantics: FirstInFirstOutScheduler.
The base scheduler supports the execution of all schedulables. When a schedulable
managed by the base scheduler is scheduled, it will run either until it blocks (as on a
monitor or for some I/O operation), voluntarily relinquishes the CPU (as for sleep),
or is preempted by a higher priority task.

The round-robin scheduler is a fixed-quantum, fixed-priority priority-preemptive
scheduler that interacts predictably with the base scheduler: RoundRobinScheduler.
The time at which a quantum expires may be calculated either from last task switch
or on a heartbeat. It uses the PriorityParameters class for the configuration of
schedulable priorities. It may not be present on all systems, but if it is present
then it will obey the semantics specified here. When a schedulable managed by the
round-robin scheduler is scheduled, it will run no only until it blocks (as on a monitor
or for some I/O operation), voluntarily relinquishes the CPU (as for sleep), or is

RTSJ 2.0 (Draft 46) 109

6 Scheduling

preempted by a higher priority task, as with the base scheduler, but also when its
quantum has expired.

The scheduler is not responsible for ensuring that a release, such as an event
handler, will complete within the quantum. A release which would run longer than
its quantum will be rescheduled at the end of that quantum, when another task with
the same priority is ready to run, even if it has not completed. When this is not the
desired behavior, the FirstInFirstOutScheduler should be used instead.

Both schedulers share the same base class: PriorityScheduler.

6.2.2.1 Priorities

No only the presents or absence of a time quantum, but also the semantics for
scheduling eligibility differs between the base (FIFO) and round-robin schedulers.
Both schedulers use a numerical priority value to determine scheduling eligibility.
A higher value means a higher scheduler eligibility and a lower one means a lower
scheduler eligibility. The values themselves have the same relative meaning between
schedulers, but the details of their semantics vary between the two schedulers.

6.2.2.1.1 First-In-First-Out-Scheduler

The base scheduler is a priority scheduler with the following requirements.

1. The base scheduler must support at least 28 distinct values (realtime priorities)
that can be stored in an instance of PriorityParameters in addition to the values
1 through 10 required to support the priorities defined by java.lang.Thread.

2. The realtime priority values must be greater than 10, and they must include
all integers from the base scheduler’s getMinPriority() value to its getMaxPri-
ority() value inclusive.

3. Higher priority values in an instance of PriorityParameters have a higher
execution eligibility.

4. The 10 priorities defined for java.lang.Thread must effectively have lower
execution eligibility than the realtime priorities.

5. When the round-robin scheduler is present, the base scheduler must support
at least one priority value numerically greater than the maximum allowable
round-robin priority.

6. For realtime scheduling, the base priority of each Schedulable under the con-
trol of the base scheduler must be from the range of realtime priorities. A
Schedulable with a priority in the java.lang.Thread range will be scheduled as
if it were an instance of java.lang.Thread.

7. Assignment of any of the realtime priority values to any Schedulable controlled
by the base priority scheduler is legal. It is the responsibility of application
logic to make rational priority assignments.

110 RTSJ 2.0 (Draft 46)

Semantics 6.2

10.

11.

12.

13.

N —

14.

. The base scheduler does not use the importance value in the ImportancePa-

rameters subclass of PriorityParameters.

Calling the java.lang.Thread.setPriority on a thread can only be used to set

the thread’s priority to a conventional Java priority (1-10).

For schedulables managed by the base scheduler, the implementation must not

change the execution eligibility for any reason other than

(a) the implementation of a priority inversion avoidance algorithm requires it,
or
(b) as a result of a program’s request to change the priority parameters

associated with one or more schedulables; e.g., by changing a value in
a scheduling parameter object that is used by one or more schedulables,
or by using setSchedulingParameters() to give a schedulable a different
SchedulingParameters value.

Use of Thread.setPriority(), any of the methods defined for schedulables, or any

of the methods defined for parameter objects must not affect the correctness of

the priority inversion avoidance algorithms controlled by PriorityCeilingEmu-

lation and Prioritylnheritance—see Chapter7.

When schedulable A managed by the base scheduler creates a Java thread, B,

then the initial base priority of B is the minimum of the priority value returned

by the getMaxPriority method of B’s java.lang. ThreadGroup object and the

priority of A.

PriorityScheduler.getNormPriority() shall be set to

((PriorityScheduler.getMaxPriority() —
PriorityScheduler.getMinPriority()) / 3) +
PriorityScheduler.getMinPriority/()

Hardware priorities, where supported, have values above the base scheduler’s
priority range (see Section 12.2.4).

6.2.2.1.2 The Round-Robin Scheduler

Priorities in the round-robin scheduler are as in the base scheduler, and priority
values are numerically equivalent between the two. Schedulables managed by the
round-robin scheduler behave as if they are scheduled from the same FIFO queue as
schedulables managed by the base scheduler of the same numeric priority, except
that they will consume no more than one quantum of execution time before being
moved to the tail of the queue. Implementations are permitted to use a single, shared
queue for this purpose.

If the round-robin scheduler is present, its priorities will have the same properties
as the base scheduler, except for the following.

RTSJ 2.0 (Draft 46) 111

6 Scheduling

1. The round-robin scheduler must support at least one priority, and may support
an arbitrarily large number of priorities.

2. All round-robin priorities must be greater than 10, and they must include
all integers from the round-robin scheduler’s getMinPriority() value to its
getMaxPriority() value, inclusive.

3. The round-robin scheduler does not use the importance value in the Importan-
ceParameters subclass of PriorityParameters.

4. RoundRobinScheduler.getNormPriority() shall be set to

1 ((RoundRobinScheduler.getMaxPriority() —
2 RoundRobinScheduler.getMinPriority()) / 3) +
3 RoundRobinScheduler.getMinPriority()

The round-robin scheduler may provide priorities strictly lower than that of the
base scheduler or a set of priorities partially or entirely overlapping with the priorities
provided by the base scheduler.

6.2.3 Associating Schedulables with Schedulers

The Scheduler associated with a Schedulable at the time it is started is derived
from its configuration and the configuration of the task (an instance of Thread or
Schedulable) that started it. The start time of a RealtimeThread is the time at which
its RealtimeThread.start() method is invoked, and the start time of an event handler
is the time at which it is attached to an event with AsyncBaseEvent.addHandler().
For the following discussion, let si be the instance of Schedulable being started,
parent be the task from which it is started, ns be some arbitrary scheduler, and sg be
the SchedulingGroup instance associated with si. The Scheduler for si is determined
as follows and in the order stated.

1. When Scheduler.setScheduler(ns) has been used to explicitly configure a sched-
uler for si, that scheduler will be the scheduler associated with si.

2. When parent is an instance of Schedulable and the scheduler associated with
parent is an instance of the class returned by sg.getScheduler(), then the
scheduler associated with si will be the scheduler associated with parent.

3. When parent is not an instance of Schedulable (i.e., it is a Java Thread)
but is currently scheduled with a realtime Scheduler and that scheduler is
an instance of the class returned by sg.getScheduler(), then si will use the
scheduler currently associated with parent.

4. When the default scheduler is an instance of the class returned by sg.getScheduler(),
then si will use the default scheduler.

5. When none of these conditions hold, a scheduler cannot be determined for si
and an IllegalStateException will be thrown.

112 RTSJ 2.0 (Draft 46)

Semantics 6.2

Schedulables must always have a compatible Scheduler and SchedulingParameters
any time these are explicitly configured. This means that appropriate configuration
objects must be passed in at construction time, and that all later changes must be
compatible; if both the Scheduler and SchedulingParameters must be changed in
such a way that neither is compatible with the current configuration, setScheduler
may be called on the Schedulable with both a scheduler and compatible parameters
passed at the same time.

6.2.4 Managing Groups of Schedulables

Conventional Java provides the class ThreadGroup to manage groups of threads.
Only minimal functionality is provided: limiting priority, setting daemon status, and
interrupting a group of threads at once. RTSJ extends this concept in two ways:
limiting CPU affinity on an instance of ThreadGroup through the Affinity class and
providing subclasses for managing Schedulables.

6.2.4.1 Scheduling Groups

The SchedulingGroup subclass of ThreadGroup provides a means of constraining the
possible scheduling parameters and scheduler of tasks. The setMaxPriority method
on ThreadGroup only pertains to tasks scheduled in the conventional Java range
(1-10), and not to tasks scheduled with a realtime scheduler. To ensure that this
works and that conventional thread groups must not need to be scope aware, an
implementation must enforce several restrictions:
1. only tasks in a scheduling group may use a realtime scheduler,
2. instances of Schedulable may only be created in a scheduling group,
3. the root ThreadGroup instance must be an instance of SchedulingGroup,
4. the ThreadGroup instance of the initial thread must be an instance of Schedul-
ingGroup,
5. an instance of SchedulingGroup may not have a parent that is not an instance
of SchedulingGroup, and
6. all children of a SchedulingGroup allocated in a ScopedMemory must be in-
stances of SchedulingGroup.
Furthermore, the enumeration methods on a scheduling group are aware of scoped
memory and the referential integrity restrictions discussed in Chapter 11, Alternative
Memory Areas. The enumeration methods of SchedulingGroup will not return
references to any descendants allocated in a ScopedMemory to which references may
not be made from the current allocation context. That is, if a newly allocated object
in the current allocation context could not safely hold a reference to a descendant of
the ScopedMemory, that descendant will not be included in the array returned by
enumerate(). For processing such SchedulingGroups, a visitor must be used.

RTSJ 2.0 (Draft 46) 113

6 Scheduling

The maximum priority and scheduler restrictions on SchedulingGroup and Thread-
Group apply only to the base priority of a task belonging to that group. Priority
inversion avoidance algorithms (see Chapter 7, Synchronization) may cause a task to
temporarily obtain a priority notionally higher than its maximum base priority as
specified in its associated instance of ThreadGroup.

Changing the maximum eligibility allowed to tasks in a SchedulingGroup (via
the SchedulingGroup.setMaxEligibility (SchedulingParameters) method) takes effect
immediately, and will do the following.

1. For any task t in the affected SchedulingGroup that is associated with a
SchedulingParameters not allowable under the new eligibility restriction, set the
SchedulingParameters associated with t to the SchedulingParameters currently
being set by setMaxEligibility/().

2. For any SchedulingGroup child sg of the affected SchedulingGroup that has
a maximum eligibility not allowed under the new eligibility restriction, set
the maximum eligibility of sg to the SchedulingParameters currently being
set by setMaxEligibility(). Note that this will recursively effect the tasks and
SchedulingGroup children in sg.

6.2.4.2 Processing Groups

A processing group is defined by an instance of the ProcessingGroup subclass of
SchedulingGroup and each schedulable that is bound to that parameter object is
called a member of that processing group. A processing group instance acts as a
proxy for its members, but enforcement does have an effect on the execution of
member threads. As a subclass of ThreadGroup, SchedulingGroup instances are
members of the thread group hierarchy of thread groups in the system. Since a
SchedulingGroup may have another SchedulingGroup instance as its ancestor, a task
might be in more than one scheduling group, and hence can be in more than one
processing group.

1. The deadline of a processing group is defined by the value returned by invoking
the getDeadline method of the processing group object.

2. A deadline miss for the processing group is triggered when any member of the
processing group consumes CPU time at a time greater than the deadline for
the most recent release of the processing group.

3. When a processing group misses a deadline:

(a) when the processing group has a miss handler, it is released for execution,
(b) otherwise, the processing group has no miss handler, no action is taken.

4. The cost of a processing group is defined by the value returned by invoking
the getCost method of the processing group object.

5. When a processing group is initially released, its current CPU consumption is
zero and as the members of the processing group execute, the current CPU

114 RTSJ 2.0 (Draft 46)

Semantics 6.2

10.

11.

12.

13.

14.

consumption increases. The current CPU consumption is set to zero in response
to certain actions as described below.

. Whenever, due to either execution of the members of the processing group or

a change in the group’s cost, the current CPU consumption becomes greater
than or equal to the current cost of the processing group, then a cost overrun
is triggered. The implementation is required to document the granularity at
which the current CPU consumption is updated.

When a cost underrun handler has been set, it is release at the end of any cost
period, where the minimal cost has not been consumed by the tasks in the

group.

. When the affinity of the group contains more than one processor, the granularity

enforced may be as large as the base granularity times the number of processors
in the group’s affinity.

. When a cost overrun is triggered, the cost overrun handler associated with the

processing group, if any, is released.

When more than one processing group monitoring a given task or set of tasks
reach their limits at the same time, all corresponding handlers are released in
an unspecified order.

Any group entering enforcement between a given group and the root enforces
that group.

When cost enforcement is supported, enabled, and triggered, the processing
group enters the enforced state. For each member of the processing group:

(a) the schedulable is placed into the enforced state; and

(b) when a schedulable is in the enforced state, the base scheduler schedules
that schedulable effectively as if it has a base priority lower than that of
a notional idle task.

When the release event occurs for a processing group, the action taken depends
on the state of the processing group.

(a) When the processing group is not in the enforced state, the current CPU
consumption for the group is set to zero.

(b) Otherwise, the processing group is in the enforced state. It is removed
from the enforced state, the current CPU consumption of the group is
set to zero, and each member of the group is removed from the enforced
state.

Changes to the cost, minimum and maximum, take effect immediately.

(a) When the new cost is less than or equal to the current CPU consumption,
and the old cost was greater than the current CPU consumption, a cost
overrun is triggered.

(b) When the new cost is greater than the current CPU consumption there
are two case:

RTSJ 2.0 (Draft 46) 115

6 Scheduling

i. when the processing group is enforced, then the processing group
behaves as defined in semantic 13;
ii. otherwise, no cost monitoring and enforcement action occurs.
15. Changes to other parameters take place as follows:
(a) changes to start have no effect;
(b) period can be change at each release, so the next period is set based on
the current value of the processing group’s period;
(c) deadline can change at each release, so the next deadline is set based on
the current value of the processing group’s deadline;
(d) OverrunHandler can change at each release, so the overrunHandler is
set based on the current value of the processing group’s overrunHandler;
(e) MissHandler can change at each release, so the missHandler is set based
on the current value of the processing group’s missHandler; and
(f) UnderrunHandler can change at each release, so the underrunHandler is
set based on the current value of the processing group’s underrunHandler.
16. Changes to the membership of the processing group take effect immediately.
17. The start time for the processing group may be relative or absolute.
(a) When the start time is absolute, the processing group behaves effectively
as if the initial release time were the start time.
(b) When the start time is relative, the initial release time is computed relative
to the time that the processing group is constructed.

Note that until a processing group starts (i.e., its start time has been reached) it
will perform no cost monitoring or enforcement on the Schedulables that it contains.
Once a processing group is started, it behaves effectively as if it runs continuously
until the defining ProcessingGroup object is freed. The start time does not affect
limits placed on the group that are inherited from ThreadGroup or SchedulingGroup,
such as affinity and scheduling parameters.

116 RTSJ 2.0 (Draft 46)

Semantics 6.2

Figure 6.1: Sequence Diagram of Some Example Realtime Thread Releases

| :RealtimeThread |

deadline

T T
1 1
1 1
1 1
start N |
pendingReleases = 0 AN : :
missCount = 0 | |
lastReturn = true 1 1
1 1
1 1
release ! :
pendingReleases = 1 N pendingReleases = 0 1
missCount = 0 missCount = 0 !
lastReturn = true lastReturn = true :
1
WFNR[|
deadline N 1
X 1
pendingReleases = 0 N7
missCount = 0 :
lastReturn = true |
1
|
release !
A1
pendingReleases = 1 D 1
missCount = 0 ! WENR <- true
lastReturn = true pendingReleases = 0 N |
missCount = 0 1
deadline lastReturn = true :
endingReleases = 0 Y !
pmissC(?unt =1 WENR <- false :
lastReturn = true pendingReleases = 0 B |
. missCount = 0 1
w = 1
elease T _NB lastReturn = false |
~NJ
pendingReleases = 1 D7
missCount = 0 :
lastReturn = false |
1
|
deadline !
. A
pendingReleases = 1 1
missCount = 1 !
lastReturn = false _'<} WFENR <-true |
pendingReleases = 0 AN I
missCount = 0 1
release lastReturn = true !
pendingReleases = 1 X :
missCount = 0 _<_]_|WFNR <- false I
lastReturn = false pendingReleases = 0 N :
missCount = 0 |
deadline lastReturn = false !
1
pendingReleases = 1 X _<_]_|WFNR <- false :
missCount = 1 pendingReleases =0 D) |
lastReturn = true missCount = 0 |
lastReturn = false :
wWF
release _|—N[§ Iil
pendingReleases = 1 & _L<} WFENR <- true
mlssCount_: 0 pendingReleases = 1 & :
lastReturn = false missCount = 0 |
lastReturn = false !
WFNB :
1
|

RTSJ 2.0 (Draft 46)

117

6 Scheduling

Figure 6.2: A State Chart for a Realtime Thread without a Deadline Miss Handler

initial

Initial
pendingReleases ==
missCount == 0
deschedule == false

start()

/Blocked for Normal Release\ [deschedule == false] 4 Descheduled
missCount == pendingReleases = 0
* release

* deschedule()

increments pendingReleases

missCount = 0

[deschedule == true]

deschedule == true
in WFNR()
*reschedule()

_ sets deschedule

clears deschedule

/

[pendingReleases > 0]
decrement pendingReleases

WFNR() returns true
/ Normal Release

* release

increments pendingReleases
* deadline miss

increments missCount
* deschedule()

sets deschedule
*reschedule()
\ clears deschedule

wWFNR() called
[missCount == 0]

(Blocked for Missed Release\
missCount > 0
pendingReleases > 0
in WFNR()
* release
increments pendingReleases
* deschedule()
sets deschedule

[deschedule == true]

[missCount > 0]
decrement pendingReleases
decrement missCount
WFNR() returns false

/

wWFNR() called
[missCount > 0]
decrement missCount
returns false

\

/ Handle Miss
* release
increments pendingReleases
* deadline miss
increments missCount
* deschedule()
sets deschedule
* reschedule()
\\clears deschedule

/ Missed Release

* release

increments pendingReleases
* deadline miss

increments missCount
* deschedule()

sets deschedule
*reschedule()
\\clears deschedule

WFNR() called

WFNR() called
[missCount > 0]

[missCount > 0]

118 RTSJ 2.0 (Draft 46)

Semantics 6.2

Figure 6.3: A State Chart for a Realtime Thread with a Deadline Miss Handler

ﬁnitial

(Initial

tendingReleases ==

descheduled == true

AN

start()

Blocked for N | Rel R 4
ocked for Normal Release reschedule() Descheduled

descheduled == false (clear deschedule)
* release
increments pendingReleases deschedule == true
* deschedule() g
sets deschedule
%

pendingReleases == 0
descheduled == true

release causes
WFNR() called when WFNR() to return true
deschedule == false

/ N

Normal Release

* release
increments pendingReleases
* deadline miss
releases miss handler WFNR() called when
sets deschedule deschedule == true
* deschedule() blocks
sets deschedule
* schedule()
clears deschedule

RTSJ 2.0 (Draft 46) 119

6 Scheduling Schedulable

6.3 javax.realtime

6.3.1 Interfaces
6.3.1.1 BoundSchedulable

Interfaces
javax.realtime.Schedulable
Description

A marker interface to provide a type safe reference to all schedulables that are
bound to a single underlying thread. A RealtimeThread? is by definition bound.

6.3.1.2 RealtimeExecutionContext

Description

All RTSJ objects that encapsulate execution. This type includes Schedulable and
javax.realtime.device.InterruptServiceRoutine. It is used by Affinity to remove
the need to have a reference into the javax.realtime.device package.

6.3.1.3 Schedulable

Interfaces
Runnable
javax.realtime.Timable
javax.realtime.RealtimeExecutionContext
Description

Handlers and other objects can be dispatched by a Scheduler® when they pro-
vide a run() method and the methods defined below. The Scheduler® uses this
information to create a suitable context to execute the run() method.

2Section 5.3.2.2
3Section 6.3.3.12
4Section 6.3.3.12

120 RTSJ 2.0 (Draft 46)

Schedulable javaz.realtime 6.3

6.3.1.3.1 Methods

getMemoryParameters

Signature
public javax.realtime.MemoryParameters
getMemoryParameters()

Description

Gets a reference to the MemoryParameters® object for this schedulable.

Returns
A reference to the current MemoryParameters® object.

setMemoryParameters(MemoryParameters)

Signature
public javax.realtime.Schedulable
setMemoryParameters(MemoryParameters memory)

Description

Sets the memory parameters associated with this instance of Schedulable.

This change becomes effective under conditions determined by the scheduler
controlling the schedulable. For instance, the change may be immediate or it may
be delayed until the next release of the schedulable object. See the documentation
for the scheduler for details.

Parameters
memory A MemoryParameters’ object which will become the memory parameters
associated with this after the method call. When null, the default value is
governed by the associated scheduler (a new object is created when the default
value is not null). (See PriorityScheduler®.)
Throws

5Section 11.3.2.4
6Section 11.3.2.4
"Section 11.3.2.4
8Section 6.3.3.8

RTSJ 2.0 (Draft 46) 121

6 Scheduling Schedulable

[llegal ArgumentException when memory is not compatible with the schedulable’s
scheduler. Also when this schedulable may not use the heap and memory is
located in heap memory.

[llegal AssignmentError when the schedulable cannot hold a reference to memory,
or when memory cannot hold a reference to this schedulable instance.

Returns
this

Open issue 6.3.1

We decided to change this on the 2016-07-14 call; should we leave it scheduler-
dependent, though?
End of issue 6.3.1

getReleaseParameters

Signature
public javax.realtime.ReleaseParameters
getReleaseParameters()

Description

Gets a reference to the ReleaseParameters’ object for this schedulable.

Returns
A reference to the current ReleaseParameters'” object.

setReleaseParameters(ReleaseParameters)

Signature
public javax.realtime.Schedulable
setReleaseParameters(ReleaseParameters release)

Description

Sets the release parameters associated with this instance of Schedulable.

This change becomes effective under conditions determined by the scheduler
controlling the schedulable. For instance, the change may be immediate or it may
be delayed until the next release of the schedulable. The different properties of
the release parameters may take effect at different times. See the documentation
for the scheduler for details.

9Section 6.3.3.10
10Section 6.3.3.10

122 RTSJ 2.0 (Draft 46)

Schedulable javaz.realtime 6.3

Parameters
release A ReleaseParameters!! object which will become the release parameters
associated with this after the method call, and take effect as determined by
the associated scheduler. When null, the default value is governed by the
associated scheduler (a new object is created when the default value is not
null). (See PriorityScheduler'?.)
Throws
Illegal Argument Exception Thrown when release is not compatible with the associ-
ated scheduler. Also when this schedulable may not use the heap and release
is located in heap memory.
[llegal Assignment Error when this object cannot hold a reference to release or release
cannot hold a reference to this.
[llegalSchedulableStateException when the task is running and the new release
parameters are not compatible with the current scheduler.

Returns
this

getScheduler

Signature

public javax.realtime.Scheduler
getScheduler()

Description
Gets a reference to the Scheduler'® object for this schedulable.

Returns
A reference to the associated Scheduler'* object.

setScheduler(Scheduler)

Signature
public javax.realtime.Schedulable
setScheduler(Scheduler scheduler)

HSection 6.3.3.10
12Section 6.3.3.8

13Section 6.3.3.12
14GQection 6.3.3.12

RTSJ 2.0 (Draft 46) 123

6 Scheduling Schedulable

throws SecurityException,
[legalSchedulableStateException

Description

Sets the reference to the Scheduler object. The timing of the change must be
agreed between the scheduler currently associated with this schedulable, and
scheduler. If the Schedulable is running, its associated SchedulingParameters (if
any) must be compatible with scheduler.

Parameters
scheduler A reference to the scheduler that will manage execution of this schedulable.
Null is not a permissible value.
Throws
[legal ArgumentException Thrown when scheduler is null, or the schedulable’s
existing parameter values are not compatible with scheduler. Also when this
schedulable may not use the heap and scheduler is located in heap memory.
[llegal AssignmentError when the schedulable cannot hold a reference to scheduler
or the current Schedulable is running and its associated SchedulingParameters
are incompatible with scheduler.
SecurityException when the caller is not permitted to set the scheduler for this
schedulable.
[llegalSchedulableStateException when scheduler has scheduling or release parame-
ters that are not compatible with the new scheduler and this schedulable is
running.

Returns
this

setScheduler(Scheduler, SchedulingParameters, ReleasePar-
ameters, MemoryParameters)

Signature
public javax.realtime.Schedulable
setScheduler(Scheduler scheduler,
SchedulingParameters scheduling,
ReleaseParameters release,
MemoryParameters memoryParameters)

Description

124 RTSJ 2.0 (Draft 46)

Schedulable javaz.realtime 6.3

Sets the scheduler and associated parameter objects. The timing of the change
must be agreed between the scheduler currently associated with this schedulable,
and scheduler.

Parameters
scheduler A reference to the scheduler that will manage the execution of this
schedulable. Null is not a permissible value.

scheduling A reference to the SchedulingParameters'® which will be associated with
this. When null, the default value is governed by scheduler (a new object is
created when the default value is not null). (See PriorityScheduler!®.)

release A reference to the ReleaseParameters'” which will be associated with this.
When null, the default value is governed by scheduler (a new object is created
when the default value is not null). (See PriorityScheduler'®.)

memoryParameters A reference to the MemoryParameters'? which will be associ-
ated with this. When null, the default value is governed by scheduler (a new
object is created when the default value is not null). (See PriorityScheduler®.)

Throws

[legal ArgumentException Thrown when scheduler is null or the parameter values
are not compatible with scheduler. Also thrown when this schedulable may not
use the heap and scheduler, scheduling release, memoryParameters, or group
is located in heap memory.

[llegal AssignmentError when this object cannot hold references to all the parameter
objects or the parameters cannot hold references to this.

SecurityException when the caller is not permitted to set the scheduler for this
schedulable.

Returns
this

getSchedulingParameters

Signature
public javax.realtime.SchedulingParameters
getSchedulingParameters()

15Gection 6.3.3.14
16Gection 6.3.3.8
17Section 6.3.3.10
18Section 6.3.3.8
9Gection 11.3.2.4
20Section 6.3.3.8

RTSJ 2.0 (Draft 46) 125

6 Scheduling Schedulable

Description
Gets a reference to the SchedulingParameters®! object for this schedulable.

Returns
A reference to the current SchedulingParameters®? object.

setSchedulingParameters(SchedulingParameters)

Signature
public javax.realtime.Schedulable
setSchedulingParameters(SchedulingParameters scheduling)
throws IllegalSchedulableStateException,
[legal AssignmentError,
Mlegal Argument Exception

Description

Sets the scheduling parameters associated with this instance of Schedulable.

This change becomes effective under conditions determined by the scheduler
controlling the schedulable. For instance, the change may be immediate or it
may be delayed until the next release of the schedulable. See the documentation
for the scheduler for details.

Parameters
scheduling A reference to the SchedulingParameters® object. When null, the default
value is governed by the associated scheduler (a new object is created when
the default value is not null). (See PriorityScheduler®!.)
Throws
[llegal ArgumentException Thrown when scheduling is not compatible with the
associated scheduler. Also when this schedulable may not use the heap and
scheduling is located in heap memory.

[llegal AssignmentError when this object cannot hold a reference to scheduling or
scheduling cannot hold a reference to this.

[llegalSchedulableStateException when the task is active and the new scheduling
parameters are not compatible with the current scheduler.

Returns
this

21Section 6.3.3.14
22Section 6.3.3.14
ZGection 6.3.3.14
24Gection 6.3.3.8

126 RTSJ 2.0 (Draft 46)

Schedulable javaz.realtime 6.3

getSchedulingGroup

Signature
public javax.realtime.SchedulingGroup
getSchedulingGroup()

Description

Gets a reference to the SchedulingGroup?® instance of this schedulable.

Returns
A reference to the current SchedulingGroup?® object.

Available since since RTSJ 2.0

getConfigurationParameters

Signature
public javax.realtime.ConfigurationParameters
getConfigurationParameters()

Description

Gets a reference to the ConfigurationParameters®” object for this schedulable.

Returns
A reference to the associated ConfigurationParameters® object.

Available since RTSJ 2.0

getMinConsumption(RelativeTime)
Signature
public javax.realtime.RelativeTime

getMinConsumption(RelativeTime dest)

Description

25Section 6.3.3.13
26Section 6.3.3.13
27Section 5.3.2.1
28Section 5.3.2.1

RTSJ 2.0 (Draft 46) 127

6 Scheduling Schedulable

Determine the minimum CPU consumption for this schedulable in any single
release. When this method is called on the current schedulable, the CPU con-
sumption of the current release is not considered. When dest is null, return the
minimum consumption in a RelativeTime?’ instance from the current allocation
context. When dest is not null, return the minimum consumption in dest

Parameters

dest when not null is the object in which to return the result.
Returns

the minimum time consumed in any release.

Available since RTSJ 2.0

getMinConsumption

Signature
public javax.realtime.RelativeTime
getMinConsumption()

Description

Equivalent to getMinConsumption(null).

Returns
the minimum time consumed in any release.

Available since RTSJ 2.0

getMaxConsumption(RelativeTime)

Signature
public javax.realtime.RelativeTime
getMaxConsumption(RelativeTime dest)

Description

Determine the maximum CPU consumption for this schedulable in any single
release. When this method is called on the current schedulable, the CPU con-
sumption of the current release is not considered. When dest is null, return the

29Section 9.3.1.3

128 RTSJ 2.0 (Draft 46)

Schedulable javaz.realtime 6.3

maximum consumption in a RelativeTime®" instance from the current allocation
context. When dest is not null, return the maximum consumption in dest

Parameters

dest when not null is the object in which to return the result.
Returns

the maximum time consumed in any release.

Available since RTSJ 2.0

getMaxConsumption

Signature
public javax.realtime.RelativeTime
getMaxConsumption()

Description

Equivalent to getMaxConsumption(null).

Returns
the maximum time consumed in any release.

Available since RTSJ 2.0

setDaemon(boolean)

Signature
public void
setDaemon(boolean on)

Description

Marks this schedulable as either a daemon or a user task. A realtime virtual
machine exits when the only tasks running are all daemon. This method must
be called before the task is attached to any event or started. Once attached or
started, it cannot be changed.

Parameters
on When true, marks this event handler as a daemon handler.
Throws

30Gection 9.3.1.3

RTSJ 2.0 (Draft 46) 129

6 Scheduling Schedulable

[llegal ThreadStateException when this schedulable is active.
SecurityException when the current schedulable cannot modify this event handler.

Available since RTSJ 2.0

isDaemon

Signature
public boolean
isDaemon()

Description

Tests if this event handler is a daemon handler.

Returns
True when this event handler is a daemon handler; false otherwise.

Available since RTSJ 2.0

mayUseHeap

Signature
public boolean
may UseHeap()

Description

Determine whether or not this schedulable may use the heap.

Returns
true only when this Schedulable may allocate on the heap and may enter the Heap.

Available since RTSJ 2.0

interrupt
Signature

public void
interrupt()

130 RTSJ 2.0 (Draft 46)

Schedulable javaz.realtime 6.3

throws IllegalSchedulableStateFException

Description

Make the generic AsynchronouslylnterruptedException®' pending for this, and
sets the interrupted state to true. As with Thread.interrupt(), blocking operations
that are interruptible are interrupted. When this.isRousable() is true cause an
early release. In any case, AsynchronouslylnterruptedException is thrown once
a method is entered that implements AsynchronouslylnterruptedException.

Behaves as if Thread.interrupt() were called on the implementation thread
underlying this Schedulable. throws IllegalSchedulableStateException when this
is not currently releasable, i.e., is disabled, not firable, its start method has not
been called, or it has terminated.

Available since RTSJ 2.0

isInterrupted

Signature
public boolean
isInterrupted ()

Description
Determines whether or not any AsynchronouslylnterruptedException®? is pend-
ing.

Returns
true when and only when the generic AsynchronouslyInterruptedException is pend-
ing.

Available since RTSJ 2.0

awaken

Signature
public void
awaken()

31Section 15.2.2.2
32Section 15.2.2.2

RTSJ 2.0 (Draft 46) 131

6 Scheduling MinimumlInterarrivalPolicy

throws IllegalStateException
Description
Provides a means for a Clock®® to end a sleep.

Throws
[llegalStateException when called from user code.

Available since RTSJ 2.0

6.3.2 Enumerations

6.3.2.1 MinimumlInterarrivalPolicy

Inheritance
java.lang.Object
java.lang.Enum<E extends java.lang. Enum<E»
javax.realtime.MinimumlInterarrival Policy

Description
Defines the set of policies for handling interarrival time violations in Sporadic-
Parameters®*. Each policy governs every instance of Schedulable®® which has
SporadicParameters®® with that minimum interarrival time policy.

Available since RTSJ 2.0

6.3.2.1.1 Enumeration Constants

EXCEPT

public static final EXCEPT

Description

33Section 10.3.2.1
34Section 6.3.3.15
35Section 6.3.1.3

36Section 6.3.3.15

132 RTSJ 2.0 (Draft 46)

MinimumlInterarrivalPolicy javaz.realtime 6.3

Represents the "EXCEPT" policy for minimum interarrival time. Under this
policy, when an arrival time of a release occurs at a time less then the last
release time plus its minimum interarrival time, the fire() method shall throw a
preallocated instance of MITViolationException®”.

IGNORE

public static final IGNORE

Description

Represents the "IGNORE" policy for minimum interarrival time. Under this
policy, when an arrival time of a release occurs at a time less then the last release
time plus its minimum interarrival time, the new arrival time is ignored.

REPLACE

public static final REPLACE

Description

Represents the "REPLACE" policy for minimum interarrival time. Under this
policy, when an arrival time of a release occurs at a time less then the last release
time plus its minimum interarrival time, the information for this arrival replaces
a previous arrival. For cases when the previous event has already been released or
the event queue has a length of zero, the arrival is ignore as with the "IGNORE'"
policy.

SAVE

public static final SAVE

Description

Represents the "SAVE" policy for minimum interarrival time. Under this policy,
when an arrival time of a release occurs at a time less then the last release time
plus its minimum interarrival time, the new release is queued until the last release
time plus its minimum interarrival time is reached.

37Section 15.2.2.10

RTSJ 2.0 (Draft 46) 133

6 Scheduling MinimumlInterarrivalPolicy

6.3.2.1.2 Methods

values
Signature
public static javax.realtime.MinimumlInterarrivalPolicy||

values()

Description

valueOf(String)
Signature
public static javax.realtime.MinimumInterarrivalPolicy

valueOf(String name)

Description

value

Signature
public java.lang.String
value()

Description

Determine the string corresponding to this value.

Returns
the corresponding string.

value(String)
Signature

134 RTSJ 2.0 (Draft 46)

QueueOverflowPolicy

javaz.realtime 6.3

public static javax.realtime.MinimumlInterarrivalPolicy
value(String value)

Description
Convert a string into a policy type.
Parameters
value is the string to convert.

Returns
the corresponding policy type.

6.3.2.2 QueueOverflowPolicy

Inheritance

java.lang.Object
java.lang. Enum<E extends java.lang. Enum<E»
javax.realtime.QueueOverflowPolicy

Description

Defines the set of policies for handling overflow on event queues used by Re-
leaseParameters®®. An event queue holds a number of event arrival times with
any respective payload provided with the event. A reference to the event itself
is only held when it happens to be the payload, e.g., for an AsyncObjectEvent

associated with a Timer.

Available since RTSJ 2.0

6.3.2.2.1 Enumeration Constants

DISABLE

public static final DISABLE

Description

38Gection 6.3.3.10

RTSJ 2.0 (Draft 46)

135

6 Scheduling QueueOverflowPolicy

Represents the "DISABLE" policy which means, when an arrival occurs, no
queuing takes place, thus no overflow can happen. This policy is for instances
of ActiveEvent? with no payload and instances of RealtimeThread*’ with Pe-
riodicParameters*'. In contrast to IGNORE*, all incoming events increment
the pending fire or release count, respectively. For this reason, it may not be
used with an event handler that supports an event payload or any instance
of Schedulable®® with SporadicParameters**. This policy is also the default for
PeriodicParameters®”. Instances of RealtimeThread without with null release
parameters have this policy implicitly, as they do not have an event queue either.

EXCEPT

public static final EXCEPT

Description

Represents the "EXCEPT" policy which means, when an arrival occurs and its
event time and payload should be queued but the queue already holds a number
of event times and payloads equal to the initial queue length, the fire() method
shall throw an Arrival TimeQueueOverflowException®®. When fire is used within
a Timer?", the exception is ignored and the fire does nothing, i.e., it acts the
same as “IGNORE".

IGNORE

public static final IGNORE

Description

Represents the "IGNORE" policy which means, when an arrival occurs and its
event time and payload should be queued, but the queue already holds a number
of event times and payloads equal to the initial queue length, the arrival is ignored.

39Section 8.3.1.1
40Gection 5.3.2.2
41Section 6.3.3.6
42Gection 6.3.2.2.1
43Section 6.3.1.3
44Gection 6.3.3.15
45Gection 6.3.3.6
468Qection 15.2.2.1
47Section 10.3.2.6

136 RTSJ 2.0 (Draft 46)

QueueOverflowPolicy javaz.realtime 6.3

REPLACE

public static final REPLACE

Description

Represents the "REPLACE" policy which means, when an arrival occurs and
should be queued but the queue already holds a number of event times and
payloads equal to the initial queue length, the information for this arrival replaces
a previous arrival. When the queue length is zero, the behavior is the same as
the "IGNORE" policy.

SAVE

public static final SAVE

Description

Represents the "SAVE" policy which means, when an arrival occurs and should
be queued but the queue is full, the queue is lengthened and the arrival time
and payload are saved. This policy does not update the'initial queue length"
as it alters the actual queue length. Since the SAVE policy grows the arrival
time queue as necessary, for the SAVE policy the initial queue length is only an
optimization. It is also the default for AperiodicParameters®®.

6.3.2.2.2 Methods

values
Signature
public static javax.realtime.QueueOverflowPolicy]|

values()

Description

Gection 6.3.3.2

RTSJ 2.0 (Draft 46) 137

6 Scheduling

Affinity

valueOf(String)

Signature
public static javax.realtime.QueueOverflowPolicy
valueOf(String name)

Description

value

Signature
public java.lang.String
value()
Description
Determine the string corresponding to this value.

Returns
the corresponding string.

value(String)

Signature
public static javax.realtime.QueueOverflowPolicy
value(String value)

Description
Convert a string into a policy type.
Parameters
value is the string to convert.

Returns
the corresponding policy type.

138 RTSJ 2.0 (Draft 46)

Affinity javaz.realtime 6.3

6.3.3 Classes
6.3.3.1 Affinity

Inheritance

java.lang.Object
javax.realtime. Affinity

Description

This is the API for all processor-affinity-related aspects of the RTSJ. It includes a
factory that generates Affinity objects, and methods that control the CPU affinity
used by java.lang.ThreadGroup to control the affinity of all its tasks. With it,
the affinity of every task in the JVM can be controlled.

An affinity is a set of processors that can be associated with certain types
of tasks. Each task (java.lang.Thread and RealtimeExecutionContext') can be
associated with an affinity. Groups of these can be assigned an affinity through
their java.lang. Thread Group.

Each implementation supports an array of predefined affinity sets. They can
be used either to reflect the scheduling arrangement of the underlying OS or they
can be used by the system designer to impose defaults for groups of task. A
program is only allowed to dynamically create new affinity sets with cardinality
of one. This restriction reflects the concern that not all operating systems will
support multiprocessor affinity sets.

The processor membership of an affinity set is immutable. The tasks asso-
ciations of an affinity set are mutable. The processor affinity of a task can be
changed by static methods in this class. The internal representation of a set of
processors in an Affinity instance is not specified, but the representation that is
used to communicate with this class is a BitSet where each bit corresponds to a
logical processor ID. The relationship between logical and physical processors is
beyond the scope of this specification, and may change.

The affinity set factory only generates usable Affinity instances; i.e., affinity
sets that (at least when they are created) can be used with set(Affinity, Realtime-
ExecutionContext)®, set(Affinity, Thread)’!, and set(Affinity, ThreadGroup)®2.
The factory cannot create an affinity set with more than one processor member,
but such affinity sets are supported. They may be internally created by the RTSJ
runtime at startup time.

49Section 6.3.1.2

50Section 6.3.3.1.1
51Section 6.3.3.1.1
52Gection 6.3.3.1.1

RTSJ 2.0 (Draft 46) 139

6 Scheduling Affinity

The set of affinity sets created at startup (the predefined set) is visible through
the getPredefined Affinities(Affinity[|)®® method. The affinity set factory may be
used to create affinity sets with a single processor member at any time. This
operation only supports processor members that are available to the JVM at the
time of creation.

External changes to the set of processors available to the RT'SJ runtime is
likely to cause serious trouble ranging from violation of assumptions underlying
schedulability analysis to freezing the entire RT'SJ runtime, so when a system is
capable of such manipulation it should not exercise it on RTSJ processes.

Tasks are subject to both their own processor affinity and that of their thread
group. Their processor affinity is governed by the intersection of the thread
group’s affinity and the task’s affinity. The intersection of a thread group’s
affinity set with the schedulable’s affinity set must contain at least one entry.
Trying to set a tasks affinity outside its thread group always fails. Trying to
setting the affinity of a thread group that does not intersect with the thread
group of its tasks will also fail.

Ordinarily, an execution context inherits its creator’s affinity set, but

e Java threads do not inherit affinity from Schedulable™s,

e instances of AsyncBaseEventHandler” that are not bound do not inherit

affinity, and

e Schedulables do not inherit affinity from Java threads.

When a task does not inherit its creator’s affinity set, its initial affinity set is set
to all processors and is thus only limited by its thread group.

There is no public constructor for this class. All instances must be created by
the factory method (generate).

Available since RTSJ 2.0

6.3.3.1.1 Methods

getPredefined AffinitiesCount

Signature
public static final int
getPredefined AffinitiesCount|()

53Section 6.3.3.1.1
54Gection 6.3.1.3
55Section 8.3.3.3

140 RTSJ 2.0 (Draft 46)

Affinity javaz.realtime 6.3

Description

Determine the minimum array size required to store references to all the predefined
processor affinity sets.

Returns
The minimum array size required to store references to all the predefined affinity
sets.

getPredefined Affinities

Signature
public static final javax.realtime.Affinity|]
getPredefined Affinities()

Description

Equivalent to invoking getPredefined AffinitySets(null).

Returns
an array of the predefined affinity sets.

getPredefined Affinities(Affinity)

Signature
public static final javax.realtime.Affinity|]
getPredefined Affinities(javax.realtime. Affinity|| dest)

Description

Determine what affinity sets are predefined by the Java runtime.

Parameters
dest The destination array, or null.
Throws
Illegal Argument Exception when dest is not large enough.

Returns
dest or a newly created array when dest is null, populated with references to the
predefined affinity sets. When dest has excess entries, those entries are filled
with null.

RTSJ 2.0 (Draft 46) 141

6 Scheduling Affinity

isSet AffinitySupported

Signature
public static final boolean
isSet AffinitySupported()

Description

Determine whether or not affinity control is supported.

Returns
true when the set(Affinity, Thread)®® family of methods is supported.

generate(BitSet)

Signature
public static final javax.realtime.Affinity
generate(BitSet set)

Description

Determine the Affinity corresponding to a BitSet, where each bit in set represents
a CPU.

Platforms that support specific affinity sets will register those Affinity instances
with Affinity®”. They appear in the arrays returned by getPredefined Affinities()*®
and getPredefined Affinities(Affinity|])*.

Parameters

set is the BitSet to convert into an Affinity.
Throws

NullPointerException when set is null.

[legal ArgumentException when set does not refer to a valid set of processors,
where “valid” is defined as the bitset from a predefined affinity set, or a
bitset of cardinality one containing a processor from the set returned by
get AvailableProcessors(). The definition of “valid set of processors” is system
dependent; however, every set consisting of one valid processor makes up a
valid bit set, and every bit set correspond to a predefined affinity set is valid.

Returns

56Section 6.3.3.1.1
57Section 6.3.3.1

58Section 6.3.3.1.1
59Gection 6.3.3.1.1

142 RTSJ 2.0 (Draft 46)

Affinity javaz.realtime 6.3

The resulting Affinity.

get AvailableProcessors

Signature
public static final java.util.BitSet
getAvailableProcessors()

Description

This method is equivalent to get AvailableProcessors(BitSet)® with a null argu-
ment.

Returns
the set of processors available to the program.

get AvailableProcessors(BitSet)

Signature
public static final java.util.BitSet
getAvailableProcessors(BitSet dest)

Description

In systems where the set of processors available to a process is dynamic (e.g.,
because of system management operations or because of fault tolerance capabili-
ties), the set of available processors shall reflect the processsors that are allocated
to the RTSJ runtime and are currently available to execute tasks.

Parameters

dest When dest is non-null, use dest as the returned value. When it is null, create
a new BitSet.

Returns

A BitSet representing the set of processors currently valid for use in the bitset
argument to generate(BitSet)%!.

60Gection 6.3.3.1.1
61Section 6.3.3.1.1

RTSJ 2.0 (Draft 46) 143

6 Scheduling Affinity

get(RealtimeExecutionContext)

Signature
public static final javax.realtime.Affinity
get(RealtimeExecutionContext task)

Description

Determine the affinity set instance associated with task.

Parameters

task is the execution context to query.
Returns

The associated affinity.

set (Affinity, RealtimeExecutionContext)

Signature
public static final void
set(Affinity set,
RealtimeExecutionContext task)
throws Processor AffinityException

Description

Set the processor affinity of a task.

Parameters
set is the processor affinity

task is the execution context whose affinity will be set.
Throws
Illegal Argument Exception when the intersection of set the affinity of any Thread-
Group instance containing task is empty.

Processor AffinityException is thrown when the runtime fails to set the affinity for
platform-specific reasons.

NullPointerException when set or task is null.

get(Thread)
Signature

144 RTSJ 2.0 (Draft 46)

Affinity javaz.realtime 6.3

public static final javax.realtime.Affinity
get(Thread thread)

Description
Determmine the affinity set instance associated with thread.

Parameters

thread a Java thread, or one of its subclasses (including RealtimeThread®?).
Returns

The associated affinity set.

set (Affinity, Thread)

Signature
public static final void
set(Affinity set,
Thread thread)
throws Processor AffinityException

Description
Set the processor affinity of a Java thread or RealtimeThread® to set.

Parameters
set The processor affinity set
thread The thread or realtime thread.
Throws
[llegal ArgumentException when the intersection of set and the affinity of any
ThreadGroup instance containing thread is empty.
Processor AffinityException when the runtime fails to set the affinity for platform-
specific reasons.

NullPointerException when set or thread is null.

get(ThreadGroup)

Signature
public static final javax.realtime.Affinity
get(ThreadGroup group)

62Section 5.3.2.2
63Section 5.3.2.2

RTSJ 2.0 (Draft 46) 145

6 Scheduling Affinity

Description
Determine the affinity set instance associated with group.

Parameters

group An instance of java.lang. ThreadGroup
Returns

The associated affinity set.

set (Affinity, ThreadGroup)

Signature
public static final void
set(Affinity set,
ThreadGroup group)
throws ProcessorAffinityException

Description
Set the processor affinity of group to set with immediate effect.

Parameters
set The processor affinity set
group The processing group parameters instance.
Throws
[llegal ArgumentException when the intersection of set and the affinity of any
task in group is empty, or when the disjunction of set and the affinity of any
ThreadGroup containing group is non-empty.
Processor AffinityException when the runtime fails to set the affinity for platform-
specific reasons or group contains more than one processor.

NullPointerException when set or group is null.

getProcessors

Signature
public final java.util. BitSet
getProcessors()

Description
Return a BitSet representing the processor affinity set for this Affinity.

Returns
A newly created BitSet representing this Affinity.

146 RTSJ 2.0 (Draft 46)

Affinity javaz.realtime 6.3

getProcessors(BitSet)

Signature
public final java.util.BitSet
getProcessors(BitSet dest)

Description

Determine the set of CPUs representing the processor affinity of this Affinity.

Parameters
dest Set dest to the BitSet value. When dest is null, create a new BitSet in the
current allocation context.
Returns
A BitSet representing the processor affinity set of this Affinity.

isProcessorInSet(int)

Signature
public final boolean
isProcessorInSet (int processorld)

Description

Ask whether a processor is included in this affinity set.

Parameters

processorld a number identifying a single CPU in a multiprocessor system.
Returns

true when and only when processorNumber is represented in this affinity set.

applyTo(BoundAsyncEventHandler)

Signature
public final void
applyTo(BoundAsyncEventHandler aeh)
throws Processor AffinityException

Description
Set the processor affinity of a bound AEH to this.

Parameters

RTSJ 2.0 (Draft 46) 147

6 Scheduling Affinity

ach The bound async event handler

Throws
Illegal Argument Exception when intersection of this with the affinity of any group

containing aeh is empty.

Processor AffinityException Thrown when the runtime fails to set the affinity for
platform-specific reasons.

NullPointerException when aeh is null.

applyTo(Thread)

Signature
public final void
applyTo(Thread thread)
throws Processor AffinityException

Description
Set the processor affinity of a Java thread or RealtimeThread® to this.

Parameters
thread The thread or realtime thread.

Throws
Illegal ArgumentException when intersection of this with the affinity of any group

containing thread is empty.

Processor AffinityException when the runtime fails to set the affinity for platform-
specific reasons.

NullPointerException when thread is null.

applyTo(ThreadGroup)

Signature
public final void
applyTo(ThreadGroup group)
throws ProcessorAffinityException

Description
Set the processor affinity of group to this.

Parameters

64Gection 5.3.2.2

148 RTSJ 2.0 (Draft 46)

AperiodicParameters javaz.realtime 6.3

group The processing group parameters instance.
Throws
[llegal ArgumentException when the intersection of this and the affinity of any
task in group is empty, or when the disjunction of this and the affinity of any
ThreadGroup containing group is non-empty.

Processor AffinityException when the runtime fails to set the affinity for platform-
specific reasons or group contains more than one processor.

NullPointerException when group is null.

applyTo(ActiveEventDispatcher)

Signature
public final void
applyTo(javax.realtime. ActiveEventDispatcher<?, 7> dispatcher)
throws Processor AffinityException

Description

Set the processor affinity of dispatcher to this.

Parameters
dispatcher is the dispatcher instance.
Throws
Illegal Argument Exception when intersection of this with the affinity of any group
containing dispatcher is empty.
Processor AffinityException when the runtime fails to set the affinity for platform-
specific reasons.

NullPointerException when dispatcher is null.

6.3.3.2 AperiodicParameters

Inheritance
java.lang.Object
javax.realtime.ReleaseParameters
javax.realtime.AperiodicParameters
Description
When a reference to an AperiodicParameters object is given as a parameter
to a schedulable’s constructor or passed as an argument to one of the sched-
ulable’s setter methods, the AperiodicParameters object becomes the release

RTSJ 2.0 (Draft 46) 149

6 Scheduling AperiodicParameters

parameters object bound to that schedulable. Changes to the values in the
AperiodicParameters object affect that schedulable. When bound to more than
one schedulable, changes to the values in the AperiodicParameters object affect
all of the associated objects. Note that this is a one-to-many relationship and
not a many-to-many.

Only changes to an AperiodicParameters object caused by methods on that
object cause the change to propagate to all schedulables using the object. For
instance, calling setCost on an AperiodicParameters object will make the change,
then notify that the scheduler that the parameter object has changed. At that
point the object is reconsidered for every schedulable that uses it. Invoking a
method on the RelativeTime object that is the cost for this object may change
the cost but it does not pass the change to the scheduler at that time. That
change must not change the behavior of the schedulable’s that use the parameter
object until a setter method on the AperiodicParameters object is invoked, or
the parameter object is used in setReleaseParameters() or a constructor for a

schedulable.

The implementation must use modified copy semantics for each HighResolu-
tionTime® parameter value. The value of each time object should be treated as
if it were copied at the time it is passed to the parameter object, but the object
reference must also be retained. For instance, the value returned by getCost()
must be the same object passed in by setCost(), but any changes made to the
time value of the cost must not take effect in the associated AperiodicParameters
instance unless they are passed to the parameter object again, e.g. with a new
invocation of setCost.

Correct initiation of the deadline miss and cost overrun handlers requires
that the underlying system know the arrival time of each aperiodic task. For an
instance of RealtimeThread® the arrival time is the time at which the start() is
invoked. For other instances of Schedulable®”, the required behaviors may require
the implementation to behave effectively as if it maintained a queue of arrival
times.

When the release parameters for a RealtimeThread are set to an instance of
this class or one of its subclasses, the thread does not start executing code until
the RealtimeThread.release()% method is called.

The following table gives the default values for the constructors parameters.

65Section 9.3.1.2
66GSection 5.3.2.2
67Section 6.3.1.3
68Section 5.3.2.2.2

150

RTSJ 2.0 (Draft 46)

AperiodicParameters javaz.realtime 6.3

Table 6.3: AperiodicParameters Default Values

Attribute Value
cost new RelativeTime(0,0)
deadline new RelativeTime(Long. MAX VALUE, 999999)
overrunHandler None
missHandler None
rousable false
Arrival time queue size | 0
Queue overflow policy | SAVE

Caution: This class is explicitly unsafe for multithreading when being changed.
Code that mutates instances of this class should synchronize at a higher level.

6.3.3.2.1 Fields

6.3.3.2.2 Constructors

AperiodicParameters(RelativeTime, RelativeTime, AsyncEv-
entHandler, AsyncEventHandler, boolean)

Signature
public
AperiodicParameters(RelativeTime cost,
RelativeTime deadline,
AsyncEventHandler overrunHandler,
AsyncEventHandler missHandler,
boolean rousable)

Description

Create an AperiodicParameters object.

Available since RTSJ 2.0

RTSJ 2.0 (Draft 46) 151

6 Scheduling AperiodicParameters

Parameters

cost Processing time per invocation. On implementations which can measure the
amount of time a schedulable object is executed, this value is the maximum
amount of time a schedulable receives. On implementations which cannot
measure execution time, it is not possible to determine when any particu-
lar object exceeds cost. When null, the default value is a new instance of
RelativeTime(0,0).

deadline The latest permissible completion time measured from the release time of

the associated invocation of the schedulable. When null, the default value is a
new instance of RelativeTime(Long.MAX VALUE, 999999).

overrunHandler This handler is invoked when an invocation of the schedulable
exceeds cost. Not required for minimum implementation. When null, the
default value is no overrun handler.

missHandler This handler is invoked when the run() method of the schedulable
object is still executing after the deadline has passed. When null, the default
value is no miss handler.

rousable determines whether or not an instance of Schedulable can be prematurely
released by a thread interrupt.
Throws
[llegal ArgumentException when the time value of cost is less than zero, or the time
value of deadline is less than or equal to zero.

[llegal AssignmentError when cost, deadline, overrunHandler or missHandler cannot
be stored in this.

AperiodicParameters(RelativeTime, RelativeTime, AsyncEv-
entHandler, AsyncEventHandler)

Signature
public
AperiodicParameters(RelativeTime cost,
RelativeTime deadline,
AsyncEventHandler overrunHandler,
AsyncEventHandler missHandler)

Description
Equivalent to AperiodicParameters(RelativeTime, RelativeTime, AsyncEvent-
Handler, AsyncEventHandler, boolean)® with the argument list (cost, deadline,

69Section 6.3.3.2.2

152 RTSJ 2.0 (Draft 46)

AperiodicParameters javaz.realtime 6.3

overrunHandler, missHandler, false).

Parameters

cost Processing time per invocation. On implementations that support cost enforce-
ment, this value is the maximum amount of time a schedulable receives. On
implementations which do not support cost enforcement, it is not possible to
determine when any particular object exceeds cost. When null, the default
value is a new instance of RelativeTime(0,0).

deadline The latest permissible completion time measured from the release time of
the associated invocation of the schedulable. When null, the default value is a
new instance of RelativeTime(Long. MAX VALUE, 999999).

overrunHandler This handler is invoked when an invocation of the schedulable
exceeds cost. Not required for minimum implementation. When null, the
default value is no overrun handler.

missHandler This handler is invoked when the run() method of the schedulable
object is still executing after the deadline has passed. When null, the default
value is no miss handler.

Throws

Illegal Argument Exception when the time value of cost is less than zero, or the time
value of deadline is less than or equal to zero.

[llegal Assignment Error when cost, deadline, overrunHandler or missHandler cannot
be stored in this.

AperiodicParameters(RelativeTime, AsyncEventHandler, boo-
lean)

Signature
public
AperiodicParameters(RelativeTime deadline,
AsyncEventHandler missHandler,
boolean rousable)

Description

Equivalent to AperiodicParameters(RelativeTime, RelativeTime, AsyncEvent-
Handler, AsyncEventHandler, boolean)™ with the argument list (null, deadline,
null, missHandler, rousable).

70Section 6.3.3.2.2

RTSJ 2.0 (Draft 46) 153

6 Scheduling AperiodicParameters

Available since RTSJ 2.0

AperiodicParameters(RelativeTime)

Signature
public
AperiodicParameters(RelativeTime deadline)

Description

Equivalent to AperiodicParameters(RelativeTime, RelativeTime, AsyncEvent-
Handler, AsyncEventHandler, boolean)™ with the argument list (null, deadline,
null, null, false).

Available since RTSJ 2.0

AperiodicParameters

Signature
public
AperiodicParameters()

Description

Equivalent to AperiodicParameters(RelativeTime, RelativeTime, AsyncEvent-
Handler, AsyncEventHandler, boolean)™ with the argument list (null, null, null,
null, false).

Available since RTSJ 1.0.1

6.3.3.2.3 Methods

"1Section 6.3.3.2.2
"2Section 6.3.3.2.2

154 RTSJ 2.0 (Draft 46)

BackgroundParameters javaz.realtime 6.3

setDeadline(RelativeTime)

Signature
public javax.realtime.AperiodicParameters
setDeadline(RelativeTime deadline)

Description

Sets the deadline value.

When this parameter object is associated with any schedulable object (by
being passed through the schedulable’s constructor or set with a method such
as RealtimeThread.setReleaseParameters(ReleaseParameters)™) the deadline of
those schedulables is altered as specified by each schedulable’s respective scheduler.

Parameters
deadline The latest permissible completion time measured from the release time of
the associated invocation of the schedulable. When deadline is null, the deadline
is set to a new instance of RelativeTime(Long.MAX VALUE, 999999).
Throws
Illegal ArgumentException when the time value of deadline is less than or equal to
zero, or when the new value of this deadline is incompatible with the scheduler
for any associated schedulable.

[llegal AssignmentError IllegalAssignmentError when deadline cannot be stored in
this.

Returns
this

6.3.3.3 BackgroundParameters

Inheritance

java.lang.Object
javax.realtime.ReleaseParameters
javax.realtime.BackgroundParameters

Description

Parameters for realtime threads that are only released once. A thread using this
release parameters may not use RealtimeThread.waitForNextRelease()™ or have

73Section 5.3.2.2.2
"Section 5.3.2.2.2

RTSJ 2.0 (Draft 46) 155

6 Scheduling BackgroundParameters

its RealtimeThread.release()™ methods called. Calling these methods results
in an IllegalThreadStateException. Event handlers may not use this type of
ReleaseParameters.

6.3.3.3.1 Constructors

BackgroundParameters(RelativeTime, RelativeTime, Async-
EventHandler, AsyncEventHandler)

Signature
public
BackgroundParameters(RelativeTime cost,
RelativeTime deadline,
AsyncEventHandler overrunHandler,
AsyncEventHandler missHandler)

Description

A constructor for both cost and deadline monitoring.

Caution: This class is explicitly unsafe for multithreading when being changed.
Code that mutates instances of this class should synchronize at a higher level. Avail-
able since RTSJ 2.0

Parameters
cost is the maximum cost for the initial release
deadline is the deadline for the initial release
overrunHandler is the handler to call on cost overrun.
missHandler is the handler to call on deadline miss.
Throws
Mlegal ArgumentException when the time value of cost is less than zero, or the time

value of deadline is less than or equal to zero, or the chronograph associated
with the cost or deadline parameters is not an instance of Clock™.

[llegal Assignment Error when cost, deadline, overrunHandler, or missHandler cannot
be stored in this.

"5Section 5.3.2.2.2
"6Section 10.3.2.1

156 RTSJ 2.0 (Draft 46)

FirstInFirstOutScheduler javaz.realtime 6.3

BackgroundParameters(RelativeTime, AsyncEventHandler)

Signature
public
BackgroundParameters(RelativeTime deadline,
AsyncEventHandler missHandler)

Description

A constructor for deadline monitoring. Equivalent to BackgroundParameters(null,
deadline, null, missHandler)

Available since RTSJ 2.0

BackgroundParameters

Signature
public
BackgroundParameters|()

Description

A constructor for not having any restrictions on or monitoring of scheduling.
Equivalent to BackgroundParameters(null, null, null, null, false)

6.3.3.4 FirstInFirstOutScheduler

Inheritance

java.lang.Object
javax.realtime.Scheduler
javax.realtime.PriorityScheduler
javax.realtime.FirstInFirstOutScheduler

Description

A version of PriorityScheduler”” where once a thread is scheduled at a given
priority, it runs until it is blocked or is preempted by a higher priority thread.

77Section 6.3.3.8

RTSJ 2.0 (Draft 46) 157

6 Scheduling FirstInFirstOutScheduler

When preempted, it remains the next thread ready for its priority. This is the
default scheduler for realtime tasks. It represents the required (by the RTSJ)
priority-based scheduler. The default instance is the base scheduler which does
fixed priority, preemptive scheduling.

This scheduler, like all schedulers, governs the default values for scheduling-
related parameters in its client schedulables. The defaults are as follows:

Table 6.4: FirstInFirstOut Default PriorityParameter Values

Attribute Default Value
Priority norm priority

The system contains one instance of the FirstInFirstOutScheduler which is the
system’s base scheduler and is returned by FirstInFirstOutScheduler.instance().
The instance returned by the instance()™ method is the base scheduler and
is returned by Scheduler.getDefaultScheduler()™ unless the default scheduler is
reset with Scheduler.setDefaultScheduler(Scheduler)®°.

Available since RTSJ 2.0

6.3.3.4.1 Methods

instance

Signature

public static javax.realtime.FirstInFirstOutScheduler
instance()

Description

Obtain a reference to the distinguished instance of PriorityScheduler which is
the system’s base scheduler.

Returns

A

reference to the distinguished instance PriorityScheduler.

"8Section 6.3.3.4.1
™Section 6.3.3.12.2
80Gection 6.3.3.12.2

158

RTSJ 2.0 (Draft 46)

FirstInFirstOutScheduler javaz.realtime 6.3

getMaxPriority

Signature
public int
getMaxPriority()

Description
Obtain the maximum priority available for a schedulable managed by this sched-

uler.

Returns
The value of the maximum priority.

getMinPriority

Signature
public int
getMinPriority()

Description

Obtain the minimum priority available for a schedulable managed by this sched-
uler.

Returns
The minimum priority used by this scheduler.

getNormPriority

Signature
public int
getNormPriority()

Description

Obtain the normal priority available for a schedulable managed by this scheduler.

Returns
The value of the normal priority.

RTSJ 2.0 (Draft 46) 159

6 Scheduling ImportanceParameters

getPolicyName

Signature
public java.lang.String
getPolicyName()

Description

Obtain the policy name of this.

Returns
The policy name (Fixed Priority First In First Out) as a string.

reschedule(Thread, int)

Signature

public void
reschedule(Thread thread,
int priority)

Description

Promotes a java.lang.Thread to realtime priority under this scheduler. The
affected thread will be scheduled as if it were a RealtimeThread®! of the given
priority. This does not make the affected thread a RealtimeThread, however, and
it will not have access to facilities reserved for instances of RealtimeThread.

Parameters
thread The thread to promote to realtime scheduling.
priority An integer priority equivalent to a priority set via PriorityParameters® on
a RealtimeThread.
Throws
Illegal ArgumentException when priority is not between getMinPriority()® and
getMaxPriority()*, inclusive.

81Gection 5.3.2.2
82Gection 6.3.3.7
83Section 6.3.3.4.1
84Section 6.3.3.4.1

160 RTSJ 2.0 (Draft 46)

ImportanceParameters javaz.realtime 6.3

6.3.3.5 ImportanceParameters

Inheritance

java.lang.Object
javax.realtime.SchedulingParameters
javax.realtime.PriorityParameters
javax.realtime.ImportanceParameters

Description

Importance is an additional scheduling metric that may be used by some priority-
based scheduling algorithms during overload conditions to differentiate execution
order among threads of the same priority.

In some realtime systems an external physical process determines the period
of many threads. When rate-monotonic priority assignment is used to assign
priorities, many of the threads in the system may have the same priority because
their periods are the same. However, it is conceivable that some threads may be
more important than others and in an overload situation importance can help the
scheduler decide which threads to execute first. The base scheduling algorithm
represented by PriorityScheduler®® must not consider importance.

6.3.3.5.1 Constructors

ImportanceParameters(int, int)

Signature
public
ImportanceParameters(int priority,
int importance)

Description

Create an instance of ImportanceParameters.

Parameters
priority The priority value assigned to schedulables that use this parameter instance.
This value is used in place of the value passed to Thread.setPriority.

85Gection 6.3.3.8

RTSJ 2.0 (Draft 46) 161

6 Scheduling ImportanceParameters

importance The importance value assigned to schedulable objects that use this
parameter instance.

6.3.3.5.2 Methods

getImportance

Signature
public int
getImportance()

Description

Gets the importance value.

Returns
The value of importance for the associated instances of Schedulable®.

setImportance(int)

Signature
public javax.realtime.ImportanceParameters
setImportance(int importance)

Description

Set the importance value. When this parameter object is associated with any
schedulable (by being passed through the schedulable’s constructor or set with a
method such as RealtimeThread.setSchedulingParameters(SchedulingParameters)®7)
the importance of those schedulables is altered at a moment controlled by the
schedulers for the respective schedulables.

Parameters
importance The value to which importance is set.
Throws
Illegal Argument Exception when the given importance value is incompatible with the
scheduler for any of the schedulables which are presently using this parameter
object.

86Section 6.3.1.3
87Section 5.3.2.2.2

162 RTSJ 2.0 (Draft 46)

PeriodicParameters javaz.realtime 6.3

Returns
this

toString
Signature
public java.lang.String

toString()

Description

Print the value of the priority and importance values of the associated instance
of Schedulable®®

6.3.3.6 PeriodicParameters

Inheritance

java.lang.Object
javax.realtime.ReleaseParameters
javax.realtime.PeriodicParameters

Description

This release parameter indicates that the schedulable is released on a regular
basis. For an AsyncEventHandler®”, this means that the handler is either re-
leased by a periodic timer, or the associated event occurs periodically. For a
RealtimeThread”, this means that the RealtimeThread.waitForNextRelease”!
method will unblock the associated realtime thread at the start of each period.

When a reference to a PeriodicParameters object is given as a parameter to
a schedulable’s constructor or passed as an argument to one of the schedulable’s
setter methods, the PeriodicParameters object becomes the release parameters
object bound to that schedulable. Changes to the values in the PeriodicPa-
rameters object affect that schedulable object. When bound to more than one
schedulable then changes to the values in the PeriodicParameters object affect
all of the associated objects. Note that this is a one-to-many relationship and
not a many-to-many.

88Gection 6.3.1.3
89Gection 8.3.3.5
90Section 5.3.2.2
91Section 5.3.2.2.2

RTSJ 2.0 (Draft 46) 163

65

cheduling PeriodicParameters

Only changes to a PeriodicParameters object caused by methods on that
object cause the change to propagate to all schedulable objects using the object.
For instance, calling setCost on an PeriodicParameters object will make the
change, then notify that the scheduler that the parameter object has changed. At
that point the object is reconsidered for every SO that uses it. Invoking a method
on the RelativeTime object that is the cost for this object may change the cost
but it does not pass the change to the scheduler at that time. That change must
not change the behavior of the SOs that use the parameter object until a setter
method on the PeriodicParameters object is invoked, or the parameter object is
used in setReleaseParameters() or a constructor for an SO.

Periodic parameters use HighResolutionTime’? values for period and start
time. Since these times are expressed as a HighResolutionTime”® values, these
values use accurate timers with nanosecond granularity. The actual resolution
available and even the quantity the timers measure depend on the clock associated
with each time value.

The implementation must use modified copy semantics for each HighResolu-
tionTime”* parameter value. The value of each time object should be treated as
if it were copied at the time it is passed to the parameter object, but the object
reference must also be retained. For instance, the value returned by getCost()
must be the same object passed in by setCost(), but any changes made to the
time value of the cost must not take effect in the associated PeriodicParameters
instance unless they are passed to the parameter object again, e.g. with a new
invocation of setCost.

The following table gives the default parameter values for the constructors.

Table 6.5: PeriodicParameter Default Values

Attribute Default Value

start new RelativeTime(0,0)

period No default. A value must be sup-
plied

cost new RelativeTime(0,0)

deadline new RelativeTime(period)

overrunHandler None

missHandler None

EventQueueOverflowPolicy QueueOverflowPolicy. DISABLE

92
93

Section 9.3.1.2
Section 9.3.1.2

94Gection 9.3.1.2

164

RTSJ 2.0 (Draft 46)

PeriodicParameters javaz.realtime 6.3

Periodic release parameters are strictly informational when they are applied
to async event handlers. They must be used for any feasibility analysis, but
release of the async event handler is not entirely controlled by the scheduler.

Caution: This class is explicitly unsafe for multithreading when being changed.
Code that mutates instances of this class should synchronize at a higher level.

6.3.3.6.1 Constructors

PeriodicParameters(HighResolutionTime, RelativeTime, Re-
lativeTime, RelativeTime, AsyncEventHandler, AsyncEvent-
Handler, boolean)

Signature

public

PeriodicParameters(javax.realtime.HighResolutionTime<?> start,
RelativeTime period,
RelativeTime cost,
RelativeTime deadline,
AsyncEventHandler overrunHandler,
AsyncEventHandler missHandler,
boolean rousable)

Description

Create a PeriodicParameters object with attributes set to the specified values.

Available since RTSJ 2.0

Parameters

start Time at which the first release begins (i.e. the realtime thread becomes
eligible for execution.) When a RelativeTime, this time is relative to the first
time the thread becomes activated (that is, when start() is called). When an
AbsoluteTime, then the first release is the maximum of the start parameter
and the time of the call to the associated RealtimeThread.start() method
(modified according to any phasing policy). When null, the default value is a
new instance of RelativeTime(0,0).

period The period is the interval between successive releases. There is no default
value. When period is null an exception is thrown.

RTSJ 2.0 (Draft 46) 165

6 Scheduling PeriodicParameters

cost Processing time per release. On implementations which can measure the
amount of time a schedulable is executed, this value is the maximum amount
of time a schedulable receives per release. When null, the default value is a
new instance of RelativeTime(0,0).

deadline The latest permissible completion time measured from the release time of
the associated invocation of the schedulable. When null, the default value is
new instance of RelativeTime(period).

overrunHandler This handler is invoked when an invocation of the schedulable
exceeds cost in the given release. Implementations may ignore this parameter.
When null, the default value is no overrun handler.

missHandler This handler is invoked when the run() method of the schedulable is
still executing after the deadline has passed. When null, the default value is
no deadline miss handler.

rousable when true, and interrupt will cause an early release, otherwise not.
Throws
[llegal ArgumentException when the period is null or its time value is not greater
than zero, or when the time value of cost is less than zero, or when the time
value of deadline is not greater than zero, or when the clock associated with
the cost is not the realtime clock, or when the clock associated with the start,
deadline and period parameters are not the same.

[llegal AssignmentError when start period, cost, deadline, overrunHandler or mis-
sHandler cannot be stored in this.

PeriodicParameters(HighResolutionTime, RelativeTime, Re-
lativeTime, RelativeTime, AsyncEventHandler, AsyncEvent-
Handler)

Signature

public

PeriodicParameters(javax.realtime.HighResolutionTime< 7> start,
RelativeTime period,
RelativeTime cost,
RelativeTime deadline,
AsyncEventHandler overrunHandler,
AsyncEventHandler missHandler)

Description

Equivalent to PeriodicParameters(HighResolutionTime, RelativeTime, Relative-

166 RTSJ 2.0 (Draft 46)

PeriodicParameters javaz.realtime 6.3

Time, RelativeTime, AsyncEventHandler, AsyncEventHandler, boolean)® with
the argument list (start, period, cost, deadline, overrunHandler, missHandler,
false);

PeriodicParameters(HighResolutionTime, RelativeTime, Re-
lativeTime, AsyncEventHandler, boolean)

Signature
public
PeriodicParameters(javax.realtime.HighResolutionTime<?7> start,
RelativeTime period,
RelativeTime deadline,
AsyncEventHandler missHandler,
boolean rousable)

Description

Equivalent to PeriodicParameters(HighResolutionTime, RelativeTime, Relative-
Time, RelativeTime, AsyncEventHandler, AsyncEventHandler, boolean)® with
the argument list (start, period, deadline, null, null, missHandler, rousable);

Available since RTSJ 2.0

PeriodicParameters(HighResolutionTime, RelativeTime)

Signature
public
PeriodicParameters(javax.realtime.HighResolutionTime<7> start,
RelativeTime period)

Description

Equivalent to PeriodicParameters(HighResolutionTime, RelativeTime, Relative-
Time, RelativeTime, AsyncEventHandler, AsyncEventHandler, boolean)®” with
the argument list (start, period, null, null, null, null, false);

95Section 6.3.3.6.1
96Gection 6.3.3.6.1
97Section 6.3.3.6.1

RTSJ 2.0 (Draft 46) 167

6 Scheduling PeriodicParameters

Available since RTSJ 1.0.1

PeriodicParameters(RelativeTime)

Signature
public
PeriodicParameters(RelativeTime period)

Description

Create a PeriodicParameters object with the specified period and all other at-
tributes set to their default values. This constructor has the same effect as
invoking PeriodicParameters(null, period, null, null, null, null, false)

Available since RTSJ 1.0.1

6.3.3.6.2 Methods

getPeriod

Signature
public javax.realtime.RelativeTime
getPeriod()

Description

Determine the current value of period.

Returns
the object last used to set the period containing the current value of period.

getPeriod(RelativeTime)

Signature
public javax.realtime.RelativeTime
getPeriod(RelativeTime value)

168 RTSJ 2.0 (Draft 46)

PeriodicParameters javaz.realtime 6.3

Description

Determine the current value of period.

Returns
value or, when null, the last object used to set the period, set to the current value
of period.

getStart

Signature
public javax.realtime.HighResolutionTime<7 >
getStart()

Description

Determine the time used to start an instance of Schedulable, which is not neces-
sarily the time at which it actually started.

Returns
the object last used to set the start containing the current value of start.

setDeadline(RelativeTime)

Signature
public javax.realtime.PeriodicParameters
setDeadline(RelativeTime deadline)

Description

Sets the deadline value.

When this parameter object is associated with any schedulable object (by
being passed through the schedulable’s constructor or set with a method such
as RealtimeThread.setReleaseParameters(ReleaseParameters)®) the deadline of
those schedulables is altered as specified by each schedulable’s respective scheduler.

Parameters
deadline The latest permissible completion time measured from the release time
of the associated invocation of the schedulable. When deadline is null, the
deadline is set to a new instance of RelativeTime equal to period.
Throws

98Gection 5.3.2.2.2

RTSJ 2.0 (Draft 46) 169

6 Scheduling PeriodicParameters

[llegal ArgumentException when the time value of deadline is less than or equal to
zero, or when the new value of this deadline is incompatible with the scheduler
for any associated schedulable.

[llegal AssignmentError IllegalAssignmentError when deadline cannot be stored in
this.

Returns
this

setPeriod(RelativeTime)

Signature
public javax.realtime.PeriodicParameters
setPeriod(RelativeTime period)

Description

Sets the period.

Parameters
period The value to which period is set.
Throws
Illegal ArgumentException when the given period is null or its time value is not
greater than zero. Also when period is incompatible with the scheduler for
any associated schedulable or when an associated AsyncBaseEventHandler?
is associated with a Timer'”’ whose period does not match period.

[llegal AssignmentError when period cannot be stored in this.

Returns
this

setStart(HighResolutionTime)
Signature
public javax.realtime.PeriodicParameters

setStart (javax.realtime. HighResolutionTime< 7> start)

Description

99Gection 8.3.3.3
100Gaction 10.3.2.6

170 RTSJ 2.0 (Draft 46)

PriorityParameters javaz.realtime 6.3

Sets the start time.
The effect of changing the start time for any schedulables associated with this
parameter object is determined by the scheduler associated with each schedulable.
Note: An instance of PeriodicParameters may be shared by several schedula-
bles. A change to the start time may take effect on a subset of these schedulables.
That leaves the start time returned by getStart unreliable as a way to determine
the start time of a schedulable.

Parameters
start The new start time. When null, the default value is a new instance of
RelativeTime(0,0).
Throws
[llegal ArgumentException when the given start time is incompatible with the
scheduler for any of the schedulable objects which are presently using this
parameter object.

[llegal AssignmentError when start cannot be stored in this.

Returns
this

6.3.3.7 PriorityParameters

Inheritance

java.lang.Object
javax.realtime.SchedulingParameters
javax.realtime.PriorityParameters

Description

Instances of this class should be assigned to schedulables that are managed by
schedulers which use a single integer to determine execution order. The base
scheduler required by this specification and represented by the class PrioritySched-
uler'® is such a scheduler.

6.3.3.7.1 Constructors

101Gaction 6.3.3.8

RTSJ 2.0 (Draft 46) 171

6 Scheduling PriorityParameters

PriorityParameters(int)

Signature
public
PriorityParameters(int priority)

Description

Create an instance of PriorityParameters'®? with the given priority.

Parameters
priority The priority assigned to schedulables that use this parameter instance.

6.3.3.7.2 Methods

isCompatible(Class)

Signature
public boolean
isCompatible(java.lang.Class<javax.realtime.Scheduler> type)

Description

Determine whether this scheduling parameters can be used by tasks scheduled
by instances of type.

Parameters
type of scheduler to check against
Returns
true when and only when this can be used with type as the scheduler.

Available since RTSJ 2.0

getPriority

Signature

102Gaction 6.3.3.7

172 RTSJ 2.0 (Draft 46)

PriorityParameters javaz.realtime 6.3

public int
getPriority()

Description

Gets the priority value.

Returns
The priority.

setPriority(int)

Signature
public javax.realtime.PriorityParameters
setPriority(int priority)

Description

Set the priority value. When this parameter object is associated with any sched-
ulable (by being passed through the schedulable’s constructor or set with a method
such as RealtimeThread.setSchedulingParameters(SchedulingParameters)!%?) the
base priority of those schedulables is altered as specified by each schedulable’s
scheduler.

Parameters
priority The value to which priority is set.
Throws
Mlegal ArgumentException when the given priority value is incompatible with the
scheduler for any of the schedulables which are presently using this parameter
object.

Returns
this

toString

Signature
public java.lang.String
toString()

Description

103Gaction 5.3.2.2.2

RTSJ 2.0 (Draft 46) 173

6 Scheduling PriorityScheduler

Converts the priority value to a string.

Returns
A string representing the value of priority.

6.3.3.8 PriorityScheduler

Inheritance

java.lang.Object
javax.realtime.Scheduler
javax.realtime.PriorityScheduler

Description

Class which represents the required (by the RTSJ) priority-based schedulers. The
default instance is the base scheduler which uses a fixed priority, first-in-first-out,
preemptive scheduling algorithm.

This scheduler, like all schedulers, governs the default values for scheduling-
related parameters in its client schedulables. The defaults are as follows:

Table 6.6: PriorityScheduler Default PriorityParameter Values

Attribute Default Value
Priority norm priority

Note that the system contains one instance of the PriorityScheduler which is
the system’s base scheduler and is returned by FirstInFirstOutScheduler.instance()'?.
It may, however, contain instances of subclasses of PriorityScheduler created
through this class’ protected constructor. The instance returned by the FirstInFirstOutScheduler.
instance() method, the base scheduler, is returned by Scheduler.getDefaultScheduler ()%
unless the default scheduler is changed with Scheduler.setDefaultScheduler(Scheduler)!%.

6.3.3.8.1 Fields

104Section 6.3.3.4.1
105Gection 6.3.3.12.2
106Gaction 6.3.3.12.2

174 RTSJ 2.0 (Draft 46)

PriorityScheduler javaz.realtime 6.3

6.3.3.8.2 Constructors

PriorityScheduler

Signature
protected
PriorityScheduler()

Description

Construct an instance of PriorityScheduler. Applications will likely not need any
instance other than the default instance.

6.3.3.8.3 Methods

getPolicyName

Signature
public java.lang.String
getPolicyName()

Description

Gets the policy name of this.

Returns
The policy name (Fixed Priority) as a string.

getMaxPriority
Signature
public abstract int
getMaxPriority/()

Description

Gets the maximum priority available for a schedulable managed by this scheduler.

RTSJ 2.0 (Draft 46) 175

6 Scheduling PriorityScheduler

Returns
The value of the maximum priority.

getMinPriority

Signature
public abstract int
getMinPriority()

Description
Gets the minimum priority available for a schedulable managed by this scheduler.

Returns
The minimum priority used by this scheduler.

getNormPriority

Signature
public abstract int
getNormPriority ()

Description
Gets the normal priority available for a schedulable managed by this scheduler.

Returns
The value of the normal priority.

reschedule(Thread, int)

Signature
public abstract void
reschedule(Thread thread,

int priority)

Description
Promotes a java.lang. Thread to realtime priority under this scheduler. The
affected thread will be scheduled as if it were a RealtimeThread'” of the given
priority. This does not make the affected thread a RealtimeThread, however, and
it will not have access to facilities reserved for instances of RealtimeThread.

107Gaction 5.3.2.2

176 RTSJ 2.0 (Draft 46)

ProcessingGroup javaz.realtime 6.3

Parameters

thread The thread to promote to realtime scheduling.

priority An integer priority equivalent to a priority set via PriorityParameters'®®

on a RealtimeThread.
Throws
[legal ArgumentException when priority is not between getMinPriority/()
getMaxPriority()'°, inclusive.

Available since RTSJ 2.0

109 and

6.3.3.9 ProcessingGroup

Inheritance

java.lang.Object
java.lang. Thread Group
javax.realtime.SchedulingGroup
javax.realtime.ProcessingGroup

Description

A descendant class of ThreadGroup for handling tasks (instances of Schedul-
able!! and java.lang. Thread) as a group. As with ThreadGroup and Scheduling-
Group'*?, instances of ProcessingGroup can be nested. A processing group can
contain all group types, i.e., instance of all three classes. The cost of the group,
including all tasks in its subgroups, can be both tracked and limited over a given
period, by bounding the execution demands of those tasks.

A processing group has an associated affinity. The precision of cost monitoring
is dependent on the number of processors in the thread group. In the worst case,
it is the base precision times the number of processors in the processing group.
The default affinity is that which was inherited from the parent SchedulingGroup.

For all tasks with a reference to an instance of ProcessingGroup p, no more
than p.cost will be allocated to the execution of these tasks on the processors
associated with its processing group in each interval of time given by p.period
after the time indicated by p.start. No execution of the tasks will be allowed on
any processor other than these processors.

108Gection 6.3.3.7
109Gection 6.3.3.8.3
110Gection 6.3.3.8.3
HSection 6.3.1.3
128ection 6.3.3.13

RTSJ 2.0 (Draft 46) 177

65

cheduling ProcessingGroup

For each running task in a processing group, there must always be at least one
processor in the intersection between a task object’s affinity and its processing
group’s affinity regardless of the groups monitoring state.

Logically, a ProcessingGroup represents a virtual server. This server has a
start time, a period, a cost (budget), and a deadline. The server can only logically
execute when

e (a) it has not consumed more execution time in its current release than the

cost (budget) parameter,

e (b) one of its associated tasks is executable and is the most eligible of the

executable tasks.
When the server is logically executable, the associated tasks are executed.

When the cost has been consumed, any overrunHandler is released, and the
server is not eligible for logical execution until the period is finished. At this point,
its allocated cost (budget) is replenished. When the server is logically executable
when its deadline expires, any associated missHandler is released. When the
server is logically executable when its next release time occurs, any associated
underrunHandler is released.

The deadline and cost parameters of all the associated schedulable objects
have the same impact as they would if the objects were not bound to a processing
group.

Processing group parameters use HighResolutionTime!? values for cost, dead-
line, period and start time. Since those times are expressed as a HighResolu-
tionTime!'™, the values use accurate timers with nanosecond granularity. The
actual resolution available and even the quantity it measures depends on the
clock associated with each time value.

When a reference to a ProcessingGroup object is given as a parameter to a
schedulable’s constructor or passed as an argument to one of the schedulable’s
setter methods, the ProcessingGroup object becomes the processing group pa-
rameters object bound to that schedulable object. Changes to the values in the
ProcessingGroup object affect that schedulable object. When bound to more
than one schedulable then changes to the values in the ProcessingGroup object
affect all of the associated objects. Note that this is a one-to-many relationship
and not a many-to-many.

The implementation must use copy semantics for each HighResolutionTime!'!?
parameter value. The value of each time object should be copied at the time it is
passed to the parameter object, and the object reference must not be retained.
Only changes to a ProcessingGroup object caused by methods on that object

13Section 9.3.1.2
H4Gection 9.3.1.2
115Gaction 9.3.1.2

178

RTSJ 2.0 (Draft 46)

ProcessingGroup javaz.realtime 6.3

are immediately visible to the scheduler. For instance, invoking setPeriod() on
a ProcessingGroup object will make the change, then notify that the scheduler
that the parameter object has changed. At that point the scheduler’s view of
the processing group parameters object is updated. Invoking a method on the
RelativeTime object that is the period for this object may change the period but
it does not pass the change to the scheduler at that time. That new value for
period must not change the behavior of the SOs that use the parameter object
until a setter method on the ProcessingGroup object is invoked or a constructor
for an SO.

The following table gives the default parameter values for the constructors.

Table 6.7: ProcessingGroup Default Values

Attribute Default Value

start new RelativeTime(0,0)

period No default. A value must be sup-
plied

cost No default. A value must be sup-
plied

deadline new RelativeTime(period)

minimum null, no minimum

overrunHandler None

missHandler None

underrunHandler None

Caution: This class is explicitly unsafe in multithreaded situations when it
is being changed. No synchronization is done. It is assumed that users of this
class who are mutating instances will be doing their own synchronization at a
higher level.

Caution: The cost parameter time should be considered to be measured
against the target platform.

Available since RTSJ 2.0

6.3.3.9.1 Constructors

RTSJ 2.0 (Draft 46) 179

6 Scheduling ProcessingGroup

ProcessingGroup(SchedulingGroup, String, HighResolution-
Time, RelativeTime, RelativeTime, AsyncEventHandler, Re-
lativeTime, AsyncEventHandler)

Signature

public

ProcessingGroup(SchedulingGroup parent,
String name,
javax.realtime.HighResolutionTime< 7> start,
RelativeTime period,
RelativeTime cost,
AsyncEventHandler overrun,
RelativeTime minimum,
AsyncEventHandler underrun)

Description

Create a ProcessingGroup

Parameters
parent is the parent SchedulingGroup!'® of this ProcessingGroup.

name is a string identifier for this group.
start is when monitoring should begin.
period is an amount of time for cost and overrun monitoring and for cost enforcement.

cost is the maximum total execution time of all tasks in the group during a given
period.

overrun is called when the the total execution of all tasks in the group exceeds cost
for a given period.

minimum is the least amount of processing time for all the tasks in this group
together.

underrun is called at the end of period when the total processing time of all tasks
was less than minimum in the last period.

ProcessingGroup(SchedulingGroup, String, HighResolution-
Time, RelativeTime, RelativeTime, AsyncEventHandler)

Signature

116Gaction 6.3.3.13

180 RTSJ 2.0 (Draft 46)

ProcessingGroup javaz.realtime 6.3

public

ProcessingGroup(SchedulingGroup parent,
String name,
javax.realtime.HighResolutionTime< 7> start,
RelativeTime period,
RelativeTime cost,
AsyncEventHandler overrun)

Description

Equivalent to ProcessingGroup(SchedulingGroup, String, HighResolutionTime,
RelativeTime, RelativeTime, AsyncEventHandler, RelativeTime, AsyncEvent-

Handler)''” with the argument list (parent, name, start, period, cost, overrun,
null, null).

ProcessingGroup(String, HighResolutionTime, RelativeTime,
RelativeTime, AsyncEventHandler)

Signature
public
ProcessingGroup(String name,
javax.realtime.HighResolutionTime< 7> start,
RelativeTime period,
RelativeTime cost,
AsyncEventHandler overrun)

Description

Equivalent to ProcessingGroup(SchedulingGroup, String, HighResolutionTime,
RelativeTime, RelativeTime, AsyncEventHandler, RelativeTime, AsyncEvent-
Handler)''® with the argument list (Scheduler.currentSchedulable().getSchedulingGroup(),
name, start, period, cost, overrun, null, null).

6.3.3.9.2 Methods

17GQection 6.3.3.9.1
118Gaction 6.3.3.9.1

RTSJ 2.0 (Draft 46) 181

6 Scheduling ProcessingGroup

getEffectiveStart(AbsoluteTime)

Signature
public javax.realtime.AbsoluteTime
getEffectiveStart(AbsoluteTime dest)

Description
Obtain the actual time of the group started as recorded by the system. When
the start time is absolute, that is the effective start time; otherwise, the effective
start is computed relative to the time that the processing group is constructed.

Parameters
dest is a time value to fill.
Returns
either, a new instance of AbsoluteTime, when dest is null, or dest otherwise. In
either case, its value is the time at which this group actually started.

getEffectiveStart

Signature
public javax.realtime.AbsoluteTime
getEffectiveStart()

Description
Obtain the actual time of the group started as recorded by the system.
Equivalent to getEffectiveStart(AbsoluteTime)'? where dest is set to null.

Returns
A reference a new instance of AbsoluteTime that represents the time at which this
group started.

getPeriod(RelativeTime)

Signature
public javax.realtime.RelativeTime
getPeriod(RelativeTime dest)

Description
Gets the value of period and returns it in the provided RelativeTime!*" object.

19Gection 6.3.3.9.2
120Gection 9.3.1.3

182 RTSJ 2.0 (Draft 46)

ProcessingGroup javaz.realtime 6.3

Parameters
dest An instance of RelativeTime which will be set to the currently configured
period. If dest is null, a new RelativeTime will be created in the current
allocation context.
Returns
A reference to dest, or a newly created object if dest is null.

getPeriod

Signature
public javax.realtime.RelativeTime
getPeriod|()

Description

Gets the value of period.
Equivalent to getPeriod(null).

Returns
A reference to a newly allocated instance of RelativeTime!?! that represents the
value of period.

setPeriod(RelativeTime)

Signature
public javax.realtime.ProcessingGroup
setPeriod(RelativeTime period)
throws Illegal ArgumentException,
[llegal AssignmentError

Description

Sets the value of period.

Parameters
period The new value for period. There is no default value. When period is null
an exception is thrown.
Throws

121Gaction 9.3.1.3

RTSJ 2.0 (Draft 46) 183

6 Scheduling ProcessingGroup

[llegal ArgumentException when period is null, or its time value is not greater than
zero. When the implementation does not support processing group deadline
less than period, and period is not equal to the current value of the processing
group’s deadline, the deadline is set to a clone of period created in the same
memory area as period.

Returns
this

getMaximumCost(RelativeTime)

Signature
public javax.realtime.RelativeTime
getMaximumCost(RelativeTime dest)

Description

Gets the value of cost. and returns it in the provided RelativeTime'?? object.

Parameters
dest An instance of RelativeTime which will be set to the currently configured cost.
If dest is null, a new RelativeTime will be created in the current allocation
context.
Returns
A reference to dest, or a newly created object if dest is null.

getMaximumCost

Signature
public javax.realtime.RelativeTime
getMaximumCost()

Description

Gets the value of cost.
Equivalent to getMaximumCost(null).

Returns
a reference to a newly allocated object containing the value of cost.

122Gaction 9.3.1.3

184 RTSJ 2.0 (Draft 46)

ProcessingGroup javaz.realtime 6.3

setMaximumCost(RelativeTime)

Signature
public javax.realtime.ProcessingGroup
setMaximumCost(RelativeTime cost)
throws Illegal ArgumentException,
Mlegal AssignmentError

Description

Sets the value of cost.

Parameters
cost The new value for cost. When null, an exception is thrown.
Throws
Nlegal ArgumentException when cost is null or its time value is less than zero.

Returns
this

getMinimumCost(RelativeTime)

Signature
public javax.realtime.RelativeTime
getMinimumCost(RelativeTime dest)

Description

Gets the value of minimum. and returns it in the provided RelativeTime!??

object.

Parameters

dest An instance of RelativeTime which will be set to the currently configured
minimum. If dest is null, a new RelativeTime will be created in the current
allocation context.

Returns
A reference to dest, or a newly created object if dest is null.

123Gaction 9.3.1.3

RTSJ 2.0 (Draft 46) 185

6 Scheduling ProcessingGroup

getMinimumCost

Signature
public javax.realtime.RelativeTime
getMinimumCost()

Description

Gets the value of minimum and returns it in a newly allocated object.
Equivalent to getMinimumCost(null).

Returns
a reference to the value of minimum.

setMinimumCost(RelativeTime)

Signature
public javax.realtime.ProcessingGroup
setMinimumCost(RelativeTime cost)
throws Illegal ArgumentException,
Mlegal Assignment Error

Description
Sets the value of minimum.
Parameters
cost The new value for minimum. When null, an exception is thrown.

Throws
Illegal Argument Exception when minimum is null or its time value is less than zero.

Returns
this
getCostUnderrunHandler
Signature
public javax.realtime.AsyncEventHandler

getCostUnderrunHandler()

Description

Gets the cost underrun handler.

186 RTSJ 2.0 (Draft 46)

ProcessingGroup javaz.realtime 6.3

Returns
A reference to an instance of AsyncEventHandler'?* that is cost overrun handler of
this.

setCostUnderrunHandler(AsyncEventHandler)

Signature
public javax.realtime.ProcessingGroup
setCostUnderrunHandler(AsyncEventHandler handler)
throws Illegal AssignmentError

Description

Sets the cost underrun handler.

Parameters
handler This handler is invoked when the run() method of and of the the schedulables
attempt to execute for more than cost time units in any period. When null,
no handler is attached, and any previous handler is removed.
Throws
[llegal AssignmentError when handler cannot be stored in this.

Returns
this

getCostOverrunHandler

Signature
public javax.realtime.AsyncEventHandler
getCostOverrunHandler()

Description
Gets the cost overrun handler.
Returns

A reference to an instance of AsyncEventHandler'?® that is cost overrun handler of
this.

124GQection 8.3.3.5
125Gaction 8.3.3.5

RTSJ 2.0 (Draft 46) 187

6 Scheduling ProcessingGroup

setCostOverrunHandler(AsyncEventHandler)

Signature
public javax.realtime.ProcessingGroup
setCostOverrunHandler(AsyncEventHandler handler)
throws Illegal AssignmentError

Description

Sets the cost overrun handler.

Parameters
handler This handler is invoked when the run() method of and of the the schedulables
attempt to execute for more than cost time units in any period. When null,
no handler is attached, and any previous handler is removed.
Throws
[llegal AssignmentError when handler cannot be stored in this.

Returns
this

enforcingCost

Signature
public boolean
enforcingCost/()

Description

Determine whether or not cost is being enforced for releases.

Returns
true when enforcing code.

enforceCost
Signature
public void
enforceCost/()
throws UnsupportedOperationException

Description

188 RTSJ 2.0 (Draft 46)

ProcessingGroup javaz.realtime 6.3

Start cost enforcement at next release, when supported. Subsequent invocations
have no effect.

Throws
UnsupportedOperationException when cost enforcement is not supported.

getCurrentCost(RelativeTime)

Signature
public javax.realtime.RelativeTime
getCurrentCost(RelativeTime dest)

Description

Get the cost used in the current period so far.

Parameters
dest is the instance to use for returning the time. If dest is null, the result will be
returned in a newly allocated object.
Returns
dest containing the cost of the current period

getLastCost(RelativeTime)

Signature
public javax.realtime.RelativeTime
getLastCost(RelativeTime dest)

Description
Get the total cost used in the last period.
Parameters

dest is the instance to use for returning the time. If dest is null, the result will be
returned in a newly allocated object.

Returns
dest containing the cost of the last period

RTSJ 2.0 (Draft 46) 189

6 Scheduling ReleaseParameters

getGranularity

Signature
public long
getGranularity()

Description

Determine the measurement granularity of cost monitoring and cost enforcement.

Returns
the granularity in nanoseconds.

See Section setGranularity

setGranularity (long)

Signature
public javax.realtime.ProcessingGroup
setGranularity (long nanos)
throws Illegal ArgumentException

Description

Set the measurement granularity of cost monitoring and cost enforcement. The
system provides a lower bound for this. When nanos is below this lower bound,
granularity is sliently set to the lower bound. In general, the lower bound is the
precision of the realtime clock.

Note that the ganularity applies to a single processor. When a processing group
spans more than one processor, the percission of cost monitoring or enforcement
is this ganularity times the number of active processors. This is because more
than one task could be running at the same time and cost can be measure at
most once per the elapse of this ganularity.

Parameters
nanos the new granularity in nanoseconds.
Throws
Illegal Argument Exception when nanos is less than one.

Returns
this

190 RTSJ 2.0 (Draft 46)

ReleaseParameters javaz.realtime 6.3

6.3.3.10 ReleaseParameters

Inheritance

java.lang.Object
javax.realtime.ReleaseParameters

Interfaces
Cloneable
Serializable

Description

The top-level class for release characteristics used by Schedulable!?®. When a
reference to a ReleaseParameters object is given as a parameter to a constructor
of a schedulable, the ReleaseParameters object becomes bound to the object
being created. Changes to the values in the ReleaseParameters object affect the
constructed object. When given to more than one constructor, then changes to
the values in the ReleaseParameters object affect all of the associated objects.
Note that this is a one-to-many relationship and not a many-to-many.

Only changes to an ReleaseParameters object caused by methods on that
object cause the change to propagate to all schedulables using the object. For
instance, invoking setDeadline on a ReleaseParameters instance will make the
change, and then notify that the scheduler that the object has been changed. At
that point the object is reconsidered for every SO that uses it. Invoking a method
on the RelativeTime object that is the deadline for this object may change the
time value but it does not pass the new time value to the scheduler at that time.
Even though the changed time value is referenced by ReleaseParameters objects,
it will not change the behavior of the SOs that use the parameter object until
a setter method on the ReleaseParameters object is invoked, or the parameter
object is used in setReleaseParameters() or a constructor for a schedulable.

Release parameters use HighResolutionTime'?" values for cost, and deadline.
Since the times are expressed as a HighResolutionTime!'?® values, these values
use accurate timers with nanosecond granularity. The actual precision available
and even the quantity the timers measure depend on the clock associated with
each time value.

The implementation must use modified copy semantics for each HighResolu-
tionTime!'* parameter value. The value of each time object should be treated as
when it were copied at the time it is passed to the parameter object, but the object

126Gection 6.3.1.3
127Gection 9.3.1.2
128Gection 9.3.1.2
129Gection 9.3.1.2

RTSJ 2.0 (Draft 46) 191

ReleaseParameters

6 Scheduling

reference must also be retained. For instance, the value returned by getCost()
must be the same object passed in by setCost(), but any changes made to the
time value of the cost must not take effect in the associated ReleaseParameters
instance unless they are passed to the parameter object again, e.g. with a new
invocation of setCost.

The following table gives the default parameter values for the constructors.

Table 6.8: ReleaseParameter Default Values

Attribute Default Value
cost new RelativeTime(0,0)
deadline no default
overrunHandler None
missHandler None
rousable false
initial event queue length 0

Caution: This class is explicitly unsafe for multithreading when being changed.
Code that mutates instances of this class should synchronize at a higher level.

6.3.3.10.1 Constructors

ReleaseParameters(RelativeTime, RelativeTime, AsyncEvent-
Handler, AsyncEventHandler)

Signature
protected
ReleaseParameters(RelativeTime cost,
RelativeTime deadline,
AsyncEventHandler overrunHandler,
AsyncEventHandler missHandler)

Description

Create a new instance of ReleaseParameters with the given parameter values.
@rtsj.issue{I really don’t see why this needs to be generic}

192 RTSJ 2.0 (Draft 46)

ReleaseParameters javaz.realtime 6.3

Parameters
cost Processing time units per release. On implementations which can measure the
amount of time a schedulable object is executed, When null, the default value
is a new instance of RelativeTime(0, 0).
deadline The latest permissible completion time measured from the release time of
the associated invocation of the schedulable. There is no default for deadline
in this class. The default must be determined by the subclasses.
overrunHandler This handler is invoked when an invocation of the schedulable
exceeds cost. In the minimum implementation overrunHandler is ignored.
When null, no application event handler is executed on cost overrun.
missHandler This handler is invoked when the run() method of the schedulable is
still executing after the deadline has passed. When null, no application event
handler is executed on the miss deadline condition.
Throws
[legal ArgumentException when the time value of cost is less than zero, or the time
value of deadline is less than or equal to zero, or the chronograph associated
with the cost or deadline parameters is not an instance of Clock'".
[llegal AssignmentError when cost, deadline, overrunHandler, or missHandler cannot
be stored in this.

ReleaseParameters

Signature
protected
ReleaseParameters()

Description

Equivalent to ReleaseParameters(RelativeTime, RelativeTime, AsyncEventHand-
ler, AsyncEventHandler)'! with the argument list (null, null, null, null).

6.3.3.10.2 Methods

130Gection 10.3.2.1
131Gection 6.3.3.10.1

RTSJ 2.0 (Draft 46) 193

6 Scheduling ReleaseParameters

clone

Signature
public java.lang.Object
clone()

Description
Return a clone of this. This method should behave effectively as when it con-
structed a new object with clones of the high-resolution time values of this.
e The new object is in the current allocation context.
e clone does not copy any associations from this and it does not implicitly
bind the new object to a SO.
e The new object has clones of all high-resolution time values (deep copy).
e References to event handlers are copied (shallow copy.)

Available since RTSJ 1.0.1

getCost

Signature
public javax.realtime.RelativeTime
getCost()

Description
Determine the current value of cost.

Returns
the object last used to set the cost containing the current value of cost.

getCost(RelativeTime)

Signature
public javax.realtime.RelativeTime
getCost(RelativeTime value)

Description
Determine the current value of cost.

Returns
value or, when null, the last object used to set the cost, set to the current value of
cost.

194 RTSJ 2.0 (Draft 46)

ReleaseParameters javaz.realtime 6.3

getCostOverrunHandler

Signature
public javax.realtime.AsyncEventHandler
getCostOverrunHandler ()

Description

Gets a reference to the cost overrun handler.

Returns
A reference to the associated cost overrun handler.

getDeadline

Signature
public javax.realtime.RelativeTime
getDeadline()
Description
Determine the current value of deadline.

Returns
the object last used to set the deadline containing the current value of deadline.

getDeadline(RelativeTime)

Signature
public javax.realtime.RelativeTime
getDeadline(RelativeTime value)

Description
Determine the current value of deadline.
Returns

value or, when null, the last object used to set the deadline, set to the current value
of deadline.

RTSJ 2.0 (Draft 46) 195

6 Scheduling

ReleaseParameters

getDeadlineMissHandler

Signature
public javax.realtime.AsyncEventHandler
getDeadlineMissHandler()

Description

Gets a reference to the deadline miss handler.

Returns
A reference to the deadline miss handler.

setCost(RelativeTime)

Signature
public javax.realtime.ReleaseParameters
setCost(RelativeTime cost)

Description

Sets the cost value.

When this parameter object is associated with any schedulable object (by
being passed through the schedulable’s constructor or set with a method such as
RealtimeThread.setReleaseParameters(ReleaseParameters)'®?) the cost of those
schedulables is altered as specified by each schedulable’s respective scheduler.

Parameters

cost Processing time units per release. On implementations which can measure
the amount of time a schedulable is executed, this value is the maximum
amount of time a schedulable receives per release. On implementations which
cannot measure execution time, it is not possible to determine when any
particular object exceeds cost. When null, the default value is a new instance

of RelativeTime(0,0).
Throws

[llegal ArgumentException when the time value of cost is less than zero, or the clock
associated with the cost parameters is not the realtime clock.

[llegal AssignmentError when cost cannot be stored in this.

Returns
this

132Gaction 5.3.2.2.2

196 RTSJ 2.0 (Draft 46)

ReleaseParameters javaz.realtime 6.3

setCostOverrunHandler(AsyncEventHandler)

Signature
public javax.realtime.ReleaseParameters
setCostOverrunHandler(AsyncEventHandler handler)
throws UnsupportedOperationException,
[legal AssignmentError

Description
Sets the cost overrun handler.

When this parameter object is associated with any schedulable object (by
being passed through the schedulable’s constructor or set with a method such as
RealtimeThread.setReleaseParameters(ReleaseParameters)'®?) the cost overrun
handler of those schedulables is altered as specified by each schedulable’s respective
scheduler.

Parameters
handler This handler is invoked when an invocation of the schedulable attempts to
exceed cost time units in a release. A null value of handler signifies that no
cost overrun handler should be used.
Throws
[llegal AssignmentError when handler cannot be stored in this.

UnsupportedOperationException when cost enforcement is not supported.

Returns
this

setDeadline(RelativeTime)

Signature
public javax.realtime.ReleaseParameters
setDeadline(RelativeTime deadline)

Description
Sets the deadline value.

When this parameter object is associated with any schedulable object (by
being passed through the schedulable’s constructor or set with a method such
as RealtimeThread.setReleaseParameters(ReleaseParameters)!'®*) the deadline of
those schedulables is altered as specified by each schedulable’s respective scheduler.

133Gection 5.3.2.2.2
134Gaction 5.3.2.2.2

RTSJ 2.0 (Draft 46) 197

6 Scheduling ReleaseParameters

Parameters
deadline The latest permissible completion time measured from the release time of
the associated invocation of the schedulable. The default value of the deadline
must be controlled by the classes that extend ReleaseParameters.
Throws
Mlegal ArgumentException when deadline is null, the time value of deadline is less
than or equal to zero, or when the new value of this deadline is incompatible
with the scheduler for any associated schedulable.

[llegal AssignmentError when deadline cannot be stored in this.

Returns
this

setDeadlineMissHandler(AsyncEventHandler)

Signature

public javax.realtime.ReleaseParameters
setDeadlineMissHandler(AsyncEventHandler handler)

Description

Sets the deadline miss handler.

When this parameter object is associated with any schedulable object (by
being passed through the schedulable’s constructor or set with a method such as
RealtimeThread.setReleaseParameters(ReleaseParameters)!?®) the deadline miss
handler of those schedulables is altered as specified by each schedulable’s respective
scheduler.

Parameters
handler This handler is invoked when any release of the schedulable fails to complete
before the deadline passes. A null value of handler signifies that no deadline
miss handler should be used.
Throws
[llegal AssignmentError when handler cannot be stored in this.

Returns
this

135Gaction 5.3.2.2.2

198 RTSJ 2.0 (Draft 46)

ReleaseParameters javaz.realtime 6.3

isRousable

Signature

public boolean
isRousable()

Description

Determine whether or not a thread interrupt will cause instances of Schedulable
associated with an instance of this class will be prematurely released.

Note that the rousable state has no effect on instances of RealtimeThread
which have an instance of BackgroundParameters for ReleaseParameters or on
ordinary event handlers, i.e., those which do not extend ActiveEvent'*%. In the
former case, there are no releases to interrupt and, in the case, the handler does
not have a ActiveEventDispatcher™” to release it.

Returns
true when rousable and false when not.

Available since RTSJ 2.0

setRousable(boolean)

Signature
public javax.realtime.ReleaseParameters
setRousable(boolean value)

Description

Dictate whether or not a thread interrupt will cause instances of Schedulable
associated with an instance of this class will be prematurely released.

Parameters

value is true when rousable and false when not.
Returns

this

Available since RTSJ 2.0

136Gection 8.3.1.1
137Gection 8.3.3.1

RTSJ 2.0 (Draft 46) 199

6 Scheduling ReleaseParameters

enforcingCost

Signature
public boolean
enforcingCost()

Description

Determine whether or not cost is being enforced for releases.

Returns
true when enforcing code.

Available since RTSJ 2.0

enforceCost(boolean)

Signature
public void
enforceCost(boolean value)
throws UnsupportedOperationException

Description

Set cost enforcement.

Parameters
value true when enforcing code.
Throws
UnsupportedOperationException when cost enforcement is not supported on this
platform.

Available since RTSJ 2.0

getEventQueueOverflowPolicy
Signature
public javax.realtime.QueueOverflowPolicy

getEventQueueOverflowPolicy ()

Description

Gets the behavior of the arrival time queue in the event of an overflow.

200 RTSJ 2.0 (Draft 46)

ReleaseParameters javaz.realtime 6.3

Returns
The behavior of the arrival time queue.

Available since RTSJ 2.0

setEventQueueOverflowPolicy (QueueOverflowPolicy)

Signature
public javax.realtime.ReleaseParameters
setEventQueueOverflowPolicy (QueueOverflowPolicy policy)

Description
Sets the policy for the arrival time queue for when the insertion of a new element
would make the queue size greater than the initial size given in this.

Parameters

policy is a queue overflow policy to use for handlers associated with this.
Returns

this

Available since RTSJ 2.0.

getInitialQueueLength

Signature
public int
getInitialQueueLength()

Description

Gets the initial number of elements the event queue can hold. This returns the
initial queue length currently associated with this parameter object. When the
overflow policy is SAVE the initial queue length may not be related to the current
queue lengths of schedulables associated with this parameter object.

Returns
The initial length of the queue.

Available since RTSJ 2.0 replacing AperiodicParameters.getInitial Arrival TimeQueueLength().

RTSJ 2.0 (Draft 46) 201

6 Scheduling RoundRobinScheduler

setInitialQueueLength (int)

Signature
public javax.realtime.ReleaseParameters
setInitialQueueLength(int initial)

Description

Sets the initial number of elements the arrival time queue can hold without
lengthening the queue. The initial length of an arrival queue is set when the
schedulable using the queue is constructed, after that time changes in the initial
queue length are ignored. The queue may have a length of zero, i.e., any event,
along with its arrival time, received during a previous release is lost.

Parameters
initial The initial length of the queue.
Throws
[llegal Argument Exception when initial is less than zero.

Returns
this

Available since RTSJ 2.0 replacing AperiodicParameters.setInitial Arrival TimeQueueLength (int)%,

6.3.3.11 RoundRobinScheduler

Inheritance

java.lang.Object
javax.realtime.Scheduler
javax.realtime.PriorityScheduler
javax.realtime.RoundRobinScheduler

Description

Class which represents a priority-based round-robin scheduler.

The default instance of this scheduler (returned by instance()
the RT'SJ-specified round-robin scheduler.

3C
139) represents

Available since RTSJ 2.0

138Geaction A.2.3.2.2
139Gaction 6.3.3.11.1

202 RTSJ 2.0 (Draft 46)

RoundRobinScheduler javaz.realtime 6.3

6.3.3.11.1 Methods

instance

Signature
public static javax.realtime.RoundRobinScheduler
instance()

Description

Return a reference to the distinguished instance of RoundRobinScheduler which
is the RT'SJ-specified round-robin scheduler.

Throws
UnsupportedOperationException if this platform has no default round-robin sched-
uler.

Returns
A reference to the distinguished instance of RoundRobinScheduler

setQuantum (RelativeTime)

Signature
public javax.realtime.RoundRobinScheduler
setQuantum(RelativeTime quantum)
throws UnsupportedOperationException,
[legal ArgumentException

Description

Set the quantum of this instance of RoundRobinScheduler. This takes effect at
the end of the current quantum.

Parameters
quantum The new quantum to use. Copy semantics are used for this argument,
and future changes to quantum will not affect this scheduler unless it is again
passed to setQuantumy().
Throws
UnsupportedOperationException if this scheduler’s quantum is not configurable at
runtime.

RTSJ 2.0 (Draft 46) 203

6 Scheduling RoundRobinScheduler

[llegal ArgumentException if the provided quantum is null, less than zero, or not
appropriate for this platform.

Returns
this

getQuantum

Signature
public javax.realtime.RelativeTime
getQuantum/()

Description

Get the quantum of this instance of RoundRobinScheduler.

Returns
a newly-allocated RelativeTime containing the currently-configured quantum of
this scheduler.

getQuantum (RelativeTime)

Signature
public javax.realtime.RelativeTime
getQuantum(RelativeTime dest)

Description

Get the quantum of this instance of RoundRobinScheduler.

Parameters
dest return the quantum in dest . When dest is null, allocate a new RelativeTime!
instance to hold the returned value.
Returns
The currently-configured quantum of this scheduler.

0

getMaxPriority

Signature

140Gaction 9.3.1.3

204 RTSJ 2.0 (Draft 46)

RoundRobinScheduler javaz.realtime 6.3

public int
getMaxPriority()

Description
Gets the maximum priority available for a schedulable managed by this scheduler.

Returns
The value of the maximum priority.

getMinPriority

Signature
public int
getMinPriority()

Description
Gets the minimum priority available for a schedulable managed by this scheduler.

Returns
The minimum priority used by this scheduler.

getNormPriority

Signature
public int
getNormPriority ()

Description

Gets the normal priority available for a schedulable managed by this scheduler.

Returns
The value of the normal priority.

getPolicyName
Signature
public java.lang.String
getPolicyName()

Description

RTSJ 2.0 (Draft 46) 205

6 Scheduling Scheduler

Gets the policy name of this.

Returns
The policy name (Fixed Priority Round Robin) as a string.

reschedule(Thread, int)

Signature
public void
reschedule(Thread thread,
int priority)

Description

Promotes a java.lang. Thread to realtime priority under this scheduler. The
affected thread will be scheduled as if it were a RealtimeThread'*! of the given
priority. This does not make the affected thread a RealtimeThread, so it will not
have access to facilities reserved for instances of RealtimeThread.

The method Thread.setPriority(int) can be used to reschedule back to the
conventional Java priority levels.

Parameters

thread The thread to promote to realtime scheduling.

priority An integer priority equivalent to a priority set via PriorityParameters'®?

on a RealtimeThread.
Throws
Mlegal ArgumentException when thread is null or priority is not between getMin-
Priority()'** and getMaxPriority (), inclusive.

6.3.3.12 Scheduler

Inheritance

java.lang.Object
javax.realtime.Scheduler

Description

141Gection 5.3.2.2
142Gection 6.3.3.7
143Gection 6.3.3.11.1
144GQection 6.3.3.11.1

206 RTSJ 2.0 (Draft 46)

Scheduler

javaz.realtime 6.3

An instance of Scheduler manages the execution of schedulables.

Subclasses of Scheduler are used for alternative scheduling policies and should
define an instance() class method to return the default instance of the subclass.
The name of the subclass should be descriptive of the policy, allowing applica-
tions to deduce the policy available for the scheduler obtained via Scheduler.

getDefaultScheduler'® (e.g., EDFScheduler).

6.3.3.12.1 Constructors

Scheduler

Signature
protected
Scheduler()

Description

Create an instance of Scheduler.

6.3.3.12.2 Methods

getDefaultScheduler

Signature

public static javax.realtime.Scheduler
getDefaultScheduler ()

Description

Gets a reference to the default scheduler.

Returns
A reference to the default scheduler.

145Gaction 6.3.3.12.2

RTSJ 2.0 (Draft 46)

207

6 Scheduling Scheduler

setDefaultScheduler(Scheduler)

Signature
public static void
setDefaultScheduler(Scheduler scheduler)

Description

Sets the default scheduler. This is the scheduler given to instances of schedulables
when they are constructed by a Java thread. The default scheduler is set to the
required PriorityScheduler'®® at startup.
Parameters
scheduler The Scheduler that becomes the default scheduler assigned to new schedu-
lables created by Java threads. When null nothing happens.
Throws
SecurityException when the caller is not permitted to set the default scheduler.

inSchedulableExecutionContext

Signature
public static boolean
inSchedulableExecutionContext()

Description

147.

Determine whether the current calling context is a Schedulable®": Realtime-

Thread!*® or AsyncBaseEventHandler!'4?.

Returns
true when yes and false otherwise.

Available since RTSJ 2.0

currentSchedulable

Signature

146Gection 6.3.3.8
17Section 6.3.1.3
148Gection 5.3.2.2
149Gection 8.3.3.3

208 RTSJ 2.0 (Draft 46)

SchedulingGroup javax.realtime 6.3

public static javax.realtime.Schedulable
currentSchedulable()

Description

150

Get the current execution context when called from a Schedulable execution

context.

Throws

ClassCastException when the caller is not a Schedulable!!

Returns
the current Schedulable

Available since RTSJ 2.0

152

getPolicyName

Signature
public abstract java.lang.String
getPolicyName()

Description

Gets a string representing the policy of this. The string value need not be
interned, but it must be created in a memory area that does not cause an illegal
assignment error when stored in the current allocation context and does not cause
a MemoryAccessError'® when accessed.

Returns
A String object which is the name of the scheduling policy used by this.

6.3.3.13 SchedulingGroup

Inheritance

java.lang.Object
java.lang. Thread Group

150Gection 6.3.1.3
151Gection 6.3.1.3
152Gection 6.3.1.3
153Gection 15.2.3.3

RTSJ 2.0 (Draft 46) 209

6 Scheduling SchedulingGroup

javax.realtime.SchedulingGroup
Description

An enhanced ThreadGroup in which a Schedulable'® may be started. Limits for

what realtime scheduler and scheduling parameters can be enforced on all tasks in
this group. A normal ThreadGroup may not contain instance of Schedulable!®®,
but may contain other instances of SchedulingGroup to form a hierarchy. Every
task is in some instance of ThreadGroup and every instance of Schedulable is in

some instance of SchedulingGroup.

Available since RTSJ 2.0

6.3.3.13.1 Constructors

SchedulingGroup(SchedulingGroup, String)

Signature
public
SchedulingGroup(SchedulingGroup parent,
String name)

Description

Create a new scheduling group.

Parameters
parent is the parent group of the new group
name is the name of the new group
Throws
[llegalStateException when the parent ThreadGroup instance is not an instance of
SchedulingGroup.

[llegal AssignmentError when the parent ThreadGroup instance is not assignable
to this.

154Gection 6.3.1.3
155Gection 6.3.1.3

210 RTSJ 2.0 (Draft 46)

SchedulingGroup javax.realtime 6.3

SchedulingGroup(String)

Signature
public
SchedulingGroup(String name)
throws IllegalStateException,
[llegal AssignmentError

Description

Create a new group with the current ThreadGroup instance as its parent, so long
as it is an instance of SchedulingGroup.

Parameters
name is the name of the new group
Throws
[llegalStateException when the parent ThreadGroup instance is not an instance of
SchedulingGroup.

[llegal AssignmentError when the parent ThreadGroup instance is not assignable
to this.

6.3.3.13.2 Methods

getMaxEligibility

Signature
public javax.realtime.SchedulingParameters
getMaxEligibility/()

Description

Find the upper bound on scheduling eligibility that tasks in this group may have.
For example, when it is an instance of PriorityParameters, it gives the maximum
base priority any task in this group.

Returns
the scheduling parameter instance denoting the upper bound on the scheduling
eligibility of threads in this group, null when no such bound has been specified.

RTSJ 2.0 (Draft 46) 211

6 Scheduling SchedulingGroup

setMaxEligibility (SchedulingParameters)

Signature

public javax.realtime.SchedulingGroup
setMaxEligibility (SchedulingParameters parameters)
throws IllegalStateException

Description

Set the upper bound on scheduling eligibility that tasks in this group may have.
For example, when it is an instance of PriorityParameters, it sets the maximum
base priority any task in this group may have. When a task in the group has a
higher eligibility than specified in parameters, the task’s eligibility is silently set
to the max specified in parameters. When a child of this SchedulingGroup has a
higher max eligibility than specified in parameters, its max eligibility is silently
set to the max specified in parameters as if setMaxEligibility were invoked on it
recursively.

When a task in this SchedulingGroup or a child of this SchedulingGroup has
previously had its maximum eligibility reduced by a call to this method, setting
a higher maximum eligibility via this method will not automatically reraise its
eligibility.

Parameters

parameters the scheduling parameter instance denoting the new upper bound on

the scheduling eligibility of threads in this group.

Throws
[llegalStateException when parameters are not consistent with the scheduler type.

[llegal ArgumentException when parameters is a higher eligibility than the max

Ret

eligibility enforced by a SchedulingParameters above this in the hierarchy.

urns

this

getScheduler

Signature

public java.lang.Class<javax.realtime.Scheduler>
getScheduler()

Description

212

RTSJ 2.0 (Draft 46)

SchedulingParameters javaz.realtime 6.3

Find the type of scheduler tasks in this group may use. The scheduler of each
thread must be an instance of the type returned. The default is class<Scheduler >,
but it may be set to any subtype.

Returns
the scheduler type

setScheduler(Class)

Signature
public javax.realtime.SchedulingGroup
setScheduler(java.lang.Class<javax.realtime.Scheduler> type)

Description
Limit the schedulers that may be used for tasks in this group.

Parameters
type is the type of scheduler of which the schedulers of all tasks must be instances.
Throws
[llegalStateException when a thread in the group has a scheduler that is not an
instance of type or getMaxEligibility'°® returns parameters that are inconsistent
with the scheduler type.

Returns
this

visitChildren(Predicate)

Signature
public boolean
visitChildren(java.util.function.Predicate<java.lang. Thread Group> visitor)

Description
Perform some operation on all the children of the current group. The traversal of
the children continues as long as visitor return true. Thus the traversal can be
prematurely ended by visitor returning false, e.g., when a particular element is
found.

Parameters
visitor the function to be called on each child thread group.

156Gaction 6.3.3.13.2

RTSJ 2.0 (Draft 46) 213

6 Scheduling SchedulingParameters

6.3.3.14 SchedulingParameters

Inheritance

java.lang.Object
javax.realtime.SchedulingParameters

Interfaces
Cloneable
Serializable

Description

Subclasses of SchedulingParameters (PriorityParameters'®”, TmportanceParame-
ters'®® and any others defined for particular schedulers) provide the parameters
to be used by the Scheduler’®. Changes to the values in a parameters object
affects the scheduling behavior of all the Schedulable!® objects to which it is
bound.

Caution: This class is explicitly unsafe for multithreading when being changed.
Code that mutates instances of this class should synchronize at a higher level.

6.3.3.14.1 Constructors

SchedulingParameters

Signature
protected
SchedulingParameters()

Description

Create a new instance of SchedulingParameters.

Available since RTSJ 1.0.1

157Section 6.3.3.7
158Gection 6.3.3.5
159Gection 6.3.3.12
160Gection 6.3.1.3

214 RTSJ 2.0 (Draft 46)

SporadicParameters javaz.realtime 6.3

6.3.3.14.2 Methods

clone

Signature
public java.lang.Object
clone()

Description

Return a clone of this. This method should behave effectively as if it constructed
a new object with clones of the high-resolution time values of this.
e The new object is in the current allocation context.
e clone does not copy any associations from this and it does not implicitly
bind the new object to a SO.
e The new object has clones of all high-resolution time values (deep copy).
e References to event handlers are copied (shallow copy.)

Available since RTSJ 1.0.1

isCompatible(Class)

Signature
public boolean
isCompatible(java.lang.Class<javax.realtime.Scheduler> type)

Description

Determine whether this scheduling parameters can be used by tasks scheduled
by instances of type.

Parameters
type of scheduler to check against
Returns
true when and only when this can be used with type as the scheduler.

Available since RTSJ 2.0

RTSJ 2.0 (Draft 46) 215

65

cheduling SporadicParameters

6.3

.3.15 SporadicParameters

Inheritance
java.lang.Object

javax.realtime.ReleaseParameters
javax.realtime.AperiodicParameters
javax.realtime.SporadicParameters

Description

A notice to the scheduler that the associated schedulable will be released aperi-
odically but with a minimum time between releases.

When a reference to a SporadicParameters object is given as a parameter to
a schedulable’s constructor or passed as an argument to one of the schedulable’s
setter methods, the SporadicParameters object becomes the release parameters
object bound to that schedulable. Changes to the values in the SporadicPa-
rameters object affect that schedulable object. When bound to more than one
schedulable then changes to the values in the SporadicParameters object affect
all of the associated objects. Note that this is a one-to-many relationship and
not a many-to-many.

The implementation must use modified copy semantics for each HighResolu-
tionTime'%! parameter value. The value of each time object should be treated
as when it were copied at the time it is passed to the parameter object, but the
object reference must also be retained. Only changes to a SporadicParameters
object caused by methods on that object cause the change to propagate to all
schedulables using the parameter object. For instance, calling setCost on a
SporadicParameters object will make the change, then notify that the scheduler
that the parameter object has changed. At that point the object is reconsidered
for every SO that uses it. Invoking a method on the RelativeTime object that is
the cost for this object may change the cost but it does not pass the change to
the scheduler at that time. That change must not change the behavior of the SOs
that use the parameter object until a setter method on the SporadicParameters
object is invoked, or the parameter object is used in setReleaseParameters() or a
constructor for an SO.

The following table gives the default parameter values for the constructors.

This class enables the application to specify one of four possible behaviors
that indicate what to do when an arrival occurs that is closer in time to the
previous arrival than the value given in this class as minimum interarrival time,
what to do when, for any reason, the queue overflows, and the initial size of the
queue.

161

216

Section 9.3.1.2

RTSJ 2.0 (Draft 46)

SporadicParameters

javaz.realtime 6.3

Table 6.9: SporadicParameters Default Values

Attribute

Value

minInterarrival time

No default. A value must be sup-
plied

cost new RelativeTime(0,0)
deadline new RelativeTime(mit)
overrunHandler None

missHandler None

rousable false

MIT violation policy SAVE

Arrival queue overflow policy SAVE

Initial arrival queue length 0

Caution: This class is explicitly unsafe for multithreading when being changed.

Code that mutates instances of this class should synchronize at a higher level.

6.3.3.15.1 Fields

6.3.3.15.2 Constructors

SporadicParameters(RelativeTime, RelativeTime, Relative-
Time, AsyncEventHandler, AsyncEventHandler, boolean)

Signature
public

SporadicParameters(RelativeTime minInterarrival,
RelativeTime cost,
RelativeTime deadline,
AsyncEventHandler overrunHandler,
AsyncEventHandler missHandler,
boolean rousable)

Description

RTSJ 2.0 (Draft 46)

6 Scheduling SporadicParameters

Create a SporadicParameters object.

Available since RTSJ 2.0

Parameters

minlnterarrival The release times of the schedulable will occur no closer than
this interval. This time object is treated as if it were copied. Changes to
minInterarrival will not effect the SporadicParameters object. There is no
default value. When minInterarrival is null an illegal argument exception is
thrown.

cost Processing time per release. On implementations which can measure the
amount of time a schedulable is executed, this value is the maximum amount
of time a schedulable receives per release. When null, the default value is a
new instance of RelativeTime(0,0).

deadline The latest permissible completion time measured from the release time of
the associated invocation of the schedulable. When null, the default value is a
new instance of minInterarrival: new RelativeTime(minInterarrival).

overrunHandler This handler is invoked when an invocation of the schedulable
exceeds cost. Not required for minimum implementation. When null no
overrun handler will be used.

missHandler This handler is invoked when the run() method of the schedulable
is still executing after the deadline has passed. When null, no deadline miss
handler will be used.

rousable determines whether or not an instance of Schedulable can be prematurely

released by a thread interrupt.
Throws

Illegal Argument Exception when minInterarrival is null or its time value is not
greater than zero, or the time value of cost is less than zero, or the time value
of deadline is not greater than zero, or when the chronograph associated with
deadline and minInterarrival parameters are not identical or not an instance
of Clock!'%?,

[legal AssignmentError when minInterarrival, cost, deadline, overrunHandler or
missHandler cannot be stored in this.

SporadicParameters(RelativeTime, RelativeTime, Relative-
Time, AsyncEventHandler, AsyncEventHandler)

162Gaction 10.3.2.1

218 RTSJ 2.0 (Draft 46)

SporadicParameters javaz.realtime 6.3

Signature
public
SporadicParameters(RelativeTime minInterarrival,
RelativeTime cost,
RelativeTime deadline,
AsyncEventHandler overrunHandler,
AsyncEventHandler missHandler)

Description

Equivalent to SporadicParameters(RelativeTime, RelativeTime, RelativeTime,
AsyncEventHandler, AsyncEventHandler, boolean)'®® with an argument list of
(minInterarrival, cost, deadline, overrunHandler, missHandler, false).

SporadicParameters(RelativeTime, RelativeTime, AsyncEv-
entHandler, boolean)

Signature
public
SporadicParameters(RelativeTime minInterarrival,
RelativeTime deadline,
AsyncEventHandler missHandler,
boolean rousable)

Description

Equivalent to SporadicParameters(RelativeTime, RelativeTime, RelativeTime,
AsyncEventHandler, AsyncEventHandler, boolean)'®* with an argument list of
(minInterarrival, null, deadline, null, missHandler, rousable).

Available since RTSJ 2.0

SporadicParameters(RelativeTime)

Signature

163Gection 6.3.3.15.2
164GQection 6.3.3.15.2

RTSJ 2.0 (Draft 46) 219

6 Scheduling SporadicParameters

public
SporadicParameters(RelativeTime minInterarrival)

Description

Equivalent to SporadicParameters(RelativeTime, RelativeTime, RelativeTime,
AsyncEventHandler, AsyncEventHandler, boolean)'®® with an argument list of
(minInterarrival, null, null, null, null, false).

Available since RTSJ 1.0.1

6.3.3.15.3 Methods

getMinimallnterarrival

Signature
public javax.realtime.RelativeTime
getMinimallnterarrival()

Description

Determine the current value of minimal interarrival.

Returns
the object last used to set the minimal interarrival containing the current value of
minimal interarrival.

getMinimumlInterarrival(RelativeTime)

Signature
public javax.realtime.RelativeTime
getMinimumInterarrival(RelativeTime value)

Description

Determine the current value of minimum interarrival.

Returns

165Gaction 6.3.3.15.2

220 RTSJ 2.0 (Draft 46)

SporadicParameters javaz.realtime 6.3

value or, when null, the last object used to set the minimal interarrival, set to the
current value of minimal interarrival.

Available since RTSJ 2.0

setMinimumlInterarrival(RelativeTime)

Signature
public javax.realtime.SporadicParameters
setMinimumInterarrival(RelativeTime minimum)

Description

Set the minimum interarrival time.

Parameters
minimum The release times of the schedulable will occur no closer than this interval.
Throws
Illegal ArgumentException when minimum is null or its time value is not greater
than zero.

[llegal AssignmentError when minimum cannot be stored in this.

Returns
this

setMinimumlInterarrivalPolicy (MinimumInterarrivalPolicy)

Signature
public javax.realtime.SporadicParameters
setMinimumInterarrivalPolicy (MinimumInterarrivalPolicy policy)

Description

Sets the policy for handling the arrival time queue when the new arrival time is
closer to the previous arrival time than the minimum interarrival time given in
this.

Parameters
policy is the current policy for MIT violations.
Available since RTSJ 2.0

RTSJ 2.0 (Draft 46) 221

6 Scheduling

getMinimumlInterarrivalPolicy

Signature
public javax.realtime.MinimumInterarrivalPolicy
getMinimumInterarrivalPolicy ()

Description

Gets the arrival time queue policy for handling minimal interarrival time under-
flow.

Returns
The minimum interarrival time violation behavior as a string.

Available since RTSJ 2.0

setEventQueueOverflowPolicy (QueueOverflowPolicy)

Signature
public javax.realtime.SporadicParameters
setEventQueueOverflowPolicy (QueueOverflowPolicy policy)
throws Illegal ArgumentException

Description

Sets the policy for the arrival time queue for when the insertion of a new element
would make the queue size greater than the initial size given in this.

Parameters
policy the new overflow policy to use.
Throws
Ilegal ArgumentException when policy is QueueOverflowPolicy. DISABLEC,

Returns
this

6.4 Rationale

As specified, the required semantics of this section establish a scheduling policy
that is very similar to the scheduling policies found on the vast majority of realtime

166Gaction 6.3.2.2.1

222 RTSJ 2.0 (Draft 46)

Rationale 6.4

operating systems and kernels in commercial use today. The semantics for the base
scheduler accommodate existing practice, which is a stated goal of the effort.

There is an important division between priority schedulers that force periodic
context switching between tasks at the same priority, and those that do not cause these
context switches. By not specifying time slicing[1] behavior this specification calls for
the latter type of priority scheduler as the base scheduler: FirstInFirstOutScheduler.
The specification supplies a second scheduler, RoundRobinScheduler, for cases where
timeslicing behavior is desired. In POSIX terms, SCHED FIFO meets the RTSJ
requirements for the base scheduler, and SCHED RR meets the requirements for
the round-robin scheduler.

Although a system may not implement the first release (start) of a schedulable
as unblocking that schedulable, under the base scheduler those semantics apply; i.e.,
the schedulable is added to the tail of the queue for its active priority.

Some research shows that, given a set of reasonable common assumptions, 32
distinct priority levels are a reasonable choice for close-to-optimal scheduling efficiency
when using the rate-monotonic priority assignment algorithm on a single processor
system (256 priority levels provide better efficiency). This specification requires at
least 28 distinct priority levels as a compromise noting that implementations of this
specification will exist on systems with logic executing outside of the Java Virtual
Machine and may need priorities above, below, or both for system activities.

The default behavior for implementations that support cost monitoring and
enforcement is that a schedulable receives no more than cost units of CPU time
during each release. The programmer must explicitly change the cost attribute
to override the scheduler. The RTSJ allows schedulables to self suspend during a
release, in addition to that which might be necessary to acquire a lock. These self
suspensions must be time bounded.

Any self suspension which is not time bounded may undermine the cost enforce-
ment model specified in this document, as it may result in a schedulable suspending
beyond its next release event. This can result in more time being allocated than any
associated schedulability analysis might assume. See Dos Santos and Wellings for a
full discussion on the problem [4].

Cost enforcement may be deferred while the overrun schedulable holds locks
that are out of application control, such as locks used to protect garbage collection.
Applications should include the resulting jitter in any analysis that depends on cost
enforcement.

6.4.1 SchedulingGroup and ProcessingGroup

The SchedulingGroup and ProcessingGroup classes were added in RT'SJ 2.0 to both
support the notion of a subsystem constrained by the greater system configuration
and generalize the existing notion of cost monitoring and enforcement for schedulables

RTSJ 2.0 (Draft 46) 223

6 Scheduling

to groups of schedulables. In addition, they provide a way to enable Java threads to
be elevated to realtime scheduling priorities in a controlled fashion.

A combination of security manager policy and the SchedulingGroup hierarchy
may be used to constrain the maximum priority directly configurable by an entire
subsystem. To achieve this, a SchedulingGroup with an appropriate maximum
priority must be created, the security manager must be configured to disallow
threads in that SchedulingGroup from accessing their parent SchedulingGroup, and
all threads for the subsystem must be created in that SchedulingGroup. This tactic
may even be used recursively. Similar practice can be used with ProcessingGroup to
constrain the maximum execution time allowable to a subsystem, or other properties
configurable in a processing group.

As previously mentioned, a motivation for adding SchedulingGroup as a subclass
of ThreadGroup is to clarify the relationship between Java threads and realtime
schedulers. In order to obtain realtime priorities, a Java thread must belong to
a SchedulingGroup. Its access to realtime scheduling is then restricted (with the
exception of priority inversion avoidance protocols, which ignore such restrictions)
by the configuration of its SchedulingGroup. This enables Java threads to obtain
realtime priorities in a controlled and predictable fashion. Likewise, realtime threads
(but not necessarily other schedulables) may obtain nonrealtime conventional Java
priorities by calling Thread.setPriority() on their RealtimeThread object. To start
a realtime thread with a nonrealtime priority, this call must be made prior to the
time at which the realtime thread is started.

A ProcessingGroup can also be used to apply cost monitoring and enforcement
to a collection of standard Java threads. However, note that placing a Java thread
directly in a ProcessingGroup, which is an instance of SchedulingGroup, may allow
it to obtain realtime priorities. This can be avoided by placing the Java threads
in a Java ThreadGroup which is in turn the child of an appropriately-configured
ProcessingGroup and applying security manager restrictions.

6.4.2 Multiprocessor Support

The support that the RTSJ provides for multiprocessor systems is primarily con-
strained by the support it can expect from the underlying operating system. The
following have had the most impact on the level of support that has been specified.
1. The notion of processor affinity is common across operating systems and has
become the accepted way to specify the constraints on which processor a thread

can execute. In some sense, processor affinities can be viewed as additional
release or scheduling parameters. However, to add them to the parameter
classes requires the support to be distributed throughout the specification

with a proliferation of new constructor methods. To avoid this, support is
grouped together within the Affinity class. The class also provides the addition

224 RTSJ 2.0 (Draft 46)

Rationale 6.4

of processor affinity support to Java threads without modifying the thread
object’s visible API.

2. The range of processors on which global scheduling is possible is dictated by
the operating system. For SMP architectures, global scheduling across all
the processors in the system is typically supported. However, an application
and an operator can constrain threads and processes to execute only within a
subset of the processors. As the number of processors increase, the scalability
of global scheduling is called into question. Hence, for NUMA architectures
some partitioning of the processors is likely to performed by the OS. Hence,
global scheduling across all processors will not be possible in these systems.
For these reasons, the RTSJ supports an array of predefined affinities. These
are implementation-defined. They can be used either to reflect the scheduling
arrangement of the underlying OS or they can be used by the system designer
to impose defaults for, say, Java threads, extraheap realtime schedulables etc.
A program is only allowed to dynamically create new affinities with cardinality
of one. This restriction reflects the concern that not all operating systems will
support multiprocessor affinities.

3. Many OSs give system operators command-level dynamic control over the set
of processors allocated to a processes. Consequently, the realtime JVM has no
control over whether processors are dynamically added or removed from its OS
process. Predictability is a prime concern of the RT'SJ. Clearly, dynamic changes
to the allocated processors will have a dramatic, and possibly catastrophic,
effect on the ability of the program to meet timing requirements. Hence, the
RTSJ assumes that the processor set allocated to the RTSJ process does not
change during its execution. A system that is capable of such manipulations
should not exercise it on RT'SJ processes.

4. The reason the expert group decided not to add affinities to scheduling parame-
ters is that ASEH do not have a single server thread, hence forcing a particular
affinity would complicate the implementation.

6.4.3 Impact of Clock Granularity

All time-triggered computation can suffer from release jitter. This is defined to be the
variation in the actual time the computation becomes available for execution from
its scheduled release time. The amount of release jitter depends on two factors. The
first is the granularity of the clock/timer used to trigger the release. For example, a
periodic event handler that is due to be released at absolute time 7" will actually
be release at time T' + 4. ¢ is the difference between T" and the first time the timer
clock advances to T0, where T0 >= T'. The upper bound of § is the value returned
from calling the getResolution method of the associated clock. It is for this reason
that the implementation of release times for periodic activities must use absolute

RTSJ 2.0 (Draft 46) 225

6 Scheduling

rather than relative time values, in order to avoid the drift accumulating.

The second contribution to release jitter is also related to the clock/timer. It
is the duration of interval between T'0 being signaled by the clock/timer and the
time this event is noticed by the underlying operating system or platform (perhaps
because interrupts have been disabled). A compliant implementation of SCJ should
document the maximum value of ¢ for the realtime clock.

6.4.4 Deadline Miss Detection

Although RTSJ supports deadline miss detection, it is important to understand
the intrinsic limitations of the facility. The SCJ facility is supported using a time-
triggered event. All time-triggered computation can suffer from release jitter. Hence,
any deadline miss handler may not be released until sometime after the deadline has
expired. The handlers actual execution will depend on its priority relative to other
schedulables.

A related limitation is that a deadline can be missed but not detected. This can
occur when the deadline has been set at a smaller granularity than the detecting
timer. Consider an absolute deadline of D. Suppose that the next absolute time that
the timer can recognize is D + 6. When the associate thread finishes after D but
before D + ¢, it will have missed its deadline, but this miss will have been undetected.

A third limitation is due to the inherent race condition that is present when
checking for deadline misses. A deadline miss is defined to occur when a schedulable
has not completed the computation associated with its release before its deadline.
This completion event is signalled in the application code by the return of the
handleAsyncEvent method or a call to waitForNextRelease etc. When this occurs,
the infrastructure reschedules/cancels the timing event that signals the miss of a
deadline. This is clearly a race condition. The timer event could fire between the
last statement the completion event and the rescheduling/canceling of the timer
event. Hence a deadline miss could be signalled when arguably the application had
performed all of its computation.

226 RTSJ 2.0 (Draft 46)

Chapter 7

Synchronization

One of the strengths of Java is its language support for multithreading. This requires
synchronization. In a realtime system, there are additional requirement on this
synchronization. Therefore this specification not only tightens the semantics of the
synchronization declarations, but it also provides addition classes that specifically
manage synchronization.

This specification strengthens the semantics of Java synchronized code by mandat-
ing monitor execution eligibility control, commonly referred to as priority inversion
control. The MonitorControl class is defined as the superclass of all such execu-
tion eligibility control algorithms. Its subclasses Prioritylnheritance and Priority-
CeilingEmulation avoid unbounded priority inversions, which would be unacceptable
in realtime systems.

The classes described below provide two main services.

1. They enable the setting of a priority inversion control policy either as the

default or for specific objects.

2. They also provide wait-free communication between schedulables (especially

instances of Schedulable, whose mayUseHeap is false) and regular Java threads.
These classes establish a framework for priority inversion management that applies
to priority-oriented schedulers in general, and a specific set of requirements for the
base priority scheduler. The wait-free queue classes provide safe, concurrent access
to data shared between instances of schedulable objects without heap access and
schedulable objects subject to garbage collection delays.

7.1 Definitions

Scheduling Eligibility Inversion — When a more important task is blocked by
a less important task. This is usually caused by synchronization, where a
more important task must wait for a less important task to release a required

227

7 Synchronization

resource, which can in turn be blocked by a task of intermediate importance.
The classical example is priority inversion in a system with a priority-based
scheduler.

Governed by — An object A that has been assigned (either by default or via an
explicit method call) to the MonitorControlPolicy « is said to be governed by
a.

Active Priority — The priority of a task used for scheduling at any given time. It
is the maximum of the tasks’s current base priority and any priority boosting
due to priority inversion avoidance mechanisms. The base priority can be
temporarily reduced by cost enforcement.

7.2 Semantics

Synchronization semantics has two main aspects: monitor control and scheduling.
The first determines which inversion avoidance is to use. The second determines
how it is done. Since, only priority-based schedulers are defined in the RTSJ, the
semantics is only completely defined for priority-based schedulers.

7.2.1 Monitor Control

The specification provides for two monitor control policies with the following seman-
tics.

1. The initial default monitor control policy shall be Prioritylnheritance. The
default policy can be altered by using the setMonitorControl() method.

2. Notwithstanding the preceding rule, an RTSJ implementation may allow the
program to establish a different initial default monitor control policy at JVM
startup. The program can query the initial default monitor control policy via
the method RealtimeSystem.getInitialMonitorControl.

The PriorityCeilingEmulation monitor control policy is also required.

4. An implementation that provides any additional MonitorControl subclasses
must document their effects, particularly with respect to priority inversion
control.

5. An object’s monitor control policy affects each task that attempts to lock the
object; i.e., regular Java threads as well as schedulables.

6. When a task enters synchronized code, the target object’s monitor control
policy must be supported by the thread schedulable’s scheduler; otherwise an
IllegalSchedulableStateException is thrown. An implementation that defines a
new MonitorControl subclass must document which schedulers, if any, do not
support this policy.

Open issue 7.2.1

@

228 RTSJ 2.0 (Draft 46)

Semantics 7.2

Do we need to say something about PCEP w/ respect to interrupt priorities,
here? (I.e., that they mask out hardware interrupts if necessary.)
End of issue 7.2.1

7.2.2 Priority Schedulers

The two schedulers provided by the RTSJ must both handle synchronization in
the same way. All tasks governed by these schedulers are subject to the following
semantics when they synchronize on objects governed by monitor control policies
defined in this section.

1.

2.

w

Each task has a base priority and an active priority. A task that holds a lock
on a PCE-governed object also has a ceiling priority.

The base priority for a task is limited by the maximum priority of its scheduling
groups’ maximum scheduling parameters.

. The active priority for a task is independent of its scheduling groups.
. The base priority for a task t is initially the priority that t has when it is

created. The base priority is updated (immediately) as an effect of invoking
any of the following methods:

(a) pparam.setPriority(prio), where t is a schedulable with pparams as its
SchedulingParameters and pparams is an instance of PriorityParameters
or one of its subclasses, where the new base priority is prio;

(b) t.setSchedulingParameters(pparams), where t is a schedulable and ppa-
rams is an instance of PriorityParameters, where the new base priority is
pparams.getPriority();

(¢) t.setPriority(prio), when t is a schedulable object the new base priority is
prio, and when it is a Java thread the new base priority is the lesser of
prio and the maximum priority for t’s thread group; and

(d) sg.setMaxEligibility(pparams), when sg is in t’s SchedulingGroup hierar-
chy and the priority of pparams is less than the current base priority of
t, where the new base priority is the priority specified in pparams as a
result of setting the task’s scheduling parameters to pparams.

. When the task t does not hold any locks, its active priority is the same as its

base priority. In such a situation, modification of the priority of t through an
invocation of any of the above priority-setting methods for t causes t to be
placed at the tail of its relevant queue (ready, blocked on a particular object,
etc.) at its new priority when the new priority is higher than the old priority,
and at the beginning otherwise.

. When task t holds one or more locks, then t has a set of priority sources. The

active priority for t at any point in time is the maximum of the priorities
associated with all of these sources. The priority sources resulting from the
monitor control policies defined in this section, and their associated priorities

RTSJ 2.0 (Draft 46) 229

7 Synchronization

for a schedulable t, are as follows:

(a) Source t itself
Associated Priority The base priority for t
Note This may have been changed (either synchronously
or asynchronously) while t has been holding its
lock(s).
(b) Source Each object locked by t and governed by a Priority-

CeilingEmulation policy

Associated Priority The maximum value ceil, where ceil is the ceiling
of a PriorityCeilingEmulation policy governing an
object locked by t.

Note This value is also referred to as the ceiling priority
for t.
(¢) Source Each task attempting to synchronize on an object
locked by t and governed by a PriorityInheritance
policy

Associated Priority The maximum active priority over all such threads
and schedulables

Note This rule accounts for recursive priority inheritance.

(d) Source Each task attempting to synchronize on an object

locked by t and governed by a PriorityCeilingEmu-
lation policy.

Associated Priority 'The maximum active priority over all such threads
and schedulables

Note This rule, which in effect allows a PriorityCeilingFim-
ulation lock to behave like a PriorityInheritance lock,
helps avoid unbounded priority inversions that could
otherwise occur in the presence of nested synchro-
nizations involving a mix of PriorityCeilingEmula-
tion and PriorityInheritance policies.

7. The addition of a priority source for t either leaves t’s active priority unchanged,

230

or increases it. When t’s active priority is unchanged, t’s status in its relevant
queue(s), e.g., blocked waiting for some object, is not affected. When t’s active
priority is increased, t is placed at the tail of the relevant queue(s) at its new
active priority level.

The removal of a priority source for t either leaves t’s active priority unchanged,
or decreases it. When t’s active priority is unchanged, then t’s status in its
relevant queue, e.g., blocked waiting for some object, is not affected. When t’s
active priority is decreased and t is either ready or running, then t must be
placed at the head of the ready queue at its new active priority level, When t’s
active priority is decreased and t is blocked, then t is queued at the end of the

RTSJ 2.0 (Draft 46)

Semantics 7.2

queue for the new priority when it becomes unblocked.

The above rules have four main consequences.

1. A thread or schedulable t’s priority sources from 6b are added and removed
synchronously; i.e., they are established based on t’s entering or leaving synchro-
nized code. However, priority sources from 6a, 6¢, and 6d may be added and
removed asynchronously, as an effect of actions by other threads or schedulables.

2. A task holding only one lock, when it releases this lock, has its active priority

set to its base priority.

. A task’s active priority is never less than its base priority.

4. When a task blocks at a call of obj.wait(), it releases the lock on obj and

hence relinquishes the priority source(s) based on obj’s monitor control policy.
The task will be queued at a new active priority that reflects the loss of these
priority sources.

When modifying the active priority of a task, the active priority may exceed
the priority range of the task’s scheduler. For example, a thread scheduled on the
standard Java scheduler may be assigned a priority greater than 10, or a thread
scheduled on the round robin scheduler may be assigned a priority greater than the
round robin maximum priority but within the default scheduler priority range. In
both cases, the task will be rescheduled on the default scheduler until its active
priority is once again within the range schedulable on its associated scheduler. A
task scheduled on the round robin scheduler, however, need not be moved to the
default scheduler while its active priority remains within the allowable range for the
round robin scheduler. Any scheduler not defined in this standard must specify the
behavior of tasks associated with it with respect to these priority-based monitor
control policies.

Since base priorities may be shared (i.e., the same PriorityParameters object
may be associated with multiple schedulables), a given base priority may be the
active priority for some but not all of its associated schedulables. It is a consequence
of other rules that, when a thread or schedulable t attempts to synchronize on an
object obj governed by a PriorityCeilingEmulation policy with ceiling ceil, then t’s
active priority may exceed ceil but t’s base priority must not. In contrast, once t
has successfully synchronized on obj, then t’s base priority may also exceed obj’s
monitor control policy’s ceiling. Note that either or both of t’s base priority and
obj’s monitor control policy may have been dynamically modified.

w

7.2.3 Additional Schedulers

Schedulers based on criteria other than priority, for example, deadline in a deadline
first scheduler, must consider how synchronization is handled to avoid scheduling
eligibility inversion. Such a scheduler must conform to the following semantics for
tasks managed by that scheduler when they synchronize on objects with the monitor

RTSJ 2.0 (Draft 46) 231

7 Synchronization

control policies defined above.

1. An implementation that defines a new Scheduler subclass must document which
(if any) monitor control policies the new scheduler does not support.

2. An implementation must document how, if at all, the semantics of synchroniza-
tion differ from the rules defined for the default Prioritylnheritance instance
and for the PriorityCeilingEmulation policy. It must supply documentation
for the behavior of the new scheduler with priority inheritance and priority
ceiling emulation protocol equivalent to the semantics for the default priority
scheduler found in the previous section.

3. The new Scheduler subclass must conform to the sematics for parameter values,
release control, dispatching, and cost monitoring described in Section 6.2.1.

232 RTSJ 2.0 (Draft 46)

MonitorControl

javaz.realtime 7.3

7.3 javax.realtime

7.3.1 Classes
7.3.1.1 MonitorControl

Inheritance

java.lang.Object
javax.realtime.MonitorControl

Description

Abstract superclass for all monitor control policy objects.

7.3.1.1.1 Constructors

MonitorControl

Signature
protected
MonitorControl()

Description

Invoked from subclass constructors.

7.3.1.1.2 Methods

getMonitorControl(Object)

Signature
public static javax.realtime.MonitorControl
getMonitorControl(Object obj)

Description

RTSJ 2.0 (Draft 46)

233

7 Synchronization MonitorControl

Gets the monitor control policy of the given instance of Object.

Parameters
obj The object being queried.
Throws
Mlegal ArgumentException when obj is null.

Returns
The monitor control policy of the obj parameter.

getMonitorControl

Signature
public static javax.realtime.MonitorControl
getMonitorControl()

Description

Gets the current default monitor control policy.

Returns
The default monitor control policy object.

setMonitorControl(MonitorControl)

Signature
public static javax.realtime.MonitorControl
setMonitorControl(MonitorControl policy)

Description

Sets the default monitor control policy. This policy does not affect the monitor
control policy of any already created object, it will, however, govern any object
subsequently constructed, until either

1. a new “per-object” policy is set for that object, thereby altering the monitor

control policy for a single object without changing the default policy, or

2. a new default policy is set.
Like the per-object method (see setMonitorControl(Object, MonitorControl)',
the setting of the default monitor control policy occurs immediately.

Parameters

1Section 7.3.1.1.2

234 RTSJ 2.0 (Draft 46)

MonitorControl javaz.realtime 7.3

policy The new monitor control policy. When null, the default MonitorControl
policy is not changed.
Throws
SecurityException when the caller is not permitted to alter the default monitor
control policy.

Illegal Argument Exception when policy is not in immortal memory.
UnsupportedOperationException when policy is not a supported monitor control
policy.
Returns
The default MonitorControl policy in effect on completion.

Available since RTSJ 1.0.1 The return type is changed from void to MonitorControl.

setMonitorControl(Object, MonitorControl)

Signature
public static javax.realtime.MonitorControl
setMonitorControl(Object obj,
MonitorControl policy)

Description
Immediately sets policy as the monitor control policy for obj.

A thread or schedulable that is queued for the lock associated with obj,
or is in obj’s wait set, is not rechecked (e.g., for a CeilingViolationException)
under policy, either as part of the execution of setMonitorControl or when it is
awakened to (re)acquire the lock.

The thread or schedulable invoking setMonitorControl must already hold the
lock on obj.

Parameters
obj The object that will be governed by the new policy.

policy The new policy for the object. When null nothing will happen.
Throws
Illegal ArgumentException Thrown when obj is null or policy is not in immortal
memory.

UnsupportedOperationException when policy is not a supported monitor control
policy.
IllegalMonitorStateException when the caller does not hold a lock on obj.

Returns

RTSJ 2.0 (Draft 46) 235

7 Synchronization PriorityCeilingEmulation

The current MonitorControl policy for obj, which will be replaced.

Available since RTSJ 1.0.1 The return type is changed from void to MonitorControl.

7.3

.1.2 PriorityCeilingEmulation

Inheritance
java.lang.Object

javax.realtime.MonitorControl
javax.realtime.PriorityCeilingEmulation

Description

Monitor control class specifying the use of the priority ceiling emulation protocol
(also known as the "highest lockers' protocol). Each PriorityCeilingEmulation
instance is immutable; it has an associated ceiling, initialized at construction and
queryable but not updatable thereafter.

When a thread or schedulable synchronizes on a target object governed by a
PriorityCeilingEmulation policy, then the target object becomes a priority source
for the thread or schedulable object. When the object is unlocked, it ceases
serving as a priority source for the thread or schedulable. The practical effect
of this rule is that the thread or schedulable’s active priority is boosted to the
policy’s ceiling when the object is locked, and is reset when the object is unlocked.
The value that it is reset to may or may not be the same as the active priority it
held when the object was locked; this depends on other factors (e.g. whether the
thread or schedulable’s base priority was changed in the interim).

The implementation must perform the following checks when a thread or
schedulable t attempts to synchronize on a target object governed by a Priority-
CeilingEmulation policy with ceiling ceil:

e t’s base priority does not exceed ceil

e t’s ceiling priority (when t is holding any other PriorityCeilingEmulation

locks) does not exceed ceil.
Thus for any object targetObj that will be governed by priority ceiling emulation,
the programmer needs to provide (via MonitorControl.setMonitorControl(Object,
MonitorControl)?) a PriorityCeilingEmulation policy whose ceiling is at least as
high as the maximum of the following values:

e the highest base priority of any thread or schedulable that could synchronize

on targetObj

2

236

Section 7.3.1.1.2

RTSJ 2.0 (Draft 46)

PriorityCeilingEmulation javaz.realtime 7.3

e the maximum ceiling priority value that any thread or schedulable object
could have when it attempts to synchronize on targetObj.

More formally,

e when a thread or schedulable t whose base priority is pl attempts to
synchronize on an object governed by a PriorityCeilingEmulation policy
with ceiling p2, where pl > p2, then a CeilingViolationException is thrown
in t; likewise, a CeilingViolationException is thrown in t when t is holding
a PriorityCeilingEmulation lock and has a ceiling priority exceeding p2.

The values of pl and p2 are passed to the constructor for the exception and may
be queried by an exception handler.

A consequence of the above rule is that a thread or schedulable may nest
synchronizations on PriorityCeilingEmulation-governed objects as long as the
ceiling for the inner lock is not less than the ceiling for the outer lock.

The possibility of nested synchronizations on objects governed by a mix of
PriorityInheritance and PriorityCeilingEmulation policies requires one other piece
of behavior in order to avoid unbounded priority inversions. When a thread or
schedulable holds a Prioritylnheritance lock, then any PriorityCeilingEmulation
lock that it either holds or attempts to acquire will exhibit priority inheritance
characteristics. This rule is captured above in the definition of priority sources
(4.d).

When a thread or schedulable t attempts to synchronize on a PriorityCeilingEm-
ulation-governed object with ceiling ceil, then ceil must be within the priority
range allowed by t’s scheduler; otherwise, an IllegalSchedulableStateException is
thrown. Note that this does not prevent a regular Java thread from synchronizing
on an object governed by a PriorityCeilingEmulation policy with a ceiling higher
than 10.

The priority ceiling for an object obj can be modified by invoking MonitorControl.
setMonitorControl(obj, newPCE) where newPCE'’s ceiling has the desired value.

See also MonitorControl® PriorityInheritance?, and CeilingViolationExcep-
tion®.

7.3.1.2.1 Methods

instance(int)

3Section 7.3.1.1
4Section 7.3.1.3
5Section 15.2.2.3

RTSJ 2.0 (Draft 46) 237

7 Synchronization PriorityCeilingEmulation

Signature
public static javax.realtime.PriorityCeilingEmulation
instance(int ceiling)

Description

Return a PriorityCeilingEmulation object with the specified ceiling. This object
is in ImmortalMemory. All invocations with the same ceiling value return a
reference to the same object.

Parameters
ceiling Priority ceiling value.
Throws
[llegal Argument Exception when ceiling is outside of the range of permitted priority
values (e.g., less than PriorityScheduler.instance().getMinPriority() or greater
than PriorityScheduler.instance().getMaxPriority() for the base scheduler).

Available since RTSJ 1.0.1

getCeiling

Signature
public int
getCeiling()

Description

Gets the priority ceiling for this PriorityCeilingEmulation object.

Returns
The priority ceiling.

Available since RTSJ 1.0.1

getMaxCeiling

Signature
public static javax.realtime.PriorityCeilingEmulation
getMaxCeiling()

Description

238 RTSJ 2.0 (Draft 46)

Prioritylnheritance javaz.realtime 7.3

Gets a PriorityCeilingEmulation object whose ceiling is PriorityScheduler.instance().
getMaxPriority(). This method returns a reference to a PriorityCeilingEmulation
object allocated in immortal memory. All invocations of this method return a
reference to the same object.

Returns
A PriorityCeilingEmulation object whose ceiling is PriorityScheduler.instance().
getMaxPriority/().

Available since RTSJ 1.0.1

7.3.1.3 PriorityInheritance

Inheritance

java.lang.Object
javax.realtime.MonitorControl
javax.realtime.PriorityInheritance

Description

Singleton class specifying use of the priority inheritance protocol. When a thread
or schedulable t1 attempts to enter code that is synchronized on an object obj
governed by this protocol, and obj is currently locked by a lower-priority thread
or schedulable t2, then
1. When t1’s active priority does not exceed the maximum priority allowed by
t2’s scheduler, then t1 becomes a priority source for t2; t1 ceases to serve as
a priority source for t2 when either t2 releases the lock on obj, or t1 ceases
attempting to synchronize on obj (e.g., when t1 incurs an ATC).
2. Otherwise (i.e., t1’s active priority exceeds the maximum priority allowed
by t2’s scheduler), an IllegalSchedulableStateException is thrown in t1.
Note on the 2nd rule, throwing the exception in t1, rather than in t2, ensures
that the exception is synchronous.
See also MonitorControl® and PriorityCeilingEmulation”

7.3.1.3.1 Methods

6Section 7.3.1.1
"Section 7.3.1.2

RTSJ 2.0 (Draft 46) 239

7 Synchronization WaitFreeReadQueue

instance

Signature

public static javax.realtime.PriorityInheritance
instance()

Description

7.3

Return a reference to the singleton PriorityInheritance.
This is the default MonitorControl policy in effect at system startup.
The PriorityInheritance instance shall be allocated in ImmortalMemory.

1.4 WaitFreeReadQueue<T>

Inheritance
java.lang.Object

javax.realtime. WaitFreeRead Queue<T>

Description

240

A queue that can be non-blocking for consumers. The WaitFreeReadQueue class
is intended for single-reader multiple-writer communication, although it may also
be used (with care) for multiple readers. A reader is generally a instance of
Schedulable with may not use the heap, and the writers are generally regular
Java threads or heap-using instances of Schedulable. Communication is through
a bounded buffer of Objects that is managed first-in-first-out. The principal
methods for this class are write and read

e The write method appends a new element onto the queue. It is synchronized,
and blocks when the queue is full. It may be called by more than one writer,
in which case, the different callers will write to different elements of the
queue.

e The read method removes the oldest element from the queue. It is not
synchronized and does not block; it will return null when the queue is
empty.Multiple reader threads or schedulables are permitted, but when two
or more intend to read from the same WaitFreeWriteQueue they will need
to arrange explicit synchronization.

For convenience, and to avoid requiring a reader to poll until the queue is non-
empty, this class also supports instances that can be accessed by a reader that
blocks on queue empty. To obtain this behavior, the reader needs to invoke
the waitForData() method on a queue that has been constructed with a notify
parameter set to true.

RTSJ 2.0 (Draft 46)

WaitFreeReadQueue javaz.realtime 7.3

WaitFreeReadQueue is one of the classes enabling instances of Schedulable
that may not use the heap and conventional Java threads to synchronize on an
object without the risk of that Schedulable instance incurring Garbage Collector
latency due to priority inversion avoidance management.

Incompatibility with V1.0: Three exceptions previously thrown by the con-
structor have been deleted. These are

e java.lang.Illegal AccessException,

e java.lang.ClassNotFoundException, and

e java.lang.InstantiationException.

These exceptions were in error. Their deletion may cause compile-time errors in
code using the previous constructor. The repair is to remove the exceptions from
the catch clause around the constructor invocation.

7.3.1.4.1 Constructors

WaitFreeReadQueue(Runnable, Runnable, int, MemoryArea,
boolean)

Signature
public
WaitFreeReadQueue(Runnable writer,
Runnable reader,
int maximum,
MemoryArea memory,
boolean notify)
throws Illegal ArgumentException,
MemoryScopeException,
InaccessibleAreaException

Description

Constructs a queue containing up to maximum elements in memory. The queue
has an unsynchronized and nonblocking read() method and a synchronized and
blocking write() method.

The writer and reader parameters, when non-null, are checked to insure that
they are compatible with the MemoryArea specified by memory (when non-null.)
When memory is null and both Runnables are non-null, the constructor will select
the nearest common scoped parent memory area, or when there is no such scope

RTSJ 2.0 (Draft 46) 241

7 Synchronization WaitFreeReadQueue

it will use immortal memory. When all three parameters are null, the queue will
be allocated in immortal memory.

reader and writer are not necessarily the only instances of Schedule that will
access the queue; moreover, there is no check that they actually access the queue
at all.

Note, the wait free queue’s internal queue is allocated in memory, but the
memory area of the wait free queue instance itself is determined by the current
allocation context.

Parameters
writer An instance of Runnable or null.

reader An instance of Runnable or null.
maximum The maximum number of elements in the queue.
memory The MemoryArea® in which internal elements are allocated.

notify A flag that establishes whether a reader is notified when the queue becomes

non-empty.
Throws

[llegal Argument Exception when an argument holds an invalid value. The writer
argument must be null, a reference to a Thread, or a reference to a schedulable
(a RealtimeThread, or an AsyncEventHandler.) The reader argument must be
null, a reference to a Thread, or a reference to a schedulable. The maximum
argument must be greater than zero.

InaccessibleAreaException when memory is a scoped memory that is not on the
caller’s scope stack.

MemoryScopelxception when either reader or writer is non-null and the mem-
ory argument is not compatible with reader and writer with respect to the
assignment and access rules for memory areas.

WaitFreeReadQueue(Runnable, Runnable, int, MemoryArea)

Signature
public
WaitFreeReadQueue(Runnable writer,
Runnable reader,
int maximum,
MemoryArea memory)

8Section 11.3.2.3

242 RTSJ 2.0 (Draft 46)

WaitFreeReadQueue javaz.realtime 7.3

throws Illegal ArgumentException,
MemoryScopeException,
InaccessibleAreaException

Description

Constructs a queue containing up to maximum elements in memory. The queue
has an unsynchronized and nonblocking read() method and a synchronized and
blocking write() method.

Equivalent to WaitFreeReadQueue(writer, reader, maximum, memory, false)

WaitFreeReadQueue(int, MemoryArea, boolean)

Signature
public
WaitFreeReadQueue(int maximum,
MemoryArea memory,
boolean notify)
throws Illegal ArgumentException,
InaccessibleAreaFxception

Description

Constructs a queue containing up to maximum elements in memory. The queue
has an unsynchronized and nonblocking read() method and a synchronized and
blocking write() method.

Equivalent to WaitFreeReadQueue(null, null, maximum, memory, notify)

Available since RTSJ 1.0.1

WaitFreeReadQueue(int, boolean)

Signature
public
WaitFreeReadQueue(int maximum,
boolean notify)
throws Illegal ArgumentException

Description

RTSJ 2.0 (Draft 46) 243

7 Synchronization WaitFreeReadQueue

Constructs a queue containing up to maximum elements in immortal memory. The
queue has an unsynchronized and nonblocking read() method and a synchronized
and blocking write() method.

Equivalent to WaitFreeReadQueue(null, null, maximum, null, notify)

Available since RTSJ 1.0.1

7.3.1.4.2 Methods

clear

Signature
public void
clear()

Description

Sets this to empty.
Note, this method needs to be used with care. Invoking clear concurrently
with read or write can lead to unexpected results.

isEmpty

Signature
public boolean
isEmpty/()

Description

Queries the queue to determine if this is empty.
Note: This method needs to be used with care since the state of the queue
may change while the method is in progress or after it has returned.

Returns
true when this is empty; false when this is not empty.

244 RTSJ 2.0 (Draft 46)

WaitFreeReadQueue javaz.realtime 7.3

isFull

Signature
public boolean
isFull()

Description
Queries the system to determine if this is full.
Note: This method needs to be used with care since the state of the queue
may change while the method is in progress or after it has returned.

Returns
true when this is full; false when this is not full.

read

Signature
public T
read()

Description
Reads the least recently inserted element from the queue and returns it as the
result, unless the queue is empty. When the queue is empty, null is returned.

Returns
The instance of T read, or else null when this is empty.

size

Signature
public int
size()

Description
Queries the queue to determine the number of elements in this.
Note: This method needs to be used with care since the state of the queue
may change while the method is in progress or after it has returned.

Returns
The number of positions in this occupied by elements that have been written but
not yet read.

RTSJ 2.0 (Draft 46) 245

7 Synchronization WaitFreeReadQueue

waitForData

Signature
public void
waitForData()
throws UnsupportedOperationException,
Interrupted Exception

Description

When this is empty block until a writer inserts an element.

Note: When there is a single reader and no asynchronous invocation of clear,
then it is safe to invoke read after waitForData and know that read will find the
queue non-empty.

Implementation note, to avoid reader and writer synchronizing on the same
object, the reader should not be notified directly by a writer. (This is the issue
that the non-wait queue classes are intended to solve).

Throws
UnsupportedOperationException when this has not been constructed with notify
set to true.
InterruptedException when the thread is interrupted by interrupt() or AsynchronouslyInterruptedExceptio
fire()? during the time between calling this method and returning from it.

Available since RTSJ 1.0.1 InterruptedException was added to the throws clause.

write(T)

Signature
public synchronized void
write(T value)
throws MemoryScopeException,
InterruptedException

Description
A synchronized and blocking write. This call blocks on queue full and will wait
until there is space in the queue.

Parameters
value The java.lang.Object that is placed in the queue.

9Section 15.2.2.2.2

246 RTSJ 2.0 (Draft 46)

WaitFreeWriteQueue javaz.realtime 7.3

Throws
InterruptedException when the thread is interrupted by interrupt() or AsynchronouslyInterrupted Ex
fire()'Y during the time between calling this method and returning from it.

MemoryScopeException when a memory access error or illegal assignment error
would occur while storing object in the queue.

Available since RTSJ 1.0.1 The return type is changed to void since it always
returned true, and InterruptedException was added to the throws clause.

7.3.1.5 WaitFreeWriteQueue<T>

Inheritance

java.lang.Object
javax.realtime. WaitFree WriteQueue<T >

Description

A queue that can be non-blocking for producers. The WaitFreeWriteQueue class is
intended for single-writer multiple-reader communication, although it may also be
used (with care) for multiple writers. A writer is generally an instance Schedulable
which may not use the heap, and the readers are generally conventional Java
threads or instances of Schedulable which use the heap. Communication is
through a bounded buffer of Objects that is managed first-in-first-out. The
principal methods for this class are write and read.

e The write method appends a new element onto the queue. It is not synchro-
nized, and does not block when the queue is full (it returns false instead).
Multiple writer threads or schedulables are permitted, but when two or more
threads intend to write to the same WaitFreeWriteQueue they will need to
arrange explicit synchronization.

e The read method removes the oldest element from the queue. It is syn-
chronized, and will block when the queue is empty. It may be called by
more than one reader, in which case the different callers will read different
elements from the queue.

WaitFreeWriteQueue is one of the classes enabling schedulables which may
not use the heap and regular Java threads to synchronize on an object without
the risk of the schedulable incurring Garbage Collector latency due to priority
inversion avoidance management.

Incompatibility with V1.0: Three exceptions previously thrown by the con-
structor have been deleted from the throws clause. These are

10Gection 15.2.2.2.2

RTSJ 2.0 (Draft 46) 247

7 Synchronization WaitFreeWriteQueue

e java.lang.lllegal AccessException,

e java.lang.ClassNotFoundException, and

e java.lang.InstantiationException.

Including these exceptions on the throws clause was an error. Their deletion
may cause compile-time errors in code using the previous constructor. The
repair is to remove the exceptions from the catch clause around the constructor
invocation.

7.3.1.5.1 Constructors

WaitFreeWriteQueue(Runnable, Runnable, int, MemoryArea)

Signature
public
WaitFreeWriteQueue(Runnable writer,
Runnable reader,
int maximum,
MemoryArea memory)
throws Illegal ArgumentException,
MemoryScopeException,
InaccessibleAreaException

Description

Constructs a queue in memory with an unsynchronized and nonblocking write()
method and a synchronized and blocking read() method.

The writer and reader parameters, when non-null, are checked to insure that
they are compatible with the MemoryArea specified by memory (when non-null.)
When memory is null and both Runnables are non-null, the constructor will select
the nearest common scoped parent memory area, or when there is no such scope
it will use immortal memory. When all three parameters are null, the queue will
be allocated in immortal memory.

reader and writer are not necessarily the only threads or schedulables that
will access the queues; moreover, there is no check that they actually access the
queue at all.

248 RTSJ 2.0 (Draft 46)

WaitFreeWriteQueue javaz.realtime 7.3

Note, the wait free queue’s internal queue is allocated in memory, but the
memory area of the wait free queue instance itself is determined by the current
allocation context.

Parameters
writer is an instance of Schedulable or null.

reader An instance of Schedulable or null.
maximum The maximum number of elements in the queue.

memory The MemoryArea!'’ in which this and internal elements are allocated.
Throws

Mlegal ArgumentException when an argument holds an invalid value. The writer
argument must be null, a reference to a Thread, or a reference to a schedulable
(a RealtimeThread, or an AsyncEventHandler.) The reader argument must be
null, a reference to a Thread, or a reference to a schedulable. The maximum
argument must be greater than zero.

MemoryScopeException when either reader or writer is non-null and the mem-
ory argument is not compatible with reader and writer with respect to the
assignment and access rules for memory areas.

InaccessibleAreaException when memory is a scoped memory that is not on the
caller’s scope stack.

WaitFreeWriteQueue(int, MemoryArea)

Signature
public
WaitFreeWriteQueue(int maximum,
MemoryArea memory)
throws Illegal ArgumentException,
InaccessibleAreaException

Description
Constructs a queue containing up to maximum elements in memory. The queue
has an unsynchronized and nonblocking write() method and a synchronized and
blocking read() method.
Equivalent to WaitFreeWriteQueue(null,null,mximum, memory)

Available since RTSJ 1.0.1

HGection 11.3.2.3

RTSJ 2.0 (Draft 46) 249

7 Synchronization WaitFreeWriteQueue

WaitFreeWriteQueue(int)

Signature
public
WaitFreeWriteQueue(int maximum)
throws Illegal ArgumentException

Description

Constructs a queue containing up to maximum elements in immortal memory. The
queue has an unsynchronized and nonblocking write() method and a synchronized
and blocking read() method.

Equivalent to WaitFreeWriteQueue(null,null,mximum, null)

Available since RTSJ 1.0.1

7.3.1.5.2 Methods

clear

Signature
public void
clear()

Description
Sets this to empty.

isEmpty

Signature
public boolean
isEmpty()

Description

Queries the system to determine if this is empty.
Note, this method needs to be used with care since the state of the queue
may change while the method is in progress or after it has returned.

250 RTSJ 2.0 (Draft 46)

WaitFreeWriteQueue javaz.realtime 7.3

Returns
True, when this is empty. False, when this is not empty.

isFull

Signature
public boolean

isFull()

Description

Queries the system to determine if this is full.
Note, this method needs to be used with care since the state of the queue
may change while the method is in progress or after it has returned.

Returns
True, when this is full. False, when this is not full.

read

Signature
public synchronized T
read ()
throws InterruptedException

Description

A synchronized and possibly blocking operation on the queue.

Throws

InterruptedException when the thread is interrupted by interrupt() or AsynchronouslylnterruptedFx:

fire()'? during the time between calling this method and returning from it.

Returns
The T least recently written to the queue. When this is empty, the calling schedul-
able blocks until an element is inserted; when it is resumed, read removes and
returns the element.

Available since RTSJ 1.0.1 Throws InterruptedException

12Gection 15.2.2.2.2

RTSJ 2.0 (Draft 46) 251

7 Synchronization WaitFreeWriteQueue

size

Signature
public int
size()

Description

Queries the queue to determine the number of elements in this.
Note, this method needs to be used with care since the state of the queue
may change while the method is in progress or after it has returned.

Returns
The number of positions in this occupied by elements that have been written but
not yet read.

force(T)

Signature
public boolean
force(T value)
throws MemoryScopeException,
[legal Argument Exception

Description

Unconditionally insert value into this, either in a vacant position or else over-
writing the most recently inserted element. The boolean result reflects whether,
at the time that force() returns, the position at which value was inserted was
vacant (false) or occupied (true).

Parameters
value An instance of T to insert.
Throws
MemoryScopeException when a memory access error or illegal assignment error
would occur while storing value in the queue.

[legal ArgumentException when value is null.
Returns
true when value has overwritten an element that was occupied when the function

returns; false otherwise (it has been inserted into a position that was vacant
when the function returns)

252 RTSJ 2.0 (Draft 46)

Rationale 7.4

write(T)

Signature
public boolean
write(T value)
throws MemoryScopeException,
[legal ArgumentException

Description

Inserts value into this when this is non-full and otherwise has no effect on this;
the boolean result reflects whether value has been inserted. When the queue was
empty and one or more threads or schedulables were waiting to read, then one
will be awakened after the write. The choice of which to awaken depends on the
involved scheduler(s).

Parameters
value An instance of T to insert.
Throws
MemoryScopeException when a memory access error or illegal assignment error
would occur while storing value in the queue.

Illegal Argument Exception when value is null.

Returns
true when the queue was non-full; false otherwise.

7.4 Rationale

Java’s rules for synchronized code provide a means for mutual exclusion but do
not prevent unbounded priority inversions and thus are insufficient for realtime
applications. This specification strengthens the semantics for synchronized code by
mandating priority inversion control, in particular by furnishing classes for priority
inheritance and priority ceiling emulation. Priority inheritance is more widely
implemented in realtime operating systems and thus is the initial default mechanism
in this specification.

Priority ceiling emulation is also a useful protocol. It is necessary for blocking out
interrupts in interrupt service routines and simplifies scheduling analysis for single
core systems. Since it can easily be implemented in user space, it is required as well.

Since the same object may be accessed from synchronized code by both a sched-
ulable which may not use the heap and an arbitrary thread or schedulable which
may, unwanted dependencies may result. To avoid this problem, this specification

RTSJ 2.0 (Draft 46) 253

7 Synchronization

provides three wait-free queue classes as an alternative means for safe, concurrent
data accesses without priority inversion.

254 RTSJ 2.0 (Draft 46)

Chapter 8

Asynchrony

One of the most important aspects of this specification is the support for asynchronous
control flow. Mechanisms are provided for both starting a task asynchronously and
interrupting the execution of a thread or other task. This specifications provides
mechanisms that

e bind the execution of program logic to the occurrence of internal and external

events;

e enable asynchronous transfer of control; and

e facilitate the asynchronous termination of realtime threads.
The first of is provided by asynchronous event handling. Using this, an application
can define some computation that is executed every time an event is “fired,” either
from a clock or from some signal. The second is Asynchronous Transfer of Control
(ATC), which provides a means of stopping some calculation prematurely. ATC may
also be used to terminate a realtime thread safely.

Events and Event Handling

Asynchronous event handling is captured by the classes AsyncBaseEvent (AE), Async-
BaseEventHandler (AEH) and AbstractBoundAsyncEventHandler, along with their
subclasses. An AE is an object used to direct event occurrences to asynchronous event
handlers. An event occurrence may be initiated by application logic, by mechanisms
internal to the RT'SJ implementation (see the handlers in PeriodicParameters), or
by some external input such as a clock, a signal, or an interrupt.

An asynchronous event occurrence is initiated in program logic by the invocation
of the fire method of an AE. The fire method dispatches all handlers associated with
its event. This means that dispatching occurs in the execution context of the caller.

An asynchronous event that is initiated from an external source has additional
requirements and hence additional API features. These features are captured by the
ActiveEvent interface. Since external events do not have a full execution context of

255

8 Asynchrony

their own, this category of events must provide an alternate execution context. In
order to give the programmer control over this execution context, the specification
defines the abstract class ActiveEventDispatcher to provide execution context for
dispatching. By convention, subclasses provide a trigger method for initiating
dispatching. Triggering simply informs this execution context to start dispatching.
The trigger method is not defined in ActiveEventDispatcher, since some classes need
a trigger method with an argument and others do not. The types of ActiveEvent
supported are described in subsequent chapters.

Any variety of AEH may be associated with any variety of AE. The event actually
delivered depends on the combination of the two. The table 8.1 illustrates this.

Table 8.1: Event to Handler Matrix

Types AsyncEvent AsyncLongEvent AsyncObjectEvent
AsyncEventHandler Nothing Nothing Nothing
AsyncLongEventHandler Event Id Payload Event Id
AsyncObjectEventHandler | Event Object Event Object Payload

Memory assignment rules apply to the payload passed to AsyncObjectEvent-
Handler.

An AEH is a schedulable embodying code that is released for execution in response
to the occurrence of an associated event. Each AEH behaves as if it is executed by
a RealtimeThread except that it is not permitted to use the waitForNextRelease()
method. There is not necessarily a separate realtime thread for each AEH, but
the server realtime thread (returned by currentRealtimeThread()) remains constant
during each execution of the handleAsyncEvent() method. The implication of this
is that calls to Thread.currentThread(), RealtimeThread.currentRealtimeThread|(),
and access to thread-local storage may have unpredictable results from release to
release. The manner in which the implementation selects a realtime thread to release
a given AEH at a given release is implementation-defined. The interface Bound-
AsyncBaseEventHandler is used to mark subclasses of AsyncBaseEventHandler, such
as BoundAsyncEventHandler, which have a dedicated realtime server thread. Such
a server thread is associated with one and only one bound AEH for the lifetime of
that AEH.

Asynchronous Transfer of Control

The interrupt() method in java.lang.Thread provides rudimentary asynchronous
communication by setting a pollable and resettable flag in the target thread, and
by throwing a synchronous exception when the target thread is blocked at an
invocation of wait(), sleep(), join(), or an operation that throws InterruptException.

256 RTSJ 2.0 (Draft 46)

Definitions 8.1

This specification generalizes the notion of interrupt to all Tasks, offering a more
comprehensive asynchronous execution control facility without requiring polling. For
RealtimeThreads, the effect of Thread.interrupt() must be extended by adding an
overridden version in RealtimeThread.

This new mechanism, called Asynchronous Transfer of Control (ATC), is based
on throwing and propagating an exception that, though asynchronous, is deferred
where necessary in order to avoid data structure corruption. The main elements of
ATC are embodied in the class AsynchronouslylnterruptedException, its subclass
Timed, the interface Interruptible, and in the semantics of the interrupt method in
Schedulable.

A method indicates its eligibility for asynchronous interruption by including the
checked exception AsynchronouslylnterruptedException in its throws clause. If a
schedulable is asynchronously interrupted while executing such a method, then an
ATE will be delivered as soon as the schedulable is outside of a section in which ATC
is deferred. Several idioms are available for handling an AIE, giving the programmer
the choice of using catch clauses and a low-level mechanism with specific control over
propagation, or a higher-level facility that enables specifying the interruptible code,
the handler, and the result retrieval as separate methods.

8.1 Definitions

Asynchronous Event (AE) — An instance of one of the subclasses of the javax.
realtime. AsyncBaseEvent class.

Asynchronous Event Handler (AEH) — An instance of one of the subclasses
of the AsyncBaseEventHandler class.

Bound Asynchronous Event Handler (Bound AEH) — An instance of one
of the subclasses of the BoundAsyncBaseEventHandler class.

Asynchronously Interrupted Exception (AIE) — An instance of the javax.
realtime. AsynchronouslyInterruptedException class (a subclass of java.lang.
InterruptedException).

Asynchronously Interruptible Method (AI-Method) — A method or construc-
tor that includes AsynchronouslylnterruptedException explicitly (that is, not
a subclass of AsynchronouslylnterruptedException) in its throws clause.

Asynchronous Transfer of Control (ATC) — A nonlocal transfer of program
control in a task initiated from outside that task.

ATC-Deferred Section — A synchronized statement, a static initializer or any
method or constructor without AsynchronouslylnterruptedException in its
throws clause. As specified in the introduction to Chapter 8 in Java Language
Specification, a synchronized method is equivalent to a non-synchronized method
with the body of the method contained in a synchronized statement. Thus,

RTSJ 2.0 (Draft 46) 257

8 Asynchrony

a synchronized Al method behaves like an Al method containing only an
ATC-deferred statement.

Bounded Execution Time — As a particular task or schedulable may not be
scheduled on a CPU for an arbitrarily long period of time, bounds on the
responsiveness of a given task or schedulable are defined in terms of execution
time during which that task is scheduled on a CPU and executing. Time during
which a task is blocked, either voluntarily, pending acquisition of a resource,
or due to a higher-priority task executing on the CPUs available to it, is not
considered execution time.

Firable Asynchronous Event Handler — An instance of AsyncBaseEventHand-
ler is firable whenever there is an agent that can release it. This includes cases
when the AsyncBaseEventHandler is

1. a miss handler or overrun handler of a RealtimeThread instance that has
been started but not yet terminated;

2. a handler associated with an AsyncBaseEvent that can be fired; or

3. a miss handler or overrun handler for an instance of AsyncBaseEvent-
Handler that is firable.

Interruptible Blocking Methods — The RTSJ and standard Java methods that
are explicitly interruptible by an AsynchronouslyInterruptedException (AIE).
The interruptible blocking methods comprise

HighResolutionTime.waitForObject(),
Object.wait/(),

Thread.sleep(),
RealtimeThread.sleep(),
Thread.join(),

ScopedMemory.join(),
ScopedMemory.joinAndEnter(),
RealtimeThread. waitForNextRelease(),
WaitFreeWriteQueue.read(),
WaitFreeReadQueue.waitForData(),
WaitFreeReadQueue.write(),
WaitFreeDequeue.blockingRead(),
WaitFreeDequeue.blockingWrite()

and their overloaded forms. Furthermore, the RealtimeThread.waitForNextRelease
method is interruptible when the thread’s release parameters isRousable method
returns true. Similarly instances of AsyncBaseEventHandlers are released early
when their release parameters isRousable method returns true.

Lexical Scope — The textual region within programming block, such as a construc-
tor, method, or statement, excluding the code within any class declarations,
and the code within any class instance creation expressions for anonymous

258 RTSJ 2.0 (Draft 46)

Semantics 8.2

classes, contained therein. The lexical scope of a construct does not include
the bodies of any methods or constructors that this code invokes.

8.2 Semantics

Basic event types are passive: they are not directly associated with a thread of control.
They are intended to be fired programmatically. Handling external events, such
as clocks (see Chapter 10) and happenings (see Chapter 12), requires an execution
context. The ActiveEvent interface is provided to mark these and provide additional
execution semantics. Figure 8.1 illustrates the event hierarchy.

Figure 8.1: The Event Class Hierarchy

Visibility javax.realtime::AsyncBaseEvent javax.realtime::ActiveEvent
+ = public <<abstract>> <<interface>>
f protected +isRunning() : boolean +isActive() : boolean
~ = package +enable() +isRunning() : boolean
+disable() +enable()
+boolean hasHandlers() : boolean +disable()
+handledBy(AsyncBaseEventHandler) : boolean +start()
+addHandler(AsyncBaseEventHandler) +start(boolean disable)
+setHandler(AsyncBaseEventHandler) +stop()
+removeHandler(AsyncBaseEventHandler)
+createRel. Parameters() : Rel Parameters 4
1
ZF I
1
1
| { | :
avax.realtime::AsyncObjectEvent avax.realtime::AsyncEvent javax.realtime::AsyncLongEvent I
+fire(Object value) +fire() +fire(long value) :
1
|
pu 8 ul |
B ettt Bt m————————— PRV [[J‘
| [| ! |
| . . |
| javax.realtime::POSIXSignal javax.realtime::Timer |
} +isPOSIXSignal() : boolean Timer(HighResolutionTime, }
- - - +getld(String name): int AsyncBaseEventHandler, |
javax.realtime::Happening + Stri ame): POSIXSigna TimeDispatcher) 1
+Happening(String name) +get(int id): POSIXSignal +getDispatcher() : TimeDispatcher }
+Happening(String, HappeningDispatcher) +getProcessld(): long |
+isHappening(String name) : boolean +getld() : int 1
+getHappening(String name): int +getName() : String !
+createld(String name): int +getDispatcher() : POSIXSignalDispatcher avax.realtime::POSIXRealtimeSignal
+getld(String name): int +send(long) : boolean +isPOSIXRealtimeSignal() : boolean
+get(String name): Happening +getld(String name): int
+get(int id): Happening +get(String name): POSIXRealtimeSignal
+getld(): int) +getld() : int
+getName() : String +getName() : String
+trigger() . . +getDispatcher() : POSIXRealtimeSignalDispatcher
+getDispatcher() : HappeningDispatcher javax.realtime::OneShotTimer javax.realtime::PeriodicTimer| | +send(long, long) : boolean

8.2.1 Asynchronous Events and their Handlers

This following points give the basic semantics for asynchronous events and their
handlers. Semantics that apply to particular classes, constructors, methods, and
fields are provided in the class description and the constructor, method, and field
specifications.

RTSJ 2.0 (Draft 46) 259

8 Asynchrony

10.

11.

12.

13.

14.

260

. When an asynchronous event occurs, either by either program logic or by the

triggering of a happening, and the event is enabled, its attached handlers, i.e.,
all AEHs that have been added to the AE by the execution of addHandler(),

are released for execution.

(a) Every occurrence of an event increments the fireCount in each attached
handler.

(b) Handlers may elect to execute logic for each occurrence of the event or
not.

When interrupt is called on an AEH whose rousable state is true, i.e., its
release parameters isRousable method returns true, that AEH will be release
independently of all other AEH attached to any common AE.

The release of attached handlers occurs in execution eligibility order, i.e,
priority order, from highest to lowest, with the default PriorityScheduler, and
at the active priority of the schedulable that invoked the fire method. The
release of handlers resulting from a happening or a timer must begin within a
bounded time (ignoring time consumed by unrelated activities in the system).
This worst-case response interval must be documented for some reference
architecture.

The release of attached handlers is an atomic operation with respect to adding
and removing handlers.

The logical release of an attached handler may occur before the previous release
has completed.

Each handler has an application configurable, handler type dependent queue for
holding events that have been released before a previous release has completed.
The overflow policy of a handlers queue is also application configurable.

A deadline may be associated with each logical release of an attached handler.
The deadline is relative to the occurrence of the associated event.

AEs and AEHs may be created and used by any program logic within the
constraints of the memory assignment rules.

More than one AEH may be added to an AE. However, adding an AEH to an
AE has no effect if the AEH is already attached to the AE.

The same AEH may be added to more than one AE.

By default all AEHs are daemons: the daemon status is set by their constructors.
An AEH can be set to have a non daemon status after it has been created and
before it has been attached to an AE.

The object returned by currentRealtimeThread() while an AEH is running
shall behave with respect to memory access and assignment rules as if it were
allocated in the same memory area as the AEH.

System-related termination activity (such as execution of finalizers for scoped
objects in scopes that become unreferenced) triggered when an AEH becomes

RTSJ 2.0 (Draft 46)

Semantics 8.2

unfirable is not subject to cost enforcement or deadline miss detection.

15. AEs and AEHs behave effectively as if changes to an AEH’s fireability are
contained in synchronized blocks, and the AEH holds that lock while it is in
the process of becoming unfirable.

AsyncBaseEvent provides two basic states: enabled and disabled. In the enabled
state, fire causes all associated handlers to be dispatched, whereas fire does nothing
when the event is disabled. Figure 8.2 illustrates this state space.

Figure 8.2: States of a Simple AsyncBaseEvent

/

Nonexistent Enabled Disabled

/N

8.2.2 Active Events and Dispatching

Active events refine the semantics of AsyncBaseEventHandler with the addition of
execution semantics to support second level interrupt handling. The fire method of
an event runs in the Java execution context of the caller. For events that represent
external signals, whether a certain time is reached or something has occurred, there
may not be a Java execution context, or at least that context is of necessity limited
and often needs to have a very short duration; dispatching an unlimited number of
handlers is not acceptable. They require an additional execution context for releasing
handlers.

In order to be able to distinguish between events that are caused to be fired by an
outside mechanism from those that are fired from another thread, the former extend
the ActiveEvent interface. Each class implementing ActiveEvent must provide its
own trigger method for initiating the handler release by releasing another execution
context. Since the trigger methods may vary in the number of their arguments

RTSJ 2.0 (Draft 46) 261

8 Asynchrony

depending on the type of event, they are not provided by the ActiveEvent class.
Each trigger method must act as if it calls the fire method on its event and then
terminates. Hence trigger has the same functional behavior as fire, but runs in this
other execution context.

This extra execution context is exposed to the user as an ActiveEventDispatcher.
There is an active event dispatcher for each kind of active event. The programmer
does not need to write a dispatcher, but just creates the one of the corresponding
type. The programmer does determine the priority and the affinity of a dispatcher,
as well as determine the mapping between dispatchers and events.

Each event has a single dispatcher, but a dispatcher may serve many events. As
with fire, the dispatcher releases handlers in reverse priority order, i.e., from highest
to lowest. This enables the programmer to control the number of these execution
contexts and still optimize how handlers are released.

The state space of an ActiveEvent is an extension of the state space for an
AsyncBaseEvent depicted in Figure 8.2. ActiveEvent adds the notion of active and
inactive on top of enabled and disabled, as depicted in Figure 8.3. Note that the
enabled-disabled distinction only splits the active state. The inactive state is by
definition disabled.

8.2.3 Termination

An RTSJ program terminates when and only when
1. all nondaemon threads, either regular Java threads or realtime threads, are
terminated;
2. the fireCounts of all nondaemon instances of AsyncBaseEventHandler are zero
and all of their releases are completed; and
3. there are no nondaemon instances of AsyncBaseEventHandler attached to a
firable instance of ActiveEvent.
Bound and unbound AEH are treated alike. As with conventional Java, daemon
tasks, including service threads such as a dispatcher’s thread or the threads used to
run unbound AEH, do not hinder termination.

8.2.4 Asynchronous Transfer of Control

Asynchronously interrupting a schedulable consists of the following activities.
1. Generation of an asynchronous interrupt exception — this is the event in the
underlying system that makes the AIE available to the program.
2. Delivery of the asynchronous interrupt exception to the target schedulable—

this is the action that invokes the search for and execution of an appropriate
handler.

262 RTSJ 2.0 (Draft 46)

Semantics 8.2

Figure 8.3: States of an ActiveEvent

stop -> false

startDisabled

stop
-> true

4 disable)
| \V/

new Inactive Active Activ Active
Disabled Enabled ClVE { ' Disabled

/|\ enable |

_ O)

stop start
-> false

start
-> |llegalStateException

startDisabled
-> |llegalStateException

Between the generation of an AIE and its delivery, the exception is held pending.
The AIE remains pending, even after delivery, until it is cleared by the program
logic using the AsynchronouslylnterruptedException.clear() or when Asynchronous-
lyInterruptedException.dolnterruptible() completes. Simply catching the exception
does not change its pending state.

The following eight points define the semantics of ATC. Semantics that apply
to particular classes, constructors, methods, and fields will be found in their detail
sections, respectively.

1. An AIE is generated for a given schedulable when the fire() method is called
on an AIE for which the schedulable object is executing within the dolnter-
ruptible() method or the Schedulable.interrupt() method is called; the latter
is also effectively called when an AIE is generated by internal virtual machine
mechanisms (such as an interrupted 1/O operation) that are asynchronous to
the execution of the program logic which is the target of the AIE. An AIE
becomes pending upon generation and remains pending until explicitly cleared
or replaced by another AIE.

RTSJ 2.0 (Draft 46) 263

8 Asynchrony

2. An AIE is delivered to a schedulable when it is executing in a method declared
to throw AIE, except in an ATC-deferred section as defined below.

(a) The generation of an AIE through the fire() mechanism behaves as if it
set an asynchronously-interrupted status in the schedulable.

i. When the schedulable is blocked within an interruptible blocking
method or invokes an interruptible blocking method when this asynchronously-
interrupted status is set, the invocation immediately completes by
throwing the pending AIE and clearing the asynchronously-interrupted
status.

ii. When a pending AIE is explicitly cleared then the asynchronously-
interrupted status is also cleared.

(b) Blocking methods which are declared to throw java.lang.IOException
but are not declared to throw java.io.InterruptedException (for example,
blocking methods in java.io.*) must be prevented from blocking indefinitely
when invoked from a method with AsynchronouslyInterruptedException
in its throws clause. When an AIE is generated and the target schedulable’s
control is blocked inside one of these methods with an Al-method on the
call stack, the implementation may either unblock the blocked call, raise
java.lang.InterruptedlOException on behalf of the call, or allow the call
to complete normally if the implementation determines that the call would
unblock within a bounded period of time defined by the implementation.

(¢) When an Al-method is attempting to acquire an object lock when an
associated AIE is generated, the attempt to acquire the lock is abandoned.

(d) When control is in the lexical scope of an ATC-deferred section when an

AIE (targeted at the executing schedulable) is generated, the AIE is not
delivered until the first subsequent attempt to transfer control to code
that is not ATC deferred. At that point, control is transferred to the
catch or finally clause of the nearest dynamically-enclosing try statement
that ¢) has a handler for the generated AIE (that is a handler naming
the AIE’s class or any of its superclasses, or a finally clause) and) is in
an ATC-deferred section. Intervening handlers and finally clauses that
are not in ATC-deferred sections are not executed, but object locks are
released.
See section 11.3 of The Java Language Specification second edition for an
explanation of the terms, dynamically enclosing and handler. The RTSJ
uses those JLS definitions unaltered. Note that if synchronized code is
abandoned as a result of this control transfer, the associated locks are
released.

3. Constructors are allowed to include AsynchronouslyInterruptedException in
their throws clause and if they do will be asynchronously interruptible under

264 RTSJ 2.0 (Draft 46)

Semantics 8.2

the same conditions as Al methods.
. Native methods that include AsynchronouslylnterruptedException in their
throws clause have implementation-specific behavior.
. An implementation must deliver the transfer of control in a schedulable that
is subject to asynchronous interruption (in an Al-method but not in a syn-
chronized block) within a bounded execution time of that schedulable. This
worst-case response interval must be documented for some reference architec-
ture.
. Instances of the Timed class have a logically associated timer. When the timer
fires, the schedulable executing the instance’s dolnterruptible method must
have the AIE generated within a bounded execution time of the schedulable.
This worst-case response interval must be documented for some reference
architecture.
. An AIE only has the semantics defined here when it originates with the
AsynchronouslyInterruptedException.fire() method, the Schedulable.interrupt()
method or from within the realtime VM. If an AIE is thrown from program
logic using the Java throw statement, it uses the same semantics as throwing
any other instance of a subclass of Exception, it is processed as a normal
exception, and has no affect on the pending state of any AIE, and no affect on
the firing of the AIE concerned.

. The Schedulable.interrupt() method is a special case of ATC.

(a) it causes the target task to throw a generic AIE and has the behaviors
defined for Thread.interrupt(). This is the only interaction between the
ATC mechanism and the conventional interrupt() mechanism.

(b) An AEH that is waiting for a release and is rousable will release immedi-
ately as per Section 6.2.1.2.4 above with the generic AIE pending when it
is interrupted.

(¢) A RealtimeThread blocked in waitForNextRelease that is rousable will
immediately return as per Section 6.2.1.2.2 with the generic AIE pending
when it is interrupted.

8.2.4.1 Extending Conventional Java Interrupts

The RTSJ’s approach to ATC is designed to follow the above principles. It is
based on exceptions and is an extension of the current Java language rules for
java.lang. Thread.interrupt(). In summary, ATC works as follows.

When so is an instance of a schedulable and the interrupt() method is called on

the schedulable associated with that object, then the following holds.
1. When control is in an ATC-deferred section, then the AIE remains in a pending

state. Execution continues normally until the first attempt to return to an Al
method or invoke an AI method or exit a synchronized block within an Al

RTSJ 2.0 (Draft 46) 265

8 Asynchrony

method. Then ATC follows option 2 as appropriate.

When control is not in an ATC-deferred section, then control is transferred to
the catch or finally clause of the nearest dynamically-enclosing try statement
that has a handler for the generated AIE (that is a handler naming the AIE’s
class or any of its superclasses, or a finally clause) and which is in an ATC-
deferred section. Intervening handlers and finally clauses that are not in
ATC-deferred sections are not executed, but objects locks are released. See
section 11.3 of The Java Language Specification [5] for an explanation of the
terms dynamically enclosing and handlers. The RTSJ uses those definitions
unaltered.

When control is in an interruptible blocking method, the schedulable object is
awakened and the generated AIE (which is a subclass of InterruptedException)
is thrown with regular Java semantics (the AIE is still marked as pending).
ATC then follows option 1 or 2 as appropriate.

When control is transferred from an ATC-deferred section to an AI method
through the action of propagating an exception while an AIE is pending, when
the transition to the Al-method occurs, the thrown exception is discarded and
replaced by the pending AIE.

8.2.4.2 Nesting AsynchronouslyInterruptedExceptions

An AIE may be generated while another AIE is pending. Because Al code blocks are
nested by method invocation (a stack-based nesting) there is a natural precedence
among active instances of AIE. Let AIE, be the AIE raised when the Schedul-
able.interrupt() method is invoked and AIE; (i = 1,...,n, for n unique instances of
AIE) be the AIE generated when AIE.fire() is invoked. In the following, the phrase
“a frame deeper on the stack than this frame” refers to a stack frame further from
stack base. The phrase “a frame shallower on the stack than this frame” refers to a
stack frame nearer to the stack base.

1.

2.

266

When the current AIE is an AIF, and the new AIE is an AIE, associated
with any frame on the stack, the new AIE (AIFE,) is discarded.

When the current AIE is an AIE, and the new AIE is an Al Ej, the current
AIE (AIE,) is replaced by the new AIE (AIE).

When the current AIE is an AIE, and the new AIE is an AIE, from a frame
deeper on the stack, the new AIE (AIE,) discarded.

When the current AIE is an AIE, and the new AIE is an AIE, from a frame
shallower on the stack, the current AIE (AIE,) is replaced by the new AIE
(AIE,).

When the current AIE is an AIE, and the new AIE is an AIFEj, or when
the current AIE is an AIE, and the new AIE is an AIFE,, the new AIE is
discarded.

RTSJ 2.0 (Draft 46)

Semantics 8.2

When clear() is called on a pending AIE or that AIE is superseded by another,
the first AIE’s pending state is cleared. Clearing a nonpending AIE (with the clear()
method) has no effect.

RTSJ 2.0 (Draft 46) 267

8 Asynchrony ActiveEvent

8.3 javax.realtime

8.3.1 Interfaces

8.3.1.1 ActiveEvent<T extends javax.realtime.Releasable<T, D>, D ex-
tends javax.realtime.ActiveEventDispatcher<D, T»

Interfaces
javax.realtime.Releasable
Description

This is the interface for defining the active event system. Classes implementing
ActiveEvent are used to connect events that take place outside the Java virtual
machine to RTSJ activities.

When an event takes place outside the Java virtual machine, some event-
specific code within the Java virtual machine executes. That code notifies the
ActiveEvent infrastructure of this event by calling a trigger method in the event.

An instance of this class holds a reference to its dispatcher. When ActiveEvent.
isActive! is true, the dispatcher must also hold a reference to the instance. For
this reason, whenever an active event instance is active, it is also a execution
context, so that this reference can be safely held during this time. Only the active
event instance must be assignable to its dispatcher instance under the memory
assignment rules, but not visa versa.

8.3.1.1.1 Methods

isActive

Signature
public boolean
isActive()

Description

Determine the activation state of this event, i.e., it has been started but not yet
stopped again.

1Section 8.3.1.1.1

268 RTSJ 2.0 (Draft 46)

ActiveEvent javax.realtime

8.3

Returns
true when active, false otherwise.

isRunning
Signature
public boolean

isRunning()

Description

Determine the running state of this event, i.e., it is both active and enabled.

Returns
true when active and enabled, false otherwise.

start

Signature
public void
start()
throws IllegalStateException

Description
Start this active event.

Throws
[llegalStateException when this event has already been started.

start(boolean)

Signature
public void
start(boolean disabled)
throws IllegalStateException

Description

Start this active event.

Parameters
disabled true for starting in a disabled state.

RTSJ 2.0 (Draft 46)

269

8 Asynchrony BoundAsyncBaseEventHandler

Throws
IllegalStateException when this event has already been started.

stop

Signature
public boolean

stop()
throws IllegalStateException

Description
Stop this active event.

Throws
[llegalStateException when this event is not running.

Returns
the previous enabled state.

enable

Signature
public void
enable()

Description
Change the state of the event so that associated handlers are release on fire.
Each subclass provides a means of dispatching its handlers when requested. This
method enables that request mechanism.

disable

Signature
public void
disable()

Description

Change the state of the event so that associated handlers are skipped on fire.
Each subclass provides a fire method as means of dispatching its handlers when
requested. This method disables that request mechanism.

270 RTSJ 2.0 (Draft 46)

Interruptible javaz.realtime 8.3

8.3.1.2 BoundAsyncBaseEventHandler

Interfaces
javax.realtime.BoundSchedulable
Description

An marker interface for all schedulables that are bound to a single thread of
control. It is required to enable references to all bound handlers. A thread is
bound to a handler of this type when it is first attached to an event. Thus
security checks for thread use can be done when AsyncBaseEvent.addHandler?
and AsyncBaseEvent.setHandler?® are called.

8.3.1.3 Interruptible

Description

Interruptible is an interface implemented by classes that will be used as arguments
on the methodsdolnterruptible() of AsynchronouslylnterruptedException? and
its subclasses. dolnterruptible() invokes the implementations of the methods in
this interface.

8.3.1.3.1 Methods

run(AsynchronouslyInterruptedException)

Signature
public void
run(AsynchronouslyInterrupted Exception exception)
throws AsynchronouslylnterruptedException

Description

2Section 8.3.3.2.1
3Section 8.3.3.2.1
4Section 15.2.2.2

RTSJ 2.0 (Draft 46) 271

8 Asynchrony Releasable

The main piece of code that is executed when an implementation is given to
doInterruptible(). When a class is created that implements this interface (for
example through an anonymous inner class) it must include the throws clause to
make the method interruptible.

Parameters
exception The AIE object whose dolnterruptible method is calling the run method.
Used to invoke methods on AsynchronouslylnterruptedException® from within
the run() method.

interrupt Action(AsynchronouslyInterruptedException)

Signature
public void
interruptAction(AsynchronouslyInterrupted Exception exception)

Description

This method is called by the system when the run() method is interrupted. Using
this, the program logic can determine when the run() method completed normally
or had its control asynchronously transferred to its caller.

Parameters
exception The currently pending AIE. Used to invoke methods on Asynchronously-
InterruptedException® from within the interruptAction() method.

8.3.1.4 Releasable<T extends javax.realtime.Releasable<T, D>, D ex-
tends javax.realtime.ActiveEventDispatcher<D, T»

Description

A base interface for everything that has a dispatcher.

8.3.1.4.1 Methods

5Section 15.2.2.2
6Section 15.2.2.2

272 RTSJ 2.0 (Draft 46)

Timed javaz.realtime 8.3

getDispatcher

Signature
public D extends javax.realtime.ActiveEventDispatcher<D, T>
getDispatcher()

Description

Obtain the dispatcher for this.

Returns
that dispatcher.

8.3.2 Exceptions
8.3.2.1 Timed

Inheritance

java.lang.Object
java.lang.Throwable
java.lang.Exception
java.lang.Interrupted Exception
javax.realtime. AsynchronouslyInterrupted Exception
javax.realtime.Timed

Description

Create a scope in a Schedulable” object which will be asynchronously interrupted
at the expiration of a timer. This timer will begin measuring time at some point
between the time dolnterruptible() is invoked and the time the run() method of
the Interruptible object is invoked. Each call of doInterruptible() on an instance
of Timed will restart the timer for the amount of time given in the constructor
or the most recent invocation of resetTime(). The timer is cancelled when it has
not expired before the doInterruptible() method has finished.

All memory use of an instance of Timed occurs during construction or the
first invocation of dolnterruptible(). Subsequent invocations of doInterruptible()
do not allocate memory.

When the timer fires, the resulting AIE will be generated for the schedulable
within a bounded execution time of the targeted schedulable.

Typical usage: new Timed(T).doInterruptible(interruptible);

7Section 6.3.1.3

RTSJ 2.0 (Draft 46) 273

8 Asynchrony Timed

8.3.2.1.1 Constructors

Timed(HighResolutionTime)

Signature
public
Timed(javax.realtime.HighResolutionTime<?> time)
throws Illegal ArgumentException,
UnsupportedOperationException

Description

Create an instance of Timed with a timer set to time. When the time is in the past
the AsynchronouslyInterruptedException® mechanism is activated immediately
after or when the dolnterruptible() method is called.

Parameters
time When time is a RelativeTime? value, it is the interval of time between the
invocation of dolnterruptible() and when the schedulable is asynchronously
interrupted. When time is an AbsoluteTime!” value, the timer asynchronously
interrupts at this time (assuming the timer has not been cancelled).
Throws
Illegal Argument Exception when time is null.

UnsupportedOperationException when time is not based on a Clock!!.

8.3.2.1.2 Methods

dolInterruptible(Interruptible)

Signature

8Section 15.2.2.2
9Section 9.3.1.3
10Section 9.3.1.1
HSection 10.3.2.1

274 RTSJ 2.0 (Draft 46)

Timed javaz.realtime 8.3

public boolean
doInterruptible(Interruptible logic)

Description

Execute a time-out method. Starts the timer and executes the run() method of
the given Interruptible!? object.

Parameters

logic logic An instance of an Interruptible'® whose run() method will be called.
Throws

Illegal ArgumentException Illegal ArgumentException when logic is null.

[legal ThreadStateException null

Returns
true, when the method call completed normally, and false, when another call to
doInterruptible has not completed.

resetTime(HighResolutionTime)

Signature
public void
reset Time(javax.realtime.HighResolutionTime<7> time)

Description

To set the time-out for the next invocation of dolnterruptible().

Parameters
time This can be an absolute time or a relative time. When null or not based on a
Clock!, the time-out is not changed.

restart(HighResolutionTime)
Signature
public void

restart (javax.realtime. HighResolution Time< 7> time)

Description

12Gection 8.3.1.3
3Section 8.3.1.3
MGection 10.3.2.1

RTSJ 2.0 (Draft 46) 275

8 Asynchrony ActiveEventDispatcher

Reset the timeout. When this Timed' instance is executing, adjust the timeout
to time and restart the timer. When the instance is not executing, adjust the
timeout for the next invocation.

Parameters
time The new timeout.
Throws
[llegal ArgumentException when time is null or a relative time less than zero.

UnsupportedOperationException when time is not based on a Clock'®

Available since RTSJ 2.0

8.3.3 Classes

8.3.3.1 ActiveEventDispatcher<D extends javax.realtime.ActiveEventDispatcher<D,
T>, T extends javax.realtime.Releasable<T, D»

Inheritance

java.lang.Object
javax.realtime.ActiveEventDispatcher<D extends javax.realtime. ActiveEventDispatcher<D,

T>, T extends javax.realtime.Releasable<T, D»
Interfaces
javax.realtime.RealtimeExecutionContext
Description

Provides a means of dispatching a set of ActiveEvent!'”s. It acts as if it contains
a daemon RealtimeThread to perform this task. The priority of this thread can
be specified when a dispatcher object is created. The default dispatcher runs at
the highest realtime priority on the base scheduler. Dispatchers do not maintain
a queue of pending event.

Application code cannot extend this class.

8.3.3.1.1 Constructors

15Gection 8.3.2.1
16Section 10.3.2.1
17Section 8.3.1.1

276 RTSJ 2.0 (Draft 46)

ActiveEventDispatcher javaz.realtime 8.3

ActiveEventDispatcher(SchedulingParameters, SchedulingGroup)

Signature
protected
ActiveEventDispatcher(SchedulingParameters schedule,
SchedulingGroup group)

Description

Create a new dispatcher.

Parameters
schedule provide scheduling information to the new object.

group the SchedulingGroup of the thread of this dispatcher.

ActiveEventDispatcher(SchedulingParameters)

Signature
protected
ActiveEventDispatcher(SchedulingParameters schedule)

Description

Create a new dispatcher.

Parameters
schedule provide scheduling information to the new object.

8.3.3.1.2 Methods

getSchedulingParameters

Signature
public javax.realtime.SchedulingParameters
getSchedulingParameters()

Description

RTSJ 2.0 (Draft 46) 277

8 Asynchrony ActiveEventDispatcher

Determine how the thread associated with this dispatcher is scheduled.

Returns
the scheduling parameters of the dispatcher thread.

getSchedulingGroup

Signature
public javax.realtime.SchedulingGroup
getSchedulingGroup()

Description

Determine in which group the thread associated with this dispatcher is.

Returns
the scheduling group of the dispatcher thread.

register(T)

Signature
public abstract void
register(T event)
throws RegistrationException,
[legalStateException,
Mlegal Argument Exception

Description

Register an active event with this dispatcher.

Parameters
event to register
Throws
RegistrationException when event is already registered.

[legalStateException when this object has been destroyed.
[legal ArgumentException when event is not stopped.

278 RTSJ 2.0 (Draft 46)

AsyncBaseEvent javaz.realtime 8.3

deregister(T)

Signature
public abstract void
deregister(T event)
throws DeregistrationException,
[legalStateException,
Mlegal Argument Exception

Description

Deregister an active event from this dispatcher.

Parameters
event to deregister
Throws
DeregistrationException when event is already registered.

[llegalStateException when this object has been destroyed.
[legal ArgumentException when event is not stopped.

destroy

Signature
public abstract void
destroy()
throws IllegalStateException

Description
Makes the dispatcher unusable.

Throws
[llegalStateException when called on a dispatcher that has one or more registered
objects.

8.3.3.2 AsyncBaseEvent

Inheritance

java.lang.Object
javax.realtime.AsyncBaseEvent

RTSJ 2.0 (Draft 46) 279

8 Asynchrony AsyncBaseEvent

Description

This is the base class for all asynchronous events, where asynchronous is in regards
to running code, not external time. This class unifies the original AsyncEvent!®
with AsyncLongEvent!® and AsyncObjectEvent?.

Note that when this class is collected, all its handlers are automatically
removed as if setHandler?! was called with a null parameter.

Available since RTSJ 2.0

8.3.3.2.1 Methods

isRunning

Signature
public boolean
isRunning()

Description

Determine the firing state (releasing or skipping) of this event, i.e., whether it is
enabled or disabled.

Returns
true when releasing, false when skipping.

handledBy(AsyncBaseEventHandler)

Signature
public boolean
handledBy(AsyncBaseEventHandler handler)

Description

Test to see if the handler given as the parameter is associated with this.

Parameters

18Section 8.3.3.4
9Section 8.3.3.6
20Section 8.3.3.8
21Section 8.3.3.2.1

280 RTSJ 2.0 (Draft 46)

AsyncBaseEvent javaz.realtime 8.3

handler The handler to be tested to determine if it is associated with this.
Returns
True when the parameter is associated with this. False when handler is null or the
parameters is not associated with this.

enable

Signature
public void
enable()

Description

Change the state of the event so that associated handlers are release on fire.
Each subclass provides a means of dispatching its handlers when requested. This
method enables that request mechanism.

disable

Signature
public void
disable()

Description

Change the state of the event so that associated handlers are skipped on fire.
Each subclass provides a fire method as means of dispatching its handlers when
requested. This method disables that request mechanism.

addHandler(AsyncBaseEventHandler)

Signature
public void
addHandler(AsyncBaseEventHandler handler)

Description

Add a handler to the set of handlers associated with this event. An instance of
AsyncBaseEvent may have more than one associated handler. However, adding
a handler to an event has no effect when the handler is already attached to the
event.

RTSJ 2.0 (Draft 46) 281

8 Asynchrony AsyncBaseEvent

The execution of this method is atomic with respect to the execution of the
fire() method.

Note, there is an implicit reference to the handler stored in this. The assign-
ment must be valid under any applicable memory assignment rules.

Parameters
handler The new handler to add to the list of handlers already associated with this.
When handler is already associated with the event, the call has no effect.
Throws
[llegal ArgumentException when handler is null or the handler has PeriodicParam-
eters??. Only the subclass PeriodicTimer®® is allowed to have handlers with
PeriodicParameters®*.

[llegal AssignmentError when this AsyncBaseEvent cannot hold a reference to han-

dler.

[llegalStateException when the configured Scheduler and SchedulingParameters for
handler are not compatible with one another.

ScopedCycleException when handler has an explicit initial scoped memory area
that has already been entered from a memory area other than the area where
handler was allocated.

setHandler(AsyncBaseEventHandler)

Signature
public void
setHandler(AsyncBaseEventHandler handler)

Description

Associate a new handler with this event and remove all existing handlers. The
execution of this method is atomic with respect to the execution of the fire()
method.

Parameters
handler The instance of AsyncBaseEventHandler?® to be associated with this. When
handler is null then no handler will be associated with this, i.e., behave effec-
tively as if setHandler(null) invokes removeHandler (AsyncBaseEvent Handler)?
for each associated handler.

22Gection 6.3.3.6
23Section 10.3.2.3
24Section 6.3.3.6
25Section 8.3.3.3
26Section 8.3.3.2.1

282 RTSJ 2.0 (Draft 46)

AsyncBaseEvent javaz.realtime 8.3

Throws
Illegal ArgumentException when handler has PeriodicParameters?”. Only the sub-
class PeriodicTimer?® is allowed to have handlers with PeriodicParameters®”.

[llegal AssignmentError when this AsyncBaseEvent cannot hold a reference to han-
dler.

removeHandler(AsyncBaseEventHandler)

Signature
public void
removeHandler(AsyncBaseEventHandler handler)

Description

Remove a handler from the set associated with this event. The execution of this
method is atomic with respect to the execution of the fire() method.

A removed handler continues to execute until its fireCount becomes zero and
it completes.

When handler has a scoped non-default initial memory area and execution
of this method causes handler to become unfirable, this method shall not return
until all related finalization has completed.

Parameters
handler The handler to be disassociated from this. When null nothing happens.
When the handler is not already associated with this then nothing happens.

hasHandlers

Signature

public boolean
hasHandlers()

Description

Determine whether or not this event has any handlers.

Returns
true when and only when at least one handler is associated with this event.

27Section 6.3.3.6
28Section 10.3.2.3
29Section 6.3.3.6

RTSJ 2.0 (Draft 46) 283

8 Asynchrony AsyncBaseEventHandler

createReleaseParameters

Signature
public javax.realtime.ReleaseParameters
createReleaseParameters|()

Description

Create a ReleaseParameters® object appropriate to the release characteristics
of this event. The default is the most pessimistic: AperiodicParameters®!. This
is typically called by code that is setting up a handler for this event that will
fill in the parts of the release parameters for which it has values, e.g., cost. The
returned ReleaseParameters® object is not bound to the event. Any changes in
the event’s release parameters are not reflected in previously returned objects.
When an event returns PeriodicParameters®, there is no requirement for an
implementation to check that the handler is released periodically.

Returns
A new ReleaseParameters® object.

8.3.3.3 AsyncBaseEventHandler

Inheritance

java.lang.Object
javax.realtime. AsyncBaseEventHandler

Interfaces
javax.realtime.Schedulable
Description

This is the base class for all asynchronous event handlers, where asynchronous
is in regards to running code, not external time. This class unifies the original
AsyncEventHandler?® with AsyncLongEventHandler?® and AsyncObjectEvent-
Handler?7.

30Section 6.3.3.10
31Gection 6.3.3.2
32Section 6.3.3.10
33Section 6.3.3.6
34Gection 6.3.3.10
35Section 8.3.3.5
36Section 8.3.3.7
37Section 8.3.3.9

284 RTSJ 2.0 (Draft 46)

AsyncBaseEventHandler javaz.realtime 8.3

Available since RTSJ 2.0

8.3.3.3.1 Methods

getCurrentConsumption(RelativeTime)

Signature
public static javax.realtime.RelativeTime
getCurrentConsumption(RelativeTime dest)
throws IllegalStateException

Description

Determine the CPU consumption for this release. When dest is null, return the
CPU consumption in an otherwise unused RelativeTime®® instance in the current
execution context. Otherwise, when dest is not null, return the CPU consumption
in dest

Parameters

dest when not null is the object in which to return the result.
Throws

IllegalStateException when the caller is not a Schedulable®.

Returns
the time consumed in the current release.

getCurrentConsumption

Signature
public static javax.realtime.RelativeTime
getCurrentConsumption()

Description
Equivalent to getCurrentConsumption(null).

Returns
the time consumed in the current release.

38Section 9.3.1.3
39Section 6.3.1.3

RTSJ 2.0 (Draft 46) 285

8 Asynchrony AsyncBaseEventHandler

getPendingFireCount

Signature
protected int
getPendingFireCount/()

Description

This is an accessor method for fireCount. The fireCount field nominally holds
the number of times associated instances of AsyncEvent*’ have occurred that
have not had the method handleAsyncEvent() invoked. It is incremented and
decremented by the implementation of the RTSJ. The application logic may
manipulate the value in this field for application-specific reasons.

Returns
The value held by fireCount.

get AndClearPendingFireCount

Signature
protected int
getAndClearPendingFireCount()

Description

This is an accessor method for fireCount. This method atomically sets the value
of fireCount to zero and returns the value from before it was set to zero. This
may used by handlers for which the logic can accommodate multiple releases in a
single execution.

The general form for using this is

public void handleAsyncEvent()
{
int numberOfReleases = getAndClearPendingFireCount();
<handle the events>
¥
The effect of a call to getAndClearPendingFireCount on the scheduling of
this AEH depends on the semantics of the scheduler controlling this AEH.

Returns
The value held by fireCount prior to setting the value to zero.

40Gection 8.3.3.4

286 RTSJ 2.0 (Draft 46)

AsyncBaseEventHandler javaz.realtime 8.3

get AndDecrementPendingFireCount

Signature
protected int
getAndDecrementPendingFireCount()

Description

This is an accessor method for fireCount. This method atomically decrements, by
one, the value of fireCount (when it is greater than zero) and returns the value
from before the decrement. This method can be used in the handleAsyncEvent()
method to handle multiple releases:

public void handleAsyncEvent/()

{

<setup>
do

{

<handle the event>

}

while(get AndDecrementPendingFireCount() > 0);

}

This construction is necessary only in the case where a handler wishes to
avoid the setup costs since the framework guarantees that handleAsyncEvent()
will be invoked whenever the fireCount is greater than zero. The effect of a call
to get AndDecrementPendingFireCount on the scheduling of this AEH depends
on the semantics of the scheduler controlling this AEH.

Returns
The value held by fireCount prior to decrementing it by one.

getMemoryArea

Signature
public javax.realtime.MemoryArea
getMemoryArea()

Description

RTSJ 2.0 (Draft 46) 287

8 Asynchrony AsyncBaseEventHandler

This is an accessor method for the initial instance of MemoryArea*! associated
with this.

To determine the current status of the memory area stack associated with
this, use the static methods defined in the RealtimeThread*? class. That is
RealtimeThread.getCurrentMemoryArea*?, RealtimeThread.getInitialMemoryArealndex*4,
RealtimeThread.getMemoryAreaStackDepth®S.

Returns
The instance of MemoryArea® which was passed as the area parameter when this
was created (or the default value when area was allowed to default.

getMemoryParameters

Signature
public javax.realtime.MemoryParameters
getMemoryParameters()

Description

Gets a reference to the MemoryParameters*” object for this schedulable.

Returns
A reference to the current MemoryParameters*® object.

getReleaseParameters

Signature
public javax.realtime.ReleaseParameters
getReleaseParameters()

Description

Gets a reference to the ReleaseParameters® object for this schedulable.

41Gection 11.3.2.3
42Gection 5.3.2.2

43Section 5.3.2.2.2
44Gection 5.3.2.2.2
45Section 5.3.2.2.2
46Gection 11.3.2.3
47Section 11.3.2.4
48Section 11.3.2.4
19Gection 6.3.3.10

288 RTSJ 2.0 (Draft 46)

AsyncBaseEventHandler javaz.realtime 8.3

Returns
A reference to the current ReleaseParameters®™ object.

getScheduler

Signature
public javax.realtime.Scheduler
getScheduler()

Description

Gets a reference to the Scheduler® object for this schedulable.

Returns
A reference to the associated Scheduler®® object.

getSchedulingParameters
Signature
public javax.realtime.SchedulingParameters

getSchedulingParameters()

Description

Gets a reference to the SchedulingParameters® object for this schedulable.

Returns
A reference to the current SchedulingParameters® object.

getSchedulingGroup
Signature
public javax.realtime.SchedulingGroup

getSchedulingGroup()

Description

50Section 6.3.3.10
1Gection 6.3.3.12
2Gection 6.3.3.12
53Section 6.3.3.14
54Gection 6.3.3.14

RTSJ 2.0 (Draft 46)

289

8 Asynchrony AsyncBaseEventHandler

Gets a reference to the SchedulingGroup® instance of this schedulable.

Returns
A reference to the current SchedulingGroup®® object.

Available since since RTSJ 2.0

getConfigurationParameters

Signature
public javax.realtime.ConfigurationParameters
getConfigurationParameters|()

Description

Gets a reference to the ConfigurationParameters® object for this schedulable.

Returns
A reference to the associated ConfigurationParameters® object.

Available since RTSJ 2.0

setMemoryParameters(MemoryParameters)

Signature
public javax.realtime.AsyncBaseEventHandler
setMemoryParameters(MemoryParameters memory)

Description

Sets the memory parameters associated with this instance of Schedulable.

This change becomes effective under conditions determined by the scheduler
controlling the schedulable. For instance, the change may be immediate or it may
be delayed until the next release of the schedulable object. See the documentation
for the scheduler for details.

Parameters

55Section 6.3.3.13
56Section 6.3.3.13
5TSection 5.3.2.1
58Section 5.3.2.1

290 RTSJ 2.0 (Draft 46)

AsyncBaseEventHandler javaz.realtime 8.3

memory A MemoryParameters® object which will become the memory parameters
associated with this after the method call. When null, the default value is
governed by the associated scheduler (a new object is created when the default
value is not null). (See PriorityScheduler®.)

Throws

Illegal Argument Exception when memory is not compatible with the schedulable’s
scheduler. Also when this schedulable may not use the heap and memory is
located in heap memory.

[llegal AssignmentError when the schedulable cannot hold a reference to memory,
or when memory cannot hold a reference to this schedulable instance.

Returns
this

Open issue 8.3.1

We decided to change this on the 2016-07-14 call; should we leave it scheduler-
dependent, though?
End of issue 8.3.1

setReleaseParameters(ReleaseParameters)

Signature
public javax.realtime.AsyncBaseEventHandler
setReleaseParameters(ReleaseParameters release)

Description

Sets the release parameters associated with this instance of Schedulable.

This change becomes effective under conditions determined by the scheduler
controlling the schedulable. For instance, the change may be immediate or it may
be delayed until the next release of the schedulable. The different properties of
the release parameters may take effect at different times. See the documentation
for the scheduler for details.

Parameters
release A ReleaseParameters® object which will become the release parameters
associated with this after the method call, and take effect as determined by

the associated scheduler. When null, the default value is governed by the

59Section 11.3.2.4
60Section 6.3.3.8
61GSection 6.3.3.10

RTSJ 2.0 (Draft 46) 201

8 Asynchrony AsyncBaseEventHandler

associated scheduler (a new object is created when the default value is not
null). (See PriorityScheduler®.)
Throws
[llegal ArgumentException Thrown when release is not compatible with the associ-
ated scheduler. Also when this schedulable may not use the heap and release
is located in heap memory.

[llegal Assignment Error when this object cannot hold a reference to release or release
cannot hold a reference to this.

[llegalSchedulableStateException when the task is running and the new release
parameters are not compatible with the current scheduler.

Returns
this

setScheduler(Scheduler)

Signature

public javax.realtime. AsyncBaseEventHandler
setScheduler(Scheduler scheduler)

Description

Sets the reference to the Scheduler object. The timing of the change must be
agreed between the scheduler currently associated with this schedulable, and
scheduler. If the Schedulable is running, its associated SchedulingParameters (if
any) must be compatible with scheduler.

For an instance of AsyncBaseEventHandler, the Schedulable is running for
the purpose of setting the scheduler if it is attached to an AsyncEvent (even if
AsyncBaseEvent.isRunning()% would return false for that event).

Parameters
scheduler scheduler A reference to the scheduler that will manage execution of this
schedulable. Null is not a permissible value.
Throws
Illegal ArgumentException Illegal ArgumentException Thrown when scheduler is
null, or the schedulable’s existing parameter values are not compatible with
scheduler. Also when this schedulable may not use the heap and scheduler is
located in heap memory.

62Gection 6.3.3.8
63Section 8.3.3.2.1

292 RTSJ 2.0 (Draft 46)

AsyncBaseEventHandler javaz.realtime 8.3

[llegal AssignmentError Illegal AssignmentError when the schedulable cannot hold a
reference to scheduler or the current Schedulable is running and its associated
SchedulingParameters are incompatible with scheduler.

SecurityException SecurityException when the caller is not permitted to set the
scheduler for this schedulable.

[llegalSchedulableStateException IllegalSchedulableStateException when scheduler
has scheduling or release parameters that are not compatible with the new
scheduler and this schedulable is running.

Returns
this

setScheduler(Scheduler, SchedulingParameters, ReleasePar-
ameters, MemoryParameters)

Signature
public javax.realtime.AsyncBaseEventHandler
setScheduler(Scheduler scheduler,
SchedulingParameters scheduling,
ReleaseParameters release,
MemoryParameters memoryParameters)

Description

Sets the scheduler and associated parameter objects. The timing of the change
must be agreed between the scheduler currently associated with this schedulable,
and scheduler.

Parameters
scheduler A reference to the scheduler that will manage the execution of this
schedulable. Null is not a permissible value.

scheduling A reference to the SchedulingParameters® which will be associated with
this. When null, the default value is governed by scheduler (a new object is
created when the default value is not null). (See PriorityScheduler®.)

release A reference to the ReleaseParameters®® which will be associated with this.
When null, the default value is governed by scheduler (a new object is created
when the default value is not null). (See PriorityScheduler®".)

64Gection 6.3.3.14
65Section 6.3.3.8
66Section 6.3.3.10
67Section 6.3.3.8

RTSJ 2.0 (Draft 46) 293

8 Asynchrony AsyncBaseEventHandler

memoryParameters A reference to the MemoryParameters®® which will be associ-
ated with this. When null, the default value is governed by scheduler (a new
object is created when the default value is not null). (See PriorityScheduler®.)

Throws

Illegal Argument Exception Thrown when scheduler is null or the parameter values
are not compatible with scheduler. Also thrown when this schedulable may not
use the heap and scheduler, scheduling release, memoryParameters, or group
is located in heap memory.

[llegal Assignment Error when this object cannot hold references to all the parameter
objects or the parameters cannot hold references to this.

SecurityException when the caller is not permitted to set the scheduler for this
schedulable.

Returns
this

setSchedulingParameters(SchedulingParameters)

Signature
public javax.realtime.AsyncBaseEventHandler
setSchedulingParameters(SchedulingParameters scheduling)

Description
Sets the scheduling parameters associated with this instance of Schedulable.
This change becomes effective under conditions determined by the scheduler
controlling the schedulable. For instance, the change may be immediate or it
may be delayed until the next release of the schedulable. See the documentation
for the scheduler for details.

Parameters
scheduling A reference to the SchedulingParameters™ object. When null, the default
value is governed by the associated scheduler (a new object is created when
the default value is not null). (See PriorityScheduler™.)
Throws
Mllegal ArgumentException Thrown when scheduling is not compatible with the
associated scheduler. Also when this schedulable may not use the heap and
scheduling is located in heap memory.

68Section 11.3.2.4
69GSection 6.3.3.8
"0Section 6.3.3.14
"1Section 6.3.3.8

294 RTSJ 2.0 (Draft 46)

AsyncBaseEventHandler javaz.realtime 8.3

[llegal AssignmentError when this object cannot hold a reference to scheduling or
scheduling cannot hold a reference to this.

[llegalSchedulableStateException when the task is active and the new scheduling
parameters are not compatible with the current scheduler.

Returns
this

setDaemon(boolean)

Signature
public final void
setDaemon(boolean on)

Description
Marks this schedulable as either a daemon or a user task. A realtime virtual
machine exits when the only tasks running are all daemon. This method must
be called before the task is attached to any event or started. Once attached or
started, it cannot be changed.

Parameters

on When true, marks this event handler as a daemon handler.
Throws

[legal ThreadStateException when this schedulable is active.

SecurityException when the current schedulable cannot modify this event handler.
Available since RTSJ 2.0

isDaemon

Signature
public final boolean
isDaemon()

Description
Tests if this event handler is a daemon handler.

Returns
True when this event handler is a daemon handler; false otherwise.

Available since RTSJ 2.0

RTSJ 2.0 (Draft 46) 295

8 Asynchrony AsyncBaseEventHandler

getDispatcher

Signature
public javax.realtime.TimeDispatcher
getDispatcher()

Description
Get the dispatcher associated with this Timable.

See Section Timable.getDispatcher()

getQueueLength

Signature
public int
getQueueLength()

Description

Find the current length of the event queue. The event queue holds the time and
payload of all released events that are still outstanding. The queue may have a
length of zero.

Returns
the queue length.

getMinConsumption(RelativeTime)

Signature
public javax.realtime.RelativeTime
getMinConsumption(RelativeTime dest)

Description

Determine the minimum CPU consumption of all completed releases. When
dest is null, return the CPU consumption in an otherwise unused RelativeTime"™
instance in the current execution context. Otherwise, when dest is not null,
return the CPU consumption in dest

Parameters

72Section 9.3.1.3

296 RTSJ 2.0 (Draft 46)

AsyncBaseEventHandler javaz.realtime 8.3

dest when not null is the object in which to return the result.
Returns
the minimum time consumed in any release.

getMinConsumption

Signature
public javax.realtime.RelativeTime
getMinConsumption()

Description

Same as getMinConsumption(RelativeTime)™ with a null argument.

Returns
the minimum time consumed in any release.

getMaxConsumption(RelativeTime)

Signature
public javax.realtime.RelativeTime
getMaxConsumption(RelativeTime dest)

Description

Determine the maximum CPU consumption of all completed releases. When
dest is null, return the CPU consumption in an otherwise unused RelativeTime™
instance in the current execution context. Otherwise, when dest is not null,
return the CPU consumption in dest.

Parameters

dest when not null is the object in which to return the result.
Returns

the maximum time consumed in any release.

getMaxConsumption

Signature

"3Section 8.3.1
7Section 9.3.1.3

RTSJ 2.0 (Draft 46) 297

8 Asynchrony AsyncBaseEventHandler

public javax.realtime.RelativeTime
getMaxConsumption|()

Description

Same as getMaxConsumption(RelativeTime)™ with a null argument.

Returns
the maximum time consumed in any release.

mayUseHeap

Signature
public boolean
may UseHeap()

Description

Determine whether or not this schedulable may use the heap.

Returns
true only when this Schedulable may allocate on the heap and may enter the Heap.

isInterrupted

Signature
public boolean
isInterrupted()

Description
Determines whether or not any AsynchronouslyInterruptedException™ is pend-

ing.

Returns
true when and only when the generic AsynchronouslyInterruptedException is pend-
ing.

Available since RTSJ 2.0

75Section 8.3.1
"6Section 15.2.2.2

298 RTSJ 2.0 (Draft 46)

AsyncBaseEventHandler javaz.realtime 8.3

interrupt

Signature
public void
interrupt()

Description

Make the generic AsynchronouslylnterruptedException” pending for this, and
sets the interrupted state to true. As with Thread.interrupt(), blocking operations
that are interruptible are interrupted. When this.isRousable() is true cause an
early release. In any case, AsynchronouslylnterruptedException is thrown once
a method is entered that implements AsynchronouslylnterruptedException.

Behaves as if Thread.interrupt() were called on the implementation thread
underlying this Schedulable. throws IllegalSchedulableStateException when this
is not currently releasable, i.e., is disabled, not firable, its start method has not
been called, or it has terminated.

Available since RTSJ 2.0

isRousable

Signature
public boolean
isRousable()

Description
Determine if it is possible for an interruptible to prematurely release the handler.

Returns
true when it is possible, otherwise it is not.

setRousable(boolean)
Signature
public javax.realtime.AsyncBaseEventHandler

setRousable(boolean value)

Description

77Section 15.2.2.2

RTSJ 2.0 (Draft 46) 299

8 Asynchrony AsyncEvent

Set the state for whether a interrupt can prematurely release this handler or not.

Parameters

value is the new value of the wake by interrupt state.
Returns

this

awaken

Signature
public final void
awaken ()

Description

Indicate that a sleep has ended.

See Section Schedulable.awaken()

run

Signature
public void
run()

Description

This method is only to be used by the infrastructure, and should not be called
by the application.

The handleAsyncEvent() family of methods provides the equivalent function-
ality to Runnable.run() for asynchronous event handlers, including execution
of the logic argument passed to this object’s constructor. Applications should
override that method or provide a logic object for the default implementation to
invoke.

8.3.3.4 AsyncEvent

Inheritance
java.lang.Object

300 RTSJ 2.0 (Draft 46)

AsyncEvent javaz.realtime 8.3

javax.realtime. AsyncBaseEvent
javax.realtime. AsyncEvent

Description
An asynchronous event can have a set of handlers associated with it, and when

the event occurs, the fireCount of each handler is incremented, and the handlers
are released (see AsyncEventHandler™).

8.3.3.4.1 Constructors

AsyncEvent

Signature
public
AsyncEvent()

Description

Create a new AsyncEvent object.

8.3.3.4.2 Methods

fire

Signature

public void
fire()

Description

When enabled, release the asynchronous events associated with this instance
of AsyncEvent. When no handlers are attached or this object is disabled the
method does nothing, i.e., it skips the release.

"8Section 8.3.3.5

RTSJ 2.0 (Draft 46) 301

8 Asynchrony AsyncEventHandler

e When the instance of AsyncEvent has more than one instance of Async-
EventHandler with release parameters object of type AperiodicParameters
attached and the execution of AsyncEvent.fire() introduces the requirement
to throw at least one type of exception, then all instances of AsyncEvent-
Handler not affected by the exception are handled normally

e When the instance of AsyncEvent has more than one instance of Async-
EventHandler with release parameters object of type SporadicParameters
attached and the execution of AsyncEvent.fire() introduces the simultaneous
requirement to throw more than one type of exception or error then MITVi-
olationException™ has precedence over ArrivalTimeQueueOverflowExcep-

tion®0,

Throws

MITViolationException Thrown under the base priority scheduler’s semantics when
there is a handler associated with this event that has its MIT violated by the
call to fire (and it has set the minimum inter-arrival time violation behavior
to MITViolationExcept). Only the handlers which do not have their MITs
violated are released in this situation.

Arrival TimeQueueOverflowException when the queue of release information, arrival
time and payload, overflows. Only the handlers which do not cause this
exception to be thrown are released in this situation. When fire is called from
the infrastructure, such as for an ActiveEvent®, this exception is ignored.

8.3.3.5 AsyncEventHandler

Inheritance

java.lang.Object
javax.realtime.AsyncBaseEventHandler
javax.realtime. AsyncEventHandler

Description

An asynchronous event handler encapsulates code that is released after an instance
of AsyncEvent®? to which it is attached occurs.

It is guaranteed that multiple releases of an event handler will be serialized.
It is also guaranteed that (unless the handler explicitly chooses otherwise) for

"Section 15.2.2.10
80Gection 15.2.2.1
81Section 8.3.1.1
82Gection 8.3.3.4

302 RTSJ 2.0 (Draft 46)

AsyncEventHandler javaz.realtime 8.3

each release of the handler, there will be one execution of the AsyncEventHandler.
handleAsyncEvent()®* method. Control over the number of calls to AsyncEventHandler.
handleAsyncEvent()** is given by methods which manipulate a fireCount. These

may be called by the application via sub-classing and overriding AsyncEventHandler.
handleAsyncEvent ().

Instances of AsyncEventHandler with a release parameter of type Sporadic-
Parameters® or AperiodicParameters®” have a list of release times which corre-
spond to the occurrence times of instances of AsyncEvent® to which they are
attached. The minimum interarrival time specified in SporadicParameters® is
enforced when a release time is added to the list. Unless the handler explicitly
chooses otherwise, there will be one execution of the code in AsyncEventHandler.
handleAsyncEvent()? for each entry in the list.

The deadline and the time each release event causes the AEH to become
eligible for execution are properties of the scheduler that controls the AEH. For
the base scheduler, the deadline for each release event is relative to its fire time,
and the release takes place at fire time but execution eligibility may be deferred
when the queue’s MIT violation policy is SAVE.

Handlers may do almost anything a realtime thread can do. They may run for a
long or short time, and they may block. (Note, blocked handlers may hold system
resources.) A handler may not use the RealtimeThread.waitForNextRelease”!
method.

Normally, handlers are bound to an execution context dynamically when the
instances of AsyncEvent??s to which they are bound occur. This can introduce a
(small) time penalty. For critical handlers that cannot afford the expense, and
where this penalty is a problem, BoundAsyncEventHandler?s can be used.

The scheduler for an asynchronous event handler is inherited from the task
that created it. When created from a task that is not an instance of Schedulable™,
the scheduler is the current default scheduler.

The semantics for memory areas that were defined for realtime threads apply
in the same way to instances of AsyncEventHandler They may inherit a scope

83Section 8.3.3.5.2
84Section 8.3.3.5.2
85Section 8.3.3.5.2
86GSection 6.3.3.15
87Section 6.3.3.2
88Gection 8.3.3.4
89Section 6.3.3.15
90Section 8.3.3.5.2
91Section 5.3.2.2.2
92Gection 8.3.3.4
93Section 8.3.3.10
94Section 6.3.1.3

RTSJ 2.0 (Draft 46) 303

8 Asynchrony AsyncEventHandler

stack when they are created, and the single parent rule applies to the use of
memory scopes for instances of AsyncEventHandler just as it does in realtime
threads.

8.3.3.5.1 Constructors

AsyncEventHandler(SchedulingParameters, ReleaseParamet-
ers, MemoryParameters, MemoryArea, SchedulingGroup, Con-
figurationParameters, Runnable)

Signature

public

AsyncEventHandler(SchedulingParameters scheduling,
ReleaseParameters release,
MemoryParameters memory,
MemoryArea area,
SchedulingGroup group,
ConfigurationParameters config,
Runnable logic)

Description

Create a handler with the given scheduling, release, memory, group, and configu-
ration parameters to run the given logic.

Available since RTSJ 2.0

Parameters
scheduling parameters for scheduling the new handler (and possibly other instances
of Schedulable?). When scheduling is null and the creator is an instance of
Schedulable® | SchedulingParameters”” is a clone of the creator’s value created
in the same memory area as this. When scheduling is null and the creator is a
task that is not an instance of Schedulable, the contents and type of the new
SchedulingParameters object is governed by the associated scheduler.

9Section 6.3.1.3
96Section 6.3.1.3
97Section 6.3.3.14

304 RTSJ 2.0 (Draft 46)

AsyncEventHandler javaz.realtime 8.3

release parameters for scheduling the new handler (and possibly other instances
of Schedulable”®). When release is null the new AsyncEventHandler will use a
clone of the default ReleaseParameters” for the associated scheduler created
in the memory area that contains the AsyncEventHandler object.

memory parameters for scheduling the new handler (and possibly other instances of
Schedulable!™). When memory is null, the new AsyncEventHandler receives
null value for its memory parameters, and the amount or rate of memory
allocation for the new handler is unrestricted.

area the initial memory area of this handler.

group A SchedulingGroup!®' object which will be associated with the constructed
instance. When null, this will not be associated with any scheduling group.

config parameters for reserving space for preallocated exceptions and change im-
plementation specific per Schedulable!”? memory reservations, such as Java
stack size, for the new handler (and possibly other instances of Schedulable!%s.
When initial is null, this AsyncEventHandler will reserve no space for pre-
allocated exceptions and implementation-specific values will be set to their
implementation-defined defaults.

logic The Runnable object whose run() method will serve as the logic for the new
AsyncEventHandler. When logic is null, the handleAsyncEvent() method in
the new object will serve as its logic.

AsyncEventHandler(SchedulingParameters, ReleaseParamet
ers, MemoryParameters, MemoryArea, ConfigurationParam-
eters, Runnable)

Signature

public

AsyncEventHandler(SchedulingParameters scheduling,
ReleaseParameters release,
MemoryParameters memory,
MemoryArea area,
ConfigurationParameters config,
Runnable logic)

98Section 6.3.1.3
99Section 6.3.3.10
100Gection 6.3.1.3
101Gection 6.3.3.13
102Gection 6.3.1.3
103Gection 6.3.1.3

RTSJ 2.0 (Draft 46) 305

8 Asynchrony AsyncEventHandler

Description

AsyncEventHandler(SchedulingParameters, ReleaseParamet-
ers, Runnable)

Signature
public
AsyncEventHandler(SchedulingParameters scheduling,
ReleaseParameters release,
Runnable logic)

Description

Calling this constructor is equivalent to calling AsyncEventHandler(SchedulingParameters,
ReleaseParameters, MemoryParameters, MemoryArea, SchedulingGroup, Con-
figurationParameters, Runnable)'% with arguments (scheduling, release, null,

null, null, null, logic).

Available since RTSJ 2.0

AsyncEventHandler(SchedulingParameters, ReleaseParamet-
ers)

Signature
public
AsyncEventHandler(SchedulingParameters scheduling,
ReleaseParameters release)

Description

Calling this constructor is equivalent to calling AsyncEventHandler(SchedulingParameters,
ReleaseParameters, MemoryParameters, MemoryArea, SchedulingGroup, Con-
figurationParameters, Runnable)'®® with arguments (scheduling, release, null,

null, null, null, null)

104Gection 8.3.3.5.1
105Gection 8.3.3.5.1

306 RTSJ 2.0 (Draft 46)

AsyncEventHandler javaz.realtime 8.3

Available since RTSJ 2.0

AsyncEventHandler(Runnable)

Signature
public
AsyncEventHandler(Runnable logic)

Description

Calling this constructor is equivalent to calling AsyncEventHandler(SchedulingParameters,
ReleaseParameters, MemoryParameters, MemoryArea, SchedulingGroup, Con-
figurationParameters, Runnable)'"® with arguments (null, null, null, null, null,

null, logic).

AsyncEventHandler

Signature
public
AsyncEventHandler()

Description

Create an instance of AsyncEventHandler with default values for all parameters.

See Section AsyncEventHandler(SchedulingParameters, ReleaseParameters, Memo-
ryParameters, MemoryArea, SchedulingGroup, ConfigurationParameters, Runnable)

8.3.3.5.2 Methods

handleAsyncEvent

Signature

106Gaction 8.3.3.5.1

RTSJ 2.0 (Draft 46) 307

8 Asynchrony AsyncLongEvent

public void
handleAsyncEvent()

Description

This method holds the logic which is to be executed when any AsyncEvent!?” with
which this handler is associated is fired. This method will be invoked repeatedly
while fireCount is greater than zero.

The default implementation of this method invokes the run method of any
non-null logic instance passed to the constructor of this handler.

This AEH acts as a source of "reference" for its initial memory area while it is
released.

All throwables from (or propagated through) handleAsyncEvent are caught,
a stack trace is printed and execution continues as if handleAsyncEvent had
returned normally.

run

Signature
public final void
run()

Description

This method is only to be used by the infrastructure, and should not be called
by the application.

The handleAsyncEvent() family of methods provides the equivalent function-
ality to Runnable.run() for asynchronous event handlers, including execution
of the logic argument passed to this object’s constructor. Applications should
override that method or provide a logic object for the default implementation to
invoke.

8.3.3.6 AsyncLongEvent

Inheritance

java.lang.Object
javax.realtime. AsyncBaseEvent
javax.realtime.AsyncLongEvent

107Gaction 8.3.3.4

308 RTSJ 2.0 (Draft 46)

AsyncLongEvent javaz.realtime 8.3

Description

A new type of event that carries a long as a payload.

See Section AsyncEvent

Available since RTSJ 2.0

8.3.3.6.1 Constructors

AsyncLongEvent

Signature
public
AsyncLongEvent()

Description

Create a new AsyncLongEvent object.

8.3.3.6.2 Methods

fire(long)

Signature
public void
fire(long value)
throws MITViolationException,
EventQueueOverflowException

Description
When enabled, release the handlers associated with this instance of AsyncLong-
Event with the long passed by fire(long)'’®. When no handlers are attached or
this object is disabled the method does nothing, i.e., it skips the release.

108Gaction 8.3.3.6.2

RTSJ 2.0 (Draft 46) 309

8 Asynchrony

AsyncLongEventHandler

e When the instance of AsyncLongEvent is associated with more than one

instance of AsyncLongEventHandler!" with release parameters object of

type AperiodicParameters''” and the execution of fire(long)''" introduces
the requirement to throw at least one type of exception, then all instances
of AsyncLongEventHandler''? not affected by the exception are handled
normally.

When this instance of AsyncLongEvent is associated with more than one
instance of AsyncLongEventHandler''? with release parameters object of
type SporadicParameters''® and the execution of fire(long)''® introduces
the simultaneous requirement to throw more than one type of exception
or error, then MITViolationException!'® has precedence over ArrivalTime-

QueueOverflowException!!”.

Parameters
value is the payload passed to the event.
Throws

MITViolationException Thrown under the base priority scheduler’s semantics, when
there is a handler associated with this event that has its MIT violated by the
call to fire (and it has set the minimum inter-arrival time violation behavior
to MITViolationExcept). Only the handlers which do not have their MITs

violated are released in this situation.

EventQueueOverflowException when the queue of release information, arrival time
and payload, overflows. Only the handlers which do not cause this exception
to be thrown are released in this situation. When fire is called from the
infrastructure, such as for an ActiveEvent'!'®, this exception is ignored.

8.3.3.7 AsyncLongEventHandler

Inheritance
java.lang.Object

109Gection 8.3.3.7
10Gection 6.3.3.2
HSection 8.3.3.6.2
H2Gection 8.3.3.7
13Gection 8.3.3.7
H4Gection 6.3.3.15
H5Gection 8.3.3.6.2
H6Gection 15.2.2.10
U7Section 15.2.2.1
118Gection 8.3.1.1

310 RTSJ 2.0 (Draft 46)

AsyncLongEventHandler javaz.realtime 8.3

javax.realtime. AsyncBaseEventHandler
javax.realtime. AsyncLongEventHandler

Description

A version of AsyncBaseEventHandler!'” that carries a long value as paylaod.

Available since RTSJ 2.0

8.3.3.7.1 Constructors

AsyncLongEventHandler(SchedulingParameters, ReleasePar-
ameters, MemoryParameters, MemoryArea, SchedulingGroup,
ConfigurationParameters, LongConsumer)

Signature

public

AsyncLongEventHandler(SchedulingParameters scheduling,
ReleaseParameters release,
MemoryParameters memory;,
MemoryArea area,
SchedulingGroup group,
ConfigurationParameters config,
LongConsumer logic)

throws Illegal ArgumentException

Description

Create an asynchronous event handler that receives a Long payload with each
fire.

Parameters
scheduling parameters for scheduling the new handler (and possibly other instances
of Schedulable”). When scheduling is null and the creator is an instance
of Schedulable!?!, SchedulingParameters'® is a clone of the creator’s value

created in the same memory area as this. When scheduling is null and the

119Gection 8.3.3.3
120Gection 6.3.1.3
121Gection 6.3.1.3
122Qection 6.3.3.14

RTSJ 2.0 (Draft 46) 311

8 Asynchrony AsyncLongEventHandler

creator is a task that is not an instance of Schedulable, the contents and type of
the new SchedulingParameters object is governed by the associated scheduler.

release parameters for scheduling the new handler (and possibly other instances of
Schedulable?®). When release is null the new AsyncEventHandler will use a
clone of the default ReleaseParameters'?* for the associated scheduler created
in the memory area that contains the AsyncEventHandler object.

memory parameters for scheduling the new handler (and possibly other instances of
Schedulable'®®). When memory is null, the new AsyncEventHandler receives
null value for its memory parameters, and the amount or rate of memory
allocation for the new handler is unrestricted.

area the initial memory area of this handler.

group parameters for providing CPU cost management on a set of Schedulable!?s.

When null, this will not be associated with any processing group.

config parameters for reserving space for preallocated exceptions and change im-
plementation specific per Schedulable!?” memory reservations, such as Java
stack size, for the new handler (and possibly other instances of Schedulable!?®.
When initial is null, this AsyncEventHandler will reserve no space for pre-
allocated exceptions and implementation-specific values will be set to their
implementation-defined defaults.

logic is the logic to run for each fire. When logic is null, the handleAsyncEvent()
method in the new object will serve as its logic.
Throws
[llegal Argument Exception when the event queue overflow policy is QueueOverflowPolicy.
DISABLE!?%,

AsyncLongEventHandler(SchedulingParameters, ReleasePar-
ameters, MemoryParameters, MemoryArea, ConfigurationPa-
rameters, LongConsumer)

Signature
public
AsyncLongEventHandler(SchedulingParameters scheduling,

123Gection 6.3.1.3
124Gection 6.3.3.10
125Gection 6.3.1.3
126GQection 6.3.1.3
127Section 6.3.1.3
128Gection 6.3.1.3
129Gection 6.3.2.2.1

312 RTSJ 2.0 (Draft 46)

AsyncLongEventHandler javaz.realtime 8.3

ReleaseParameters release,
MemoryParameters memory,
MemoryArea area,
ConfigurationParameters config,
LongConsumer logic)

throws Illegal ArgumentException

Description

Calling this constructor is equivalent to calling AsyncLongEventHandler(SchedulingParameters,
ReleaseParameters, MemoryParameters, MemoryArea, SchedulingGroup, Con-
figurationParameters, LongConsumer)™? with arguments (scheduling, release,

memory, area, null, config, logic). This constructor is needed for SCJ.

AsyncLongEventHandler(SchedulingParameters, ReleasePar-
ameters, LongConsumer)

Signature
public
AsyncLongEventHandler(SchedulingParameters scheduling,
ReleaseParameters release,
LongConsumer logic)
throws Illegal ArgumentException

Description

Calling this constructor is equivalent to calling AsyncLongEventHandler(SchedulingParameters,
ReleaseParameter