
Realtime and Embedded
Specification for Java

Version 2.0

Draft 7
Halloween Edition

31st of October 2014

Editor
James J. Hunt
aicas GmbH

Haid-und-Neu-Straße 18
D-76131 Karlsruhe, Germany

Copyright c© 1999–2012 TimeSys
Copyright c© 2012–2014 aicas GmbH

All rights reserved

2

i

The Realtime Specification for Java (RTSJ) is under development within the Java
Community Process (JCP) by the members of the JSR-282 Expert Group (EG).
This group, was lead by TimeSys Inc. Corporation, but has been taken over by

aicas GmbH.

JSR-282 Expert Group Membership

James J. Hunt aicas GmbH
Benjamin Brosgol

Andy Wellings
Kelvin Nilsen Atego Systems

Ethan Blanton

Past Expert Group Members

Peter Dibble TimeSys
David Holmes Oracle

ii

Contents

1 Introduction 1
1.1 Guiding Principles . 2

1.1.1 Applicability to Particular Java Environments 3
1.1.2 Backward Compatibility . 3
1.1.3 Write Once, Run Anywhere . 3
1.1.4 Current Practice vs. Advanced Features 3
1.1.5 Predictable Execution . 3
1.1.6 No Syntactic Extension . 3
1.1.7 Allow Variation in Implementation Decisions 3
1.1.8 Interoperability . 4

1.2 Areas of Enhancement . 4
1.2.1 Thread Scheduling and Dispatching 4
1.2.2 Memory Management . 5
1.2.3 Synchronization and Resource Sharing 5
1.2.4 Asynchronous Event Handling . 5
1.2.5 Task Interruption . 5
1.2.6 Raw Memory Access . 6
1.2.7 Physical Memory Access . 6
1.2.8 Modularization . 6

2 Overview 7
2.1 Threads and Scheduling . 7
2.2 Synchronization . 9

2.2.1 Priority Inversion . 9
2.2.2 Priority Inversion Avoidance . 9
2.2.3 Execution Eligibility . 11
2.2.4 Wait-Free Queues . 11

2.3 Asynchrony . 11
2.3.1 Asynchronous Events . 11
2.3.2 Asynchronous Transfer of Control 13
2.3.3 Principles . 13

i

ii CONTENTS

2.3.4 Asynchronous Realtime Thread Termination 15
2.4 Clocks, Time, and Timers . 15
2.5 Memory Management . 16

2.5.1 Memory Areas . 16
2.5.2 Heap Memory . 17
2.5.3 Immortal Memory . 17
2.5.4 Scoped Memory . 17
2.5.5 Physical Memory Areas . 18
2.5.6 Budgeted Allocation . 18

2.6 Device Access and Raw Memory . 19
2.6.1 Raw Memory Access . 19

2.7 System Options . 19
2.8 Exceptions . 20
2.9 Summary . 20

3 Requirements and Conventions 21
3.1 Base Requirements . 21
3.2 Modules . 22

3.2.1 Base Module . 22
3.2.2 Device Module . 24
3.2.3 Alternate Memory Management Module 25
3.2.4 Optional Features . 26
3.2.5 Deprecated Classes . 27

3.3 Conditionally-Required Facilities . 28
3.3.1 Options for Development Platforms 28

3.4 Required Documentation . 29
3.5 Conventions . 30
3.6 Definitions . 31

4 Conventional Java Classes and Language 33
4.1 Priority . 33

4.1.1 Setting Priority . 34
4.1.2 Getting Priority . 34

4.2 Thread Groups . 35
4.3 Current Thread . 35
4.4 Java Memory Model . 36
4.5 InterruptedException . 36
4.6 System Properties . 36
4.7 Garbage Collection . 37

4.7.1 Realtime Garbage Collections . 37
4.7.1.1 Thread-Based Collectors . 37

CONTENTS iii

4.7.1.2 Allocation-Based Collectors 37
4.7.1.3 Alternatives to Garbage Collection 37
4.7.1.4 Developer Implementation 38

5 Realtime Threads 39
5.1 Overview . 39
5.2 Semantics . 40
5.3 Enumerations . 42

5.3.1 PhasingPolicy . 42
5.3.1.1 Enumeration Constants . 43
5.3.1.2 Constructors . 44
5.3.1.3 Methods . 44

5.4 Classes . 45
5.4.1 NoHeapRealtimeThread . 45

5.4.1.1 Constructors . 45
5.4.1.2 Methods . 49

5.4.2 RealtimeThread . 50
5.4.2.1 Constructors . 50
5.4.2.2 Methods . 56

5.5 Rationale . 73

6 Scheduling 75
6.1 Overview . 75
6.2 Definitions . 76
6.3 Semantics . 78

6.3.1 Schedulers . 78
6.3.2 The Base Scheduler . 79

6.3.2.1 Priorities . 79
6.3.2.2 Dispatching . 80
6.3.2.3 Parameter Values . 82
6.3.2.4 Cost Monitoring and Cost Enforcement 83
6.3.2.5 Release of Realtime Threads 85
6.3.2.6 Aperiodic Release Control . 95
6.3.2.7 Sporadic Release Control . 97
6.3.2.8 Release Control for Asynchronous Event Handlers 98
6.3.2.9 Processing Groups . 99

6.4 Interfaces . 102
6.4.1 BoundSchedulable . 102
6.4.2 Schedulable . 102

6.4.2.1 Methods . 102
6.5 Classes . 111

iv CONTENTS

6.5.1 Affinity . 111
6.5.1.1 Constructors . 113
6.5.1.2 Methods . 113

6.5.2 AperiodicParameters . 123
6.5.2.1 Fields . 125
6.5.2.2 Constructors . 126
6.5.2.3 Methods . 128

6.5.3 ImportanceParameters . 131
6.5.3.1 Fields . 131
6.5.3.2 Constructors . 131
6.5.3.3 Methods . 132

6.5.4 PeriodicParameters . 133
6.5.4.1 Constructors . 135
6.5.4.2 Methods . 137

6.5.5 PriorityParameters . 139
6.5.5.1 Fields . 140
6.5.5.2 Constructors . 140
6.5.5.3 Methods . 140

6.5.6 PriorityScheduler . 141
6.5.6.1 Fields . 142
6.5.6.2 Constructors . 143
6.5.6.3 Methods . 143

6.5.7 ProcessingGroupParameters . 146
6.5.7.1 Fields . 148
6.5.7.2 Constructors . 148
6.5.7.3 Methods . 149

6.5.8 ReleaseParameters . 154
6.5.8.1 Fields . 155
6.5.8.2 Constructors . 155
6.5.8.3 Methods . 157

6.5.9 Scheduler . 160
6.5.9.1 Constructors . 161
6.5.9.2 Methods . 161

6.5.10 SchedulingParameters . 163
6.5.10.1 Fields . 164
6.5.10.2 Constructors . 164
6.5.10.3 Methods . 165

6.5.11 SporadicParameters . 165
6.5.11.1 Fields . 166
6.5.11.2 Constructors . 168
6.5.11.3 Methods . 170

CONTENTS v

6.6 Rationale . 171
6.6.1 Multiprocessor Support . 172
6.6.2 Impact of Clock Granularity . 173
6.6.3 Deadline Miss Detection . 174

7 Synchronization 175
7.1 Overview . 175
7.2 Semantics . 175

7.2.1 The Base Priority Scheduler . 176
7.2.2 Additional Schedulers . 178

7.3 Classes . 180
7.3.1 MonitorControl . 180

7.3.1.1 Constructors . 180
7.3.1.2 Methods . 180

7.3.2 PriorityCeilingEmulation . 182
7.3.2.1 Constructors . 184
7.3.2.2 Methods . 184

7.3.3 PriorityInheritance . 186
7.3.3.1 Constructors . 186
7.3.3.2 Methods . 186

7.3.4 WaitFreeDequeue . 187
7.3.4.1 Constructors . 187
7.3.4.2 Methods . 188

7.3.5 WaitFreeReadQueue . 188
7.3.5.1 Constructors . 189
7.3.5.2 Methods . 192

7.3.6 WaitFreeWriteQueue . 195
7.3.6.1 Constructors . 196
7.3.6.2 Methods . 198

7.4 Rationale . 201

8 Asynchrony 203
8.1 Overview . 203
8.2 Definitions . 204
8.3 Semantics . 206

8.3.1 Asynchronous Events and their Handlers 206
8.3.2 Active Events and Dispatching . 208
8.3.3 Asynchronous Transfer of Control 208

8.3.3.1 Summary of ATC Operation 210
8.4 Interfaces . 213

8.4.1 BoundAbstractAsyncEventHandler 213

vi CONTENTS

8.4.2 Interruptible . 213
8.4.2.1 Methods . 213

8.5 Exceptions . 215
8.5.1 AsynchronouslyInterruptedException 215

8.5.1.1 Fields . 216
8.5.1.2 Constructors . 216
8.5.1.3 Methods . 217

8.5.2 Timed . 220
8.5.2.1 Fields . 221
8.5.2.2 Constructors . 221
8.5.2.3 Methods . 222

8.6 Classes . 224
8.6.1 AbstractAsyncEvent . 224

8.6.1.1 Constructors . 224
8.6.1.2 Methods . 224

8.6.2 AbstractAsyncEventHandler . 228
8.6.2.1 Constructors . 228
8.6.2.2 Methods . 230

8.6.3 AsyncEvent . 239
8.6.3.1 Constructors . 239
8.6.3.2 Methods . 240

8.6.4 AsyncEventHandler . 240
8.6.4.1 Constructors . 242
8.6.4.2 Methods . 248

8.6.5 AsyncLongEvent . 250
8.6.5.1 Constructors . 250
8.6.5.2 Methods . 251

8.6.6 AsyncLongEventHandler . 252
8.6.6.1 Constructors . 252
8.6.6.2 Methods . 256

8.6.7 AsyncObjectEvent . 258
8.6.7.1 Constructors . 258
8.6.7.2 Methods . 258

8.6.8 AsyncObjectEventHandler . 260
8.6.8.1 Constructors . 260
8.6.8.2 Methods . 264

8.6.9 BoundAsyncEventHandler . 266
8.6.9.1 Constructors . 266

8.6.10 BoundAsyncLongEventHandler 269
8.6.10.1 Constructors . 269

8.6.11 BoundAsyncObjectEventHandler 272

CONTENTS vii

8.6.11.1 Constructors . 272
8.7 Rationale . 275

9 Time 279
9.1 Overview . 279
9.2 Definitions . 279
9.3 Semantics . 280
9.4 Interfaces . 283

9.4.1 ActiveEvent . 283
9.4.1.1 Methods . 283

9.5 Classes . 285
9.5.1 AbsoluteTime . 285

9.5.1.1 Constructors . 285
9.5.1.2 Methods . 289

9.5.2 ActiveEventDispatcher . 297
9.5.2.1 Constructors . 297

9.5.3 HighResolutionTime . 298
9.5.3.1 Fields . 298
9.5.3.2 Constructors . 299
9.5.3.3 Methods . 299

9.5.4 RelativeTime . 306
9.5.4.1 Constructors . 307
9.5.4.2 Methods . 310

9.6 Rationale . 317

10 Clocks and Timers 319
10.1 Overview . 319
10.2 Definitions . 320
10.3 Semantics . 321

10.3.1 Clocks and Timables . 322
10.3.2 Timers . 324

10.3.2.1 Counter Model . 325
10.3.2.2 Comparator Model . 325
10.3.2.3 Triggering . 325
10.3.2.4 Behavior of Timers . 325
10.3.2.5 Phasing . 326

10.4 Interfaces . 328
10.4.1 Timable . 328

10.4.1.1 Methods . 328
10.5 Classes . 330

10.5.1 Alarm . 330

viii CONTENTS

10.5.1.1 Fields . 330
10.5.1.2 Constructors . 331
10.5.1.3 Methods . 331

10.5.2 Clock . 334
10.5.2.1 Constructors . 334
10.5.2.2 Methods . 335

10.5.3 OneShotTimer . 341
10.5.3.1 Constructors . 342

10.5.4 PeriodicTimer . 344
10.5.4.1 Constructors . 345
10.5.4.2 Methods . 346

10.5.5 TimeDispatcher . 352
10.5.5.1 Constructors . 352
10.5.5.2 Methods . 353

10.5.6 Timer . 354
10.5.6.1 Pseudo-Code Representation of State Transitions for Timer . 355
10.5.6.2 Compact Graphic Representation of State Transitions for Timer363
10.5.6.3 Constructors . 363
10.5.6.4 Methods . 364

10.6 Rationale . 374

11 Memory Management 377
11.1 Overview . 377

11.1.1 Physical Memory . 378
11.1.2 Stacked Memory . 379
11.1.3 Summary . 382

11.2 Definitions . 383
11.3 Semantics . 384

11.3.1 Allocation time . 384
11.3.2 The allocation context . 384
11.3.3 The Parent Scope . 385
11.3.4 Memory areas and schedulables 386
11.3.5 Scoped memory reference counting 386
11.3.6 Immortal memory . 388
11.3.7 Maintaining referential integrity 388
11.3.8 Object initialization . 389

11.4 Maintaining the Scope Stack . 389
11.4.1 The enter method . 390
11.4.2 The executeInArea or newInstance methods 390
11.4.3 Constructor methods for Schedulables 391

11.5 The Single Parent Rule . 391

CONTENTS ix

11.5.1 Scope Tree Maintenance . 392
11.5.1.1 On Scope Stack Push of ma 392
11.5.1.2 On Scope Stack Pop of ma 393

11.6 Interfaces . 394
11.6.1 ChildScopeVisitor . 394

11.6.1.1 Methods . 394
11.6.2 PhysicalMemoryCharacteristic . 395
11.6.3 PhysicalMemoryFilter . 395

11.6.3.1 Methods . 395
11.6.4 VirtualMemoryCharacteristic . 396

11.7 Enumerations . 397
11.7.1 NewPhysicalMemoryManager.CachingBehavior 397

11.7.1.1 Enumeration Constants . 397
11.7.1.2 Constructors . 397
11.7.1.3 Methods . 397

11.7.2 NewPhysicalMemoryManager.PagingBehavior 398
11.7.2.1 Enumeration Constants . 398
11.7.2.2 Constructors . 398
11.7.2.3 Methods . 399

11.8 Classes . 400
11.8.1 GarbageCollector . 400

11.8.1.1 Constructors . 400
11.8.1.2 Methods . 400

11.8.2 HeapMemory . 401
11.8.2.1 Fields . 401
11.8.2.2 Constructors . 401
11.8.2.3 Methods . 402

11.8.3 ImmortalMemory . 405
11.8.3.1 Fields . 406
11.8.3.2 Constructors . 406
11.8.3.3 Methods . 406

11.8.4 ImmortalPhysicalMemory . 408
11.8.4.1 Constructors . 408
11.8.4.2 Methods . 411

11.8.5 LTMemory . 412
11.8.5.1 Fields . 413
11.8.5.2 Constructors . 413
11.8.5.3 Methods . 418

11.8.6 LTPhysicalMemory . 418
11.8.6.1 Fields . 419
11.8.6.2 Constructors . 419

x CONTENTS

11.8.6.3 Methods . 422
11.8.7 MemoryArea . 423

11.8.7.1 Constructors . 423
11.8.7.2 Methods . 425

11.8.8 MemoryParameters . 434
11.8.8.1 Fields . 435
11.8.8.2 Constructors . 435
11.8.8.3 Methods . 437

11.8.9 NewPhysicalMemoryManager . 439
11.8.9.1 Constructors . 440
11.8.9.2 Methods . 440

11.8.10 PhysicalMemoryModule . 443
11.8.10.1 Constructors . 443
11.8.10.2 Methods . 443

11.8.11 PinnableMemory . 444
11.8.11.1 Constructors . 444
11.8.11.2 Methods . 445

11.8.12 SchedulableSizingParameters . 447
11.8.12.1 Constructors . 447
11.8.12.2 Methods . 448

11.8.13 ScopedMemory . 449
11.8.13.1 Constructors . 450
11.8.13.2 Methods . 452

11.8.14 SizeEstimator . 471
11.8.14.1 Constructors . 472
11.8.14.2 Methods . 472

11.8.15 StackedMemory . 474
11.8.15.1 Constructors . 476
11.8.15.2 Methods . 481

11.9 The Rationale . 485
11.9.1 The scoped memory model . 485
11.9.2 The physical memory model . 486

11.9.2.1 Problems with the current RTSJ 1.0.2 Physical Memory Frame-
work . 488

11.9.2.2 The RTSJ Version 2.0 Physical Memory Framework 490
11.9.2.3 An example . 491

12 Devices and Triggering 495
12.1 Overview . 495
12.2 Semantics . 496

12.2.1 Raw Memory . 497

CONTENTS xi

12.2.1.1 Raw Memory Region . 497
12.2.1.2 Raw Memory Factory . 499
12.2.1.3 Stride . 500

12.2.2 Direct Memory Access Support 500
12.2.3 External Triggering . 501

12.2.3.1 Happenings . 502
12.2.4 Interrupt Service Routines . 502

12.3 Interfaces . 506
12.3.1 RawByte . 506
12.3.2 RawByteReader . 506

12.3.2.1 Methods . 507
12.3.3 RawByteWriter . 509

12.3.3.1 Methods . 509
12.3.4 RawDouble . 511
12.3.5 RawDoubleReader . 511

12.3.5.1 Methods . 512
12.3.6 RawDoubleWriter . 514

12.3.6.1 Methods . 515
12.3.7 RawFloat . 516
12.3.8 RawFloatReader . 517

12.3.8.1 Methods . 517
12.3.9 RawFloatWriter . 519

12.3.9.1 Methods . 520
12.3.10 RawInt . 522
12.3.11 RawIntReader . 522

12.3.11.1 Methods . 523
12.3.12 RawIntWriter . 525

12.3.12.1 Methods . 525
12.3.13 RawLong . 527
12.3.14 RawLongReader . 528

12.3.14.1 Methods . 528
12.3.15 RawLongWriter . 530

12.3.15.1 Methods . 531
12.3.16 RawMemory . 533

12.3.16.1 Methods . 533
12.3.17 RawMemoryRegionFactory . 533

12.3.17.1 Methods . 534
12.3.18 RawShort . 552
12.3.19 RawShortReader . 552

12.3.19.1 Methods . 553
12.3.20 RawShortWriter . 555

xii CONTENTS

12.3.20.1 Methods . 556
12.4 Exceptions . 558

12.4.1 UnsupportedRawMemoryRegionException 558
12.4.1.1 Fields . 558
12.4.1.2 Constructors . 558

12.5 Classes . 560
12.5.1 Happening . 560

12.5.1.1 Constructors . 560
12.5.1.2 Methods . 561

12.5.2 HappeningDispatcher . 565
12.5.2.1 Constructors . 565
12.5.2.2 Methods . 565

12.5.3 InterruptServiceRoutine . 567
12.5.3.1 Constructors . 567
12.5.3.2 Methods . 568

12.5.4 RawBufferFactory . 570
12.5.4.1 Constructors . 571
12.5.4.2 Methods . 571

12.5.5 RawMemoryFactory . 574
12.5.5.1 Fields . 578
12.5.5.2 Constructors . 578
12.5.5.3 Methods . 579

12.5.6 RawMemoryRegion . 597
12.5.6.1 Fields . 597
12.5.6.2 Constructors . 598
12.5.6.3 Methods . 598

12.6 Rationale . 599
12.6.1 Raw Memory . 599

12.6.1.1 Direct memory access . 601
12.6.2 Interrupt Handling . 602
12.6.3 An Illustrative Example . 604

12.6.3.1 Software architecture . 604
12.6.3.2 Device initialization . 606
12.6.3.3 Responding to external happenings 607
12.6.3.4 Access to the flash controller’s device registers 607

13 System and Options 611
13.1 Overview . 611
13.2 Semantics . 611

13.2.0.5 POSIX Signals . 612
13.2.0.6 POSIX Realtime Signals . 612

CONTENTS xiii

13.3 Classes . 613
13.3.1 POSIXRealtimeSignal . 613

13.3.1.1 Fields . 613
13.3.1.2 Constructors . 613
13.3.1.3 Methods . 613

13.3.2 POSIXRealtimeSignalDispatcher 618
13.3.2.1 Constructors . 618
13.3.2.2 Methods . 618

13.3.3 POSIXSignal . 620
13.3.3.1 Fields . 621
13.3.3.2 Constructors . 621
13.3.3.3 Methods . 621

13.3.4 POSIXSignalDispatcher . 625
13.3.4.1 Constructors . 625
13.3.4.2 Methods . 626

13.3.5 RealtimeSecurity . 628
13.3.5.1 Constructors . 629
13.3.5.2 Methods . 629

13.3.6 RealtimeSystem . 632
13.3.6.1 Fields . 632
13.3.6.2 Constructors . 633
13.3.6.3 Methods . 633

13.4 Rationale . 636

14 Exceptions 637
14.1 Overview . 637

14.1.1 Semantics . 637
14.2 Interfaces . 638

14.2.1 PreallocatedThrowable . 638
14.2.1.1 Methods . 638

14.3 Exceptions . 643
14.3.1 ArrivalTimeQueueOverflowException 643

14.3.1.1 Fields . 643
14.3.1.2 Constructors . 643

14.3.2 CeilingViolationException . 644
14.3.2.1 Fields . 644
14.3.2.2 Constructors . 644
14.3.2.3 Methods . 646

14.3.3 DeregistrationException . 647
14.3.3.1 Fields . 647
14.3.3.2 Constructors . 647

xiv CONTENTS

14.3.4 DuplicateEventException . 648
14.3.4.1 Fields . 648
14.3.4.2 Constructors . 648

14.3.5 DuplicateFilterException . 649
14.3.5.1 Fields . 649
14.3.5.2 Constructors . 649

14.3.6 DuplicateHappeningException . 650
14.3.6.1 Fields . 650
14.3.6.2 Constructors . 650

14.3.7 InaccessibleAreaException . 651
14.3.7.1 Fields . 651
14.3.7.2 Constructors . 651

14.3.8 LateStartException . 652
14.3.8.1 Fields . 652
14.3.8.2 Constructors . 652

14.3.9 MITViolationException . 653
14.3.9.1 Fields . 653
14.3.9.2 Constructors . 654

14.3.10 MemoryInUseException . 654
14.3.10.1 Fields . 655
14.3.10.2 Constructors . 655

14.3.11 MemoryScopeException . 655
14.3.11.1 Fields . 656
14.3.11.2 Constructors . 656

14.3.12 MemoryTypeConflictException 657
14.3.12.1 Fields . 657
14.3.12.2 Constructors . 657

14.3.13 OffsetOutOfBoundsException . 658
14.3.13.1 Fields . 658
14.3.13.2 Constructors . 659

14.3.14 ProcessorAffinityException . 659
14.3.14.1 Fields . 660
14.3.14.2 Constructors . 660

14.3.15 RegistrationException . 660
14.3.15.1 Fields . 661
14.3.15.2 Constructors . 661

14.3.16 ScopedCycleException . 662
14.3.16.1 Fields . 662
14.3.16.2 Constructors . 662

14.3.17 SizeOutOfBoundsException . 663
14.3.17.1 Fields . 663

CONTENTS xv

14.3.17.2 Constructors . 664
14.3.18 UnknownHappeningException . 664

14.3.18.1 Fields . 665
14.3.18.2 Constructors . 665

14.3.19 UnsupportedPhysicalMemoryException 665
14.3.19.1 Fields . 666
14.3.19.2 Constructors . 666

14.4 Classes . 668
14.4.1 AlignmentError . 668

14.4.1.1 Fields . 668
14.4.1.2 Constructors . 668

14.4.2 BacktraceManagement . 668
14.4.2.1 Constructors . 669
14.4.2.2 Methods . 669

14.4.3 IllegalAssignmentError . 671
14.4.3.1 Fields . 671
14.4.3.2 Constructors . 671

14.4.4 MemoryAccessError . 672
14.4.4.1 Fields . 672
14.4.4.2 Constructors . 673

14.4.5 ResourceLimitError . 673
14.4.5.1 Fields . 674
14.4.5.2 Constructors . 674

14.4.6 ThrowBoundaryError . 674
14.4.6.1 Fields . 675
14.4.6.2 Constructors . 675

14.4.7 Rationale . 676

15 Deprecated Classes 677
15.1 Overview . 677
15.2 Semantics . 677
15.3 Interfaces . 678

15.3.1 PhysicalMemoryName . 678
15.3.2 PhysicalMemoryTypeFilter . 678

15.3.2.1 Methods . 678
15.4 Classes . 685

15.4.1 POSIXSignalHandler . 685
15.4.1.1 Fields . 685
15.4.1.2 Constructors . 691
15.4.1.3 Methods . 691

15.4.2 PhysicalMemoryManager . 692

xvi CONTENTS

15.4.2.1 Fields . 694
15.4.2.2 Constructors . 696
15.4.2.3 Methods . 696

15.4.3 RationalTime . 701
15.4.3.1 Fields . 702
15.4.3.2 Constructors . 702
15.4.3.3 Methods . 702

15.4.4 RawMemoryAccess . 702
15.4.4.1 Constructors . 706
15.4.4.2 Methods . 708

15.4.5 RawMemoryFloatAccess . 726
15.4.5.1 Constructors . 728
15.4.5.2 Methods . 731

15.4.6 VTMemory . 737
15.4.6.1 Constructors . 738
15.4.6.2 Methods . 742

15.4.7 VTPhysicalMemory . 743
15.4.7.1 Constructors . 744
15.4.7.2 Methods . 758

15.5 Rationale . 759

A Conformance, Compliance, and Portability 761
A.1 Minimum Implementations . 761
A.2 Modules . 761
A.3 Optionally Required Components . 761

A.3.1 Deployment Implementation . 762
A.4 Simulation Implementation . 763
A.5 Documentation Requirements . 763

B Epilogue 765

C Changes from the First Edition 767
C.1 Version 1.0.2 . 767

C.1.1 Finalization . 767
C.1.2 Cost enforcement . 767
C.1.3 AsyncEventHandler . 767
C.1.4 Non-Default Initial Memory Area 768
C.1.5 AsynchronouslyInterruptedException 768
C.1.6 Exceptions . 768

C.2 Version 1.0.1 . 768
C.2.1 Requirements . 768

C.2.2 Threads and Scheduling . 769

C.2.2.1 New Methods and Signature Changes 769

C.2.2.2 Deleted and Deprecated Methods 772

C.2.3 Memory Management . 772

C.2.3.1 New Methods and Signature Changes 772

C.2.3.2 Deprecated Methods . 775

C.2.4 Synchronization . 775

C.2.4.1 New Methods and Signature Changes 775

C.2.4.2 Deleted and Deprecated Methods 777

C.2.5 Time . 777

C.2.5.1 New Methods and Signature Changes 777

C.2.5.2 Deprecated Methods . 779

C.2.5.3 Deprecated Classes . 779

C.2.6 Clocks and Timers . 779

C.2.6.1 New Methods and Signature Changes 779

C.2.7 Asynchrony . 780

C.2.7.1 New Methods and Signature Changes 780

C.2.7.2 Deprecated Methods . 780

C.2.8 System and Options . 781

C.2.9 Exceptions . 782

C.2.9.1 Added Classes . 782

C.2.9.2 Changed Classes . 782

C.3 Global Terms . 782

C.4 Colophon . 783

C.5 Conventions . 783

C.5.1 Parameter Objects . 783

C.5.2 Java Platform Dependencies . 784

C.5.3 Illegal Parameter Values . 784

List of Figures

8.1 The Event Class Higherarchy . 206

10.1 Sequence Diagram for Using a Timer 323

10.2 Sequence Diagram for Realtime Sleep 324

xvii

11.1 Manipulation of StackedMemory Areas 381

12.1 Raw Memory Interface . 498
12.2 Event Classes . 499
12.3 Happening State Transition Diagram 501
12.4 Interrupt servicing . 503
12.5 Creating Raw Memory Accessors . 600
12.6 Flash memory device . 602
12.7 Flash memory classes . 604
12.8 Sequence diagram showing initialization operations 606
12.9 Sequence diagrams showing operations to initialize the hardware device607
12.10The FMSocketController.handleAsync method 608
12.11Application usage . 609

List of Tables

3.1 RTSJ Options . 26

12.1 Device registers . 605

xviii

Chapter 1

Introduction

The goal of the Real-Time Specification for Java (RTSJ) is to support the use of
Java technology in embedded and realtime systems. It provides a specification for
refining the Java Language Specification and the Java Virtual Machine Specification
and of providing an extended Application Programming Interface that facilitates
the creation, verification, analysis, execution, and management of realtime Java
programs such as control and sensor applications.

The Java Virtual Machine and the Java Language were conceived as a portable
environment for desktop and server applications. The emphasis has been on through-
put and responsiveness. These are characteristics obtainable with time-sharing sys-
tems. For this conventional Java environment, it is more important that each task
makes progress, than that a particular task completes within a predefined time slot.

In a realtime system, the system tries to schedule the most critical task that is
ready to run first. This task runs until either until it is finished, it needs to wait
for some event or data, or a more critical task is released. When it is not the most
critical task in the system, i.e., a more critical task is waiting on some event or data,
it can also be preempted by a more critical task that ceases to wait for its event or
data.

Realtime scheduling is commonly done with a priority preemptive scheduler,
where tasks that have short deadlines are given priority of tasks that have loner
deadline. The programmer is responsible for encoding some notion of task impor-
tance to priorities. The goal is to see that all tasks finish within their deadlines.
Scheduling analysis, such as Rate Monotonic Analysis, can be used to help determine
this.

Many realtime systems have nonrealtime components, so it is desirable to be
able to combine realtime and nonrealtime tasks in a single system. Realtime tasks
are then given preference over nonrealtime tasks. For Java, this means that realtime
tasks must be scheduled before threads with conventional Java priorities (1–10). Be-
ing able to synchronize between tasks, both realtime and conventional Java threads,

1

2 CHAPTER 1. INTRODUCTION

adds additional requirements.

Providing realtime semantics and the additional programming interfaces required
is a core part of this specification. So much so that the original specification pro-
vided special memory areas to avoid the use of garbage collection. The availability of
various techniques for realtime garbage collection has changed the state of practice.
Though still part of the specification, these special memory areas are no longer cen-
tral to it. Realtime scheduling and priority inversion avoidance for synchronization
are the core of providing realtime response. These are provided through refinements
to the base Java semantics and additional classes.

Realtime tasks can be modeled both with realtime threads and with event han-
dlers. Realtime threads are much the same as conventional Java threads except
for how they are scheduled. Event handlers encapsulate a bit of work that is done
every time some event occurs. Events are referred to as asynchronous because they
generally occur independent of program flow. Thus, a timed event is considered
to be an asynchronous event, but scheduled periodically. Event handling provides
a less resource intensive means of writing control applications because the under-
lying thread mechanism can be shared between event handlers. Deadline analysis
is also somewhat simpler because the end of the work to be done is well bounded.
Event handling is ideal for periodic tasks and responding to external impulses. The
specification provides both paradigms.

Though realtime is necessary for many control tasks, it is not sufficient. A
significant part of the RTSJ API addresses communication with the outside world
through devices and signals. This makes it possible to write control applications
without resorting to JNI, thereby maintaining the integrity and safety that Java
offers.

Since not all applications need all aspects of the specification, there are now
modules to suite the major application scenarios. This should make it easier for
conventional JVM providers to include basic specification facilities without nega-
tively impacting their core application domains, but still be compatible with hard
realtime implementations. The goal is to make the transition between conventional
JVMs and realtime JVMs easier.

1.1 Guiding Principles

Providing a coherent semantics and set of programming interfaces requires some
guiding principles around which to organize the RTSJ. These principles delimit the
scope of the RTSJ and its compatibility requirements with conventional Java.

1.1. GUIDING PRINCIPLES 3

1.1.1 Applicability to Particular Java Environments

The RTSJ shall not include specifications that restrict its use to a particular Java en-
vironment, such as a particular versions of the Java Development Kit, an Embedded
Java Application Environment, or a Java Edition, beyond the natural development
of the Java language.

1.1.2 Backward Compatibility

The RTSJ shall not prevent existing, properly written, conventional Java programs
from executing on implementations of the RTSJ.

1.1.3 Write Once, Run Anywhere

The RTSJ should recognize the importance of “Write Once, Run Anywhere”, but it
should also recognize the difficulty of achieving WORA for realtime programs and
not attempt to increase or maintain binary portability at the expense of predictabil-
ity. Hence, the goal should be “Write Once Carefully, Run Anywhere Conditionally”.

1.1.4 Current Practice vs. Advanced Features

The RTSJ should address current realtime system practice as well as allow future
implementations to include advanced features.

1.1.5 Predictable Execution

The RTSJ shall hold predictable execution as first priority in all trade-offs; this may
sometimes be at the expense of typical general-purpose computing performance
measures.

1.1.6 No Syntactic Extension

In order to facilitate the job of tool developers, and thus to increase the likelihood of
timely implementations, the RTSJ shall not introduce new keywords or make other
syntactic extensions to the Java language.

1.1.7 Allow Variation in Implementation Decisions

Implementations of the RTSJ may vary in a number of implementation decisions,
such as the use of efficient or inefficient algorithms, trade-offs between time and
space efficiency, inclusion of scheduling algorithms not required in the minimum

4 CHAPTER 1. INTRODUCTION

implementation, and variation in code path length for the execution of byte codes.
The RTSJ should not mandate algorithms or specific time constants for such, but
require that the semantics of the implementation be met and where necessary put
limits on execution time complexity. The RTSJ offers implementers the flexibility to
create implementations suited to meet the requirements of their customers.

1.1.8 Interoperability

It should be possible to implement all aspects of the RTSJ on a conventional JVM
with the exception that realtime response and pointer assignment rules would not
necessarily be guaranteed. This should ease the transition between conventional and
realtime programming and aid functional testing on a conventional JVM. The API
should support modules for this as well.

1.2 Areas of Enhancement

Each guiding principle has had a direct effect on the development of the specification.
There are eight aspects of these refinements and additions in the specification. Their
enumeration should aid the understanding of the rest of the specification.

1.2.1 Thread Scheduling and Dispatching

Portability dictates the specification of at least one standard realtime scheduler,
but in light of the significant diversity in scheduling and dispatching models and the
recognition that each model has wide applicability in the diverse realtime systems
industry, the specification provides an underlying scheduling infrastructure that can
be extended to use other scheduling algorithms for scheduling realtime Java threads
and events.

The specification is constructed to allow implementations to provide unantici-
pated scheduling algorithms. Implementations will enable the programmatic assign-
ment of parameters appropriate for the underlying scheduling mechanism as well
as provide any necessary methods for the creation, management, admittance, and
termination of realtime Java threads. For now, a particular thread scheduling and
dispatching mechanism may be bound to an implementation; however, there should
be enough flexibility in the thread scheduling framework to enable future versions
of the specification to build on this release.

To accommodate current practice, the RTSJ shall require a base scheduler in
all implementations. The required base scheduler will be familiar to realtime sys-
tem programmers. It is a priority preemptive scheduler with priorities above the
conventional Java priorities (1–10).

1.2. AREAS OF ENHANCEMENT 5

1.2.2 Memory Management

Automatic memory management is a particularly important feature of the Java
programming environment. The specification enables, as far as possible, the job of
memory management to be implemented automatically by the underlying system
and not intrude on the programming task. Many automatic memory management
algorithms, also known as garbage collection (GC), exist, and many of those apply
to certain classes of realtime programming styles and systems. In an attempt to
accommodate a diverse set of GC algorithms, the specification defines a memory
allocation and reclamation paradigm that
• is independent of any particular GC algorithm,
• enables the program to precisely characterize a GC algorithm’s effect on the

execution time, preemption, and dispatching of realtime Java tasks, and
• enables the allocation and reclamation of objects outside of any interference

by any GC algorithm.

1.2.3 Synchronization and Resource Sharing

Logic often requires serial access to resources and realtime systems introduce an ad-
ditional complexity: the need to minimize priority inversion and hence the excessive
delay of more critical tasks. The least intrusive specification for enabling realtime
safe synchronization is to require that implementations of the Java keyword syn-

chronized implement one or more algorithms that prevent priority inversion among
realtime Java tasks that share the serialized resource. In addition, the specification
provides other data passing mechanisms to minimize the need for synchronization.

1.2.4 Asynchronous Event Handling

Realtime systems typically interact closely with the real world. With respect to
the execution of logic, the real world is asynchronous; therefore, the specification
includes efficient mechanisms for programming disciplines that would accommodate
this inherent asynchrony. The RTSJ has a general mechanism for asynchronous event
handling. Required classes represent things that can happen and logic that executes
when those things happen. The execution of the logic is scheduled and dispatched
by the RTSJ runtime.

1.2.5 Task Interruption

Sometimes, the real world changes so drastically (and asynchronously) that the cur-
rent point of logic execution should be immediately, efficiently, and safely ended and
control transferred to another point of execution. The RTSJ provides a mechanism

6 CHAPTER 1. INTRODUCTION

which extends Java’s exception handling to enable applications to programmatically
change the locus of control of another Java task. This mechanism may restrict this
asynchronous transfer of control to logic specifically written with the assumption
that its locus of control may asynchronously change. Due to the inherent suscepti-
bility to deadlock, the Thread.stop method cannot be used for this.

1.2.6 Raw Memory Access

Accessing device memory is not in and of itself a realtime issue, many realtime
systems require it for providing realtime control of a system. This requires an API
providing programmers with byte-level access to physical device registers, whether
in main memory or in some I/O space. This API must be as efficient as possible,
since such access is often under tight time constraints.

1.2.7 Physical Memory Access

Some systems provide memory areas that differ in important aspects, such as time
to read or write data and its persistence. Being able to take advantage of these areas
can have an impact on performance. This specification enables their efficient use.

1.2.8 Modularization

Not all applications require all aspects of the specification. In fact, having a core set
of the APIs presented is useful for conventional Java programming and aids overall
interoperability. To this end, the specification provides a core set of APIs and a
few optional modules as well as semantics for use in conventional JVMs that do
not offer realtime guarantees. This should enable implementations to be optimized
for particular use cases and enable conventional Java environments to be used to
help develop code that can be more easily shared between realtime and conventional
systems.

Chapter 2

Overview

The RTSJ comprises several areas of extended semantics. These areas are discussed
in approximate order of their relevance to realtime programming. The semantics and
mechanisms of each of threads and scheduling, synchronization, asynchrony, clocks
and timers, memory management, device access and raw memory, system options,
and exceptions are all crucial to the acceptance of the RTSJ as a viable realtime
development platform. Further details, exact requirements, class documentation,
and rationale for these extensions are given in subsequent chapters.

2.1 Threads and Scheduling

One of the concerns of realtime programming is to ensure the timely and predictable
execution of sequences of machine instructions. Various scheduling schemes name
these sequences of instructions differently, for example, thread, task, module, or
block. In Java, this computation is executed in the context of a thread. Since Java
threads where designed for fair execution1 rather than predictable execution, the
RTSJ introduces the concept of a schedulable. These are the objects managed by the
base scheduler: RealtimeThread and its subclasses and AbstractAsyncEventHandler
and its subclasses. RealtimeThread is a specialization of Java’s Thread.

Timely execution of schedulables means that the programmer can determine,
by analysis of the program, testing the program on particular implementations,
or both, whether particular threads will always complete execution before a given
timeliness constraint. This is the essence of realtime programming: the addition of
temporal constraints to the correctness conditions for computation. For example,
for a program to compute the sum of two numbers, it may no longer be acceptable to

1Actually, neither the Java Virtual Machine Specification[?] nor the Java Language
Specification[?] defines how Java threads should be scheduled, but most implementations, including
the reference implementations, use some sort of fair scheduling.

7

8 CHAPTER 2. OVERVIEW

compute only the correct arithmetic answer but the answer must be computed within
a particular time interval. Typically, temporal constraints are deadlines expressed
in either relative or absolute time.

The term scheduling (or scheduling algorithm) refers to the production of a se-
quence (or ordering) for the execution of a set of schedulables (a schedule). This
schedule attempts to optimize a particular metric (a metric that measures how well
the system is meeting the temporal constraints). A feasibility analysis determines
if a schedule has an acceptable value for the metric. For example in hard realtime
systems, the typical metric is “number of missed deadlines” and the only acceptable
value for that metric is zero. So called soft realtime systems use other metrics (such
as mean tardiness) and may accept various values for the metric in use.

Many systems, including most conventional Java implementations, use thread
priority to guide the determination of a schedule. Priority is typically an integer
associated with a thread; these integers convey to the system the order in which the
threads should execute. The generalization of the concept of priority is execution
eligibility. The term dispatching refers to that portion of the system which selects
the thread with the highest execution eligibility from the pool of threads that are
ready to run.

In current realtime system practice, the assignment of priorities is typically under
programmer control as opposed to under system control. As a base scheduler for
realtime tasks, the RTSJ provides preemptive priority-based first-in-first-out (FIFO)
scheduler, which also leaves the assignment of priorities to programmer control.
Most realtime operation systems (RTOS) are also based on priority preemptive
FIFO scheduling.

The RTSJ defines a number of classes with names of the format <string>Par-

ameters such as ReleaseParameters, which provide parameters for resource man-
agement. An instance of one of these parameter classes holds a particular resource-
demand characteristic for one or more schedulables. For example, the Priority-

Parameters subclass of SchedulingParameters contains the execution eligibility
metric of the base scheduler, i.e., a priority. At some time (construction-time or
later when the parameters are replaced using setter methods), instances of parame-
ter classes are bound to a schedulable. The schedulable then assumes the character-
istics of the values in the parameter object. For example, a PriorityParameters

instance with its priority set to the value representing the highest priority avail-
able on a system is bound to a schedulable, then that schedulable will assume the
characteristic that it will execute whenever it is ready in preference to all other
schedulables (except, of course, those also with the same priority).

The RTSJ provides implementers with the flexibility to install arbitrary schedul-
ing algorithms in an implementation of the specification. This is to support the
widely varying requirements of the realtime systems industry with respect to schedul-
ing. Use of the Java platform may help produce code written once but able to be

2.2. SYNCHRONIZATION 9

executed on many different computing platforms. The RTSJ contributes to this goal,
but the rigors of realtime systems detract from it. The RTSJ’s rigorous specification
of the required priority scheduler is critical for portability of time-critical code, but
the RTSJ permits and supports platform-specific schedulers which are not necessarily
portable.

2.2 Synchronization

If the computation in each thread were independent of the computation in all other
threads, scheduling alone would be enough to ensure timeliness; however, this is
usually not the case. Threads often need to communicate with one another or share
data. Resources must be shared as well. Two threads cannot read different data from
the disk at the same time nor write data to a disk at the same time. They cannot
send a message to another machine at the same time. They cannot update the
same in memory data at the same time. One thread may have to wait for another
thread to get the data it needs. Just as in a normal system, synchronization is
required. In a realtime system, this synchronization must not prevent other threads
from completing their tasks on time.

2.2.1 Priority Inversion

The additional concern for synchronization in a realtime system, as opposed to a
conventional system, is that blocking can cause the wrong thread to run first. A
high priority thread can be blocked by a low priority thread that is vying for the
same resource. A priority queue can be used to ensure that a highest priority thread
goes first, when more than one thread is waiting to enter a synchronized block, but
this is not always sufficient.

Consider a single processor system with three threads, t1, t2, and t3, where t1 has
the highest priority and t3 has the lowest priority. It is possible that t2 can prevent
t1 from running by preempting t3. This is called priority inversion. It occurs when
t1 is blocked by attempting to acquire a lock that is held by thread t3 and t3 is
preempted by t2. When t2 does run, it may prevent t3 from running indefinitely,
thereby keeping t1 blocked past its deadline.

What is needed is a mechanism the ensure that, while t1 is waiting on a resource
in use by t3, thread t3 runs before all threads with a priority less than that of t1.

2.2.2 Priority Inversion Avoidance

Two of the most common mechanisms for avoiding priority inversion are priority
inheritance and priority ceiling emulation (a.k.a. highest locker protocol). Both of

10 CHAPTER 2. OVERVIEW

these boost the priority of a thread holding the lock in order to prevent a noncon-
tending thread from transitively blocking a higher priority thread which is waiting
for the same lock. The difference is how high the priority is raised and when. Both
take effect when a thread is in a synchronized section of code.

The first is the default behavior for synchronized blocks and methods. It applies
to all code running within the implementation, not just to schedulables. The
priority inheritance protocol is a well-known algorithm in the realtime scheduling
literature and it has the following effect. If thread t1 attempts to acquire a lock that
is held by a lower-priority thread t3, then t3’s priority is raised to that of t1 as long
as t3 holds the lock (and recursively if t3 is itself waiting to acquire a lock held by
an even lower-priority thread).

The specification also provides a mechanism by which the programmer can over-
ride the default system-wide policy, or control the policy to be used for a particular
monitor, provided that policy is supported by the implementation. The second
policy, priority ceiling emulation protocol, can be set using this mechanism. It is
also a well-known algorithm in the literature. The following three points provide a
somewhat simplified description of its effect.
• A monitor is given a “priority ceiling” when it is created; the programmer

should choose at least the highest priority of any thread that could attempt
to enter the monitor.
• As soon as a thread enters synchronized code, its (active) priority is raised to

the monitor’s ceiling priority. If, through programming error, a thread has a
higher base priority than the ceiling of the monitor it is attempting to enter,
then an exception is thrown.
• On leaving the monitor, the thread has its active priority reset. In simple

cases it will set be to the thread’s previous active priority, but under some
circumstances (e.g. a dynamic change to the thread’s base priority while it
was in the monitor) a different value is possible.

In addition, threads and asynchronous event handlers waiting to acquire a re-
source must be released from highest to lowest priority (in priority order). This
applies to processors as well as to synchronized blocks. If schedulables with the
same priority are possible under the active scheduling policy, such schedulables are
awakened in FIFO order. This is exemplified in the following scenarios.
• Threads waiting to enter synchronized blocks are granted access to the syn-

chronized block in priority order.
• A blocked thread that becomes ready to run is given access to a processor in

priority order.
• A thread whose priority is explicitly set by itself or another thread is given

access to a processor in priority order.
• A thread that performs a yield will be given access to the processor after

waiting threads of the same execution eligibility.

2.3. ASYNCHRONY 11

• Threads that are preempted in favor of a thread with higher priority may
be given access to a processor at any time as determined by a particular
implementation. The implementation is required to provide documentation
stating exactly the algorithm used for granting such access.

In any case, there needs to be a fixed upper bound on the time required to enter
a synchronized block for an unlocked monitor.

2.2.3 Execution Eligibility

Since an implementation of the RTSJ may provide schedulers other than priority-
based schedulers, the notion of priority can be generalized to execution eligibility.
Execution eligibility defines a partial ordering over all tasks for determining which
task should run before which other tasks. Execution eligibility may be determined
dynamically. For example, earliest deadline first (EDF) scheduling determines ex-
ecution eligibility ordering by the order of the next deadlines for each of its tasks.
The notion of priority, as described above, can be generalized to execution eligibility
to integrate other schedulers into an RTSJ implementation.

2.2.4 Wait-Free Queues

While the RTSJ requires that the execution of schedulables which do not access the
heap must not be delayed by garbage collection on behalf of lower-priority schedu-
lables, an application can cause such a schedulable to wait for garbage collection by
synchronizing using an object shared with a heap-using thread or schedulable. The
RTSJ provides wait-free queue classes to provide protected, non-blocking, shared ac-
cess to objects accessed by both regular Java threads and schedulables, which do
not access the heap.

2.3 Asynchrony

Since a realtime system must be able to react to the outside world, the system needs
to be able to change its execution flow asynchronously to the current execution. All
external signals, whether interrupts, messages, or timed events, are asynchronous
with respect to ongoing computation. This means that computation must be both
startable and stoppable based on external stimuli.

2.3.1 Asynchronous Events

Asynchronous event provide a means of starting computation based on external
stimuli. The asynchronous event facility is based on two classes: AbstractAsync-

12 CHAPTER 2. OVERVIEW

Event and AbstractAsyncEventHandler. An AbstractAsyncEvent object rep-
resents something that can happen, like a POSIX signal, a hardware interrupt,
or a computed event like an airplane entering a specified region. When one of
these events occurs, which is indicated by the fire() method being called, the
associated instances of AbstractAsyncEventHandler are scheduled and the han-

dleAsyncEvent() methods are invoked, thus the required logic is performed. Also,
methods on AbstractAsyncEvent are provided to manage the set of instances of Ab-
stractAsyncEventHandler associated with the instance of AbstractAsyncEvent.

An instance of an AbstractAsyncEventHandler can be thought of as some-
thing similar to a thread. When an event fires, the associated handlers are sched-
uled and the handleAsyncEvent() methods are invoked. What distinguishes an
AbstractAsyncEventHandler from a simple Runnable is that an AbstractAsync-

EventHandler has associated instances of ReleaseParameters, SchedulingParam-
eters and MemoryParameters that control the actual execution of the handler once
the associated AbstractAsyncEvent is fired. When an event is fired, the handlers
are executed asynchronously, scheduled according to the associated ReleaseParam-

eters and SchedulingParameters objects, in a manner that looks like the handler
has just been assigned to its own thread. It is intended that the system can cope
well with situations where there are large numbers of instances of AbstractAsync-
Event and AbstractAsyncEventHandler (tens of thousands), since the number of
fired (in process) handlers is expected to be much smaller.

There are specialized forms of AbstractAsyncEvent: AsyncEvent, AsyncLong-
Event, and AsyncObjectEvent for events that are stateless, carry a long payload,
and carry an Object payload, respectively. They are matched by specialized forms
of AbstractAsyncEventHandler: AsyncEventHandler, AsyncLongEventHandler,
and AsyncObjectEventHandler. Most external events are stateless, but sometimes
it is helpful to be able to receive some information about the event or pass some data
with the event. The Long and Object variants enable this and the new POSIXRe-

altimeSignal takes advantage of it.

Another specialized form of an AsyncEvent is the Timer class, which represents
an event whose occurrence is driven by time. There are two forms of Timers: the
OneShotTimer and the PeriodicTimer. Instances of OneShotTimer fire once, at
the specified time. Periodic timers fire initially at the specified time, and then
periodically according to a specified interval.

Timers are driven by Clock objects. There is a special Clock object, Clock.
getRealtimeClock(), that represents the realtime clock. The Clock class may
be extended to represent other clocks, which the underlying system might make
available (such as an execution time clock of some granularity).

2.3. ASYNCHRONY 13

2.3.2 Asynchronous Transfer of Control

Many event-driven computer systems that tightly interact with external physical
systems (e.g., humans, machines, control processes, etc.) may require mode changes
in their computational behavior as a result of significant changes in the non-computer
real-world system. It simplifies the architecture of a system when a task can be
programmatically terminated when an external physical system change causes its
computation to be superfluous. Without this facility, a thread or set of threads
have to be coded so that their computational behavior anticipates all of the possible
transitions among possible states of the external system. When the external system
makes a state transition, the changes in computation behavior can be managed by
an oracle that terminates a set of threads required for the old state of the external
system, and invokes a new set of threads appropriate for the new state of the external
system. Since the possible state transitions of the external system are encoded in
only the oracle and not in each thread, the overall system design is simpler.

There is a second requirement for a mechanism to terminate some computation,
where a potentially unbounded computation needs to be done in a bounded period
of time. In this case, if that computation can be executed with an algorithm that
is iterative, and produces successively refined results, the system could abandon
the computation early and still have usable results. The RTSJ supports aborting a
computation by signalling from another thread with a feature termed Asynchronous
Transfer of Control (ATC).

An example of the second case is processing compressed video for a human
controller. The system knows that a new frame must be produced at a constant
update frequency. The cost of each iteration is highly variable and the minimum
required latency to terminate the computation and receive the last consistent result
is much less than the mean iteration cost and bound. Therefore, using ATC for
interrupting a computation to capture an intermediate result at the expiration of a
known time bound is a convenient programming style. Of course, there are other
kinds programming tasks that may also benefit from ATC.

2.3.3 Principles

The RTSJ’s approach to ATC uses asynchronous interruptions and is based on several
guiding principles covering methodology, expressiveness, semantics, and pragmatic
concerns.

2.3.3.0.1 Methodological Principles

• A method must explicitly indicate its susceptibility to ATC, i.e., it is asyn-
chronously interruptible. Since legacy code or library methods might have

14 CHAPTER 2. OVERVIEW

been written assuming no ATC, by default ATC must be turned off (more
precisely, must be deferred as long as control is in such code).
• Even if a method allows ATC, some code sections must be executed to comple-

tion and thus ATC is deferred in such sections. These ATC-deferred sections
are synchronized methods, static initializers, and synchronized statements.
• Code that responds to an ATC does not return to the point in the schedulable

where the ATC was triggered; that is, an ATC is an unconditional transfer of
control. Resumptive semantics, which returns control from the handler to the
point of interruption, are not needed since they can be achieved through other
mechanisms (in particular, an AsyncEventHandler).

2.3.3.0.2 Expressibility Principles
• A mechanism is needed through which an ATC can be explicitly triggered in

a target schedulable. This triggering may be direct (from a source thread or
schedulable) or indirect (through an asynchronously interrupted exception).
• It must be possible to trigger an ATC based on any asynchronous event in-

cluding an external happening or an explicit event firing from another thread
or schedulable. In particular, it must be possible to base an ATC on a timer
going off.
• Through ATC it must be possible to abort a realtime thread but in a manner

that does not carry the dangers of the Thread class’s stop() and destroy()

methods.

2.3.3.0.3 Semantic Principles
• If ATC is modeled by exception handling, there must be some way to ensure

that an asynchronous exception is only caught by the intended handler and not,
for example, by an all-purpose handler that happens to be on the propagation
path.
• Nested ATCs must work properly. For example, consider two, nested ATC-

based timers and assume that the outer timer has a shorter time-out than the
nested, inner timer. If the outer timer times out while control is in the nested
code of the inner timer, then the nested code must be aborted (as soon as
it is outside an ATC-deferred section), and control must then transfer to the
appropriate catch clause for the outer timer. An implementation that either
handles the outer time-out in the nested code, or that waits for the longer
(nested) timer, is incorrect.

2.3.3.0.4 Pragmatic Principles
• There should be straightforward idioms for common cases such as timer han-

dlers and realtime thread termination.

2.4. CLOCKS, TIME, AND TIMERS 15

• If code with a time-out completes before the timer’s expiration, the timer
needs to be automatically stopped and its resources returned to the system.

2.3.4 Asynchronous Realtime Thread Termination

A special case of stopping a particular computation is stopping a thread. Earlier
versions of the Java language supplied mechanisms for achieving these effects: in
particular the methods stop() and destroy() in class Thread. However, since
stop() could leave shared objects in an inconsistent state, stop() has been depre-
cated. The use of destroy() can lead to deadlock (if a thread is destroyed while
it is holding a lock) and although it was not deprecated until version 1.5 of the
Java specification, its usage has long been discouraged. A goal of the RTSJ was to
meet the requirements of asynchronous thread termination without introducing the
dangers of the stop() or destroy() methods.

The RTSJ accommodates safe asynchronous realtime thread termination through
a combination of the asynchronous event handling and the asynchronous transfer of
control mechanisms. To create such a set of realtime threads consider the following
steps:
• make all of the application methods of the realtime thread asynchronously

interruptible;
• create an oracle which monitors the external world by setting up an asyn-

chronous event with a number of asynchronous event handlers, which is fired
when an appropriate mode change;
• have the handlers call interrupt() on each of the realtime threads affected

by the change; then
• after the handlers call interrupt(), have them create a new set of realtime

threads appropriate to the current state of the external world.
The effect of the event is to cause each interruptible method to abort abnormally by
transferring control to the appropriate catch clause. Ultimately the run() method
of the realtime thread will complete normally.

This idiom provides a quick (if coded to be so) but orderly clean up and termi-
nation of the realtime thread. Note that the oracle can comprise as many or as few
asynchronous event handlers as appropriate.

2.4 Clocks, Time, and Timers

Realtime systems require a high resolution notion of time. Both very small units
and very long periods of time must be uniformly representable, a range that is not
even representable with a long value. Furthermore, a time can represent an absolute
value, usually represented as some absolute fixed point in time plus an offset, or it

16 CHAPTER 2. OVERVIEW

can represent an interval of time. The time classes defined in Chapter 9 support a
longs worth of seconds and another integer for nanoseconds.

2.5 Memory Management

The Java language is designed around automatic memory management, in particular
garbage collection. Unfortunately, though garbage collection is a functional safety
and security feature, conventional garbage collectors interrupt the normal flow of
control in a program. Therefore, garbage-collected memory heaps had been con-
sidered an obstacle to realtime programming due to the potential for unpredictable
latencies introduced by the garbage collector. Though convention collectors still
have these drawbacks, there are now realtime collectors that can be used for hard
realtime application. Still, the RTSJ provides an alternative to garbage collection
for systems which require it, either because they do not have a garbage collector or
deterministic garbage collector, or require heap partitioning for some other reason.
Extensions to the memory model, which support memory management in a manner
that does not interfere with the ability of realtime code to provide deterministic
behavior, are provided to support these alternatives. This goal is accomplished by
providing memory areas for the allocation of objects outside of the garbage-collected
heap for both short-lived and long-lived objects. In order to provide additional sep-
aration between the garbage collector and schedulables which do not require its
services, a schedulable can be marked no-heap to indicate that it never accesses the
heap.

2.5.1 Memory Areas

The RTSJ introduces the concept of a memory area. A memory area represents an
area of memory that may be used for allocating objects. Some memory areas exist
outside of the heap and place restrictions on what the system and garbage collector
may do with objects allocated within. Objects in some memory areas are never
garbage collected; however, the garbage collector must be capable of scanning these
memory areas for references to any object within the heap to preserve the integrity
of the heap.

There are four basic types of memory areas:

• Scoped memory provides a mechanism, more general than stack allocated ob-
jects, for managing objects that have a lifetime defined by scope.
• Physical memory allows objects to be created within specific physical memory

regions that have particular important characteristics, such as memory that
has substantially faster access.

2.5. MEMORY MANAGEMENT 17

• Immortal memory represents an area of memory containing objects that may
be referenced without exception or garbage collection delay by any schedul-
able, specifically including no-heap realtime threads and no-heap asynchronous
event handlers.
• Heap memory represents an area of memory that is the heap. The RTSJ does

not change the determinant of lifetime of objects on the heap. The lifetime is
still determined by visibility.

2.5.2 Heap Memory

Heap memory is the memory area used by Java by default. It is garbage collected
and the access time to objects in this area are not guaranteed unless the implemen-
tation supports realtime garbage collection. The RTSJ, as with conventional Java,
supports only one Heap in a system. Multiple heaps are only practical in one of two
configurations: the heaps are completely independent of one another or there are
subsidiary heaps from which a program may not store references in the main heap.
In other words, the subsidiary heaps can reference the main heap but not vise versa.
Currently, the RTSJ does not address these cases.

2.5.3 Immortal Memory

ImmortalMemory is a memory resource shared among all schedulable objects and
threads in an application. Objects allocated in ImmortalMemory are always available
to non-heap threads and asynchronous event handlers without the possibility of a
delay for garbage collection.

2.5.4 Scoped Memory

The RTSJ introduces the concept of scoped memory. A memory scope is used to give
bounds to the lifetime of any objects allocated within it. When a scope is entered,
every use of new causes the memory to be allocated from the active memory scope.
A scope may be entered explicitly, or it can be attached to a schedulable which will
effectively enter the scope before it executes the object’s run() method.

The contents of a scoped memory are discarded when no object in the scope can
be referenced. This is done by a technique similar to reference counting the scope.
A conformant implementation might maintain a count of the number of external
references to each memory area. The reference count for a ScopedMemory area would
be increased by entering a new scope through the enter() method of MemoryArea,
by the creation of a schedulable using the particular ScopedMemory area, or by the
opening of an inner scope. The reference count for a ScopedMemory area would be
decreased when returning from the enter() method, when the schedulable using the

18 CHAPTER 2. OVERVIEW

ScopedMemory terminates, or when an inner scope returns from its enter() method.
When the count drops to zero, the finalize method for each object in the memory
would be executed to completion. Reuse of the scope is blocked until finalization is
complete.

Scopes may be nested. When a nested scope is entered, all subsequent allocations
are taken from the memory associated with the new scope. When the nested scope
is exited, the previous scope is restored and subsequent allocations are again taken
from that scope.

Because of the lifetimes of scoped objects, it is necessary to limit the references
to scoped objects, by means of a restricted set of assignment rules. A reference to a
scoped object cannot be assigned to a variable from an outer scope, or to a field of an
object in either the heap or the immortal area. A reference to a scoped object may
only be assigned into the same scope or into an inner scope. The virtual machine
must detect illegal assignment attempts and must throw an appropriate exception
when they occur.

The flexibility provided in choice of scoped memory types allows the application
to use a memory area that has characteristics that are appropriate to a particular
syntactically defined region of the code.

2.5.5 Physical Memory Areas

In many cases, systems needing the predictable execution of the RTSJ will also
need to access various kinds of memory at particular addresses for performance or
other reasons. Consider a system in which very fast static RAM was program-
matically available. A design that could optimize performance might wish to place
various frequently used Java objects in the fast static RAM. The LTPhysicalMemory
and ImmortalPhysicalMemory classes provide the programmer this flexibility. The
programmer would construct a physical memory object on the memory addresses
occupied by the fast RAM.

2.5.6 Budgeted Allocation

The RTSJ also provides limited support for providing memory allocation budgets
for schedulables using memory areas. Maximum memory area consumption and
maximum allocation rates for individual schedulable objects may be specified when
they are created.

2.6. DEVICE ACCESS AND RAW MEMORY 19

2.6 Device Access and Raw Memory

The RTSJ defines classes for programmers wishing to directly access physical mem-
ory from code written in the Java language. The RawMemory<Size> types define
methods that enable the programmer to construct an object that represents a range
of physical addresses, where the Size represents a word size, i.e., byte, short, int,
long, float, and double. Access to the physical memory is then accomplished through
get<Size>() and set<Size>() methods of that object. No semantics other than
the set<Size>() and get<Size>() methods are implied. One the other hand, the
LTPhysicalMemory and ImmortalPhysicalMemory classes enable programmers to
construct an object that represents a range of physical memory addresses. When
this object is used as a MemoryArea other objects can be constructed in the physical
memory using the new keyword as appropriate. Factories can be used to create the
desired type of both physical and raw memory.

2.6.1 Raw Memory Access

An instance of RawMemoryType models a range of physical memory locations as a
fixed sequence of elements of a given size. The elements correspond to Java primitive
types. For objects that access more than a single physical address, elements can be
accessed through offsets from the base, where the offset is measured in multiples of
the element size, not necessarily the byte offset in memory.

The RawMemoryType interface enables a realtime program to implement de-
vice drivers, memory-mapped registers, I/O space mapped registers, flash memory,
battery-backed RAM, and similar low-level hardware.

A raw memory area cannot contain references to Java objects. Such a capability
would be unsafe (since it could be used to defeat Java’s type checking) and error
prone (since it is sensitive to the specific representational choices made by the Java
compiler).

2.7 System Options

POSIX defines some convenient interfaces for interacting with the system. These
interactions include catching keyboard interrupts, user-to-process signaling, and in-
terprocess signaling. Many realtime operating systems support this POSIX signal
interface. For this reason, the RTSJ provides a POSIX signal interface. Though
many of the features POSIX signals provide are also available on most other oper-
ating systems, the specification does not require the POSIX signal interface to be
emulated on these other platforms. Thus they are optional in the sense that they
are only required on systems that directly support POSIX signals.

20 CHAPTER 2. OVERVIEW

2.8 Exceptions

Aside from several new exceptions, the RTSJ provides a new interface for using ex-
ceptions without creating ephemeral objects and some new treatment of exceptions
surrounding asynchronous transfer of control.

Using exceptions is resource intensive, since a new exception is allocated for each
throw. This is particularly a problem for scoped memory, since scopes may need to
be sized much larger than otherwise necessary to hold exceptions and their stack
traces. Additionally, the information they contain cannot be propagated beyond the
scope in which they are allocated. To better support scoped, immortal, and phys-
ical memory, a new class of throwable has been included: PreallocatedThrowable.
Exceptions and Errors which implement this interface are not thrown in the usual
manner, but with a style that does not require memory to be allocated at all.

Asynchronous transfer of control can cause the exception that triggered it to be
propagated even when it is caught but the underlying interrupt is not cleared. The
system rethrows the exception once the catch is finished. This is necessary since
the exception hierarchy is poorly designed. There is no common base class only
for all checked exceptions, so use code often contains a catch for Exception when
only checked exceptions need to be caught. Even the JVM specification wording is
awkward on this point.

2.9 Summary

The RTSJ refines the semantics of threads, scheduling, synchronization, memory
management, and exceptions and adds features to support realtime threads, realtime
scheduling, configuring synchronization, asynchrony, representing time, clocks and
timers, additional methods for memory management, device access and raw memory,
system options. These features and semantic refinements to the Java language and
virtual machine have been outlined above, but the description does not constitute
a definition for them. In other words, it is not normative. The normative chapters
follow.

Chapter 3

Requirements and Conventions

This specification is a contract between the specification implementer and the user
who writes a program to run on an implementation. To be able to support both
implementation and use, many chapters provide additional rationale to help both
the implenter and the user understand the intention behind the normative text.
The remainder of this specification, including this chapter, is normative, except for
the introductory text in each chapter and the sections named Example Usage and
Rationale.

3.1 Base Requirements

The base requirements of this specification are as follows.

• Except as specifically required by this specification, any implementation shall
fully conform to a Java platform configuration.
• Any implementation of this specification shall implement all classes and meth-

ods in the base module of this specification.
• Except as noted in this chapter, all classes and methods in an implemented

module shall be implemented.
• The javax.realtime package shall contain no public or protected methods

not included in this specification.
• A realtime JVM implementation shall not be implemented in a way that per-

mits unbounded priority inversion in any scheduling interaction it implements.
• Subject to the usual assumptions, the methods in javax.realtime can safely

be used concurrently by multiple threads unless otherwise documented.
• Static final values, as found in AperiodicParameters, PhysicalMemoryMan-
ager, SporadicParameters, RealtimeSystem, and PriorityScheduler, shall
be implemented such that their values cannot be resolved by a conformant Java
compiler (Java source to byte code).

21

22 CHAPTER 3. REQUIREMENTS AND CONVENTIONS

Many aspects of this specification set a minimum requirement, but permit the im-
plementation latitude in its implementation. For instance, the required priority
scheduler requires at least 28 consecutively numbered realtime priorities. It does
not, however, specify the numeric values of the maximum and minimum realtime
priorities. Implementations are encouraged to offer as many realtime priority levels
immediately above the conventional Java prioritie as they can support.

Except where otherwise specified, when this specification requires object creation
the object is created in the current allocation context.

3.2 Modules

The original RTSJ specification was concieved, with the exception of some optional
features, as a monolith specification. This has inhibited the adoption of the RTSJ be-
yond the hard realtime community, because some of the features were considered to
have an overly negative impact on overall JVM performance. Version 2.0 addresses
this by breaking the specification into modules.

Modules provide a means of grouping like functionality together in a way that
promotes maximal adoption for various implementation classes. A conventional
JVM could simply implement the Base Module, without providing any realtime
guarantees at all, to provide programmers with the benefits of features such as
asynchronous event programming as an alternative to conventional threading. A
hard realtime implementation could implement all modules to provide the maximal
flexibility and functionality to the realtime programmer. Both would benefit from
easier migration of code to realtime systems.

Every RTSJ implementation shall provide the Base Module functionality, but all
other modules are optional. The optional modules are the Device Module and the
Alternate Memory Management module. In addition, there are a couple of optional
features as well. This give the implementation some choice over which modules and
features to include and which not.

3.2.1 Base Module

The Base Module adds the concepts of processor affinity, threads with realtime
scheduling, and asynchronous event handling. This includes the notion of executing
code at a given time interval, providing a much more stable response than using
sleep in a loop. These features should have no impact on the overall performance
of a system that implements them, but enrich the programming modules available
to the programmer. The classes and interfaces required in this module are listed
below.
• AbsoluteTime (Section 9.5.1)

3.2. MODULES 23

• AbstractAsyncEventHandler1 (Section 8.6.2)
• AbstractAsyncEvent (Section 8.6.1)
• ActiveEventDispatcher (Section 9.5.2)
• ActiveEvent (Section 9.4.1)
• Affinity (Section 6.5.1)
• Alarm (Section 10.5.1)
• AperiodicParameters (Section 6.5.2)
• ArrivalTimeQueueOverflowException (Section 14.3.1)
• AsyncEventHandler (Section 8.6.4)
• AsyncEvent (Section 8.6.3)
• AsyncLongEventHandler (Section 8.6.6)
• AsyncLongEvent (Section 8.6.5)
• AsyncObjectEventHandler (Section 8.6.8)
• AsyncObjectEvent (Section 8.6.7)
• BoundAbstractAsyncEventHandler (Section 8.4.1)
• BoundAsyncEventHandler (Section 8.6.9)
• BoundAsyncLongEventHandler (Section 8.6.10)
• BoundAsyncObjectEventHandler (Section 8.6.11)
• CeilingViolationException (Section 14.3.2)
• Clock (Section 10.5.2)
• DeregistrationException (Section 14.3.3)
• DuplicateEventException (Section 14.3.4)
• DuplicateFilterException (Section 14.3.5)
• DuplicateHappeningException (Section 14.3.6)
• GarbageCollector (Section 11.8.1)
• HeapMemory (Section 11.8.2)
• HighResolutionTime (Section 9.5.3)
• ImportanceParameters (Section 6.5.3)
• LateStartException (Section 14.3.8)
• MemoryArea (Section 11.8.7)
• MonitorControl (Section 7.3.1)
• OneShotTimer (Section 10.5.3)
• PeriodicParameters (Section 6.5.4)
• PeriodicTimer (Section 10.5.4)
• PhasingPolicy (Section 5.3.1)
• PriorityInheritance (Section 7.3.3)
• PriorityParameters (Section 6.5.5)
• PriorityScheduler (Section 6.5.6)
• ProcessingGroupParameters (Section 6.5.7)

1The no-heap flag is present, but can only be set if the Memory Module is supported.

24 CHAPTER 3. REQUIREMENTS AND CONVENTIONS

• ProcessorAffinityException (Section 14.3.14)
• RealtimeSecurity (Section 13.3.5)
• RealtimeSystem (Section 13.3.6)
• RealtimeThread (Section 5.4.2)
• RegistrationException (Section 14.3.15)
• RelativeTime (Section 9.5.4)
• ReleaseParameters (Section 6.5.8)
• ResourceLimitError (Section 14.4.5)
• Schedulable (Section 6.4.2)
• SchedulableSizingParameters (Section 11.8.12)
• Scheduler (Section 6.5.9)
• SchedulingParameters (Section 6.5.10)
• SporadicParameters (Section 6.5.11)
• Timable (Section 10.4.1)
• TimeDispatcher (Section 10.5.5)
• Timer (Section 10.5.6)

3.2.2 Device Module

The Device Module provides a low level interface for interacting with real world.
Though realtime control systems need this kind of interaction, other systems can
benefit from it as well. Data collection, that is not time critical is a good example.
For instance, monitoring the temperature or humidity in a room could be done easily
with off-the-self hardware using this module. The classes required in this module
are listed below.
• Happening (Section 12.5.1)
• HappeningDispatcher (Section 12.5.2)
• POSIXRealtimeSignal (Section 13.3.1)
• POSIXRealtimeSignalDispatcher (Section 13.3.2)
• POSIXSignal (Section 13.3.3)
• POSIXSignalDispatcher (Section 13.3.4)
• RawBufferFactory (Section 12.5.4)
• RawMemory (Section 12.3.16)
• RawMemoryFactory (Section 12.5.5)
• RawMemoryRegion (Section 12.5.6)
• RawMemoryRegionFactory (Section 12.3.17)
• UnsupportedRawMemoryRegionException (Section 12.4.1)
• RawByte (Section 12.3.1)
• RawByteReader (Section 12.3.2)
• RawByteWriter (Section 12.3.3)
• RawDouble (Section 12.3.4)

3.2. MODULES 25

• RawDoubleReader (Section 12.3.5)
• RawDoubleWriter (Section 12.3.6)
• RawFloat (Section 12.3.7)
• RawFloatReader (Section 12.3.8)
• RawFloatWriter (Section 12.3.9)
• RawInt (Section 12.3.10)
• RawIntReader (Section 12.3.11)
• RawIntWriter (Section 12.3.12)
• RawLong (Section 12.3.13)
• RawLongReader (Section 12.3.14)
• RawLongWriter (Section 12.3.15)
• RawMemoryFactory (Section 12.5.5)
• RawMemoryRegionFactory (Section 12.3.17)
• RawShort (Section 12.3.18)
• RawShortReader (Section 12.3.19)
• RawShortWriter (Section 12.3.20)

3.2.3 Alternate Memory Management Module

The Alternate Memory Management Module provides an alternative to a single
heap with garbage collection model for memory management. Most of the facilities
are centered around providing an alternative to garbage collection, but facilities
for providing what memory to use for Java objects is also addressed. The classes
required in this module are listed below.
• AlignmentError (Section 14.4.1)
• ChildScopeVisitor (Section 11.6.1)
• IllegalAssignmentError (Section 14.4.3)
• ImmortalMemory (Section 11.8.3)
• ImmortalPhysicalMemory (Section 11.8.4)
• InaccessibleAreaException (Section 14.3.7)
• LTMemory (Section 11.8.5)
• LTPhysicalMemory (Section 11.8.6)
• MemoryAccessError (Section 14.4.4)
• MemoryInUseException (Section 14.3.10)
• MemoryParameters (Section 11.8.8)
• MemoryScopeException (Section 14.3.11)
• MemoryTypeConflictException (Section 14.3.12)
• MITViolationException (Section 14.3.9)
• NewPhysicalMemoryManager (Section 11.8.9)
• NoHeapRealtimeThread (Section 5.4.1)
• OffsetOutOfBoundsException (Section 14.3.13)

26 CHAPTER 3. REQUIREMENTS AND CONVENTIONS

• PhysicalMemoryCharacteristic (Section 11.6.2)
• PhysicalMemoryFilter (Section 11.6.3)
• PhysicalMemoryManager (Section 15.4.2)
• PhysicalMemoryModule (Section 11.8.10)
• PhysicalMemoryName (Section 15.3.1)
• PhysicalMemoryTypeFilter (Section 15.3.2)
• PinnableMemory (Section 11.8.11)
• ScopedCycleException (Section 14.3.16)
• ScopedMemory (Section 11.8.13)
• SizeEstimator (Section 11.8.14)
• SizeOutOfBoundsException (Section 14.3.17)
• StackedMemory (Section 11.8.15)
• ThrowBoundaryError (Section 14.4.6)
• UnsupportedPhysicalMemoryException (Section 14.3.19)
• VirtualMemoryCharacteristic (Section 11.6.4)
• WaitFreeReadQueue (Section 7.3.5)
• WaitFreeWriteQueue (Section 7.3.6)

3.2.4 Optional Features

Even with modules it is difficult to elliminate all optional features. These features
are either not easy to implement on all platforms or have the potential to cause
a significant performance overhead. Therefore, an application cannot depend on
them to be present in every implementation. However, if an optional facility is
implemented, the application may rely on it to behave as specified here. Those
extensions are illustrated in table 3.1.

Table 3.1: RTSJ Options
Cost enforcement Enables the application to control the processor

utilization of a schedulable.
Processing Group enforce-
ment

Enables the application to control the processor
utilization of a group of schedulables

Processing Group deadline
less than period

Enables the application to specify a processing
group deadline less than the processing group
period

Allocation-rate enforcement
on heap allocation

Enables the application to limit the rate at
which a schedulable creates objects in the heap.

Interrupt Service Routine Provides first level interrupt processing in Java.
Asynchronous Transfer of
Control (ATC)

Enables schedules to be interrupted asyn-
chronously.

3.2. MODULES 27

The ProcessingGroupParameters class is only functional on systems that sup-
port the processing group enforcement option. Cost enforcement, and cost overruns
handlers are only functional on systems that support the cost enforcement option.
If processing group enforcement is supported, ProcessingGroupParameters shall
function as specified. If cost enforcement is supported, cost enforcement, and cost
overrun handlers shall function as specified.

In implementations where the processing group deadline less than period is not
supported, values passed to the constructor for ProcessingGroupParameters and
its setDeadline method are constrained to be equal to the period. If the option is
supported, processing group deadlines less than the period shall be supported and
function as specified.

In implementations where heap allocation rate enforcement is supported, it shall
be implemented as specified. If heap allocation rate enforcement is not supported,
the allocation rate attribute of MemoryParameters shall be checked for validity but
otherwise ignored by the implementation.

First level interrupt handling can only be supported in certain contexts, such as
in kernel space and in a device driver context in user space on systems that support
this feature. Normally user space programs cannot handle interrupts directly. The
class should be present in every system that implements the device module, but
in implementations that do not support first level interrupt handling, the register
should always throw an UnsupportedOperationException.

ATC, if implemented, requires the following classes:
• Timed (Section 8.5.2)
• AsynchronouslyInterruptedException (Section 8.5.1)
• Interruptible (Section 8.4.2)
• InterruptServiceRoutine (Section 12.5.3)
Extensions to this specification are allowed, but shall not require changes to the

javax.realtime package tree.

3.2.5 Deprecated Classes

Classes that have been deprecated as of this specification are not part of any module,
but may be implemented by a full RTSJ implementation. They comprise the following
class:
• PhysicalMemoryManager (Section 15.4.2)
• PhysicalMemoryName (Section 15.3.1)
• PhysicalMemoryTypeFilter (Section 15.3.2)
• POSIXSignalHandler (Section 15.4.1)
• RationalTime (Section 15.4.3)
• RawMemoryAccess (Section 15.4.4)
• RawMemoryFloatAccess (Section 15.4.5)

28 CHAPTER 3. REQUIREMENTS AND CONVENTIONS

• VTMemory (Section 15.4.6)
• VTPhysicalMemory (Section 15.4.7)
• WaitFreeDequeue (Section 7.3.4)

They are documented in fully in Chapter 15.

3.3 Conditionally-Required Facilities

An implementation shall support conditionally-required facilities if the underly-
ing hardware and software permits. This specification includes two conditionally-
required facilities:

POSIXSignal This class shall be implemented on every platform where
POSIX signals are supportedOpen issue: Ethan does not like
POSIX for realtime systems. End of open issue

RawMemory If the system supports address translation, e.g., has an MMU,
and implements the Device Module, the implementation shall
support the memory mapping features of the raw memory ac-
cess classes.

3.3.1 Options for Development Platforms

The following semantics are optional for an RTSJ implementation designed and li-
censed exclusively as a development tool.

• The priority scheduler need not support fixed-priority preemptive scheduling
or the priority inversion avoidance algorithms. This does not excuse an im-
plementation from fully supporting the relevant APIs. It only reduces the
required behavior of the underlying scheduler to the level of the scheduler in
the Java specification extended to at least 28 priorities.
• No semantics constraining timing beyond the requirements of the Java spec-

ifications need be supported. Specifically, garbage collection may delay any
thread without bound and any delay in delivering asynchronously interrupted
exceptions is permissible including never delivering the exception. Note, how-
ever, that if any AIE other than the generic AIE is delivered, it shall meet the
AIE semantics, and all heap-memory-related semantics other than preemption
remain fully in effect. Further, relaxed timing does not imply relaxed sequenc-
ing. For instance, semantics for scoped memory shall be fully implemented.
• The RTSJ semantics that alter standard Java method behavior, such as the

modified semantics for Thread.setPriority and Thread.interrupt, are not
required for a development tool, but such deviations from the RTSJ shall be

3.4. REQUIRED DOCUMENTATION 29

documented, and the implementation shall be able to generate a runtime warn-
ing each time one of these methods deviates from standard RTSJ behavior.

These relaxed requirements set a floor for RTSJ development system tool imple-
mentations. A development tool may choose to implement semantics that are not
required.

3.4 Required Documentation

Each implementation of the RTSJ is required to provide documentation for several
behaviors.

• If schedulers other than the base priority scheduler are available to applica-
tions, the behavior of the scheduler and its interaction with each other sched-
uler as detailed in the Scheduling chapter shall be documented. The list of
classes that constitute schedulable objects for the scheduler, unless that list is
the same as the list of schedulables for the base scheduler, shall be included.
If there are restrictions on use of the scheduler from a non-heap context, these
restrictions shall be documented as well.
• A schedulable that is preempted by a higher-priority schedulable is placed in

the queue for its active priority, at a position determined by the implementa-
tion. If the preempted schedulable is not placed at the front of the appropriate
queue the implementation shall document the algorithm used for such place-
ment. Placement at the front of the queue may be required in a future version
of this specification.
• If the implementation supports cost enforcement, then the implementation is

required to document the granularity at which the current CPU consumption
is updated.
• The implementation shall fully document the behavior of any subclasses of
GarbageCollector.
• An implementation that provides any MonitorControl subclasses not detailed

in this specification shall document their effects, particularly with respect to
priority inversion control and which (if any) schedulers fail to support the new
policy.
• If on losing “boosted” priority due to a priority inversion avoidance algorithm,

the schedulable is not placed at the front of its new queue, the implementation
shall document the queuing behavior.
• For any available scheduler other than the base scheduler, an implementation

shall document how, if at all, the semantics of synchronization differ from the
rules defined for the default PriorityInheritance monitor control policy. It
shall supply documentation for the behavior of the new scheduler with pri-
ority inheritance (and, if it is supported, priority ceiling emulation protocol)

30 CHAPTER 3. REQUIREMENTS AND CONVENTIONS

equivalent to the semantics for the base priority scheduler found in the Syn-
chronization chapter. If there are restrictions on use of the scheduler from a
no-heap context, the documentation shall detail the effect of these restrictions
for each RTSJ API.
• The worst-case response interval between firing an AsyncEvent because of a

bound happening to releasing an associated AsyncEventHandler (assuming
no higher-priority schedulables are runnable) shall be documented for some
reference architecture.
• The interval between firing an AsynchronouslyInterruptedException at an

ATC-enabled thread and first delivery of that exception (assuming no higher-
priority schedulables are runnable) shall be documented for some reference
architecture.
• If cost enforcement is supported, and the implementation assigns the cost of

running finalizers for objects in scoped memory to any schedulable other than
the one that caused the scope’s reference count to drop to zero by leaving the
scope, the rules for assigning the cost shall be documented.
• If cost enforcement is supported, and enforcement (blocked-by-cost-overrun)

can be delayed beyond the enforcement time granularity, the maximum such
delay shall be documented.
• If the implementation of RealtimeSecurity is more restrictive than the re-

quired implementation, or has run-time configuration options, those features
shall be documented.
• For each supported clock, the documentation shall specify whether the res-

olution is settable, and if it is settable the documentation shall indicate the
supported values.
• If an implementation includes any clocks other than the required realtime

clock, their documentation shall indicate in what contexts those clocks can
be used. If they cannot be used in no-heap context, the documentation shall
detail the consequences of passing the clock, or a time that uses the clock to
a no-heap schedulable.

3.5 Conventions

Throughout the RTSJ, when we use the word code, we mean code written in the Java
programming language. When we mention the Java language in the RTSJ, that also
refers to the Java programming language. The use of the term heap in the RTSJ will
refer to the heap used by the runtime of the Java language.

3.6. DEFINITIONS 31

3.6 Definitions

A thread is an instance of the java.lang.Thread class.
A realtime thread is an instance of the javax.realtime.RealtimeThread class.
A Java thread is a thread that is not a realtime thread.
A no-heap realtime thread is an instance of the javax.realtime.NoHeapRealtime-

Thread class.
An event handler is an instance of the javax.realtime.AbstractAsyncEventHand-
ler class.
The term schedulable refers to any object that is of type Schedulable, and is rec-
ognized as a dispatchable entity by the base scheduler. The base scheduler’s set
of schedulables comprises instances of RealtimeThread and AsyncEventHandler.
Other schedulers may support a different set of schedulables, but this specification
only defines the behavior of the base scheduler so the term schedulable should be
understood as “schedulable by the base scheduler.”

32 CHAPTER 3. REQUIREMENTS AND CONVENTIONS

Chapter 4

Conventional Java Classes and
Language

Though compatibility with conventional Java, i.e., most other Java runtime envi-
ronments defined through the Java Community Process, is the first concern of this
specification, there are several several cases where being able to meet realtime con-
straints requires a tightening of the semantics of the virtual machine and alter the
sematics of two key classes: java.lang.Thread and java.lang.ThreadGroup.

• The sematics of set and get methods for priority in Thread differ for realtime
threads.
• The ThreadGroup class’s behavior differs with respect to realtime threads.
• The behavior of the ThreadGroup-related methods in Thread differ when they

are applied to realtime threads.

This specification introduces a new types of concurrent activity called an asyn-
chronous event handler. Hence, the mean of current thread has a different interpreta-
tion than in standard java. Finally, this specification places additional requirements
on synchronization and garbage collection.

4.1 Priority

The methods setPriority and getPriority in java.lang.Thread are final.
The realtime thread classes are consequently not able to override them and mod-
ify their behavior to suit the requirements of the RTSJ scheduler. To bring the
java.lang.Thread class in line with its realtime subclasses, the semantics of the
getPriority and setPriority methods must be modified.

33

34 CHAPTER 4. CONVENTIONAL JAVA CLASSES AND LANGUAGE

4.1.1 Setting Priority

The setPriority method has the following additional requirements.

• Use of Thread.setPriority() shall not affect the correctness of the priority
inversion avoidance algorithms controlled by PriorityCeilingEmulation and
PriorityInheritance. Changes to the base priority of a realtime thread as
a result of invoking Thread.setPriority() are governed by semantics from
Chapter 7 on Synchronization.
• realtime threads may use setPriority to apply the expanded range of prior-

ities available to realtime threads. If a realtime thread’s priority parameters
object is not shared, setPriority behaves effectively as if it included the
following code snippet:

1 PriorityParameters pp = getSchedulingParameters();
2 pp.setPriority(newPriority);

• If the realtime thread’s priority parameters object is shared with other schedu-
lables, setPriority must give the thread an unshared PriorityParameters

instance allocated in the same memory area as the realtime thread object and
containing the new priority value.
• setPriority throws IllegalArgumentException if the thread is a realtime

thread and the new priority is outside the range allowed by the realtime
thread’s scheduler.
• setPriority throws ClassCastException if the thread is a realtime thread

and its current scheduling parameters object is not an instance of Priority-
Parameters.

4.1.2 Getting Priority

The getPriority method has the following additional requirements.

• When used on a realtime thread, getPriority behaves effectively as if it
included the following code snippet:

1 (PriorityParameters)t.getSchedulingParameters()).getPriority()};

• If the scheduling parameters are not of type PriorityParameters, then a
ClassCastException is thrown.

All supported monitor control policies must apply to Java threads as well as to all
schedulables.

4.2. THREAD GROUPS 35

4.2 Thread Groups

Thread groups are rooted at a base ThreadGroup object which may be created in
heap or immortal memory. All thread group objects hold references to all their
member threads, and subgroups, and a reference to their parent group. Since heap
and immortal memory can not hold references to scoped memory, it follows that
a thread group can never be allocated in scoped memory. It then follows that no
thread allocated in scoped memory may be referenced from any thread group, and
consequently such threads are not part of any thread group and will hold a null
thread group reference. Similarly, a NoHeapRealtimeThread can not be a member
of a heap allocated thread group.

1. Realtime threads with null thread groups are not included in any operation
on any thread group. This applies to enumeration and interruption, as well
as the deprecated actions stop, resume, and suspend. However, when the
current thread is a realtime thread with a null thread group:
• The Thread.enumerate class method returns the integer 1, and populates

its array argument with the current realtime thread.
• Thread.activeCount returns 1.
• Thread.getThreadGroup returns null in all cases, not only when the

thread has terminated.
2. A Java thread (not a realtime thread) that is created from a realtime thread

without an explicit thread group and is not assigned a thread group by the
security manager inherits the thread group of the realtime thread, if it has
one; otherwise an attempt is made to add it to the application root thread
group. The constructor shall throw a SecurityException if the Java thread
is not permitted to use the application root thread group.

3. The thread group of a Java thread created by an asynchronous event handler
is assigned as if it was created by a realtime thread without a thread group
(as described in 2. above)

4. A thread group cannot be created in scoped memory. The constructor shall
throw an IllegalAssignmentError.

5. Setting a maximum priority on a thread group, either explicity or via it parent,
has no influence on the realtime threads in that group.

6. Except as specified previously, realtime threads have the same ThreadGroup

membership rules as the parent Thread class.

4.3 Current Thread

In Java, the currently executing thread can always be determined by calling the
static method Thread.currentThread(). In the RTSJ, there are two types of sched-

36 CHAPTER 4. CONVENTIONAL JAVA CLASSES AND LANGUAGE

ulable entities: threads and asynchronous event handlers. The latter may be mapped
dynamically by the real-time JVM onto the underlying thread model. The method
Thread.currentThread() when called from an asynchronous event handler will re-
turn the current thread that is being used as the current execution engine for that
event handler. The program should not rely of this being constant for the lifetime
of the program. It can rely on it being constant for the current release of the han-
dler (see 6.2 for the definition of a release). However, it is not recommended that
the program should perform any operations of this underlying thread as it may an
impact beyond that of the current event handler.

4.4 Java Memory Model

Some aspects of the Java Memory Model must be tightened for this specification, in
particular with regards to interactions with native code or when using the Device
Module. A conforming implementation must ensure that volatile loads and stores,
raw memory operations (see 12.2.1), and RawBufferFactory barrier methods are all
ordered in a way that is consistent with respect to native code or hardware devices
using platform-native memory coherence protocols to access raw memory or raw
byte buffers shared with the virtual machine.

Open issue: Do we still want to say something about happens-before and JNI
here? I think we probably do, but it seems Really Hard to get right. –elb End of
open issue

4.5 InterruptedException

The interruptible methods in the standard libraries (such as Object.wait, Thread.sleep,
and Thread.join) have their contract expanded slightly such that they will respond
to interruption not only when the interrupt method is invoked on the current thread,
but also, for schedulables, when executing within a call to AIE.doInterruptible

and that AIE is fired. See Chapter 8 on Asynchrony.

4.6 System Properties

System properties and their String values allocated during system initialization
shall be allocated in immortal memory.

4.7. GARBAGE COLLECTION 37

4.7 Garbage Collection

Garbage collection is an important safety feature of the Java language and runtime
environment. Unfortunately, the garbage collection process can interfere with a
realtime program’s ability to always meet its timing deadlines. This specification
provides two main means of circumventing this problem: using a realtime garbage
collection or using the memory area module as an alternative to garbage collection
for realtime code. Additionally, an implementation may ignore the problem for an
implementation meant as a development system or for systems that choose not to
provide realtime guarantees. In any case, an implementation must document what
realtime guarantees it gives and which method it uses to do so.

4.7.1 Realtime Garbage Collections

Industrial realtime garbage collectors are available with varying approaches to pro-
viding realtime response. Though new collectors will undoubtably be developed,
all current ones use a variant of the mark-and-sweep algorithm. In all cases, the
collectors are incremental: realtime response is obtained by limiting how much of a
collection cycle is done each time the collector runs.

4.7.1.1 Thread-Based Collectors

A realtime thread-based collector is an incremental garbage collector that has its
own thread of control and runs at intervals. In this case, the garbage collector
needs to be scheduled to ensure that it runs often enough and long enough at each
interval to recycle disgarded objects fast enough to keep up with allocations. There
should also be some maximum time after which the the garbage collector can be
interrupted.

4.7.1.2 Allocation-Based Collectors

A realtime allocation-based garbage collector does not have its own thread of control.
Instead, some interval of garbage collection work is dones at each allocation. This
work is generally a function of the size of the object being allocated. This work
becomes part of the execution time of the program. Again, there should be some
maximum time after which the the garbage collector can be interrupted.

4.7.1.3 Alternatives to Garbage Collection

This specification provide an Alternate Memory Management Module for managing
memory without garbage collection. An implementation of this specification may
provide realtime response by requiring appllications to use that module instead of

38 CHAPTER 4. CONVENTIONAL JAVA CLASSES AND LANGUAGE

providing a realtime garbage collector. This means that all realtime threads would
have to run above the priority of the garbage collector and all communication with
nonrealtime threads would have to use some nonblocking protocol.

4.7.1.4 Developer Implementation

An implementation that simply provides all the API but no realtime guarentees is
also permitted. This is useful as a development environment. Also, many of the
APIs are useful event in a convention Java implementation.

Chapter 5

Realtime Threads

This section describes the two realtime thread classes. These classes provide for the
creation of

• realtime threads that have more precise scheduling semantics than java.-

lang.Thread, and
• realtime threads that have no dependency on the heap.

The RealtimeThread class extends java.lang.Thread. The ReleaseParamet-

ers, SchedulingParameters, and MemoryParameters objects passed to the Real-

timeThread constructor allow the temporal and processor demands of the thread to
be communicated to the scheduler. The PhasingPolicy class defines the relation-
ship between the threads start time and its first release time when the start time is
in the past.

The NoHeapRealtimeThread class extends RealtimeThread. A NoHeapReal-

timeThread is not allowed to allocate or even reference objects from the Java heap,
and can thus safely execute in preference to the garbage collector.

5.1 Overview

The RTSJ provides two types of objects which implement the Schedulable interface:
realtime threads and asynchronous event handlers. This chapter defines the facilities
that are available to realtime threads. In many cases these facilities are also available
to asynchronous event handlers. In particular:

• the default scheduler must support the scheduling of both realtime threads
and asynchronous event handlers;
• realtime threads and asynchronous event handlers are allowed to enter into

memory areas and consequently they have associated scope stacks;
• the flow of control of realtime threads and asynchronous event handlers are

affected by the RTSJ asynchronous transfer of control facilities;

39

40 CHAPTER 5. REALTIME THREADS

Where the semantics apply to both realtime threads and asynchronous event
handlers, the term schedulable will be used.

5.2 Semantics

1. Garbage collection executing in the context of a Java thread must not in itself
block execution of a no-heap thread with a higher execution eligibility; however
application locks work as specified even when the lock causes synchronization
between a heap-using thread and a no-heap thread.

2. Each realtime thread has an attribute which indicates whether an Asynchron-

ouslyInterruptedException is pending. This attribute is set when a call
to RealtimeThread.interrupt() is made on the associated realtime thread,
and when an asynchronously interrupted exception’s fire method is invoked
between the time the realtime thread has entered that exception’s doInt-

erruptible method, and before it has return from doInterruptible. (See
Chapter 8 on Asynchrony.)

3. A call to RealtimeThread.interrupt() generates the system’s generic Asyn-
chronouslyInterruptedException. (See Chapter 8 on Asynchrony.)

4. The RealtimeThread.waitForNextPeriod, RealtimeThread.waitForNext-
Release, RealtimeThread.waitForNextPeriodInterruptible and Realtime-

Thread.waitForNextReleaseInterruptible methods are for use by realtime
threads that have periodic or aperiodic release parameters. In the absence
of any deadline miss or cost overrun, or an interrupt in the case of wait-

ForNextPeriodInterruptible and waitForNextReleaseInterruptible, the
methods return when the realtime thread’s next period/release is due.

5. In the presence of a cost overrun or a deadline miss, the behavior of wait-

ForNextPeriod and waitForNextRelease, and their interruptible versions, is
governed by the thread’s scheduler.

6. The first release time of a realtime thread is governed by: the value of any
start time in its associated ReleaseParameter object and the time at which
the RealtimeThread.start method is called (or the RealtimeThread.start-
Periodic method is called and the value of any PhasingPolicy parameter
passed to it).

7. Instances of RealtimeThread that are created in scoped memory and in-
stances of NoHeapRealtimeThread do not have conventional references to
thread groups nor do thread groups have conventional references to these
threads. For the purposes of this version of the specification, those references
are null.

8. Realtime threads with null thread groups handle uncaught exceptions as fol-
lows:

5.2. SEMANTICS 41

• when the exception is a subclass of ThreadDeath, the thread simply ter-
minates,
• otherwise the thread prints a stack trace of the exception to System.err

before it terminates.
9. System-related termination activity (such as execution of finalizers for scoped

objects in scoped that become unreferenced) triggered by termination of a
realtime thread is not subject to cost enforcement or deadline miss detection.

42 CHAPTER 5. REALTIME THREADS

5.3 Enumerations

5.3.1 PhasingPolicy

Inheritance

java.lang.Object
java.lang.Enum

javax.realtime.PhasingPolicy

This class defines a set of constants that specify the supported policies for starting
a thread or periodic timer, when it is started later than the assigned absolute time.
The following table specifies the effective start time (that is, the first release time of
a periodic real-time thread). The algorithm is the same for a periodic timer, where
the first firing is equivalent to the first release.

The Effects of the Phasing Policy on the First Release
of a Realtime Thread with Periodic Parameters

5.3. ENUMERATIONS 43

STRICT
PHASING

ADJUST
FORWARD

ADJUST
BACKWARD

ADJUST TO
START

Relative Time The time of start
method invoca-
tion plus start

time.

The time of start
method invoca-
tion plus start

time.

The time of start
method invoca-
tion plus start

time.

The time of start
method invoca-
tion plus start

time.
Absolute Time,
earlier than call
to start

The start

method throws
an exception.

All releases
before the time
start is called
are ignored. The
first release is at
the start time
plus the small-
est multiple of
period whose
time is after the
time start was
called.

The first release
occurs immedi-
ately and the
next release is
at the start time
plus the small-
est multiple of
period whose
time is after the
time start was
called.

Release imme-
diately and set
next release
time to be at
the time the
start method
was invoked plus
period.

Absolute Time,
later than call to
start

First release is at
time passed to
start.

First release is at
time passed to
start.

First release is at
time passed to
start.

First release is at
time passed to
start.

Without Time First release is
at time of start
method invoca-
tion

First release is
at time of start
method invoca-
tion

First release is
at time of start
method invoca-
tion

First release is
at time of start
method invoca-
tion

Open issue: Clarify last sentence before table. End of open issue
Available since RTSJ version RTSJ 2.0

5.3.1.1 Enumeration Constants

5.3.1.1.1 STRICT PHASING
public static final STRICT PHASING

5.3.1.1.2 ADJUST FORWARD
public static final ADJUST FORWARD

44 CHAPTER 5. REALTIME THREADS

5.3.1.1.3 ADJUST BACKWARD
public static final ADJUST BACKWARD

5.3.1.1.4 ADJUST TO START
public static final ADJUST TO START

5.3.1.2 Constructors

5.3.1.3 Methods

5.3.1.3.1 values

Signature
public static
javax.realtime.PhasingPolicy[] values()

5.3.1.3.2 valueOf(String)

Signature
public static
javax.realtime.PhasingPolicy valueOf(String name)

5.4. CLASSES 45

5.4 Classes

5.4.1 NoHeapRealtimeThread

Inheritance
java.lang.Object

java.lang.Thread
javax.realtime.RealtimeThread

javax.realtime.NoHeapRealtimeThread
A NoHeapRealtimeThread is a specialized form of RealtimeThread1. Because an
instance of NoHeapRealtimeThread may immediately preempt any implemented
garbage collector, logic contained in its run() is never allowed to allocate or reference
any object allocated in the heap. At the byte-code level, it is illegal for a reference
to an object allocated in heap to appear on a no-heap realtime thread’s operand
stack.

Thus, it is always safe for a NoHeapRealtimeThread to interrupt the garbage
collector at any time, without waiting for the end of the garbage collection cycle
or a defined preemption point. Due to these restrictions, a NoHeapRealtimeThread

object must be placed in a memory area such that thread logic may unexceptionally
access instance variables and such that Java methods on Thread (e.g., enumerate
and join) complete normally except where execution would cause access violations.
The constructors of NoHeapRealtimeThread require a reference to ScopedMemory2

or ImmortalMemory3.
When the thread is started, all execution occurs in the scope of the given memory

area. Thus, all memory allocation performed with the new operator is taken from
this given area.

5.4.1.1 Constructors

5.4.1.1.1 NoHeapRealtimeThread(SchedulingParameters, ReleaseParam-
eters, MemoryParameters, MemoryArea, ProcessingGroupParameters,
SchedulableSizingParameters, Runnable)

Signature

1Section 5.4.2
2Section 11.8.13
3Section 11.8.3

46 CHAPTER 5. REALTIME THREADS

public

NoHeapRealtimeThread(SchedulingParameters scheduling, ReleaseParameters release, MemoryParameters memory, MemoryArea area, ProcessingGroupParameters group, SchedulableSizingParameters sizing, Runnable logic)

Parameters
scheduling The SchedulingParameters4 associated with this (and possibly
other instances of Schedulable5). If scheduling is null, the default is a
clone of the creator’s scheduling parameters created in the same memory area
as the new NoHeapRealtimeThread.
release The ReleaseParameters6 associated with this (and possibly other
instances of Schedulable7). When release is null, then it defaults to a
clone of the creator’s release parameters created in the same memory area as
the new NoHeapRealtimeThread.
memory The MemoryParameters8 associated with this (and possibly other
instances of Schedulable9). If memory is null, the new NoHeapRealtime-

Thread will have a null value for its memory parameters, and the amount or
rate of memory allocation is unrestricted.
area The MemoryArea10 associated with this. When area is null, an name
is thrown.
group The ProcessingGroupParameters11 associated with this (and possibly
other instances of Schedulable12). If null, the new NoHeapRealtimeThread

will not be associated with any processing group.
sizing The SchedulableSizingParameters13 associated with this (and pos-
sibly other instances of Schedulable14. When sizing is null, this NoHeap-

RealtimeThread will reserve no space for preallocated exceptions and implementation-
specific values will be set to their implementation-defined defaults.
logic The Runnable object whose run() method will serve as the logic for the
new NoHeapRealtimeThread. When logic is null, the run() method in the
new object will serve as its logic.

Throws
IllegalArgumentException when the parameters are not compatible with the as-
sociated scheduler, if area is null, if area is heap memory, if area, schedul-

4Section 6.5.10
5Section 6.4.2
6Section 6.5.8
7Section 6.4.2
8Section 11.8.8
9Section 6.4.2

10Section 11.8.7
11Section 6.5.7
12Section 6.4.2
13Section 11.8.12
14Section 6.4.2

5.4. CLASSES 47

ing, release, memory or group is allocated in heap memory, if this is in heap
memory, or if logic is in heap memory.
IllegalAssignmentError when the new NoHeapRealtimeThread instance can-
not hold references to non-null values of the scheduling, release, memory
and group, or if those parameters cannot hold a reference to the new No-

HeapRealtimeThread. Also when area or logic cannot be stored in the new
RealtimeThread object.

Create a realtime thread with the given characteristics and a Runnable. The thread
group of the new thread is (effectively) null.

The newly-created no-heap realtime thread is associated with the scheduler in
effect during execution of the constructor.

The newly-created realtime thread inherits the affinity of its creator unless it
was created by a Java thread or an unbound asynchronous event handler. In these
cases, the affinity is that which is returned from Affinity.getNoHeapDefault()15.
If the newly-created realtime thread has ProcessingGroupParameters16 and the
intersection of the group’s affinity and the newly-created realtime thread’s affinity
(as specified above) is null, then the newly-created realtime thread’s affinity is set
to that which is returned by Affinity.getProcessingGroupDefault17.

Available since RTSJ version RTSJ 2.0

5.4.1.1.2 NoHeapRealtimeThread(SchedulingParameters, ReleaseParam-
eters, MemoryArea, Runnable)

Signature

public

NoHeapRealtimeThread(SchedulingParameters scheduling, ReleaseParameters release, MemoryArea area, Runnable logic)

Create a no-heap realtime thread with the given SchedulingParameters18, Re-

leaseParameters19, MemoryArea20, and a specified Runnable and default values for
all other parameters.

This constructor is equivalent to NoHeapRealtimeThread(scheduling, release,

null, area, null, null, logic).

15Section 6.5.1.2.10
16Section 6.5.7
17Section 6.5.1.2.11
18Section 6.5.10
19Section 6.5.8
20Section 11.8.7

48 CHAPTER 5. REALTIME THREADS

Available since RTSJ version RTSJ 2.0

5.4.1.1.3 NoHeapRealtimeThread(SchedulingParameters, ReleaseParam-
eters, MemoryArea)

Signature

public

NoHeapRealtimeThread(SchedulingParameters scheduling, ReleaseParameters release, MemoryArea area)

Create a no-heap realtime thread with the given SchedulingParameters21, Re-

leaseParameters22 and MemoryArea23, and default values for all other parameters.
This constructor is equivalent to NoHeapRealtimeThread(scheduling, release,

null, area, null, null, null).

5.4.1.1.4 NoHeapRealtimeThread(SchedulingParameters, MemoryArea,
Runnable)

Signature

public

NoHeapRealtimeThread(SchedulingParameters sp, MemoryArea area, Runnable logic)

throws IllegalArgumentException

Create a realtime thread with the given SchedulingParameters24, MemoryArea25

and a specified Runnable and default values for all other parameters.

This constructor is equivalent to RealtimeThread(scheduling, null, null,

area, null, null, logic).

Available since RTSJ version RTSJ 2.0

21Section 6.5.10
22Section 6.5.8
23Section 11.8.7
24Section 6.5.10
25Section 11.8.7

5.4. CLASSES 49

5.4.1.1.5 NoHeapRealtimeThread(SchedulingParameters, MemoryArea)

Signature

public

NoHeapRealtimeThread(SchedulingParameters scheduling, MemoryArea area)

Create a realtime thread with the given SchedulingParameters26 and MemoryArea27

and default values for all other parameters.
This constructor is equivalent to NoHeapRealtimeThread(scheduling, null,

null, area, null, null, null).

5.4.1.2 Methods

5.4.1.2.1 start

Signature
public
void start()

See Section RealtimeThread.start())

5.4.1.2.2 startPeriodic(PhasingPolicy)

Signature
public
void startPeriodic(PhasingPolicy phasingPolicy)

throws LateStartException

See Section RealtimeThread.startPeriodic(PhasingPolicy))

Available since RTSJ version RTSJ 2.0

26Section 6.5.10
27Section 11.8.7

50 CHAPTER 5. REALTIME THREADS

5.4.2 RealtimeThread

Inheritance
java.lang.Object

java.lang.Thread
javax.realtime.RealtimeThread

Interfaces
BoundSchedulable

Class RealtimeThread extends Thread and adds access to realtime services such
as asynchronous transfer of control, non-heap memory, and advanced scheduler ser-
vices.

As with java.lang.Thread, there are two ways to create a usable Realtime-

Thread.
• Create a new class that extends RealtimeThread and override the run() method

with the logic for the thread.
• Create an instance of RealtimeThread using one of the constructors with a
logic parameter. Pass a Runnable object whose run() method implements
the logic of the thread.

5.4.2.1 Constructors

5.4.2.1.1 RealtimeThread(SchedulingParameters, ReleaseParameters, Mem-
oryParameters, MemoryArea, ProcessingGroupParameters, Schedulable-
SizingParameters, TimeDispatcher, Runnable)

Signature

public

RealtimeThread(SchedulingParameters scheduling, ReleaseParameters release, MemoryParameters memory, MemoryArea area, ProcessingGroupParameters group, SchedulableSizingParameters sizing, TimeDispatcher dispatcher, Runnable logic)

Parameters
scheduling The SchedulingParameters28 associated with this (And possibly
other instances of Schedulable29). If scheduling is null and the creator is a

28Section 6.5.10
29Section 6.4.2

5.4. CLASSES 51

schedulable, SchedulingParameters30 is a clone of the creator’s value created
in the same memory area as this. If scheduling is null and the creator is a
Java thread, the contents and type of the new SchedulingParameters object
is governed by the associated scheduler.
release The ReleaseParameters31 associated with this (and possibly other
instances of Schedulable32). If release is null the new RealtimeThread

will use a clone of the default ReleaseParameters for the associated scheduler
created in the memory area that contains the RealtimeThread object.
memory The MemoryParameters33 associated with this (and possibly other
instances of Schedulable34). If memory is null, the new RealtimeThread

receives null value for its memory parameters, and the amount or rate of
memory allocation for the new thread is unrestricted.
area The MemoryArea35 associated with this. If area is null, the initial
memory area of the new RealtimeThread is the current memory area at the
time the constructor is called.
group The ProcessingGroupParameters36 associated with this (and possibly
other instances of Schedulable37). If null, the new RealtimeThread will not
be associated with any processing group.
sizing The SchedulableSizingParameters38 associated with this (and possi-
bly other instances of Schedulable39. If sizing is null, this RealtimeThread
will reserve no space for preallocated exceptions and implementation-specific
values will be set to their implementation-defined defaults.
dispatcher The TimeDispatcher40 to use for realtime sleep and determining
the period of a periodic thread.
logic The Runnable object whose run() method will serve as the logic for the
new RealtimeThread. If logic is null, the run() method in the new object
will serve as its logic.

Throws

IllegalArgumentException when the parameters are not compatible with the
associated scheduler.
IllegalAssignmentError when the new RealtimeThread instance cannot hold

30Section 6.5.10
31Section 6.5.8
32Section 6.4.2
33Section 11.8.8
34Section 6.4.2
35Section 11.8.7
36Section 6.5.7
37Section 6.4.2
38Section 11.8.12
39Section 6.4.2
40Section 10.5.5

52 CHAPTER 5. REALTIME THREADS

a reference to non-null values of scheduling release memory and group, or
if those parameters cannot hold a reference to the new RealtimeThread. Also
when the new RealtimeThread instance cannot hold a reference to non-null
values of area or logic. Also when area is null and the new RealtimeThread

instance cannot hold a reference to the default initial memory area.
Create a realtime thread with the given characteristics and a specified Runnable.
The thread group of the new thread is inherited from its creator unless the newly-
created realtime thread is allocated in scoped memory, then its thread group is
(effectively) null.

The newly-created realtime thread is associated with the scheduler in effect dur-
ing execution of the constructor.

The newly-created realtime thread inherits the affinity of its creator unless it
was created by a Java thread or an unbound asynchronous event handler. In these
cases, the affinity is that which is returned from Affinity.getHeapDefault()41.
If the newly-created realtime thread has ProcessingGroupParameters42 and the
intersection of the group’s affinity and the newly-created realtime thread’s affinity
(as specified above) is null, then the newly-created realtime thread’s affinity is set
to that which is returned by Affinity.getProcessingGroupDefault43.

5.4.2.1.2 RealtimeThread(SchedulingParameters, ReleaseParameters, Mem-
oryParameters, MemoryArea, ProcessingGroupParameters, Schedulable-
SizingParameters, Runnable)

Signature

public

RealtimeThread(SchedulingParameters scheduling, ReleaseParameters release, MemoryParameters memory, MemoryArea area, ProcessingGroupParameters group, SchedulableSizingParameters sizing, Runnable logic)

Create a realtime thread with the given SchedulingParameters44, ReleaseParam-
eters45, MemoryParameters46, MemoryArea47 ProcessingGroupParameters48, Schedu-
lablesSizingParameters49, a specified Runnable, and default values for all other
parameters.

41Section 6.5.1.2.8
42Section 6.5.7
43Section 6.5.1.2.11
44Section 6.5.10
45Section 6.5.8
46Section 11.8.8
47Section 11.8.7
48Section 6.5.7
49Section ??

5.4. CLASSES 53

This constructor is equivalent to RealtimeThread(scheduling, release, mem-

ory, area, group, sizing, null, logic).

Available since RTSJ version RTSJ 2.0 Create a realtime thread with
the given characteristics and a specified Runnable. The thread group of
the new thread is inherited from its creator unless the newly-created
realtime thread is allocated in scoped memory, then its thread group is
(effectively) null.

5.4.2.1.3 RealtimeThread(SchedulingParameters, ReleaseParameters, Mem-
oryArea, Runnable)

Signature

public

RealtimeThread(SchedulingParameters scheduling, ReleaseParameters release, MemoryArea area, Runnable logic)

Create a realtime thread with the given SchedulingParameters50, ReleaseParam-
eters51, MemoryArea52 and a specified Runnable and default values for all other
parameters.

This constructor is equivalent to RealtimeThread(scheduling, release, null,

area, null, null, null, logic).

Available since RTSJ version RTSJ 2.0

5.4.2.1.4 RealtimeThread(SchedulingParameters, ReleaseParameters, Mem-
oryArea)

Signature

public

RealtimeThread(SchedulingParameters scheduling, ReleaseParameters release, MemoryArea area)

50Section 6.5.10
51Section 6.5.8
52Section 11.8.7

54 CHAPTER 5. REALTIME THREADS

Create a realtime thread with the given SchedulingParameters53, ReleaseParam-
eters54 and MemoryArea55 and default values for all other parameters.

This constructor is equivalent to RealtimeThread(scheduling, release, null,

area, null, null, null, null).

Available since RTSJ version RTSJ 2.0

5.4.2.1.5 RealtimeThread(SchedulingParameters, ReleaseParameters, Runnable)

Signature

public

RealtimeThread(SchedulingParameters scheduling, ReleaseParameters release, Runnable logic)

Create a realtime thread with the given SchedulingParameters56, ReleaseParam-
eters57 and a specified Runnable and default values for all other parameters.

This constructor is equivalent to RealtimeThread(scheduling, release, null,

null, null, nll, null, logic).

Available since RTSJ version RTSJ 2.0

5.4.2.1.6 RealtimeThread(SchedulingParameters, ReleaseParameters)

Signature

public

RealtimeThread(SchedulingParameters scheduling, ReleaseParameters release)

Create a realtime thread with the given SchedulingParameters58 and Release-

Parameters59 and default values for all other parameters.
This constructor is equivalent to RealtimeThread(scheduling, release, null,

null, null, null, null).

53Section 6.5.10
54Section 6.5.8
55Section 11.8.7
56Section 6.5.10
57Section 6.5.8
58Section 6.5.10
59Section 6.5.8

5.4. CLASSES 55

5.4.2.1.7 RealtimeThread(SchedulingParameters, TimeDispatcher)

Signature

public

RealtimeThread(SchedulingParameters scheduling, TimeDispatcher dispatcher)

Create a realtime thread with the given SchedulingParameters60 and TimeDis-

patcher61 and default values for all other parameters. This constructor is equiv-
alent to RealtimeThread(scheduling, null, null, null, null, dispatcher,

null, null).

Available since RTSJ version RTSJ 2.0

5.4.2.1.8 RealtimeThread(SchedulingParameters)

Signature

public

RealtimeThread(SchedulingParameters scheduling)

Create a realtime thread with the given SchedulingParameters62 and default values
for all other parameters. This constructor is equivalent to RealtimeThread(scheduling,
null, null, null, null, null, null, null).

5.4.2.1.9 RealtimeThread

Signature

public

RealtimeThread()

Create a realtime thread with default values for all parameters. This constructor is
equivalent to RealtimeThread(null, null, null, null, null, null, null).

60Section 6.5.10
61Section 10.5.5
62Section 6.5.10

56 CHAPTER 5. REALTIME THREADS

5.4.2.2 Methods

5.4.2.2.1 currentRealtimeThread

Signature
public static
javax.realtime.RealtimeThread currentRealtimeThread()

Throws
ClassCastException if the current execution context is that of a Java thread.

Returns
A reference to the current instance of RealtimeThread.

Gets a reference to the current instance of RealtimeThread.
It is permissible to call currentRealtimeThread when control is in an Async-

EventHandler63. The method will return a reference to the RealtimeThread sup-
porting that release of the async event handler.

5.4.2.2.2 getCurrentMemoryArea

Signature
public static
javax.realtime.MemoryArea getCurrentMemoryArea()

Returns
A reference to the MemoryArea64 object representing the current allocation
context.

Return a reference to the MemoryArea65 object representing the current allocation
context.

If this method is invoked from a Java thread it will return that thread’s current
memory area (heap or immortal.)

5.4.2.2.3 getInitialMemoryAreaIndex

Signature
public static
int getInitialMemoryAreaIndex()

Throws

63Section 8.6.4
64Section 11.8.7
65Section 11.8.7

5.4. CLASSES 57

IllegalStateException when the memory area at the initial memory area index,
in the current scope stack is not the initial memory area.
ClassCastException when the current execution context is that of a Java thread.

Returns
The index into the initial memory area stack of the initial memory area of the
current RealtimeThread.

Returns the position in the initial memory area stack, of the initial memory area
for the current realtime thread. Memory area stacks may include inherited stacks
from parent threads. The initial memory area of a RealtimeThread or AsyncEvent-
Handler is the memory area given as a parameter to its constructor. The index in
the initial memory area stack of the initial memory area is a fixed property of the
realtime thread.

If the current memory area stack of the current realtime thread is not the original
stack and the memory area at the initial memory area index is not the initial memory
area, then IllegalStateException is thrown.

5.4.2.2.4 getMemoryAreaStackDepth

Signature
public static
int getMemoryAreaStackDepth()

Throws
ClassCastException when the current execution context is that of a Java thread.

Returns
The size of the stack of MemoryArea66 instances.

Gets the size of the stack of MemoryArea67 instances to which the current schedulable
has access.

Note: The current memory area (getCurrentMemoryArea()68) is found at mem-
ory area stack index of getMemoryAreaStackDepth() - 1.

5.4.2.2.5 getOuterMemoryArea(int)

Signature
public static
javax.realtime.MemoryArea getOuterMemoryArea(int index)

Parameters
index The offset into the memory area stack.

66Section 11.8.7
67Section 11.8.7
68Section 5.4.2.2.2

58 CHAPTER 5. REALTIME THREADS

Throws

ClassCastException when the current execution context is that of a Java thread.
MemoryAccessError when the memory area is allocate in heap memory and
the caller is a no-heap schedulable.

Returns

The instance of MemoryArea69 at index or null if the given value does not
correspond to a position in the stack.

Gets the instance of MemoryArea70 in the memory area stack at the index given. If
the given index does not exist in the memory area scope stack then null is returned.

Note: The current memory area (getCurrentMemoryArea()71) is found at mem-
ory area stack index getMemoryAreaStackDepth() - 1, so getCurrentMemoryArea()
== getOutMemoryArea(getMemoryAreaStackDepth() - 1).

5.4.2.2.6 sleep(HighResolutionTime)

Signature

public static
void sleep(HighResolutionTime time)

throws InterruptedException

A sleep method that is controlled by the realtime clock.
Equivalent to sleep(Clock.getRealtimeClock(), time)

5.4.2.2.7 waitForNextPeriod

Signature

public static
boolean waitForNextPeriod()

Throws

IllegalThreadStateException when this does not have a reference to a Re-

leaseParameters72 type of PeriodicParameters73.
ClassCastException when the current thread is not an instance of Realtime-
Thread.

Returns

True when the thread is not in a deadline miss condition. Otherwise the return
value is governed by this thread’s scheduler.

69Section 11.8.7
70Section 11.8.7
71Section 5.4.2.2.2
72Section 6.5.8
73Section 6.5.4

5.4. CLASSES 59

Causes the current realtime thread to delay until the beginning of the next period.
Used by threads that have a reference to a ReleaseParameters74 type of Period-
icParameters75 to block until the start of each period. The first period starts when
this thread is first released. Each time it is called this method will block until the
start of the next period unless the thread is in a deadline miss condition. In that
case the operation of waitForNextPeriod is controlled by this thread’s scheduler.
(See PriorityScheduler76.)

Available since RTSJ version RTSJ 1.0.1 Changed from an instance method
to a static method.

5.4.2.2.8 waitForNextPeriodInterruptible

Signature

public static
boolean waitForNextPeriodInterruptible()

throws InterruptedException

Throws

InterruptedException when the thread is interrupted by interrupt()77 or Asyn-
chronouslyInterruptedException.fire()78 during the time between call-
ing this method and returning from it.
An interrupt during waitForNextPeriodInterruptible is treated as a release
for purposes of scheduling. This is likely to disrupt proper operation of the
periodic thread. The periodic behavior of the thread is unspecified until the
state is reset by altering the thread’s periodic parameters.
ClassCastException when the current thread is not an instance of Realtime-
Thread.
IllegalThreadStateException when this does not have a reference to a Re-

leaseParameters79 type of PeriodicParameters80.

Returns

True when the thread is not in a deadline miss condition. Otherwise the return
value is governed by this thread’s scheduler.

74Section 6.5.8
75Section 6.5.4
76Section 6.5.6
77Section 5.4.2.2.21
78Section 8.5.1.3.5
79Section 6.5.8
80Section 6.5.4

60 CHAPTER 5. REALTIME THREADS

The waitForNextPeriodInterruptible() method is a duplicate of waitForNextPe-
riod()81 except that waitForNextPeriodInterruptible is able to throw Inter-

ruptedException.

Used by threads that have a reference to a ReleaseParameters82 type of Peri-
odicParameters83 to block until the start of each period. The first period starts
when this thread is first released. Each time it is called this method will block
until the start of the next period unless the thread is in a deadline miss condition.
In that case the operation of waitForNextPeriodInterruptible is controlled by
this thread’s scheduler. (See PriorityScheduler84.)

Available since RTSJ version RTSJ 1.0.1

5.4.2.2.9 waitForNextRelease

Signature

public static
boolean waitForNextRelease()

Throws

IllegalThreadStateException when this does not have a reference to a Re-

leaseParameters85 type of AperiodicParameters86.
ClassCastException when the current thread is not an instance of Realtime-
Thread.

Returns

True when the thread is not in a deadline miss condition. Otherwise the return
value is governed by this thread’s scheduler.

Causes the current realtime thread to delay until the next release. (See release()87.)
Used by threads that have a reference to aperiodic ReleaseParameters88 The first
release starts when this thread is released as a consequence of the action of one
of the start()89 family of methods. Each time it is called this method will block
until the next release unless the thread is in a deadline miss condition. In that case
the operation of waitForNextRelease is controlled by this thread’s scheduler. (See

81Section 5.4.2.2.7
82Section 6.5.8
83Section 6.5.4
84Section 6.5.6
85Section 6.5.8
86Section 6.5.2
87Section 5.4.2.2.11
88Section 6.5.8
89Section 5.4.2.2.31

5.4. CLASSES 61

PriorityScheduler90.)

Available since RTSJ version RTSJ 2.0

5.4.2.2.10 waitForNextReleaseInterruptible

Signature
public static
boolean waitForNextReleaseInterruptible()

throws InterruptedException

Throws
InterruptedException
IllegalThreadStateException when this does not have a reference to a Re-

leaseParameters91 type of AperiodicParameters92.
ClassCastException when the current thread is not an instance of Realtime-
Thread.

Returns
True when the thread is not in a deadline miss condition. Otherwise the return
value is governed by this thread’s scheduler.

Causes the current realtime thread to delay until the next release. (See release()93.)
Used by threads that have a reference to aperiodic ReleaseParameters94. The first
release starts when this thread is released as a consequence of the action of one
of the start()95 family of methods. Each time it is called this method will block
until the next release unless the thread is in a deadline miss condition. In that case
the operation of waitForNextRelease is controlled by this thread’s scheduler. (See
PriorityScheduler96.)

Available since RTSJ version RTSJ 2.0

5.4.2.2.11 release

Signature

90Section 6.5.6
91Section 6.5.8
92Section 6.5.2
93Section 5.4.2.2.11
94Section 6.5.8
95Section 5.4.2.2.31
96Section 6.5.6

62 CHAPTER 5. REALTIME THREADS

public
void release()

Throws

IllegalThreadStateException when this does not have a reference to a Re-

leaseParameters97 type of AperiodicParameters98.

Generate a release for this RealtimeThread. The action of this release is governed
by the schedule. It may, for instance, act immediately, or be queued, delayed, or
discarded.

Available since RTSJ version RTSJ 2.0

5.4.2.2.12 deschedule

Signature

public
void deschedule()

If the ReleaseParameters99 object associated with this RealtimeThread is an in-
stance of is AperiodicParameters100, perform any deschedule actions specified by
this thread’s scheduler. If the type of the associated instance of ReleaseParamet-
ers101 is not AperiodicParameters102 nothing happens.

Available since RTSJ version RTSJ 2.0

5.4.2.2.13 deschedulePeriodic

Signature

public
void deschedulePeriodic()

If the ReleaseParameters103 object associated with this RealtimeThread is an in-
stance of PeriodicParameters104, perform any deschedulePeriodic actions specified

97Section 6.5.8
98Section 6.5.2
99Section 6.5.8

100Section 6.5.2
101Section 6.5.8
102Section 6.5.2
103Section 6.5.8
104Section 6.5.4

5.4. CLASSES 63

by this thread’s scheduler. If the type of the associated instance of ReleaseParam-
eters105 is not PeriodicParameters106 nothing happens.

5.4.2.2.14 getMemoryArea

Signature

public
javax.realtime.MemoryArea getMemoryArea()

Returns

A reference to the initial memory area for this thread.

Return the initial memory area for this RealtimeThread (corresponding to the area
parameter for the constructor.)

Note: Unlike the scheduling-related parameter objects, there is never a case
where a default parameter will be constructed for the thread. The default is a
reference to the current allocation context when this is constructed.

Available since RTSJ version RTSJ 1.0.1

5.4.2.2.15 getMemoryParameters

Signature

public
javax.realtime.MemoryParameters getMemoryParameters()

Returns

@inheritDoc

@inheritDoc

5.4.2.2.16 getProcessingGroupParameters

Signature

public
javax.realtime.ProcessingGroupParameters

getProcessingGroupParameters()

Returns

@inheritDoc

@inheritDoc

105Section 6.5.8
106Section 6.5.4

64 CHAPTER 5. REALTIME THREADS

5.4.2.2.17 getSchedulableSizingParameters

Signature
public
javax.realtime.SchedulableSizingParameters

getSchedulableSizingParameters()

Returns
@inheritDoc

@inheritDoc

5.4.2.2.18 getReleaseParameters

Signature
public
javax.realtime.ReleaseParameters getReleaseParameters()

Returns
@inheritDoc

@inheritDoc

5.4.2.2.19 getScheduler

Signature
public
javax.realtime.Scheduler getScheduler()

Returns
@inheritDoc

@inheritDoc

5.4.2.2.20 getSchedulingParameters

Signature
public
javax.realtime.SchedulingParameters getSchedulingParameters()

Returns
@inheritDoc

@inheritDoc

5.4.2.2.21 interrupt

Signature
public

5.4. CLASSES 65

void interrupt()

Extends the function of Thread.interrupt(), generates the generic Asynchron-
ouslyInterruptedException and targets it at this, and sets the interrupted state to
pending. (See AsynchronouslyInterruptedException107.

The semantics of Thread.interrupt() are preserved.

5.4.2.2.22 schedule

Signature
public
void schedule()

Begin unblocking RealtimeThread.waitForNextRelease108 for an periodic thread.
If deadline miss detection is disabled, enable it. Typically used when an aperiodic
schedulable is in a deadline miss condition.

The details of the interaction of this method with deschedule109, waitForNex-
tRelease110 and release111 are dictated by this thread’s scheduler. If this Real-

timeThread does not have a type of AperiodicParameters112 as its ReleasePar-

ameters113 nothing happens.

Available since RTSJ version RTSJ 2.0

5.4.2.2.23 schedulePeriodic

Signature
public
void schedulePeriodic()

Begin unblocking RealtimeThread.waitForNextPeriod114 for a periodic thread.
If deadline miss detection is disabled, enable it. Typically used when a periodic
schedulable is in a deadline miss condition. The details of the interaction of this
method with deschedulePeriodic115 and waitForNextPeriod116 are dictated by
this thread’s scheduler.

107Section 8.5.1
108Section 5.4.2.2.9
109Section 5.4.2.2.12
110Section 5.4.2.2.9
111Section 5.4.2.2.11
112Section 6.5.2
113Section 6.5.8
114Section 5.4.2.2.7
115Section 5.4.2.2.13
116Section 5.4.2.2.7

66 CHAPTER 5. REALTIME THREADS

If this RealtimeThread does not have a type of PeriodicParameters117 as its
ReleaseParameters118 nothing happens.

5.4.2.2.24 setMemoryParameters(MemoryParameters)

Signature
public
void setMemoryParameters(MemoryParameters memory)

Parameters
memory @inheritDoc

Throws
IllegalArgumentException @inheritDoc
IllegalAssignmentError @inheritDoc
IllegalThreadStateException @inheritDoc

@inheritDoc

5.4.2.2.25 setProcessingGroupParameters(ProcessingGroupParameters)

Signature
public
void setProcessingGroupParameters(ProcessingGroupParameters

group)

Parameters
group @inheritDoc

Throws
IllegalArgumentException @inheritDoc
IllegalAssignmentError @inheritDoc
IllegalThreadStateException @inheritDoc

@inheritDoc

5.4.2.2.26 setReleaseParameters(ReleaseParameters)

Signature
public
void setReleaseParameters(ReleaseParameters release)

Parameters
release @inheritDoc

117Section 6.5.4
118Section 6.5.8

5.4. CLASSES 67

Throws
IllegalArgumentException @inheritDoc
IllegalAssignmentError @inheritDoc
IllegalThreadStateException @inheritDoc

@inheritDoc

5.4.2.2.27 setScheduler(Scheduler)

Signature
public
void setScheduler(Scheduler scheduler)

Parameters
scheduler @inheritDoc

Throws
IllegalArgumentException @inheritDoc
IllegalAssignmentError @inheritDoc
SecurityException @inheritDoc
IllegalThreadStateException @inheritDoc

@inheritDoc

5.4.2.2.28 setScheduler(Scheduler, SchedulingParameters, ReleasePar-
ameters, MemoryParameters, ProcessingGroupParameters)

Signature
public
void setScheduler(Scheduler scheduler, SchedulingParameters

scheduling, ReleaseParameters release, MemoryParameters

memoryParameters, ProcessingGroupParameters group)

Parameters
scheduler @inheritDoc
scheduling @inheritDoc
release @inheritDoc
memoryParameters @inheritDoc
group @inheritDoc

Throws
IllegalArgumentException @inheritDoc
IllegalAssignmentError @inheritDoc
IllegalThreadStateException @inheritDoc
SecurityException @inheritDoc

@inheritDoc

68 CHAPTER 5. REALTIME THREADS

5.4.2.2.29 setSchedulingParameters(SchedulingParameters)

Signature

public
void setSchedulingParameters(SchedulingParameters scheduling)

Parameters

scheduling @inheritDoc

Throws

IllegalArgumentException @inheritDoc
IllegalAssignmentError @inheritDoc
IllegalThreadStateException @inheritDoc

@inheritDoc

5.4.2.2.30 startPeriodic(PhasingPolicy)

Signature

public
void startPeriodic(PhasingPolicy phasingPolicy)

throws LateStartException

Parameters

phasingPolicy The phasing policy to be applied if the start time given in the
realtime thread’s associated PeriodicParameters119 is in the past.

Throws

javax.realtime.LateStartException when the actual start time is after the as-
signed start time and the phasing policy is PhasingPolicy.STRICT PHASING120.
IllegalArgumentException when the thread is not periodic, or if its start time
is not absolute.

Start the thread with the specified phasing policy.

Available since RTSJ version RTSJ 2.0

5.4.2.2.31 start

Signature

public
void start()

119Section 6.5.4
120Section 5.3.1.1.1

5.4. CLASSES 69

Set up the realtime thread’s environment and start it. The set up might include
delaying it until the assigned start time and initializing the thread’s scope stack.
(See ScopedMemory121.)

5.4.2.2.32 getLastReleaseTime

Signature
public
javax.realtime.AbsoluteTime getLastReleaseTime()

Equivalent to getLastReleaseTime(null)

Available since RTSJ version RTSJ 2.0

5.4.2.2.33 getLastReleaseTime(AbsoluteTime)

Signature
public
javax.realtime.AbsoluteTime getLastReleaseTime(AbsoluteTime

dest)

Returns
the last release time in dest. If dest is null, create a new absolute time
instance in the current memory area.

Return the absolute time of this thread’s last release, whether periodic or aperiodic.
The clock in the returned absolute time shall be the realtime clock for aperiodic

releases and the clock used for the periodic release for periodic releases.

Available since RTSJ version RTSJ 2.0

5.4.2.2.34 getEffectiveStartTime

Signature
public
javax.realtime.AbsoluteTime getEffectiveStartTime()

Equivalent to getEffectiveStartTime(null).

Available since RTSJ version RTSJ 2.0

121Section 11.8.13

70 CHAPTER 5. REALTIME THREADS

5.4.2.2.35 getEffectiveStartTime(AbsoluteTime)

Signature

public
javax.realtime.AbsoluteTime getEffectiveStartTime(AbsoluteTime

dest)

Returns

The effective start time in dest. If dest is null, return the effective start
time in an AbsoluteTime122 instance created in the current memory area.

Return the effective start time of this realtime thread. This is not necessarily the
same as the start time in the release parameters.

• If the release parameters’ start time is relative, the effective start time is the
time of the first release.
• If the release parameters’ start time is an absolute time after start() is invoked,

the effective start time is the same as the release parameters’ start time.
• If the release parameters’ start time is an absolute time before start() is in-

voked, the effective start time depends on the phasing policy.

The default is to set the effective start time equal to the time start() is invoked.

Available since RTSJ version RTSJ 2.0

5.4.2.2.36 getCurrentConsumption(RelativeTime)

Signature

public static
javax.realtime.RelativeTime getCurrentConsumption(RelativeTime

dest)

Throws

IllegalStateException when the caller is not a RealtimeThread123.

Returns

The CPU consumption for this release. If dest is null, return the CPU
consumption in a RelativeTime124 instance created in the current execution
context. If dest is not null, return the CPU consumption in dest

Available since RTSJ version RTSJ 2.0

122Section 9.5.1
123Section 5.4.2
124Section 9.5.4

5.4. CLASSES 71

5.4.2.2.37 getCurrentConsumption

Signature
public static
javax.realtime.RelativeTime getCurrentConsumption()

Equivalent to getCurrentConsumption(null).

Available since RTSJ version RTSJ 2.0

5.4.2.2.38 getMinConsumption(RelativeTime)

Signature
public
javax.realtime.RelativeTime getMinConsumption(RelativeTime dest)

Returns
the minimum CPU consumption in dest. If dest is null return the mini-
mum CPU consumption in a RelativeTime125 instance created in the current
memory area.

Get the minimum CPU consumption measured for any completed release of this
thread.

Available since RTSJ version RTSJ 2.0

5.4.2.2.39 getMinConsumption

Signature
public
javax.realtime.RelativeTime getMinConsumption()

Equivalent to getMinConsumption(null).

Available since RTSJ version RTSJ 2.0

5.4.2.2.40 getMaxConsumption(RelativeTime)

Signature
public

125Section 9.5.4

72 CHAPTER 5. REALTIME THREADS

javax.realtime.RelativeTime getMaxConsumption(RelativeTime dest)

Returns

the maximum CPU consumption in dest. If dest is null return the maxi-
mum CPU consumption in a RelativeTime126 instance created in the current
memory area.

Get the maximum CPU consumption measured for any completed release of this
thread.

Available since RTSJ version RTSJ 2.0

5.4.2.2.41 getMaxConsumption

Signature

public
javax.realtime.RelativeTime getMaxConsumption()

Equivalent to getMaxConsumption(null).

Available since RTSJ version RTSJ 2.0

5.4.2.2.42 getDispatcher

Signature

public
javax.realtime.TimeDispatcher getDispatcher()

See Section Timable.getDispatcher())

Available since RTSJ version RTSJ 2.0

5.4.2.2.43 fire

Signature

public final
void fire()

Indicate that a new period has started.

126Section 9.5.4

5.5. RATIONALE 73

See Section Timable.fire())

Available since RTSJ version RTSJ 2.0

5.4.2.2.44 wakeup

Signature
public final
void wakeup()

Indicate that a sleep has ended.

See Section Schedulable.wakeup())

Available since RTSJ version RTSJ 2.0

5.5 Rationale

The Java platform’s priority-preemptive dispatching model is very similar to the
dispatching model found in the majority of commercial realtime operating systems.
However, the dispatching semantics were purposefully relaxed in order to allow ex-
ecution on a wide variety of operating systems. Thus, it is appropriate to specify
realtime threads by extending java.lang.Thread.

The ReleaseParameters and MemoryParameters provided to the Realtime-

Thread constructor allow for a number of common realtime thread types, including
periodic threads.

The NoHeapRealtimeThread class is provided in order to allow time-critical threads
to execute in preference to the garbage collector given appropriate assignment of
execution eligibility. The memory access and assignment semantics of the NoHeap-

RealtimeThread are designed to guarantee that the execution of such threads does
not lead to an inconsistent heap state.

74 CHAPTER 5. REALTIME THREADS

Chapter 6

Scheduling

6.1 Overview

The scheduler required by this specification is fixed-priority preemptive with at least
28 unique priority levels. It is represented by the class PriorityScheduler and is
called the base scheduler.

The schedulables required by this specification are defined by the classes Real-

timeThread, NoHeapRealtimeThread, AsyncEventHandler, and BoundAsyncEven-

tHandler. The base scheduler assigns processor resources according to the schedula-
bles’ release characteristics, execution eligibility, and processing group values. Sub-
classes of the schedulables are also schedulables and behave as these required classes.

An instance of the SchedulingParameters class contains values of execution
eligibility. A schedulable is considered to have the execution eligibility represented
by the SchedulingParameters object currently bound to it. For implementations
providing only the base scheduler, the scheduling parameters object is an instance
of PriorityParameters (a subclass of SchedulingParameters).

An instance of the ReleaseParameters class or its subclasses, PeriodicParame-
ters, AperiodicParameters, and SporadicParameters, contains values that define
a particular release characteristic. A schedulable is considered to have the release
characteristics of a single associated instance of the ReleaseParameters class.

For a realtime thread, the scheduler defines the behavior of the realtime thread’s
waitForNextPeriod, waitForNextPeriodInterruptible, waitForNextRelease, and
waitForNextReleaseInterruptible methods, and monitors cost overrun and dead-
line miss conditions based on its release parameters. For asynchronous event han-
dlers, the scheduler monitors cost overruns and deadline misses.

Release parameters also govern the treatment of the minimum interarrival time
for sporadic schedulables.

An instance of the ProcessingGroupParameters class contains values that de-

75

76 CHAPTER 6. SCHEDULING

fine a temporal scope for a processing group on a single processor. If a schedulable
has an associated instance of the ProcessingGroupParameters class, it is said to
execute within the temporal scope defined by that instance. A single instance of the
ProcessingGroupParameters class can be (and typically is) associated with many
SOs. If the implementation supports cost enforcement, the combined processor de-
mand of all of the SOs associated with an instance of the ProcessingGroupParam-

eters class must not exceed the values in that instance (i.e., the defined temporal
scope). The processor demand is determined by the Scheduler.

The scheduling classes provide the necessary support for realtime scheduling.
These classes
• allow the definition of schedulables,
• manage the assignment of execution eligibility to schedulable objects,
• manage the execution of instances of the AsyncEventHandler and Realtime-

Thread classes,
• assign release characteristics to schedulables,
• assign execution eligibility values to schedulables, and
• manage the execution of groups of schedulables that collectively exhibit addi-

tional release characteristics.

6.2 Definitions

Classes that implement the scheduling behavior of realtime tasks implement the
Schedulable interface. Instances of these classes are referred to as Schedulables
(SO) and provide three execution states: executing, blocked, and eligible-for-execution.
• Executing refers to the state where the SO is currently running on a processor.
• Blocked refers to the state where the SO is not among those SO’s that could

be selected to have their state changed to executing. The blocked state will
have a reason associated with it, e.g., blocked-for-I/O-completion, blocked-for-
release-event, or blocked-by-cost-overrun.
• Eligible-for-execution refers to the state where the SO could be selected to

have its state changed to executing.
Each type of schedulable defines its own release events, for example, the release
events for a periodic SO are caused by the passage of time and occur at program-
matically specified intervals.

Release is the changing of the state of a schedulable from blocked-for-release-
event to eligible-for-execution. If the state of an SO is blocked-for-release-event when
a release event occurs then the state of the SO is changed to eligible-for-execution.
Otherwise, a state transition from blocked-for-release-event to eligible-for-execution
is queued; this is known as a pending release. When the next transition of the SO
into state blocked-for-release-event occurs, and there is a pending release, the state

6.2. DEFINITIONS 77

of the SO is immediately changed to eligible-for-execution. (Some actions implicitly
clear any pending releases.)

Completion is the changing of the state of a schedulable from executing to blocked-
for-release-event. Each completion corresponds to a release. A realtime thread is
deemed to complete its most recent release when it terminates.

Deadline refers to a time before which a schedulable expects to complete. The
ith deadline is associated with the ith release event and a deadline miss occurs if the
ith completion would occur after the ith deadline.

Deadline monitoring is the process by which the implementation responds to
deadline misses. If a deadline miss occurs for a schedulable object, the deadline
miss handler, if any, for that SO is released. This behaves as if there were an
asynchronous event associated with the SO, to which the miss handler was bound,
and which was fired when the deadline miss occurred.

Periodic, sporadic, and aperiodic are adjectives applied to schedulables which
describe the temporal relationship between consecutive release events. Let Ri denote
the time at which an SO has had the ith release event occur. Ignoring the effect of
release jitter:
• an SO is periodic when there exists a value T > 0 such that for all i, Ri+1−Ri =
T , where T is called the period;
• an SO that is not periodic is said to be aperiodic; and
• an aperiodic SO is said to be sporadic when there is a known value T > 0 such

that for all i, Ri+1−Ri >= T . T is then called the minimum interarrival time
(MIT).

The cost of a schedulable is an estimate of the maximum amount of CPU time that
the SO requires between a release and its associated completion.

The current CPU consumption of a schedulable is the amount of CPU time that
the SO has consumed since its last release.

A cost overrun occurs when the schedulable’s current CPU consumption becomes
greater than, or equal to, its cost.

Cost monitoring is the process by which the implementation tracks CPU con-
sumption and responds to cost overruns. If a cost overrun occurs for a schedulable,
the cost overrun handler, if any, for that SO is released. This behaves as if there
were an asynchronous event associated with the SO, to which the overrun handler
was bound, and which was fired when the cost overrun occurred.

Cost enforcement is the process by which the implementation ensures that the
CPU consumption of a SO is no more than the value of the cost parameter in
its associated ReleaseParameters. (Cost enforcement is an optional facility in an
implementation of the RTSJ.)

The base priority of a schedulable is the priority given in its associated Priori-

tyParameters object; the base priority of a Java thread is the priority returned by
its getPriority method.

78 CHAPTER 6. SCHEDULING

When it is not in the enforced state, the active priority of a schedulable or a
Java thread is the maximum of its base priority and any priority it has acquired due
to the action of priority inversion avoidance algorithms (see the Synchronization
Chapter).

A processing group is a collection of schedulables whose combined execution has
further execution time constraints which the scheduler uses to govern the group’s
execution eligibility.

A scheduler manages the execution of schedulables: it detects deadline misses,
and performs admission control and cost monitoring. It also manages the execution
of Java threads.

The base scheduler is an instance of the PriorityScheduler class as defined in
this specification. This is the initial default scheduler.

A processor is a logical processing element that is capable of physically executing
a single thread of control at any point in time. Hence, multicore platforms have
multiple processors, platforms that support hyperthreading also have more than
one processor. It is assumed that all processors are capable of executing the same
instruction sets.

An affinity is a set of processors on which the global scheduling of a schedulable
can be supported.

6.3 Semantics

This section establishes the semantics that are applicable across the classes of this
chapter, and also defines the required scheduling algorithm. Semantics that apply
to particular classes, constructors, methods, and fields will be found in the class
description and the constructor, method, and field detail sections.

6.3.1 Schedulers

1. Schedulers other than the base scheduler may change the execution eligibility
of the schedulables which they manage according to their scheduling algorithm.

2. If an implementation provides any public schedulers other than the base sched-
uler it shall provide documentation describing each scheduler’s semantics in
language and constructs appropriate to the provided scheduling algorithms.
This documentation must include the list of classes that constitute schedula-
bles for the scheduler unless that list is the same as the list of schedulables for
the base scheduler.

6.3. SEMANTICS 79

6.3.2 The Base Scheduler

The semantics for the base scheduler assume a uniprocessor or shared memory mul-
tiprocessor execution environment. Scheduling is priority preemptive with run to
completion, also known as first-in-first-out (FIFO) semantics. The base scheduler
supports the execution of all schedulables.

Open issue: The base scheduler does not really handle conventional Java threads
End of open issue

6.3.2.1 Priorities

1. The base scheduler must support at least 28 distinct values (realtime pri-
orities) that can be stored in an instance of PriorityParameters in addi-
tion to the values 1 through 10 required to support the priorities defined by
java.lang.Thread. The base priority of each schedulable object under the
control of the base scheduler must be from the range of realtime priorities. The
realtime priority values must be greater than 10, and they must include all
integers from the base scheduler’s getMinPriority() value to its getMaxPri-
ority() value inclusive. The 10 priorities defined for java.lang.Thread must
effectively have lower execution eligibility than the realtime priorities, but be-
yond this, their behavior is as defined by the specification of java.lang.Thread.

2. Higher priority values in an instance of PriorityParameters have a higher
execution eligibility.

3. Assignment of any of the realtime priority values to any schedulable controlled
by the base priority scheduler is legal. It is the responsibility of application
logic to make rational priority assignments.

4. The base scheduler does not use the importance value in the ImportancePa-

rameters subclass of PriorityParameters.
5. For schedulables managed by the base scheduler, the implementation must not

change the execution eligibility for any reason other than
• implementation of a priority inversion avoidance algorithm or
• as a result of a program’s request to change the priority parameters as-

sociated with one or more schedulables; e.g., by changing a value in a
scheduling parameter object that is used by one or more schedulables, or
by using setSchedulingParameters() to give a schedulable a different
SchedulingParameters value.

6. Use of Thread.setPriority(), any of the methods defined for schedulables,
or any of the methods defined for parameter objects must not affect the cor-
rectness of the priority inversion avoidance algorithms controlled by Priori-

tyCeilingEmulation and PriorityInheritance — see the Synchronization
chapter.

80 CHAPTER 6. SCHEDULING

7. If schedulable A managed by the base scheduler creates a Java thread, B, then
the initial base priority of B is the priority value returned by the getMaxPri-

ority method of B’s java.lang.ThreadGroup object.
8. PriorityScheduler.getNormPriority() shall be set to:

1 ((PriorityScheduler.getMaxPriority() −
2 PriorityScheduler.getMinPriority()) / 3) +
3 PriorityScheduler.getMinPriority()

6.3.2.2 Dispatching

The execution scheduling semantics described in this section are defined in terms
of a conceptual model that contains a set of queues of schedulables that are eligible
for execution. There is, conceptually, one queue for each priority on each processor.
No implementation structures are necessarily implied by the use of this conceptual
model. It is assumed that no time elapses during operations described using this
model, and therefore no simultaneous operations are possible.

The RTSJ dispatching model specifies its dispatching rules for the default priority
scheduler.

1. A schedulable can become a running schedulable only if it is ready and one of
the processors in its requested affinity is available.

2. If two schedulables have different active priorities and request the same pro-
cessor, the schedulable with the higher active priority will always execute in
preference to the schedulable with the lower value when both are eligible for
execution.

3. Processors are allocated to schedulables based on each schedulable’s active
priority and their associated affinity.

4. schedulable dispatching is the process by which one ready schedulable is se-
lected for execution on a processor. This selection is done at certain points
during the execution of a schedulable called schedulable dispatching points.

5. A schedulable reaches a schedulable dispatching point whenever it becomes
blocked, when it terminates, or when a higher priority schedulable becomes
ready for execution on its processor. That is, a schedulable that is executing
will continue to execute until it either blocks, terminates or is preempted by
a higher-priority schedulable.

6. The dispatching policy is specified in terms of ready queues and schedulable
states. The ready queues are purely conceptual; there is no requirement that
such lists physically exist in an implementation. A ready queue is an ordered
list of ready schedulable objects. The first position in a queue is called the
head of the queue, and the last position is called the tail of the queue.

6.3. SEMANTICS 81

7. A schedulable is ready if it is in a ready queue, or if it is running. Each
processor has one ready queue for each priority value. At any instant, each
ready queue of a processor contains exactly the set of schedulables of that
priority that are ready for execution on that processor, but are not running
on any processor; that is, those schedulables that are ready, are not running
on any processor, and can be executed using that processor.

8. A schedulable can be on the ready queues of more than one processor.
9. Each processor has one running schedulable, which is the schedulable cur-

rently being executed by that processor. Whenever a schedulable running on
a processor reaches a schedulable dispatching point, a new schedulable object
is selected to run on that processor. The schedulable selected is the one at
the head of the highest priority nonempty ready queue for that processor; this
schedulable is then removed from all ready queues to which it belongs.

10. In a multiprocessor system, a schedulable can be on the ready queues of more
than one processor. At the extreme, if several processors share the same set
of ready schedulables, the contents of their ready queues are identical, and so
they can be viewed as sharing one ready queue, and can be implemented that
way. Thus, the dispatching model covers multiprocessors where dispatching
is implemented using a single ready queue, as well as those with separate
dispatching domains.

11. The dispatching mechanism must allow the preemption of the execution of
schedulables and Java threads with a bounded delay at a point not governed
by the preempted object. The bound on this delay may be implementation-
defined, and could be the time to the next point in execution that the heap is
in a consistent state or some similar restriction. The implementation should
document this bound.

12. A schedulable that is preempted by a higher priority schedulable is placed
in the queue for its active priority, at a position determined by the imple-
mentation. The implementation must document the algorithm used for such
placement. It is recommended that a preempted schedulable be placed at the
front of the appropriate queue.

13. A realtime thread that performs a yield() is placed at the tail of the queues
(dictated by its affinity) for its active priority level.

14. A blocked schedulable that becomes eligible for execution is added to the tail
of the queues (dictated by its affinity) for that priority. This behavior also
applies to the initial release of a schedulable.

15. For a schedulable whose active priority is changed as a result of explicitly
setting its base priority (through the PriorityParameters setPriority()

method, the RealtimeThread setSchedulingParameters() method, or Thread’s
setPriority() method), this schedulable is added to the tail of the queues
(dictated by its affinity) for its new priority level. Queuing when priorities are

82 CHAPTER 6. SCHEDULING

adjusted by priority inversion avoidance algorithms is governed by semantics
specified in the Synchronization chapter.

6.3.2.3 Parameter Values

The scheduler uses the values contained in the different parameter objects associ-
ated with a schedulable to control the behavior of the schedulable. The scheduler
determines what values are valid for the schedulables it manages, which defaults
apply and how changes to parameter values are acted upon by the scheduler. In-
valid parameter values result in exceptions, as documented in the relevant classes
and methods.

1. The default values for the base scheduler are:
(a) Scheduling parameters are copied from the creating SO if possible; if

the creating SO does not have scheduling parameters, the default is an
instance of the default priority parameters value.

(b) Release parameters default to an instance of the default aperiodic param-
eters (see AperiodicParameters).

(c) Memory parameters default to null which signifies that memory allocation
by the schedulable is not constrained by the scheduler.

(d) Processing group parameters default to null which signifies that the sched-
ulable is not a member of any processing group and is not subject to
processing group based limits on processor utilization.

(e) The default scheduling parameter values for parameter objects created by
an SO controlled by the base scheduler are: (see PriorityScheduler)

Attribute Default Value
Priority parameters
priority norm priority
Importance parameters
importance No default.

A value must be supplied.
2. All numeric or RelativeTime attributes in parameter values must be greater

than or equal to zero.
3. Values of period must be greater than zero.
4. Deadline values in ReleaseParameters objects must be less than or equal to

their period values (where applicable), but the deadline may be greater than
the minimum interarrival time in a SporadicParameters object.

5. Changes to scheduling, release, memory, and processing group parameters
(by methods on the schedulables bound to the parameters or by altering the
parameter objects themselves) have the following effect effects:
(a) They potentially modify the behavior of the scheduler with regard to

those schedulables. When such changes in behavior take effect depends

6.3. SEMANTICS 83

on the parameter in question, and the type of schedulable, as described
below.

6. Changes to scheduling, release, memory, and processing group parameters are
acted upon by the base scheduler as follows:
(a) Changes to scheduling parameters take effect immediately except when

constrained by priority inversion avoidance algorithms.
(b) Changes to release parameters depend on the parameter being changed,

the type of release parameter object and the type of schedulable:
i. Changes to the deadline and the deadline miss handler take effect at

each release event as follows: if the ith release event occurred at a
time ti, then the ith deadline is the time ti +Di, where Di is the value
of the deadline stored in the schedulable’s release parameters object
at the time ti. If a deadline miss occurs then it is the deadline miss
handler that was installed in the schedulable’s release parameters at
time ti that is released.

ii. Changes to cost and the cost overrun handler take effect immediately.
iii. Changes to the period and start time values in PeriodicParameters

objects are described in “Release of realtime Threads” below. (The
base scheduler does not manage the release of periodic schedulables
other than periodic realtime threads.)

iv. Changes to the additional values in AperiodicParameters objects
and SporadicParameters are described, respectively, in “Aperiodic
Release Control” and “Sporadic Release Control”, below.

v. Changes to the type of release parameters object generally take effect
after completion, except as documented in the following sections.

(c) Changes to memory parameters take effect immediately.
(d) Changes to processing group parameters take effect as described in “Pro-

cessing Groups” below.
(e) Changes to the scheduler responsible for a schedulable object take effect

at completion.

6.3.2.4 Cost Monitoring and Cost Enforcement

The cost of an SO is defined by the value returned by invoking the getCost method
of the SO’s release parameters object. When an SO is initially released it’s current
CPU consumption is zero and as the SO executes, the current CPU consumption
increases. For cost monitoring, an implementation must conform to the following
requirements.

1. If at any time, due to either execution of the SO or a change in the SO’s
cost, the current CPU consumption becomes greater than, or equal to, the
current cost of the SO, then a cost overrun is triggered. The implementation

84 CHAPTER 6. SCHEDULING

is required to document the granularity at which the current CPU consumption
is updated.

2. When a cost overrun is triggered, the cost overrun handler associated with the
SO, if any, is released. No further action is taken.

3. The current CPU consumption is reset to zero when the SO is next released (i.e.
it moves from the blocked-for-release-event state to the eligible-for-execution
state).

If cost enforcement is supported, an implementation must conform to the following
requirements.

1. When a cost overrun is triggered, in addition to releasing any cost overrun
handler, the following actions must be performed.

2. If the most recent release of the SO is the ith release, and the i + 1 release
event has not yet occurred, then:
(a) If the state of the SO is either executing or eligible-for-execution, then

the SO is placed into the state blocked-by-cost-overrun. There may be a
bounded delay between the time at which a cost overrun occurs and the
time at which the SO becomes blocked-by-cost-overrun.

(b) Otherwise, the SO must have been blocked for a reason other than blocked-
by-cost-overrun. In this case, the state change to blocked-by-cost-overrun
is left pending: if the blocking condition for the SO is removed, then its
state changes to blocked-by-cost-overrun. There may be a bounded delay
between the time at which the blocking condition is removed and the
time at which the SO becomes blocked-by-cost-overrun.

Otherwise, if the i+1 release event has occurred, the current CPU consumption
is set to zero, the SO remains in its current state and the cost monitoring
system considers the most recent release to now be the i+ 1 release.

3. When the ith release event occurs for an SO, the action taken depends on the
state of the SO:
(a) If the SO is blocked-by-cost-overrun then the cost monitoring system

considers the most recent release to be the ith release, the current CPU
consumption is set to zero and the SO is made eligible for execution;

(b) Otherwise, if the SO is blocked for a reason other than blocked-by-cost-
overrun then:

i. If there is a pending state change to blocked-by-cost-overrun then:
the pending state change is removed, the cost monitoring system
considers the most recent release to be the ith release, the current
CPU consumption is set to zero and the SO remains in its current
blocked state;

ii. Otherwise, no cost monitoring action occurs.
(c) Otherwise no cost monitoring action occurs.

4. When the ith release of an SO completes, and the cost monitoring system

6.3. SEMANTICS 85

considers the most recent release to be the ith release, then the current CPU
consumption is set to zero and the cost monitoring system considers the most
recent release to be the i + 1 release. Otherwise, no cost monitoring action
occurs.

5. Changes to the cost parameter take effect immediately:
(a) If the new cost is less than or equal to the current CPU consumption,

and the old cost was greater than the current CPU consumption, then a
cost overrun is triggered.

(b) If the new cost is greater than the current CPU consumption:
i. If the SO is blocked-by-cost-overrun, then the SO is made eligible for

execution;
ii. Otherwise, if the SO is blocked for a reason other than blocked-by-

cost-overrun, and there is a pending state change to blocked-by-cost-
overrun, then the pending state change is removed;

iii. Otherwise, no cost monitoring action occurs.
6. The state of the cost monitoring system for an SO can be reset by the scheduler

(see 6e in the Release of realtime Threads section, below). If the most recent
release of the SO is considered to be the mth release, and the most recent
release event for the SO was the nth release event (where n > m), then a reset
causes the cost monitoring system to consider the most recent release to be
the nth release, and to zero the current CPU consumption.

6.3.2.5 Release of Realtime Threads

The repeated release of realtime threads is achieved by executing in a loop and invok-
ing the RealtimeThread.waitForNextPeriod or RealtimeThread.waitForNextRelease
methods, or their interruptible equivalents (RealtimeThread.waitForNextPeriodInterruptible
RealtimeThread.waitForNextReleaseInterruptible) within that loop. For sim-
plicity, unless otherwise stated, the semantics in this section apply to both forms of
those methods.

1. A realtime thread’s release characteristics are determined by the following:
(a) The invocation of the realtime thread’s start method and the value of

its phasing policy parameter (if applicable).
(b) The action of the RealtimeThread methods: waitForNextPeriod, wait-

ForNextPeriodInterruptible, schedulePeriodic, deschedulePeriodic,
waitForNextRelease, waitForNextReleaseInterruptible, schedule,
and deschedule;

(c) The occurrence of deadline misses and whether or not a miss handler is
installed; and

(d) The passing of time that generates periodic release events and a call of
the release method that generates aperiodic release events.

86 CHAPTER 6. SCHEDULING

2. The initial release event of a periodic realtime thread occurs in response to the
invocation of the its start method in accordance with the start time specified
in its release parameters and its assigned phasing policy — see Periodic-

Parameters and PhasingPolicy. The initial release event of an aperiodic
realtime thread occurs immediately in response to the invocation of the its
start method.

3. Changes to the start time in a realtime thread’s PeriodicParameters object
only have an effect on its initial release time. Consequently, if a PeriodicPa-

rameters object is bound to multiple realtime threads, a change in the start
time may affect all, some or none, of those threads, depending on whether or
not start has been invoked on them.

4. Subsequent release events occur

(a) for periodic realtime threads: when each period falls due, except as de-
scribed below (in 6e), at times determined as follows: if the ith release
event occurred at a time ti, then the i+1 release event occurs at the time
ti + Ti, where Ti is the value of the period stored in the realtime thread’s
PeriodicParameters object at the time ti.

(b) for aperiodic realtime thread: with each call of the release method, except
as described below (in 6e)

(c) for sporadic realtime threads: with each call of the release method, except
as described below (in 6e) with additional regulation to enforce MIT are
required as defined in Sporadic Release Control below.

5. Each release of an aperiodic realtime thread is an arrival. If the thread has re-
lease parameters of type AperiodicParameters, then the arrival may become
a release event for the thread according to the semantics given in “Aperiodic
Release Control” below. If the thread has release parameters of type Spo-

radicParameters, then the arrival may become a release event for the thread
according to the semantics given in “Sporadic Release Control” below. If the
thread has release parameters of a type other than SporadicParameters then
the arrival is a release event, and the arrival-time is the release event time.

6. The implementation should behave effectively as if the following state variables
were added to a realtime thread’s state,
boolean descheduled,
integer pendingReleases,
integer missCount, and
boolean lastReturn.

and manipulated by the actions as described below:

(a) Initially:

6.3. SEMANTICS 87

descheduled = false,
pendingReleases = 0,
missCount = 0, and
lastReturn = true.

(b) When the realtime thread’s deschedulePeriodic or deschedule method
is invoked: set the value of descheduled to true.

(c) When the realtime thread’s schedulePeriodic or schedule method is
invoked: set the value of descheduled to false; then if the thread is
blocked-for-release-event, set the value of pendingReleases to zero, and
tell the cost monitoring and enforcement system to reset for this thread.

(d) When descheduled is true, the realtime thread is said to be descheduled.
(e) A realtime thread that has been descheduled and is blocked-for-release-

event will not receive any further release events until after it has been
rescheduled by a call to schedulePeriodic or schedule; this means that
no deadline misses can occur until the thread has been rescheduled. The
descheduling of a realtime thread has no effect on its initial release.

(f) When each release event occurs:
i. If the state of the realtime thread is blocked-for-release-event (that is,

it is waiting in waitForNextPeriod or waitForNextRelease), then
if the thread is descheduled then do nothing, else increment the value
of pendingReleases, inform cost monitoring and enforcement that
the next release event has occurred, and notify the thread to make
it eligible for execution;

ii. Otherwise, increment the value of pendingReleases, and inform cost
monitoring and enforcement that the next release event has occurred.

(g) On each deadline miss:
i. If the realtime thread has a deadline miss handler: set the value of

descheduled to true, atomically release the handler with its fire-

Count increased by the value of missCount + 1 and zero missCount;
ii. Otherwise add one to the missCount value.

(h) When the waitForNextPeriod or waitForNextRelease method is in-
voked by the current realtime thread there are two possible behaviors
depending on the value of missCount:

i. If missCount is greater than zero: decrement the missCount value;
then if the lastReturn value is false, completion occurs: apply any
pending parameter changes, decrement pendingReleases, inform cost
monitoring and enforcement the realtime thread has completed and
return false; otherwise set the lastReturn value to false and return
false.

ii. Otherwise, apply any pending parameter changes, inform cost moni-
toring and enforcement of completion, and then wait while desched-

88 CHAPTER 6. SCHEDULING

uled is true, or pendingReleases is zero. Then set the lastReturn

value to true, decrement pendingReleases, and return true.
7. An invocation of the waitForNextPeriodInterruptible or waitForNextRe-

leaseInterruptiblemethod behaves as described above with the following
additions:
(a) If the invocation commences when an instance of AsynchronouslyInterr-

uptedException (AIE) is pending on the realtime thread, then the invo-
cation immediately completes abruptly by throwing that pending instance
as an InterruptedException. If this occurs, the most recent release has
not completed. If the pending instance is the generic AIE instance then
the interrupt state of the realtime thread is cleared.

(b) If an instance of AIE becomes pending on the realtime thread while it
is blocked-for-release-event, and the realtime thread is descheduled, then
the AIE remains pending until the realtime thread is no longer desched-
uled. The associated reschedule acts as a release event. Execution then
continues as in (d) where the time value used as tint is the time at which
the SO was rescheduled.

(c) If an instance of AIE becomes pending on the realtime thread while it
is blocked-for-release-event, and it is not descheduled, then this acts as
a release event. Execution the continues as in (d) where the time value
used as tint is the time at which the AIE becomes pending.

(d) i. The realtime thread is made eligible for execution.
ii. Upon execution, the invocation completes abruptly by throwing the

pending AIE instance as an InterruptedException. If the pending
instance is the generic AIE instance then the interrupt state of the
realtime thread is cleared.

iii. The deadline associated with this release is the time tint+Dint, where
Dint is the value of the deadline stored in the realtime thread’s release
parameters object at the time tint.

iv. The next release time for the realtime thread will be tint+Tint, where
Tint is the value of the period stored in the realtime thread’s release
parameters object at the time tint.

v. Cost monitoring and enforcement is informed of the release event.
When the thrown AIE instance is caught, the AIE becomes pending again (as
per the usual semantics for AIE) until it is explicitly cleared.

8. Changes to release parameter types are treated as a pseudo RE-START of the
realtime thread and
(a) any old pending releases are cleared
(b) any old arrival queue is flushed
(c) any outstanding call to deschedule is cleared
(d) any outstanding deadline misses are cleared

6.3. SEMANTICS 89

The semantics are described below:
(a) Effect on the realtime thread if it is not waiting for next release event

(and is not descheduled)
i. no effect until the end of current release

ii. when the change occurs it is a pseudo re-start of the thread. i.e.
if new parameters are aperiodic — the release is immediate; if new
parameters are periodic — the periodic start time algorithm is used.

(b) Effect on the realtime thread if it is not waiting for next release event
(but there is an outstanding descheduled).

i. there is an immediate “schedule” of the thread
ii. there is no further effect until end of current release

iii. when change occurs it is a pseudo re-start of the thread, i.e. if new
parameters are aperiodic — the release is immediate; if new param-
eters are periodic — the periodic start time algorithm is used.

(c) Effect on the realtime thread if it is waiting for next release event (and
not descheduled)

i. From Periodic to Aperiodic — when the next periodic release event
occurs, the thread becomes aperiodic with an immediate release

ii. From Aperiodic to Periodic — there is an immediate pseudo re-start
of the thread using the periodic start time algorithm

(d) Effect on realtime thread if waiting for next release event (but there is
an outstanding descheduled)

i. there is an immediate “schedule” of the thread
ii. From Periodic to Aperiodic — when the next periodic release event

occurs, the thread becomes aperiodic with an immediate release
iii. From Aperiodic to Periodic — there is an immediate pseudo re-start

of the thread using the periodic start time algorithm

6.3.2.5.1 Pseudo-Code for Periodic and Aperiodic Thread Actions The
semantics of the previous section can be more clearly understood by viewing them in
pseudo-code form for each of the methods and actions involved. In the following no
mechanism for blocking and unblocking a thread is prescribed. The use of the wait
and notify terminology in places is purely an aid to expressing the desired semantics
in familiar terms.

1 // These values are part of thread state.
2 boolean descheduled = false;
3 int pendingReleases = 0;
4 boolean lastReturn = true;
5 int missCount = 0;
6 int currentRP;
7 int newRP;

90 CHAPTER 6. SCHEDULING

8 int periodic = 1;
9 int aperiodic = 2;

10 int sporadic = 3;
11 boolean RPchange = false;
12 boolean started = false; // set to true on first release;
13
14 changeReleaseParameters(int newP)
15 {
16 newRP = newP;
17
18 descheduled = false; // automatic re−schedule
19 if (blocked−for−release−event)
20 {
21 if (currentRP == periodic)
22 {
23 // defer until next release
24 RPChange = true;
25 }
26 else
27 {
28 // immediate change; current is aperiodic or sporadic
29 performParameterChanges();
30 assert pendingReleases = 0
31 assert missCount = 0;
32 started = false; // flush arrival queue
33 costMonitoringReset();
34 currentRP = newRP;
35 if (newRP == periodic)
36 {
37 // consider this as the equivalent of call the
38 // start method of the RT thread.
39 // If start time has passed, generate a
40 // an ”onNextPeriodDue” event.
41 // Otherwise, arrange for the event to be
42 // generate at the appropriate time
43 }
44 else
45 {
46 // aperiodic or sporadic
47 // generate a releaseArrivalEvent
48 }
49 }
50 }
51 else
52 {
53 // not at end of release, defer change
54 RPChange = true;
55 }
56 }

6.3. SEMANTICS 91

57
58 schedulePeriodic()
59 {
60 descheduled = false;
61 if (blocked−for−release−event)
62 {
63 pendingReleases = 0; // flush arrival time queue
64 costMonitoringReset();
65 }
66 }
67
68 deschedulePeriodic()
69 {
70 if (!RPChange started)
71 {
72 // no deschedule if outstanding RPchange
73 // or not started
74 descheduled = true;
75 }
76 }
77
78 schedule()
79 {
80 descheduled = false;
81 if (blocked−for−release−event)
82 {
83 pendingReleases = 0; // flush arrival time queue
84 costMonitoringReset();
85 }
86 }
87
88 deschedule()
89 {
90 if (!RPChange started)
91 {
92 // no deschedule if outstanding RPchange
93 // or not started
94 descheduled = true;
95 }
96 }
97
98 onAperiodicReleaseArrival()
99 {

100 if (!started) started = true;
101 if (currentRP == periodic) throw IllegalThreadStateException;
102 if (descheduled)
103 {
104 ; // do nothing
105 }

92 CHAPTER 6. SCHEDULING

106 else
107 {
108 perform_any_execution_regulation
109 // For a sporadic thread, the onReleaseDue event
110 // will be generated when MIT concerns have been satisfied
111 // For an aperiodic thread, this will
112 // immediately generate an onReleaseDue event.
113 }
114 }
115
116 onAperiodicReleaseDue()
117 {
118 if (currentRP == periodic) throw panic;
119 if (blocked−for−release−event)
120 {
121 if (descheduled)
122 {
123 ; // do nothing
124 }
125 else
126 {
127 pendingReleases++;
128 notifyCostMonitoringOfReleaseEvent()
129 notify it; // make eligible for execution
130 }
131 }
132 else
133 {
134 pendingReleases++;
135 notifyCostMonitoringOfReleaseEvent();
136 }
137 }
138
139 onNextPeriodeDue()
140 {
141 // also called on first release
142 if (!started) started = true;
143 if (currentRP != periodic) panic;
144 if (blocked−for−release−event)
145 {
146 if (descheduled)
147 {
148 ; // do nothing
149 }
150 else
151 {
152 pendingReleases++;
153 notifyCostMonitoringOfReleaseEvent();
154 notify it; // make eligible for execution

6.3. SEMANTICS 93

155 }
156 }
157 else
158 {
159 pendingReleases++;
160 notifyCostMonitoringOfReleaseEvent();
161 }
162 }
163
164 onDeadlineMiss()
165 {
166 if (there is a miss handler)
167 {
168 descheduled = true;
169 release miss handler with fireCount increased by missCount+1
170 missCount = 0;
171 }
172 else
173 {
174 missCount++;
175 }
176 }
177
178 waitForNextRelease()
179 {
180 assert(pendingReleases \& = 0);
181 if (missCount > 0)
182 {
183 // Missed a deadline without a miss handler
184 missCount−−;
185 if (lastReturn == false)
186 {
187 // Changes on completion take place here
188 performParameterChanges()
189 notifyCostMonitoringOfCompletion();
190 if (RPchange)
191 {
192 RPChangeNow();
193 return true;
194 }
195 else
196 {
197 pendingReleases−−;
198 }
199 }
200 lastReturn = false;
201 return false;
202 }
203 else

94 CHAPTER 6. SCHEDULING

204 {
205 // Changes on completion take place here
206 performParameterChanges();
207 notifyCostMonitoringOfCompletion();
208 if (RPchange)
209 {
210 RPChangeNow();
211 return True;
212 }
213 wait while (descheduled || pendingReleases == 0);
214 // blocked−for−release−event
215 // check again for RP change
216 if (RPchange)
217 {
218 RPChangeNow();
219 }
220 pendingReleases−−;
221 lastReturn = true;
222 return true;
223 }
224 }
225
226 waitForNextPeriod
227 {
228 assert(pendingReleases >= 0);
229 if (missCount > 0)
230 {
231 // Missed a deadline without a miss handler
232 missCount−−;
233 if (lastReturn == false)
234 {
235 // Changes ”on completion” take place here
236 performParameterChanges();
237 pendingReleases−−;
238 notifyCostMonitoringOfCompletion();
239 }
240 lastReturn = false;
241 return false;
242 }
243 else
244 {
245 // Changes ”on completion” take place here
246 performParameterChanges();
247 notifyCostMonitoringOfCompletion();
248 if (RPchange)
249 {
250 RPChangeNow();
251 return True;
252 }

6.3. SEMANTICS 95

253 wait while (descheduled || pendingReleases == 0);
254 // blocked−for−release−event
255 pendingReleases−−;
256 lastReturn = true;
257 return true;
258 }
259 }
260
261
262 changeRPNow()
263 {
264 // Changing over RP
265 // Assuming clean slate!
266 RPchange = false;
267 pendingReleases = 0;
268 flushArrivalQueue();
269 // this removes all outstanding releases
270 missCount = 0;
271 // restart here
272 if (newRP == periodic)
273 {
274 // consider this as the equivalent of call the
275 // start method of the RT thread
276 if !start time has passed
277 {
278 // arrange for timing event to be generated
279 started = false;
280 currentRP = newRP;
281 wait while (pendingReleases == 0);
282 // blocked−for−release−event
283 }
284 }
285 else
286 {
287 // aperiodic or sporadic
288 // record a releaseArrivalEvent
289 }
290 started = true;
291 currentRP = newRP;
292 lastReturn = true;
293 }

6.3.2.6 Aperiodic Release Control

Aperiodic schedulables are released in response to events occurring, such as the
starting of a realtime thread, the calling of the release method of a realtime thread,
or the firing of an associated asynchronous event for an asynchronous event handler.

96 CHAPTER 6. SCHEDULING

The occurrence of these events, each of which is a potential release event, is termed
an arrival, and the time that they occur is termed the arrival time.

The base scheduler behaves effectively as if it maintained a queue, called the
arrival time queue, for each aperiodic schedulable object. This queue maintains in-
formation related to each release event (including any parameters passed with the
release mechanism) from its “arrival” time until the associated release completes,
or another release event occurs — whichever is later. If an arrival is accepted into
the arrival time queue, then it is a release event and the time of the release event
is the arrival time. The initial size of this queue is an attribute of the schedulable’s
aperiodic parameters, and is set when an aperiodic parameter object is first asso-
ciated with the SO. Over time the queue may become full and its behavior in this
situation is determined by the queue overflow policy specified in the SO’s aperiodic
parameters. There are four overflow policies defined:

Policy Action on Overflow
IGNORE Silently ignore the arrival. The arrival is not accepted,

no release event occurs, and, if the arrival was caused
programmatically (such as by invoking fire on an asyn-
chronous event), the caller is not informed that the arrival
has been ignored.

EXCEPT Throw an ArrivalTimeQueueOverflowException. The
arrival is not accepted, and no release event occurs, but
if the arrival was caused programmatically, the caller will
have ArrivalTimeQueueOverflowException thrown.

REPLACE The arrival is not accepted and no release event occurs. If
the completion associated with the last release event in the
queue has not yet occurred, and the deadline has not been
missed, then the release event time for that release event
is replaced with the arrival time of the new arrival and
any associated parameters overwritten. This will alter the
deadline for that release event. If the completion associated
with the last release event has occurred, or the deadline
has already been missed, then the behavior of the REPLACE

policy is equivalent to the IGNORE policy.
SAVE Behave effectively as if the queue were expanded as nec-

essary to accommodate the new arrival. The arrival is ac-
cepted and a release event occurs.

Open issue: We did consider adding ReplaceOldest—see SI-105 End of open
issue

Under the SAVE policy the queue can grow and shrink over time.

Changes to the queue overflow policy take effect immediately. When an arrival

6.3. SEMANTICS 97

occurs and the queue is full, the policy applied is the policy as defined at that time.

6.3.2.7 Sporadic Release Control

Sporadic parameters include a minimum interarrival time, MIT, that characterizes
the expected frequency of releases. When an arrival is accepted implementation
behaves as if it calculates the earliest time at which the next arrival could be ac-
cepted, by adding the current MIT to the arrival time of this accepted arrival. The
scheduler guarantees that each sporadic schedulable it manages, is released at most
once in any MIT. It implements two mechanisms for enforcing this rule:

1. Arrival-time regulation controls the work-load by considering the time between
arrivals. If a new arrival occurs earlier than the expected next arrival time
then a MIT violation has occurred, and the scheduler acts to prevent a release
from occurring that would break the “one release per MIT” guarantee. Three
arrival-time MIT-violation policies are supported:

Policy Action on Violation
IGNORE Silently ignore the violating arrival. The arrival is not

accepted, no release event occurs, and, if the arrival was
caused programmatically (such as by invoking fire on an
asynchronous event), the caller is not informed that the
arrival has been ignored.

EXCEPT Throw a MITViolationException. The arrival is not ac-
cepted, and no release event occurs, but if the arrival was
caused programmatically, the caller will have MITViola-

tionException thrown.
REPLACE The arrival is not accepted and no release event occurs. If

the completion associated with the last release event in the
queue has not yet occurred, and the deadline has not been
missed, then the release event time for that release event
is replaced with the arrival time of the new arrival and
any associated parameters overwritten. This will alter the
deadline for that release event. If the completion associated
with the last release event has occurred, or the deadline has
already been missed, then the behavior of the REPLACE
policy is equivalent to the IGNORE policy.

2. Execution-time regulation occurs if the MIT violation policy SAVE is in effect.
Under this policy all arrivals are accepted, but the scheduler behaves effectively
as if released schedulable objects were further constrained by a scheduling
policy that restricts execution to at most one release per MIT. This policy is
only able to delay the effective release of a schedulable. The deadline of each
release event is always set relative to its arrival time. This policy may not

98 CHAPTER 6. SCHEDULING

schedule the effective release of an async event handler until after its deadline
has passed. In this case the deadline miss handler is released at the deadline
time even though the related async event has not yet reached its effective
release.
The SAVE policy makes no direct use of the next expected arrival time, but
it maintains the value in case the MIT violation policy is changed from SAVE
to one of the arrival-time regulation policies.

The effective release time of a release event i is the earliest time that the handler
can be released in response to that release event. It is determined for each release
event based on the MIT policy in force at the release event time:

1. For IGNORE, EXCEPT and REPLACE the effective release time is the release
event time.

2. For SAVE the effective release time of release event i is the effective release
time of release event i-1 plus the current value of the MIT.

The scheduler will delay the release associated with the release event at the head of
the arrival time queue until the current time is greater than or equal to the effective
release time of that release event.

Changes to minimum interarrival time and the MIT violation policy take effect
immediately, but only affect the next expected arrival time, and effective release
time, for release events that occur after the change.

6.3.2.8 Release Control for Asynchronous Event Handlers

Asynchronous event handlers can be associated with one or more asynchronous
events. When an asynchronous event is fired, all handlers associated with it are
released, according to the semantics below:

1. Each firing of an associated asynchronous event is an arrival. If the handler
has release parameters of type AperiodicParameters, then the arrival may
become a release event for the handler, according to the semantics given in
“Aperiodic Release Control” above. If the handler has release parameters of
type SporadicParameters, then the arrival may become a release event for
the handler, according to the semantics given in “Sporadic Release Control”
above. If the handler has release parameters of a type other than SporadicPa-

rameters then the arrival is a release event, and the arrival-time is the release
event time.

2. For each release event that occurs for a handler, an entry is made in the
arrival-time queue and the handler’s fireCount is incremented by one.

3. Initially a handler is considered to be blocked-for-release-event and its fire-

Count is zero.
4. Releases of a handler are serialized by having its handleAsyncEvent method

invoked repeatedly while its fireCount is greater than zero:

6.3. SEMANTICS 99

(a) Before invoking handleAsyncEvent, the fireCount is decremented and
the front entry (if still present) removed from the arrival-time queue.

(b) Each invocation of handleAsyncEvent, in this way, is a release.
(c) The return from handleAsyncEvent is the completion of a release.
(d) Processing of any exceptions thrown by handleAsyncEvent occurs prior

to completion.
5. The deadline for a release is relative to the release event time and determined

at the release event time according to the value of the deadline contained
in the handler’s release parameters. This value does not change, except as
described previously for handlers using a REPLACE policy for MIT violation
or arrival-time queue overflow.

6. The application code can directly modify the fireCount as follows:
(a) The getAndDecrementPendingFireCount method decreases the fire-

Count by one (if it was greater than zero), and returns the old value.
This removes the front entry from the arrival-time queue but otherwise
has no effect on the scheduling of the current schedulable, nor the handler
itself. Any data parameter passed with the associated fire request is lost.

(b) The getAndClearPendingFireCount method is functionally equivalent
to invoking getAndDecrementPendingFireCount until it returns zero,
and returning the original fireCount value. Any data parameters passed
with the associated fire requests are lost.

7. The scheduler may delay the invocation of handleAsyncEvent to ensure the
effective release time honors any restrictions imposed by the MIT violation
policy, if applicable, of that release event.

8. Cost monitoring and enforcement for an asynchronous event handler interacts
with release events and completions as previously defined with the added re-
quirement that at the completion of handleAsyncEvent, if the fireCount is
now zero, then the cost monitoring and enforcement system is told to reset for
this handler.

6.3.2.9 Processing Groups

A processing group is defined by a processing group parameters object, and each SO
that is bound to that parameter object is called a member of that processing group.
A processing group has an associated affinity that contains only one processor.

Processing groups are only functional in a system that implements processing
group enforcement. Although the processing group itself does not consume CPU
time, it acts as a proxy for its members.

6.3.2.9.1 Definitions for Processing Groups The enforced priority of a sched-
ulable is a priority with no execution eligibility.

100 CHAPTER 6. SCHEDULING

6.3.2.9.2 Semantics for Processing Groups
1. The deadline of a processing group is defined by the value returned by invoking

the getDeadline method of the processing group parameters object.
2. A deadline miss for the processing group is triggered if any member of the

processing group consumes CPU time at a time greater than the deadline for
the most recent release of the processing group.

3. When a processing group misses a deadline:
(a) If the processing group has a miss handler, it is released for execution
(b) If the processing group has no miss handler, no action is taken.

4. The cost of a processing group is defined by the value returned by invoking
the getCost method of the processing group parameters object.

5. When a processing group is initially released, its current CPU consumption
is zero and as the members of the processing group execute, the current CPU
consumption increases. The current CPU consumption is set to zero in re-
sponse to certain actions as described below.

6. If at any time, due to either execution of the members of the processing group
or a change in the parameter group’s cost, the current CPU consumption
becomes greater than, or equal to, the current cost of the processing group,
then a cost overrun is triggered. The implementation is required to document
the granularity at which the current CPU consumption is updated.

7. When a cost overrun is triggered, the cost overrun handler associated with
the processing group, if any, is released, and the processing group enters the
enforced state. For each member of the processing group:
(a) The SO is placed into the enforced state.
(b) When a SO is in the enforced state the base scheduler schedules that SO

effectively as if the enforced priority were used in place of the SO’s base
priority.

8. When the release event occurs for a processing group, the action taken depends
on the state of the processing group:
(a) If the processing group is not in the enforced state then the current CPU

consumption for the group is set to zero;
(b) Otherwise the processing group is in the enforced state. It is removed

from the enforced state, the current CPU consumption of the group is
set to zero, and each member of the group is removed from the enforced
state.

9. Changes to the cost parameter take effect immediately:
(a) If the new cost is less than or equal to the current CPU consumption,

and the old cost was greater than the current CPU consumption, then a
cost overrun is triggered.

(b) If the new cost is greater than the current CPU consumption:
i. If the processing group is enforced, then the processing group behaves

6.3. SEMANTICS 101

as defined in semantic 8.
ii. Otherwise, no cost monitoring and enforcement action occurs.

10. Changes to other parameters take place as follows:
(a) Start: can only be changed before the parameters group is started; i.e.,

before the start time or before the parameter object is associated with
any SO. Changes take effect immediately.

(b) Period: at each release the next period is set based on the current value
of the processing group’s period.

(c) Deadline: at each release the next deadline is set based on the current
value of the processing group’s deadline.

(d) OverrunHandler: at each release the overrunHandler is set based on the
current value of the processing group’s overrunHandler.

(e) MissHandler: at each release the missHandler is set based on the current
value of the processing group’s missHandler.

11. Changes to the membership of the processing group take effect immediately.
12. The start time for the processing group may be relative or absolute.

(a) If the start time is absolute, the processing group behaves effectively as
if the initial release time were the start time.

(b) If the start time is relative, the initial release time is computed relative
to the time start or fire (as appropriate) is first called for a member
of the processing group.

Note: Until a processing group starts, its budget cannot be replenished, but its
members will be enforced if they exceed the initial budget. Also, once a processing
group is started it behaves effectively as if it continued running continuously until
the defining ProcessingGroupParameters object is freed.

102 CHAPTER 6. SCHEDULING

6.4 Interfaces

6.4.1 BoundSchedulable

Interfaces

Schedulable

An empty interface. It is required in order to allow references to all bound schedu-
lables.

6.4.2 Schedulable

Interfaces

Runnable
Timable

Handlers and other objects can be run by a Scheduler1 if they provide a run()

method and the methods defined below. The Scheduler2 uses this information to
create a suitable context to execute the run() method.

6.4.2.1 Methods

6.4.2.1.1 getMemoryParameters

Signature

public
javax.realtime.MemoryParameters getMemoryParameters()

Returns

A reference to the current MemoryParameters3 object.

Gets a reference to the MemoryParameters4 object for this schedulable.

1Section 6.5.9
2Section 6.5.9
3Section 11.8.8
4Section 11.8.8

6.4. INTERFACES 103

6.4.2.1.2 getProcessingGroupParameters

Signature
public
javax.realtime.ProcessingGroupParameters

getProcessingGroupParameters()

Returns
A reference to the current ProcessingGroupParameters5 object.

Gets a reference to the ProcessingGroupParameters6 object for this schedulable.

6.4.2.1.3 getSchedulableSizingParameters

Signature
public
javax.realtime.SchedulableSizingParameters

getSchedulableSizingParameters()

Returns
A reference to the associated SchedulableSizingParameters7 object.

Gets a reference to the SchedulableSizingParameters8 object for this schedulable.

Available since RTSJ version RTSJ 2.0

6.4.2.1.4 getReleaseParameters

Signature
public
javax.realtime.ReleaseParameters getReleaseParameters()

Returns
A reference to the current ReleaseParameters9 object.

Gets a reference to the ReleaseParameters10 object for this schedulable.

6.4.2.1.5 getScheduler

Signature

5Section 6.5.7
6Section 6.5.7
7Section 11.8.12
8Section 11.8.12
9Section 6.5.8

10Section 6.5.8

104 CHAPTER 6. SCHEDULING

public
javax.realtime.Scheduler getScheduler()

Returns

A reference to the associated Scheduler11 object.

Gets a reference to the Scheduler12 object for this schedulable.

6.4.2.1.6 getSchedulingParameters

Signature

public
javax.realtime.SchedulingParameters getSchedulingParameters()

Returns

A reference to the current SchedulingParameters13 object.

Gets a reference to the SchedulingParameters14 object for this schedulable.

6.4.2.1.7 setMemoryParameters(MemoryParameters)

Signature

public
void setMemoryParameters(MemoryParameters memory)

Parameters

memory A MemoryParameters15 object which will become the memory param-
eters associated with this after the method call. If null, the default value
is governed by the associated scheduler (a new object is created if the default
value is not null). (See PriorityScheduler16.)

Throws

IllegalArgumentException when memory is not compatible with the schedul-
able’s scheduler. Also when this schedulable is no-heap and memory is located
in heap memory.
IllegalAssignmentError when the schedulable cannot hold a reference to mem-

ory, or if memory cannot hold a reference to this schedulable instance.
IllegalThreadStateException when the schedulable’s scheduler prohibits this
parameter change at this time due to the state of the schedulable.

Sets the memory parameters associated with this instance of Schedulable.

11Section 6.5.9
12Section 6.5.9
13Section 6.5.10
14Section 6.5.10
15Section 11.8.8
16Section 6.5.6

6.4. INTERFACES 105

This change becomes effective under conditions determined by the scheduler
controlling the schedulable. For instance, the change may be immediate or it may
be delayed until the next release of the schedulable object. See the documentation
for the scheduler for details.

Since this affects the constraints expressed in the memory parameters of the
existing schedulables, this may change the feasibility of the current system.

6.4.2.1.8 setProcessingGroupParameters(ProcessingGroupParameters)

Signature
public
void setProcessingGroupParameters(ProcessingGroupParameters

group)

Parameters
group A ProcessingGroupParameters17 object which will take effect as de-
termined by the associated scheduler. If null, the default value is governed
by the associated scheduler (a new object is created if the default value is not
null). (See PriorityScheduler18.)

Throws
IllegalArgumentException Thrown when group is not compatible with the sched-
uler for this schedulable object. Also when this schedulable is no-heap and
group is located in heap memory.
IllegalAssignmentError when this object cannot hold a reference to group or
group cannot hold a reference to this.
IllegalThreadStateException when the schedulable’s scheduler prohibits the chang-
ing of the processing group parameter at this time due to the state of the
schedulable object.

Sets the ProcessingGroupParameters19 of this.
This change becomes effective under conditions determined by the scheduler

controlling the schedulable. For instance, the change may be immediate or it may
be delayed until the next release of the schedulable. See the documentation for the
scheduler for details.

Since this affects the constraints expressed in the processing group parameters
of the existing schedulables, this may change the feasibility of the current system.

6.4.2.1.9 setReleaseParameters(ReleaseParameters)

17Section 6.5.7
18Section 6.5.6
19Section 6.5.7

106 CHAPTER 6. SCHEDULING

Signature

public
void setReleaseParameters(ReleaseParameters release)

Parameters

release A ReleaseParameters20 object which will become the release param-
eters associated with this after the method call, and take effect as determined
by the associated scheduler. If null, the default value is governed by the
associated scheduler (a new object is created if the default value is not null).
(See PriorityScheduler21.)

Throws

IllegalArgumentException Thrown when release is not compatible with the
associated scheduler. Also when this schedulable is no-heap and release is
located in heap memory.
IllegalAssignmentError when this object cannot hold a reference to release

or release cannot hold a reference to this.
IllegalThreadStateException when the schedulable’s scheduler prohibits the chang-
ing of the release parameter at this time due to the state of the schedulable.

Sets the release parameters associated with this instance of Schedulable.
Since this affects the constraints expressed in the release parameters of the ex-

isting schedulable objects, this may change the feasibility of the current system.
This change becomes effective under conditions determined by the scheduler

controlling the schedulable. For instance, the change may be immediate or it may
be delayed until the next release of the schedulable. The different properties of the
release parameters may take effect at different times. See the documentation for the
scheduler for details.

6.4.2.1.10 setScheduler(Scheduler)

Signature

public
void setScheduler(Scheduler scheduler)

Parameters

scheduler A reference to the scheduler that will manage execution of this sched-
ulable. Null is not a permissible value.

Throws

IllegalArgumentException Thrown when scheduler is null, or the schedul-
able’s existing parameter values are not compatible with scheduler. Also
when this schedulable is no-heap and scheduler is located in heap memory.

20Section 6.5.8
21Section 6.5.6

6.4. INTERFACES 107

IllegalAssignmentError when the schedulable cannot hold a reference to sched-
uler.
SecurityException when the caller is not permitted to set the scheduler for this
schedulable.
IllegalThreadStateException when scheduler refuses to accept this schedul-
able at this time due to the state of the schedulable.

Sets the reference to the Scheduler object. The timing of the change must be agreed
between the scheduler currently associated with this schedulable, and scheduler.

6.4.2.1.11 setScheduler(Scheduler, SchedulingParameters, ReleasePar-
ameters, MemoryParameters, ProcessingGroupParameters)

Signature

public
void setScheduler(Scheduler scheduler, SchedulingParameters

scheduling, ReleaseParameters release, MemoryParameters

memoryParameters, ProcessingGroupParameters group)

Parameters

scheduler A reference to the scheduler that will manage the execution of this
schedulable. Null is not a permissible value.
scheduling A reference to the SchedulingParameters22 which will be associ-
ated with this. If null, the default value is governed by scheduler (a new
object is created if the default value is not null). (See PriorityScheduler23.)
release A reference to the ReleaseParameters24 which will be associated with
this. If null, the default value is governed by scheduler (a new object is
created if the default value is not null). (See PriorityScheduler25.)
memoryParameters A reference to the MemoryParameters26 which will be as-
sociated with this. If null, the default value is governed by scheduler (a
new object is created if the default value is not null). (See PrioritySched-

uler27.)
group A reference to the ProcessingGroupParameters28 which will be asso-
ciated with this. * If null, the default value is governed by scheduler (a
new object is created). (See PriorityScheduler29.)

22Section 6.5.10
23Section 6.5.6
24Section 6.5.8
25Section 6.5.6
26Section 11.8.8
27Section 6.5.6
28Section 6.5.7
29Section 6.5.6

108 CHAPTER 6. SCHEDULING

Throws
IllegalArgumentException Thrown when scheduler is null or the parameter
values are not compatible with scheduler. Also thrown when this schedul-
able is no-heap and scheduler, scheduling release, memoryParameters, or
group is located in heap memory.
IllegalAssignmentError when this object cannot hold references to all the
parameter objects or the parameters cannot hold references to this.
IllegalThreadStateException when scheduler prohibits the changing of the
scheduler or a parameter at this time due to the state of the schedulable.
SecurityException when the caller is not permitted to set the scheduler for this
schedulable.

Sets the scheduler and associated parameter objects. The timing of the change
must be agreed between the scheduler currently associated with this schedulable,
and scheduler.

6.4.2.1.12 setSchedulingParameters(SchedulingParameters)

Signature
public
void setSchedulingParameters(SchedulingParameters scheduling)

Parameters
scheduling A reference to the SchedulingParameters30 object. If null, the
default value is governed by the associated scheduler (a new object is created
if the default value is not null). (See PriorityScheduler31.)

Throws
IllegalArgumentException Thrown when scheduling is not compatible with
the associated scheduler. Also when this schedulable is no-heap and schedul-

ing is located in heap memory.
IllegalAssignmentError when this object cannot hold a reference to schedul-

ing or scheduling cannot hold a reference to this.
IllegalThreadStateException when the schedulable’s scheduler prohibits the chang-
ing of the scheduling parameter at this time due to the state of the schedulable
object.

Sets the scheduling parameters associated with this instance of Schedulable.
Since this affects the scheduling parameters of the existing schedulables, this

may change the feasibility of the current system.
This change becomes effective under conditions determined by the scheduler

controlling the schedulable. For instance, the change may be immediate or it may

30Section 6.5.10
31Section 6.5.6

6.4. INTERFACES 109

be delayed until the next release of the schedulable. See the documentation for the
scheduler for details.

6.4.2.1.13 getMinConsumption(RelativeTime)

Signature
public
javax.realtime.RelativeTime getMinConsumption(RelativeTime dest)

Returns
The minimum CPU consumption for this schedulable in any single release.
If this method is called on the current schedulable, the CPU consumption of
the current release is not considered. If dest is null, return the minimum
consumption in an otherwise unused RelativeTime32 instance in the current
execution context. If dest is not null, return the minimum consumption in
dest

Available since RTSJ version RTSJ 2.0

6.4.2.1.14 getMinConsumption

Signature
public
javax.realtime.RelativeTime getMinConsumption()

Equivalent to getMinConsumption(null).

Available since RTSJ version RTSJ 2.0

6.4.2.1.15 getMaxConsumption(RelativeTime)

Signature
public
javax.realtime.RelativeTime getMaxConsumption(RelativeTime dest)

Returns
The maximum CPU consumption for this schedulable in any single release.
If this method is called on the current schedulable, the CPU consumption of
the current release is not considered. If dest is null, return the maximum
consumption in an otherwise unused RelativeTime33 instance in the current

32Section 9.5.4
33Section 9.5.4

110 CHAPTER 6. SCHEDULING

execution context. If dest is not null, return the maximum consumption in
dest

Available since RTSJ version RTSJ 2.0

6.4.2.1.16 getMaxConsumption

Signature
public
javax.realtime.RelativeTime getMaxConsumption()

Equivalent to getMaxConsumption(null).

Available since RTSJ version RTSJ 2.0

6.4.2.1.17 wakeup

Signature
public
void wakeup()

Throws
IllegalStateException when called from user code.

Provides a means for a Clock34 to end a sleep.

Available since RTSJ version RTSJ 2.0

34Section 10.5.2

6.5. CLASSES 111

6.5 Classes

6.5.1 Affinity

Inheritance

java.lang.Object
javax.realtime.Affinity

This class is the API for all processor-affinity-related aspects of the RTSJ. It includes
a factory that generates Affinity objects, and methods that control the default
affinity sets used when affinity set inheritance does not apply.

An affinity set is a set of processors that can be associated with a Thread, async
event handler or processing group parameters instance. For instances of Thread

and async event handlers, the associated affinity set binds the Thread or async
event handler to the set of processors.

Each implementation supports an array of predefined affinity sets. They can be
used either to reflect the scheduling arrangement of the underlying OS or they can
be used by the system designer to impose defaults for, say, Java threads, non-heap
realtime schedulables etc. A program is only allowed to dynamically create new
affinity sets with cardinality of one. This restriction reflects the concern that not all
operating systems will support multiprocessor affinity sets.

The processor membership of an affinity set is immutable. The Java thread,
schedulable, and ProcessingGroupParameters35 associations of an affinity set are
mutable. The processor affinity of instances of Thread (including real-time threads
and no-heap threads) and bound async event handlers can be changed by static
methods in this class. The processor affinity of un-bound asnc event handlers is
fixed to a default value, as returned by the getHeapDefault()36 and getNoHeapDe-

fault()37 methods.

The internal representation of a set of processors in an Affinity instance is
not specified, but the representation that is used to communicate with this class
is a BitSet where each bit corresponds to a logical processor ID. The relationship
between logical and physical processors is beyond the scope of this specification, and
may change.

The affinity set factory only generates usable Affinity instances; i.e., affinity
sets that (at least when they are created) can be used with set(Affinity, Bound-

35Section 6.5.7
36Section 6.5.1.2.8
37Section 6.5.1.2.10

112 CHAPTER 6. SCHEDULING

AsyncEventHandler)38, set(Affinity, Thread)39, and set(Affinity, Process-

ingGroupParameters)40. The factory cannot create an affinity set with more than
one processor member, but such affinity sets are supported. They may be internally
created by the RTSJ runtime, probably at startup time.

The set of affinity sets created at startup (the predined set) is visible through
the getPredefinedAffinities(Affinity[])41 method.

The affinity set factory may be used to create affinity sets with a single processor
member at any time, though this operation only supports processor members that
are valid as the processor affinity for a thread (at the time of the affinity set’s
creation.)

External changes to the set of processors available to the RTSJ runtime is likely to
cause serious trouble ranging from violation of assumptions underlying schedulability
analysis to freezing the entire RTSJ runtime, so if a system is capable of such
manipulation it should not exercise it on RTSJ processes.

Real-time threads and bound async event handlers that have processing group
parameters are members of that processing group, and their processor affinity is
governed by the intersection of the processing group’s affinity and the schedulable’s
affinity. The affinity set of a processing group must have exactly one processor. The
intersection of a non-default PG affinity set with the schedulable’s affinity set must
contain at most one entry. If the intersection is empty, the affinity defaults.

Ordinarily, an execution context inherits its creator’s affinity set, but:
• Java threads do not inherit affinity from SOs
• Unbound async event handlers cannot be assigned a non-default affinity.
• SOs do not inherit affinity from Java threads.

When an execution context does not inherit its creator’s affinity set, its initial affinity
set defaults as specified in this class:
• The default used when a heap-using SO does not inherit its creator’s affinity

set, and for all unbound heap-using async event handlers.
• The default used when a no-heap SO does not inherit its creator’s affinity set,

and for all unbound no-heap async event handlers.
• The default used for Java threads created by SOs.

This class also controls the default affinity used when a processing group is created.
That value is the set of all available processors. (Which permits each member of
the processing group to use the affinity set it would use if it were in no processing
group.) The processor affinity of the processing group can subsequently be altered
with the {set(Affinity, ProcessingGroupParameters)42 method.

38Section 6.5.1.2.20
39Section 6.5.1.2.21
40Section 6.5.1.2.22
41Section ??
42Section 6.5.1.2.22

6.5. CLASSES 113

There is no public constructor for this class. All instances must be created by
the factory method (generate).

Available since RTSJ version RTSJ 2.0

6.5.1.1 Constructors

6.5.1.1.1 Affinity

Signature

Affinity()

Package-protected default constructor.

6.5.1.2 Methods

6.5.1.2.1 generate(BitSet)

Signature
public static final
javax.realtime.Affinity generate(BitSet bitSet)

Parameters
bitSet The BitSet associated with the generated Affinity.

Throws
NullPointerException when bitSet is null.
IllegalArgumentException when bitSet does not refer to a valid set of pro-
cessors, where “valid” is defined as the bitset from a pre-defined affinity set,
or a bitset of cardinality one containing a processor from the set returned by
getAvailableProcessors(). The definition of “valid set of processors” is
system dependent; however, every set consisting of one valid processor makes
up a valid bit set, and every bit set correspond to a pre-defined affinity set is
valid.

114 CHAPTER 6. SCHEDULING

Returns
The resulting Affinity.

Returns an Affinity set with the affinity BitSet bitSet and no associations.
Platforms that support specific affinity sets will register those Affinity instances

with Affinity43. They appear in the arrays returned by getPredefinedAffini-

ties()44 and getPredefinedAffinities(Affinity[])45.

6.5.1.2.2 get(BoundSchedulable)

Signature
public static final
javax.realtime.Affinity get(BoundSchedulable schedulable)

Parameters
handler a bound async event handler.

Returns
The associated affinity set.

Return the affinity set instance associated with handler.

6.5.1.2.3 get(Thread)

Signature
public static final
javax.realtime.Affinity get(Thread thread)

Parameters
thread a Java thread, or one of its subclasses (including RealtimeThread46).

Returns
The associated affinity set.

Return the affinity set instance associated with thread.

6.5.1.2.4 get(ProcessingGroupParameters)

Signature
public static final
javax.realtime.Affinity get(ProcessingGroupParameters pgp)

Parameters
pgp An instance of ProcessingGroupParameters47

43Section 6.5.1
44Section 6.5.1.2.13
45Section ??
46Section 5.4.2
47Section 6.5.7

6.5. CLASSES 115

Returns

The associated affinity set.

Return the affinity set instance associated with pgp.

6.5.1.2.5 get(ActiveEventDispatcher)

Signature

public static final
javax.realtime.Affinity get(ActiveEventDispatcher dispatcher)

Parameters

dispatcher An instance of ActiveEventDispatcher48

Returns

The associated affinity set.

Return the affinity set instance associated with dispatcher.

6.5.1.2.6 getAvailableProcessors

Signature

public static final
java.util.BitSet getAvailableProcessors()

Returns

the set of processors available to the program.

This method is equivalent to getAvailableProcessors(BitSet)49 with a null ar-
gument.

6.5.1.2.7 getAvailableProcessors(BitSet)

Signature

public static final
java.util.BitSet getAvailableProcessors(BitSet dest)

Parameters

dest If dest is non-null, use dest as the returned value. If it is null, create a
new BitSet.

Returns

A BitSet representing the set of processors currently valid for use in the
bitset argument to generate(BitSet)50.

48Section 9.5.2
49Section 6.5.1.2.7
50Section 6.5.1.2.1

116 CHAPTER 6. SCHEDULING

In systems where the set of processors available to a process is dynamic (e.g., because
of system management operations or because of fault tolerance capabilities), the set
of available processors shall reflect the processsors that are allocated to the RTSJ
runtime and are currently available to execute tasks.

6.5.1.2.8 getHeapDefault

Signature

public static final
javax.realtime.Affinity getHeapDefault()

Returns

The current default processor affinity set for heap-using schedulables.

Return the default processor affinity set for heap-using schedulables.

6.5.1.2.9 getDefault

Signature

public static final
javax.realtime.Affinity getDefault()

Returns

The current default processor affinity set for Java threads.

Return the default processor affinity for Java threads.

6.5.1.2.10 getNoHeapDefault

Signature

public static final
javax.realtime.Affinity getNoHeapDefault()

Returns

The current default processor affinity set for non-heap mode schedulables.

Return the default processor affinity for non-heap mode schedulable objects.

6.5.1.2.11 getProcessingGroupDefault

Signature

public static final
javax.realtime.Affinity getProcessingGroupDefault()

Returns

6.5. CLASSES 117

The affinity set associated with SOs for which the intersection of their affinity
and their ProcessingGroupParameters51 affinity would be the empty set.

Return the processor affinity set used for SOs where the intersection of their affinity
set and their processing group parameters’ affinity set yields the empty set.

6.5.1.2.12 getPredefinedAffinitiesCount

Signature
public static final
int getPredefinedAffinitiesCount()

Returns
The minimum array size required to store references to all the predefined
affinity sets.

Return the minimum array size required to store references to all the predefined
processor affinity sets.

6.5.1.2.13 getPredefinedAffinities

Signature
public static final
javax.realtime.Affinity[] getPredefinedAffinities()

Returns
an array of the pre-defined affinity sets.

Equivalent to invoking getPredefinedAffinitySets(null).

6.5.1.2.14 getPredefinedAffinities(javax.realtime.Affinity[])

Signature
public static final
javax.realtime.Affinity[]

getPredefinedAffinities(javax.realtime.Affinity[] dest)

Parameters
dest The destination array, or null.

Throws
IllegalArgumentException when dest is not large enough.

Returns
dest or a newly created array if dest was null, populated with references to
the pre-defined affinity sets.
If dest has excess entries, they are filled with null.

51Section 6.5.7

118 CHAPTER 6. SCHEDULING

Return an array containing all affinity sets that were predefined by the Java runtime.

6.5.1.2.15 getProcessorAddedEvent

Signature
static
javax.realtime.AsyncEvent getProcessorAddedEvent()

Returns
The async event that will be fired when a processor is added to the set available
to the JVM. Returns null if change notification is not supported, or if no async
event has been designated.

Available since RTSJ version RTSJ 2.0

6.5.1.2.16 getProcessorRemovedEvent

Signature
static
javax.realtime.AsyncEvent getProcessorRemovedEvent()

Returns
The async event that will be fired when a processor is removed from the set
available to the JVM. Returns null if change notification is not supported, or
if no async event has been designated.

Available since RTSJ version RTSJ 2.0

6.5.1.2.17 isAffinityChangeNotificationSupported

Signature
static final
boolean isAffinityChangeNotificationSupported()

Returns
True if change notification is supported. (See setProcessorAddedEvent(AsyncEvent)52

and setProcessorRemovedEvent(AsyncEvent)53.)

Available since RTSJ version RTSJ 2.0

52Section 6.5.1.2.19
53Section 6.5.1.2.24

6.5. CLASSES 119

6.5.1.2.18 isSetAffinitySupported

Signature

public static final
boolean isSetAffinitySupported()

Returns

True if the set(Affinity, Thread)54 family of methods is supported.

Return true if the set(Affinity,Thread)55 family of methods is supported.

6.5.1.2.19 setProcessorAddedEvent(AsyncEvent)

Signature

static
void setProcessorAddedEvent(AsyncEvent event)

Parameters

event The async even to fire in case an added processor is detected, or null

to cause no AE to be called in case an added processor is detected.

Throws

UnsupportedOperationException when change notification is not supported.
IllegalArgumentExceptoin when event is not in immortal memory.

Set the AsyncEvent that will be fired when a processor is added to the set available
to the JVM.

6.5.1.2.20 set(Affinity, BoundAsyncEventHandler)

Signature

public static final
void set(Affinity set, BoundAsyncEventHandler aeh)

throws ProcessorAffinityException

Parameters

set The processor affinity set
aeh The bound async event handler

Throws

ProcessorAffinityException Thrown when the runtime fails to set the affinity
for platform-specific reasons.
NullPointerException if set or aeh is null.

Set the processor affinity of a bound AEH to set.

54Section 6.5.1.2.21
55Section 6.5.1.2.21

120 CHAPTER 6. SCHEDULING

6.5.1.2.21 set(Affinity, Thread)

Signature
public static final
void set(Affinity set, Thread thread)

throws ProcessorAffinityException

Parameters
set The processor affinity set
thread The thread or real-time thread.

Throws
ProcessorAffinityException when the runtime fails to set the affinity for platform-
specific reasons.
NullPointerException if set or thread is null.

Set the processor affinity of a Java thread or RealtimeThread56 to set.

6.5.1.2.22 set(Affinity, ProcessingGroupParameters)

Signature
public static final
void set(Affinity set, ProcessingGroupParameters pgp)

throws ProcessorAffinityException

Parameters
set The processor affinity set
pgp The processing group parameters instance.

Throws
ProcessorAffinityException when the runtime fails to set the affinity for platform-
specific reasons or pgp contains more than one processor.
NullPointerException if set pgp is null.

Set the processor affinity of pgp to set.

6.5.1.2.23 set(Affinity, ActiveEventDispatcher)

Signature
public static final
void set(Affinity set, ActiveEventDispatcher dispatcher)

throws ProcessorAffinityException

Parameters
set The processor affinity set

Throws

56Section 5.4.2

6.5. CLASSES 121

ProcessorAffinityException when the runtime fails to set the affinity for platform-
specific reasons or dispatcher contains more than one processor.
NullPointerException if set pgp is null.

Set the processor affinity of dispatcher to set.

6.5.1.2.24 setProcessorRemovedEvent(AsyncEvent)

Signature

static
void setProcessorRemovedEvent(AsyncEvent event)

Parameters

event

Throws

UnsupportedOperationException when change notification is not supported.
IllegalArgumentExceptoin when event is not null or in immortal memory.

Set the AsyncEvent57 that will be fired when a processor is removed from the set
available to the JVM.

6.5.1.2.25 getProcessors

Signature

public final
java.util.BitSet getProcessors()

Returns

A newly created BitSet representing this Affinity.

Return a BitSet representing the processor affinity set for this Affinity.

6.5.1.2.26 getProcessors(BitSet)

Signature

public final
java.util.BitSet getProcessors(BitSet dest)

Parameters

dest Set dest to the BitSet value. If dest is null, create a new BitSet in
the current allocation context.

Returns

A BitSet representing the processor affinity set of this Affinity.

57Section 8.6.3

122 CHAPTER 6. SCHEDULING

Return a BitSet representing the processor affinity set of this Affinity.

Available since RTSJ version RTSJ 2.0

6.5.1.2.27 isProcessorInSet(int)

Signature
public final
boolean isProcessorInSet(int processorNumber)

Parameters
processorNumber

Returns
True if and only if processorNumber is represented in this affinity set.

Ask whether a processor is included in this affinity set.

Available since RTSJ version RTSJ 2.0

6.5.1.2.28 applyTo(BoundAsyncEventHandler)

Signature
public final
void applyTo(BoundAsyncEventHandler aeh)

throws ProcessorAffinityException

Parameters
aeh The bound async event handler

Throws
ProcessorAffinityException Thrown when the runtime fails to set the affinity
for platform-specific reasons.
NullPointerException aeh is null.

Set the processor affinity of a bound AEH to this.

6.5.1.2.29 applyTo(Thread)

Signature
public final
void applyTo(Thread thread)

throws ProcessorAffinityException

Parameters
thread The thread or real-time thread.

6.5. CLASSES 123

Throws
ProcessorAffinityException when the runtime fails to set the affinity for platform-
specific reasons.
NullPointerException if thread is null.

Set the processor affinity of a Java thread or RealtimeThread58 to this.

6.5.1.2.30 applyTo(ProcessingGroupParameters)

Signature
public final
void applyTo(ProcessingGroupParameters pgp)

throws ProcessorAffinityException

Parameters
pgp The processing group parameters instance.

Throws
ProcessorAffinityException when the runtime fails to set the affinity for platform-
specific reasons or pgp contains more than one processor.
NullPointerException if pgp is null.

Set the processor affinity of pgp to this.

6.5.1.2.31 applyTo(ActiveEventDispatcher)

Signature
public final
void applyTo(ActiveEventDispatcher dispatcher)

throws ProcessorAffinityException

Parameters
dispatcher is the dispatcher instance.

Throws
ProcessorAffinityException when the runtime fails to set the affinity for platform-
specific reasons.
NullPointerException when dispatcher is null.

Set the processor affinity of dispatcher to this.

6.5.2 AperiodicParameters

Inheritance

58Section 5.4.2

124 CHAPTER 6. SCHEDULING

java.lang.Object
javax.realtime.ReleaseParameters

javax.realtime.AperiodicParameters

When a reference to an AperiodicParameters object is given as a parameter to a
schedulable’s constructor or passed as an argument to one of the schedulable’s setter
methods, the AperiodicParameters object becomes the release parameters object
bound to that schedulable. Changes to the values in the AperiodicParameters

object affect that schedulable. If bound to more than one schedulable then changes
to the values in the AperiodicParameters object affect all of the associated objects.
Note that this is a one-to-many relationship and not a many-to-many.

Only changes to an AperiodicParameters object caused by methods on that
object cause the change to propagate to all schedulables using the object. For
instance, calling setCost on an AperiodicParameters object will make the change,
then notify that the scheduler that the parameter object has changed. At that point
the object is reconsidered for every schedulable that uses it. Invoking a method on
the RelativeTime object that is the cost for this object may change the cost but
it does not pass the change to the scheduler at that time. That change must not
change the behavior of the schedulable’s that use the parameter object until a setter
method on the AperiodicParameters object is invoked, or the parameter object is
used in setReleaseParameters() or a constructor for a schedulable.

The implementation must use modified copy semantics for each HighResolu-

tionTime59 parameter value. The value of each time object should be treated as if
it were copied at the time it is passed to the parameter object, but the object ref-
erence must also be retained. For instance, the value returned by getCost() must
be the same object passed in by setCost(), but any changes made to the time value
of the cost must not take effect in the associated AperiodicParameters instance
unless they are passed to the parameter object again, e.g. with a new invocation of
setCost.

Correct initiation of the deadline miss and cost overrun handlers requires that
the underlying system know the arrival time of each sporadic task. For an instance
of RealtimeThread60 the arrival time is the time at which the start() is invoked.
For other instances of Schedulable61 required behaviors may require the implemen-
tation to behave effectively as if it maintained a queue of arrival times.

Caution: This class is explicitly unsafe in multithreaded situations when it is
being changed. No synchronization is done. It is assumed that users of this class
who are mutating instances will be doing their own synchronization at a higher level.

59Section 9.5.3
60Section 5.4.2
61Section 6.4.2

6.5. CLASSES 125

Attribute Value
cost new RelativeTime(0,0)

deadline new RelativeTime(Long.MAX VALUE,999999)

overrunHandler None
missHandler None
Arrival time queue size 0
Queue overflow policy SAVE

Correct initiation of the deadline miss and cost overrun handlers requires that
the underlying system know the arrival time of each aperiodic task. For an in-
stance of RealtimeThread62 the arrival time is the time at which the start() is
invoked. For other instances of Schedulable63 required behaviors may require the
implementation to behave effectively as if it maintained a queue of arrival times.

6.5.2.1 Fields

6.5.2.1.1 arrivalTimeQueueOverflowExcept

public static final arrivalTimeQueueOverflowExcept

Represents the “EXCEPT” policy for dealing with arrival time queue overflow. Un-
der this policy, if an arrival occurs and its time should be queued but the queue
already holds a number of times equal to the initial queue length defined by this

then the fire() method shall throw a ArrivalTimeQueueOverflowException64.
Any other associated semantics are governed by the schedulers for the schedulables
using these aperiodic parameters. If the arrival is a result of a happening to which
the instance of AsyncEventHandler65 is bound then the arrival time is ignored.

Available since RTSJ version RTSJ 1.0.1 Moved here from SporadicPa-

rameters.

6.5.2.1.2 arrivalTimeQueueOverflowIgnore

public static final arrivalTimeQueueOverflowIgnore

62Section 5.4.2
63Section 6.4.2
64Section 14.3.1
65Section 8.6.4

126 CHAPTER 6. SCHEDULING

Represents the “IGNOR” policy for dealing with arrival time queue overflow. Under
this policy, if an arrival occurs and its time should be queued, but the queue already
holds a number of times equal to the initial queue length defined by this then the
arrival is ignored. Any other associated semantics are governed by the schedulers
for the schedulables using these aperiodic parameters.

Available since RTSJ version RTSJ 1.0.1 Moved here from SporadicPa-

rameters.

6.5.2.1.3 arrivalTimeQueueOverflowReplace
public static final arrivalTimeQueueOverflowReplace

Represents the “REPLACE” policy for dealing with arrival time queue overflow.
Under this policy if an arrival occurs and should be queued but the queue already
holds a number of times equal to the initial queue length defined by this then
the information for this arrival replaces a previous arrival. Any other associated
semantics are governed by the schedulers for the schedulables using these aperiodic
parameters.

Available since RTSJ version RTSJ 1.0.1 Moved here from SporadicPa-

rameters.

6.5.2.1.4 arrivalTimeQueueOverflowSave
public static final arrivalTimeQueueOverflowSave

Represents the “SAVE” policy for dealing with arrival time queue overflow. Under
this policy if an arrival occurs and should be queued but the queue is full, then the
queue is lengthened and the arrival time is saved. Any other associated semantics
are governed by the schedulers for the schedulables using these aperiodic parameters.
This policy does not update the “initial queue length” as it alters the actual queue
length. Since the SAVE policy grows the arrival time queue as necessary, for the SAVE
policy the initial queue length is only an optimization.

Available since RTSJ version RTSJ 1.0.1 Moved here from SporadicPa-

rameters.

6.5.2.2 Constructors

6.5. CLASSES 127

6.5.2.2.1 AperiodicParameters

Signature

public

AperiodicParameters()

Create an AperiodicParameters object. This constructor is equivalent to:

AperiodicParameters(null, null, null, null)

Available since RTSJ version RTSJ 1.0.1

6.5.2.2.2 AperiodicParameters(RelativeTime)

Signature

public

AperiodicParameters(RelativeTime deadline)

Parameters
deadline

Available since RTSJ version RTSJ 2.0

6.5.2.2.3 AperiodicParameters(RelativeTime, AsyncEventHandler)

Signature

public

AperiodicParameters(RelativeTime deadline, AsyncEventHandler missHandler)

Create an AperiodicParameters object. This constructor is equivalent to:

AperiodicParameters(null, deadline, null, missHandler)

Available since RTSJ version RTSJ 2.0

128 CHAPTER 6. SCHEDULING

6.5.2.2.4 AperiodicParameters(RelativeTime, RelativeTime, AsyncEvent-
Handler, AsyncEventHandler)

Signature

public

AperiodicParameters(RelativeTime cost, RelativeTime deadline, AsyncEventHandler overrunHandler, AsyncEventHandler missHandler)

Parameters
cost Processing time per invocation. On implementations which can mea-
sure the amount of time a schedulable object is executed, this value is the
maximum amount of time a schedulable receives. On implementations which
cannot measure execution time, this value is used as a hint to the feasibility
algorithm. On such systems it is not possible to determine when any par-
ticular object exceeds cost. If null, the default value is a new instance of
RelativeTime(0,0).
deadline The latest permissible completion time measured from the release
time of the associated invocation of the schedulable. If null, the default value
is a new instance of RelativeTime(Long.MAX VALUE, 999999).
overrunHandler This handler is invoked if an invocation of the schedulable
exceeds cost. Not required for minimum implementation. If null, the default
value is no overrun handler.
missHandler This handler is invoked if the run() method of the schedulable
object is still executing after the deadline has passed. Although minimum
implementations do not consider deadlines in feasibility calculations, they must
recognize variable deadlines and invoke the miss handler as appropriate. If
null, the default value is no miss handler.

Throws
IllegalArgumentException when the time value of cost is less than zero, or the
time value of deadline is less than or equal to zero.
IllegalAssignmentError when cost, deadline, overrunHandler or missHan-

dler cannot be stored in this.
Create an AperiodicParameters object.

Available since RTSJ version RTSJ 2.0

6.5.2.3 Methods

6.5. CLASSES 129

6.5.2.3.1 getArrivalTimeQueueOverflowBehavior

Signature
public
java.lang.String getArrivalTimeQueueOverflowBehavior()

Returns
The behavior of the arrival time queue as a string.

Gets the behavior of the arrival time queue in the event of an overflow.

Available since RTSJ version RTSJ 1.0.1 Moved from SporadicParameters

6.5.2.3.2 getInitialArrivalTimeQueueLength

Signature
public
int getInitialArrivalTimeQueueLength()

Returns
The initial length of the queue.

Gets the initial number of elements the arrival time queue can hold. This returns the
initial queue length currently associated with this parameter object. If the overflow
policy is SAVE the initial queue length may not be related to the current queue
lengths of schedulables associated with this parameter object.

Available since RTSJ version RTSJ 1.0.1 Moved here from SporadicPa-

rameters.

6.5.2.3.3 setDeadline(RelativeTime)

Signature
public
void setDeadline(RelativeTime deadline)

Parameters
deadline The latest permissible completion time measured from the release
time of the associated invocation of the schedulable. If deadline is null, the
deadline is set to a new instance of RelativeTime(Long.MAX VALUE, 999999).

Throws
IllegalArgumentException when the time value of deadline is less than or
equal to zero, or if the new value of this deadline is incompatible with the
scheduler for any associated schedulable.

130 CHAPTER 6. SCHEDULING

IllegalAssignmentError @inheritDoc
Sets the deadline value.

If this parameter object is associated with any schedulable object (by being
passed through the schedulable’s constructor or set with a method such as Real-

timeThread.setReleaseParameters(ReleaseParameters)66) the deadline of those
schedulables is altered as specified by each schedulable’s respective scheduler.

6.5.2.3.4 setArrivalTimeQueueOverflowBehavior(String)

Signature
public
void setArrivalTimeQueueOverflowBehavior(String behavior)

Parameters
behavior A string representing the behavior.

Throws
IllegalArgumentException when behavior is not one of the final queue over-
flow behavior values defined in this class.

Sets the behavior of the arrival time queue in the case where the insertion of a new
element would make the queue size greater than the initial size given in this.

Values of behavior are compared using reference equality (==) not value equal-
ity (equals()).

Available since RTSJ version RTSJ 1.0.1 Moved here from SporadicPa-

rameters.

6.5.2.3.5 setInitialArrivalTimeQueueLength(int)

Signature
public
void setInitialArrivalTimeQueueLength(int initial)

Parameters
initial The initial length of the queue.

Throws
IllegalArgumentException when initial is less than zero.

Sets the initial number of elements the arrival time queue can hold without length-
ening the queue. The initial length of an arrival queue is set when the schedulable
using the queue is constructed, after that time changes in the initial queue length
are ignored.

66Section 5.4.2.2.26

6.5. CLASSES 131

Available since RTSJ version RTSJ 1.0.1 Moved here from SporadicPa-

rameters.

6.5.3 ImportanceParameters

Inheritance

java.lang.Object
javax.realtime.SchedulingParameters

javax.realtime.PriorityParameters
javax.realtime.ImportanceParameters

Importance is an additional scheduling metric that may be used by some priority-
based scheduling algorithms during overload conditions to differentiate execution
order among threads of the same priority.

In some realtime systems an external physical process determines the period of
many threads. If rate-monotonic priority assignment is used to assign priorities
many of the threads in the system may have the same priority because their periods
are the same. However, it is conceivable that some threads may be more impor-
tant than others and in an overload situation importance can help the scheduler
decide which threads to execute first. The base scheduling algorithm represented by
PriorityScheduler67 must not consider importance.

6.5.3.1 Fields

6.5.3.1.1 serialVersionUID

private static final serialVersionUID

6.5.3.2 Constructors

67Section 6.5.6

132 CHAPTER 6. SCHEDULING

6.5.3.2.1 ImportanceParameters(int, int)

Signature

public

ImportanceParameters(int priority, int importance)

Parameters
priority The priority value assigned to schedulables that use this parameter in-
stance. This value is used in place of the value passed to Thread.setPriority.
importance The importance value assigned to schedulable objects that use this
parameter instance.

Create an instance of ImportanceParameters.

6.5.3.3 Methods

6.5.3.3.1 getImportance

Signature
public
int getImportance()

Returns
The value of importance for the associated instances of Schedulable68.

Gets the importance value.

6.5.3.3.2 setImportance(int)

Signature
public
void setImportance(int importance)

Parameters
importance The value to which importance is set.

Throws
IllegalArgumentException when the given importance value is incompatible
with the scheduler for any of the schedulables which are presently using this
parameter object.

68Section 6.4.2

6.5. CLASSES 133

Set the importance value. If this parameter object is associated with any schedulable
(by being passed through the schedulable’s constructor or set with a method such as
RealtimeThread.setSchedulingParameters(SchedulingParameters)69) the im-
portance of those schedulables is altered at a moment controlled by the schedulers
for the respective schedulables.

6.5.3.3.3 toString

Signature
public
java.lang.String toString()

Print the value of the priority and importance values of the associated instance of
Schedulable70

6.5.4 PeriodicParameters

Inheritance
java.lang.Object

javax.realtime.ReleaseParameters
javax.realtime.PeriodicParameters

This release parameter indicates that the schedulable is released on a regular ba-
sis. For an AsyncEventHandler71, this means that the handler is either released
by a periodic timer, or the associated event occurs periodically. For a Realtime-

Thread72, this means that the RealtimeThread.waitForNextPeriod73 or Real-

timeThread.waitForNextPeriodInterruptible74 method will unblock the associ-
ated realtime thread at the start of each period.

When a reference to a PeriodicParameters object is given as a parameter to a
schedulable’s constructor or passed as an argument to one of the schedulable’s setter
methods, the PeriodicParameters object becomes the release parameters object
bound to that schedulable. Changes to the values in the PeriodicParameters

object affect that schedulable object. If bound to more than one schedulable then
changes to the values in the PeriodicParameters object affect all of the associated
objects. Note that this is a one-to-many relationship and not a many-to-many.

69Section 5.4.2.2.29
70Section 6.4.2
71Section 8.6.4
72Section 5.4.2
73Section 5.4.2.2.7
74Section 5.4.2.2.8

134 CHAPTER 6. SCHEDULING

Only changes to a PeriodicParameters object caused by methods on that object
cause the change to propagate to all schedulable objects using the object. For
instance, calling setCost on an PeriodicParameters object will make the change,
then notify that the scheduler that the parameter object has changed. At that
point the object is reconsidered for every SO that uses it. Invoking a method on
the RelativeTime object that is the cost for this object may change the cost but
it does not pass the change to the scheduler at that time. That change must not
change the behavior of the SOs that use the parameter object until a setter method
on the PeriodicParameters object is invoked, or the parameter object is used in
setReleaseParameters() or a constructor for an SO.

Periodic parameters use HighResolutionTime75 values for blocking time, period
and start time. Since these times are expressed as a HighResolutionTime76 values,
these values use accurate timers with nanosecond granularity. The actual resolution
available and even the quantity the timers measure depend on the clock associated
with each time value.

The implementation must use modified copy semantics for each HighResolu-

tionTime77 parameter value. The value of each time object should be treated as if
it were copied at the time it is passed to the parameter object, but the object ref-
erence must also be retained. For instance, the value returned by getCost() must
be the same object passed in by setCost(), but any changes made to the time value
of the cost must not take effect in the associated PeriodicParameters instance
unless they are passed to the parameter object again, e.g. with a new invocation of
setCost.

Periodic release parameters are strictly informational when they are applied to
async event handlers. They must be used for any feasibility analysis, but release of
the async event handler is not entirely controlled by the scheduler.

Caution: This class is explicitly unsafe in multithreaded situations when it is
being changed. No synchronization is done. It is assumed that users of this class
who are mutating instances will be doing their own synchronization at a higher level.

Caution: An implementation is not required to ensure that each AsyncEvent-

Handler with periodic parameters is released periodically.

75Section 9.5.3
76Section 9.5.3
77Section 9.5.3

6.5. CLASSES 135

Attribute Default Value
blocking new RelativeTime(0,0)
start new RelativeTime(0,0)
period No default. A value must be supplied
cost new RelativeTime(0,0)
deadline new RelativeTime(period)
overrunHandler None
missHandler None

6.5.4.1 Constructors

6.5.4.1.1 PeriodicParameters(RelativeTime)

Signature

public

PeriodicParameters(RelativeTime period)

Create a PeriodicParameters object with the specified period and all other at-
tributes set to their default values. This constructor has the same effect as invoking
PeriodicParameters(null, period, null, null, null, null)

Available since RTSJ version RTSJ 1.0.1

6.5.4.1.2 PeriodicParameters(HighResolutionTime, RelativeTime)

Signature

public

PeriodicParameters(HighResolutionTime start, RelativeTime period)

Create a PeriodicParameters object with the specified period and start times, and
all other attributes set to their default values. This constructor has the same effect
as invoking PeriodicParameters(start, period, null, null, null, null)

136 CHAPTER 6. SCHEDULING

Available since RTSJ version RTSJ 1.0.1

6.5.4.1.3 PeriodicParameters(HighResolutionTime, RelativeTime, Re-
lativeTime)

Signature

public

PeriodicParameters(HighResolutionTime start, RelativeTime period, RelativeTime deadline)

Create a PeriodicParameters object with the specified deadline, period and start
times, and all other attributes set to their default values. This constructor has the
same effect as invoking PeriodicParameters(start, period, null, deadline,

null, null, null)

Available since RTSJ version RTSJ 2.0

6.5.4.1.4 PeriodicParameters(HighResolutionTime, RelativeTime, Re-
lativeTime, RelativeTime, AsyncEventHandler, AsyncEventHandler)

Signature

public

PeriodicParameters(HighResolutionTime start, RelativeTime period, RelativeTime cost, RelativeTime deadline, AsyncEventHandler overrunHandler, AsyncEventHandler missHandler)

Parameters
start Time at which the first release begins (i.e. the real-time thread becomes
eligible for execution.) If a RelativeTime, this time is relative to the first
time the thread becomes activated (that is, when start() is called). If an
AbsoluteTime, then the first release is the maximum of the start parameter
and the time of the call to the associated RealtimeThread.start() method
(modified according to any phasing policy). If null, the default value is a new
instance of RelativeTime(0,0).
period The period is the interval between successive unblocks of the Realtime-
Thread.waitForNextPeriod78 and RealtimeThread.waitForNextPeriodInterruptible79

methods. There is no default value. If period is null an exception is thrown.

78Section 5.4.2.2.7
79Section 5.4.2.2.8

6.5. CLASSES 137

cost Processing time per release. On implementations which can measure the
amount of time a schedulable is executed, this value is the maximum amount
of time a schedulable receives per release. If null, the default value is a new
instance of RelativeTime(0,0).
deadline The latest permissible completion time measured from the release
time of the associated invocation of the schedulable. If null, the default value
is new instance of RelativeTime(period).
overrunHandler This handler is invoked if an invocation of the schedulable
exceeds cost in the given release. Implementations may ignore this parameter.
If null, the default value no overrun handler.
missHandler This handler is invoked if the run() method of the schedulable is
still executing after the deadline has passed. Although minimum implementa-
tions do not consider deadlines in feasibility calculations, they must recognize
variable deadlines and invoke the miss handler as appropriate. If null, the
default value no deadline miss handler.

Throws

IllegalArgumentException when the period is null or its time value is not
greater than zero, or if the time value of cost is less than zero, or if the time
value of deadline is not greater than zero, or if the clock associated with
the cost is not the real-time clock, or if the clock associated with the start,
deadline and period parameters are not the same.
IllegalAssignmentError when start period, cost, deadline, overrunHan-

dler or missHandler cannot be stored in this.

Create a PeriodicParameters object with a default blocking time and all other
attributes set to the specified values.

6.5.4.2 Methods

6.5.4.2.1 getPeriod

Signature

public
javax.realtime.RelativeTime getPeriod()

Returns

The current value in period.

Gets the period.

138 CHAPTER 6. SCHEDULING

6.5.4.2.2 getStart

Signature
public
javax.realtime.HighResolutionTime getStart()

Returns
The current value in start. This is the value that was specified in the con-
structor or by setStart(), not the actual absolute time corresponding to the
start of one of the schedulable objects associated with this PeriodicParame-

ters object.
Gets the start time.

6.5.4.2.3 setDeadline(RelativeTime)

Signature
public
void setDeadline(RelativeTime deadline)

Parameters
deadline The latest permissible completion time measured from the release
time of the associated invocation of the schedulable. If deadline is null, the
deadline is set to a new instance of RelativeTime equal to period.

Throws
IllegalArgumentException when the time value of deadline is less than or
equal to zero, or if the new value of this deadline is incompatible with the
scheduler for any associated schedulable.
IllegalAssignmentError @inheritDoc

Sets the deadline value.
If this parameter object is associated with any schedulable object (by being

passed through the schedulable’s constructor or set with a method such as Real-

timeThread.setReleaseParameters(ReleaseParameters)80) the deadline of those
schedulables is altered as specified by each schedulable’s respective scheduler.

6.5.4.2.4 setPeriod(RelativeTime)

Signature
public
void setPeriod(RelativeTime period)

Parameters
period The value to which period is set.

80Section 5.4.2.2.26

6.5. CLASSES 139

Throws
IllegalArgumentException when the given period is null or its time value is not
greater than zero. Also when period is incompatible with the scheduler for any
associated schedulable or when an associated AbstractAsyncEventHandler81

is associated with a Timer82 whose period does not match period.
IllegalAssignmentError when period cannot be stored in this.

Sets the period.

6.5.4.2.5 setStart(HighResolutionTime)

Signature
public
void setStart(HighResolutionTime start)

Parameters
start The new start time. If null, the default value is a new instance of
RelativeTime(0,0).

Throws
IllegalArgumentException when the given start time is incompatible with the
scheduler for any of the schedulable objects which are presently using this
parameter object.
IllegalAssignmentError when start cannot be stored in this.

Sets the start time.
The effect of changing the start time for any schedulables associated with this

parameter object is determined by the scheduler associated with each schedulable.
Note: An instance of PeriodicParameters may be shared by several schedula-

bles. A change to the start time may take effect on a subset of these schedulables.
That leaves the start time returned by getStart unreliable as a way to determine
the start time of a schedulable.

6.5.5 PriorityParameters

Inheritance
java.lang.Object

javax.realtime.SchedulingParameters
javax.realtime.PriorityParameters

Instances of this class should be assigned to schedulables that are managed by sched-
ulers which use a single integer to determine execution order. The base scheduler

81Section 8.6.2
82Section 10.5.6

140 CHAPTER 6. SCHEDULING

required by this specification and represented by the class PriorityScheduler83 is
such a scheduler.

6.5.5.1 Fields

6.5.5.1.1 serialVersionUID
private static final serialVersionUID

6.5.5.2 Constructors

6.5.5.2.1 PriorityParameters(int)

Signature

public

PriorityParameters(int priority)

Parameters
priority The priority assigned to schedulables that use this parameter instance.

Create an instance of PriorityParameters84 with the given priority.

6.5.5.3 Methods

6.5.5.3.1 getPriority

Signature
public
int getPriority()

Returns
The priority.

Gets the priority value.

83Section 6.5.6
84Section 6.5.5

6.5. CLASSES 141

6.5.5.3.2 setPriority(int)

Signature
public
void setPriority(int priority)

Parameters
priority The value to which priority is set.

Throws
IllegalArgumentException when the given priority value is incompatible with
the scheduler for any of the schedulables which are presently using this pa-
rameter object.

Set the priority value. If this parameter object is associated with any schedul-
able (by being passed through the schedulable’s constructor or set with a method
such as RealtimeThread.setSchedulingParameters(SchedulingParameters)85)
the base priority of those schedulables is altered as specified by each schedulable’s
scheduler.

6.5.5.3.3 toString

Signature
public
java.lang.String toString()

Returns
A string representing the value of priority.

Converts the priority value to a string.

6.5.6 PriorityScheduler

Inheritance
java.lang.Object

javax.realtime.Scheduler
javax.realtime.PriorityScheduler

Class which represents the required (by the RTSJ) priority-based scheduler. The
default instance is the base scheduler which does fixed priority, preemptive schedul-
ing.

This scheduler, like all schedulers, governs the default values for scheduling-
related parameters in its client schedulables. The defaults are as follows:

85Section 5.4.2.2.29

142 CHAPTER 6. SCHEDULING

Attribute Default Value
Priority parameters
Priority norm priority

Note that the system contains one instance of the PriorityScheduler which is
the system’s base scheduler and is returned by PriorityScheduler.instance(). It
may, however, contain instances of subclasses of PriorityScheduler and even ad-
ditional instances of PriorityScheduler itself created through this class’ protected
constructor. The instance returned by the instance()86 method is the base sched-
uler and is returned by Scheduler.getDefaultScheduler()87 unless the default
scheduler is reset with Scheduler.setDefaultScheduler(Scheduler)88.

6.5.6.1 Fields

6.5.6.1.1 MAX PRIORITY

public static final MAX PRIORITY

The maximum priority value used by the implementation.

Deprecated since RTSJ version as of RTSJ 1.0.1 Use the getMaxPriority89

method instead.

6.5.6.1.2 MIN PRIORITY

public static final MIN PRIORITY

The minimum priority value used by the implementation.

Deprecated since RTSJ version as of RTSJ 1.0.1 Use the getMinPriority90

method instead.

86Section 6.5.6.3.1
87Section 6.5.9.2.1
88Section 6.5.9.2.2
89Section 6.5.6.3.2
90Section 6.5.6.3.4

6.5. CLASSES 143

6.5.6.2 Constructors

6.5.6.2.1 PriorityScheduler

Signature

protected

PriorityScheduler()

Construct an instance of PriorityScheduler. Applications will likely not need any
instance other than the default instance.

6.5.6.3 Methods

6.5.6.3.1 instance

Signature

public static
javax.realtime.PriorityScheduler instance()

Returns

A reference to the distinguished instance PriorityScheduler.

Return a reference to the distinguished instance of PriorityScheduler which is
the system’s base scheduler.

6.5.6.3.2 getMaxPriority

Signature

public
int getMaxPriority()

Returns

The value of the maximum priority.

Gets the maximum priority available for a schedulable managed by this scheduler.

144 CHAPTER 6. SCHEDULING

6.5.6.3.3 getMaxPriority(Thread)

Signature
public static
int getMaxPriority(Thread thread)

Parameters
thread An instance of Thread. If null, the maximum priority of this scheduler
is returned.

Throws
IllegalArgumentException when thread is a realtime thread that is not sched-
uled by an instance of PriorityScheduler.

Returns
The maximum priority for thread

Gets the maximum priority for the given thread. If the given thread is a realtime
thread that is scheduled by an instance of PriorityScheduler, then the maximum
priority for that scheduler is returned. If the given thread is a Java thread then
the maximum priority of its thread group is returned. Otherwise an exception is
thrown.

6.5.6.3.4 getMinPriority

Signature
public
int getMinPriority()

Returns
The minimum priority used by this scheduler.

Gets the minimum priority available for a schedulable managed by this scheduler.

6.5.6.3.5 getMinPriority(Thread)

Signature
public static
int getMinPriority(Thread thread)

Parameters
thread An instance of Thread. If null, the minimum priority of this scheduler
is returned.

Throws
IllegalArgumentException when thread is a realtime thread that is not sched-
uled by an instance of PriorityScheduler.

Returns
The minimum priority for thread

6.5. CLASSES 145

Gets the minimum priority for the given thread. If the given thread is a realtime
thread that is scheduled by an instance of PriorityScheduler, then the minimum
priority for that scheduler is returned. If the given thread is a Java thread then
Thread.MIN PRIORITY is returned. Otherwise an exception is thrown.

6.5.6.3.6 getNormPriority

Signature
public
int getNormPriority()

Returns
The value of the normal priority.

Gets the normal priority available for a schedulable managed by this scheduler.

6.5.6.3.7 getNormPriority(Thread)

Signature
public static
int getNormPriority(Thread thread)

Parameters
thread An instance of Thread. If null, the norm priority for this scheduler is
returned.

Throws
IllegalArgumentException when thread is a realtime thread that is not sched-
uled by an instance3 of PriorityScheduler.

Returns
The norm priority for thread

Gets the ”norm” priority for the given thread. If the given thread is a realtime
thread that is scheduled by an instance of PriorityScheduler, then the norm
priority for that scheduler is returned. If the given thread is a Java thread then
Thread.NORM PRIORITY is returned. Otherwise an exception is thrown.

6.5.6.3.8 fireSchedulable(Schedulable)

Signature
public
void fireSchedulable(Schedulable schedulable)

Parameters
schedulable @inheritDoc

Throws

146 CHAPTER 6. SCHEDULING

UnsupportedOperationException Thrown in all cases by the PrioritySched-

uler

@inheritDoc

6.5.6.3.9 getPolicyName

Signature
public
java.lang.String getPolicyName()

Returns
The policy name (Fixed Priority) as a string.

Gets the policy name of this.

6.5.7 ProcessingGroupParameters

Inheritance
java.lang.Object

javax.realtime.ProcessingGroupParameters
Interfaces

Cloneable
Serializable

This is associated with one or more schedulables for which the system guarantees
that the associated objects will not be given more time per period than indicated
by cost. On implementations which do not support processing group parameters,
this class may be used as a hint to the feasibility algorithm. The motivation for
this class is to allow the execution demands of one or more aperiodic schedulables
to be bound so that they can be included in feasibility analysis. However, periodic
or sporadic schedulables can also be associated with a processing group.

Processing groups have an associated affinity set that must contain only a single
processor. The default affinity set is given by Affinity.getGroupDefaultAffinity().

For all schedulables with a reference to an instance of ProcessingGroupParame-
ters p no more than p.cost will be allocated to the execution of these schedulables
on the processor associated with its processing group in each interval of time given
by p.period after the time indicated by p.start. No execution of the schedulables
will be allowed on any processor other than this processor. If there is no intersec-
tion between the a schedulable objects affinity set and its processing group’s affinity
set, then the schedulable execution is constrained by the default processing group’s
affinit set. Peter, have I got the above correct. I still think it is messy. I
would prefer only the identify processor usage to be constrained.

6.5. CLASSES 147

Logically a virtual server is associated with each instance of ProcessingGroup-
Parameters. This server has a start time, a period, a cost (budget) and a deadline.
The server can only logically execute when (a) it has not consumed more execution
time in its current release than the cost (budget) parameter, (b) one of its associated
schedulables is executable and is the most eligible of the executable schedulables.
If the server is logically executable, the associated schedulable is executed. When
the cost has been consumed, any overrunHandler is released, and the server is not
eligible for logical execution until its next period is due. At this point, its allocated
cost (budget) is replenished. If the server is logically executing when its deadline
expires, any associated missHandler is released. The deadline and cost parameters
of all the associated schedulable objects have the same impact as they would if the
objects were not bound to a processing group.

Processing group parameters use HighResolutionTime91 values for cost, dead-
line, period and start time. Since those times are expressed as a HighResolution-

Time92, the values use accurate timers with nanosecond granularity. The actual
resolution available and even the quantity it measures depends on the clock associ-
ated with each time value.

When a reference to a ProcessingGroupParameters object is given as a param-
eter to a schedulable’s constructor or passed as an argument to one of the sched-
ulable’s setter methods, the ProcessingGroupParameters object becomes the pro-
cessing group parameters object bound to that schedulable object. Changes to the
values in the ProcessingGroupParameters object affect that schedulable object. If
bound to more than one schedulable then changes to the values in the Process-

ingGroupParameters object affect all of the associated objects. Note that this is a
one-to-many relationship and not a many-to-many.

The implementation must use modified copy semantics for each HighResolu-

tionTime93 parameter value. The value of each time object should be treated as if
it were copied at the time it is passed to the parameter object, but the object refer-
ence must also be retained. Only changes to a ProcessingGroupParameters object
caused by methods on that object are immediately visible to the scheduler. For in-
stance, invoking setPeriod() on a ProcessingGroupParameters object will make
the change, then notify that the scheduler that the parameter object has changed.
At that point the scheduler’s view of the processing group parameters object is up-
dated. Invoking a method on the RelativeTime object that is the period for this
object may change the period but it does not pass the change to the scheduler at
that time. That new value for period must not change the behavior of the SOs that
use the parameter object until a setter method on the ProcessingGroupParameters

91Section 9.5.3
92Section 9.5.3
93Section 9.5.3

148 CHAPTER 6. SCHEDULING

object is invoked, or the parameter object is used in setProcessingGroupParame-

ters() or a constructor for an SO.
The implementation may use copy semantics for each HighResolutionTime pa-

rameter value. For instance the value returned by getCost() must be equal to the
value passed in by setCost, but it need not be the same object.

Caution: This class is explicitly unsafe in multithreaded situations when it is
being changed. No synchronization is done. It is assumed that users of this class
who are mutating instances will be doing their own synchronization at a higher level.

Caution: The cost parameter time should be considered to be measured against
the target platform.

Attribute Default Value
start new RelativeTime(0,0)
period No default. A value must be supplied
cost No default. A value must be supplied
deadline new RelativeTime(period)
overrunHandler None
missHandler None

6.5.7.1 Fields

6.5.7.1.1 serialVersionUID
private static final serialVersionUID

6.5.7.2 Constructors

6.5.7.2.1 ProcessingGroupParameters(HighResolutionTime, RelativeTime,
RelativeTime, RelativeTime, AsyncEventHandler, AsyncEventHandler)

Signature

6.5. CLASSES 149

public

ProcessingGroupParameters(HighResolutionTime start, RelativeTime period, RelativeTime cost, RelativeTime deadline, AsyncEventHandler overrunHandler, AsyncEventHandler missHandler)

Parameters
start Time at which the first period begins. If a RelativeTime, this time is
relative to the creation of this. If an AbsoluteTime, then the first release of
the logical server is at the start time (or immediately if the absolute time is in
the past). If null, the default value is a new instance of RelativeTime(0,0).
period The period is the interval between successive replenishment of the log-
ical server’s associated cost budget. There is no default value. If period is
null an exception is thrown.
cost Processing time per period. The budget CPU time that the logical server
can consume each period. If null, an exception is thrown.
deadline The latest permissible completion time measured from the start of
the current period. Changing the deadline might not take effect after the
expiration of the current deadline. Specifying a deadline less than the period
constrains execution of all the members of the group to the beginning of each
period. If null, the default value is new instance of RelativeTime(period).
overrunHandler This handler is invoked if any schedulable object member
of this processing group attempts to use processor time beyond the group’s
budget. If null, no application async event handler is fired on the overrun
condition.
missHandler This handler is invoked if the logical server is still executing after
the deadline has passed. If null, no application async event handler is fired
on the deadline miss condition.

Throws
IllegalArgumentException when the period is null or its time value is not
greater than zero, if cost is null, or if the time value of cost is less than zero,
if start is an instance of RelativeTime and its value is negative, or if the time
value of deadline is not greater than zero and less than or equal to the period.
If the implementation does not support processing group deadline less than
period, deadline less than period will cause IllegalArgumentException to
be thrown.
IllegalAssignmentError when start, period, cost, deadline, overrunHan-
dler or missHandler cannot be stored in this.

Create a ProcessingGroupParameters object.

6.5.7.3 Methods

150 CHAPTER 6. SCHEDULING

6.5.7.3.1 clone

Signature
public
java.lang.Object clone()

Return a clone of this. This method should behave effectively as if it constructed
a new object with clones of the high-resolution time values of this.
• The new object is in the current allocation context.
• clone does not copy any associations from this and it does not implicitly

bind the new object to a SO.
• The new object has clones of all high-resolution time values (deep copy).
• References to event handlers are copied (shallow copy.)

Available since RTSJ version RTSJ 1.0.1

6.5.7.3.2 getCost

Signature
public
javax.realtime.RelativeTime getCost()

Returns
a reference to the value of cost.

Gets the value of cost.

6.5.7.3.3 getCostOverrunHandler

Signature
public
javax.realtime.AsyncEventHandler getCostOverrunHandler()

Returns
A reference to an instance of AsyncEventHandler94 that is cost overrun han-
dler of this.

Gets the cost overrun handler.

6.5.7.3.4 getDeadline

Signature
public

94Section 8.6.4

6.5. CLASSES 151

javax.realtime.RelativeTime getDeadline()

Returns
A reference to an instance of RelativeTime95 that is the deadline of this.

Gets the value of deadline.

6.5.7.3.5 getDeadlineMissHandler

Signature
public
javax.realtime.AsyncEventHandler getDeadlineMissHandler()

Returns
A reference to an instance of AsyncEventHandler96that is deadline miss han-
dler of this.

Gets the deadline miss handler.

6.5.7.3.6 getPeriod

Signature
public
javax.realtime.RelativeTime getPeriod()

Returns
A reference to an instance of RelativeTime97 that represents the value of
period.

Gets the value of period.

6.5.7.3.7 getStart

Signature
public
javax.realtime.HighResolutionTime getStart()

Returns
A reference to an instance of HighResolutionTime98 that represents the value
of start.

Gets the value of start. This is the value that was specified in the constructor or
by setStart(), not the actual absolute time the corresponding to the start of the
processing group.

95Section 9.5.4
96Section 8.6.4
97Section 9.5.4
98Section 9.5.3

152 CHAPTER 6. SCHEDULING

6.5.7.3.8 setCost(RelativeTime)

Signature
public
void setCost(RelativeTime cost)

Parameters
cost The new value for cost. If null, an exception is thrown.

Throws
IllegalArgumentException when cost is null or its time value is less than zero.
IllegalAssignmentError when cost cannot be stored in this.

Sets the value of cost.

6.5.7.3.9 setCostOverrunHandler(AsyncEventHandler)

Signature
public
void setCostOverrunHandler(AsyncEventHandler handler)

Parameters
handler This handler is invoked if the run() method of and of the the schedu-
lables attempt to execute for more than cost time units in any period. If
null, no handler is attached, and any previous handler is removed.

Throws
IllegalAssignmentError when handler cannot be stored in this.

Sets the cost overrun handler.

6.5.7.3.10 setDeadline(RelativeTime)

Signature
public
void setDeadline(RelativeTime deadline)

Parameters
deadline The new value for deadline. If null, the default value is new in-
stance of RelativeTime(period).

Throws
IllegalArgumentException when deadline has a value less than zero or greater
than the period. Unless the implementation supports deadline less than period
in processing groups, IllegalArgumentException is also when deadline is
less than the period.
IllegalAssignmentError when deadline cannot be stored in this.

Sets the value of deadline.

6.5. CLASSES 153

6.5.7.3.11 setDeadlineMissHandler(AsyncEventHandler)

Signature

public
void setDeadlineMissHandler(AsyncEventHandler handler)

Parameters

handler This handler is invoked if the run() method of any of the schedulables
still expect to execute after the deadline has passed. If null, no handler is
attached, and any previous handler is removed.

Throws

IllegalAssignmentError when handler cannot be stored in this.

Sets the deadline miss handler.

6.5.7.3.12 setPeriod(RelativeTime)

Signature

public
void setPeriod(RelativeTime period)

Parameters

period The new value for period. There is no default value. If period is null
an exception is thrown.

Throws

IllegalArgumentException when period is null, or its time value is not greater
than zero. If the implementation does not support processing group deadline
less than period, and period is not equal to the current value of the processing
group’s deadline, the deadline is set to a clone of period created in the same
memory area as period.
IllegalAssignmentError when period cannot be stored in this.

Sets the value of period.

6.5.7.3.13 setStart(HighResolutionTime)

Signature

public
void setStart(HighResolutionTime start)

Parameters

start The new value for start. If null, the default value is a new instance of
RelativeTime(0,0).

Throws

IllegalAssignmentError when start cannot be stored in this.

154 CHAPTER 6. SCHEDULING

IllegalArgumentException when start is a relative time value and less than
zero.

Sets the value of start. If the processing group is already started this method alters
the value of this object’s start time property, but has no other effect.

6.5.8 ReleaseParameters

Inheritance

java.lang.Object
javax.realtime.ReleaseParameters

Interfaces

Cloneable
Serializable

The top-level class for release characteristics of schedulable objects. When a ref-
erence to a ReleaseParameters object is given as a parameter to a constructor of
a schedulable, the ReleaseParameters object becomes bound to the object being
created. Changes to the values in the ReleaseParameters object affect the con-
structed object. If given to more than one constructor, then changes to the values
in the ReleaseParameters object affect all of the associated objects. Note that
this is a one-to-many relationship and not a many-to-many. Only changes to an
ReleaseParameters object caused by methods on that object cause the change to
propagate to all schedulables using the object. For instance, invoking setDeadline

on a ReleaseParameters instance will make the change, and then notify that the
scheduler that the object has been changed. At that point the object is reconsidered
for every SO that uses it. Invoking a method on the RelativeTime object that is
the deadline for this object may change the time value but it does not pass the new
time value to the scheduler at that time. Even though the changed time value is
referenced by ReleaseParameters objects, it will not change the behavior of the
SOs that use the parameter object until a setter method on the ReleaseParameters
object is invoked, or the parameter object is used in setReleaseParameters() or
a constructor for a schedulable.

Release parameters use HighResolutionTime99 values for blocking time, cost,
and deadline. Since the times are expressed as a HighResolutionTime100 values,
these values use accurate timers with nanosecond granularity. The actual resolution
available and even the quantity the timers measure depend on the clock associated
with each time value.

99Section 9.5.3
100Section 9.5.3

6.5. CLASSES 155

The implementation must use modified copy semantics for each HighResolu-

tionTime101 parameter value. The value of each time object should be treated as
if it were copied at the time it is passed to the parameter object, but the object
reference must also be retained. For instance, the value returned by getCost()

must be the same object passed in by setCost(), but any changes made to the time
value of the cost must not take effect in the associated ReleaseParameters instance
unless they are passed to the parameter object again, e.g. with a new invocation of
setCost.

Attribute Default Value
blocking new RelativeTime(0,0)
cost new RelativeTime(0,0)
deadline no default
overrunHandler None
missHandler None

Caution: This class is explicitly unsafe in multithreaded situations when it is
being changed. No synchronization is done. It is assumed that users of this class
who are mutating instances will be doing their own synchronization at a higher level.

Caution: The cost parameter time should be considered to be measured against
the target platform.

Note: Cost measurement and enforcement is an optional facility for implemen-
tations of the RTSJ.

6.5.8.1 Fields

6.5.8.1.1 serialVersionUID

private static final serialVersionUID

6.5.8.2 Constructors

101Section 9.5.3

156 CHAPTER 6. SCHEDULING

6.5.8.2.1 ReleaseParameters

Signature

protected

ReleaseParameters()

Create a new instance of ReleaseParameters. This constructor creates a default
ReleaseParameters object, i.e., it is equivalent to ReleaseParameters(null, null,

null, null).

6.5.8.2.2 ReleaseParameters(RelativeTime, AsyncEventHandler)

Signature

protected

ReleaseParameters(RelativeTime deadline, AsyncEventHandler missHandler)

Create a new instance of ReleaseParameters with the given parameter values.
* This constructor is equivalent to ReleaseParameters(null, deadline, null,

missHandler).

Available since RTSJ version RTSJ 2.0

6.5.8.2.3 ReleaseParameters(RelativeTime, RelativeTime, AsyncEvent-
Handler, AsyncEventHandler)

Signature

protected

ReleaseParameters(RelativeTime cost, RelativeTime deadline, AsyncEventHandler overrunHandler, AsyncEventHandler missHandler)

Parameters
cost - Processing time units per release. On implementations which can mea-
sure the amount of time a schedulable object is executed, If null, the default
value is a new instance of RelativeTime(0,0).
deadline - The latest permissible completion time measured from the release
time of the associated invocation of the schedulable. There is no default for
deadline in this class. The default must be determined by the subclasses.

6.5. CLASSES 157

overrunHandler - This handler is invoked if an invocation of the schedulable
exceeds cost. In the minimum implementation overrunHandler is ignored. If
null, no application event handler is executed on cost overrun.
missHandler - This handler is invoked if the run() method of the schedulable is
still executing after the deadline has passed. Although minimum implementa-
tions do not consider deadlines in feasibility calculations, they must recognize
variable deadlines and invoke the miss handler as appropriate. If null, no
application event handler is executed on the miss deadline condition.

Throws
java.lang.IllegalArgumentException - when the time value of cost is less than
zero, or the time value of deadline is less than or equal to zero or the clock
associated with the cost parameters is not the real-time clock.
IllegalAssignmentError - when cost, deadline, overrunHandler, or missHandler
cannot be stored in this.

Create a new instance of ReleaseParameters with the given parameter values.

6.5.8.3 Methods

6.5.8.3.1 clone

Signature
public
java.lang.Object clone()

Return a clone of this. This method should behave effectively as if it constructed
a new object with clones of the high-resolution time values of this.
• The new object is in the current allocation context.
• clone does not copy any associations from this and it does not implicitly

bind the new object to a SO.
• The new object has clones of all high-resolution time values (deep copy).
• References to event handlers are copied (shallow copy.)

Available since RTSJ version RTSJ 1.0.1

6.5.8.3.2 getCost

Signature
public

158 CHAPTER 6. SCHEDULING

javax.realtime.RelativeTime getCost()

Returns
A reference to cost.

Gets a reference to the cost.

6.5.8.3.3 getCostOverrunHandler

Signature
public
javax.realtime.AsyncEventHandler getCostOverrunHandler()

Returns
A reference to the associated cost overrun handler.

Gets a reference to the cost overrun handler.

6.5.8.3.4 getDeadline

Signature
public
javax.realtime.RelativeTime getDeadline()

Returns
A reference to deadline.

Gets a reference to the deadline.

6.5.8.3.5 getDeadlineMissHandler

Signature
public
javax.realtime.AsyncEventHandler getDeadlineMissHandler()

Returns
A reference to the deadline miss handler.

Gets a reference to the deadline miss handler.

6.5.8.3.6 setCost(RelativeTime)

Signature
public
void setCost(RelativeTime cost)

Parameters
cost Processing time units per release. On implementations which can mea-
sure the amount of time a schedulable is executed, this value is the maximum
amount of time a schedulable receives per release. On implementations which

6.5. CLASSES 159

cannot measure execution time, this value is used as a hint to the feasibility
algorithm. On such systems it is not possible to determine when any par-
ticular object exceeds cost. If null, the default value is a new instance of
RelativeTime(0,0).

Throws
IllegalArgumentException when the time value of cost is less than zero, or the
clock associated with the cost parameters is not the real-time clock.
IllegalAssignmentError when cost cannot be stored in this.

Sets the cost value.
When this parameter object is associated with any schedulable object (by being

passed through the schedulable’s constructor or set with a method such as Real-

timeThread.setReleaseParameters(ReleaseParameters)102) the cost of those schedu-
lables is altered as specified by each schedulable’s respective scheduler.

6.5.8.3.7 setCostOverrunHandler(AsyncEventHandler)

Signature
public
void setCostOverrunHandler(AsyncEventHandler handler)

Parameters
handler This handler is invoked if an invocation of the schedulable attempts
to exceed cost time units in a release. A null value of handler signifies that
no cost overrun handler should be used.

Throws
IllegalAssignmentError when handler cannot be stored in this.

Sets the cost overrun handler.
If this parameter object is associated with any schedulable object (by being

passed through the schedulable’s constructor or set with a method such as Real-

timeThread.setReleaseParameters(ReleaseParameters)103) the cost overrun han-
dler of those schedulables is altered as specified by each schedulable’s respective
scheduler.

6.5.8.3.8 setDeadline(RelativeTime)

Signature
public
void setDeadline(RelativeTime deadline)

Parameters

102Section 5.4.2.2.26
103Section 5.4.2.2.26

160 CHAPTER 6. SCHEDULING

deadline The latest permissible completion time measured from the release
time of the associated invocation of the schedulable. The default value of the
deadline must be controlled by the classes that extend ReleaseParameters.

Throws
IllegalArgumentException when deadline is null, the time value of deadline
is less than or equal to zero, or if the new value of this deadline is incompatible
with the scheduler for any associated schedulable.
IllegalAssignmentError when deadline cannot be stored in this.

Sets the deadline value.
If this parameter object is associated with any schedulable object (by being

passed through the schedulable’s constructor or set with a method such as Real-

timeThread.setReleaseParameters(ReleaseParameters)104) the deadline of those
schedulables is altered as specified by each schedulable’s respective scheduler.

6.5.8.3.9 setDeadlineMissHandler(AsyncEventHandler)

Signature
public
void setDeadlineMissHandler(AsyncEventHandler handler)

Parameters
handler This handler is invoked if any release of the schedulable fails to com-
plete before the deadline passes. Although minimum implementations do not
consider deadlines in feasibility calculations, they must recognize variable dead-
lines and invoke the miss handler as appropriate. A null value of handler

signifies that no deadline miss handler should be used.
Throws

IllegalAssignmentError when handler cannot be stored in this.
Sets the deadline miss handler.

If this parameter object is associated with any schedulable object (by being
passed through the schedulable’s constructor or set with a method such as Real-

timeThread.setReleaseParameters(ReleaseParameters)105) the deadline miss han-
dler of those schedulables is altered as specified by each schedulable’s respective
scheduler.

6.5.9 Scheduler

104Section 5.4.2.2.26
105Section 5.4.2.2.26

6.5. CLASSES 161

Inheritance

java.lang.Object
javax.realtime.Scheduler

An instance of Scheduler manages the execution of schedulables.

Subclasses of Scheduler are used for alternative scheduling policies and should
define an instance() class method to return the default instance of the subclass.
The name of the subclass should be descriptive of the policy, allowing applications to
deduce the policy available for the scheduler obtained via Scheduler.getDefaultScheduler106

(e.g., EDFScheduler).

6.5.9.1 Constructors

6.5.9.1.1 Scheduler

Signature

protected

Scheduler()

Create an instance of Scheduler.

6.5.9.2 Methods

6.5.9.2.1 getDefaultScheduler

Signature

public static
javax.realtime.Scheduler getDefaultScheduler()

Returns

A reference to the default scheduler.

Gets a reference to the default scheduler.

106Section 6.5.9.2.1

162 CHAPTER 6. SCHEDULING

6.5.9.2.2 setDefaultScheduler(Scheduler)

Signature
public static
void setDefaultScheduler(Scheduler scheduler)

Parameters
scheduler The Scheduler that becomes the default scheduler assigned to new
schedulables created by Java threads. If null nothing happens.

Throws
SecurityException when the caller is not permitted to set the default scheduler.

Sets the default scheduler. This is the scheduler given to instances of schedulables
when they are constructed by a Java thread. The default scheduler is set to the
required PriorityScheduler107 at startup.

6.5.9.2.3 fireSchedulable(Schedulable)

Signature
public abstract
void fireSchedulable(Schedulable schedulable)

Parameters
schedulable The schedulable to make active. When null, nothing happens.

Throws
UnsupportedOperationException when the scheduler cannot release schedul-

able for execution.
Trigger the execution of a schedulable (like an AsyncEventHandler108).

6.5.9.2.4 getPolicyName

Signature
public abstract
java.lang.String getPolicyName()

Returns
A name object which is the name of the scheduling policy used by this.

Gets a string representing the policy of this. The string value need not be in-
terned, but it must be created in a memory area that does not cause an illegal
assignment error if stored in the current allocation context and does not cause a
MemoryAccessError109 when accessed.

107Section 6.5.6
108Section 8.6.4
109Section 14.4.4

6.5. CLASSES 163

6.5.9.2.5 inSchedulableExecutionContext

Signature
public static
boolean inSchedulableExecutionContext()

Returns
true when yes and false otherwise.

Determine whether the current calling context is a Schedulable110: Realtime-

Thread111 or AbstractAsyncEventHandler112.

Available since RTSJ version RTSJ 2.0

6.5.9.2.6 getCurrentSchedulable

Signature
public static
javax.realtime.Schedulable getCurrentSchedulable()

Throws
ClassCastException when the caller is not a Schedulable113

Returns
the current Schedulable114.

Get the current execution context when called from a Schedulable115 execution
context.

Available since RTSJ version RTSJ 2.0

6.5.10 SchedulingParameters

Inheritance
java.lang.Object

javax.realtime.SchedulingParameters

110Section 6.4.2
111Section 5.4.2
112Section 8.6.2
113Section 6.4.2
114Section 6.4.2
115Section 6.4.2

164 CHAPTER 6. SCHEDULING

Interfaces
Cloneable
Serializable

Subclasses of SchedulingParameters (PriorityParameters116, ImportanceParam-
eters117, and any others defined for particular schedulers) provide the parameters
to be used by the Scheduler118. Changes to the values in a parameters object affects
the scheduling behavior of all the Schedulable119 objects to which it is bound.

Caution: Subclasses of this class are explicitly unsafe in multithreaded situa-
tions when they are being changed. No synchronization is done. It is assumed that
users of this class who are mutating instances will be doing their own synchronization
at a higher level.

6.5.10.1 Fields

6.5.10.1.1 serialVersionUID
private static final serialVersionUID

6.5.10.2 Constructors

6.5.10.2.1 SchedulingParameters

Signature

protected

SchedulingParameters()

Create a new instance of SchedulingParameters.

Available since RTSJ version RTSJ 1.0.1

116Section 6.5.5
117Section 6.5.3
118Section 6.5.9
119Section 6.4.2

6.5. CLASSES 165

6.5.10.3 Methods

6.5.10.3.1 clone

Signature

public
java.lang.Object clone()

Return a clone of this. This method should behave effectively as if it constructed
a new object with clones of the high-resolution time values of this.

• The new object is in the current allocation context.
• clone does not copy any associations from this and it does not implicitly

bind the new object to a SO.
• The new object has clones of all high-resolution time values (deep copy).
• References to event handlers are copied (shallow copy.)

Available since RTSJ version RTSJ 1.0.1

6.5.11 SporadicParameters

Inheritance

java.lang.Object
javax.realtime.ReleaseParameters

javax.realtime.AperiodicParameters
javax.realtime.SporadicParameters

A notice to the scheduler that the associated schedulable’s run method will be
released aperiodically but with a minimum time between releases.

When a reference to a SporadicParameters object is given as a parameter to a
schedulable’s constructor or passed as an argument to one of the schedulable’s setter
methods, the SporadicParameters object becomes the release parameters object
bound to that schedulable. Changes to the values in the SporadicParameters

object affect that schedulable object. If bound to more than one schedulable then
changes to the values in the SporadicParameters object affect all of the associated
objects. Note that this is a one-to-many relationship and not a many-to-many.

166 CHAPTER 6. SCHEDULING

The implementation must use modified copy semantics for each HighResolu-

tionTime120 parameter value. The value of each time object should be treated as if
it were copied at the time it is passed to the parameter object, but the object refer-
ence must also be retained. Only changes to a SporadicParameters object caused
by methods on that object cause the change to propagate to all schedulables using
the parameter object. For instance, calling setCost on a SporadicParameters ob-
ject will make the change, then notify that the scheduler that the parameter object
has changed. At that point the object is reconsidered for every SO that uses it.
Invoking a method on the RelativeTime object that is the cost for this object may
change the cost but it does not pass the change to the scheduler at that time. That
change must not change the behavior of the SOs that use the parameter object until
a setter method on the SporadicParameters object is invoked, or the parameter
object is used in setReleaseParameters() or a constructor for an SO.

Caution: This class is explicitly unsafe in multithreaded situations when it is
being changed. No synchronization is done. It is assumed that users of this class
who are mutating instances will be doing their own synchronization at a higher level.

This class allows the application to specify one of four possible behaviors that
indicate what to do if an arrival occurs that is closer in time to the previous arrival
than the value given in this class as minimum interarrival time, what to do if, for
any reason, the queue overflows, and the initial size of the queue.

Attribute Value
minInterarrival time No default. A value must be supplied
cost new RelativeTime(0,0)
deadline new RelativeTime(mit)
overrunHandler None
missHandler None
MIT violation policy SAVE
Arrival queue overflow policy SAVE
Initial arrival queue length 0

6.5.11.1 Fields

120Section 9.5.3

6.5. CLASSES 167

6.5.11.1.1 mitViolationExcept
public static final mitViolationExcept

Represents the “EXCEPT” policy for dealing with minimum interarrival time vi-
olations. Under this policy, if an arrival time for any instance of Schedulable121

which has this as its instance of ReleaseParameters122 occurs at a time less then
the minimum interarrival time defined here then the fire() method shall throw
MITViolationException123. Any other associated semantics are governed by the
schedulers for the schedulables using these sporadic parameters. If the arrival time
is a result of a happening to which the instance of AsyncEventHandler124 is bound
then the arrival time is ignored.

6.5.11.1.2 mitViolationIgnore
public static final mitViolationIgnore

Represents the “IGNORE” policy for dealing with minimum interarrival time viola-
tions. Under this policy, if an arrival time for any instance of Schedulable125 which
has this as its instance of ReleaseParameters126 occurs at a time less then the
minimum interarrival time defined here then the new arrival time is ignored. Any
other associated semantics are governed by the schedulers for the schedulables using
these sporadic parameters.

6.5.11.1.3 mitViolationSave
public static final mitViolationSave

Represents the “SAVE” policy for dealing with minimum interarrival time violations.
Under this policy the arrival time for any instance of Schedulable127 which has this
as its instance of ReleaseParameters128 is not compared to the specified minimum
interarrival time. Any other associated semantics are governed by the schedulers for
the schedulable objects using these sporadic parameters.

6.5.11.1.4 mitViolationReplace
public static final mitViolationReplace

Represents the “REPLACE” policy for dealing with minimum interarrival time vi-
olations. Under this policy if an arrival time for any instance of Schedulable129

121Section 6.4.2
122Section 6.5.8
123Section 14.3.9
124Section 8.6.4
125Section 6.4.2
126Section 6.5.8
127Section 6.4.2
128Section 6.5.8
129Section 6.4.2

168 CHAPTER 6. SCHEDULING

which has this as its instance of ReleaseParameters130 occurs at a time less then
the minimum interarrival time defined here then the information for this arrival
replaces a previous arrival. Any other associated semantics are governed by the
schedulers for the schedulables using these sporadic parameters.

6.5.11.2 Constructors

6.5.11.2.1 SporadicParameters(RelativeTime)

Signature

public

SporadicParameters(RelativeTime minInterarrival)

Create a SporadicParameters object. This constructor is equivalent to:
SporadicParameters(minInterarrival, null, null, null, null, null)

Available since RTSJ version RTSJ 1.0.1

6.5.11.2.2 SporadicParameters(RelativeTime, RelativeTime)

Signature

public

SporadicParameters(RelativeTime minInterarrival, RelativeTime deadline)

Create a SporadicParameters object. This constructor is equivalent to:
SporadicParameters(minInterarrival, null, null, null, null, null)

Available since RTSJ version RTSJ 2.0

130Section 6.5.8

6.5. CLASSES 169

6.5.11.2.3 SporadicParameters(RelativeTime, RelativeTime, AsyncEvent-
Handler)

Signature

public

SporadicParameters(RelativeTime minInterarrival, RelativeTime deadline, AsyncEventHandler missHandler)

Create a SporadicParameters object. This constructor is equivalent to:
SporadicParameters(minInterarrival, null, deadline, null, missHandler)

Available since RTSJ version RTSJ 2.0

6.5.11.2.4 SporadicParameters(RelativeTime, RelativeTime, RelativeTime,
AsyncEventHandler, AsyncEventHandler)

Signature

public

SporadicParameters(RelativeTime minInterarrival, RelativeTime cost, RelativeTime deadline, AsyncEventHandler overrunHandler, AsyncEventHandler missHandler)

Parameters
minInterarrival The release times of the schedulable will occur no closer than
this interval. This time object is treated as if it were copied. Changes to
minInterarrival will not effect the SporadicParameters object. There is
no default value. If minInterarrival is null an illegal argument exception
is thrown.
cost Processing time per release. On implementations which can measure the
amount of time a schedulable is executed, this value is the maximum amount
of time a schedulable receives per release. If null, the default value is a new
instance of RelativeTime(0,0).
deadline The latest permissible completion time measured from the release
time of the associated invocation of the schedulable. For a minimum im-
plementation for purposes of feasibility analysis, the deadline is equal to the
minimum interarrival interval. Other implementations may use this parameter
to compute execution eligibility. If null, the default value is a new instance
of RelativeTime(mit).
overrunHandler This handler is invoked if an invocation of the schedulable
exceeds cost. Not required for minimum implementation. If null no overrun
handler will be used.

170 CHAPTER 6. SCHEDULING

missHandler This handler is invoked if the run() method of the schedulable is
still executing after the deadline has passed. Although minimum implementa-
tions do not consider deadlines in feasibility calculations, they must recognize
variable deadlines and invoke the miss handler as appropriate. If null, no
deadline miss handler will be used.

Throws
IllegalArgumentException when minInterarrival is null or its time value is
not greater than zero, or the time value of cost is less than zero, or the time
value of deadline is not greater than zero, or if the clocks associated with
deadline and minInterarrival parameters are not identical.
IllegalAssignmentError when minInterarrival, cost, deadline, overrun-

Handler or missHandler cannot be stored in this.
Create a SporadicParameters object.

Available since RTSJ version RTSJ 2.0

6.5.11.3 Methods

6.5.11.3.1 setMitViolationBehavior(String)

Signature
public
void setMitViolationBehavior(String behavior)

Parameters
behavior A string representing the behavior.

Throws
IllegalArgumentException when behavior is not one of the final MIT viola-
tion behavior values defined in this class.

Sets the behavior of the arrival time queue in the case where the new arrival time is
closer to the previous arrival time than the minimum interarrival time given in this.

Values of behavior are compared using reference equality (==) not value equal-
ity (equals()).

6.5.11.3.2 getMitViolationBehavior

Signature
public

6.6. RATIONALE 171

java.lang.String getMitViolationBehavior()

Returns

The minimum interarrival time violation behavior as a string.

Gets the arrival time queue behavior in the event of a minimum interarrival time
violation.

6.5.11.3.3 getMinimumInterarrival

Signature

public
javax.realtime.RelativeTime getMinimumInterarrival()

Returns

The minimum interarrival time.

Gets the minimum interarrival time.

6.5.11.3.4 setMinimumInterarrival(RelativeTime)

Signature

public
void setMinimumInterarrival(RelativeTime minimum)

Parameters

minimum The release times of the schedulable will occur no closer than this
interval.

Throws

IllegalArgumentException when minimum is null or its time value is not greater
than zero.
IllegalAssignmentError when minimum cannot be stored in this.

Set the minimum interarrival time.

6.6 Rationale

As specified, the required semantics of this section establish a scheduling policy
that is very similar to the scheduling policies found on the vast majority of realtime
operating systems and kernels in commercial use today. The semantics for the base
scheduler accommodate existing practice, which is a stated goal of the effort.

There is an important division between priority schedulers that force periodic
context switching between tasks at the same priority, and those that do not cause
these context switches. By not specifying time slicing[1] behavior this specification
calls for the latter type of priority scheduler. In POSIX terms, SCHED FIFO meets

172 CHAPTER 6. SCHEDULING

the RTSJ requirements for the base scheduler, but SCHED RR does not meet those
requirements.

Although a system may not implement the first release (start) of a schedulable
as unblocking that schedulable, under the base scheduler those semantics apply; i.e.,
the schedulable is added to the tail of the queue for its active priority.

Some research shows that, given a set of reasonable common assumptions, 32 dis-
tinct priority levels are a reasonable choice for close-to-optimal scheduling efficiency
when using the rate-monotonic priority assignment algorithm on a single processor
system (256 priority levels provide better efficiency). This specification requires at
least 28 distinct priority levels as a compromise noting that implementations of this
specification will exist on systems with logic executing outside of the Java Virtual
Machine and may need priorities above, below, or both for system activities.

The default behavior for implementations that support cost monitoring and en-
forcement is that a schedulable receives no more than cost units of CPU time during
each release. The programmer must explicitly change the cost attribute to override
the scheduler. The RTSJ allows schedulables to self suspend during a release, in
addition to that which might be necessary to acquire a lock. These self suspensions
must be time bounded. Any self suspension which is not time bounded may under-
mine the cost enforcement model specified in this document, as it may result in a
schedulable suspending beyond its next release event. This can result in more time
being allocated than any associated schedulability analysis might assume. See Dos
Santos and Wellings for a full discussion on the problem [4].

Cost enforcement may be deferred while the overrun schedulable holds locks
that are out of application control, such as locks used to protect garbage collection.
Applications should include the resulting jitter in any analysis that depends on cost
enforcement.

When a schedulable is enforced because of cost overrun in a processing group
the enforced priority is used for scheduling instead of the schedulable’s base priority.
The enforced priority’s application is limited. The enforced priority is not returned
as the schedulable’s priority from methods such as getPriority(), and the semantics
of the active priority continue to operate when a schedulable is enforced.

6.6.1 Multiprocessor Support

The support that the RTSJ provides for multiprocessor systems is primarily con-
strained by the support it can expect from the underlying operating system. The
following have had the most impact on the level of support that has been specified.
• The notion of processor affinity is common across operating systems and has

become the accepted way to specify the constraints on which processor a thread
can execute. In some sense, processor affinities can be viewed as additional
release or scheduling parameters. However, to add them to the parameter

6.6. RATIONALE 173

classes requires the support to be distributed throughout the specification
with a proliferation of new constructor methods. To avoid this, support is
grouped together within the Affinity class. The class also provides the addi-
tion of processor affinity support to Java threads without modifying the thread
object’s visible API.
• The range of processors on which global scheduling is possible is dictated by

the operating system. For SMP architectures, global scheduling across all
the processors in the system is typically supported. However, an application
and an operator can constrain threads and processes to execute only within a
subset of the processors. As the number of processors increase, the scalability
of global scheduling is called into question. Hence, for NUMA architectures
some partitioning of the processors is likely to performed by the OS. Hence,
global scheduling across all processors will not be possible in these systems.
For these reasons, the RTSJ supports an array of predefined affinities. These
are implementation-defined. They can be used either to reflect the scheduling
arrangement of the underlying OS or they can be used by the system designer
to impose defaults for, say, Java threads, non-heap realtime schedulables etc.
A program is only allowed to dynamically create new affinities with cardinality
of one. This restriction reflects the concern that not all operating systems will
support multiprocessor affinities.
• Many OSs give system operators command-level dynamic control over the set

of processors allocated to a processes. Consequently, the realtime JVM has
no control over whether processors are dynamically added or removed from
its OS process. Predictability is a prime concern of the RTSJ. Clearly, dy-
namic changes to the allocated processors will have a dramatic, and possibly
catastrophic, effect on the ability of the program to meet timing requirements.
Hence, the RTSJ assumes that the processor set allocated to the RTSJ process
does not change during its execution. If a system is capable of such manipu-
lations, it should not exercise in on RTSJ processes

6.6.2 Impact of Clock Granularity

All time-triggered computation can suffer from release jitter. This is defined to be
the variation in the actual time the computation becomes available for execution
from its scheduled release time. The amount of release jitter depends on two fac-
tors. The first is the granularity of the clock/timer used to trigger the release. For
example, a periodic event handler that is due to be released at absolute time T will
actually be release at time T + δ. δ is the difference between T and the first time
the timer clock advances to T0, where T0 >= T . The upper bound of δ is the value
returned from calling the getResolution method of the associated clock. It is for
this reason that the implementation of release times for periodic activities must use

174 CHAPTER 6. SCHEDULING

absolute rather than relative time values, in order to avoid the drift accumulating.
The second contribution to release jitter is also related to the clock/timer. It

is the duration of interval between T0 being signaled by the clock/timer and the
time this event is noticed by the underlying operating system or platform (perhaps
because interrupts have been disabled). A compliant implementation of SCJ should
document the maximum value of δ for the realtime clock.

6.6.3 Deadline Miss Detection

Although RTSJ supports deadline miss detection, it is important to understand the
intrinsic limitations of the facility. The SCJ facility is supported using a time-
triggered event. All time-triggered computation can suffer from release jitter. Hence,
any deadline miss handler may not be released until sometime after the deadline has
expired. The handlers actual execution will depend on its priority relative to other
schedulables.

A related limitation is that a deadline can be missed but not detected. This can
occur when the deadline has been set at a smaller granularity than the detecting
timer. Consider an absolute deadline of D. Suppose that the next absolute time that
the timer can recognize is D + δ. If the associate thread finishes after D but before
D + δ, it will have missed its deadline, but this miss will have been undetected.

A third limitation is due to the inherent race condition that is present when
checking for deadline misses. A deadline miss is defined to occur if an SO has not
completed the computation associated with its release before its deadline. This
completion event is signalled in the application code by the return of the han-
dleAsyncEvent method or a call to waitForNextPeriod etc. When this occurs, the
infrastructure reschedules/cancels the timing event that signals the miss of a dead-
line. This is clearly a race condition. The timer event could fire between the last
statement the completion event and the rescheduling/canceling of the timer event.
Hence a deadline miss could be signalled when arguably the application had per-
formed all of its computation.

Chapter 7

Synchronization

(Updated by Andy 8 Feb, 2012)

7.1 Overview

This section describes classes that specifically manage synchronization. These classes:

• Allow the setting of a priority inversion control policy either as the default or
for specific objects
• Allow wait-free communication between schedulables (especially instances of
NoHeapRealtimeThread) and regular Java threads.

This specification strengthens the semantics of Java synchronized code by mandat-
ing monitor execution eligibility control, commonly referred to as priority inversion
control. The MonitorControl class is defined as the superclass of all such execution
eligibility control algorithms. Its subclasses PriorityInheritance (required) and
PriorityCeilingEmulation (optional) avoid unbounded priority inversions, which
would be unacceptable in realtime systems.

The classes in this section establish a framework for priority inversion manage-
ment that applies to priority-oriented schedulers in general, and a specific set of
requirements for the base priority scheduler.

The wait-free queue classes provide safe, concurrent access to data shared be-
tween instances of NoHeapRealtimeThread and schedulable objects subject to garbage
collection delays.

7.2 Semantics

This list establishes the semantics that are applicable across the classes of this
section. Semantics that apply to particular classes, constructors, methods, and

175

176 CHAPTER 7. SYNCHRONIZATION

fields will be found in the class description and the constructor, method, and field
detail sections.
• Terminology: If an object obj has been assigned (either by default or via an

explicit method call) the MonitorControlPolicy mcp, then obj is said to be
governed by mcp.
• The initial default monitor control policy shall be PriorityInheritance. The

default policy can be altered by using the setMonitorControl() method.
• Notwithstanding the preceding rule, an RTSJ implementation may allow the

program to establish a different initial default monitor control policy at JVM
startup. The program can query the initial default monitor control policy via
the method RealtimeSystem.getInitialMonitorControl.
• The PriorityCeilingEmulation monitor control policy is optional, since it

is not widely supported by current RTOSes.
• An implementation that provides any additional MonitorControl subclasses

must document their effects, particularly with respect to priority inversion
control. X
• An object’s monitor control policy affects any entity that attempts to lock the

object; i.e., regular Java threads as well as schedulables.
• When a thread or schedulable enters synchronized code, the target object’s

monitor control policy must be supported by the thread or schedulable’s sched-
uler; otherwise an IllegalThreadStateException is thrown. An implemen-
tation that defines a new MonitorControl subclass must document which (if
any) schedulers do not support this policy.

7.2.1 The Base Priority Scheduler

The following list defines the main terms and establishes the general semantics that
apply to threads and schedulables managed by the base priority scheduler when they
synchronize on objects governed by monitor control policies defined in this section.
• Each thread or schedulable has a base priority and an active priority. A thread

or schedulable that holds a lock on a PCE-governed object also has a ceiling
priority.
• The base priority for a thread or schedulable t is initially the priority that t

has when it is created. The base priority is updated (immediately) as an effect
of invoking any of the following methods:

– pparams.setPriority(prio) if t is a schedulable with pparams as its
SchedulingParameters, where pparams is an instance of PriorityPar-
ameters; the new base priority is prio

– t.setSchedulingParameters(pparams) if t is a schedulable and ppa-

rams is an instance of PriorityParameters; the new base priority is
pparams.getPriority()

7.2. SEMANTICS 177

– t.setPriority(prio) if t is a schedulable object, the new base priority
is prio. If it is a Java thread, the new base priority is the lesser of prio,
and the maximum priority for t’s thread group.

• When t does not hold any locks, its active priority is the same as its base
priority. In such a situation modification of the priority of t through an
invocation of any of the above priority-setting methods for t causes t to be
placed at the tail of its relevant queue (ready, blocked on a particular object,
etc.) at its new priority.
• When t holds one or more locks, then t has a set of priority sources. The

active priority for t at any point in time is the maximum of the priorities
associated with all of these sources. The priority sources resulting from the
monitor control policies defined in this section, and their associated priorities
for a schedulable t, are as follows:

– Source: t itself Associated priority : The base priority for tNote: This
may have been changed (either synchronously or asynchronously) while
t has been holding its lock(s).

– Source: Each object locked by t and governed by a PriorityCeilingEm-

ulation policy Associated priority : The maximum value ceil such that
ceil is the ceiling for a PriorityCeilingEmulation policy governing an
object locked by t. This value is also referred to as the ceiling priority
for t.

– Source: Each thread or schedulable that is attempting to synchronize on
an object locked by t and governed by a PriorityInheritance policy
Associated priority : The maximum active priority over all such threads
and schedulables Note: This rule accounts for recursive priority inheri-
tance.

– Source: Each thread or schedulable that is attempting to synchronize on
an object locked by t and governed by a PriorityCeilingEmulation

policy. Associated priority : The maximum active priority over all such
threads and schedulables
Note: This rule, which in effect allows a PriorityCeilingEmulation

lock to behave like a PriorityInheritance lock, helps avoid unbounded
priority inversions that could otherwise occur in the presence of nested
synchronizations involving a mix of PriorityCeilingEmulation and Pri-

orityInheritance policies.
• The addition of a priority source for t either leaves t’s active priority un-

changed, or increases it. If t’s active priority is unchanged, then t’s status
in its relevant queue(s) (e.g. blocked waiting for some object) is not affected.
If t’s active priority is increased, then t is placed at the tail of the relevant
queue(s) at its new active priority level.
• The removal of a priority source for t either leaves t’s active priority un-

178 CHAPTER 7. SYNCHRONIZATION

changed, or decreases it. If t’s active priority is unchanged, then t’s status in
its relevant queue(s) (e.g. blocked waiting for some object) is not affected. If
t’s active priority is decreased and t is either ready or running, then t must
be placed at the head of the ready queue(s) at its new active priority level,
if the implementation is supporting PriorityCeilingEmulation. If the im-
plementation is not supporting PriorityCeilingEmulation then t should be
placed at the head of the ready queue(s) at its new active priority (Note the
”should”: this behavior is optional.) If PriorityCeilingEmulation is not
supported, the implementation must document the queue placement effect. If
t’s active priority is decreased and t is blocked, then t is placed in the corre-
sponding queue(s) at its new active priority level. Its position in the queue(s)
is implementation defined, but placement at the tail is recommended.

The above rules have the following consequences:

• A thread or schedulable t’s priority sources from 4.b are added and removed
synchronously; i.e., they are established based on t’s entering or leaving syn-
chronized code. However, priority sources from 4.a, 4.c and 4.d may be added
and removed asynchronously, as an effect of actions by other threads or schedu-
lables.
• If a thread or schedulable holds only one lock then, when it releases this lock,

its active priority is set to its base priority.
• A thread or schedulable’s active priority is never less than its base priority.
• When a thread or schedulable blocks at a call of obj.wait() it releases the lock

on obj and hence relinquishes the priority source(s) based on obj’s monitor
control policy. The thread or schedulable will be queued at a new active
priority that reflects the loss of these priority sources.

Since base priorities may be shared (i.e., the same PriorityParameters object
may be associated with multiple schedulables), a given base priority may be the
active priority for some but not all of its associated schedulables. It is a consequence
of other rules that, when a thread or schedulable t attempts to synchronize on an
object obj governed by a PriorityCeilingEmulation policy with ceiling ceil, then
t’s active priority may exceed ceil but t’s base priority must not. In contrast, once
t has successfully synchronized on obj then t’s base priority may also exceed obj’s
monitor control policy’s ceiling. Note that t’s base priority and/or obj’s monitor
control policy may have been dynamically modified.

7.2.2 Additional Schedulers

The following list establishes the semantics that apply to threads or schedulables
managed by a scheduler other than the base priority scheduler when they synchronize
on objects with monitor control policies defined in this section.

7.2. SEMANTICS 179

• An implementation that defines a new Scheduler subclass must document
which (if any) monitor control policies the new scheduler does not support.
• An implementation must document how, if at all, the semantics of synchro-

nization differ from the rules defined for the default PriorityInheritance

instance. It must supply documentation for the behavior of the new scheduler
with priority inheritance (and, if it is supported, priority ceiling emulation
protocol) equivalent to the semantics for the default priority scheduler found
in the previous section.

180 CHAPTER 7. SYNCHRONIZATION

7.3 Classes

7.3.1 MonitorControl

Inheritance
java.lang.Object

javax.realtime.MonitorControl
Abstract superclass for all monitor control policy objects.

7.3.1.1 Constructors

7.3.1.1.1 MonitorControl

Signature

protected

MonitorControl()

Invoked from subclass constructors.

7.3.1.2 Methods

7.3.1.2.1 getMonitorControl(Object)

Signature
public static
javax.realtime.MonitorControl getMonitorControl(Object obj)

Parameters
obj The object being queried.

Throws
IllegalArgumentException when obj is null.

Returns
The monitor control policy of the obj parameter.

Gets the monitor control policy of the given instance of Object.

7.3. CLASSES 181

7.3.1.2.2 getMonitorControl

Signature

public static
javax.realtime.MonitorControl getMonitorControl()

Returns

The default monitor control policy object.

Gets the current default monitor control policy.

7.3.1.2.3 setMonitorControl(MonitorControl)

Signature

public static
javax.realtime.MonitorControl setMonitorControl(MonitorControl

policy)

Parameters

policy The new monitor control policy. If null nothing happens.

Throws

SecurityException when the caller is not permitted to alter the default monitor
control policy.
IllegalArgumentException when policy is not in immortal memory.
UnsupportedOperationException when policy is not a supported monitor con-
trol policy.

Returns

The default MonitorControl policy that was replaced.

Sets the default monitor control policy. This policy does not affect the monitor
control policy of any already created object, it will, however, govern any object
subsequently constructed, until either:

1. a new ”per-object” policy is set for that object. This will alter the monitor
control policy for a single object without changing the default policy.

2. a new default policy is set.

Like the per-object method (see setMonitorControl(Object, MonitorControl)1,
the setting of the default monitor control policy occurs immediately.

Available since RTSJ version RTSJ 1.0.1 The return type is changed from
void to MonitorControl.

1Section 7.3.1.2.4

182 CHAPTER 7. SYNCHRONIZATION

7.3.1.2.4 setMonitorControl(Object, MonitorControl)

Signature
public static
javax.realtime.MonitorControl setMonitorControl(Object obj,

MonitorControl policy)

Parameters
obj The object that will be governed by the new policy.
policy The new policy for the object. If null nothing will happen.

Throws
IllegalArgumentException Thrown when obj is null or policy is not in im-
mortal memory.
UnsupportedOperationException when policy is not a supported monitor con-
trol policy.
IllegalMonitorStateException when the caller does not hold a lock on obj.

Returns
The current MonitorControl policy for obj, which will be replaced.

Immediately sets policy as the monitor control policy for obj.
A thread or schedulable that is queued for the lock associated with obj, or

is in obj’s wait set, is not rechecked (e.g., for a CeilingViolationException)
under policy, either as part of the execution of setMonitorControl or when it is
awakened to (re)acquire the lock.

The thread or schedulable invoking setMonitorControl must already hold the
lock on obj.

Available since RTSJ version RTSJ 1.0.1 The return type is changed from
void to MonitorControl.

7.3.2 PriorityCeilingEmulation

Inheritance
java.lang.Object

javax.realtime.MonitorControl
javax.realtime.PriorityCeilingEmulation

Monitor control class specifying the use of the priority ceiling emulation protocol
(also known as the ”highest lockers” protocol). Each PriorityCeilingEmulation

instance is immutable; it has an associated ceiling, initialized at construction and
queryable but not updatable thereafter.

7.3. CLASSES 183

If a thread or schedulable synchronizes on a target object governed by a Prior-

ityCeilingEmulation policy, then the target object becomes a priority source for
the thread or schedulable object. When the object is unlocked, it ceases serving as a
priority source for the thread or schedulable. The practical effect of this rule is that
the thread or schedulable’s active priority is boosted to the policy’s ceiling when the
object is locked, and is reset when the object is unlocked. The value that it is reset
to may or may not be the same as the active priority it held when the object was
locked; this depends on other factors (e.g. whether the thread or schedulable’s base
priority was changed in the interim).

The implementation must perform the following checks when a thread or schedul-
able t attempts to synchronize on a target object governed by a PriorityCeilingEm-
ulation policy with ceiling ceil:

• t’s base priority does not exceed ceil

• t’s ceiling priority (if t is holding any other PriorityCeilingEmulation locks)
does not exceed ceil.

Thus for any object targetObj that will be governed by priority ceiling emulation,
the programmer needs to provide (via MonitorControl.setMonitorControl(Object,
MonitorControl)2) a PriorityCeilingEmulation policy whose ceiling is at least
as high as the maximum of the following values:

• the highest base priority of any thread or schedulable that could synchronize
on targetObj

• the maximum ceiling priority value that any thread or schedulable object could
have when it attempts to synchronize on targetObj.

More formally:

• If a thread or schedulable t whose base priority is p1 attempts to synchronize
on an object governed by a PriorityCeilingEmulation policy with ceiling
p2, where p1>p2, then a CeilingViolationException is thrown in t. A
CeilingViolationException is likewise thrown in t if t is holding a Prior-

ityCeilingEmulation lock and has a ceiling priority exceeding p2.

The values of p1 and p2 are passed to the constructor for the exception and may be
queried by an exception handler.

A consequence of the above rule is that a thread or schedulable may nest synchro-
nizations on PriorityCeilingEmulation-governed objects as long as the ceiling for
the inner lock is not less than the ceiling for the outer lock.

The possibility of nested synchronizations on objects governed by a mix of Pri-
orityInheritance and PriorityCeilingEmulation policies requires one other piece
of behavior in order to avoid unbounded priority inversions. If a thread or sched-
ulable holds a PriorityInheritance lock, then any PriorityCeilingEmulation

lock that it either holds or attempts to acquire will exhibit priority inheritance char-

2Section 7.3.1.2.4

184 CHAPTER 7. SYNCHRONIZATION

acteristics. This rule is captured above in the definition of priority sources (4.d).
When a thread or schedulable t attempts to synchronize on a PriorityCeilingEm-

ulation-governed object with ceiling ceil, then ceil must be within the priority
range allowed by t’s scheduler; otherwise, an IllegalThreadStateException is
thrown. Note that this does not prevent a regular Java thread from synchronizing
on an object governed by a PriorityCeilingEmulation policy with a ceiling higher
than 10.

The priority ceiling for an object obj can be modified by invoking MonitorCon-

trol.setMonitorControl(obj, newPCE) where newPCE’s ceiling has the desired
value.

See also MonitorControl3 PriorityInheritance4, and CeilingViolationEx-

ception5.

7.3.2.1 Constructors

7.3.2.1.1 PriorityCeilingEmulation

Signature

private

PriorityCeilingEmulation()

7.3.2.2 Methods

7.3.2.2.1 instance(int)

Signature
public static
javax.realtime.PriorityCeilingEmulation instance(int ceiling)

Parameters
ceiling Priority ceiling value.

3Section 7.3.1
4Section 7.3.3
5Section 14.3.2

7.3. CLASSES 185

Throws

IllegalArgumentException when ceiling is outside of the range of permitted
priority values (e.g., less than PriorityScheduler.instance().getMinPriority()

or greater than PriorityScheduler.instance().getMaxPriority() for the
base scheduler).

Return a PriorityCeilingEmulation object with the specified ceiling. This object
is in ImmortalMemory. All invocations with the same ceiling value return a reference
to the same object.

Available since RTSJ version RTSJ 1.0.1

7.3.2.2.2 getCeiling

Signature

public
int getCeiling()

Returns

The priority ceiling.

Gets the priority ceiling for this PriorityCeilingEmulation object.

Available since RTSJ version RTSJ 1.0.1

7.3.2.2.3 getMaxCeiling

Signature

public static
javax.realtime.PriorityCeilingEmulation getMaxCeiling()

Returns

A PriorityCeilingEmulation object whose ceiling is PriorityScheduler.instance().getMaxPriority().

Gets a PriorityCeilingEmulation object whose ceiling is PriorityScheduler.instance().getMaxPriority().
This method returns a reference to a PriorityCeilingEmulation object allocated
in immortal memory. All invocations of this method return a reference to the same
object.

Available since RTSJ version RTSJ 1.0.1

186 CHAPTER 7. SYNCHRONIZATION

7.3.3 PriorityInheritance

Inheritance
java.lang.Object

javax.realtime.MonitorControl
javax.realtime.PriorityInheritance

Singleton class specifying use of the priority inheritance protocol. If a thread or
schedulable t1 attempts to enter code that is synchronized on an object obj governed
by this protocol, and obj is currently locked by a lower-priority thread or schedulable
t2, then

1. If t1’s active priority does not exceed the maximum priority allowed by t2’s
scheduler, then t1 becomes a priority source for t2; t1 ceases to serve as a
priority source for t2 when either t2 releases the lock on obj, or t1 ceases
attempting to synchronize on obj (e.g., when t1 incurs an ATC).

2. Otherwise (i.e., t1’s active priority exceeds the maximum priority allowed by
t2’s scheduler), an IllegalThreadStateException is thrown in t1.

Note on the 2nd rule: throwing the exception in t1, rather than in t2, ensures
that the exception is synchronous.

See also MonitorControl6 and PriorityCeilingEmulation7

7.3.3.1 Constructors

7.3.3.1.1 PriorityInheritance

Signature

private

PriorityInheritance()

7.3.3.2 Methods

6Section 7.3.1
7Section 7.3.2

7.3. CLASSES 187

7.3.3.2.1 instance

Signature

public static
javax.realtime.PriorityInheritance instance()

Return a reference to the singleton PriorityInheritance.

This is the default MonitorControl policy in effect at system startup.

The PriorityInheritance instance shall be allocated in ImmortalMemory.

7.3.4 WaitFreeDequeue

Inheritance

java.lang.Object
javax.realtime.WaitFreeDequeue

A WaitFreeDequeue encapsulates a WaitFreeWriteQueue and a WaitFreeRead-

Queue. Each method on a WaitFreeDequeue corresponds to an equivalent operation
on the underlying WaitFreeWriteQueue or WaitFreeReadQueue.

Incompatibility with V1.0: Three exceptions previously thrown by the construc-
tor have been deleted from the throws clause. These are:

• java.lang.IllegalAccessException,
• java.lang.ClassNotFoundException, and
• java.lang.InstantiationException.

Including these exceptions on the throws clause was an error. Their deletion
may cause compile-time errors in code using the previous constructor. The repair is
to remove the exceptions from the catch clause around the constructor invocation.

WaitFreeDequeue is one of the classes allowing NoHeapRealtimeThreads and
regular Java threads to synchronize on an object without the risk of a NoHeapReal-

timeThread incurring Garbage Collector latency due to priority inversion avoidance
management.

Deprecated since RTSJ version as of RTSJ 1.0.1

7.3.4.1 Constructors

188 CHAPTER 7. SYNCHRONIZATION

7.3.4.2 Methods

7.3.5 WaitFreeReadQueue

Inheritance

java.lang.Object
javax.realtime.WaitFreeReadQueue

A queue that can be non-blocking for consumers. The WaitFreeReadQueue class is
intended for single-reader multiple-writer communication, although it may also be
used (with care) for multiple readers. A reader is generally an instance of NoHeap-
RealtimeThread8, and the writers are generally regular Java threads or heap-using
realtime threads or schedulables. Communication is through a bounded buffer of
Objects that is managed first-in-first-out. The principal methods for this class are
write and read

• The write method appends a new element onto the queue. It is synchronized,
and blocks when the queue is full. It may be called by more than one writer,
in which case, the different callers will write to different elements of the queue.
• The read method removes the oldest element from the queue. It is not synchro-

nized and does not block; it will return null when the queue is empty.Multiple
reader threads or schedulables are permitted, but if two or more intend to read
from the same WaitFreeWriteQueue they will need to arrange explicit syn-
chronization.

For convenience, and to avoid requiring a reader to poll until the queue is non-empty,
this class also supports instances that can be accessed by a reader that blocks on
queue empty. To obtain this behavior, the reader needs to invoke the waitForData()
method on a queue that has been constructed with a notify parameter set to true.

WaitFreeReadQueue is one of the classes allowing NoHeapRealtimeThreads and
regular Java threads to synchronize on an object without the risk of a NoHeapReal-

timeThread incurring Garbage Collector latency due to priority inversion avoidance
management. Incompatibility with V1.0: Three exceptions previously thrown by the
constructor have been deleted. These are

• java.lang.IllegalAccessException,
• java.lang.ClassNotFoundException, and
• java.lang.InstantiationException.

8Section 5.4.1

7.3. CLASSES 189

These exceptions were in error. Their deletion may cause compile-time errors in
code using the previous constructor. The repair is to remove the exceptions from
the catch clause around the constructor invocation.

7.3.5.1 Constructors

7.3.5.1.1 WaitFreeReadQueue(Runnable, Runnable, int, MemoryArea,
boolean)

Signature

public

WaitFreeReadQueue(Runnable writer, Runnable reader, int maximum, MemoryArea memory, boolean notify)

Parameters

writer An instance of Runnable or null.
reader An instance of Runnable or null.
maximum The maximum number of elements in the queue.
memory The MemoryArea9 in which internal elements are allocated.
notify A flag that establishes whether a reader is notified when the queue
becomes non-empty.

Throws

IllegalArgumentException when an argument holds an invalid value. The writer
argument must be null, a reference to a Thread, or a reference to a schedul-
able (a RealtimeThread, or an AsyncEventHandler.) The reader argument
must be null, a reference to a Thread, or a reference to a schedulable. The
maximum argument must be greater than zero.
InaccessibleAreaException when memory is a scoped memory that is not on the
caller’s scope stack.
MemoryScopeException when either reader or writer is non-null and the
memory argument is not compatible with reader and writer with respect to
the assignment and access rules for memory areas.

Constructs a queue containing up to maximum elements in memory. The queue has an
unsynchronized and nonblocking read() method and a synchronized and blocking
write() method.

9Section 11.8.7

190 CHAPTER 7. SYNCHRONIZATION

The writer and reader parameters, if non-null, are checked to insure that they
are compatible with the MemoryArea specified by memory (if non-null.) If memory

is null and both Runnables are non-null, the constructor will select the nearest
common scoped parent memory area, or if there is no such scope it will use immortal
memory. If all three parameters are null, the queue will be allocated in immortal
memory.

reader and writer are not necessarily the only threads or schedulable objects
that will access the queue; moreover, there is no check that they actually access the
queue at all.

Note: that the wait free queue’s internal queue is allocated in memory, but the
memory area of the wait free queue instance itself is determined by the current
allocation context.

7.3.5.1.2 WaitFreeReadQueue(Runnable, Runnable, int, MemoryArea)

Signature

public

WaitFreeReadQueue(Runnable writer, Runnable reader, int maximum, MemoryArea memory)

Parameters

writer An instance of Runnable or null.
reader An instance of Runnable or null.
maximum The maximum number of elements in the queue.
memory The MemoryArea10 in which this object and internal elements are
allocated.

Throws

IllegalArgumentException when an argument holds an invalid value. The writer
argument must be null, a reference to a Thread, or a reference to a schedul-
able (a RealtimeThread, or an AsyncEventHandler.) The reader argument
must be null, a reference to a Thread, or a reference to a schedulable. The
maximum argument must be greater than zero.
MemoryScopeException when either reader or writer is non-null and the
memory argument is not compatible with reader and writer with respect to
the assignment and access rules for memory areas.
InaccessibleAreaException when memory is a scoped memory that is not on the
caller’s scope stack.

10Section 11.8.7

7.3. CLASSES 191

Constructs a queue containing up to maximum elements in memory. The queue has an
unsynchronized and nonblocking read() method and a synchronized and blocking
write() method.

The writer and reader parameters, if non-null, are checked to insure that they
are compatible with the MemoryArea specified by memory (if non-null.) If memory

is null and both Runnables are non-null, the constructor will select the nearest
common scoped parent memory area, or if there is no such scope it will use immortal
memory. If all three parameters are null, the queue will be allocated in immortal
memory.

reader and writer are not necessarily the only threads or schedulables that will
access the queue; moreover, there is no check that they actually access the queue at
all.

Note: that the wait free queue’s internal queue is allocated in memory, but the
memory area of the wait free queue instance itself is determined by the current
allocation context.

7.3.5.1.3 WaitFreeReadQueue(int, MemoryArea, boolean)

Signature

public

WaitFreeReadQueue(int maximum, MemoryArea memory, boolean notify)

Parameters

maximum The maximum number of elements in the queue.
memory The MemoryArea11 in which this object and internal elements are
allocated.
notify A flag that establishes whether a reader is notified when the queue
becomes non-empty.

Throws

IllegalArgumentException when the maximum argument is less than or equal to
zero, or memory is null.
InaccessibleAreaException when memory is a scoped memory that is not on the
caller’s scope stack.

Constructs a queue containing up to maximum elements in memory. The queue has an
unsynchronized and nonblocking read() method and a synchronized and blocking
write() method.

11Section 11.8.7

192 CHAPTER 7. SYNCHRONIZATION

Note: that the wait free queue’s internal queue is allocated in memory, but the
memory area of the wait free queue instance itself is determined by the current
allocation context.

Available since RTSJ version RTSJ 1.0.1

7.3.5.1.4 WaitFreeReadQueue(int, boolean)

Signature

public

WaitFreeReadQueue(int maximum, boolean notify)

Parameters
maximum The maximum number of elements in the queue.
notify A flag that establishes whether a reader is notified when the queue
becomes non-empty.

Throws
IllegalArgumentException when the maximum argument is less than or equal to
zero.

Constructs a queue containing up to maximum elements in immortal memory. The
queue has an unsynchronized and nonblocking read() method and a synchronized
and blocking write() method.

Available since RTSJ version RTSJ 1.0.1

7.3.5.2 Methods

7.3.5.2.1 clear

Signature
public
void clear()

Sets this to empty.
Note: This method needs to be used with care. Invoking clear concurrently

with read or write can lead to unexpected results.

7.3. CLASSES 193

7.3.5.2.2 isEmpty

Signature
public
boolean isEmpty()

Returns
true if this is empty; false if this is not empty.

Queries the queue to determine if this is empty.
Note: This method needs to be used with care since the state of the queue may

change while the method is in progress or after it has returned.

7.3.5.2.3 isFull

Signature
public
boolean isFull()

Returns
true if this is full; false if this is not full.

Queries the system to determine if this is full.
Note: This method needs to be used with care since the state of the queue may

change while the method is in progress or after it has returned.

7.3.5.2.4 read

Signature
public
java.lang.Object read()

Returns
The java.lang.Object read, or else null if this is empty.

Reads the least recently inserted element from the queue and returns it as the result,
unless the queue is empty. If the queue is empty, null is returned.

7.3.5.2.5 size

Signature
public
int size()

Returns
The number of positions in this occupied by elements that have been written
but not yet read.

194 CHAPTER 7. SYNCHRONIZATION

Queries the queue to determine the number of elements in this.

Note: This method needs to be used with care since the state of the queue may
change while the method is in progress or after it has returned.

7.3.5.2.6 waitForData

Signature

public
void waitForData()

throws InterruptedException

Throws

UnsupportedOperationException when this has not been constructed with no-

tify set to true.
InterruptedException when the thread is interrupted by interrupt() or Asyn-
chronouslyInterruptedException.fire()12 during the time between call-
ing this method and returning from it.

If this is empty block until a writer inserts an element.

Note: If there is a single reader and no asynchronous invocation of clear, then
it is safe to invoke read after waitForData and know that read will find the queue
non-empty.

Implementation note: To avoid reader and writer synchronizing on the same
object, the reader should not be notified directly by a writer. (This is the issue that
the non-wait queue classes are intended to solve).

Available since RTSJ version RTSJ 1.0.1 InterruptedException was added
to the throws clause.

7.3.5.2.7 write(Object)

Signature

public synchronized
void write(Object object)

throws InterruptedException

Parameters

object The java.lang.Object that is placed in the queue.

Throws

12Section 8.5.1.3.5

7.3. CLASSES 195

InterruptedException when the thread is interrupted by interrupt() or Asyn-
chronouslyInterruptedException.fire()13 during the time between call-
ing this method and returning from it.
MemoryScopeException when a memory access error or illegal assignment error
would occur while storing object in the queue.

A synchronized and blocking write. This call blocks on queue full and will wait until
there is space in the queue.

Available since RTSJ version RTSJ 1.0.1 The return type is changed to
void since it always returned true, and InterruptedException was added
to the throws clause.

7.3.6 WaitFreeWriteQueue

Inheritance

java.lang.Object
javax.realtime.WaitFreeWriteQueue

A queue that can be non-blocking for producers. The WaitFreeWriteQueue class is
intended for single-writer multiple-reader communication, although it may also be
used (with care) for multiple writers. A writer is generally an instance of NoHeap-
RealtimeThread14, and the readers are generally regular Java threads or heap-using
realtime threads or schedulables. Communication is through a bounded buffer of
Objects that is managed first-in-first-out. The principal methods for this class are
write and read

• The write method appends a new element onto the queue. It is not synchro-
nized, and does not block when the queue is full (it returns false instead).
Multiple writer threads or schedulables are permitted, but if two or more
threads intend to write to the same WaitFreeWriteQueue they will need to
arrange explicit synchronization.
• The read method removes the oldest element from the queue. It is synchro-

nized, and will block when the queue is empty. It may be called by more than
one reader, in which case the different callers will read different elements from
the queue.

WaitFreeWriteQueue is one of the classes allowing NoHeapRealtimeThreads and
regular Java threads to synchronize on an object without the risk of a NoHeapReal-

13Section 8.5.1.3.5
14Section 5.4.1

196 CHAPTER 7. SYNCHRONIZATION

timeThread incurring Garbage Collector latency due to priority inversion avoidance
management.

Incompatibility with V1.0: Three exceptions previously thrown by the construc-
tor have been deleted from the throws clause. These are
• java.lang.IllegalAccessException,
• java.lang.ClassNotFoundException, and
• java.lang.InstantiationException.
Including these exceptions on the throws clause was an error. Their deletion

may cause compile-time errors in code using the previous constructor. The repair is
to remove the exceptions from the catch clause around the constructor invocation.

7.3.6.1 Constructors

7.3.6.1.1 WaitFreeWriteQueue(Runnable, Runnable, int, MemoryArea)

Signature

public

WaitFreeWriteQueue(Runnable writer, Runnable reader, int maximum, MemoryArea memory)

Parameters
writer An instance of Thread, a schedulable object, or null.
reader An instance of Thread, a schedulable object, or null.
maximum The maximum number of elements in the queue.
memory The MemoryArea15 in which this object and internal elements are
allocated.

Throws
IllegalArgumentException when an argument holds an invalid value. The writer
argument must be null, a reference to a Thread, or a reference to a schedul-
able (a RealtimeThread, or an AsyncEventHandler.) The reader argument
must be null, a reference to a Thread, or a reference to a schedulable. The
maximum argument must be greater than zero.
MemoryScopeException when either reader or writer is non-null and the
memory argument is not compatible with reader and writer with respect to
the assignment and access rules for memory areas.

15Section 11.8.7

7.3. CLASSES 197

InaccessibleAreaException when memory is a scoped memory that is not on the
caller’s scope stack.

Constructs a queue in memory with an unsynchronized and nonblocking write()

method and a synchronized and blocking read() method.
The writer and reader parameters, if non-null, are checked to insure that they

are compatible with the MemoryArea specified by memory (if non-null.) If memory

is null and both Runnables are non-null, the constructor will select the nearest
common scoped parent memory area, or if there is no such scope it will use immortal
memory. If all three parameters are null, the queue will be allocated in immortal
memory.

reader and writer are not necessarily the only threads or schedulables that will
access the queues; moreover, there is no check that they actually access the queue
at all.

Note: that the wait free queue’s internal queue is allocated in memory, but the
memory area of the wait free queue instance itself is determined by the current
allocation context.

7.3.6.1.2 WaitFreeWriteQueue(int, MemoryArea)

Signature

public

WaitFreeWriteQueue(int maximum, MemoryArea memory)

Parameters
maximum The maximum number of elements in the queue.
memory The MemoryArea16 in which this object and internal elements are
allocated.

Throws
IllegalArgumentException when the maximum argument is less than or equal to
zero, or memory is null.
InaccessibleAreaException when memory is a scoped memory that is not on the
caller’s scope stack.

Constructs a queue containing up to maximum elements in memory. The queue has an
unsynchronized and nonblocking write() method and a synchronized and blocking
read() method.

Note: that the wait free queue’s internal queue is allocated in memory, but the
memory area of the wait free queue instance itself is determined by the current
allocation context.

16Section 11.8.7

198 CHAPTER 7. SYNCHRONIZATION

Available since RTSJ version RTSJ 1.0.1

7.3.6.1.3 WaitFreeWriteQueue(int)

Signature

public

WaitFreeWriteQueue(int maximum)

Parameters
maximum The maximum number of elements in the queue.

Throws
IllegalArgumentException when the maximum argument is less than or equal to
zero.

Constructs a queue containing up to maximum elements in immortal memory. The
queue has an unsynchronized and nonblocking write() method and a synchronized
and blocking read() method.

Available since RTSJ version RTSJ 1.0.1

7.3.6.2 Methods

7.3.6.2.1 clear

Signature
public
void clear()

Sets this to empty.

7.3.6.2.2 isEmpty

Signature
public
boolean isEmpty()

Returns

7.3. CLASSES 199

True, if this is empty. False, if this is not empty.
Queries the system to determine if this is empty.

Note: This method needs to be used with care since the state of the queue may
change while the method is in progress or after it has returned.

7.3.6.2.3 isFull

Signature
public
boolean isFull()

Returns
True, if this is full. False, if this is not full.

Queries the system to determine if this is full.
Note: This method needs to be used with care since the state of the queue may

change while the method is in progress or after it has returned.

7.3.6.2.4 read

Signature
public synchronized
java.lang.Object read()

throws InterruptedException

Throws
InterruptedException when the thread is interrupted by interrupt() or Asyn-
chronouslyInterruptedException.fire()17 during the time between call-
ing this method and returning from it.

Returns
The Object least recently written to the queue. If this is empty, the calling
thread or schedulable objects blocks until an element is inserted; when it is
resumed, read removes and returns the element.

A synchronized and possibly blocking operation on the queue.

Available since RTSJ version RTSJ 1.0.1 Throws InterruptedException

7.3.6.2.5 size

Signature
public

17Section 8.5.1.3.5

200 CHAPTER 7. SYNCHRONIZATION

int size()

Returns
The number of positions in this occupied by elements that have been written
but not yet read.

Queries the queue to determine the number of elements in this.
Note: This method needs to be used with care since the state of the queue may

change while the method is in progress or after it has returned.

7.3.6.2.6 force(Object)

Signature
public
boolean force(Object object)

Parameters
object A non-null java.lang.Object to insert.

Throws
MemoryScopeException when a memory access error or illegal assignment error
would occur while storing object in the queue.
IllegalArgumentException when object is null.

Returns
true if object has overwritten an element that was occupied when the func-
tion returns; false otherwise (it has been inserted into a position that was
vacant when the function returns)

Unconditionally insert object into this, either in a vacant position or else over-
writing the most recently inserted element. The boolean result reflects whether,
at the time that force() returns, the position at which object was inserted was
vacant (false) or occupied (true).

7.3.6.2.7 write(Object)

Signature
public
boolean write(Object object)

Parameters
object A non-null java.lang.Object to insert.

Throws
MemoryScopeException when a memory access error or illegal assignment error
would occur while storing object in the queue.
IllegalArgumentException when object is null.

Returns
true if the queue was non-full; false otherwise.

7.4. RATIONALE 201

Inserts object into this if this is non-full and otherwise has no effect on this; the
boolean result reflects whether object has been inserted. If the queue was empty
and one or more threads or schedulables were waiting to read, then one will be
awakened after the write. The choice of which to awaken depends on the involved
scheduler(s).

7.4 Rationale

Java’s rules for synchronized code provide a means for mutual exclusion but do
not prevent unbounded priority inversions and thus are insufficient for realtime ap-
plications. This specification strengthens the semantics for synchronized code by
mandating priority inversion control, in particular by furnishing classes for prior-
ity inheritance and priority ceiling emulation. Priority inheritance is more widely
implemented in realtime operating systems and thus is required and is the initial
default mechanism in this specification.

Since the same object may be accessed from synchronized code by both a No-

HeapRealtimeThread and an arbitrary thread or schedulable object, unwanted de-
pendencies may result. To avoid this problem, this specification provides three
wait-free queue classes as an alternative means for safe, concurrent data accesses
without priority inversion.

202 CHAPTER 7. SYNCHRONIZATION

Chapter 8

Asynchrony

Updated by AJW on 28.10.2013

Updated by JJH on 05.11.2013

8.1 Overview

One of the most important aspects of this specification is the susport for asyn-
chronous control flow. Mechanisms are provided for both starting a task asyn-
chronously and interrupting the execution of a thread or other task. This specifica-
tions provides mechanisms that

• bind the execution of program logic to the occurrence of internal and external
events;
• enable asynchronous transfer of control; and
• facilitate the asynchronous termination of realtime threads.

This specification provides several facilities for arranging asynchronous control
of execution. These facilities fall into two main categories: asynchronous event
handling and asynchronous transfer of control, which includes realtime thread ter-
mination.

Asynchronous event handling is captured by the classes and subclasses ofAbstractAsyncEvent
(AE), Abstract-AsyncEventHandler (AEH) and AbstractBoundAsyncEventHandler.
An AE is an object used to direct event occurrences to asynchronous event handlers.
An event occurrence may be initiated by application logic, by mechanisms internal
to the RTSJ implementation (see the handlers in PeriodicParameters), or by the
triggering of a happening external to the JVM (such as a software signal or a hard-
ware interrupt handler). An event occurrence is initiated in program logic by the
invocation of the fire method of an AE. The triggering of an event due to a hap-
pening is implementation dependent except as specified in POSIXSignalHandler.
See Chapter 12 for a discussion of the interaction between RTSJ programs and their

203

204 CHAPTER 8. ASYNCHRONY

environments.
An AEH is a schedulable embodying code that is released for execution in re-

sponse to the occurrence of an associated event. Each AEH behaves as if it is ex-
ecuted by a RealtimeThread or NoHeapRealtimeThread except that it is not per-
mitted to use the waitForNextPeriod(), waitForNextPeriodInterruptible(),
waitForNextRelease(), waitForNextReleaseInterruptible() methods, and it
is treated as having a null thread group in all cases. There is not necessarily a
separate realtime thread for each AEH, but the server realtime thread (returned by
currentRealtimeThread()) remains constant during each execution of the run()

method. The class AbstractBoundAsyncEventHandler extends AbstractAsync-

EventHandler and ensures that a handler has a dedicated server realtime thread
(a server thread is associated with one and only one bound AEH for the lifetime of
that AEH). An event count (called fireCount) is maintained so that a handler can
cope with event bursts - situations where an event occurs more frequently than its
handler can respond.

The interrupt() method in java.lang.Thread provides rudimentary asyn-
chronous communication by setting a pollable/resettable flag in the target thread,
and by throwing a synchronous exception when the target thread is blocked at an
invocation of wait(), sleep(), or join(). This specification extends the effect of
Thread.interrupt() by adding an overridden version in RealtimeThread, offering
a more comprehensive and non-polling asynchronous execution control facility. It
is based on throwing and propagating exceptions that, though asynchronous, are
deferred where necessary in order to avoid data structure corruption. The main
elements of ATC are embodied in the class AsynchronouslyInterruptedExcep-

tion, its subclass Timed, the interface Interruptible, and in the semantics of the
interrupt method in RealtimeThread.

A method indicates its eligibility to be asynchronously interrupted by including
the checked exception AsynchronouslyInterruptedException in its throws clause.
If a schedulable is asynchronously interrupted while executing such a method, then
an AIE will be delivered as soon as the schedulable is outside of a section in which
ATC is deferred. Several idioms are available for handling an AIE, giving the pro-
grammer the choice of using catch clauses and a low-level mechanism with specific
control over propagation, or a higher-level facility that allows specifying the inter-
ruptible code, the handler, and the result retrieval as separate methods.

8.2 Definitions

The following terms and abbreviations will be used:
AE — Asynchronous Event. An instance of one of the subclasses of the javax.realtime.AbstractAsyncEvent

class.

8.2. DEFINITIONS 205

AEH — Asynchronous Event Handler. An instance of one of the subclasses of
the javax.realtime.AbstractAsyncEventHandler class.

Bound AEH — Bound Asynchronous Event Handler. An instance of one of the
subclasses of the javax.realtime.AbstractBoundAsyncEventHandler class.

ATC — Asynchronous Transfer of Control.
AIE — Asynchronously Interrupted Exception. An instance of the javax.realtime.AsynchronouslyInterruptedException

class (a subclass of java.lang.InterruptedException).
AI-method - Asynchronously Interruptible method. A method or constructor

that includes AsynchronouslyInterruptedException explicitly (that is not a sub-
class of AsynchronouslyInterruptedException) in its throws clause.

A happening is an event that takes place outside the Java runtime environment.
The triggers for happenings depend on the external environment, but happenings
might include signals and interrupts.

Lexical Scope [of a method, constructor, or statement]. The textual region within
the constructor, method, or statement, excluding the code within any class decla-
rations, and the code within any class instance creation expressions for anonymous
classes, contained therein. The lexical scope of a construct does not include the
bodies of any methods or constructors that this code invokes.

ATC-deferred section. A synchronized statement, a static initializer or any method
or constructor without AsynchronouslyInterruptedException in its throws clause.
As specified in the introduction to Chapter 8 in Java Language Specification, a syn-
chronized method is equivalent to a non-synchronized method with the body of the
method contained in a synchronized statement. Thus, a synchronized AI method
behaves like an AI method containing only an ATC-deferred statement.

Interruptible blocking methods. The RTSJ and standard Java methods that are
explicitly interruptible by an AIE. The interruptible blocking methods comprise
• HighResolutionTime.waitForObject(),
• Object.wait(),
• Thread.sleep(),
• RealtimeThread.sleep(),
• Thread.join(),
• ScopedMemory.join(),
• ScopedMemory.joinAndEnter(),
• RealtimeThread.waitForNextPeriodInterruptible(),
• RealtimeThread.waitForNextReleaseInterruptible(),
• WaitFreeWriteQueue.read(),
• WaitFreeReadQueue.waitForData(),
• WaitFreeReadQueue.write(),
• WaitFreeDequeue.blockingRead(),
• WaitFreeDequeue.blockingWrite()

and their overloaded forms.

206 CHAPTER 8. ASYNCHRONY

8.3 Semantics

Asynchronous events and event handlers are required in the base module, whereas
asynchronous transfere of control is optional. Basic event types are passive: they
are not directly associated with a thread of control. They are intended to be fired
programmatically. Handelling external events, such as clocks (see Chapter 10) and
happening (see Chapter 12), requires execution support. The ActiveEvent interface
is provided to mark these and provide additional execution semantics. Figure 8.1
illustrates the event higherarchy.

Visibility
+ = publ ic
= protected
~ = package

javax.realtime::PeriodicTimer

...

javax.realtime::OneShotTimer

...

javax.realtime::ActiveEvent
«interface»

+getID() : int
+getName() : String

javax.realtime::Timer

+start(boolean disabled)
+getDispatcher() : TimeDispatcher
...

javax.realtime::AbstractEvent
«abstract»

+get(String name): AbstractEvent
+name(AbstractEvent event, String name)
+unname(String name)
+unname(AbstractEvent event)
+addHandler(AbstractEventHandler)
+setHandler(AbstractEventHandler)
+removeHandler(AbstractEventHandler)
+handledBy(AbstractEventHandler):boolean

javax.realtime::AsyncObjectEvent

+fire(Object value)

javax.realtime::AsyncEvent

+f i re()

javax.realtime::POSIXRealtimeSignal

+get(String name): POSIXRealtimeSignal
+get(int id): POSIXRealtimeSignal
+trigger(int id, long value)

+getID() : int
+getName() : String
+getDispatcher() : POSIXRealtimeSignalDispatcher
+tigger(long value)

javax.realtime::POSIXSignal

+get(String name): POSIXSignal
+get(int id): POSIXSignal
+tr igger(int id)

+getID() : int
+getName() : String
+getDispatcher() : POSIXSignalDispatcher
+tr igger()

javax.realtime::Happening
+Happening(String name)
+getReference(String name): int
+get(String name): Happening
+get(int id): Happening
+trigger(int id)

+getId(): int
+getName() : String
+getDispatcher() : HappeningDispatcher
+tr igger()

+star t ()
+isRunning()
+stop()

javax.realtime::AsyncLongEvent

+fire(long value)

Figure 8.1: The Event Class Higherarchy

8.3.1 Asynchronous Events and their Handlers

This following list establishes the semantics that are applicable to asynchronous
events and their handlers. Semantics that apply to particular classes, construc-
tors, methods, and fields will be found in the class description and the constructor,
method, and field detail sections.

1. When an asynchronous event occurs (by either program logic or by the trig-
gering of a happening), its attached handlers (that is, AEHs that have been
added to the AE by the execution of addHandler()) are released for execu-
tion. Every occurrence of an event increments the fireCount in each attached

8.3. SEMANTICS 207

handler. Handlers may elect to execute logic for each occurrence of the event
or not.

2. The release of attached handlers occurs in execution eligibility order (priority
order with the default PriorityScheduler) and at the active priority of the
schedulable that invoked the fire method. The release of handlers resulting
from a happening or a timer must begin within a bounded time (ignoring time
consumed by unrelated activities in the system). This worst-case response
interval must be documented for some reference architecture.

3. The release of attached handlers is an atomic operation with respect to adding
and removing handlers.

4. The logical release of an attached handler may occur before the previous release
has completed.

5. A deadline may be associated with each logical release of an attached handler.
The deadline is relative to the occurrence of the associated event.

6. AEs and AEHs may be created and used by any program logic within the
constraints of the memory assignment rules.

7. More than one AEH may be added to an AE. However, adding an AEH to an
AE has no effect if the AEH is already attached to the AE.

8. The same AEH may be added to more than one AE.
9. By default all AEHs are considered to be daemons (the daemon status being

set by their constructors). An AEH can be set to have a non daemon status
after it has been created and before it has been attached to an AE.

10. The object returned by currentRealtimeThread() while an AEH is running
shall behave with respect to memory access and assignment rules as if it were
allocated in the same memory area as the AEH.

11. System-related termination activity (such as execution of finalizers for scoped
objects in scopes that become unreferenced) triggered when an AEH becomes
non-fireable is not subject to cost enforcement or deadline miss detection.

12. AEs and AEHs behave effectively as if changes to an AEH’s fireability are
contained in synchronized blocks, and the AEH holds that lock while it is in
the process of becoming non-fireable.

An RTSJ program terminates when and only when

• all non-daemon threads (either regular Java threads or realtime threads) are
terminated,
• the fireCounts of all non-daemon Bound AEHs or non-daemon AEHs are

zero and all releases are completed, and
• there are no non-daemon Bound AEHs or AEHs attached to timers or async

events associated with happenings.

Though dispatchers have a thread, this thread is a daemon thread and does itself
not hinder termination.

208 CHAPTER 8. ASYNCHRONY

8.3.2 Active Events and Dispatching

Active events refine the semantics of AbstractAsyncEventHandler with the addition
of execution semantics to support second level interrupt handling. The fire method
of an event runs in the Java execution context of the caller. For events that represent
external signals, whether a certain time is reached or something has occurred, there
may not be a Java execution context, or at least that context is of necessity limited
and often of needs to have a very short duration; dispatching an unlimited number
of handlers is not acceptable. They require an additional execution context for
releasing handlers.

In order to be able to distinguish between events that are caused to be fired by
an outside mechanism from those that are fired from another thread, the former
extend the ActiveEvent interface. Since the trigger methods may vary in the
number of their arguments depending on the type of event, each class implementing
ActiveEvent must provide its own trigger method for initiating the handler release
by releasing another execution context. Each method must act as if it calls the fire
method on its event and then terminates. Hence trigger has the same functional
behavior as fire but runs in this other execution context.

This extra execution context is exposed to the user as an ActiveEventDis-

patcher. There is a active event dispatcher for each kind of active event. The
programmer does not need to write a dispatcher, but just creates the one of the
corresponding type. The programmer does determine the priority and the affinity
of a dispatcher, as well as determine the mapping between dispatchers and events.

Each event has a single dispatcher, but a dispatcher may serve many events.
As with fire, the dispatcher releases handlers in reverse priority order, i.e., from
highest to lowest. This enables the programmer to control the number of these
execution contexts and still optimize how handlers are released.

8.3.3 Asynchronous Transfer of Control

Asynchronously interrupting a schedulable consists of the following activities.

• Generation of an asynchronous interrupt exception — this is the event in
the underlying system that makes the AIE available to the program.
• Delivery of the asynchronous interrupt exception to the target schedulable —

this is the action that invokes the search for and execution of an appropriate
handler.

Between the generation and delivery, the asynchronous interrupt exception is
held pending. After delivery, the AIE remains pending until it is cleared by the
program logic using clear() or doInterruptible().

This following list establishes the semantics that are applicable to ATC. Seman-
tics that apply to particular classes, constructors, methods, and fields will be found

8.3. SEMANTICS 209

in the class description and the constructor, method, and field detail sections.
1. An AIE is generated for a given schedulable, when the fire() method is called

on an AIE for which the schedulable object is executing within the doInter-

ruptible() method, or the RealtimeThread.interrupt() method is called;
the latter is effectively called when an AIE is generated by internal virtual ma-
chine mechanisms (such as an interrupt I/O protocol) that are asynchronous
to the execution of program logic which is the target of the AIE. A generated
AIE becomes pending upon generation and remains pending until explicitly
cleared or replaced by another AIE.

2. The RealtimeThread.interrupt() method throws the generic AIE at the
target realtime thread and has the behaviors defined for Thread.interrupt().
This is the only interaction between the ATC mechanism and the conventional
interrupt() mechanism.

3. An AIE is delivered to a schedulable when it is executing in an AI-method
except as indicated below.

4. The generation of an AIE through the fire() mechanism behaves as if it set
an asynchronously-interrupted status in the schedulable. If the schedulable is
blocked within an interruptible blocking method, or invokes an interruptible
blocking method, when this asynchronously-interrupted status is set, then the
invocation immediately completes by throwing the pending AIE and clear-
ing the asynchronously-interrupted status. When a pending AIE is explicitly
cleared then the asynchronously-interrupted status is also cleared.

5. Methods which block through mechanisms other than the interruptible block-
ing methods, (for example, blocking methods in java.io.*) must be prevented
from blocking indefinitely when invoked from a method with Asynchronously-

InterruptedException in its throws clause. When an AIE is generated and
the target schedulable’s control is blocked inside one of these methods invoked
from an AI-method, the implementation may either unblock the blocked call,
raise an InterruptedIOException on behalf of the call, or allow the call to
complete normally if the implementation determines that the call would even-
tually unblock.

6. If an AI-method is attempting to acquire an object lock when an associated
AIE is generated, the attempt to acquire the lock is abandoned.

7. If control is in the lexical scope of an ATC-deferred section when an AIE
(targeted at the executing schedulable) is generated, the AIE is not deliv-
ered until the first subsequent attempt to transfer control to code that is not
ATC-deferred. At that point, control is transferred to the catch or finally

clause of the nearest dynamically-enclosing a try statement that has a handler
for the generated AIE’s (that is a handler naming the AIE’s class or any of
its superclasses, or a finally clause) and which is in an ATC-deferred sec-
tion. Intervening handlers and finally clauses that are not in ATC-deferred

210 CHAPTER 8. ASYNCHRONY

sections are not executed, but object locks are released.
See section 11.3 of The Java Language Specification second edition for an
explanation of the terms, dynamically enclosing and handler. The RTSJ uses
those JLS definitions unaltered. Note, if synchronized code is abandoned as a
result of this control transfer, the associated locks are released.

8. Constructors are allowed to include AsynchronouslyInterruptedException

in their throws clause and if they do will be asynchronously interruptible
under the same conditions as AI methods.

9. Native methods that include AsynchronouslyInterruptedException in their
throws clause have implementation-specific behavior.

10. An implementation must deliver the transfer of control in a schedulable that
is subject to asynchronous interruption (in an AI-method but not in a syn-
chronized block) within a bounded execution time of that schedulable. This
worst-case response interval must be documented for some reference architec-
ture.

11. Instances of the Timed class logically have an associated timer. When the timer
fires, the schedulable executing the instance’s doInterruptible method must
have the AIE generated within a bounded execution time of the schedulable.
This worst-case response interval must be documented for some reference ar-
chitecture.

12. An AIE only has the semantics defined here if it originates with the Asyn-

chronouslyInterruptedException.fire() method, the RealtimeThread.interrupt()
method or from within the realtime VM. If an AIE is thrown from program
logic using the Java throw statement, it acts the same as throwing any other
instance of a subclass of Exception, it is processed as a normal exception, and
has no affect on the pending state of any AIE, and no affect on the firing of
the AIE concerned.

8.3.3.1 Summary of ATC Operation

The RTSJ’s approach to ATC is designed to follow the above principles. It is based on
exceptions and is an extension of the current Java language rules for java.lang.Thread.interrupt().
In summary, ATC works as follows:

If so is an instance of a schedulable and the interrupt() method is called
on the realtime thread associated with that object (in this context, the associated
realtime thread of an AEH is the realtime thread returned by a call of the Real-

timeThread.currentRealtimeThread() method by that AEH) then:
• If control is in an ATC-deferred section, then the AIE remains in a pending

state.
• If control is not in an ATC-deferred section, then control is transferred to the
catch or finally clause of the nearest dynamically-enclosing a try statement

8.3. SEMANTICS 211

that has a handler for the generated AIE’s (that is a handler naming the
AIE’s class or any of its superclasses, or a finally clause) and which is in
an ATC-deferred section. Intervening handlers and finally clauses that are
not in ATC-deferred sections are not executed, but objects locks are released.
See section 11.3 of The Java Language Specification second edition for an
explanation of the terms, dynamically enclosing and handles. The RTSJ uses
those definitions unaltered.
• If control is in an interruptible blocking method the schedulable object is awak-

ened and the generated AIE (which is a subclass of InterruptedException)
is thrown with regular Java semantics (the AIE is still marked as pending).
Then ATC follows option 1, or 2 as appropriate.
• If control is in an ATC-deferred section, control continues normally until the

first attempt to return to an AI method or invoke an AI method or exit a
synchronized block within an AI method. Then ATC follows option 1, or 2 as
appropriate.
• If control is transferred from an ATC-deferred section to an AI method through

the action of propagating an exception and if an AIE is pending then when
the transition to the AI-method occurs, the thrown exception is discarded and
replaced by the AIE.

An AIE may be generated while another AIE is pending. Because AI code
blocks are nested by method invocation (a stack-based nesting) there is a natural
precedence among active instances of AIE. Let AIE0 be the AIE raised when the
RealtimeThread.interrupt() method is invoked and AIEi (i = 1, ..., n, for n
unique instances of AIE) be the AIE generated when AIE. fire() is invoked. In
the following, the phrase ”a frame deeper on the stack than this frame” refers to a
method nearer to the current stack frame. The phrase ”a frame shallower on the
stack than this frame” refers to a method further from the current stack frame.
• If the current AIE is an AIE0 and the new AIE is an AIEx associated with

any frame on the stack then the new AIE (AIEx) is discarded.
• If the current AIE is an AIEx and the new AIE is an AIE0, then the current

AIE (AIEx) is replaced by the new AIE (AIE0).
• If the current AIE is an AIEx and the new AIE is an AIEy from a frame

deeper on the stack, then the new AIE (AIEy) discarded.
• If the current AIE is an AIEx and the new AIE is an AIEy from a frame

shallower on the stack, the current AIE (AIEx) is replaced by the new AIE
(AIEy).
• If the current AIE is an AIE0 and the new AIE is an AIE0, or if the current

AIE is an AIEx and the new AIE is an AIEx, the new AIE is discarded.
When clear() or happened() is called on a pending AIE or that AIE is superseded

by another, the first AIE’s pending state is cleared. If the happened() method is
called on a non-pending AIE the result depends on the value of the propagate

212 CHAPTER 8. ASYNCHRONY

parameter, as indicated in the ”No Match” column of the table below. Clearing a
non-pending AIE (with the clear() method) has no effect.

propagate Match No Match
true clear the pending AIE, the AIE remains pending,

return true propagate
false clear the pending AIE, the AIE remains pending,

return true return false

8.4. INTERFACES 213

8.4 Interfaces

8.4.1 BoundAbstractAsyncEventHandler

An empty interface. It is required in order to allow references to all bound handlers.

8.4.2 Interruptible

Interruptible is an interface implemented by classes that will be used as argu-
ments on the method doInterruptible() of AsynchronouslyInterruptedExcep-
tion1 and its subclasses. doInterruptible() invokes the implementation of the
method in this interface.

8.4.2.1 Methods

8.4.2.1.1 run(AsynchronouslyInterruptedException)

Signature
public
void run(AsynchronouslyInterruptedException exception)

throws AsynchronouslyInterruptedException

Parameters
exception The AIE object whose doInterruptible method is calling the run

method. Used to invoke methods on AsynchronouslyInterruptedExcep-

tion2 from within the run() method.
The main piece of code that is executed when an implementation is given to doInt-

erruptible(). When a class is created that implements this interface (for example
through an anonymous inner class) it must include the throws clause to make the
method interruptible. If the throws clause is omitted the run() method will not be
interruptible.

1Section 8.5.1
2Section 8.5.1

214 CHAPTER 8. ASYNCHRONY

8.4.2.1.2 interruptAction(AsynchronouslyInterruptedException)

Signature
public
void interruptAction(AsynchronouslyInterruptedException

exception)

Parameters
exception The currently pending AIE. Used to invoke methods on Asynchron-

ouslyInterruptedException3 from within the interruptAction() method.
This method is called by the system if the run() method is interrupted. Using this,
the program logic can determine if the run() method completed normally or had
its control asynchronously transferred to its caller.

3Section 8.5.1

8.5. EXCEPTIONS 215

8.5 Exceptions

8.5.1 AsynchronouslyInterruptedException

Inheritance
java.lang.Object

java.lang.Throwable
java.lang.Exception

java.lang.InterruptedException
javax.realtime.AsynchronouslyInterruptedException

A special exception that is thrown in response to an attempt to asynchronously
transfer the locus of control of a schedulable.

A schedulable that is executing a method or constructor, which is declared with
an AsynchronouslyInterruptedException4 in its throws clause, can be asynchronously
interrupted except when it is executing in the lexical scope of a synchronized state-
ment within that method/constructor. As soon as the schedulable object leaves
the lexical scope of the method by calling another method/constructor it may be
asynchronously interrupted if the called method/constructor is asynchronously in-
terruptible. (See this chapter’s introduction section for the detailed semantics).

The asynchronous interrupt is generated for a realtime thread, t, when the t.interrupt()
method is called or the fire5 method is called of an AIE for which t has a doInt-

erruptible method call in progress.
The interrupt is generated for an AEH (or BAEH), h, if the fire6 method is

called of an AIE for which h has a doInterruptible method call in progress.
If an asynchronous interrupt is generated when the target realtime thread/schedulable

is executing within an ATC-deferred section, the asynchronous interrupt becomes
pending. A pending asynchronous interrupt is delivered when the target realtime
thread/schedulable next attempts to enter asynchronously interruptible code.

Asynchronous transfers of control (ATCs) are intended to allow long-running
computations to be terminated without the overhead or latency of polling with
name.

When RealtimeThread.interrupt7, or AsynchronouslyInterruptedException.fire()
is called, the AsynchronouslyInterruptedException is compared against any cur-
rently pending AsynchronouslyInterruptedException on the schedulable. If there
is none, or if the depth of the AsynchronouslyInterruptedException is less than
the currently pending AsynchronouslyInterruptedException; (i.e., it is targeted

4Section 8.5.1
5Section 8.5.1.3.5
6Section 8.5.1.3.5
7Section 5.4.2.2.21

216 CHAPTER 8. ASYNCHRONY

at a less deeply nested method call), the new AsynchronouslyInterruptedExcep-

tion becomes the currently pending AsynchronouslyInterruptedException and
the previously pending AsynchronouslyInterruptedException is discarded. Oth-
erwise, the new AsynchronouslyInterruptedException is discarded.

When an AsynchronouslyInterruptedException is caught, the catch clause
may invoke the clear() method on the AsynchronouslyInterruptedException

in which it is interested to see if the exception matches the pending Asynchron-

ouslyInterruptedException. If so, the pending AsynchronouslyInterrupted-

Exception is cleared for the schedulable and clear returns true. Otherwise, the
current AIE remains pending and clear returns false.

RealtimeThread.interrupt() generates a system-wide generic Asynchronously-
InterruptedException which will always propagate outward through interruptible
methods until the generic AsynchronouslyInterruptedException is identified and
handled. The pending state of the generic AIE is per-schedulable object.

Other sources (e.g., AsynchronouslyInterruptedException.fire() and Timed8)
will generate specific instances of AsynchronouslyInterruptedException which
applications can identify and thus limit propagation.

AsyncEventHandler9 objects should interact with the ATC mechanisms via the
Interruptible10 interface.

8.5.1.1 Fields

8.5.1.1.1 serialVersionUID

private static final serialVersionUID

8.5.1.2 Constructors

8.5.1.2.1 AsynchronouslyInterruptedException

Signature

8Section 8.5.2
9Section 8.6.4

10Section 8.4.2

8.5. EXCEPTIONS 217

public

AsynchronouslyInterruptedException()

Create an instance of AsynchronouslyInterruptedException.

8.5.1.3 Methods

8.5.1.3.1 getGeneric

Signature
public static
javax.realtime.AsynchronouslyInterruptedException getGeneric()

Throws
IllegalThreadStateException if the current thread is a Java thread.

Returns
The generic AsynchronouslyInterruptedException.

Gets the singleton system generic AsynchronouslyInterruptedException that is
generated when RealtimeThread.interrupt()11is invoked.

8.5.1.3.2 enable

Signature
public
boolean enable()

Returns
True if this was disabled before the method was called and the call was
invoked whilst the associated doInterruptible() is in progress. False: oth-
erwise.

Enable the throwing of this exception. This method is valid only when the caller
has a call to doInterruptible() in progress. If invoked when no call to doInter-

ruptible() is in progress, enable returns false and does nothing.

8.5.1.3.3 disable

Signature
public synchronized

11Section 5.4.2.2.21

218 CHAPTER 8. ASYNCHRONY

boolean disable()

Returns

True if this was enabled before the method was called and the call was invoked
with the associated doInterruptible() in progress. False: otherwise.

Disable the throwing of this exception. If the fire12 method is called on this AIE
whilst it is disabled, the fire is held pending and delivered as soon as the AIE is
enabled and the interruptible code is within an AI-method. If an AIE is pending
when the associated disable method is called, the AIE remains pending, and is
delivered as soon as the AIE is enabled and the interruptible code is within an
AI-method.

This method is valid only when the caller has a call to doInterruptible() in
progress. If invoked when no call to doInterruptible() is in progress, disable
returns false and does nothing.

Note: disabling the genericAIE associated with a realtime thread only affects the
firing of that AIE. If the genericAIE is generated by the RealtimeThread.interrupt()13

mechanism, the AIE is delivered (unless the Interruptible code is in an AI-deferred
region, in which case it is marked as pending and handled in the usual way).

8.5.1.3.4 isEnabled

Signature

public
boolean isEnabled()

Returns

True if this is enabled and the method call was invoked in the context of the
associated doInterruptible(). False otherwise.

Query the enabled status of this exception.

This method is valid only when the caller has a call to doInterruptible() in
progress. If invoked when no call to doInterruptible() is in progress, enable

returns false and does nothing.

8.5.1.3.5 fire

Signature

public
boolean fire()

Returns

12Section 8.5.1.3.5
13Section 5.4.2.2.21

8.5. EXCEPTIONS 219

True if this is not disabled and it has an invocation of a doInterruptible()

in progress and there is no outstanding fire request. False otherwise.
Generate this exception if its doInterruptible() has been invoked and not com-
pleted. If this is the only outstanding AIE on the schedulable object that invoked
this AIE’s doInterruptible(Interruptible)14 method, this AIE becomes that
schedulable’s current AIE. Otherwise, it only becomes the current AIE if it is at a
less deep level of nesting compared with the current outstanding AIE.

8.5.1.3.6 doInterruptible(Interruptible)

Signature
public
boolean doInterruptible(Interruptible logic)

Parameters
logic An instance of an Interruptible15 whose run() method will be called.

Throws
IllegalThreadStateException when called from a Java thread.
IllegalArgumentException when logic is null.

Returns
True if the method call completed normally. False if another call to doInter-

ruptible has not completed.
Executes the run() method of the given Interruptible16. This method may be on
the stack in exactly one Schedulable17 object. An attempt to invoke this method
in a schedulable while it is on the stack of another or the same schedulable will cause
an immediate return with a value of false.

The run method of given Interruptible is always entered with the exception in
the enabled state, but that state can be modified with enable()18 and disable()19

and the state can be observed with isEnabled()20.
This AIE is cleared on return from doInterruptible().

8.5.1.3.7 isDoInterruptibleInProcess

Signature

14Section 8.5.1.3.6
15Section 8.4.2
16Section 8.4.2
17Section 6.4.2
18Section 8.5.1.3.2
19Section 8.5.1.3.3
20Section 8.5.1.3.4

220 CHAPTER 8. ASYNCHRONY

boolean isDoInterruptibleInProcess()

8.5.1.3.8 clear

Signature
public
boolean clear()

Throws
IllegalThreadStateException when called from a Java thread.

Returns
True if this was pending. False if this was not pending.

Atomically see if this is pending on the currently executing schedulable, and if so,
make it non-pending.

Available since RTSJ version RTSJ 1.0.1

8.5.2 Timed

Inheritance
java.lang.Object

java.lang.Throwable
java.lang.Exception

java.lang.InterruptedException
javax.realtime.AsynchronouslyInterruptedException

javax.realtime.Timed
Open issue: The fact that Timed extends AIE confuses the javadoc. It prints an
Exceptions heading

Create a scope in a Schedulable21 object which will be asynchronously inter-
rupted at the expiration of a timer. This timer will begin measuring time at some
point between the time doInterruptible() is invoked and the time the run()

method of the Interruptible object is invoked. Each call of doInterruptible()
on an instance of Timed will restart the timer for the amount of time given in the
constructor or the most recent invocation of resetTime(). The timer is cancelled
if it has not expired before the doInterruptible() method has finished.

All memory use of an instance of Timed occurs during construction or the first
invocation of doInterruptible(). Subsequent invocations of doInterruptible()
do not allocate memory.

21Section 6.4.2

8.5. EXCEPTIONS 221

If the timer fires, the resulting AIE will be generated for the schedulable within
a bounded execution time of the targeted schedulable.

Typical usage: new Timed(T).doInterruptible(interruptible); End of open
issue

8.5.2.1 Fields

8.5.2.1.1 serialVersionUID

private static final serialVersionUID

8.5.2.2 Constructors

8.5.2.2.1 Timed(HighResolutionTime)

Signature

public

Timed(HighResolutionTime time)

Parameters

time If time is a RelativeTime22 value, it is the interval of time between the
invocation of doInterruptible() and when the schedulable is asynchronously
interrupted. If time is an AbsoluteTime23 value, the timer asynchronously
interrupts at this time (assuming the timer has not been cancelled).

Throws

IllegalArgumentException when time is null.

Create an instance of Timed with a timer set to time. If the time is in the past
the AsynchronouslyInterruptedException24 mechanism is activated immediately
after or when the doInterruptible() method is called.

22Section 9.5.4
23Section 9.5.1
24Section 8.5.1

222 CHAPTER 8. ASYNCHRONY

8.5.2.3 Methods

8.5.2.3.1 doInterruptible(Interruptible)

Signature
public
boolean doInterruptible(Interruptible logic)

Parameters
logic @inheritDoc

Throws
IllegalArgumentException @inheritDoc
IllegalThreadStateException @inheritDoc

Returns
@inheritDoc

Execute a time-out method. Starts the timer and executes the run() method of the
given Interruptible25 object.

8.5.2.3.2 resetTime(HighResolutionTime)

Signature
public
void resetTime(HighResolutionTime time)

Parameters
time This can be an absolute time or a relative time. When null, the time-out
is not changed.

To set the time-out for the next invocation of doInterruptible().

8.5.2.3.3 restart(HighResolutionTime)

Signature
public
void restart(HighResolutionTime time)

Parameters
time The new timeout.

Throws
IllegalArgumentException when time is null or a relative time less than zero.

25Section 8.4.2

8.5. EXCEPTIONS 223

Reset the timeout. If this Timed26 instance is executing, adjust the timeout to time

and restart the timer. If the instance is not executing, adjust the timeout for the
next invocation.

Available since RTSJ version RTSJ 2.0

26Section 8.5.2

224 CHAPTER 8. ASYNCHRONY

8.6 Classes

8.6.1 AbstractAsyncEvent

Inheritance
java.lang.Object

javax.realtime.AbstractAsyncEvent
This is the base class for all asynchronous events, where asynchronous is in regards
to running code, not external time. This class unifies the original AsyncEvent27

with AsyncLongEvent28 and AsyncObjectEvent29.

Available since RTSJ version RTSJ 2.0

8.6.1.1 Constructors

8.6.1.1.1 AbstractAsyncEvent

Signature

AbstractAsyncEvent()

Create a new AsyncEvent object.

8.6.1.2 Methods

8.6.1.2.1 createReleaseParameters

Signature

27Section 8.6.3
28Section 8.6.5
29Section 8.6.7

8.6. CLASSES 225

public
javax.realtime.ReleaseParameters createReleaseParameters()

Returns

A new ReleaseParameters30 object.

Create a ReleaseParameters31 object appropriate to the release characteristics of
this event. The default is the most pessimistic: AperiodicParameters32. This is
typically called by code that is setting up a handler for this event that will fill in
the parts of the release parameters for which it has values, e.g., cost. The returned
ReleaseParameters33 object is not bound to the event. Any changes in the event’s
release parameters are not reflected in previously returned objects.

If an event returns PeriodicParameters34, there is no requirement for an im-
plementation to check that the handler is released periodically.

8.6.1.2.2 addHandler(AbstractAsyncEventHandler)

Signature

public
void addHandler(AbstractAsyncEventHandler handler)

Parameters

handler The new handler to add to the list of handlers already associated with
this. When handler is already associated with the event, the call has no effect.

Throws

IllegalArgumentException when handler is null or the handler has Periodic-
Parameters35. Only the subclass PeriodicTimer36 is allowed to have handlers
with PeriodicParameters37.
IllegalAssignmentError when this AsyncEvent cannot hold a reference to han-

dler.

Add a handler to the set of handlers associated with this event. An instance of
AsyncEvent may have more than one associated handler. However, adding a handler
to an event has no effect if the handler is already attached to the event.

The execution of this method is atomic with respect to the execution of the
fire() method.

30Section 6.5.8
31Section 6.5.8
32Section 6.5.2
33Section 6.5.8
34Section 6.5.4
35Section 6.5.4
36Section 10.5.4
37Section 6.5.4

226 CHAPTER 8. ASYNCHRONY

Since this affects the constraints expressed in the release parameters of an existing
schedulable, this may change the feasibility of the current system. This method does
not change feasibility set of any scheduler, and no feasibility test is performed.

Note, there is an implicit reference to the handler stored in this. The assignment
must be valid under any applicable memory assignment rules.

8.6.1.2.3 setHandler(AbstractAsyncEventHandler)

Signature
public
void setHandler(AbstractAsyncEventHandler handler)

Parameters
handler The instance of AbstractAsyncEventHandler38 to be associated with
this. When handler is null then no handler will be associated with this, i.e.,
behave effectively as if setHandler(null) invokes removeHandler(AbstractAsyncEventHandler)39

for each associated handler.
Throws

IllegalArgumentException when handler has PeriodicParameters40. Only
the subclass PeriodicTimer41 is allowed to have handlers with PeriodicPa-

rameters42.
IllegalAssignmentError when this AsyncEvent cannot hold a reference to han-

dler.
Associate a new handler with this event and remove all existing handlers. The
execution of this method is atomic with respect to the execution of the fire()

method.
Since this affects the constraints expressed in the release parameters of the ex-

isting schedulables, this may change the feasibility of the current system. This
method does not change the feasibility set of any scheduler, and no feasibility test
is performed.

8.6.1.2.4 handledBy(AbstractAsyncEventHandler)

Signature
public
boolean handledBy(AbstractAsyncEventHandler handler)

Parameters

38Section 8.6.2
39Section 8.6.1.2.5
40Section 6.5.4
41Section 10.5.4
42Section 6.5.4

8.6. CLASSES 227

handler The handler to be tested to determine if it is associated with this.

Returns

True if the parameter is associated with this. False if handler is null or the
parameters is not associated with this.

Test to see if the handler given as the parameter is associated with this.

8.6.1.2.5 removeHandler(AbstractAsyncEventHandler)

Signature

public
void removeHandler(AbstractAsyncEventHandler handler)

Parameters

handler The handler to be disassociated from this. If null nothing happens.
If the handler is not already associated with this then nothing happens.

Remove a handler from the set associated with this event. The execution of this
method is atomic with respect to the execution of the fire() method.

A removed handler continues to execute until its fireCount becomes zero and it
completes.

If handler has a scoped non-default initial memory area and execution of this
method causes handler to become non-fireable, this method shall not return until
all related finalization has completed.

8.6.1.2.6 disable

Signature

public
void disable()

Change the state of the event so that associated handlers are skipped on fire. Each
subclass provides a fire method as means of dispatching its handlers when requested.
This method disables that request mechanism.

8.6.1.2.7 enable

Signature

public
void enable()

Change the state of the event so that associated handlers are release on fire. Each
subclass provides a means of dispatching its handlers when requested. This method
enables that request mechanism.

228 CHAPTER 8. ASYNCHRONY

8.6.1.2.8 isEnabled

Signature
public
boolean isEnabled()

Returns
true when releasing, false when skipping.

Determine the firing state (releasing or skipping) of this event, i.e., if is enabled or
disabled.

8.6.2 AbstractAsyncEventHandler

Inheritance
java.lang.Object

javax.realtime.AbstractAsyncEventHandler
Interfaces

Schedulable
This is the base class for all asynchronous event handlers, where asynchronous is in
regards to running code, not external time. This class unifies the original Async-
EventHandler43 with AsyncLongEventHandler44 and AsyncObjectEventHandler45.

Available since RTSJ version RTSJ 2.0

8.6.2.1 Constructors

8.6.2.1.1 AbstractAsyncEventHandler(SchedulingParameters, Release-
Parameters, MemoryParameters, MemoryArea, ProcessingGroupParam-
eters, SchedulableSizingParameters, boolean)

Signature

43Section 8.6.4
44Section 8.6.6
45Section 8.6.8

8.6. CLASSES 229

AbstractAsyncEventHandler(SchedulingParameters scheduling, ReleaseParameters release, MemoryParameters memory, MemoryArea area, ProcessingGroupParameters group, SchedulableSizingParameters sizing, boolean nonheap)

Parameters

scheduling A SchedulingParameters46 object which will be associated with
the constructed instance. If null, and the creator is a Java thread, a Schedu-

lingParameters object is created which has the default scheduling parameters
value for the scheduler associated with the current thread. If null, and the
creator is a schedulable, the scheduling parameters are inherited from the cur-
rent schedulable (a new SchedulingParameters object is cloned).
release A ReleaseParameters47 object which will be associated with the con-
structed instance. If null, this will have default ReleaseParameters for this
AEH’s scheduler.
memory A MemoryParameters48 object which will be associated with the con-
structed instance. If null, this will have no MemoryParameters.
area The MemoryArea49 for this. If null, the memory area will be that of the
current thread/schedulable.
enter initial memory area
handleAsyncEvent()
leave initial memory area
If true, behave effectively as if the first release of this AbstractAsyncEvent-

Handler via a AsyncEvent.fire50 or its release in a miss or overrun handler
role pins the in initial memory area.
group A ProcessingGroupParameters51 object which will be associated with
the constructed instance. If null, this will not be associated with any pro-
cessing group.
sizing The SchedulableSizingParameters52 associated with this (and possi-
bly other instances of Schedulable53. If sizing is null, this AbstractAsync-
EventHandler will reserve no space for preallocated exceptions and implementation-
specific values will be set to their implementation-defined defaults.
nonheap A flag meaning, when true, that this will have characteristics identical
to a NoHeapRealtimeThread54. A false value means this will have characteris-

46Section 6.5.10
47Section 6.5.8
48Section 11.8.8
49Section 11.8.7
50Section 8.6.3.2.1
51Section 6.5.7
52Section 11.8.12
53Section 6.4.2
54Section 5.4.1

230 CHAPTER 8. ASYNCHRONY

tics identical to a RealtimeThread55. If true and the current thread/schedulable
is not executing within a ScopedMemory56 or ImmortalMemory57 scope then an
name is thrown.

Throws

IllegalArgumentException when nonheap is true and any parameter, or this

is in heap memory or area is heap memory.
IllegalAssignmentError when the new AbstractAsyncEventHandler instance
cannot hold a reference to non-null values of scheduling release memory and
group, or if those parameters cannot hold a reference to the new Abstract-

AsyncEventHandler. Also when the new AbstractAsyncEventHandler in-
stance cannot hold a reference to non-null values of area and logic.

Create an instance of AbstractAsyncEventHandler with the specified parameters.

Available since RTSJ version RTSJ 2.0

8.6.2.2 Methods

8.6.2.2.1 getCurrentConsumption(RelativeTime)

Signature

public static
javax.realtime.RelativeTime getCurrentConsumption(RelativeTime

dest)

Throws

IllegalStateException when the caller is not a RealtimeThread58.

Returns

The CPU consumption for this release. When dest is null, return the CPU
consumption in an otherwise unused RelativeTime59 instance in the current
execution context, otherwise, when dest is not null, return the CPU con-
sumption in dest

55Section 5.4.2
56Section 11.8.13
57Section 11.8.3
58Section 5.4.2
59Section 9.5.4

8.6. CLASSES 231

Available since RTSJ version RTSJ 2.0

8.6.2.2.2 getCurrentConsumption

Signature

public static
javax.realtime.RelativeTime getCurrentConsumption()

Equivalent to getCurrentConsumption(null).

Available since RTSJ version RTSJ 2.0

8.6.2.2.3 getPendingFireCount

Signature

protected
int getPendingFireCount()

Returns

The value held by fireCount.

This is an accessor method for fireCount. The fireCount field nominally holds the
number of times associated instances of AsyncEvent60 have occurred that have not
had the method handleAsyncEvent() invoked. It is incremented and decremented
by the implementation of the RTSJ. The application logic may manipulate the value
in this field for application-specific reasons.

8.6.2.2.4 getAndClearPendingFireCount

Signature

protected
int getAndClearPendingFireCount()

Returns

The value held by fireCount prior to setting the value to zero.

This is an accessor method for fireCount. This method atomically sets the value
of fireCount to zero and returns the value from before it was set to zero. This may
used by handlers for which the logic can accommodate multiple releases in a single
execution.

60Section 8.6.3

232 CHAPTER 8. ASYNCHRONY

The general form for using this is
public void handleAsyncEvent()
{

int numberOfReleases = getAndClearPendingFireCount();
<handle the events>

}
The effect of a call to getAndClearPendingFireCount on the scheduling of this

AEH depends on the semantics of the scheduler controlling this AEH.

8.6.2.2.5 getAndDecrementPendingFireCount

Signature
protected
int getAndDecrementPendingFireCount()

Returns
The value held by fireCount prior to decrementing it by one.

This is an accessor method for fireCount. This method atomically decrements, by
one, the value of fireCount (if it was greater than zero) and returns the value from
before the decrement. This method can be used in the handleAsyncEvent() method
to handle multiple releases:
public void handleAsyncEvent()
{
<setup>
do
{
<handle the event>

}
while(getAndDecrementPendingFireCount() > 0);

}
This construction is necessary only in the case where a handler wishes to avoid

the setup costs since the framework guarantees that handleAsyncEvent() will be
invoked whenever the fireCount is greater than zero. The effect of a call to getAnd-

DecrementPendingFireCount on the scheduling of this AEH depends on the seman-
tics of the scheduler controlling this AEH.

8.6.2.2.6 getMemoryArea

Signature
public
javax.realtime.MemoryArea getMemoryArea()

Returns

8.6. CLASSES 233

The instance of MemoryArea61 which was passed as the area parameter when
this was created (or the default value if area was allowed to default. To de-
termine the current status of the memory area stack associated with this, use
the static methods defined in the RealtimeThread62 class. That is Realtime-
Thread.getCurrentMemoryArea63, RealtimeThread.getInitialMemoryAreaIndex64,
RealtimeThread.getMemoryAreaStackDepth65.

This is an accessor method for the initial instance of MemoryArea66 associated with
this.

8.6.2.2.7 getMemoryParameters

Signature
public
javax.realtime.MemoryParameters getMemoryParameters()

Returns
@inheritDoc

@inheritDoc

8.6.2.2.8 getReleaseParameters

Signature
public
javax.realtime.ReleaseParameters getReleaseParameters()

Returns
@inheritDoc

@inheritDoc

8.6.2.2.9 getScheduler

Signature
public
javax.realtime.Scheduler getScheduler()

Returns
@inheritDoc

@inheritDoc

61Section 11.8.7
62Section 5.4.2
63Section 5.4.2.2.2
64Section 5.4.2.2.3
65Section 5.4.2.2.4
66Section 11.8.7

234 CHAPTER 8. ASYNCHRONY

8.6.2.2.10 getSchedulingParameters

Signature
public
javax.realtime.SchedulingParameters getSchedulingParameters()

Returns
@inheritDoc

@inheritDoc

8.6.2.2.11 getProcessingGroupParameters

Signature
public
javax.realtime.ProcessingGroupParameters

getProcessingGroupParameters()

Returns
@inheritDoc

@inheritDoc

8.6.2.2.12 getSchedulableSizingParameters

Signature
public
javax.realtime.SchedulableSizingParameters

getSchedulableSizingParameters()

Returns
@inheritDoc

@inheritDoc

8.6.2.2.13 setMemoryParameters(MemoryParameters)

Signature
public
void setMemoryParameters(MemoryParameters memory)

Parameters
memory @inheritDoc

Throws
IllegalArgumentException @inheritDoc
IllegalAssignmentError @inheritDoc
IllegalThreadStateException @inheritDoc

@inheritDoc

8.6. CLASSES 235

8.6.2.2.14 setReleaseParameters(ReleaseParameters)

Signature
public
void setReleaseParameters(ReleaseParameters release)

Parameters
release @inheritDoc

Throws
IllegalArgumentException @inheritDoc
IllegalAssignmentError @inheritDoc
IllegalThreadStateException @inheritDoc

@inheritDoc

8.6.2.2.15 setScheduler(Scheduler)

Signature
public
void setScheduler(Scheduler scheduler)

Parameters
scheduler @inheritDoc

Throws
IllegalArgumentException @inheritDoc
IllegalAssignmentError @inheritDoc
SecurityException @inheritDoc
IllegalThreadStateException @inheritDoc

@inheritDoc

8.6.2.2.16 setScheduler(Scheduler, SchedulingParameters, ReleasePar-
ameters, MemoryParameters, ProcessingGroupParameters)

Signature
public
void setScheduler(Scheduler scheduler, SchedulingParameters

scheduling, ReleaseParameters release, MemoryParameters

memoryParameters, ProcessingGroupParameters group)

Parameters
scheduler @inheritDoc
scheduling @inheritDoc
release @inheritDoc
memoryParameters @inheritDoc
group @inheritDoc

236 CHAPTER 8. ASYNCHRONY

Throws
IllegalArgumentException @inheritDoc
IllegalAssignmentError @inheritDoc
IllegalThreadStateException @inheritDoc
SecurityException @inheritDoc

@inheritDoc

8.6.2.2.17 setSchedulingParameters(SchedulingParameters)

Signature
public
void setSchedulingParameters(SchedulingParameters scheduling)

Parameters
scheduling @inheritDoc

Throws
IllegalArgumentException @inheritDoc
IllegalAssignmentError @inheritDoc
IllegalThreadStateException @inheritDoc

@inheritDoc

8.6.2.2.18 setProcessingGroupParameters(ProcessingGroupParameters)

Signature
public
void setProcessingGroupParameters(ProcessingGroupParameters

group)

Parameters
group @inheritDoc

Throws
IllegalArgumentException @inheritDoc
IllegalAssignmentError @inheritDoc
IllegalThreadStateException @inheritDoc

@inheritDoc

8.6.2.2.19 setDaemon(boolean)

Signature
public final
void setDaemon(boolean on)

Parameters

8.6. CLASSES 237

on If true, marks this event handler as a daemon handler.
Throws

IllegalThreadStateException when this event handler is attached to an AE.
SecurityException when the current schedulable cannot modify this event han-
dler.

Marks this event handler as either a daemon event handler or a user event handler.
A realtime virtual machine exits when the only schedulables and threads running
are all daemon. This method must be called before the event handler is attached to
any event. Once attached, it cannot be changed.

Available since RTSJ version RTSJ 1.0.1

8.6.2.2.20 isDaemon

Signature
public final
boolean isDaemon()

Returns
True if this event handler is a daemon handler; false otherwise.

Tests if this event handler is a daemon handler.

Available since RTSJ version RTSJ 1.0.1

8.6.2.2.21 fire

Signature
public final
void fire()

See Section Timable.fire())

Available since RTSJ version RTSJ 2.0

8.6.2.2.22 getDispatcher

Signature
public final
javax.realtime.TimeDispatcher getDispatcher()

238 CHAPTER 8. ASYNCHRONY

See Section Timable.getDispatcher())

Available since RTSJ version RTSJ 2.0

8.6.2.2.23 getMinConsumption(RelativeTime)

Signature
public
javax.realtime.RelativeTime getMinConsumption(RelativeTime dest)

Available since RTSJ version RTSJ 2.0

8.6.2.2.24 getMinConsumption

Signature
public
javax.realtime.RelativeTime getMinConsumption()

Available since RTSJ version RTSJ 2.0

8.6.2.2.25 getMaxConsumption(RelativeTime)

Signature
public
javax.realtime.RelativeTime getMaxConsumption(RelativeTime dest)

Available since RTSJ version RTSJ 2.0

8.6.2.2.26 getMaxConsumption

Signature
public
javax.realtime.RelativeTime getMaxConsumption()

Available since RTSJ version RTSJ 2.0

8.6. CLASSES 239

8.6.2.2.27 wakeup

Signature

public final
void wakeup()

Indicate that a sleep has ended.

See Section Schedulable.wakeup())

Available since RTSJ version RTSJ 2.0

8.6.3 AsyncEvent

Inheritance

java.lang.Object
javax.realtime.AbstractAsyncEvent

javax.realtime.AsyncEvent

An asynchronous event can have a set of handlers associated with it, and when the
event occurs, the fireCount of each handler is incremented, and the handlers are
released (see AsyncEventHandler67).

8.6.3.1 Constructors

8.6.3.1.1 AsyncEvent

Signature

public

AsyncEvent()

Create a new AsyncEvent object.

67Section 8.6.4

240 CHAPTER 8. ASYNCHRONY

8.6.3.2 Methods

8.6.3.2.1 fire

Signature
public
void fire()

Throws
MITViolationException Thrown under the base priority scheduler’s semantics
if there is a handler associated with this event that has its MIT violated by the
call to fire (and it has set the minimum inter-arrival time violation behavior
to MITViolationExcept). Only the handlers which do not have their MITs
violated are released in this situation.
ArrivalTimeQueueOverflowException when the queue of arrival time informa-
tion overflows. Only the handlers which do not cause this exception to be
thrown are released in this situation.

When enabled, release the asynchronous events associated with this instance of
AsyncEvent. When no handlers are attached or this object is disabled the method
does nothing, i.e., it skips the release.
• When the instance of AsyncEvent has more than one instance of Async-

EventHandler with release parameters object of type AperiodicParameters

attached and the execution of AsyncEvent.fire() introduces the requirement
to throw at least one type of exception, then all instances of AsyncEventHand-
ler not affected by the exception are handled normally
• When the instance of AsyncEvent has more than one instance of AsyncEvent-
Handler with release parameters object of type SporadicParameters attached
and the execution of AsyncEvent.fire() introduces the simultaneous require-
ment to throw more than one type of exception or error then MITViolationEx-

ception68 has precedence over ArrivalTimeQueueOverflowException69.

8.6.4 AsyncEventHandler

Inheritance
java.lang.Object

68Section 14.3.9
69Section 14.3.1

8.6. CLASSES 241

javax.realtime.AbstractAsyncEventHandler
javax.realtime.AsyncEventHandler

An asynchronous event handler encapsulates code that is released after an instance
of AsyncEvent70 to which it is attached occurs.

It is guaranteed that multiple releases of an event handler will be serialized. It is
also guaranteed that (unless the handler explicitly chooses otherwise) for each release
of the handler, there will be one execution of the AsyncEventHandler.handleAsyncEvent()71

method. Control over the number of calls to AsyncEventHandler.handleAsyncEvent()72

is given by methods which manipulate a fireCount. These may be called by the ap-
plication via sub-classing and overriding AsyncEventHandler.handleAsyncEvent()73.

Instances of AsyncEventHandler with a release parameter of type Sporadic-

Parameters74 or AperiodicParameters75 have a list of release times which cor-
respond to the occurrence times of instances of AsyncEvent76 to which they are
attached. The minimum interarrival time specified in SporadicParameters77 is
enforced when a release time is added to the list. Unless the handler explicitly
chooses otherwise, there will be one execution of the code in AsyncEventHand-

ler.handleAsyncEvent()78 for each entry in the list.

The deadline and the time each release event causes the AEH to become eli-
gible for execution are properties of the scheduler that controls the AEH. For the
base scheduler (at ../../sched overview-summary.html#AperiodicScheduling), the
deadline for each release event is relative to its fire time, and the release takes place
at fire time but execution eligibility may be deferred if the queue’s MIT violation
policy is SAVE.

Handlers may do almost anything a realtime thread can do. They may run for a
long or short time, and they may block. (Note: blocked handlers may hold system
resources.) A handler may not use the RealtimeThread.waitForNextPeriod()79

method.

Normally, handlers are bound to an execution context dynamically when the
instances of AsyncEvent80s to which they are bound occur. This can introduce a
(small) time penalty. For critical handlers that can not afford the expense, and

70Section 8.6.3
71Section 8.6.4.2.1
72Section 8.6.4.2.1
73Section 8.6.4.2.1
74Section 6.5.11
75Section 6.5.2
76Section 8.6.3
77Section 6.5.11
78Section 8.6.4.2.1
79Section 5.4.2.2.7
80Section 8.6.3

242 CHAPTER 8. ASYNCHRONY

where this penalty is a problem, BoundAsyncEventHandler81s can be used.
The scheduler for an asynchronous event handler is inherited from the thread/schedulable

that created it. If it was created from a Java thread, the scheduler is the current
default scheduler.

The semantics for memory areas that were defined for realtime threads apply in
the same way to instances of AsyncEventHandler They may inherit a scope stack
when they are created, and the single parent rule applies to the use of memory
scopes for instances of AsyncEventHandler just as it does in realtime threads.

8.6.4.1 Constructors

8.6.4.1.1 AsyncEventHandler

Signature

public

AsyncEventHandler()

Create an instance of AsyncEventHandler with default values for all parameters.

See Section AsyncEventHandler(SchedulingParameters, ReleaseParameters, Memo-
ryParameters, MemoryArea, ProcessingGroupParameters, SchedulableSizingParam-
eters, boolean, Runnable))

8.6.4.1.2 AsyncEventHandler(boolean)

Signature

public

AsyncEventHandler(boolean nonheap)

Parameters

nonheap flag for the new handler.

81Section 8.6.9

8.6. CLASSES 243

Calling this constructor is equivalent to calling AsyncEventHandler(SchedulingParameters,
ReleaseParameters, MemoryParameters, MemoryArea, ProcessingGroupParam-

eters, SchedulableSizingParameters, boolean, Runnable)82 with arguments
(null, null, null, null, false, null, null, nonheap, null).

See Section AsyncEventHandler(SchedulingParameters, ReleaseParameters, Memo-
ryParameters, MemoryArea, ProcessingGroupParameters, SchedulableSizingParam-
eters, boolean, Runnable))

8.6.4.1.3 AsyncEventHandler(boolean, Runnable)

Signature

public

AsyncEventHandler(boolean nonheap, Runnable logic)

Parameters
nonheap flag for the new handler.
logic to run at each release.

Calling this constructor is equivalent to calling AsyncEventHandler(SchedulingParameters,
ReleaseParameters, MemoryParameters, MemoryArea, ProcessingGroupParam-

eters, SchedulableSizingParameters, boolean, Runnable)83 with arguments
(null, null,null, null,false, null, null, nonheap, logic).

See Section AsyncEventHandler(SchedulingParameters, ReleaseParameters, Memo-
ryParameters, MemoryArea, ProcessingGroupParameters, SchedulableSizingParam-
eters, boolean, Runnable))

8.6.4.1.4 AsyncEventHandler(Runnable)

Signature

public

AsyncEventHandler(Runnable logic)

Parameters

82Section 8.6.4.1.9
83Section 8.6.4.1.9

244 CHAPTER 8. ASYNCHRONY

logic to run at each releasse.
Calling this constructor is equivalent to calling AsyncEventHandler(SchedulingParameters,
ReleaseParameters, MemoryParameters, MemoryArea, ProcessingGroupParam-

eters, SchedulableSizingParameters, boolean, Runnable)84 with arguments
(null, null, null, null, false, null, null, false, logic).

See Section AsyncEventHandler(SchedulingParameters, ReleaseParameters, Memo-
ryParameters, MemoryArea, ProcessingGroupParameters, SchedulableSizingParam-
eters, boolean, Runnable))

8.6.4.1.5 AsyncEventHandler(SchedulingParameters, ReleaseParameters,
boolean)

Signature

public

AsyncEventHandler(SchedulingParameters scheduling, ReleaseParameters release, boolean noHeap)

Parameters
scheduling parameters for the new handler.
release parameters for the new handler.
noHeap flag for the new handler.

Calling this constructor is equivalent to calling AsyncEventHandler(SchedulingParameters,
ReleaseParameters, MemoryParameters, MemoryArea, ProcessingGroupParam-

eters, SchedulableSizingParameters, boolean, Runnable)85 with arguments
(scheduling, release, null, null, false, null, null, nonheap, null)

See Section AsyncEventHandler(SchedulingParameters, ReleaseParameters, Memo-
ryParameters, MemoryArea, ProcessingGroupParameters, SchedulableSizingParam-
eters, boolean, Runnable))

Available since RTSJ version RTSJ 2.0

8.6.4.1.6 AsyncEventHandler(SchedulingParameters, ReleaseParameters,
SchedulableSizingParameters, boolean)

84Section 8.6.4.1.9
85Section 8.6.4.1.9

8.6. CLASSES 245

Signature

public

AsyncEventHandler(SchedulingParameters scheduling, ReleaseParameters release, SchedulableSizingParameters sizing, boolean noHeap)

Parameters
scheduling parameters for the new handler.
release parameters for the new handler.
sizing parameters for the new handler.
noHeap flag for the new handler.

Calling this constructor is equivalent to calling AsyncEventHandler(SchedulingParameters,
ReleaseParameters, MemoryParameters, MemoryArea, ProcessingGroupParam-

eters, SchedulableSizingParameters, boolean, Runnable)86 with arguments
(scheduling, release, null, null, null, null, nonheap, logic).

See Section AsyncEventHandler(SchedulingParameters, ReleaseParameters, Memo-
ryParameters, MemoryArea, ProcessingGroupParameters, SchedulableSizingParam-
eters, boolean, Runnable))

Available since RTSJ version RTSJ 2.0

8.6.4.1.7 AsyncEventHandler(SchedulingParameters, ReleaseParameters,
MemoryParameters, MemoryArea, ProcessingGroupParameters, boolean)

Signature

public

AsyncEventHandler(SchedulingParameters scheduling, ReleaseParameters release, MemoryParameters memory, MemoryArea area, ProcessingGroupParameters group, boolean nonheap)

Parameters
scheduling parameters for the new handler.
release parameters for the new handler.
memory parameters for the new handler.
area in which to run the new handler.
group parameters for the new handler.
nonheap flag for the new handler.

86Section 8.6.4.1.9

246 CHAPTER 8. ASYNCHRONY

Calling this constructor is equivalent to calling AsyncEventHandler(SchedulingParameters,
ReleaseParameters, MemoryParameters, MemoryArea, ProcessingGroupParam-

eters, SchedulableSizingParameters, boolean, Runnable)87 with arguments
(scheduling, release, memory, area, false, group, null, nonheap, null).

See Section AsyncEventHandler(SchedulingParameters, ReleaseParameters, Memo-
ryParameters, MemoryArea, ProcessingGroupParameters, SchedulableSizingParam-
eters, boolean, Runnable))

8.6.4.1.8 AsyncEventHandler(SchedulingParameters, ReleaseParameters,
MemoryParameters, MemoryArea, ProcessingGroupParameters, Schedu-
lableSizingParameters, boolean)

Signature

public

AsyncEventHandler(SchedulingParameters scheduling, ReleaseParameters release, MemoryParameters memory, MemoryArea area, ProcessingGroupParameters group, SchedulableSizingParameters sizing, boolean noHeap)

Parameters
scheduling parameters for the new handler.
release parameters for the new handler.
memory parameters for the new handler.
area in which to run the new handler.
group parameters for the new handler.
sizing parameters for the new handler.
noHeap flag for the new handler.

Calling this constructor is equivalent to calling AsyncEventHandler(SchedulingParameters,
ReleaseParameters, MemoryParameters, MemoryArea, ProcessingGroupParam-

eters, SchedulableSizingParameters, boolean, Runnable)88 with the arguments
(scheduling, release, memory, area, group, sizing, false, logic).

See Section AsyncEventHandler(SchedulingParameters, ReleaseParameters, Memo-
ryParameters, MemoryArea, ProcessingGroupParameters, SchedulableSizingParam-
eters, boolean, Runnable))

Available since RTSJ version RTSJ 2.0

87Section 8.6.4.1.9
88Section 8.6.4.1.9

8.6. CLASSES 247

8.6.4.1.9 AsyncEventHandler(SchedulingParameters, ReleaseParameters,
MemoryParameters, MemoryArea, ProcessingGroupParameters, Schedu-
lableSizingParameters, boolean, Runnable)

Signature

public

AsyncEventHandler(SchedulingParameters scheduling, ReleaseParameters release, MemoryParameters memory, MemoryArea area, ProcessingGroupParameters group, SchedulableSizingParameters sizing, boolean nonheap, Runnable logic)

Parameters
scheduling parameters for scheduling the new handler (and possibly other in-
stances of Schedulable89). When scheduling is null and the creator is an
instance of Schedulable90, SchedulingParameters91 is a clone of the cre-
ator’s value created in the same memory area as this. When scheduling

is null and the creator is a Java thread, the contents and type of the new
SchedulingParameters object is governed by the associated scheduler.
release parameters for scheduling the new handler (and possibly other in-
stances of Schedulable92). When release is null the new AsyncEventHand-

ler will use a clone of the default ReleaseParameters93 for the associated
scheduler created in the memory area that contains the AsyncEventHandler

object.
memory parameters for scheduling the new handler (and possibly other in-
stances of Schedulable94). When memory is null, the new AsyncEventHand-

ler receives null value for its memory parameters, and the amount or rate of
memory allocation for the new handler is unrestricted.
area is the MemoryArea95 in which the new handler with run. When area is
null, the initial memory area of the new AsyncEventHandler is the current
memory area at the time the constructor is called. When area is a scoped
memory area, then this memory area will be automatically entered before the
handleAsyncEvent method is called and automatically exited when the han-

dleAsyncEvent method returns.
enter initial memory area

handleAsyncEvent()

leave initial memory area

89Section 6.4.2
90Section 6.4.2
91Section 6.5.10
92Section 6.4.2
93Section 6.5.8
94Section 6.4.2
95Section 11.8.7

248 CHAPTER 8. ASYNCHRONY

group parameters for providing CPU cost management on a set of Schedul-
able96s. When null, this will not be associated with any processing group.
sizing parameters for reserving space for preallocated exceptions and change
implementation specific per Schedulable97 memory reservations, such as Java
stack size, for the new handler (and possibly other instances of Schedulable98.
When sizing is null, this AsyncEventHandler will reserve no space for pre-
allocated exceptions and implementation-specific values will be set to their
implementation-defined defaults.
nonheap determins if the handler may access heap memory (false} or not
(true}.
logic The Runnable object whose run() method will serve as the logic for
the new AsyncEventHandler . If logic is null, the handleAsyncEvent()

method in the new object will serve as its logic.
Calling this constructor is equivalent to calling AsyncEventHandler(SchedulingParameters,
ReleaseParameters, MemoryParameters, MemoryArea, ProcessingGroupParam-

eters, SchedulableSizingParameters, boolean, Runnable)99 with the arguments
(scheduling, release, memory, area, group, null, false, logic)

Available since RTSJ version RTSJ 2.0

8.6.4.2 Methods

8.6.4.2.1 handleAsyncEvent

Signature
public
void handleAsyncEvent()

This method holds the logic which is to be executed when any AsyncEvent100 with
which this handler is associated is fired. This method will be invoked repeatedly
while fireCount is greater than zero.

The default implementation of this method invokes the run method of any non-
null logic instance passed to the constructor of this handler.

96Section 6.4.2
97Section 6.4.2
98Section 6.4.2
99Section 8.6.4.1.9

100Section 8.6.3

8.6. CLASSES 249

This AEH acts as a source of ”reference” for its initial memory area while it is
released.

All throwables from (or propagated through) handleAsyncEvent are caught, a
stack trace is printed and execution continues as if handleAsyncEvent had returned
normally.

8.6.4.2.2 isPinMemory

Signature
public
boolean isPinMemory()

Returns
true is the default memory area is a pinned scoped memory area.

Test to see if the default memory area is a pinned scoped memory area.

Available since RTSJ version RTSJ 2.0

8.6.4.2.3 run

Signature
public final
void run()

When used as part of the internal mechanism activated by firing an async event, this
method’s detailed semantics are defined by the scheduler associated with this han-
dler. The general outline is:

enter initial memory area

while (fireCount > 0)

{
[initiate release]

fireCount--;

try { handleAsyncEvent(); }
catch (Throwable th) { th.printStackTrace(); }
[effect completion]

}
leave initial memory area

All throwables from (or propagated through) handleAsyncEvent101 are caught, a
stack trace is printed and execution continues as if handleAsyncEvent had returned

101Section 8.6.4.2.1

250 CHAPTER 8. ASYNCHRONY

normally.

When it is directly invoked, this method invokes handleAsyncEvent102 repeat-
edly while the fireCount is greater than zero; e.g.,

while (getAndDecrementPendingFireCount() > 0)

{
enter initial memory area

handleAsyncEvent();

leave initial memory area

}
however direct invocation of run is not recommended as it may interact with

the normal release of this handler.

Applications cannot override this method and thus should use the logic param-
eter at construction, or override handleAsyncEvent() in subclasses with the logic
of the handler.

8.6.5 AsyncLongEvent

Inheritance

java.lang.Object
javax.realtime.AbstractAsyncEvent

javax.realtime.AsyncLongEvent

8.6.5.1 Constructors

8.6.5.1.1 AsyncLongEvent

Signature

public

AsyncLongEvent()

Create a new AsyncEvent object.

102Section 8.6.4.2.1

8.6. CLASSES 251

8.6.5.2 Methods

8.6.5.2.1 fire(long)

Signature

public
void fire(long value)

Throws

MITViolationException Thrown under the base priority scheduler’s semantics
if there is a handler associated with this event that has its MIT violated by the
call to fire (and it has set the minimum inter-arrival time violation behavior
to MITViolationExcept). Only the handlers which do not have their MITs
violated are released in this situation.
ArrivalTimeQueueOverflowException when the queue of arrival time informa-
tion overflows. Only the handlers which do not cause this exception to be
thrown are released in this situation.

When enabled, release the asynchronous events associated with this instance of
AsyncLongEvent with the long passed by fire(long)103. When no handlers are
attached or this object is disabled the method does nothing, i.e., it skips the release.

• When the instance of AsyncLongEvent is associated with more than one in-
stance of AsyncLongEventHandler104 with release parameters object of type
AperiodicParameters105 and the execution of fire(long)106 introduces the
requirement to throw at least one type of exception, then all instances of Asyn-
cLongEventHandler107 not affected by the exception are handled normally.
• When this instance of AsyncLongEvent is associated with more than one in-

stance of AsyncLongEventHandler108 with release parameters object of type
SporadicParameters109 and the execution of fire(long)110 introduces the
simultaneous requirement to throw more than one type of exception or error,
then MITViolationException111 has precedence over ArrivalTimeQueueOver-

103Section 8.6.5.2.1
104Section 8.6.6
105Section 6.5.2
106Section 8.6.5.2.1
107Section 8.6.6
108Section 8.6.6
109Section 6.5.11
110Section 8.6.5.2.1
111Section 14.3.9

252 CHAPTER 8. ASYNCHRONY

flowException112.

8.6.6 AsyncLongEventHandler

Inheritance

java.lang.Object
javax.realtime.AbstractAsyncEventHandler

javax.realtime.AsyncLongEventHandler

A version of AbstractAsyncEventHandler113 that carries a long value as paylaod.

Available since RTSJ version RTSJ 2.0

8.6.6.1 Constructors

8.6.6.1.1 AsyncLongEventHandler

Signature

public

AsyncLongEventHandler()

Create an instance of AsyncLongEventHandler with default values for all parame-
ters.

See Section AsyncLongEventHandler(SchedulingParameters, ReleaseParameters, Mem-
oryParameters, MemoryArea, ProcessingGroupParameters, SchedulableSizingParam-
eters, boolean))

Available since RTSJ version RTSJ 2.0

112Section 14.3.1
113Section 8.6.2

8.6. CLASSES 253

8.6.6.1.2 AsyncLongEventHandler(boolean)

Signature

public

AsyncLongEventHandler(boolean nonheap)

Parameters
nonheap flag for the new handler.

Calling this constructor is equivalent to calling AsyncLongEventHandler(SchedulingParameters,
ReleaseParameters, MemoryParameters, MemoryArea, ProcessingGroupParam-

eters, SchedulableSizingParameters, boolean)114 with arguments (null, null,

null, null, false, null, null, nonheap).

See Section AsyncLongEventHandler(SchedulingParameters, ReleaseParameters, Mem-
oryParameters, MemoryArea, ProcessingGroupParameters, SchedulableSizingParam-
eters, boolean))

Available since RTSJ version RTSJ 2.0

8.6.6.1.3 AsyncLongEventHandler(SchedulingParameters, ReleaseParam-
eters, boolean)

Signature

public

AsyncLongEventHandler(SchedulingParameters scheduling, ReleaseParameters release, boolean noHeap)

Parameters
scheduling parameters for the new handler.
release parameters for the new handler.
noHeap flag for the new handler.

Calling this constructor is equivalent to calling AsyncLongEventHandler(SchedulingParameters,
ReleaseParameters, MemoryParameters, MemoryArea, ProcessingGroupParam-

eters, SchedulableSizingParameters, boolean)115 with arguments (schedul-
ing, release, null, null, false, null, null, nonheap)

114Section 8.6.6.1.6
115Section 8.6.6.1.6

254 CHAPTER 8. ASYNCHRONY

See Section AsyncLongEventHandler(SchedulingParameters, ReleaseParameters, Mem-
oryParameters, MemoryArea, ProcessingGroupParameters, SchedulableSizingParam-
eters, boolean))

Available since RTSJ version RTSJ 2.0

8.6.6.1.4 AsyncLongEventHandler(SchedulingParameters, ReleaseParam-
eters, SchedulableSizingParameters, boolean)

Signature

public

AsyncLongEventHandler(SchedulingParameters scheduling, ReleaseParameters release, SchedulableSizingParameters sizing, boolean noHeap)

Parameters
scheduling parameters for the new handler.
release parameters for the new handler.
sizing parameters for the new handler.
noHeap flag for the new handler.

Calling this constructor is equivalent to calling AsyncLongEventHandler(SchedulingParameters,
ReleaseParameters, MemoryParameters, MemoryArea, ProcessingGroupParam-

eters, SchedulableSizingParameters, boolean)116 with arguments (schedul-
ing, release, null, null, null, null, nonheap).

See Section AsyncLongEventHandler(SchedulingParameters, ReleaseParameters, Mem-
oryParameters, MemoryArea, ProcessingGroupParameters, SchedulableSizingParam-
eters, boolean))

Available since RTSJ version RTSJ 2.0

8.6.6.1.5 AsyncLongEventHandler(SchedulingParameters, ReleaseParam-
eters, MemoryParameters, MemoryArea, ProcessingGroupParameters,
boolean)

Signature

116Section 8.6.6.1.6

8.6. CLASSES 255

public

AsyncLongEventHandler(SchedulingParameters scheduling, ReleaseParameters release, MemoryParameters memory, MemoryArea area, ProcessingGroupParameters group, boolean nonheap)

Parameters
scheduling parameters for the new handler.
release parameters for the new handler.
memory parameters for the new handler.
area in which to run the new handler.
group parameters for the new handler.
nonheap flag for the new handler.

Calling this constructor is equivalent to calling AsyncLongEventHandler(SchedulingParameters,
ReleaseParameters, MemoryParameters, MemoryArea, ProcessingGroupParam-

eters, SchedulableSizingParameters, boolean)117 with arguments (schedul-
ing, release, memory, area, false, group, null, nonheap).

See Section AsyncLongEventHandler(SchedulingParameters, ReleaseParameters, Mem-
oryParameters, MemoryArea, ProcessingGroupParameters, SchedulableSizingParam-
eters, boolean))

Available since RTSJ version RTSJ 2.0

8.6.6.1.6 AsyncLongEventHandler(SchedulingParameters, ReleaseParam-
eters, MemoryParameters, MemoryArea, ProcessingGroupParameters,
SchedulableSizingParameters, boolean)

Signature

public

AsyncLongEventHandler(SchedulingParameters scheduling, ReleaseParameters release, MemoryParameters memory, MemoryArea area, ProcessingGroupParameters group, SchedulableSizingParameters sizing, boolean noHeap)

Parameters
scheduling parameters for the new handler.
release parameters for the new handler.
memory parameters for the new handler.
area in which to run the new handler.
group parameters for the new handler.
sizing parameters for the new handler.

117Section 8.6.6.1.6

256 CHAPTER 8. ASYNCHRONY

noHeap flag for the new handler.
Calling this constructor is equivalent to calling AsyncLongEventHandler(SchedulingParameters,
ReleaseParameters, MemoryParameters, MemoryArea, ProcessingGroupParam-

eters, SchedulableSizingParameters, boolean)118 with the arguments (schedul-
ing, release, memory, area, group, sizing, false).

See Section AsyncLongEventHandler(SchedulingParameters, ReleaseParameters, Mem-
oryParameters, MemoryArea, ProcessingGroupParameters, SchedulableSizingParam-
eters, boolean))

Available since RTSJ version RTSJ 2.0

8.6.6.2 Methods

8.6.6.2.1 handleAsyncEvent(long)

Signature
public
void handleAsyncEvent(long value)

This method holds the logic which is to be executed when any AsyncEvent119 with
which this handler is associated is fired. This method will be invoked repeatedly
while fireCount is greater than zero.

This ALEH is a source of reference for its initial memory area while this ALEH
is released.

All throwables from (or propagated through) handleAsyncEvent are caught, a
stack trace is printed and execution continues as if handleAsyncEvent had returned
normally.

Available since RTSJ version RTSJ 2.0

8.6.6.2.2 peekPending

Signature

118Section 8.6.6.1.6
119Section 8.6.3

8.6. CLASSES 257

public
long peekPending()

Throws

IllegalStateException when the fire count is zero.

Returns

The long value at the head of the queue of longs to be passed to handleAsyncEvent(long)120.

Available since RTSJ version RTSJ 2.0

8.6.6.2.3 run

Signature

public final
void run()

When used as part of the internal mechanism activated by firing an async event, this
method’s detailed semantics are defined by the scheduler associated with this han-
dler. The general outline is as follows:

enter initial memory area

while (fireCount > 0)

{
[initiate release]

fireCount--;

try

{
handleAsyncEvent(value);

}
catch (Throwable th)

{
th.printStackTrace();

}
[effect completion]

}
leave initial memory area

All throwables from (or propagated through) handleAsyncEvent121 are caught, a
stack trace is printed and execution continues as if handleAsyncEvent had returned
normally.

120Section 8.6.6.2.1
121Section 8.6.6.2.1

258 CHAPTER 8. ASYNCHRONY

When it is directly invoked, this method invokes handleAsyncEvent122 repeat-
edly while the fireCount is greater than zero; e.g.,
while (getAndDecrementPendingFireCount() > 0)

enter initial memory area

handleAsyncEvent(value);

leave initial memory area

however direct invocation of run is not recommended as it may interact with
the normal release of this handler.

Applications cannot override this method and thus should use the logic param-
eter at construction, or override handleAsyncEvent() in subclasses with the logic
of the handler.

8.6.7 AsyncObjectEvent

Inheritance
java.lang.Object

javax.realtime.AbstractAsyncEvent
javax.realtime.AsyncObjectEvent

8.6.7.1 Constructors

8.6.7.1.1 AsyncObjectEvent

Signature

public

AsyncObjectEvent()

Create a new AsyncEvent object.

8.6.7.2 Methods

122Section 8.6.6.2.1

8.6. CLASSES 259

8.6.7.2.1 fire(Object)

Signature

public
void fire(Object value)

Throws

MITViolationException Thrown under the base priority scheduler’s semantics
if there is a handler associated with this event that has its MIT violated by the
call to fire (and it has set the minimum inter-arrival time violation behavior
to MITViolationExcept). Only the handlers which do not have their MITs
violated are released in this situation.
ArrivalTimeQueueOverflowException when the queue of arrival time informa-
tion overflows. Only the handlers which do not cause this exception to be
thrown are released in this situation.

When enabled, fire this instance of AsyncObjectEvent. The asynchronous event
handlers associated with this event will be released with the object passed by {link
fire(Object)123. When no handlers are attached or this object is disabled the
method does nothing, i.e., it skips the release.

• If the instance of AsyncObjectEvent is associated with more than one instance
of AsyncObjectEventHandler124 with release parameters object of type Ape-

riodicParameters125 and the execution of fire(Object)126 introduces the
requirement to throw at least one type of exception, then all instances of
AsyncObjectEventHandler127 not affected by the exception are handled nor-
mally.
• If this instance of AsyncObjectEvent is associated with more than one in-

stance of AsyncObjectEventHandler128 with release parameters object of type
SporadicParameters129 and the execution of fire(Object)130 introduces the
simultaneous requirement to throw more than one type of exception or error,
then MITViolationException131 has precedence over ArrivalTimeQueueOver-
flowException132.

123Section 8.6.7.2.1
124Section 8.6.8
125Section 6.5.2
126Section 8.6.7.2.1
127Section 8.6.8
128Section 8.6.8
129Section 6.5.11
130Section 8.6.7.2.1
131Section 14.3.9
132Section 14.3.1

260 CHAPTER 8. ASYNCHRONY

8.6.8 AsyncObjectEventHandler

Inheritance
java.lang.Object

javax.realtime.AbstractAsyncEventHandler
javax.realtime.AsyncObjectEventHandler

A version of AbstractAsyncEventHandler133 that carries an Object value as pay-
laod.

Available since RTSJ version RTSJ 2.0

8.6.8.1 Constructors

8.6.8.1.1 AsyncObjectEventHandler

Signature

public

AsyncObjectEventHandler()

Create an instance of AsyncObjectEventHandler with default values for all param-
eters.

See Section AsyncObjectEventHandler(SchedulingParameters, ReleaseParameters,
MemoryParameters, MemoryArea, ProcessingGroupParameters, SchedulableSizing-
Parameters, boolean))

Available since RTSJ version RTSJ 2.0

8.6.8.1.2 AsyncObjectEventHandler(boolean)

Signature

133Section 8.6.2

8.6. CLASSES 261

public

AsyncObjectEventHandler(boolean nonheap)

Parameters
nonheap flag for the new handler.

Calling this constructor is equivalent to calling AsyncObjectEventHandler(SchedulingParameters,
ReleaseParameters, MemoryParameters, MemoryArea, ProcessingGroupParam-

eters, SchedulableSizingParameters, boolean)134 with arguments (null, null,

null, null, false, null, null, nonheap).

See Section AsyncObjectEventHandler(SchedulingParameters, ReleaseParameters,
MemoryParameters, MemoryArea, ProcessingGroupParameters, SchedulableSizing-
Parameters, boolean))

Available since RTSJ version RTSJ 2.0

8.6.8.1.3 AsyncObjectEventHandler(SchedulingParameters, ReleasePar-
ameters, boolean)

Signature

public

AsyncObjectEventHandler(SchedulingParameters scheduling, ReleaseParameters release, boolean noHeap)

Parameters
scheduling parameters for the new handler.
release parameters for the new handler.
noHeap flag for the new handler.

Calling this constructor is equivalent to calling AsyncObjectEventHandler(SchedulingParameters,
ReleaseParameters, MemoryParameters, MemoryArea, ProcessingGroupParam-

eters, SchedulableSizingParameters, boolean)135 with arguments (schedul-
ing, release, null, null, false, null, null, nonheap)

See Section AsyncObjectEventHandler(SchedulingParameters, ReleaseParameters,
MemoryParameters, MemoryArea, ProcessingGroupParameters, SchedulableSizing-
Parameters, boolean))

134Section 8.6.8.1.6
135Section 8.6.8.1.6

262 CHAPTER 8. ASYNCHRONY

Available since RTSJ version RTSJ 2.0

8.6.8.1.4 AsyncObjectEventHandler(SchedulingParameters, ReleasePar-
ameters, SchedulableSizingParameters, boolean)

Signature

public

AsyncObjectEventHandler(SchedulingParameters scheduling, ReleaseParameters release, SchedulableSizingParameters sizing, boolean noHeap)

Parameters
scheduling parameters for the new handler.
release parameters for the new handler.
sizing parameters for the new handler.
noHeap flag for the new handler.

Calling this constructor is equivalent to calling AsyncObjectEventHandler(SchedulingParameters,
ReleaseParameters, MemoryParameters, MemoryArea, ProcessingGroupParam-

eters, SchedulableSizingParameters, boolean)136 with arguments (schedul-
ing, release, null, null, null, null, nonheap).

See Section AsyncObjectEventHandler(SchedulingParameters, ReleaseParameters,
MemoryParameters, MemoryArea, ProcessingGroupParameters, SchedulableSizing-
Parameters, boolean))

Available since RTSJ version RTSJ 2.0

8.6.8.1.5 AsyncObjectEventHandler(SchedulingParameters, ReleasePar-
ameters, MemoryParameters, MemoryArea, ProcessingGroupParameters,
boolean)

Signature

public

AsyncObjectEventHandler(SchedulingParameters scheduling, ReleaseParameters release, MemoryParameters memory, MemoryArea area, ProcessingGroupParameters group, boolean nonheap)

Parameters

136Section 8.6.8.1.6

8.6. CLASSES 263

scheduling parameters for the new handler.
release parameters for the new handler.
memory parameters for the new handler.
area in which to run the new handler.
group parameters for the new handler.
nonheap flag for the new handler.

Calling this constructor is equivalent to calling AsyncObjectEventHandler(SchedulingParameters,
ReleaseParameters, MemoryParameters, MemoryArea, ProcessingGroupParam-

eters, SchedulableSizingParameters, boolean)137 with arguments (schedul-
ing, release, memory, area, false, group, null, nonheap).

See Section AsyncObjectEventHandler(SchedulingParameters, ReleaseParameters,
MemoryParameters, MemoryArea, ProcessingGroupParameters, SchedulableSizing-
Parameters, boolean))

Available since RTSJ version RTSJ 2.0

8.6.8.1.6 AsyncObjectEventHandler(SchedulingParameters, ReleasePar-
ameters, MemoryParameters, MemoryArea, ProcessingGroupParameters,
SchedulableSizingParameters, boolean)

Signature

public

AsyncObjectEventHandler(SchedulingParameters scheduling, ReleaseParameters release, MemoryParameters memory, MemoryArea area, ProcessingGroupParameters group, SchedulableSizingParameters sizing, boolean noHeap)

Parameters
scheduling parameters for the new handler.
release parameters for the new handler.
memory parameters for the new handler.
area in which to run the new handler.
group parameters for the new handler.
sizing parameters for the new handler.
noHeap flag for the new handler.

Calling this constructor is equivalent to calling AsyncObjectEventHandler(SchedulingParameters,
ReleaseParameters, MemoryParameters, MemoryArea, ProcessingGroupParam-

eters, SchedulableSizingParameters, boolean)138 with the arguments (schedul-
ing, release, memory, area, group, sizing, false).

137Section 8.6.8.1.6
138Section 8.6.8.1.6

264 CHAPTER 8. ASYNCHRONY

See Section AsyncObjectEventHandler(SchedulingParameters, ReleaseParameters,
MemoryParameters, MemoryArea, ProcessingGroupParameters, SchedulableSizing-
Parameters, boolean))

Available since RTSJ version RTSJ 2.0

8.6.8.2 Methods

8.6.8.2.1 handleAsyncEvent(Payload)

Signature

void handleAsyncEvent(Payload value)

This method holds the logic which is to be executed when any AsyncEvent139 with
which this handler is associated is fired. This method will be invoked repeatedly
while fireCount is greater than zero.

The default implementation of this method invokes the run method of any non-
null logic instance passed to the constructor of this handler.

This AOEH is a source of reference for its initial memory area while this AOEH
is released.

All throwables from (or propagated through) handleAsyncEvent are caught, a
stack trace is printed and execution continues as if handleAsyncEvent had returned
normally.

Available since RTSJ version RTSJ 2.0

8.6.8.2.2 peekPending

Signature
public
Payload peekPending()

Throws
IllegalStateException when the fire count is zero.

139Section 8.6.3

8.6. CLASSES 265

Returns

The object reference at the head of the queue of object references to be passed
to handleAsyncEvent(Payload)140.

Available since RTSJ version RTSJ 2.0

8.6.8.2.3 run

Signature

public final
void run()

When used as part of the internal mechanism activated by firing an async event, this
method’s detailed semantics are defined by the scheduler associated with this han-
dler. The general outline is:

enter initial memory area

while (fireCount > 0)

{
[initiate release]

fireCount--;

try { handleAsyncEvent(value); }
catch (Throwable th) { th.printStackTrace(); }
[effect completion]

}
leave initial memory area

All throwables from (or propagated through) handleAsyncEvent141 are caught, a
stack trace is printed and execution continues as if handleAsyncEvent had returned
normally.

When it is directly invoked, this method invokes handleAsyncEvent142 repeat-
edly while the fireCount is greater than zero; e.g.,

while (getAndDecrementPendingFireCount() > 0)

{
enter initial memory area

handleAsyncEvent(value);

leave initial memory area

}

140Section 8.6.8.2.1
141Section 8.6.8.2.1
142Section 8.6.8.2.1

266 CHAPTER 8. ASYNCHRONY

however direct invocation of run is not recommended as it may interact
with the normal release of this handler.

Applications cannot override this method and thus should use the logic param-
eter at construction, or override handleAsyncEvent() in subclasses with the logic
of the handler.

8.6.9 BoundAsyncEventHandler

Inheritance

java.lang.Object
javax.realtime.AbstractAsyncEventHandler

javax.realtime.AsyncEventHandler
javax.realtime.BoundAsyncEventHandler

Interfaces

BoundSchedulable

A bound asynchronous event handler is an instance of AsyncEventHandler143 that
is permanently bound to a dedicated realtime thread. Bound asynchronous event
handlers are for use in situations where the added timeliness is worth the overhead of
dedicating an individual realtime thread to the handler. Individual server realtime
threads can only be dedicated to a single bound event handler.

8.6.9.1 Constructors

8.6.9.1.1 BoundAsyncEventHandler

Signature

public

BoundAsyncEventHandler()

Create an instance of BoundAsyncEventHandler using default values. This construc-
tor is equivalent to BoundAsyncEventHandler(null, null, null, null, null,

false, null)

143Section 8.6.4

8.6. CLASSES 267

8.6.9.1.2 BoundAsyncEventHandler(SchedulingParameters, ReleasePar-
ameters, boolean)

Signature

public

BoundAsyncEventHandler(SchedulingParameters scheduling, ReleaseParameters release, boolean noHeap)

Parameters

scheduling
release
noHeap

Available since RTSJ version RTSJ 2.0

8.6.9.1.3 BoundAsyncEventHandler(SchedulingParameters, ReleasePar-
ameters, boolean, Runnable)

Signature

public

BoundAsyncEventHandler(SchedulingParameters scheduling, ReleaseParameters release, boolean noHeap, Runnable logic)

Parameters

scheduling
release
noHeap
logic

Available since RTSJ version RTSJ 2.0

8.6.9.1.4 BoundAsyncEventHandler(SchedulingParameters, ReleasePar-
ameters, MemoryParameters, MemoryArea, ProcessingGroupParameters,
boolean, Runnable)

Signature

268 CHAPTER 8. ASYNCHRONY

public

BoundAsyncEventHandler(SchedulingParameters scheduling, ReleaseParameters release, MemoryParameters memory, MemoryArea area, ProcessingGroupParameters group, boolean nonheap, Runnable logic)

Parameters
scheduling A SchedulingParameters144 object which will be associated with
the constructed instance. If null, and the creator is a Java thread, a Sched-

ulingParameters object is created which has the default SchedulingParam-
eters for the scheduler associated with the current thread. If null, and the
creator is a schedulable object, the SchedulingParameters are inherited from
the current schedulable (a new SchedulingParameters object is cloned).
release A ReleaseParameters145 object which will be associated with the
constructed instance. If null, this will have default ReleaseParameters for
the BAEH’s scheduler.
memory A MemoryParameters146 object which will be associated with the
constructed instance. If null, this will have no MemoryParameters.
area The MemoryArea147 for this. If null, the memory area will be that of
the current thread/schedulable.
group A ProcessingGroupParameters148 object which will be associated with
the constructed instance. If null, this will not be associated with any pro-
cessing group.
logic The Runnable object whose run() method is executed by handleAsyncEvent()149.
If null, the default handleAsyncEvent()150 method invokes nothing.
nonheap A flag meaning, when true, that this will have characteristics identical
to a NoHeapRealtimeThread151. A false value means this will have characteris-
tics identical to a RealtimeThread152. If true and the current thread/schedulable
is not executing within a ScopedMemory153 or ImmortalMemory154 scope then
an name is thrown.

Throws
IllegalArgumentException when nonheap is true and logic, any parameter
object, or this is in heap memory. Also when noheap is true and area is heap
memory.

144Section 6.5.10
145Section 6.5.8
146Section 11.8.8
147Section 11.8.7
148Section 6.5.7
149Section ??
150Section ??
151Section 5.4.1
152Section 5.4.2
153Section 11.8.13
154Section 11.8.3

8.6. CLASSES 269

IllegalAssignmentError when the new AsyncEventHandler instance cannot
hold a reference to non-null values of scheduling release memory and group,
or if those parameters cannot hold a reference to the new AsyncEventHandler.
Also when the new AsyncEventHandler instance cannot hold a reference to
non-null values of area and logic.

Create an instance of BoundAsyncEventHandler with the specified parameters.

The newly-created handler inherits the affinity of its creator unless it was created
by a Java thread or an unbound asynchronous event handler. In these cases, the
affinity is that which is returned from Affinity.getHeapDefault()155 or Affin-

ity.getNoHeapDefault()156, depending on the value of the noHeap parameter. If
the newly-created handler has ProcessingGroupParameters157 and the intersection
of the group’s affinity and the newly-created handler’s affinity (as specified above)
is null, then the newly-created handler’s affinity is set to that which is returned by
Affinity.getProcessingGroupDefault158.

8.6.10 BoundAsyncLongEventHandler

Inheritance

java.lang.Object
javax.realtime.AbstractAsyncEventHandler

javax.realtime.AsyncLongEventHandler
javax.realtime.BoundAsyncLongEventHandler

Interfaces

BoundSchedulable

A bound asynchronous event handler is an instance of AsyncEventHandler159 that
is permanently bound to a dedicated realtime thread. Bound asynchronous event
handlers are for use in situations where the added timeliness is worth the overhead of
dedicating an individual realtime thread to the handler. Individual server realtime
threads can only be dedicated to a single bound event handler.

8.6.10.1 Constructors

155Section 6.5.1.2.8
156Section 6.5.1.2.10
157Section 6.5.7
158Section 6.5.1.2.11
159Section 8.6.4

270 CHAPTER 8. ASYNCHRONY

8.6.10.1.1 BoundAsyncLongEventHandler

Signature

public

BoundAsyncLongEventHandler()

Create an instance of BoundAsyncEventHandler using default values. This construc-
tor is equivalent to BoundAsyncEventHandler(null, null, null, null, null,

false, null)

8.6.10.1.2 BoundAsyncLongEventHandler(SchedulingParameters, Release-
Parameters, boolean)

Signature

public

BoundAsyncLongEventHandler(SchedulingParameters scheduling, ReleaseParameters release, boolean noHeap)

Parameters
scheduling
release
noHeap

Available since RTSJ version RTSJ 2.0

8.6.10.1.3 BoundAsyncLongEventHandler(SchedulingParameters, Release-
Parameters, boolean, Runnable)

Signature

public

BoundAsyncLongEventHandler(SchedulingParameters scheduling, ReleaseParameters release, boolean noHeap, Runnable logic)

Parameters
scheduling
release
noHeap

8.6. CLASSES 271

logic

Available since RTSJ version RTSJ 2.0

8.6.10.1.4 BoundAsyncLongEventHandler(SchedulingParameters, Release-
Parameters, MemoryParameters, MemoryArea, ProcessingGroupParam-
eters, boolean, Runnable)

Signature

public

BoundAsyncLongEventHandler(SchedulingParameters scheduling, ReleaseParameters release, MemoryParameters memory, MemoryArea area, ProcessingGroupParameters group, boolean nonheap, Runnable logic)

Parameters

scheduling A SchedulingParameters160 object which will be associated with
the constructed instance. If null, and the creator is a Java thread, a Sched-

ulingParameters object is created which has the default SchedulingParam-
eters for the scheduler associated with the current thread. If null, and the
creator is a schedulable, the SchedulingParameters are inherited from the
current schedulable (a new SchedulingParameters object is cloned).
release A ReleaseParameters161 object which will be associated with the
constructed instance. If null, this will have default ReleaseParameters for
the BAEH’s scheduler.
memory A MemoryParameters162 object which will be associated with the
constructed instance. If null, this will have no MemoryParameters.
area The MemoryArea163 for this. If null, the memory area will be that of
the current thread/schedulable.
group A ProcessingGroupParameters164 object which will be associated with
the constructed instance. If null, this will not be associated with any pro-
cessing group.
logic The Runnable object whose run() method is executed by handleAsyncEvent(long)165.
If null, the default handleAsyncEvent(long)166 method invokes nothing.

160Section 6.5.10
161Section 6.5.8
162Section 11.8.8
163Section 11.8.7
164Section 6.5.7
165Section ??
166Section ??

272 CHAPTER 8. ASYNCHRONY

nonheap A flag meaning, when true, that this will have characteristics identical
to a NoHeapRealtimeThread167. A false value means this will have characteris-
tics identical to a RealtimeThread168. If true and the current thread/schedulable
is not executing within a ScopedMemory169 or ImmortalMemory170 scope then
an name is thrown.

Throws
IllegalArgumentException when nonheap is true and logic, any parameter
object, or this is in heap memory. Also when noheap is true and area is heap
memory.
IllegalAssignmentError when the new AsyncEventHandler instance cannot
hold a reference to non-null values of scheduling release memory and group,
or if those parameters cannot hold a reference to the new AsyncEventHandler.
Also when the new AsyncEventHandler instance cannot hold a reference to
non-null values of area and logic.

Create an instance of BoundAsyncEventHandler with the specified parameters.

8.6.11 BoundAsyncObjectEventHandler

Inheritance
java.lang.Object

javax.realtime.AbstractAsyncEventHandler
javax.realtime.AsyncObjectEventHandler

javax.realtime.BoundAsyncObjectEventHandler
Interfaces

BoundSchedulable
A bound asynchronous event handler is an instance of AsyncEventHandler171 that
is permanently bound to a dedicated realtime thread. Bound asynchronous event
handlers are for use in situations where the added timeliness is worth the overhead of
dedicating an individual realtime thread to the handler. Individual server realtime
threads can only be dedicated to a single bound event handler.

8.6.11.1 Constructors

167Section 5.4.1
168Section 5.4.2
169Section 11.8.13
170Section 11.8.3
171Section 8.6.4

8.6. CLASSES 273

8.6.11.1.1 BoundAsyncObjectEventHandler

Signature

public

BoundAsyncObjectEventHandler()

Create an instance of BoundAsyncEventHandler using default values. This construc-
tor is equivalent to BoundAsyncEventHandler(null, null, null, null, null,

false, null)

8.6.11.1.2 BoundAsyncObjectEventHandler(SchedulingParameters, Re-
leaseParameters, boolean)

Signature

public

BoundAsyncObjectEventHandler(SchedulingParameters scheduling, ReleaseParameters release, boolean noHeap)

Parameters
scheduling
release
noHeap

Available since RTSJ version RTSJ 2.0

8.6.11.1.3 BoundAsyncObjectEventHandler(SchedulingParameters, Re-
leaseParameters, boolean, Runnable)

Signature

public

BoundAsyncObjectEventHandler(SchedulingParameters scheduling, ReleaseParameters release, boolean noHeap, Runnable logic)

Parameters
scheduling
release
noHeap

274 CHAPTER 8. ASYNCHRONY

logic

Available since RTSJ version RTSJ 2.0

8.6.11.1.4 BoundAsyncObjectEventHandler(SchedulingParameters, Re-
leaseParameters, MemoryParameters, MemoryArea, ProcessingGroup-
Parameters, boolean, Runnable)

Signature

public

BoundAsyncObjectEventHandler(SchedulingParameters scheduling, ReleaseParameters release, MemoryParameters memory, MemoryArea area, ProcessingGroupParameters group, boolean nonheap, Runnable logic)

Parameters

scheduling A SchedulingParameters172 object which will be associated with
the constructed instance. If null, and the creator is a Java thread, a Sched-

ulingParameters object is created which has the default SchedulingParam-
eters for the scheduler associated with the current thread. If null, and the
creator is a schedulable, the SchedulingParameters are inherited from the
current schedulable object (a new SchedulingParameters object is cloned).
release A ReleaseParameters173 object which will be associated with the
constructed instance. If null, this will have default ReleaseParameters for
the BAEH’s scheduler.
memory A MemoryParameters174 object which will be associated with the
constructed instance. If null, this will have no MemoryParameters.
area The MemoryArea175 for this. If null, the memory area will be that of
the current thread/schedulable.
group A ProcessingGroupParameters176 object which will be associated with
the constructed instance. If null, this will not be associated with any pro-
cessing group.
logic The Runnable object whose run() method is executed by handleAsyncEvent(Object)177.
If null, the default handleAsyncEvent(Object)178 method invokes nothing.

172Section 6.5.10
173Section 6.5.8
174Section 11.8.8
175Section 11.8.7
176Section 6.5.7
177Section ??
178Section ??

8.7. RATIONALE 275

nonheap A flag meaning, when true, that this will have characteristics identical
to a NoHeapRealtimeThread179. A false value means this will have characteris-
tics identical to a RealtimeThread180. If true and the current thread/schedulable
is not executing within a ScopedMemory181 or ImmortalMemory182 scope then
an name is thrown.

Throws
IllegalArgumentException when nonheap is true and logic, any parameter
object, or this is in heap memory. Also when noheap is true and area is heap
memory.
IllegalAssignmentError when the new AsyncEventHandler instance cannot
hold a reference to non-null values of scheduling release memory and group,
or if those parameters cannot hold a reference to the new AsyncEventHandler.
Also when the new AsyncEventHandler instance cannot hold a reference to
non-null values of area and logic.

Create an instance of BoundAsyncEventHandler with the specified parameters.

8.7 Rationale

The design of the asynchronous event handling facilities was intended to provide the
necessary functionality while allowing efficient implementations and catering for a
variety of realtime applications. In particular, in some realtime systems there may be
a large number of potential events and event handlers (numbering in the thousands
or perhaps even the tens of thousands), although at any given time only a small
number will be used. Thus it would not be appropriate to dedicate a realtime thread
to each event handler. The RTSJ addresses this issue by allowing the programmer
to specify an event handler either as not bound to a specific realtime thread (the
class AsyncEventHandler) or alternatively as bound to a dedicated realtime thread
(the class BoundAsyncEventHandler). The RTSJ does not define at what point a
non-bound event handler is bound to a realtime thread for its execution. Events
are dataless: the fire method does not pass any data to the handler. This was
intentional in the interest of simplicity and efficiency. An application that needs to
associate data with an AsyncEvent can do so explicitly by setting up a buffer; it
will then need to deal with buffer overflow issues as required by the application.

The ability to trigger an ATC in a schedulable is necessary in many kinds of
realtime applications but must be designed carefully in order to minimize the risks
of problems such as data structure corruption and deadlock. There is, invariably,

179Section 5.4.1
180Section 5.4.2
181Section 11.8.13
182Section 11.8.3

276 CHAPTER 8. ASYNCHRONY

a tension between the desire to cause an ATC to be immediate, and the desire to
ensure that certain sections of code are executed to completion.

One basic decision was to allow ATC in a method only if the method explicitly
permits this. The default of no ATC is reasonable, since legacy code might be writ-
ten expecting no ATC, and asynchronously aborting the execution of such a method
could lead to unpredictable results. Since the natural way to model ATC is with
an exception (AsynchronouslyInterruptedException), the way that a method
indicates its susceptibility to ATC is by including AsynchronouslyInterrupted-

Exception in its throws clause. Causing this exception to be thrown in a realtime
thread t as an effect of calling t.interrupt() was a natural extension of the se-
mantics of interrupt as currently defined by java.lang.Thread.

One ATC-deferred section is synchronized code. This is a context that needs
to be executed completely in order to ensure a program operates correctly. If syn-
chronized code were aborted, a shared object could be left in an inconsistent state.
Note that by making synchronized code ATC-deferred, this specification avoids the
problems that caused Thread.stop() to be deprecated and that have made the
use of Thread.destroy(), (now also deprecated in Java 1.5) prone to deadlock. If
synchronized code calls an AI-method and an associated AIE is generated, then if
no appropriate handler is present in the synchronized code, the AIE will propagate
through the code.

Constructors and finally clauses are subject to interruption if the program
indicates so. However, if a constructor is aborted, an object might be only partially
initialized. If the execution of a finally clause in an AI-method is aborted, needed
cleanup code might not be performed. Indeed, a finally clause in an aborted AI-
method will not be executed at all if the abort occurs before its execution begins. It is
the programmer’s responsibility to ensure that executing these constructs either does
not induce unwanted ATC latency (if ATCs are not allowed) or does not produce
undesirable results (if ATCs are allowed).

A potential problem with using the exception mechanism to model ATC is that
a method with a ”catch-all” handler (for example a catch clause identifying Ex-

ception or even Throwable as the exception class) can inadvertently intercept an
exception intended for a caller. This problem is avoided by having special semantics
for catching an AIE. Even though a catch clause may catch an AIE, the excep-
tion will be propagated unless the handler invokes the happened method from AIE.
Thus, if a schedulable is asynchronously interrupted while in a try block that has a
handler such as

catch (Throwable e) return;

the AIE will remain pending and will be thrown next time control enters or
returns to an AI method.

This specification does not provide a special mechanism for terminating a real-
time thread; ATC can be used to achieve this effect. This means that, by default,

8.7. RATIONALE 277

a realtime thread cannot be asynchronously terminated; to support asynchronous
termination it needs to enter methods that are AI enabled at frequent intervals. Al-
lowing termination as the default would have been questionable, bringing the same
insecurities that are found in Thread.stop() and Thread.destroy().

278 CHAPTER 8. ASYNCHRONY

Chapter 9

Time

9.1 Overview

Realtime systems must be able to handle both very short time durations and very
long ones. They also needs to distinguish between relative time—a duration of
time—and absolute time. Simply using a primitive integral value, such as int or
long, does not provide the necessary range. Floating point primitive values, such
as float and double, do not provide the necessary precision. Neither provides any
type safety. This specification addresses this by requiring three time classes: High-
ResolutionTime, AbsoluteTime, and RelativeTime, where HighResolutionTime

is the parent class of the other two.
Instances of HighResolutionTime are not created, as the class exists to provide

an implementation of the other three classes. An instance of AbsoluteTime encap-
sulates an absolute time. An instance of RelativeTime encapsulates a point in time
that is relative to some other time value.

All methods returning a time object come in both allocating and nonallocating
forms. The classes
• enable describing a point in time with up to nanosecond accuracy and precision

(actual accuracy and precision is dependent on the precision of the underlying
system),
• enable the distinction between absolute points in time, and times relative to

some starting point, and
• provide simple arithmetic operations for using them.

All time handling is based on these classes.

9.2 Definitions

The following terms and abbreviations will be used.

279

280 CHAPTER 9. TIME

A time object is an instance of AbsoluteTime or RelativeTime.

A time object is always associated with a clock. By default it is associated with
the realtime clock.

The Epoch is the standard base time, conventionally January 1 00:00:00 GMT
1970. It is the point from which the realtime clock measures absolute time.

The time value representation is a compound format composed of 64 bits of
millisecond timing, and 32 bits of nanoseconds within a millisecond. The millisecond
constituent uses the 64 bits of a Java long while the nanosecond constituent uses
the 32 bits of a Java int.

The normalized (canonical) form for time objects uniquely specifies the values
for the millisecond and nanosecond components of a point in time, including the
case of 0 milliseconds or 0 nanoseconds, and a negative time value, according to the
following three rules:

• When both millisecond and nanosecond components are nonzero they have the
same sign. The algebraic time value of the time object is the algebraic sum of
the two components.
• The millisecond component represents the algebraic number of milliseconds in

the time object, with a range of [−263, 263 − 1]
• The nanosecond component represents the algebraic number of nanoseconds

within a millisecond in the time object, that is [−106 + 1, 106 − 1].

Instances of HighResolutionTime classes always hold a normalized form of a
time value. Values that cannot be normalized are not valid; for example, (MAX LONG

milliseconds, MAX INT nanoseconds) cannot be normalized and is an illegal value.

The following table has examples of normalized representations.
time in ns millis nanos

2000000 2 0
1999999 1 999999
1000001 1 1

1 0 1
0 0 0

-1 0 -1
-999999 0 -999999

-1000000 -1 0
-1000001 -1 -1

9.3 Semantics

This list establishes the semantics that are applicable across the classes of this
section. Semantics that apply to particular classes, constructors, methods, and
fields will be found in the class description and the constructor, method, and field

9.3. SEMANTICS 281

detail sections.
• All time objects must maintain nanosecond precision and report their values

in terms of millisecond and nanosecond constituents.
• Time objects must be constructed from other time objects, from millisec-

ond/nanosecond values, from a java.util.Date or obtained as a result of
invocations of methods on instances of the Clock class.
• Time objects maintain and report time values in normalized form, but the

normalized form is not required for input parameter values. This allows com-
putations individually with time constituent parts using the full signed range
and restrictions of the underlying type.

– Normalization is accomplished upon method invocation by methods that
accept a time object represented with individual component parts, and
executed as if the following hold.
∗ The nanosecond parameter value, which may be negative, is alge-

braically added to the scaled millisecond parameter value. The sign
of the result provides the sign for any nonzero resulting component.
∗ The absolute of the result is then partitioned, giving the number

of integral milliseconds for the millisecond component, while the re-
maining fractional part provides the number of nanoseconds for the
nanosecond component.
∗ The resulting components are then represented, and reported when

necessary, with the above computed sign.
– Normalization is also performed on the result of operations by methods

that perform time object addition and subtraction. Operations are exe-
cuted using the appropriate arithmetic precision. If the final result of an
operation can be represented in normalized form, then the operation must
not throw arithmetic exceptions while producing intermediate results.

– The results of time objects operations and the normalization of results
of operations performed with millis and nanos, individually as Java long

and Java int types respectively, are not always equivalent. This is due
to the possibility of overflow for nanos values outside of the normalized
nanosecond range, that is [−106 +1, 106−1], when performing operations
as int types, while the same values could be handled with no overflow in
time object operations.

– When invoking setter methods that take as a parameter only one of the
two time value components, the other component has implicitly the value
of 0.

• Although logically a negative time may represent time before the Epoch or
a negative time interval involved in time operations, an Exception may be
thrown if a negative absolute time or a negative time interval is given as a
parameter to methods. In general, the time values accepted by a method may

282 CHAPTER 9. TIME

be a subset of the full time values range, and depend on the method.
• A time object is always associated with a clock. By default it is associated

with the realtime clock. Clocks are involved both in the setting as well as the
usage of time objects, for example in comparisons.
• Methods are provided to facilitate the handling of time objects generically via

the HighResolutionTime class. These methods allow the conversion, accord-
ing to a clock, between AbsoluteTime objects and RelativeTime objects.
These methods also allow the change of clock association of a time object.
Note that the conversions depend on the time at which they are performed.
The semantics of these operations are listed in the following table:
clock association and conversion returned/updated object
this has clock a and ms,ns

this is absolute.absolute(clock a) clock a

ms,ns

this is absolute.absolute(clock b) clock b

ms,ns

this is absolute.absolute(null) realtime clock

ms,ns

this is absolute.relative(clock a) clock a

clock a.getTime().subtract(ms,ns)

this is absolute.relative(clock b) clock b

clock b.getTime().subtract(ms,ns)

this is absolute.relative(null) realtime clock

realtime clock.getTime().subtract(ms,ns)

this is relative.relative(clock a) clock a

ms,ns

this is relative.relative(clock b) clock b

ms,ns

this is relative.relative(null) realtime clock

ms,ns

this is relative.absolute(clock a) clock a

clock a.getTime().add(ms,ns)

this is relative.absolute(clock b) clock b

clock b.getTime().add(ms,ns)

this is relative.absolute(null) realtime clock

realtime clock.getTime().add(ms,ns)

• Time objects must implement the Comparable interface if it is available. The
compareTo() method must be implemented even if the interface is not avail-
able.

9.4. INTERFACES 283

9.4 Interfaces

9.4.1 ActiveEvent

This is the abstract base class for the event system. The subclasses of ActiveEvent
are used to connect events that take place outside the Java runtime to RTSJ activ-
ities.

An active event is known by an ID and by a name, both of these must be unique.
When an event takes place outside the Java runtime, some event-specific code

in the Java runtime executes. That code notifies the ActiveEvent infrastructure of
this event by calling a trigger method in the event.

9.4.1.1 Methods

9.4.1.1.1 start

Signature
public
void start()

throws IllegalStateException

Throws
IllegalStateException when this event has already been started.

Start this active event.

9.4.1.1.2 start(boolean)

Signature
public
void start(boolean disabled)

throws IllegalStateException

Parameters
disabled true for starting in a disabled state.

Throws
IllegalStateException when this event has already been started.

Start this active event.

284 CHAPTER 9. TIME

9.4.1.1.3 stop

Signature
public
boolean stop()

throws IllegalStateException

Throws
IllegalStateException when this event is not running.

Stop this active event and return the previous enabled state.

9.4.1.1.4 isActive

Signature
public
boolean isActive()

Returns
true when active, false otherwise.

Determine the activation state of this event, i.e., it has been started.

9.5. CLASSES 285

9.5 Classes

9.5.1 AbsoluteTime

Inheritance
java.lang.Object

javax.realtime.HighResolutionTime
javax.realtime.AbsoluteTime

An object that represents a specific point in time given by milliseconds plus nanosec-
onds past some point in time fixed by the clock. For the default realtime clock the
fixed point is the Epoch (January 1, 1970, 00:00:00 GMT). The correctness of the
Epoch as a time base depends on the realtime clock synchronization with an exter-
nal world time reference. This representation was designed to be compatible with
the standard Java representation of an absolute time in the java.util.Date class.

A time object in normalized form represents negative time if both components
are nonzero and negative, or one is nonzero and negative and the other is zero. For
add and subtract negative values behave as they do in arithmetic.

Caution: This class is explicitly unsafe in multithreaded situations when it is
being changed. No synchronization is done. It is assumed that users of this class
who are mutating instances will be doing their own synchronization at a higher level.

9.5.1.1 Constructors

9.5.1.1.1 AbsoluteTime

Signature

public

AbsoluteTime()

Equivalent to new AbsoluteTime(0,0).
The clock association is implicitly made with the realtime clock.

9.5.1.1.2 AbsoluteTime(AbsoluteTime)

Signature

286 CHAPTER 9. TIME

public

AbsoluteTime(AbsoluteTime time)

throws IllegalArgumentException

Parameters
time The AbsoluteTime object which is the source for the copy.

Throws
IllegalArgumentException when the time parameter is null.

Make a new AbsoluteTime object from the given AbsoluteTime object.

The new object will have the same clock association as the time parameter.

9.5.1.1.3 AbsoluteTime(AbsoluteTime, Clock)

Signature

public

AbsoluteTime(AbsoluteTime time, Clock clock)

throws IllegalArgumentException

Parameters
time The AbsoluteTime object which is the source for the copy.
clock The clock providing the association for the newly constructed object.

Throws
IllegalArgumentException when the time parameter is null.

Make a new AbsoluteTime object from the given AbsoluteTime object.

The clock association is made with the clock parameter. If clock is null the
association is made with the realtime clock.

Available since RTSJ version RTSJ 1.0.1

9.5.1.1.4 AbsoluteTime(Clock)

Signature

public

AbsoluteTime(Clock clock)

9.5. CLASSES 287

Parameters
clock The clock providing the association for the newly constructed object.

Equivalent to new AbsoluteTime(0,0,clock).

The clock association is made with the clock parameter. If clock is null the
association is made with the realtime clock.

Available since RTSJ version RTSJ 1.0.1

9.5.1.1.5 AbsoluteTime(Date)

Signature

public

AbsoluteTime(Date date)

throws IllegalArgumentException

Parameters
date The java.util.Date representation of the time past the Epoch.

Throws
IllegalArgumentException when the date parameter is null.

Equivalent to new AbsoluteTime (date.getTime(),0).

The clock association is implicitly made with the realtime clock.

9.5.1.1.6 AbsoluteTime(Date, Clock)

Signature

public

AbsoluteTime(Date date, Clock clock)

throws IllegalArgumentException

Parameters
date The java.util.Date representation of the time past the Epoch.
clock The clock providing the association for the newly constructed object.

Throws
IllegalArgumentException when the date parameter is null.

288 CHAPTER 9. TIME

Equivalent to new AbsoluteTime (date.getTime(),0,clock).

Warning: While the date is used to set the milliseconds component of the new
AbsoluteTime object (with nanoseconds component set to 0), the new object rep-
resents the date only if the clock parameter has an epoch equal to Epoch.

The clock association is made with the clock parameter. If clock is null the
association is made with the realtime clock.

Available since RTSJ version RTSJ 1.0.1

9.5.1.1.7 AbsoluteTime(long, int)

Signature

public

AbsoluteTime(long millis, int nanos)

throws IllegalArgumentException

Parameters
millis The desired value for the millisecond component of this. The actual
value is the result of parameter normalization.
nanos The desired value for the nanosecond component of this. The actual
value is the result of parameter normalization.

Throws
IllegalArgumentException when there is an overflow in the millisecond compo-
nent when normalizing.

Construct an AbsoluteTime object with time millisecond and nanosecond compo-
nents past the realtime clock’s Epoch (00:00:00 GMT on January 1, 1970) based
on the parameter millis plus the parameter nanos. The construction is subject
to millis and nanos parameters normalization. If there is an overflow in the mil-
lisecond component when normalizing then an IllegalArgumentException will be
thrown. If after normalization the time object is negative then the time represented
by this is time before the Epoch.

The clock association is implicitly made with the realtime clock.

9.5.1.1.8 AbsoluteTime(long, int, Clock)

Signature

9.5. CLASSES 289

public

AbsoluteTime(long millis, int nanos, Clock clock)

throws IllegalArgumentException

Parameters
millis The desired value for the millisecond component of this. The actual
value is the result of parameter normalization.
nanos The desired value for the nanosecond component of this. The actual
value is the result of parameter normalization.
clock The clock providing the association for the newly constructed object.

Throws
IllegalArgumentException when there is an overflow in the millisecond compo-
nent when normalizing.

Construct an AbsoluteTime object with time millisecond and nanosecond compo-
nents past the epoch for clock.

The value of the AbsoluteTime instance is based on the parameter millis plus
the parameter nanos. The construction is subject to millis and nanos parameters
normalization. If there is an overflow in the millisecond component when normaliz-
ing then an IllegalArgumentException will be thrown. If after normalization the
time object is negative then the time represented by this is time before the epoch.

The clock association is made with the clock parameter. If clock is null the
association is made with the realtime clock.

Note: The start of a clock’s epoch is an attribute of the clock. It is defined as
the Epoch (00:00:00 GMT on Jan 1, 1970) for the default realtime clock, but other
classes of clock may define other epochs.

Available since RTSJ version RTSJ 1.0.1

9.5.1.2 Methods

9.5.1.2.1 absolute(Clock)

Signature
public
javax.realtime.AbsoluteTime absolute(Clock clock)

290 CHAPTER 9. TIME

Parameters
clock The clock parameter is used only as the new clock association with the
result, since no conversion is needed.

Returns
The copy of this in a newly allocated AbsoluteTime object, associated with
the clock parameter.

Return a copy of this modified if necessary to have the specified clock association.
A new object is allocated for the result. This method is the implementation of
the abstract method of the HighResolutionTime base class. No conversion into
AbsoluteTime is needed in this case. The clock association of the result is with the
clock passed as a parameter. If clock is null the association is made with the
realtime clock.

9.5.1.2.2 absolute(Clock, AbsoluteTime)

Signature
public
javax.realtime.AbsoluteTime absolute(Clock clock, AbsoluteTime

dest)

Parameters
clock The clock parameter is used only as the new clock association with the
result, since no conversion is needed.
dest If dest is not null, the result is placed there and returned. Otherwise,
a new object is allocated for the result.

Returns
The copy of this in dest if dest is not null, otherwise the result is returned
in a newly allocated object. It is associated with the clock parameter.

Return a copy of this modified if necessary to have the specified clock association.
If dest is not null, the result is placed in dest and returned. Otherwise, a new
object is allocated for the result. This method is the implementation of the abstract
method of the HighResolutionTime base class. No conversion into AbsoluteTime

is needed in this case. The clock association of the result is with the clock passed
as a parameter. If clock is null the association is made with the realtime clock.

9.5.1.2.3 add(long, int)

Signature
public
javax.realtime.AbsoluteTime add(long millis, int nanos)

throws ArithmeticException

Parameters

9.5. CLASSES 291

millis The number of milliseconds to be added to this.
nanos The number of nanoseconds to be added to this.

Throws
ArithmeticException when the result does not fit in the normalized format.

Returns
A new AbsoluteTime object whose time is the normalization of this plus
millis and nanos.

Create a new object representing the result of adding millis and nanos to the
values from this and normalizing the result. The result will have the same clock
association as this.

9.5.1.2.4 add(long, int, AbsoluteTime)

Signature
public
javax.realtime.AbsoluteTime add(long millis, int nanos,

AbsoluteTime dest)

throws ArithmeticException

Parameters
millis The number of milliseconds to be added to this.
nanos The number of nanoseconds to be added to this.
dest If dest is not null, the result is placed there and returned. Otherwise,
a new object is allocated for the result.

Throws
ArithmeticException when the result does not fit in the normalized format.

Returns
the result of the normalization of this plus millis and nanos in dest if dest
is not null, otherwise the result is returned in a newly allocated object.

Return an object containing the value resulting from adding millis and nanos to
the values from this and normalizing the result. If dest is not null, the result is
placed there and returned. Otherwise, a new object is allocated for the result. The
result will have the same clock association as this, and the clock association with
dest is ignored.

9.5.1.2.5 add(RelativeTime)

Signature
public
javax.realtime.AbsoluteTime add(RelativeTime time)

throws ArithmeticException, IllegalArgumentException

Parameters

292 CHAPTER 9. TIME

time The time to add to this.

Throws

IllegalArgumentException when the clock associated with this and the clock
associated with the time parameter are different, or when the time parameter
is null.
ArithmeticException when the result does not fit in the normalized format.

Returns

A new AbsoluteTime object whose time is the normalization of this plus the
parameter time.

Create a new instance of AbsoluteTime representing the result of adding time

to the value of this and normalizing the result. The clock associated with this

and the clock associated with the time parameter must be the same, and such
association is used for the result.

9.5.1.2.6 add(RelativeTime, AbsoluteTime)

Signature

public
javax.realtime.AbsoluteTime add(RelativeTime time, AbsoluteTime

dest)

throws ArithmeticException, IllegalArgumentException

Parameters

time The time to add to this.
dest If dest is not null, the result is placed there and returned. Otherwise,
a new object is allocated for the result.

Throws

IllegalArgumentException when the clock associated with this and the clock
associated with the time parameter are different, or when the time parameter
is null.
ArithmeticException when the result does not fit in the normalized format.

Returns

the result of the normalization of this plus the RelativeTime parameter
time in dest if dest is not null, otherwise the result is returned in a newly
allocated object.

Return an object containing the value resulting from adding time to the value of
this and normalizing the result. If dest is not null, the result is placed there and
returned. Otherwise, a new object is allocated for the result. The clock associated
with this and the clock associated with the time parameter must be the same,
and such association is used for the result. The clock associated with the dest

parameter is ignored.

9.5. CLASSES 293

9.5.1.2.7 getDate

Signature
public
java.util.Date getDate()

throws UnsupportedOperationException

Throws
UnsupportedOperationException when the clock associated with this does not
have the concept of date.

Returns
A newly allocated Date object with a value of the time past the Epoch repre-
sented by this.

Convert the time given by this to a Date format. Note that Date represents time
as milliseconds so the nanoseconds of this will be lost.

9.5.1.2.8 relative(Clock)

Signature
public
javax.realtime.RelativeTime relative(Clock clock)

throws ArithmeticException

Parameters
clock The instance of Clock1 used to convert the time of this into relative
time, and the new clock association for the result.

Throws
ArithmeticException when the result does not fit in the normalized format.

Returns
The RelativeTime conversion in a newly allocated object, associated with the
clock parameter.

Convert the time of this to a relative time, using the given instance of Clock2 to
determine the current time. The calculation is the current time indicated by the
given instance of Clock3 subtracted from the time given by this. If clock is null

the realtime clock is assumed. A destination object is allocated to return the result.
The clock association of the result is with the clock passed as a parameter.

9.5.1.2.9 relative(Clock, RelativeTime)

Signature

1Section 10.5.2
2Section 10.5.2
3Section 10.5.2

294 CHAPTER 9. TIME

public
javax.realtime.RelativeTime relative(Clock clock, RelativeTime

dest)

throws ArithmeticException

Parameters

clock The instance of Clock4 used to convert the time of this into relative
time, and the new clock association for the result.
dest If dest is not null, the result is placed there and returned. Otherwise,
a new object is allocated for the result.

Throws

ArithmeticException when the result does not fit in the normalized format.

Returns

The RelativeTime conversion in dest if dest is not null, otherwise the re-
sult is returned in a newly allocated object. It is associated with the clock

parameter.

Convert the time of this to a relative time, using the given instance of Clock5 to
determine the current time. The calculation is the current time indicated by the
given instance of Clock6 subtracted from the time given by this. If clock is null

the realtime clock is assumed. If dest is not null, the result is placed there and
returned. Otherwise, a new object is allocated for the result. The clock association
of the result is with the clock passed as a parameter.

9.5.1.2.10 set(Date)

Signature

public
void set(Date date)

throws IllegalArgumentException

Parameters

date A reference to a Date which will become the time represented by this

after the completion of this method.

Throws

IllegalArgumentException when the parameter date is null.

Change the time represented by this to that given by the parameter. Note that
Date represents time as milliseconds so the nanoseconds of this will be set to 0.
The clock association is implicitly made with the realtime clock.

4Section 10.5.2
5Section 10.5.2
6Section 10.5.2

9.5. CLASSES 295

9.5.1.2.11 subtract(AbsoluteTime)

Signature
public
javax.realtime.RelativeTime subtract(AbsoluteTime time)

Parameters
time The time to subtract from this.

Throws
IllegalArgumentException if the clock associated with this and the clock

associated with the time parameter are different, or when the time parameter
is null.
ArithmeticException when the result does not fit in the normalized format.

Returns
A new RelativeTime object whose time is the normalization of this minus
the AbsoluteTime parameter time.

Create a new instance of RelativeTime representing the result of subtracting time

from the value of this and normalizing the result. The clock associated with this

and the clock associated with the time parameter must be the same, and such
association is used for the result.

9.5.1.2.12 subtract(AbsoluteTime, RelativeTime)

Signature
public
javax.realtime.RelativeTime subtract(AbsoluteTime time,

RelativeTime dest)

Parameters
time The time to subtract from this.
dest If dest is not null, the result is placed there and returned. Otherwise,
a new object is allocated for the result.

Throws
IllegalArgumentException if the clock associated with this and the clock

associated with the time parameter are different, or when the time parameter
is null.
ArithmeticException when the result does not fit in the normalized format.

Returns
the result of the normalization of this minus the AbsoluteTime parameter
time in dest if dest is not null, otherwise the result is returned in a newly
allocated object.

Return an object containing the value resulting from subtracting time from the
value of this and normalizing the result. If dest is not null, the result is placed

296 CHAPTER 9. TIME

there and returned. Otherwise, a new object is allocated for the result. The clock

associated with this and the clock associated with the time parameter must be
the same, and such association is used for the result. The clock associated with the
dest parameter is ignored.

9.5.1.2.13 subtract(RelativeTime)

Signature
public
javax.realtime.AbsoluteTime subtract(RelativeTime time)

Parameters
time The time to subtract from this.

Throws
IllegalArgumentException when the clock associated with this and the clock
associated with the time parameter are different, or when the time parameter
is null.
ArithmeticException when the result does not fit in the normalized format.

Returns
A new AbsoluteTime object whose time is the normalization of this minus
the parameter time.

Create a new instance of AbsoluteTime representing the result of subtracting time

from the value of this and normalizing the result. The clock associated with this

and the clock associated with the time parameter must be the same, and such
association is used for the result.

9.5.1.2.14 subtract(RelativeTime, AbsoluteTime)

Signature
public
javax.realtime.AbsoluteTime subtract(RelativeTime time,

AbsoluteTime dest)

Parameters
time The time to subtract from this.
dest If dest is not null, the result is placed there and returned. Otherwise,
a new object is allocated for the result.

Throws
IllegalArgumentException when the clock associated with this and the clock
associated with the time parameter are different, or when the time parameter
is null.
ArithmeticException when the result does not fit in the normalized format.

Returns

9.5. CLASSES 297

the result of the normalization of this minus the RelativeTime parameter
time in dest if dest is not null, otherwise the result is returned in a newly
allocated object.

Return an object containing the value resulting from subtracting time from the
value of this and normalizing the result. If dest is not null, the result is placed
there and returned. Otherwise, a new object is allocated for the result. The clock

associated with this and the clock associated with the time parameter must be
the same, and such association is used for the result. The clock associated with the
dest parameter is ignored.

9.5.1.2.15 toString

Signature

public
java.lang.String toString()

Returns

String object converted from the time given by this.

Create a printable string of the time given by this.

The string shall be a decimal representation of the milliseconds and nanosecond
values; formatted as follows ”(2251 ms, 750000 ns)”

9.5.2 ActiveEventDispatcher

Inheritance

java.lang.Object
javax.realtime.ActiveEventDispatcher

Provides a means of dispatching a set of Happening7s. It acts as if it contains a
RealtimeThread to perform this task. The priority of this thread can be specified
when a dispatcher object is created. The default dispatcher runs at the highest Java
realtime priority.

9.5.2.1 Constructors

7Section 12.5.1

298 CHAPTER 9. TIME

9.5.2.1.1 ActiveEventDispatcher(int)

Signature

public

ActiveEventDispatcher(int priority)

Parameters

priority is the realtime thread priority of the create object. TBD AJW: should
this have a int size parameter, it does in 302 ****

Create a new dispatcher.

9.5.3 HighResolutionTime

Inheritance

java.lang.Object
javax.realtime.HighResolutionTime

Interfaces

Comparable
Cloneable

Class HighResolutionTime is the base class for AbsoluteTime, RelativeTime, Ra-
tionalTime. Used to express time with nanosecond accuracy. This class is never
used directly: it is abstract and has no public constructor. Instead, one of its sub-
classes AbsoluteTime8, RelativeTime9, or RationalTime10 should be used. When
an API is defined that has an HighResolutionTime as a parameter, it can take
either an absolute, relative, or rational time and will do something appropriate.

Caution: This class is explicitly unsafe in multithreaded situations when it is
being changed. No synchronization is done. It is assumed that users of this class
who are mutating instances will be doing their own synchronization at a higher level.

9.5.3.1 Fields

8Section 9.5.1
9Section 9.5.4

10Section 15.4.3

9.5. CLASSES 299

9.5.3.1.1 millis
millis

9.5.3.1.2 nanos
nanos

9.5.3.2 Constructors

9.5.3.2.1 HighResolutionTime

Signature

HighResolutionTime()

9.5.3.3 Methods

9.5.3.3.1 waitForObject(Object, HighResolutionTime)

Signature
public static
boolean waitForObject(Object target, HighResolutionTime time)

throws InterruptedException

Parameters
target The object on which to wait. The current thread must have a lock on
the object.
time The time for which to wait. If it is RelativeTime(0,0) then wait indef-
initely. If it is null then wait indefinitely.

Throws
InterruptedException when this schedulable is interrupted by RealtimeThread.interrupt11

or AsynchronouslyInterruptedException.fire12 while it is waiting.

11Section 5.4.2.2.21
12Section 8.5.1.3.5

300 CHAPTER 9. TIME

IllegalArgumentException when time represents a relative time less than zero.
IllegalMonitorStateException when target is not locked by the caller.
UnsupportedOperationException when the wait operation is not supported us-
ing the clock associated with time.

Returns
True if the notify was received before the timeout. False otherwize.

Behaves like target.wait() but with the enhancement that it waits with a precision
of HighResolutionTime and returns true if the associated notify was received, false
if timeout occured. As for target.wait(), there is the possibility of spurious wakeup
behavior.

The wait time may be relative or absolute, and it is controlled by the clock

associated with it. If the wait time is relative, then the calling thread is blocked
waiting on target for the amount of time given by time, and measured by the
associated clock. If the wait time is absolute, then the calling thread is blocked
waiting on target until the indicated time value is reached by the associated clock.

See Section Object.wait())

See Section Object.wait(long))

See Section Object.wait(long,int))

Available since RTSJ version RTSJ 2.0 updated to add a return value.

9.5.3.3.2 absolute(Clock)

Signature
public abstract
javax.realtime.AbsoluteTime absolute(Clock clock)

Parameters
clock The instance of Clock13 used to convert the time of this into absolute
time, and the new clock association for the result.

Returns
The AbsoluteTime conversion in a newly allocated object, associated with the
clock parameter.

Convert the time of this to an absolute time, using the given instance of Clock14

to determine the current time when necessary. If clock is null the realtime clock is

13Section 10.5.2
14Section 10.5.2

9.5. CLASSES 301

assumed. A destination object is allocated to return the result. The clock association
of the result is with the clock passed as a parameter. See the derived class comments
for more specific information.

9.5.3.3.3 absolute(Clock, AbsoluteTime)

Signature

public abstract
javax.realtime.AbsoluteTime absolute(Clock clock, AbsoluteTime

dest)

Parameters

clock The instance of Clock15 used to convert the time of this into absolute
time, and the new clock association for the result.
dest If dest is not null, the result is placed there and returned. Otherwise,
a new object is allocated for the result.

Returns

The AbsoluteTime conversion in dest if dest is not null, otherwise the re-
sult is returned in a newly allocated object. It is associated with the clock

parameter.

Convert the time of this to an absolute time, using the given instance of Clock16

to determine the current time when necessary. If clock is null the realtime clock
is assumed. If dest is not null, the result is placed there and returned. Otherwise,
a new object is allocated for the result. The clock association of the result is with
the clock passed as a parameter. See the derived class comments for more specific
information.

9.5.3.3.4 clone

Signature

public
java.lang.Object clone()

Return a clone of this. This method should behave effectively as if it constructed a
new object with the visible values of this. The new object is created in the current
allocation context.

Available since RTSJ version RTSJ 1.0.1

15Section 10.5.2
16Section 10.5.2

302 CHAPTER 9. TIME

9.5.3.3.5 compareTo(HighResolutionTime)

Signature
public
int compareTo(HighResolutionTime time)

Parameters
time Compares with the time of this.

Throws
ClassCastException when the time parameter is not of the same class as this.
IllegalArgumentException when the time parameter is not associated with the
same clock as this, or when the time parameter is null.

Returns
a negative integer, zero, or a positive integer as this object is less than, equal
to, or greater than time.

Compares this HighResolutionTime with the specified HighResolutionTime time.

9.5.3.3.6 compareTo(Object)

Signature
public
int compareTo(Object object)

Throws
IllegalArgumentException when the object parameter is not associated with
the same clock as this, or when the object parameter is null.
ClassCastException when the specified object’s type prevents it from being
compared to this Object.

Returns
a negative integer, zero, or a positive integer as this object is less than, equal
to, or greater than object.

For the Comparable interface.

9.5.3.3.7 equals(HighResolutionTime)

Signature
public
boolean equals(HighResolutionTime time)

Parameters
time Value compared to this.

Returns
true if the parameter time is of the same type and has the same values as
this.

9.5. CLASSES 303

Returns true if the argument time has the same type and values as this.
Equality includes clock association.

9.5.3.3.8 equals(Object)

Signature
public
boolean equals(Object object)

Parameters
object Value compared to this.

Returns
true if the parameter object is of the same type and has the same values as
this.

Returns true if the argument object has the same type and values as this.
Equality includes clock association.

9.5.3.3.9 getClock

Signature
public final
javax.realtime.Clock getClock()

Returns
A reference to the clock associated with this.

Returns a reference to the clock associated with this.

Available since RTSJ version RTSJ 1.0.1

9.5.3.3.10 getMilliseconds

Signature
public final
long getMilliseconds()

Returns
The milliseconds component of the time represented by this.

Returns the milliseconds component of this.

9.5.3.3.11 getNanoseconds

Signature

304 CHAPTER 9. TIME

public final
int getNanoseconds()

Returns
The nanoseconds component of the time represented by this.

Returns the nanoseconds component of this.

9.5.3.3.12 hashCode

Signature
public
int hashCode()

Returns
The hashcode value for this instance.

Returns a hash code for this object in accordance with the general contract of name.
Time objects that are equals) equal17 have the same hash code.

9.5.3.3.13 relative(Clock)

Signature
public abstract
javax.realtime.RelativeTime relative(Clock clock)

Parameters
clock The instance of Clock18 used to convert the time of this into relative
time, and the new clock association for the result.

Returns
The RelativeTime conversion in a newly allocated object, associated with the
clock parameter.

Convert the time of this to a relative time, using the given instance of Clock19 to
determine the current time when necessary. If clock is null the realtime clock is
assumed. A destination object is allocated to return the result. The clock association
of the result is with the clock passed as a parameter. See the derived class comments
for more specific information.

9.5.3.3.14 relative(Clock, RelativeTime)

Signature
public abstract

17Section 9.5.3.3.7
18Section 10.5.2
19Section 10.5.2

9.5. CLASSES 305

javax.realtime.RelativeTime relative(Clock clock, RelativeTime

dest)

Parameters

clock The instance of Clock20 used to convert the time of this into relative
time, and the new clock association for the result.
dest If dest is not null, the result is placed there and returned. Otherwise,
a new object is allocated for the result.

Returns

The RelativeTime conversion in dest if dest is not null, otherwise the re-
sult is returned in a newly allocated object. It is associated with the clock

parameter.

Convert the time of this to a relative time, using the given instance of Clock21 to
determine the current time when necessary. If clock is null the realtime clock is
assumed. If dest is not null, the result is placed there and returned. Otherwise,
a new object is allocated for the result. The clock association of the result is with
the clock passed as a parameter. See the derived class comments for more specific
information.

9.5.3.3.15 set(HighResolutionTime)

Signature

public
void set(HighResolutionTime time)

Parameters

time The new value for this.

Throws

IllegalArgumentException when the parameter time is null.
ClassCastException when the type of this and the type of the parameter time
are not the same.

Change the value represented by this to that of the given time. If the time pa-
rameter is null this method will throw IllegalArgumentException. If the type of
this and the type of the given time are not the same this method will throw Class-

CastException. The clock associated with this is set to be the clock associated
with the time parameter.

Available since RTSJ version RTSJ 1.0.1 The description of the method
in 1.0 was erroneous.

20Section 10.5.2
21Section 10.5.2

306 CHAPTER 9. TIME

9.5.3.3.16 set(long)

Signature
public
void set(long millis)

Parameters
millis This value shall be the value of the millisecond component of this at
the completion of the call.

Sets the millisecond component of this to the given argument, and the nanosecond
component of this to 0. This method is equivalent to set(millis, 0).

9.5.3.3.17 set(long, int)

Signature
public
void set(long millis, int nanos)

Parameters
millis The desired value for the millisecond component of this at the com-
pletion of the call. The actual value is the result of parameter normalization.
nanos The desired value for the nanosecond component of this at the com-
pletion of the call. The actual value is the result of parameter normalization.

Throws
IllegalArgumentException when there is an overflow in the millisecond compo-
nent while normalizing.

Sets the millisecond and nanosecond components of this. The setting is subject
to parameter normalization. If there is an overflow in the millisecond component
while normalizing then an IllegalArgumentException will be thrown. If after
normalization the time is negative then the time represented by this is set to a
negative value, but note that negative times are not supported everywhere. For
instance, a negative relative time is an invalid value for a periodic thread’s period.

9.5.3.3.18 setClock(Clock)

Signature

void setClock(Clock clock)

9.5.4 RelativeTime

9.5. CLASSES 307

Inheritance
java.lang.Object

javax.realtime.HighResolutionTime
javax.realtime.RelativeTime

An object that represents a time interval milliseconds/103 + nanoseconds/109 sec-
onds long. It generally is used to represent a time relative to now.

The time interval is kept in normalized form. The range goes from [(-263) mil-
liseconds + (-106+1) nanoseconds] to [(263-1) milliseconds + (106-1) nanosec-
onds].

A negative interval relative to now represents time in the past. For add and
subtract negative values behave as they do in arithmetic.

Caution: This class is explicitly unsafe in multithreaded situations when it is
being changed. No synchronization is done. It is assumed that users of this class
who are mutating instances will be doing their own synchronization at a higher level.

9.5.4.1 Constructors

9.5.4.1.1 RelativeTime

Signature

public

RelativeTime()

Equivalent to new RelativeTime(0,0).
The clock association is implicitly made with the realtime clock.

9.5.4.1.2 RelativeTime(Clock)

Signature

public

RelativeTime(Clock clock)

Parameters
clock The clock providing the association for the newly constructed object.

308 CHAPTER 9. TIME

Equivalent to new RelativeTime(0,0,clock).
The clock association is made with the clock parameter. If clock is null the

association is made with the realtime clock.

Available since RTSJ version RTSJ 1.0.1

9.5.4.1.3 RelativeTime(long, int)

Signature

public

RelativeTime(long millis, int nanos)

Parameters
millis The desired value for the millisecond component of this. The actual
value is the result of parameter normalization.
nanos The desired value for the nanosecond component of this. The actual
value is the result of parameter normalization.

Throws
IllegalArgumentException when there is an overflow in the millisecond compo-
nent when normalizing.

Construct a RelativeTime object representing an interval based on the parameter
millis plus the parameter nanos. The construction is subject to millis and nanos

parameters normalization. If there is an overflow in the millisecond component
when normalizing then an IllegalArgumentException will be thrown. The clock
association is implicitly made with the realtime clock.

9.5.4.1.4 RelativeTime(long, int, Clock)

Signature

public

RelativeTime(long millis, int nanos, Clock clock)

Parameters
millis The desired value for the millisecond component of this. The actual
value is the result of parameter normalization.
nanos The desired value for the nanosecond component of this. The actual
value is the result of parameter normalization.

9.5. CLASSES 309

clock The clock providing the association for the newly constructed object.
Throws

IllegalArgumentException when there is an overflow in the millisecond compo-
nent when normalizing.

Construct a RelativeTime object representing an interval based on the parameter
millis plus the parameter nanos. The construction is subject to millis and nanos

parameters normalization. If there is an overflow in the millisecond component when
normalizing then an IllegalArgumentException will be thrown.

The clock association is made with the clock parameter. If clock is null the
association is made with the realtime clock.

Available since RTSJ version RTSJ 1.0.1

9.5.4.1.5 RelativeTime(RelativeTime)

Signature

public

RelativeTime(RelativeTime time)

Parameters
time The RelativeTime object which is the source for the copy.

Throws
IllegalArgumentException when the time parameter is null.

Make a new RelativeTime object from the given RelativeTime object.
The new object will have the same clock association as the time parameter.

9.5.4.1.6 RelativeTime(RelativeTime, Clock)

Signature

public

RelativeTime(RelativeTime time, Clock clock)

Parameters
time The RelativeTime object which is the source for the copy.
clock The clock providing the association for the newly constructed object.

Throws
IllegalArgumentException when the time parameter is null.

310 CHAPTER 9. TIME

Make a new RelativeTime object from the given RelativeTime object.
The clock association is made with the clock parameter. If clock is null the

association is made with the realtime clock.

Available since RTSJ version RTSJ 1.0.1

9.5.4.2 Methods

9.5.4.2.1 absolute(Clock)

Signature
public
javax.realtime.AbsoluteTime absolute(Clock clock)

Parameters
clock The instance of Clock22 used to convert the time of this into absolute
time, and the new clock association for the result.

Throws
ArithmeticException when the result does not fit in the normalized format.

Returns
The AbsoluteTime conversion in a newly allocated object, associated with the
clock parameter.

Convert the time of this to an absolute time, using the given instance of Clock23

to determine the current time. The calculation is the current time indicated by the
given instance of Clock24 plus the interval given by this. If clock is null the
realtime clock is assumed. A destination object is allocated to return the result.
The clock association of the result is with the clock passed as a parameter.

9.5.4.2.2 absolute(Clock, AbsoluteTime)

Signature
public
javax.realtime.AbsoluteTime absolute(Clock clock, AbsoluteTime

dest)

Parameters

22Section 10.5.2
23Section 10.5.2
24Section 10.5.2

9.5. CLASSES 311

clock The instance of Clock25 used to convert the time of this into absolute
time, and the new clock association for the result.
dest If dest is not null, the result is placed there and returned. Otherwise,
a new object is allocated for the result.

Throws
ArithmeticException when the result does not fit in the normalized format.

Returns
The AbsoluteTime conversion in dest if dest is not null, otherwise the re-
sult is returned in a newly allocated object. It is associated with the clock

parameter.
Convert the time of this to an absolute time, using the given instance of Clock26

to determine the current time. The calculation is the current time indicated by
the given instance of Clock27 plus the interval given by this. If clock is null

the realtime clock is assumed. If dest is not null, the result is placed there and
returned. Otherwise, a new object is allocated for the result. The clock association
of the result is with the clock passed as a parameter.

9.5.4.2.3 add(long, int)

Signature
public
javax.realtime.RelativeTime add(long millis, int nanos)

Parameters
millis The number of milliseconds to be added to this.
nanos The number of nanoseconds to be added to this.

Throws
ArithmeticException when the result does not fit in the normalized format.

Returns
A new RelativeTime object whose time is the normalization of this plus
millis and nanos.

Create a new object representing the result of adding millis and nanos to the
values from this and normalizing the result. The result will have the same clock
association as this. An ArithmeticException is when the result does not fit in
the normalized format.

9.5.4.2.4 add(long, int, RelativeTime)

25Section 10.5.2
26Section 10.5.2
27Section 10.5.2

312 CHAPTER 9. TIME

Signature

public
javax.realtime.RelativeTime add(long millis, int nanos,

RelativeTime dest)

Parameters

millis The number of milliseconds to be added to this.
nanos The number of nanoseconds to be added to this.
dest If dest is not null, the result is placed there and returned. Otherwise,
a new object is allocated for the result.

Throws

ArithmeticException when the result does not fit in the normalized format.

Returns

the result of the normalization of this plus millis and nanos in dest if dest
is not null, otherwise the result is returned in a newly allocated object.

Return an object containing the value resulting from adding millis and nanos to
the values from this and normalizing the result. If dest is not null, the result is
placed there and returned. Otherwise, a new object is allocated for the result. The
result will have the same clock association as this, and the clock association with
dest is ignored.

9.5.4.2.5 add(RelativeTime)

Signature

public
javax.realtime.RelativeTime add(RelativeTime time)

Parameters

time The time to add to this.

Throws

IllegalArgumentException when the clock associated with this and the clock
associated with the time parameter are different, or when the time parameter
is null.
ArithmeticException when the result does not fit in the normalized format.

Returns

A new RelativeTime object whose time is the normalization of this plus the
parameter time.

Create a new instance of RelativeTime representing the result of adding time to
the value of this and normalizing the result.

The clock associated with this and the clock associated with the time param-
eter are expected to be the same, and such association is used for the result.

9.5. CLASSES 313

9.5.4.2.6 add(RelativeTime, RelativeTime)

Signature

public
javax.realtime.RelativeTime add(RelativeTime time, RelativeTime

dest)

Parameters

time The time to add to this.
dest If dest is not null, the result is placed there and returned. Otherwise,
a new object is allocated for the result.

Throws

IllegalArgumentException when the clock associated with this and the clock
associated with the time parameter are different, or when the time parameter
is null.
ArithmeticException when the result does not fit in the normalized format.

Returns

the result of the normalization of this plus the RelativeTime parameter
time in dest if dest is not null, otherwise the result is returned in a newly
allocated object.

Return an object containing the value resulting from adding time to the value of
this and normalizing the result. If dest is not null, the result is placed there and
returned. Otherwise, a new object is allocated for the result.

The clock associated with this and the clock associated with the time param-
eter are expected to be the same, and such association is used for the result.

The clock associated with the dest parameter is ignored.

9.5.4.2.7 relative(Clock)

Signature

public
javax.realtime.RelativeTime relative(Clock clock)

Parameters

clock The clock parameter is used only as the new clock association with the
result, since no conversion is needed.

Returns

The copy of this in a newly allocated RelativeTime object, associated with
the clock parameter.

Return a copy of this. A new object is allocated for the result. This method is the
implementation of the abstract method of the HighResolutionTime base class.
No conversion into RelativeTime is needed in this case. The clock association of

314 CHAPTER 9. TIME

the result is with the clock passed as a parameter. If clock is null the association
is made with the realtime clock.

9.5.4.2.8 relative(Clock, RelativeTime)

Signature
public
javax.realtime.RelativeTime relative(Clock clock, RelativeTime

dest)

Parameters
clock The clock parameter is used only as the new clock association with the
result, since no conversion is needed.
dest If dest is not null, the result is placed there and returned. Otherwise,
a new object is allocated for the result.

Returns
The copy of this in dest if dest is not null, otherwise the result is returned
in a newly allocated object. It is associated with the clock parameter.

Return a copy of this. If dest is not null, the result is placed there and returned.
Otherwise, a new object is allocated for the result. This method is the implementa-
tion of the abstract method of the HighResolutionTime base class. No conversion
into RelativeTime is needed in this case. The clock association of the result is with
the clock passed as a parameter. If clock is null the association is made with the
realtime clock.

9.5.4.2.9 subtract(RelativeTime)

Signature
public
javax.realtime.RelativeTime subtract(RelativeTime time)

Parameters
time The time to subtract from this.

Throws
IllegalArgumentException when the clock associated with this and the clock
associated with the time parameter are different, or when the time parameter
is null.
ArithmeticException when the result does not fit in the normalized format.

Returns
A new RelativeTime object whose time is the normalization of this minus
the parameter time parameter time.

Create a new instance of RelativeTime representing the result of subtracting time

from the value of this and normalizing the result.

9.5. CLASSES 315

The clock associated with this and the clock associated with the time param-
eter are expected to be the same, and such association is used for the result.

9.5.4.2.10 subtract(RelativeTime, RelativeTime)

Signature
public
javax.realtime.RelativeTime subtract(RelativeTime time,

RelativeTime dest)

Parameters
time The time to subtract from this.
dest If dest is not null, the result is placed there and returned. Otherwise,
a new object is allocated for the result.

Throws
IllegalArgumentException when the if the clock associated with this and the
clock associated with the time parameter are different, or when the time

parameter is null.
ArithmeticException when the result does not fit in the normalized format.

Returns
the result of the normalization of this minus the RelativeTime parameter
time in dest if dest is not null, otherwise the result is returned in a newly
allocated object.

Return an object containing the value resulting from subtracting the value of time
from the value of this and normalizing the result. If dest is not null, the result
is placed there and returned. Otherwise, a new object is allocated for the result.

The clock associated with this and the clock associated with the time param-
eter are expected to be the same, and such association is used for the result.

The clock associated with the dest parameter is ignored.

9.5.4.2.11 negate

Signature
public
javax.realtime.RelativeTime negate()

Returns
a new object with value of this scaled by -1

Change the sign of this relative time.

Available since RTSJ version RTSJ 2.0

316 CHAPTER 9. TIME

9.5.4.2.12 negate(RelativeTime)

Signature

public
javax.realtime.RelativeTime negate(RelativeTime time)

Parameters

time in which to store the results.

Returns

time with the value of this scaled by -1.

Set time to this relative time by -1.

Available since RTSJ version RTSJ 2.0

9.5.4.2.13 scale(int)

Signature

public
javax.realtime.RelativeTime scale(int factor)

Parameters

factor by which to increase the time interval.

Returns

a new object with value of this scaled by factor.

Change the length of this relative time by multiplying it by factor.

Available since RTSJ version RTSJ 2.0

9.5.4.2.14 scale(RelativeTime, int)

Signature

public
javax.realtime.RelativeTime scale(RelativeTime time, int factor)

Parameters

time in which to store the results.
factor by which to increase the time interval.

Returns

time with the value of this scaled by factor

Set time to the value of this time by multiplied by factor.

9.6. RATIONALE 317

Available since RTSJ version RTSJ 2.0

9.5.4.2.15 compareToZero

Signature
public
int compareToZero()

Returns
negative if this is less than zero, 0, if it is equal to zero and a positive if this
is greater than zero.

Compare this to relative time zero returning the result of the comparison. Equiv-
alent to constantZero.compareTo(this)

Available since RTSJ version RTSJ 2.0

9.5.4.2.16 toString

Signature
public
java.lang.String toString()

Returns
String object converted from the time given by this.

Create a printable string of the time given by this.
The string shall be a decimal representation of the milliseconds and nanosecond

values; formatted as follows ”(2251 ms, 750000 ns)”

9.6 Rationale

Time is the essence of realtime systems, and a method of expressing absolute time
with sub-millisecond precision is an absolute minimum requirement. Expressing time
in terms of nanoseconds has precedent and allows the implementation to provide
time-based services, such as timers, using whatever precision it is capable of while
the application requirements are expressed to an arbitrary level of precision.

The standard Java java.util.Date class uses milliseconds as its basic unit in
order to provide sufficient range for a wide variety of applications. realtime program-
ming generally requires finer resolution, and nanosecond resolution is fine enough
for most purposes, but even a 64 bit realtime clock based in nanoseconds would have

318 CHAPTER 9. TIME

insufficient range in some situations, so a compound format composed of 64 bits of
millisecond timing, and 32 bits of nanoseconds within a millisecond, was chosen.

The expression of millisecond and nanosecond constituents is consistent with
other Java interfaces.

The expression of relative times allows for time-based metaphors such as deadline-
based periodic scheduling where the cost of the task is expressed as a relative time
and deadlines are usually represented as times relative to the beginning of the pe-
riod.

Chapter 10

Clocks and Timers

10.1 Overview

In order to reason about time, the RTSJ needs not only to be able to express times
and calculate with them; but it also needs to be able to determine the current
time and allow actions to be performed when a given time is reached. For this
purpose, the specification defines four classes: Clock, Timer, PeriodicTimer, and
OneShotTimer.

A clock is used to measure time: it can get the current time and it can trigger
timing events. At least one instance of the abstract Clock class is provided by the
implementation, the system realtime clock, and this instance is made available as
a singleton. The creation and use of other clock are discussed later (see Section
10.3.1).

The Timer classes provide the means of executing code at a particular point in
time or repeatedly at a given interval. Timer is an abstract class and consequently
only its subclasses can be instantiated. The Timer class provides the interface
and underlying implementation for both one-shot and periodic timers. Instances of
OneShotTimer and PeriodicTimer can be created and rescheduled specifying the
initial firing time either as an AbsoluteTime, to be considered at the application of
the start command, or as a RelativeTime, to be considered from the application
of the start command. The PhasingPolicy class defines the relationship between a
PeriodicTimer’s start time and its first release time when the start time is in the
past.

By attaching an AbstractAsyncEventHandler to a Timer, the program can
cause the release of the handler at a given time or after a give interval. An instance
of OneShotTimer describes an event that is to be triggered at most once (unless
restarted after expiration). It may be used as the source for time-outs and watchdog
timing. An instance of PeriodicTimer fires or skips on a periodic schedule. The

319

320 CHAPTER 10. CLOCKS AND TIMERS

period for a PeriodicTimer is always specified as a RelativeTime.

10.2 Definitions

Understanding the support for clocks and timer requires some basic terms.
A timing mechanism is a Clock, capable of representing and following the progress

of time, by means of time values.
A monotonic clock is a clock whose time values always progress in one direction,

and a monotonic increasing clock is a clock whose time values never decrease. Mono-
tonicity is a boolean property, while time synchronization, uniformity, and accuracy
are characteristics that depend on agreed tolerances.

Time synchronization is a relation between two clocks. Two clocks are synchro-
nized when the difference between their time values is less than some specified offset.
Synchronization in general degrades with time, and may be lost, given a specified
offset.

Resolution is the minimal time value interval that can be distinguished by a
timing mechanism.

Uniformity, in this context, refers to the measurement of the progress of time at
a consistent rate, with a tolerance on the variability. Uniformity is affected by two
other factors, jitter and stability.

Jitter is caused by short-term and non-cumulative small time variation due to
noise sources, such as thermal noise. More practically, jitter refers to the distribution
of the differences between when events are actually fired or noticed by the software
and when they should have really occurred according to time in the real-world.

Stability in this context refers to temporal stability. Lack of stability accounts for
large and often cumulative variations, due to e.g. supply voltage and temperature.

In practice, a timing mechanism is driven by an oscillator. Accuracy is the
difference between the desired frequency and the actual frequency of the oscillator,
and a major reason of synchronization loss.

Epoch An epoch is the date and time relative to which a computer’s clock and
timestamp values are determined. The epoch traditionally corresponds to 0 hours, 0
minutes, and 0 seconds (00:00:00) Coordinated Universal Time (UTC) on a specific
date.

The system realtime clock is monotonic increasing, with the epoch as January
1, 1970, 00:00:00 GMT. The system realtime clock is not necessarily synchronized
with the external world, and the correctness of the epoch as a time base depends
on such synchronization. It is as uniform and accurate as allowed by the underlying
hardware.

A Timer use a clock to measures time, and informs a TimeDispatcher when the
time has elapsed (relative time) or has been reached (absolute time). The TimeDis-

10.3. SEMANTICS 321

patcher causes the release of any AsyncEventHandler associated with the Timer.
In the context of a Timer, triggering is the action that informs the TimeDispatcher

to fire or skip, where skip causes the normal action of fire not to be carried out.

A Timer is active when it has been started and not stopped since last started
and it has a time in the future at which it is expected to fire or skip, else it is not
active.

In the context of a Timer, enabling cause the Timer to fire when it is triggered,
while disabling causes the Timer to skip when it is triggered. Enabling and disabling
act as a mask over firing.

The behavior of a OneShotTimer is that of a Timer that does not automatically
reschedule its triggering after an initial triggering, regardless of whether it fires or
skips (when disabled and active when triggered). It is specified using an initial firing
time.

The behavior of a PeriodicTimer is that of a Timer that automatically resched-
ules after each triggering, regardless of whether the triggering results in a fire or a
skip due to being disabled when triggered. It is specified using an initial firing time
and an interval or period used for the self-rescheduling.

A Clock can also be used to regulate pauses in execution of any Schedulable

through a realtime sleep method, hence timers and schedulables are classified as
timables under the Timable interface.

Both OneShotTimer timer and PeriodTimer are associated with the specification
of the initial firing time. A PeriodicTimer receives two clock references, within
to HighResolutionTimer objects, which must be to the same clock. Thus the
specification of the initial firing time and the interval or period must refer to the
same clock.

The counting time is the time accumulated while active by a Timer created or
rescheduled using a RelativeTime to specify the initial firing/skipping time. The
counting time is zeroed at the beginning of an activation, or when rescheduled, while
active, before the initial firing/skipping of an activation.

10.3 Semantics

The semantics of clocks and timers are not simply functional. Temporal attributes
are quite important as well. Therefore the interaction between classes is critical to
the overall understanding of the API.Open issue: yeuk intro, I prefer the original
End of open issue The class descriptions as well as their constructor, method,
and field documentation given later provide the detailed semantics to support this
overall behavior.

322 CHAPTER 10. CLOCKS AND TIMERS

10.3.1 Clocks and Timables

A Clock is the basic mechanism of measuring time. A Timer can request a signal
from the clock when a given time is reached. That signal should come as closed to
the actual time requested as possible. A schedulable also uses a clock to implement
the realtime sleep methods. Each clock instance shall be capable of reporting the
achievable resolution of timers based on that clock. Each implementation shall have
a default clock that is used whenever no other clock is specified. An application can
also defined additional clocks.

A Timer is an ActiveEvent. This means that is has an associated dispatcher
called TimeDispatcher. As with other active events, the application can either use
the default dispatcher or create a new one with its own priority and affinity. A
Schedulable can also have a TimeDispatcher to manage sleeping.

Every timable, Timer or Schulables, has one clock associated with it, on which
the measurement of time will be based. Each clock maintains a list of times, called
alarms, that are provided to it from timables. The clock is armed with the next
alarm. When that time arrives, the clock signals the TimeDispatcher associated
with the alarm to signal its Timable that the time has arrived.

In the case of a Timer, the dispatcher triggers the timer to fire all of its events.
In the case of a Schedulable, the dispatcher triggers the Schedulable to wake up from
its sleep. Figure 10.1 illustrated how a timer interacts with a user defined clock and
Figure 10.2 depicts the same for using realtime sleep in a schedulable.

In each case, an external schedulable, depicted on the right, initializes the objects
involved. A TimeDispatcher and a Clock are created. These used when creating
the Timable as illustrated with step one and two respectively in both diagrams. A
developer can always use a pre-existing clock or dispatcher instead of creating a new
one.

Each timable acts as if it had an internal object, depicted as an instance of
Alarm, to manage the relationship between a Timable and its dispatcher and clock.
Alarm is shown simply to illustrate this relationship. It is created, step three in
both diagrams, when the Timable is created and it represents the next alarm that
the Timable should receive: a fire for a time and a wake up call for a realtime sleep
on a schedulable.

At step four, the two sequences diverge. The application start a timer with the
start method, but a thread must call a realtime sleep method. In both cases, step
four sets the timing in motion.

Steps (5) through (8) step up the time interval. For initiating the trigger for the
first time, step (5) registers the Timable with its dispatcher. Later starts or sleeps
skip this step. Then the time is set in the alarm and the alarm is added to the clock.

When the new alarm is the next alarm to be triggered, then the clock sets the
clock to signal that time as in step (8). When the alarm is added anywhere else in

10.3. SEMANTICS 323

Figure 10.1: Sequence Diagram for Using a Timer

the clock queue, step (8) is delayed until the removal of an alarm causes the added
alarm to reach the top of the queue.

When the alarm time is reached, step (9), the clock triggers the alarm by calling
trigger on the alarm event, step (10). This in turn triggers the dispatcher, step (11).
This is an asynchronous call that causes the dispatcher’s thread to take over control
from the clocks interrupt handler.

In step (12), the dispatcher thread removes the alarm from the clock queue,
possibly causing a new alarm to become active. In the periodic thread case, the
alarm is rescheduled by incrementing the time in the alarm by the interval and
adding it back into the queue. In all other cases, no new alarm is set.

In step (13) any subsequent alarms that where scheduled are also kicked off. The
Clock queue is a two dimensional queue that is organized by the time of the alarm
and, within any given time, the priority order, highest to lowest, of the dispatchers
associated with the alarms. The trigger in step (10) always goes to the alarm with
the highest priority dispatcher. In the case that two alarms have dispatchers with
the same priority, the last to be entered its triggered first to ensure that shorter
deadlines are handled before longer ones.

Finally in step (14), the dispatcher fires its timable. In the case of a Timer,

324 CHAPTER 10. CLOCKS AND TIMERS

Figure 10.2: Sequence Diagram for Realtime Sleep

this causes all its handlers to be released and, in the case of a Schedulable, This is
marked as (15) in the diagrams.

Clocks and TimeDispatchers may be shared among many timables as the needs
of the application dictate. Different dispatchers can be used with a given clock and
a dispatcher can service different clocks. The dispatcher should be chosen based on
its priority and affinity, whereas a clock should be chosen based on the temporal
reference, where the temporally reference may or may not be associated with clock
time. For instance, one could use a clock to represent the rotation of a shaft.

10.3.2 Timers

For a timer to be useful, it must be associated with a clock. That clock acts as if it
provides an interrupt to each of its timers at the next instance of time at which the
timer should do something. In other words, a clock triggers it timer at a requested
time. Timers can be modeled as counters, or as comparators.

10.3. SEMANTICS 325

10.3.2.1 Counter Model

In the timer model, a timer can be viewed as if every clock interrupt increments a
count up to the firing count, initially given by either an instance of RelativeTime or
computed as the difference between an instance of AbsoluteTime and a semantically
specified “now” (using the same clock).
• start is understood as defining “now” and start counting, stop is understood

as stop counting. start after stop may be understood as start counting again
from where stopped, or start from scratch after resetting the count.
• In both cases, a delay is introduced.
• An RTSJ Timer, when using the counter model, resets the count when it is

restarted after being stopped.
• When a Timer is created or rescheduled using a RelativeTime to specify

the initial alarm time, the RTSJ keeps the specified initial trigger time as a
RelativeTime and behaves according to the counter model.

10.3.2.2 Comparator Model

In the comparator model, a Timer can be viewed as if every clock interrupt forces a
comparison between an absolute time and a firing time, initially given either as an
instance of AbsoluteTime or computed as the sum of an instance of RelativeTime
and a semantically specified “now” (using the same clock).
• In this model, start is understood as start comparing, and possibly the first
start is understood as defining “now”. stop is understood as stop comparing.
start after stop may be understood as start comparing again.
• In this case, no delay is introduced.
• When a Timer is created or rescheduled using an AbsoluteTime to specify the

initial triggering time, the RTSJ keeps the specified initial firing time as an
AbsoluteTime and uses the comparator model.

10.3.2.3 Triggering

A clock signals to the associated timable that its alarm time has been reached by
triggering the dispatcher associated with the timable. A trigger fires the associated
timer. When the timer is active, it releases it handlers and is said to be fired. When
the timer is inactive, nothing happens and it is said to be skipped. A stopped timer
is never triggered. For this it must be running.

10.3.2.4 Behavior of Timers

There are two kinds of timers defined: OneShotTimer and PeriodicTimer. As their
names imply, the first is used to mark a single time interval and the second is to

326 CHAPTER 10. CLOCKS AND TIMERS

mark a regularly repeating time interval.
The OneShotTimer class shall ensure that each instance is triggered at most once

at the time specified unless restarted after expiration.
The PeriodicTimer class shall enable the period of a timer to be expressed

in terms of a RelativeTime. The initial triggering of a PeriodicTimer occurs in
response to the invocation of its start method, in accordance with the start time
passed to its constructor. The PhasingPolicy class defines the relationship between
the timers start time and its first release time when the start time is in the past. This
initial triggering, firing or skipping, may be rescheduled by a call to the reschedule

method, in accordance with the time passed to that method.
Given an instance of PeriodicTimer, let S be the effective time, as an abso-

lute time, at which the initial triggering, firing or skipping, of a PeriodicTimer is
scheduled to occur:
• when the start, or reschedule, time was given as an absolute time, A, and that

time is in the future when the timer is made active, then S equals A, otherwise
• when the absolute time has passed when the timer is made active, then S

depends on the phasing mode of that instance of PeriodicTimer.
The triggerings of a PeriodicTimer are scheduled to occur according to S + nT ,
for n = 0, 1, 2, ... where S is as just specified, and T is the interval of the periodic
timer.

For all timers, when the start or reschedule time is given as a relative time, R, S
equals the time at which the counting time, started when the timer was made active,
equals R. The transition to not-active by this timer causes the counting time to
reset, effectively preventing this kind of timer from firing immediately, unless given
a time value of 0.

When in a not-active state a Timer retains the parameters given at construction
time or the parameters it had at de-activation time. Those are the parameters that
will be used upon invocation of start while in that state, unless the parameters are
explicitly changed before that, using reschedule and setInterval as appropriate.

When a Timer object is allocated in a scoped memory area, then it will increment
the reference count associated with that area. Such a reference count will only be
decremented when the Timer object is destroyed. (See semantics in the Memory
chapter for details.) A Timer object will not fire before its due time.

10.3.2.5 Phasing

Phasing comes into play only when a timer starts after its initial time. This can
happen when an absolute start time is specified and the start method is called after
that time. It is used to determine the effective start time S:
• S is the next multiple of A+ nT , when phasing is ADJUST FORWARD,
• S is the most recent multiple of A+ nT , when phasing is ADJUST BACKWARD,

10.3. SEMANTICS 327

• S is “now,” when phasing is ADJUST TO START, and
• S is undefined and an exception it thrown when phasing is STRICT PHASING.

The default phasing is ADJUST TO START.

328 CHAPTER 10. CLOCKS AND TIMERS

10.4 Interfaces

10.4.1 Timable

A marker interface for Timer1 and RealtimeThread2 to indicate that they can be
associated with a clock and be suspended waiting for timing events based on that
clock.

Available since RTSJ version RTSJ 2.0

10.4.1.1 Methods

10.4.1.1.1 getDispatcher

Signature

public
javax.realtime.TimeDispatcher getDispatcher()

Get the dispatcher associated with this Timeable.

Available since RTSJ version RTSJ 2.0

10.4.1.1.2 fire

Signature

public
void fire()

throws IllegalStateException

Throws

IllegalStateException when no sleep is pending or not called from the javax.realtime
package.

1Section 10.5.6
2Section 5.4.2

10.4. INTERFACES 329

Inform the dispatcher associated with this Timeable that a time event has occurred.

Available since RTSJ version RTSJ 2.0

330 CHAPTER 10. CLOCKS AND TIMERS

10.5 Classes

10.5.1 Alarm

Inheritance
java.lang.Object

javax.realtime.Alarm
A class to manage the relationship between a Clock3, a TimeDispatcher4, a Timable5,
and an AbsoluteTime6, where the clock is the time reference, the dispatcher runs
the event, the timable is to receive the event, and the time is when it should happen.
These events are also used to build the internal alarm queue of a clock. Each one
is owned by its timable. It is declared public final because to is not designed to be
extended.

Available since RTSJ version RTSJ 2.0

10.5.1.1 Fields

10.5.1.1.1 owner
private final owner

10.5.1.1.2 dispatcher
private final dispatcher

10.5.1.1.3 time
private final time

10.5.1.1.4 next
private next

The next at the same time

3Section 10.5.2
4Section 10.5.5
5Section 10.4.1
6Section 9.5.1

10.5. CLASSES 331

10.5.1.1.5 after
private after

The first at the next time

10.5.1.2 Constructors

10.5.1.2.1 Alarm(Timable, Clock)

Signature

Alarm(Timable owner, Clock clock)

10.5.1.3 Methods

10.5.1.3.1 getOwner

Signature

javax.realtime.Timable getOwner()

Returns
the Timable7 for which this alarm is defined.

This method is not part of the official API, but is used to illustrate how user defined
clocks may be implemented.

10.5.1.3.2 getDispatcher

Signature

javax.realtime.TimeDispatcher getDispatcher()

Returns
the TimeDispatcher8 for which this alarm is defined.

7Section 10.4.1
8Section 10.5.5

332 CHAPTER 10. CLOCKS AND TIMERS

This method is not part of the official API, but is used to illustrate how user defined
clocks may be implemented.

10.5.1.3.3 getTime

Signature

javax.realtime.AbsoluteTime getTime()

Returns
the AbsoluteTime9 when this alarm should ”go off”.

This method is not part of the official API, but is used to illustrate how user defined
clocks may be implemented.

10.5.1.3.4 setTime(AbsoluteTime)

Signature

void setTime(AbsoluteTime time)

This method is not part of the official API, but is used to illustrate how user defined
clocks may be implemented.

10.5.1.3.5 getNext

Signature

javax.realtime.Alarm getNext()

Returns
the next alarm in a chain of alarms that have the same time.

This method is not part of the official API, but is used to illustrate how user defined
clocks may be implemented.

10.5.1.3.6 getSequential

Signature

javax.realtime.Alarm getSequential()

Returns
the alarm with the closest time after the current one for a given clock.

9Section 9.5.1

10.5. CLASSES 333

This method is not part of the official API, but is used to illustrate how user defined
clocks may be implemented.

10.5.1.3.7 setNext(Alarm)

Signature

void setNext(Alarm value)

This method is not part of the official API, but is used to illustrate how user defined
clocks may be implemented.

10.5.1.3.8 setSequential(Alarm)

Signature

void setSequential(Alarm value)

This method is not part of the official API, but is used to illustrate how user defined
clocks may be implemented.

10.5.1.3.9 trigger(long, int)

Signature

void trigger(long millis, int nanos)

Call TimeDispatcher.trigger10 on the result of getDispatcher11.

10.5.1.3.10 fire

Signature
abstract
void fire()

Throws
IllegalStateException when called from user code.

Provides a means for a Clock12 to signal the start of a period.

Available since RTSJ version RTSJ 2.0

10Section 10.5.5.2.5
11Section 10.5.1.3.2
12Section 10.5.2

334 CHAPTER 10. CLOCKS AND TIMERS

10.5.2 Clock

Inheritance
java.lang.Object

javax.realtime.Clock
A clock marks the passing of time. It has a concept of now that can be queried
through Clock.getTime(), and it can have events queued on it which will be fired
when their appointed time is reached.

Note that while all Clock implementations use representations of time derived
from HighResolutionTime, which expresses its time in milliseconds and nanosec-
onds, that a particular Clock may track time that is not delimited in seconds or
not related to wall clock time in any particular fashion (e.g., revolutions or event
detections). In this case, the Clock’s timebase should be mapped to milliseconds
and nanoseconds in a manner that is computationally appropriate.

The Clock instance returned by getRealtimeClock()13 may be used in any
context that requires a clock. HighResolutionTime14 instances that use other clocks
are not valid for any purpose that involves sleeping or waiting, including in members
of the RealtimeThread.waitForNextPeriod()15 family. They may, however, be
used in the fire time and the period of OneShotTimer16 and PeriodicTimer17.

10.5.2.1 Constructors

10.5.2.1.1 Clock(boolean)

Signature

protected

Clock(boolean active)

Parameters
active to indicate whether or not the clock can be used to drive events.

Constructor for the abstract class.

13Section 10.5.2.2.1
14Section 9.5.3
15Section 5.4.2.2.7
16Section 10.5.3
17Section 10.5.4

10.5. CLASSES 335

10.5.2.2 Methods

10.5.2.2.1 getRealtimeClock

Signature

public static
javax.realtime.Clock getRealtimeClock()

Returns

The singleton instance of the default Clock

There is always at least one clock object available: the system realtime clock. This
is the default Clock.

10.5.2.2.2 drivesEvents

Signature

public final
boolean drivesEvents()

Returns true if and only if this Clock is able to trigger the execution of time-driven
activities. Some application-defined clocks may be read-only, meaning the clock can
be used to obtain timestamps, but the clock cannot be used to trigger the execution
of events. If a clock that does not return drivesEvents()18 equal true is used
to configure a Timer or a sleep() request, an IllegalArgumentException will be
thrown by the infrastructure.

The default realtime clock does drive events.

Open issue: Note that there exists some confusion in the RTSJ regarding the signif-
icance of the value returned from Clock.getRealtimeClock().getResolution().
Does the returned resolution represent the precision with which scheduling events
can be driven, or is it the resolution with which time stamps values can be fetched
from Clock.getRealtimeClock().getTime()? My personal preference is that when-
ever a particular Clock has different resolution for driving events than for reading
the current time, we would treat these as two different Clocks, with incomparable
time bases. End of open issue
Available since RTSJ version RTSJ 2.0

18Section 10.5.2.2.2

336 CHAPTER 10. CLOCKS AND TIMERS

10.5.2.2.3 getEpochOffset

Signature

public final
javax.realtime.RelativeTime getEpochOffset()

Throws

UnsupportedOperationException when the clock does not have the concept of
date.

Returns

A newly allocated RelativeTime19 object in the current execution context
with the offset past the Epoch for this clock. The returned object is associated
with this clock.

Returns the relative time of the offset of the epoch of this clock from the Epoch.
The value returned may change over time due to clock drift. An UnsupportedOp-

erationException is when the clock does not support the concept of date.

Available since RTSJ version RTSJ 1.0.1

10.5.2.2.4 getResolution

Signature

public final
javax.realtime.RelativeTime getResolution()

Returns

A newly allocated RelativeTime20 object in the current execution context
representing the resolution of this. The returned object is associated with
this clock.

Gets the resolution of the clock, the nominal interval between ticks.

Open issue: Note that there exists some confusion in the RTSJ regarding the signif-
icance of the value returned from Clock.getRealtimeClock().getResolution().
Does the returned resolution represent the precision with which scheduling events
can be driven, or is it the resolution with which time stamps values can be fetched
from Clock.getRealtimeClock().getTime()? My personal preference is that when-
ever a particular Clock has different resolution for driving events than for reading
the current time, we would treat these as two different Clocks, with incomparable
time bases. End of open issue

19Section 9.5.4
20Section 9.5.4

10.5. CLASSES 337

10.5.2.2.5 getResolution(RelativeTime)

Signature

public final
javax.realtime.RelativeTime getResolution(RelativeTime dest)

Parameters

dest return the relative time value in dest. If dest is null, allocate a new
RelativeTime21 instance to hold the returned value.

Returns

dest set to values representing the resolution of this. The returned object is
associated with this clock.

Gets the resolution of the clock, the nominal interval between ticks.

Available since RTSJ version RTSJ 2.0

10.5.2.2.6 getTime

Signature

public final
javax.realtime.AbsoluteTime getTime()

Returns

A newly allocated instance of AbsoluteTime22 in the current allocation con-
text, representing the current time. The returned object is associated with
this clock.

Gets the current time in a newly allocated object.

Note: This method will return an absolute time value that represents the clock’s
notion of an absolute time. For clocks that do not measure calendar time this
absolute time may not represent a wall clock time.

10.5.2.2.7 getTime(AbsoluteTime)

Signature

public final
javax.realtime.AbsoluteTime getTime(AbsoluteTime dest)

Parameters

21Section 9.5.4
22Section 9.5.1

338 CHAPTER 10. CLOCKS AND TIMERS

dest The instance of AbsoluteTime23 object which will be updated in place.
The clock association of the dest parameter is ignored. When dest is not
null the returned object is associated with this clock. If dest is null, then
nothing happens.

Returns
The instance of AbsoluteTime24 passed as parameter, representing the current
time, associated with this clock, or null if dest was null.

Gets the current time in an existing object. The time represented by the given
AbsoluteTime25 is changed at some time between the invocation of the method and
the return of the method. Note: This method will return an absolute time value that
represents the clock’s notion of an absolute time. For clocks that do not measure
calendar time this absolute time may not represent a wall clock time.

Available since RTSJ version RTSJ 1.0.1 The return value is updated
from void to AbsoluteTime.

10.5.2.2.8 setResolution(RelativeTime)

Signature
public abstract
void setResolution(RelativeTime resolution)

Parameters
resolution The new resolution of this, if the requested value is supported by
this clock. If resolution is smaller than the minimum resolution supported
by this clock then it throws IllegalArgumentException. If the requested
resolution is not available and it is larger than the minimum resolution,
then the clock will be set to the closest resolution that the clock supports, via
truncation. The value of the resolution parameter is not altered. The clock
association of the resolution parameter is ignored.

Throws
IllegalArgumentException when resolution is null, or if the requested res-

olution is smaller than the minimum resolution supported by this clock.
UnsupportedOperationException when the clock does not support setting its
resolution.

Set the resolution of this. For some hardware clocks setting resolution is impossible
and if this method is called on those clocks, then an UnsupportedOperationExcep-

tion is thrown.

23Section 9.5.1
24Section 9.5.1
25Section 9.5.1

10.5. CLASSES 339

10.5.2.2.9 triggerAlarm

Signature
protected final
void triggerAlarm()

Code in the abstract base Clock is called by a subclass to signal that the time
of the next alarm has been reached. It will trigger the current Timable26 via its
TimeDispatcher27. For timers that do not drive events, this should simply do
nothing.

Available since RTSJ version RTSJ 2.0

10.5.2.2.10 setAlarm(long, int)

Signature
protected abstract
void setAlarm(long milliseconds, int nanoseconds)

Parameters
milliseconds of the next alarm.
nanoseconds of the next alarm.

Implemented by subclasses to set the time for the next alarm. If there is an out-
standing alarm outstanding when called, the subclass must override the old time.

Available since RTSJ version RTSJ 2.0

10.5.2.2.11 clearAlarm

Signature
protected abstract
void clearAlarm()

throws UnsupportedOperationException

Throws
UnsupportedOperationException when this clock does not support event noti-
fication. (drivesEvents()28 returns false.)

Implemented by subclasses to cancel the current outstanding alarm.

26Section 10.4.1
27Section 10.5.5
28Section 10.5.2.2.2

340 CHAPTER 10. CLOCKS AND TIMERS

Available since RTSJ version RTSJ 2.0

10.5.2.2.12 fillResolution(RelativeTime)

Signature

protected abstract
void fillResolution(RelativeTime time)

Parameters

time is the destination of the time information.

Implemented by subclasses to get the resolution of the clock. The implementation
ensures that the clock is already this before calling this method.

10.5.2.2.13 fillTime(AbsoluteTime)

Signature

protected abstract
void fillTime(AbsoluteTime time)

Parameters

time is the destination of the time information.

Implemented by subclasses to get the current time on this clock. The implementa-
tion ensures that the clock is already this before calling this method.

10.5.2.2.14 setAlarm(Alarm)

Signature

final
void setAlarm(Alarm event)

throws UnsupportedOperationException, IllegalStateException

Parameters

event is describes an alarm to be set for a given Timable29.

Throws

UnsupportedOperationException when this clock does not support event noti-
fication. (drivesEvents()30 returns false.)

This method is not part of the official API, but is used to illustrate how user de-
fined clocks may be implemented. Adds a new alarm to the alarm queue. This

29Section 10.4.1
30Section 10.5.2.2.2

10.5. CLASSES 341

code manages calls to setAlarm(long, int)31 with triggerAlarm()32 and clear-

Alarm(Alarm)33. It is for internal use by a Timable34.
This method is provided for illustration purposes only. As a method that is not

visible outside the package, it is not part of the specification.

Available since RTSJ version RTSJ 2.0

10.5.2.2.15 clearAlarm(Alarm)

Signature
final
void clearAlarm(Alarm event)

throws UnsupportedOperationException

Parameters
event describes an alarm to be set for a given Timable35.

Throws
UnsupportedOperationException when this clock does not support event noti-
fication. (drivesEvents()36 returns false.)

This method is not part of the official API, but is used to illustrate how user defined
clocks may be implemented. Removes an alarm from the alarm queue. This code
manages calls to setAlarm(long, int)37 and clearAlarm()38. It is for internal
use by a Timable39.

This method is provided for illustration purposes only. As a method that is not
visible outside the package, it is not part of the specification.

Available since RTSJ version RTSJ 2.0

10.5.3 OneShotTimer

31Section 10.5.2.2.10
32Section 10.5.2.2.9
33Section 10.5.2.2.15
34Section 10.4.1
35Section 10.4.1
36Section 10.5.2.2.2
37Section 10.5.2.2.10
38Section 10.5.2.2.11
39Section 10.4.1

342 CHAPTER 10. CLOCKS AND TIMERS

Inheritance
java.lang.Object

javax.realtime.AbstractAsyncEvent
javax.realtime.AsyncEvent

javax.realtime.Timer
javax.realtime.OneShotTimer

A timed AsyncEvent40 that is driven by a Clock41. It will fire off once, when the
clock time reaches the time-out time, unless restarted after expiration. If the timer
is disabled at the expiration of the indicated time, the firing is lost (skipped). After
expiration, the OneShotTimer becomes not-active and disabled. If the clock time
has already passed the time-out time, it will fire immediately after it is started or
after it is rescheduled while active.

Semantics details are described in the Timer42 pseudocode and compact graphic
representation of state transitions.

Caution: This class is explicitly unsafe in multithreaded situations when it is
being changed. No synchronization is done. It is assumed that users of this class
who are mutating instances will be doing their own synchronization at a higher level.

10.5.3.1 Constructors

10.5.3.1.1 OneShotTimer(HighResolutionTime, AsyncEventHandler)

Signature

public

OneShotTimer(HighResolutionTime time, AsyncEventHandler handler)

Parameters
time The time used to determine when to fire the event. A time value of
null is equivalent to a RelativeTime of 0, and in this case the Timer fires
immediately upon a call to start().
handler The AsyncEventHandler43 that will be released when fire is invoked.
If null, no handler is associated with this Timer and nothing will happen when
this event fires unless a handler is subsequently associated with the timer using
the addHandler() or setHandler() method.

40Section 8.6.3
41Section 10.5.2
42Section 10.5.6
43Section 8.6.4

10.5. CLASSES 343

Throws

IllegalArgumentException when time is a RelativeTime instance less than
zero.
UnsupportedOperationException when the timer functionality cannot be sup-
ported using the clock associated with time.
IllegalAssignmentError when this OneShotTimer cannot hold a reference to
handler.

Create an instance of OneShotTimer44, based on the Clock45 associated with the
time parameter, that will execute its fire method according to the given time.

10.5.3.1.2 OneShotTimer(HighResolutionTime, Clock, AsyncEventHand-
ler)

Signature

public

OneShotTimer(HighResolutionTime time, Clock clock, AsyncEventHandler handler)

Parameters

time The time used to determine when to fire the event. A time value of
null is equivalent to a RelativeTime of 0, and in this case the Timer fires
immediately upon a call to start().
clock The clock on which to base this timer, overriding the clock associated
with the parameter time. If null, the system Realtime clock is used. The
clock associated with the parameter time is always ignored.
handler The AsyncEventHandler46 that will be released when fire is invoked.
If null, no handler is associated with this Timer and nothing will happen when
this event fires unless a handler is subsequently associated with the timer using
the addHandler() or setHandler() method.

Throws

IllegalArgumentException when time is a RelativeTime instance less than
zero.
UnsupportedOperationException when the timer functionality cannot be sup-
ported using the given clock.
IllegalAssignmentError when this OneShotTimer cannot hold references to
handler and clock.

44Section 10.5.3
45Section 10.5.2
46Section 8.6.4

344 CHAPTER 10. CLOCKS AND TIMERS

Create an instance of OneShotTimer47, based on the given clock, that will exe-
cute its fire method according to the given time. The Clock48 association of the
parameter time is ignored.

10.5.4 PeriodicTimer

Inheritance

java.lang.Object
javax.realtime.AbstractAsyncEvent

javax.realtime.AsyncEvent
javax.realtime.Timer

javax.realtime.PeriodicTimer

An AsyncEvent49 whose fire method is executed periodically according to the
given parameters. The beginning of the first period is set or measured using the
clock associated with the Timer start time. The calculation of the period uses the
clock associated with the Timer interval, unless a Clock50 is given, in which case
the calculation of the period uses that clock.

The first firing is at the beginning of the first interval.

If an interval greater than 0 is given, the timer will fire periodically. If an interval
of 0 is given, the PeriodicTimer will only fire once, unless restarted after expiration,
behaving like a OneShotTimer. In all cases, if the timer is disabled when the firing
time is reached, that particular firing is lost (skipped). If enabled at a later time, it
will fire at its next scheduled time.

If the clock time has already passed the beginning of the first period, the Peri-

odicTimer will first fire according to the PhasingPolicy51.

Semantics details are described in the Timer52 pseudo-code and compact graphic
representation of state transitions.

Caution: This class is explicitly unsafe in multithreaded situations when it is
being changed. No synchronization is done. It is assumed that users of this class
who are mutating instances will be doing their own synchronization at a higher level.

47Section 10.5.3
48Section 10.5.2
49Section 8.6.3
50Section 10.5.2
51Section 5.3.1
52Section 10.5.6

10.5. CLASSES 345

10.5.4.1 Constructors

10.5.4.1.1 PeriodicTimer(HighResolutionTime, RelativeTime, AsyncEvent-
Handler)

Signature

public

PeriodicTimer(HighResolutionTime start, RelativeTime interval, AsyncEventHandler handler)

Create a timer that executes its fire method periodically. Equivalent to Periodic-
Timer(start, interval, Clock.getRealtimeClock(),handler)

10.5.4.1.2 PeriodicTimer(HighResolutionTime, RelativeTime, Clock, Async-
EventHandler)

Signature

public

PeriodicTimer(HighResolutionTime start, RelativeTime interval, Clock clock, AsyncEventHandler handler)

Parameters
start The time that specifies when the first interval begins, based on the clock
associated with it. The first firing of the timer is modified according the
PhasingPolicy when the timer is started. A start value of null is equivalent
to a RelativeTime of 0.
interval The period of the timer. Its usage is based on the clock specified by
the clock parameter. If interval is zero or null, the period is ignored and
the firing behavior of the PeriodicTimer is that of a OneShotTimer53.
clock The clock to be used to time the start and interval. If null, the
system Realtime clock is used. The Clock54 association of the parameters
start and interval is always ignored.
handler The AsyncEventHandler55 that will be released when fire is invoked.
If null, no handler is associated with this Timer and nothing will happen when

53Section 10.5.3
54Section 10.5.2
55Section 8.6.4

346 CHAPTER 10. CLOCKS AND TIMERS

this event fires unless a handler is subsequently associated with the timer using
the addHandler() or setHandler() method.

Throws

IllegalArgumentException when start or interval is a RelativeTime instance
with a value less than zero.
IllegalAssignmentError when this PeriodicTimer cannot hold references to
handler, clock and interval.
UnsupportedOperationException when the timer functionality cannot be sup-
ported using the clock associated with start or the given clock.

Create a timer that executes its fire method periodically.

10.5.4.2 Methods

10.5.4.2.1 addHandler(AsyncEventHandler)

Signature

public
void addHandler(AsyncEventHandler handler)

Parameters

handler a new handler to add to the list of handlers already associated with
this. When handler is already associated with the event, the call has no
effect.

Throws

IllegalArgumentException when handler is null or the handler has Period-

icParameters56 with a period that does not match the period of this.
IllegalAssignmentError when this AsyncEvent cannot hold a reference to han-

dler.

Add a handler to the set of handlers associated with this event. It overrides the
method in AbstractAsyncEvent57 to allow the use of handlers with PeriodicPa-

rameters58, but these parameters must match the period of this timer, otherwise
IllegalArgumentException is thrown.

Available since RTSJ version RTSJ 2.0

56Section 6.5.4
57Section 8.6.1
58Section 6.5.4

10.5. CLASSES 347

10.5.4.2.2 setHandler(AsyncEventHandler)

Signature
public
void setHandler(AsyncEventHandler handler)

throws IllegalArgumentException, IllegalAssignmentError

Parameters
handler The instance of AbstractAsyncEventHandler59 to be associated with
this. When handler is null, no handler will be associated with this, i.e., be-
have effectively as if setHandler(null) invokes removeHandler(AbstractAsyncEventHandler)60

for each associated handler.
Throws

IllegalArgumentException when handler has PeriodicParameters61 with a
period that does not match the period of this.
IllegalAssignmentError when this AsyncEvent cannot hold a reference to han-

dler.
Associate a new handler with this event and remove all existing handlers. It overrides
the method in AbstractAsyncEvent62 to allow the use of handlers with Periodic-

Parameters63, but these parameters must match the period of this timer, otherwise
IllegalArgumentException is thrown.

Available since RTSJ version RTSJ 2.0

10.5.4.2.3 start(PhasingPolicy)

Signature
public
void start(PhasingPolicy phasingPolicy)

throws LateStartException

Parameters
phasingPolicy

Throws
LateStartException
IllegalArgumentException when the start time of this timer is not an absolute
time, or phasingPolicy is null.

59Section 8.6.2
60Section ??
61Section 6.5.4
62Section 8.6.1
63Section 6.5.4

348 CHAPTER 10. CLOCKS AND TIMERS

Start the timer with the specified PhasingPolicy64.

Available since RTSJ version RTSJ 2.0

10.5.4.2.4 start(boolean, PhasingPolicy)

Signature
public
void start(boolean disabled, PhasingPolicy phasingPolicy)

throws LateStartException

Parameters
disabled
phasingPolicy

Throws
LateStartException
IllegalArgumentException when the start time of this timer is not an absolute
time, or phasingPolicy is null.

Start the timer with the specified PhasingPolicy65 and the specified disabled state.

Available since RTSJ version RTSJ 2.0

10.5.4.2.5 getClock

Signature
public
javax.realtime.Clock getClock()

Throws
IllegalStateException when this has been destroyed.

Each instance can only be associated with a single clock, which this method can
obtain.

Available since RTSJ version RTSJ 1.0.1

10.5.4.2.6 createReleaseParameters

64Section 5.3.1
65Section 5.3.1

10.5. CLASSES 349

Signature
public
javax.realtime.ReleaseParameters createReleaseParameters()

Throws
IllegalStateException when this Timer has been destroyed.

Returns
A new release parameters object with new objects containing copies of the
values corresponding to this timer. If the interval is greater than zero, return
a new instance of PeriodicParameters66. If the interval is zero return a new
instance of AperiodicParameters67.

Create a release parameters object with new objects containing copies of the values
corresponding to this timer. When the PeriodicTimer interval is greater than 0,
create a PeriodicParameters68 object with a start time and period that correspond
to the next firing (or skipping) time, and interval, of this timer. When the interval
is 0, create an AperiodicParameters69 object, since in this case the timer behaves
like a OneShotTimer70.

If this timer is active, then the start time is the next firing (or skipping) time
returned as an AbsoluteTime71. Otherwise, the start time is the initial firing (or
skipping) time, as set by the last call to Timer.reschedulereschedule72, or if there
was no such call, by the constructor of this timer.

10.5.4.2.7 createReleaseParameters(ReleaseParameters)

Signature
public
javax.realtime.ReleaseParameters

createReleaseParameters(ReleaseParameters dest)

Added at RTSJ 2.0

10.5.4.2.8 getFireTime

Signature
public
javax.realtime.AbsoluteTime getFireTime()

66Section 6.5.4
67Section 6.5.2
68Section 6.5.4
69Section 6.5.2
70Section 10.5.3
71Section 9.5.1
72Section 10.5.6.4.13

350 CHAPTER 10. CLOCKS AND TIMERS

throws ArithmeticException, IllegalStateException

Throws

ArithmeticException when the result does not fit in the normalized format.
IllegalStateException when this Timer has been destroyed, or if it is not-active.

Returns

The absolute time at which this is next expected to fire or to skip, in a newly
allocated AbsoluteTime73 object. If the timer has been created or re-scheduled
(see Timer.reschedule(HighResolutionTime time)74) using an instance of
RelativeTime for its time parameter then it will return the sum of the current
time and the RelativeTime remaining time before the timer is expected to
fire/skip. Within a periodic timer activation, the returned time is associated
with the start clock before the first fire (or skip) time, and associated with the
interval clock otherwise.

Get the time at which this PeriodicTimer is next expected to fire or to skip. If the
PeriodicTimer is disabled, the returned time is that of the skipping of the firing. If
the PeriodicTimer is not-active it throws IllegalStateException.

10.5.4.2.9 getFireTime(AbsoluteTime)

Signature

public
javax.realtime.AbsoluteTime getFireTime(AbsoluteTime dest)

Parameters

dest The instance of AbsoluteTime75 which will be updated in place and
returned. The clock association of the dest parameter is ignored. When dest

is null a new object is allocated for the result.

Throws

ArithmeticException when the result does not fit in the normalized format.
IllegalStateException when this Timer has been destroyed, or if it is not-active.

Returns

The instance of AbsoluteTime76 passed as parameter, with time values repre-
senting the absolute time at which this is expected to fire or to skip. If the
dest parameter is null the result is returned in a newly allocated object. If the
timer has been created or re-scheduled (see Timer.reschedule(HighResolutionTime
time)77) using an instance of RelativeTime for its time parameter then it will

73Section 9.5.1
74Section 10.5.6.4.13
75Section 9.5.1
76Section 9.5.1
77Section 10.5.6.4.13

10.5. CLASSES 351

return the sum of the current time and the RelativeTime remaining time be-
fore the timer is expected to fire/skip. Within a periodic timer activation, the
returned time is associated with the start clock before the first fire (or skip)
time, and associated with the interval clock otherwise.

Get the time at which this PeriodicTimer is next expected to fire or to skip. If the
PeriodicTimer is disabled, the returned time is that of the skipping of the firing. If
the PeriodicTimer is not-active it throws IllegalStateException.

Available since RTSJ version RTSJ 1.0.1

10.5.4.2.10 getInterval

Signature

public
javax.realtime.RelativeTime getInterval()

Throws

IllegalStateException when this Timer has been destroyed.

Returns

The RelativeTime instance assigned as this periodic timer’s interval by the
constructor or setInterval(RelativeTime)78.

Gets the interval of this Timer.

10.5.4.2.11 setInterval(RelativeTime)

Signature

public
void setInterval(RelativeTime interval)

Parameters

interval A RelativeTime79 object which is the interval used to reset this Timer.
A null interval is interpreted as RelativeTime(0,0).
The interval does not affect the first firing (or skipping) of a timer’s acti-
vation. At each firing (or skipping), the next fire (or skip) time of an active
periodic timer is established based on the interval currently in use. Reset-
ting the interval of an active periodic timer only effects future fire (or skip)
times after the next.

Throws

78Section 10.5.4.2.11
79Section 9.5.4

352 CHAPTER 10. CLOCKS AND TIMERS

IllegalArgumentException when interval is a RelativeTime instance with a
value less than zero.
IllegalAssignmentError when this PeriodicTimer cannot hold a reference to
interval.
IllegalStateException when this Timer has been destroyed.

Reset the interval value of this.

10.5.4.2.12 getTimeOfNextPeriod(AbsoluteTime)

Signature

javax.realtime.AbsoluteTime getTimeOfNextPeriod(AbsoluteTime

time)

10.5.5 TimeDispatcher

Inheritance

java.lang.Object
javax.realtime.ActiveEventDispatcher

javax.realtime.TimeDispatcher

10.5.5.1 Constructors

10.5.5.1.1 TimeDispatcher(int)

Signature

public

TimeDispatcher(int priority)

Parameters

priority at which to dispatch.

Create a new dispatcher.

10.5. CLASSES 353

10.5.5.2 Methods

10.5.5.2.1 getDefaultTimeDispatcher

Signature
public static
javax.realtime.TimeDispatcher getDefaultTimeDispatcher()

Returns
the default event manager.

This provides a means of obtaining the system provided event manager so that new
events can be added to it.

10.5.5.2.2 dispatch(Timable)

Signature
protected abstract
void dispatch(Timable target)

Parameters
target to dispatch

Actually dispatch target. This can be overridden in a subclass to provide for more
sophisticated dispatching.

10.5.5.2.3 register(Timable)

Signature
final
void register(Timable target)

Parameters
target to register

This method is not part of the official API, but is used to illustrate how user defined
clocks may be implemented. Register an Timable80 with this dispatcher. (This is a
really naive implementation.)

10.5.5.2.4 unregister(Timable)

Signature

80Section 10.4.1

354 CHAPTER 10. CLOCKS AND TIMERS

final
void unregister(Timable target)

Parameters
target to unregister

This method is not part of the official API, but is used to illustrate how user defined
clocks may be implemented. Deregister an EventHappening form this dispatcher.
(This is a really naive implementation.)

10.5.5.2.5 trigger(Alarm)

Signature
final
void trigger(Alarm target)

Parameters
target the event that needs to be dispatched

This method is not part of the official API, but is used to illustrate how user defined
clocks may be implemented. Release a thread to fire target and then trigger the
next awaiting blockable.

10.5.6 Timer

Inheritance
java.lang.Object

javax.realtime.AbstractAsyncEvent
javax.realtime.AsyncEvent

javax.realtime.Timer
Interfaces

Timable
ActiveEvent

A timer is a timed event that measures time according to a given Clock81. This
class defines basic functionality available to all timers. Applications will generally
use either PeriodicTimer82 to create an event that is fired repeatedly at regular
intervals, or OneShotTimer83 for an event that just fires once at a specific time.
A timer is always associated with at least one Clock84, which provides the basic
facilities of something that ticks along following some time line (realtime, CPU-time,

81Section 10.5.2
82Section 10.5.4
83Section 10.5.3
84Section 10.5.2

10.5. CLASSES 355

user-time, simulation-time, etc.). All timers are created disabled and do nothing
until start() is called.

10.5.6.1 Pseudo-Code Representation of State Transitions for Timer

An implementation shall behave effectively as if it implemented the following pseudo-
code. Only absolute and relative time behaviors are shown as rational time has been
deprecated.

NOTE: The pseudo-code does not take into account any issue of synchronization,
it just shows the functionality, and the intended behavior is obtained with groups
of and’ed statements interpreted as atomic. This is relevant, for example, in cases
where the firing of an AsyncEventHandler85 is part of the statements preceding a
state transition. While the firing causes the release of the handler before the state
transition, the execution of the handler does not take place until after the state
transition has completed.

The pseudo-code is a model, it should be interpreted as running continuously,
with instructions that take no time.

absolute construction state is {not-active, disabled, absolute}
with nextTargetTime = absoluteTime
last rescheduled with AbsoluteTime = TRUE
[(if PeriodicTimer) period = interval]

relative construction state is {not-active, disabled, relative}
with nextDurationTime = relativeTime
last rescheduled with AbsoluteTime = FALSE
[(if PeriodicTimer) period = interval]

{not-active, disabled, absolute}
[(if PeriodicTimer)
set released or skipped in current activation = FALSE]

enable -> no state change, do nothing
disable -> no state change, do nothing
stop -> no state change, return FALSE
start ->

[if last rescheduled with AbsoluteTime
then

[set targetTime = nextTargetTime
[if targetTime < currentTime

85Section 8.6.4

356 CHAPTER 10. CLOCKS AND TIMERS

then set targetTime = currentTime]
then go to state {active, enabled, absolute}]

else
[set countingTime = 0
and set durationTime = nextDurationTime
then go to state {active, enabled, relative}]]

isRunning -> return FALSE
reschedule ->

[if using an instance of AbsoluteTime
then

[reset the nextTargetTime to absoluteTime arg
and set last rescheduled with AbsoluteTime = TRUE
and no state change]

else
[reset the nextDurationTime to relativeTime arg
and set last rescheduled with AbsoluteTime = FALSE
and go to state {not-active, disabled, relative}]]

getFireTime -> throws IllegalStateException
destroy -> go to state {destroyed}
startDisabled ->

[if last rescheduled with AbsoluteTime
then

[set targetTime = nextTargetTime
[if targetTime < currentTime
then set targetTime = currentTime]

then go to state {active, disabled, absolute}]
else

[set countingTime = 0
and set durationTime = nextDurationTime
then go to state {active, disabled, relative}]]

{not-active, disabled, relative}
[(if PeriodicTimer)
set released or skipped in current activation = FALSE]

enable -> no state change, do nothing
disable -> no state change, do nothing
stop -> no state change, return FALSE
start ->

[if last rescheduled with AbsoluteTime
then

[set targetTime = nextTargetTime

10.5. CLASSES 357

[if targetTime < currentTime
then set targetTime = currentTime]

then go to state {active, enabled, absolute}]
else

[set countingTime = 0
and set durationTime = nextDurationTime
then go to state {active, enabled, relative}]]

isRunning -> return FALSE
reschedule ->

[if using an instance of AbsoluteTime
then

[reset the nextTargetTime to absoluteTime arg
and set last rescheduled with AbsoluteTime = TRUE
and go to state {not-active, disabled, absolute}]

else
[reset the nextDurationTime to relativeTime arg
and set last rescheduled with AbsoluteTime = FALSE
and no state change]]

getFireTime -> throws IllegalStateException
destroy -> go to state {destroyed}
startDisabled ->

[if last rescheduled with AbsoluteTime
then

[set targetTime = nextTargetTime
[if targetTime < currentTime
then set targetTime = currentTime]

then go to state {active, disabled, absolute}]
else

[set countingTime = 0
and set durationTime = nextDurationTime
then go to state {active, disabled, relative}]]

{active, enabled, absolute}
[if currentTime >= targetTime
then

[if PeriodicTimer
then

[if period > 0
then

[fire
and set released or skipped in current activation = TRUE

358 CHAPTER 10. CLOCKS AND TIMERS

and self reschedule
via targetTime = (targetTime + period)

and re-enter current state]
else

[fire
and go to state {not-active, disabled, absolute}]]

else
[it is a OneShotTimer so
fire
and go to state {not-active, disabled, absolute}]]]

enable -> no state change, do nothing
disable -> go to state {active, disabled, absolute}
stop -> [go to state {not-active, disabled, absolute}

and return TRUE]
start -> throws IllegalStateException
isRunning -> return TRUE
reschedule ->

[if NOT released or skipped in current activation
then

[if using an instance of AbsoluteTime
then

[reset the targetTime to absoluteTime arg
and re-enter current state]

else
[reset the durationTime to relativeTime arg
and set countingTime = 0
and go to state {active, enabled, relative}]]

else
[if using an instance of AbsoluteTime
then

[reset the nextTargetTime to absoluteTime arg
and set last rescheduled with AbsoluteTime = TRUE
and no state change]

else
[reset the nextDurationTime to relativeTime arg
and set last rescheduled with AbsoluteTime = FALSE
and no state change]]]

getFireTime -> return targetTime
destroy -> go to state {destroyed}
startDisabled -> throws IllegalStateException

10.5. CLASSES 359

{active, enabled, relative}
[if countingTime >= durationTime
then

[if PeriodicTimer
then

[if period > 0
then

[fire
and set released or skipped in current activation = TRUE
and self reschedule

via durationTime = (durationTime + period)
and re-enter current state]

else
[fire
and go to state {not-active, disabled, relative}]]

else
[it is a OneShotTimer so
fire
and go to state {not-active, disabled, relative}]]]

enable -> no state change, do nothing
disable -> go to state {active, disabled, relative}
stop -> [go to state {not-active, disabled, relative}

and return TRUE]
start -> throws IllegalStateException
isRunning -> return TRUE
reschedule ->

[if NOT released or skipped in current activation
then

[if using an instance of AbsoluteTime
then

[reset the targetTime to absoluteTime arg
and go to state {active, enabled, absolute}]

else
[reset the durationTime to relativeTime arg
and set countingTime = 0
and re-enter current state]]

else
[if using an instance of AbsoluteTime
then

[reset the nextTargetTime to absoluteTime arg
and set last rescheduled with AbsoluteTime = TRUE

360 CHAPTER 10. CLOCKS AND TIMERS

and no state change]
else

[reset the nextDurationTime to relativeTime arg
and set last rescheduled with AbsoluteTime = FALSE
and no state change]]]

getFireTime ->
return (currentTime + durationTime - countingTime)

destroy -> go to state {destroyed}
startDisabled -> throws IllegalStateException

{active, disabled, absolute}
[if currentTime >= targetTime
then

[if PeriodicTimer
then

[if period > 0
then

[skip
and set released or skipped in current activation = TRUE
and self reschedule

via targetTime = (targetTime + period)
and re-enter current state]

else
[skip
and go to state {not-active, disabled, absolute}]]

else
[it is a OneShotTimer so
skip
and go to state {not-active, disabled, absolute}]]]

enable -> go to state {active, enabled, absolute}
disable -> no state change, do nothing
stop -> [go to state {not-active, disabled, absolute}

and return TRUE]
start -> throws IllegalStateException
isRunning -> return FALSE
reschedule ->

[if NOT released or skipped in current activation
then

[if using an instance of AbsoluteTime
then

[reset the targetTime to absoluteTime arg

10.5. CLASSES 361

and re-enter current state]
else

[reset the durationTime to relativeTime arg
and set countingTime = 0
and go to state {active, disabled, relative}]]

else
[if using an instance of AbsoluteTime
then

[reset the nextTargetTime to absoluteTime arg
and set last rescheduled with AbsoluteTime = TRUE
and no state change]

else
[reset the nextDurationTime to relativeTime arg
and set last rescheduled with AbsoluteTime = FALSE
and no state change]]]

getFireTime -> return targetTime
destroy -> go to state {destroyed}
startDisabled -> throws IllegalStateException

{active, disabled, relative}
[if countingTime >= durationTime
then

[if PeriodicTimer
then

[if period > 0
then

[skip
and set released or skipped in current activation = TRUE
and self reschedule

via durationTime = (durationTime + period)
and re-enter current state]

else
[skip
and go to state {not-active, disabled, relative}]]

else
[it is a OneShotTimer so
skip
and go to state {not-active, disabled, relative}]]]

enable -> go to state {active, enabled, relative}
disable -> no state change, do nothing
stop -> [go to state {not-active, disabled, relative}

362 CHAPTER 10. CLOCKS AND TIMERS

and return TRUE]
start -> throws IllegalStateException
isRunning -> return FALSE
reschedule ->

[if NOT released or skipped in current activation
then

[if using an instance of AbsoluteTime
then

[reset the targetTime to absoluteTime arg
and go to state {active, disabled, absolute}]

else
[reset the durationTime to relativeTime arg
and set countingTime = 0
and re-enter current state]]

else
[if using an instance of AbsoluteTime
then

[reset the nextTargetTime to absoluteTime arg
and set last rescheduled with AbsoluteTime = TRUE
and no state change]

else
[reset the nextDurationTime to relativeTime arg
and set last rescheduled with AbsoluteTime = FALSE
and no state change]]]

getFireTime ->
return (currentTime + durationTime - countingTime)

destroy -> go to state {destroyed}
startDisabled -> throws IllegalStateException

{destroyed}
enable — disable — stop — start — isRunning
— reschedule — getFireTime — destroy
— startDisabled -> throws IllegalStateException

The following two methods, without loss of generality and to
avoid clutter, have been omitted from the above Pseudo-code.

Every state but {destroyed} has:
[(if PeriodicTimer) setInterval -> reset period = interval]
[(if PeriodicTimer) getInterval -> return period]

10.5. CLASSES 363

The state {destroyed} has:
[(if PeriodicTimer) setInterval -> throws IllegalStateException]
[(if PeriodicTimer) getInterval -> throws IllegalStateException]

10.5.6.2 Compact Graphic Representation of State Transitions for Timer

The following compact graphic representation, while not as detailed, complements
the State Transitions for Timer pseudo-code:

(see image at doc-files/timers state machine.gif)

10.5.6.3 Constructors

10.5.6.3.1 Timer(HighResolutionTime, Clock, AsyncEventHandler, TimeDis-
patcher)

Signature

Timer(HighResolutionTime time, Clock clock, AsyncEventHandler handler, TimeDispatcher dispatcher)

throws IllegalArgumentException, UnsupportedOperationException,

IllegalAssignmentError

Parameters
time The time used to determine when to fire the event. A time value of
null is equivalent to a RelativeTime of 0, and in this case the Timer fires
immediately upon a call to start().
clock The clock on which to base this timer, overriding the clock associated
with the parameter time. If null, the system Realtime clock is used. The
clock associated with the parameter time is always ignored.
handler The default handler to use for this event. If null, no handler is
associated with the timer and nothing will happen when this event fires unless
a handler is subsequently associated with the timer using the addHandler()

or setHandler() method.
Throws

IllegalArgumentException when time is a negative RelativeTime value.

364 CHAPTER 10. CLOCKS AND TIMERS

UnsupportedOperationException when the timer functionality cannot be sup-
ported using the given clock.
IllegalAssignmentError when this Timer cannot hold references to handler

and clock.

Create a timer that fires according to the given time, based on the Clock86 clock

and is handled by the specified AsyncEventHandler87 handler.

10.5.6.4 Methods

10.5.6.4.1 createReleaseParameters

Signature

public
javax.realtime.ReleaseParameters createReleaseParameters()

throws IllegalStateException

Throws

IllegalStateException when this Timer has been destroyed.

Returns

A newly created ReleaseParameters88 object.

Create a ReleaseParameters89 object appropriate to the timing characteristics of
this event. The default is the most pessimistic: AperiodicParameters90. This is
typically called by code that is setting up a handler for this event that will fill in
the parts of the release parameters for which it has values, e.g. cost.

10.5.6.4.2 disable

Signature

public
void disable()

throws IllegalStateException

Throws

IllegalStateException when this Timer has been destroyed.

86Section 10.5.2
87Section 8.6.4
88Section 6.5.8
89Section 6.5.8
90Section 6.5.2

10.5. CLASSES 365

Disable this timer, preventing it from firing. It may subsequently be re-enabled. If
the timer is disabled when its fire time occurs then it will not release its handlers.
However, a disabled timer created using an instance of RelativeTime for its time
parameter continues to count while it is disabled, and no changes take place in a
disabled timer created using an instance of AbsoluteTime, in both cases the po-
tential firing is simply masked, or skipped. If the timer is subsequently re-enabled
before its fire time and it is enabled when its fire time occurs, then it will fire. It is
important to note that this method does not delay the time before a possible firing.
For example, if the timer is set to fire at time 42 and the disable() is called at time
30 and enable() is called at time 40 the firing will occur at time 42 (not time 52).
These semantics imply also that firings are not queued. Using the above example, if
enable was called at time 43 no firing will occur, since at time 42 this was disabled.
If the Timer is already disabled, whether it is active or inactive, this method does
nothing.

10.5.6.4.3 enable

Signature
public
void enable()

throws IllegalStateException

Throws
IllegalStateException when this Timer has been destroyed.

Re-enable this timer after it has been disabled. (See Timer.disable()91.) If the
Timer is already enabled, this method does nothing. If the Timer is not-active, this
method does nothing.

10.5.6.4.4 destroy

Signature
public
void destroy()

throws IllegalStateException

Throws
IllegalStateException when this Timer has been destroyed.

Stop this from counting or comparing if active, remove from it all the associated
handlers if any, and release as many of its resources as possible back to the system.
Every method invoked on a Timer that has been destroyed will throw IllegalSta-

teException.

91Section 10.5.6.4.2

366 CHAPTER 10. CLOCKS AND TIMERS

10.5.6.4.5 getClock

Signature

public
javax.realtime.Clock getClock()

throws IllegalStateException

Throws

IllegalStateException when this Timer has been destroyed.

Returns

The instance of Clock92 associated with this Timer.

Return the instance of Clock93 on which this timer is based.

10.5.6.4.6 getStartTime

Signature

public
javax.realtime.HighResolutionTime getStartTime()

Returns

a reference to the time (or start) parameter used when constructing this timer.
Since RTSJ 2.0

Get the start time of this timer. Note that the start time uses copy semantics, so
changes made to the value returned by this method do not effect the start time of
this timer.

10.5.6.4.7 getEffectiveStartTime

Signature

public
javax.realtime.AbsoluteTime getEffectiveStartTime()

throws IllegalStateException, ArithmeticException

Throws

IllegalStateException if the timer is not active or has been destroyed.
ArithmeticException if the result does not fit in the normalized format.

Returns

the time this actually started.

Return a newly-created time representing the time the timer actually started, or if
the timer has been rescheduled, the effective start time after the reschedule.

92Section 10.5.2
93Section 10.5.2

10.5. CLASSES 367

Available since RTSJ version RTSJ 2.0

10.5.6.4.8 getEffectiveStartTime(AbsoluteTime)

Signature
public
javax.realtime.AbsoluteTime getEffectiveStartTime(AbsoluteTime

dest)

throws IllegalStateException, ArithmeticException

Parameters
dest a place to store the time this actually started.

Throws
IllegalStateException if the timer is not active or has been destroyed.
ArithmeticException if the result does not fit in the normalized format.

Returns
The time the timer actually started, or if it has been rescheduled, the effective
start time after the reschedule.

Update dest to represent the time the timer actually started, or if the timer has
been rescheduled, the effective start time after the reschedule. When dest is null,
behave as if getEffectiveStartTime()94 had been called.

Available since RTSJ version RTSJ 2.0

10.5.6.4.9 getLastReleaseTime

Signature
public
javax.realtime.AbsoluteTime getLastReleaseTime()

Throws
IllegalStateException when this timer has not been released since it was last
started.

Returns
a reference to a newly-created AbsoluteTime95 object representing this timer’s
last release time. If the timer has not been released since it was last started,
throw an exception.

94Section 10.5.6.4.7
95Section 9.5.1

368 CHAPTER 10. CLOCKS AND TIMERS

Get the last release time of this timer.

Available since RTSJ version RTSJ 2.0

10.5.6.4.10 getLastReleaseTime(AbsoluteTime)

Signature
public
javax.realtime.AbsoluteTime getLastReleaseTime(AbsoluteTime

dest)

Returns
If dest is null, return a reference to a newly-created AbsoluteTime96 object
representing this timer’s last release time. If dest is non-null, set dest to
this timer’s last release time. If the timer has not been released, return null.
Since RTSJ 2.0

10.5.6.4.11 getFireTime

Signature
public
javax.realtime.AbsoluteTime getFireTime()

throws IllegalStateException, ArithmeticException

Throws
ArithmeticException when the result does not fit in the normalized format.
IllegalStateException when this Timer has been destroyed, or if it is not-active.

Returns
The absolute time at which this is expected to fire (release handlers or skip),
in a newly allocated AbsoluteTime97 object. If the timer has been created
or re-scheduled (see Timer.reschedule(HighResolutionTime)98) using an
instance of RelativeTime for its time parameter then it will return the sum
of the current time and the RelativeTime remaining time before the timer is
expected to fire/skip. The clock association of the returned time is the clock
on which this timer is based.

Get the time at which this Timer is expected to fire. If the Timer is disabled, the
returned time is that of the skipping of the firing. If the Timer is not-active it throws
IllegalStateException.

96Section 9.5.1
97Section 9.5.1
98Section 10.5.6.4.13

10.5. CLASSES 369

10.5.6.4.12 getFireTime(AbsoluteTime)

Signature

public
javax.realtime.AbsoluteTime getFireTime(AbsoluteTime dest)

throws IllegalStateException, ArithmeticException

Parameters

dest The instance of AbsoluteTime99 which will be updated in place and
returned. The clock association of the dest parameter is ignored. When dest

is null a new object is allocated for the result.

Throws

ArithmeticException when the result does not fit in the normalized format.
IllegalStateException when this Timer has been destroyed, or if it is not-active.

Returns

The instance of AbsoluteTime100 passed as parameter, with time values repre-
senting the absolute time at which this is expected to fire (release its handlers
or skip). If the dest parameter is null the result is returned in a newly allo-
cated object. If the timer has been created or re-scheduled (see Timer.reschedule(HighResolutionTime)101)
using an instance of RelativeTime for its time parameter then it will return
the sum of the current time and the RelativeTime remaining time before the
timer is expected to fire. The clock association of the returned time is the
clock on which this timer is based.

Get the time at which this Timer is expected to fire. If the Timer is disabled, the
returned time is that of the skipping of the firing. If the Timer is not-active it throws
IllegalStateException.

Available since RTSJ version RTSJ 1.0.1

10.5.6.4.13 reschedule(HighResolutionTime)

Signature

public
void reschedule(HighResolutionTime time)

throws IllegalStateException, IllegalArgumentException

Parameters

99Section 9.5.1
100Section 9.5.1
101Section 10.5.6.4.13

370 CHAPTER 10. CLOCKS AND TIMERS

time The time to reschedule for this event firing. If time is null, the previous
time is still the time used for the Timer firing. The clock associated with the
parameter time is always ignored.

Throws
IllegalArgumentException when time is a negative RelativeTime value.
IllegalStateException when this Timer has been destroyed.

Change the scheduled time for this event. This method can take either an Ab-

soluteTime or a RelativeTime for its argument, and the Timer will behave as if
created using that type for its time parameter. The rescheduling will take place
between the invocation and the return of the method.

NOTE: While the scheduled time is changed as described above, the rescheduling
itself is applied only on the first firing (or on the first skipping if disabled) of a timer’s
activation. If reschedule is invoked after the current activation timer’s firing, then
the rescheduled time will be effective only upon the next start or startDisabled
command (which may need to be preceded by a stop command).

If reschedule is invoked with a RelativeTime time on an active timer before
its first firing/skipping, then the rescheduled firing/skipping time is relative to the
time of invocation.

10.5.6.4.14 start

Signature
public
void start()

throws IllegalStateException

Throws
IllegalStateException when this Timer has been destroyed, or if this timer is
already active.

Start this timer. A timer starts measuring time from when it is started; this method
makes the timer active and enabled.

10.5.6.4.15 start(boolean)

Signature
public
void start(boolean disabled)

throws IllegalStateException

Parameters
disabled If true, the timer will be active but disabled after it is started. If
false this method behaves like the start() method.

Throws

10.5. CLASSES 371

IllegalStateException when this Timer has been destroyed, or if this timer is
already active.

Start this timer. A timer starts measuring time from when it is started. If disabled
is true start the timer making it active in a disabled state. If disabled is false

this method behaves like the start() method.

Available since RTSJ version RTSJ 1.0.1

10.5.6.4.16 stop

Signature

public
boolean stop()

throws IllegalStateException

Throws

IllegalStateException when this Timer has been destroyed.

Returns

true if this was enabled and false otherwise.

Stops a timer when it is active and changes its state to inactive and disabled.

10.5.6.4.17 isActive

Signature

public
boolean isActive()

Returns

true when active, false otherwise.

Determine the activation state of this happening, i.e., it has been started.

10.5.6.4.18 isEnabled

Signature

public
boolean isEnabled()

Returns

true when releasing, false when skipping.

Determine the firing state (releasing or skipping) of this happening, i.e., it is enabled.

372 CHAPTER 10. CLOCKS AND TIMERS

10.5.6.4.19 fire

Signature
public
void fire()

Should not be called except for emulation. The fire method is reserved for the
use of the timer and is called as a result of calling trigger()102. It releases all
handlers when this is enabled and skips, i.e., does nothing, otherwise. As with all
other AbstractAsyncEvent103Its behavior is affected by the enable state, but not
the active state.

10.5.6.4.20 addHandler(AsyncEventHandler)

Signature
public
void addHandler(AsyncEventHandler handler)

throws IllegalStateException, IllegalAssignmentError

Parameters
handler to add to the Timer

Throws
IllegalStateException when this Timer has been destroyed.
IllegalAssignmentError @inheritDoc

Add a handler to release upon fire.

Available since RTSJ version RTSJ 1.0.1

10.5.6.4.21 handledBy(AsyncEventHandler)

Signature
public
boolean handledBy(AsyncEventHandler handler)

throws IllegalStateException

Parameters
handler to add to the Timer

Throws
IllegalStateException when this Timer has been destroyed.

Returns

102Section 10.5.6.4.25
103Section 8.6.1

10.5. CLASSES 373

true when handler is associated with this, otherwise false.

Available since RTSJ version RTSJ 1.0.1

10.5.6.4.22 removeHandler(AsyncEventHandler)

Signature
public
void removeHandler(AsyncEventHandler handler)

throws IllegalStateException

Parameters
handler to add to the Timer

Throws
IllegalStateException when this Timer has been destroyed.

Remove the given handler.

Available since RTSJ version RTSJ 1.0.1

10.5.6.4.23 setHandler(AsyncEventHandler)

Signature
public
void setHandler(AsyncEventHandler handler)

throws IllegalStateException, IllegalAssignmentError

Parameters
handler to add to the Timer

Throws
IllegalStateException when this Timer has been destroyed.
IllegalAssignmentError @inheritDoc

Set a handler and remove all others.

Available since RTSJ version RTSJ 1.0.1

10.5.6.4.24 getDispatcher

Signature
public
javax.realtime.TimeDispatcher getDispatcher()

374 CHAPTER 10. CLOCKS AND TIMERS

10.5.6.4.25 trigger

Signature
public
void trigger()

Cause this timer to be fired in the context of its TimeDispatcher104.

See Section Timable.trigger())

Available since RTSJ version RTSJ 2.0

10.6 Rationale

Clocks differ because of monotonicity, synchronization, jitter, stability, accuracy,
and resolution. There are many possible subclasses of clocks: realtime clocks, user
time clocks, simulation time clocks, wall clocks.

The idea of using multiple clocks may at first seem unusual but it is allowed to
accommodate differences and as a possible resource allocation strategy. Consider
a realtime system where the natural events of the system have different tolerances
for jitter. Assume the system functions properly if event A is triggered within
plus or minus 100 seconds of the actual time it should occur but event B must be
triggered within 100 microseconds of its actual time. Further assume, without loss
of generality, that events A and B are periodic. An application could then create
two instances of PeriodicTimer based on two clocks. The timer for event B should
be based on a Clock which checks its queue at least every 100 microseconds but the
timer for event A could be based on a Clock that checked its queue only every 100
seconds. This use of two clocks reduces the queue size of the accurate clock and
thus queue management overhead is reduced.

The importance of the use of one-shot timers for time-out behavior and the
vagaries in the execution of code prior to starting the timer for short time-outs
dictate that the triggering of the timer should be guaranteed. The problem is
exacerbated for periodic timers where the importance of the periodic triggering
outweighs the precision of the start time. In such cases, it is also convenient to
allow, for example, a relative time of zero to be used as the start time.

Clock resolution is a complicated topic, and clock implementations may have
differing resolution for different purposes. For example, the precision of time re-
turned by a hardware clock device when queried may be greater than the precision
at which that device can supply interrupts. (Consider, for example, a high precision

104Section 10.5.5

10.6. RATIONALE 375

off-chip realtime clock device connected via a shared serial bus.) A different de-
vice may provide pulse-per-second interrupts of very high precision, but be unable
to interrupt on any other interval. The RTSJ Clock class provides only a single
representation of precision, via Clock::getResolution(). Clocks should behave
as if their read (Clock::getTime() and tick (Clock::setAlarm()) precision are
the same, and the same as returned by Clock::getResolution(). Clock imple-
mentations should truncate the results of Clock::getTime() to the precision of
Clock::getResolution(), although this is not required by the RTSJ.

If a Clock that supports alarming has a higher read precision than its tick preci-
sion, and retrieving a high-precision time stamp is desirable, then it should be imple-
mented as two Clock objects. The first would return true for Clock::drivesEvents(),
and return the effective resolution of Clock::setAlarm() for Clock::getResolution().
The second would not support alarm events, and return a value representing the
clock’s actual precision for Clock::getResolution(). Users should not assume
that time values from the two clocks are directly comparable.

376 CHAPTER 10. CLOCKS AND TIMERS

Chapter 11

Memory Management

(Updated by James 5 April, 2013; Andy: 21 November; Ethan: 12 December; James:
3 June, 2014)

11.1 Overview

This section defines classes directly related to memory and memory management.
These classes provide a more generalized means of memory management than avail-
able in a conventional Java VM. In traditional Java, all of the memory needed for
the allocation of an object is taken from a garbage-collected heap. The RTSJ gen-
eralized the concept of a heap to that of a memory area. A memory area consists
of two components: a Java object that manages the memory area and the backing
memory, which is the actual region of memory from which objects are allocated.
Every thread and schedulable has a current allocation context. This context is the
memory area which is managing the backing memory that will be used when the
thread/schedulable requests memory allocation using the Java “new” operator.

There are three types of memory area, distinguished by object lifetime semantics,
defined by the RTSJ:

• Heap memory—the Java heap. Unreferenced objects are collected by a garbage
collector. Individual schedulables can specify their rate of allocation of objects
on the heap.
• Immortal memory—an area defined by the JVM in which allocated objects

might never be collected. Access to the memory area must be independent of
garbage collection activity. Individual schedulables can specify the maximum
amount of memory they need in immortal memory.
• Scoped memory—multiple areas that can be created by the application; ob-

jects are collected in scoped memory when there are no schedulables currently
active in that area. These allow objects with well-defined lifetimes to be cre-

377

378 CHAPTER 11. MEMORY MANAGEMENT

ated and efficiently collected in an easily identified group.
Given that objects can now be created in multiple memory areas, it is necessary

to ensure that an object cannot reference another object that might be collected at
an earlier time. For example, an object in immortal memory (that is never collected)
must not be allowed to reference an object in scoped memory. This is because the
scoped memory object will be collected when there is no schedulable active in its
associated backing memory, rendering the immortal object’s reference to the scoped
memory object invalid. For this reason, the RTSJ defines some memory assignment
rules that are checked by the JVM on every object assignment. If the program
violates the assignment rules, an exception is thrown.

11.1.1 Physical Memory

In embedded systems it is often the case that multiple directly addressable memory
types are available to the application. The JVM implementer may require the VM to
be portable between systems within the same processor family. The VM, therefore,
may have detailed knowledge of the underlying memory architecture. It is primarily
concerned with the standard Random-Access Memory (RAM) provided to it by the
host operating system. The RTSJ, therefore, provides a framework with which the
embedded systems integrator can define memory characteristics and specify ranges
of physical addresses that support those memory characteristics. Physical memory
regions can be allocated as either immortal or scoped memory areas, as follows:
• Physical immortal memory—multiple immortal memory areas that can be

created by the application such that their associated backing memory areas
have specified physical and virtual memory characteristics. For example, the
application could specify that the physical characteristics of the backing store
should be Static RAM (SRAM) and that it should be mapped by the JVM
into virtual memory that is never paged out to disk.
• Physical scoped memory—multiple scoped memory areas that can be created

by the application such that their associated backing store has specified phys-
ical and virtual memory characteristics.

This physical memory model is based on two constraints:
• Java objects can only be allocated in a memory area if the physical backing

memory supports the Java Memory Model (JMM) without the JVM having
to perform any operation additional to those that it performs when accessing
the main RAM for the host machine. No extra compiler or JVM interactions
shall be required. Hence memory regions (such as EEPROM) that potentially
require special hardware instructions to perform write operations cannot be
used as the backing store for physical memory areas. Similarly, non-volatile
memory cannot be used, as object lifetimes in such an area may be longer
than the lifetime of the VM. Although memory having such characteristics

11.1. OVERVIEW 379

incompatible with the JMM are prohibited from being used as backing stores
for object allocation, they can contain objects of primitive Java types and be
accessed via the RTSJ Raw Memory facilities (see Section 12.2.1).
• Any API must delegate detailed knowledge of the memory architecture to the

programmer/integrator of the specific embedded system to be implemented.
The model assumes that the programmer is aware of the memory map, either
through some native operating system interface1 or from some property file
read at program initialization time.

The RTSJ defines a physical memory manager, which maintains a mapping be-
tween physical memory characteristics and the associated physical addresses of mem-
ory that support those characteristics. The physical memory manager has no knowl-
edge of the meaning of the physical characteristics. It only provides a look-up service
and keeps track of which physical memory has been allocated to a physical mem-
ory area’s backing store by the application. The physical memory manager does,
however, have detailed knowledge of the types of virtual memory it can support.
It advertises this knowledge to the application. For example, it knows if the VM
can lock memory pages into memory to ensure that they are never swapped out to
disk. The application can then request that the physical memory manager create
an association between physical memory with certain characteristics and a virtual
memory type (for example, SRAM that is permanently resident in memory). The
physical memory manager creates a filter to represent this association. These filters
can then be used in the constructors to physical immortal and scoped memory areas
to ensure that the backing memory has the required properties.

11.1.2 Stacked Memory

Systems that must both maintain predictable memory performance over a long pe-
riod of time and allocate and release memory at runtime must be able to characterize
and control both internal and external fragmentation. The RTSJ provides scoped
memory for safe, application-driven allocation and release of memory, but the bare
scoped memory interface (e.g., LTMemory) leaves sufficient ambiguity in specification
that using it to create and release scopes at runtime in a fragmentation-free manner
may be VM- or platform-specific. The StackedMemory class provides a safe inter-
face for creating and releasing scopes with a set of rules under which the VM must
guarantee fragmentation-free behavior with predictable memory overhead. These
guarantees are provided by constraining the order in which an application may en-
ter StackedMemory areas, as well as the manner in which they may be arranged on

1For example, the Advanced Configuration and Power Interface (ACPI) specification is an open
standard for device configuration and power management by the operating system. The ACPI
defines platform-independent interfaces for hardware discovery, configuration, power management
and monitoring. See http://www.acpi.info/

http://www.acpi.info/

380 CHAPTER 11. MEMORY MANAGEMENT

the scope stack. These constraints are enforced by the RTSJ where practical.
A StackedMemory area represents both a backing memory providing Scoped-

Memory semantics and a backing memory container from which the backing memory
is drawn. The backing memory container may be further subdivided into addi-
tional backing memories and backing memory containers. Such divisions behave as
if new containers are allocated contiguously from the bottom of the container, while
new backing memories are allocated contiguously from the top, with containers and
backing memories meeting when the container is completely occupied.

StackedMemory backing memory containers are explicitly created and sized, and
have well-defined lifetimes similar to objects in a ScopedMemory area. A Stacked-

Memory object can be created as either a host, which has its own backing memory
container, or a guest, which draws its backing memory directly from its parent’s
backing memory container. When a StackedMemory object is created in a non-
StackedMemory allocation context, it is necessarily a host and we call it a root
StackedMemory. In this case, its backing memory container is drawn from a no-
tional global backing memory container. Applications should assume that a root
StackedMemory’s object is immortal, and implementations need not release it even
if it is finalized. When a StackedMemory object is created in another StackedMem-
ory’s allocation context, it may be created as either a host or guest. If it is created
as a host, its backing memory container is drawn from its parent area’s container,
and its backing memory is created in the newly-divided container. If it is created as
a guest, its backing memory is created in its parent’s backing memory container.

Object lifetimes for objects allocated in StackedMemory backing memories are
the same as those in ScopedMemory allocation areas. When a StackedMemory object
itself is finalized, its backing memory is returned to the container from which it was
drawn, and in the case of host StackedMemory areas, the associated backing memory
container is also returned to the parent’s container. As previously mentioned, root
StackedMemory backing memory containers are effectively immortal. Additionally,
the backing memory of a StackedMemory can be resized under certain conditions.
These semantics allow the memory represented by a root StackedMemory backing
memory container to be partitioned and re-partitioned as the application requires,
without danger of fragmentation and without requiring memory allocation external
to the container to track the partitioning.

In order to preserve the fragmentation-free nature of this contract, certain rules
are enforced, and certain additional rules must be observed by the application. The
rules that are enforced by the StackedMemory infrastructure are:
• A non-root StackedMemory area can only be entered from the same allocation

context in which it was created.
• A StackedMemory area may have at most one direct child in the scope stack

that is a guest StackedMemory area.
• A StackedMemory object cannot be created from another StackedMemory al-

11.1. OVERVIEW 381

(b)

(c)

(a) Root Backing Memory

Container

Memory Container

Root Backing

Taken from Root

Container

Guest Back.
F

re
e Host Backing Memory

Root Backing

Memory

Root Backing

Memory

Memory

Root Backing

Memory

Host Backing

Memory

Host Backing

Memory

Host Backing Memory

Container

Taken from Root

Figure 11.1: Manipulation of StackedMemory Areas

location context unless it is allocated from that area’s backing memory.
• A StackedMemory’s backing memory cannot be resized if there are non-finalized

guest StackedMemory backing memories placed after it in the same backing
memory container.

The additional rules that are not enforced by the infrastructure are not enforced
because it may be desirable for an application to temporarily violate them (e.g.,
when joining child threads in completion order, rather than creation order). They
nevertheless must be observed at critical times in order to preserve fragmentation-
free allocation. They are that, when a new StackedMemory is created as either a
host or guest in a particular container, one of the following conditions must be met:

• The new StackedMemory area is a host, and there are existing non-finalized
host StackedMemory descendants in the parent backing memory, but all such
descendants were created after all non-finalized host descendants. (That is,
effectively last-in first-out finalization.)
• The new StackedMemory area is a host, and there are no existing non-finalized

host StackedMemory descendants in the parent backing memory.
• The new StackedMemory area is a guest.

Note that the first bullet point effectively can be violated only if the parent has
both host and guest children.

Figure 11.1 graphically depicts the behavior of StackedMemory backing memory
containers and backing memories for a root StackedMemory as well as one host and
one guest child StackedMemory under that root. A code fragment that could create
the stack topology in Figure 11.1 is as follows. Assume that this fragment executes
in an allocation context other than a StackedMemory, and that zero overhead is re-

382 CHAPTER 11. MEMORY MANAGEMENT

quired for memory area creation. (Implementations may require a constant amount
of backing memory overhead for each StackedMemory area created in the store.)

1 // Create a StackedMemory with a 10 kB backing memory container and 2 kB backing memory
2 rootArea = new StackedMemory(2048, 10240); // (a)
3 rootArea.enter(new Runnable() {
4 public void run() {
5 // Create a host area with a 6 kB backing memory container and 2 kB backing memory
6 hostArea = new StackedMemory(2048, 6144); // (b)
7 // Create a guest area with a 2 kB backing memory
8 guestArea = new StackedMemory(1536); // (c)
9 }

10 });

Commented points (a), (b), and (c) correspond to their respective subfigures in
Figure 11.1. At point (a), a root StackedMemory has been created with its 10 kB
backing memory container drawn from the notional global container. It contains a
2 kB backing memory, which is then entered. With that backing memory as the
current allocation context, a new host StackedMemory is created at (b), reserving
6 kB of the root StackedMemory’s backing memory container for its own use and
creating a second 2 kB backing memory within that reservation. A new guest
StackedMemory is then created at (c) in the root area (without entering the host
child), occupying 1.5 kB of the remaining free 2 kB of the container in the root
area. At this point, the root area’s backing memory container is almost entirely
occupied, with one 2 kB backing memory, one 1.5 kB backing memory, and a 6 kB
host area backing memory container reservation, and 512 B of free backing memory
container in between. The host StackedMemory created at (b) has 4 kB of its backing
memory container remaining unoccupied in its reservation, which could be allocated
to additional host or guest StackedMemory areas beneath it in the stack.

11.1.3 Summary

In summary, the classes and interfaces defined in this chapter enable

• the definition of regions of memory outside of the traditional Java heap;
• the definition of regions of scoped memory, that is, memory regions with a

limited lifetime;
• the definition of regions of memory containing objects whose lifetime matches

that of the application;
• the definition of regions of memory mapped to specific physical addresses with

specific virtual memory characteristics;
• the specification of maximum memory area consumption and maximum allo-

cation rates for individual schedulables;

11.2. DEFINITIONS 383

• the programmer to query information characterizing the behavior of the garbage
collection algorithm, and to some limited ability, alter the behavior of that al-
gorithm.

11.2 Definitions

Open issue: AJW: I have rewritten this section. The original section is given
below. Although, I am not sure it is of any use. I think I would rather delete it. It
seems at the wrong level to me. End of open issue

The following terms are used throughout this chapter.

Backing store — or Backing Memory. The area of memory that is managed by a
MemoryArea — This meory is logically separate from the Java heap.

Current allocation context — The memory area which will be used when object
allocation is requested.

Execution context — For purposes of scoped memory reference counting, the fol-
lowing are treated as execution contexts :
• RealtimeThread objects that have been started and have not terminated,
• AsyncEventHandler objects that are currently in a released state,
• AsyncEvent objects that are bound to happenings,Open issue: will

need updating End of open issue
• Timer objects that have been started and have not been destroyed,
• other schedulables that control an execution engine. Open issue: this

needs a better explanation End of open issue
Fireable asynchronous event handler — An AsyncEventHandler is fireable when-

ever there is an agent that can release it. This includes cases when the Async-

EventHandler is:
• a miss handler, or overrun handler for a realtime thread that has been

started but not yet terminated;
• a handler associated with an AsyncEvent bound to a happening;
• a handler associated with a Timer that has been started but not yet

destroyed;
• a handler associated with an AsyncEvent that can be programmatically

fired;
• a miss handler or overrun handler for an AsyncEventHandler.

It excludes the case in the final stage of scoped memory wrap-up, where fire-
ability is controlled by the wrap-up process. Open issue: I have no idea what
this mean! End of open issue

Non-default initial memory area — The initial memory area for a schedulable is
non-default if it is not the memory area where the schedulable was created.

Portal — Defined for ScopedMemory areas. They are a tool that associates a

384 CHAPTER 11. MEMORY MANAGEMENT

reference value with a memory area. It is normally used to give code that has
a reference to the memory area a way to go from that reference to a reference
to an object stored in that memory area.

Scope stack — A stack of in-use memory areas. Used to explain the semantics of
memory areas.

11.3 Semantics

The following list establishes the semantics that are applicable across the classes of
this section. Semantics that apply to particular classes, constructors, methods, and
fields will be found in the class description and the constructor, method, and field
detail sections.

11.3.1 Allocation time

1. Some MemoryArea classes are required to have linear (in object size) allocation
time. The linear time attribute requires that, ignoring performance variations
due to hardware caches or similar optimizations and ignoring execution time
of any static initializers, the execution time of new must be bounded by a
polynomial, f(n), where n is the size of the object and for all n > 0, f(n) ≤ Cn
for some constant C.

2. Execution time of object constructors, and time spent in class loading and
static initialization are not governed by bounds on object allocation in this
specification, but setting default initial values for fields in the instance (as
specified in The Java Virtual Machine Specification, Second Edition, section
2.5.1, “Each class variable, instance variable, and array component is initial-
ized with a default value when it is created.”) is considered part of object
allocation and included in the time bound.

11.3.2 The allocation context

3. A memory area is represented by an instance of a subclass of the Memory-

Area class. When a memory area, m, is entered by calling m.enter (or an-
other method from the family of enter-like methods in MemoryArea or Scoped-
Memory), m becomes the allocation context of the current schedulable object.
When control returns from the enter method, the allocation context is re-
stored to the value it had immediately before enter was called.

4. When a memory area, m, is entered by calling m’s executeInArea method,
m becomes the current allocation context of the current schedulable. When

11.3. SEMANTICS 385

control returns from the executeInArea method, the allocation context is
restored to the value it had before executeInArea was called.

5. The initial allocation context for a schedulable when it is first released, is the
memory area that was designated the initial memory area when the schedul-
able was constructed. This initial allocation context becomes the current allo-
cation context for that schedulable when the schedulable object first becomes
eligible for execution. For async event handlers, the initial allocation context
is the same on each release; for realtime threads, in releases subsequent to the
first, the allocation context is the same as it was when the realtime thread
became blocked-for-release-event.

6. All object allocation through the new keyword will use the current allocation
context, but note that allocation can be performed in a specific memory area
using the newInstance and newArray methods.

7. schedulables behave as if they stored their memory area context in a structure
called the scope stack. This structure is manipulated by creation of schedu-
lables, and the following methods from the MemoryArea and ScopedMemory

classes: all the enter and joinAndEnter methods, executeInArea, and both
newInstance methods. See the semantics in Maintaining the Scope Stack for
details.

8. The scope stack is accessible through a set of static methods on Realtime-

Thread. These methods allow outer allocation contexts to be accessed by their
index number. Memory areas on a scope stack may be referred to as inner or
outer relative to other entries in that scope stack. An “outer scope” is further
from the current allocation context on the current scope stack and has a lower
index.

9. The executeInArea, newInstance and newArray methods, when invoked on
an instance of ScopedMemory require that instance to be an outer allocation
context on the current schedulable object’s current scope stack.

10. An instance of ScopedMemory is said to be in use if it has a non-zero reference
count as defined by semantic 17 below.

11.3.3 The Parent Scope

11. Instances of ScopedMemory have special semantics including definition of par-
ent. If a ScopedMemory object is neither in use nor the initial memory area
for a schedulable, it has no parent scope.
• When a ScopedMemory object becomes in use, its parent is the nearest
ScopedMemory object outside it on the current scope stack. If there is
no outside ScopedMemory object in the current scope stack, the parent
is the primordial scope which is not actually a memory area, but only a
marker that constrains the parentage of ScopedMemory objects.

386 CHAPTER 11. MEMORY MANAGEMENT

• At construction of a schedulable, if the initial memory area has no parent,
the initial memory area is assigned the parent it will have when the
schedulable is in execution. This rule determines the initial memory
area’s parent until the schedulable object is de-allocated from its memory
area, or, if the schedulable object is a RealtimeThread, it completes
execution. Open issue: This is a bit confusing. I would rather say
when it is started or or first released or created End of open issue.

12. Instances of ScopedMemory must satisfy the single parent rule which requires
that each scoped memory has a unique parent as defined in semantic 11.

11.3.4 Memory areas and schedulables

13. Pushing a scoped memory onto a scope stack is always subject to the single
parent rule.

14. Each schedulable has an initial memory area which is that object’s initial
allocation context. The default initial memory area is the current allocation
context in effect during execution of the schedulable’s constructor, but schedu-
lables may supply constructors that override the default.

15. A Java thread cannot have a scope stack; consequently it can only be created
and execute within heap or immortal memory. The thread starts execution
with its allocation context set to the memory area containing the Thread

object. An attempt to create a Java thread in a scoped memory area throws
IllegalAssignmentError.

16. A Java thread may use executeInArea, and the newInstance and newArray

methods from the ImmortalMemory and HeapMemory classes. These methods
allow it to execute with an immortal current allocation context, but semantic
15 applies even during execution of these methods.

11.3.5 Scoped memory reference counting

17. Each instance of the class ScopedMemory or its subclasses must maintain a
reference count which is greater than zero if and only if either:
• the scoped memory area is the current allocation context or an outer

allocation context for one or more execution contexts ; or else
• the scoped memory area is the fireable AsyncEventHandler and the han-

dler was created with the pinInitialmemoryArea flag set to True. Open
issue: this makes no sense to me End of open issue

18. Each instance of thePinnableMemory class must support a pinned count. This
count is incremented for each call of the pin method and decremented for each
call of the unpin method. The count is always greater than or equal to zero
(that is, calling the unpin method has no effect if the count equals zero).

11.3. SEMANTICS 387

19. When the reference count for an instance of the class ScopedMemory is ready
to be decremented from one to zero and the pinned count (if present) is equal
to zero, all unfinalized objects within that area are considered ready for fi-
nalization. If after the finalizers for all such unfinalized objects in the scoped
memory area run to completion, the reference count for the memory area is still
ready to be decremented to zero and the pinned count is still equal to zero, any
newly created unfinalized objects are considered ready for finalization and the
process is repeated until no new objects are created or the scoped memory’s
reference count is no longer ready to be decremented from one to zero. When
the scope contains no unfinalized objects and its reference count is ready to be
decremented from one to zero and the pinned count is equal to zero, any async
event in the scope is no longer treated as a source of fireability for async event
handlers. If that action causes object creation in the scope the finalization
process resumes from the beginning, if the reference count is no longer ready
to be decremented to zero the finalization process terminates, otherwise, the
reference count is decremented to zero and the memory scope is emptied of
all objects. The process of scope finalization starts when the scope’s reference
count is about to go to zero with a zero pin count and continues until the
scope is emptied or the process is terminated because the reference count is
no longer about to go to zero. The RTSJ implementation must behave effec-
tively as if during the finalization process the SO executing the finalization of
a scope held a synchronized lock that must also be acquired to increase the
reference count when entering the scope, to increase the reference count during
startup for a thread with the finalizing scope as its non-default initial memory
area, and to increase the reference count while making fireable an AEH with
the scope as its non-default initial memory area. Although the steps in scope
finalization are ordered no order is specified for finalization of objects or for
disarming fireability of AEHs. The objects may be processed in any order
or concurrently, but at no time may a scope’s reference count be reduced to
zero while it has one or more child scopes. (This semantic is a special case of
the finalization implementation specified in The Java Language Specification,
second edition, section 12.6.1.)

20. When the pinned count is ready to go to zero and the reference countis zero,
all unfinalized objects within that area are considered ready for finalization,
and the same semantics as 19 above applies.

21. Finalization may start when all unfinalized objects in the scope are ready for
finalization. Finalizers are executed with the current allocation context set
to the finalizing scope and are executed by the schedulable in control of the
scope when its reference count is ready to be decremented from one to zero. If
finalizers are executed because a realtime thread terminates or an AsyncEvent-

Handler becomes non-fireable, that realtime thread or AsyncEventHandler is

388 CHAPTER 11. MEMORY MANAGEMENT

considered in control of the scope and must execute the finalizers.
22. From the time objects in a scope are deleted until the portal on the scope

is successfully set to a non-null value with setPortal, the value returned by
getPortal on that scoped memory object must be null.

11.3.6 Immortal memory

23. Objects created in any immortal memory area are unexceptionally reference-
able from all Java threads, and all schedulables, and the allocation and use of
objects in immortal memory is never subject to garbage collection delays.

24. An implementation may execute finalizers for immortal objects when it deter-
mines that the application has terminated. Finalizers will be executed by a
thread or schedulable whose current allocation context is not scoped memory.
Regardless of any call to runFinalizersOnExit, except as required to support
the base Java platform, the system need not execute finalizers for immortal
objects that remain unfinalized when the JVM begins termination.

25. Class objects, the associated static memory, and interned Strings behave ef-
fectively as if they were allocated in immortal memory with respect to refer-
ence rules, assignment rules, and preemption delays by no-heap schedulables.
Static initializers are executed effectively as if the current thread performed
ImmortalMemory.instance().executeInArea(r) where r is a Runnable that
executes the <clinit> method of the class being initialized.

11.3.7 Maintaining referential integrity

26. Assignment rules placed on reference assignments prevent the creation of dan-
gling references, and thus maintain the referential integrity of the Java runtime.
The restrictions are listed in the following table:

Stored Reference Reference Reference
in to Object in to Object in to Object in null

Area Heap Immortal Scoped
Heap Permit Permit Forbid Permit

Immortal Permit Permit Forbid Permit
Scoped Permit Permit Forbid Permit
Scoped Permit Permit Permited from same Permit

or outer scope
Local Variable Permit Permit Forbit Permit

For this table, ImmortalMemory and ImmortalPhysicalMemory are equivalent,
and all sub-classes of ScopedMemory are equivalent.

27. An implementation must ensure that the above checks are performed on every
assignment statement before the statement is executed. (This includes the
possibility of static analysis of the application logic). Checks for operations on

11.4. MAINTAINING THE SCOPE STACK 389

local variables are not required because a potentially invalid reference would
be captured by the other checks before it reached a local variable.

11.3.8 Object initialization

28. Static initializers run with the immortal memory area as their allocation con-
text.

29. The current allocation context in a constructor for an object is the memory
area in which the object is allocated. For new, this is the current allocation
context when new was called. For members of the m.newinstance family, the
current allocation context is memory area m.

11.4 Maintaining the Scope Stack

This section describes maintenance of a data structure that is called the scope stack.
Implementations are not required to use a stack or implement the algorithms given
here. It is only required that an implementation behave with respect to the ordering
and accessibility of memory scopes effectively as if it implemented these algorithms.
The scope stack is implicitly visible through the assignment rules, and the stack
is explicitly visible through the static getOuterMemoryArea(int index) method
on RealtimeThread.

Four operations affect the scope stack: the enter methods in MemoryArea and
ScopedMemory, construction of a new schedulable, the executeInArea method in
MemoryArea, and the new instance methods in MemoryArea.
• The memory area at the top of a schedulable object’s scope stack is the sched-

ulable’s current allocation context.
• When a schedulable, t, creates a schedulable object, nt, in a ScopedMemory

object’s allocation area, nt acquires a copy of the scope stack associated with t
at the time nt is constructed including all entries from up to and including the
memory area containing nt. If nt is created in heap, immortal, or immortal
physical memory, nt is created with a scope stack containing only heap, immor-
tal, or immortal physical memory respectively. If nt has a non-default initial
memory area, ima, then ima is pushed on nt’s newly-created scope stack.
• When a memory area, ma is entered by calling a ma.enter method, ma is pushed

on the scope stack and becomes the allocation context of the current sched-
ulable object. When control returns from the enter method, the allocation
context is popped from the scope stack
• When a memory area, m, is entered by calling m’s executeInArea method or

one of the m.newInstance methods the scope stack before the method call is
preserved and replaced with a scope stack constructed as follows:

390 CHAPTER 11. MEMORY MANAGEMENT

– If ma is a scoped memory area the new scope stack is a copy of the
schedulable’s previous scope stack up to and including ma.

– If ma is not a scoped memory area the new scope stack includes only ma.
When control returns from the executeInArea method, the scope stack is
restored to the value it had before ma.executeInArea or ma.newInstance

was called.
Notes:
• For the purposes of these algorithms, stacks grow up.
• The representative algorithms ignore important issues like freeing objects in

scopes.
• In every case, objects in a scoped memory area are eligible to be freed when

the reference count for the area is zero after finalizers for that scope are run.
• Informally, any objects in a scoped memory area must be freed and their

finalizers run before the reference count for the memory area is incremented
from zero to one.

11.4.1 The enter method

For ma.enter(logic):

1 push ma on the scope stack belonging to the current schedulable
2 −− which may throw ScopedCycleException
3 execute logic.run method
4 pop ma from the scope stack

11.4.2 The executeInArea or newInstance methods

For ma.executeInArea(logic), ma.newInstance(), or ma.newArray():

1 if ma is an instance of heap immortal or ImmortalPhysicalMemory,
2 start a new scope stack containing only ma.
3 make the new scope stack the scope stack for the current
4 schedulable.
5 else if ma is in the scope stack for the current schedulable,
6 start a new scope stack containing ma and all
7 scopes below ma on the scope stack.
8 make the new scope stack the scope stack for the current
9 schedulable.

10 else
11 throw InaccessibleAreaException, execute logic.run,
12 or construct the object.
13 restore the previous scope stack for the current schedulable.
14 discard the new scope stack.

11.5. THE SINGLE PARENT RULE 391

15 end

11.4.3 Constructor methods for Schedulables

For construction of a schedulable in memory area cma with initial memory area of
ima:

1 if cma is heap, immortal or ImmortalPhysicalMemory,
2 create a new scope stack containing cma.
3 else
4 start a new scope stack containing the entire
5 current scope stack.
6
7 if ima != cma
8 push ima on the new scope stack
9 −− which may throw ScopedCycleException.

The above pseudocode illustrates a straightforward implementation of this spec-
ification’s semantics, but any implementation that behaves effectively like this one
with respect to reference count values of zero and one is permissible. An implemen-
tation may be eager or lazy in maintenance of its reference count provided that it
correctly implements the semantics for reference counts of zero and one.

11.5 The Single Parent Rule

Every push of a scoped memory type on a scope stack requires reference to the single
parent rule, this enforces the invariant that every scoped memory area has no more
than one parent.

The parent of a scoped memory area is identified by the following rules (for a
stack that grows up):
• If the memory area is not currently on any scope stack, it has no parent
• If the memory area is the outermost (lowest) scoped memory area on any scope

stack, its parent is the primordial scope.
• For all other scoped memory areas, the parent is the first scoped memory area

outside it on the scope stack.
Except for the primordial scope, which represents heap, immortal and immortal

physical memory, only scoped memory areas are visible to the single parent rule.
The operational effect of the single parent rule is that when a scoped memory

area has a parent, the only legal change to that value is to “no parent.” Thus an
ordering imposed by the first assignments of parents of a series of nested scoped
memory areas is the only nesting order allowed until control leaves the scopes; then

392 CHAPTER 11. MEMORY MANAGEMENT

a new nesting order is possible. Thus a schedulable attempting to enter a scope can
only do so by entering in the established nesting order.

11.5.1 Scope Tree Maintenance

The single parent rule is enforced effectively as if there were a tree with the pri-
mordial scope (representing heap, immortal, and immortal physical memory) at its
root, and other nodes corresponding to every scoped memory area that is currently
on any schedulable’s scope stack.

Each scoped memory has a reference to its parent memory area, ma.parent.
The parent reference may indicate a specific scoped memory area, no parent, or the
primordial parent.

If a scoped memory area is the non-default initial memory area of an async event
handler, or the non-default initial memory area of a realtime thread that has not
terminated, it is referred to as pinned.

11.5.1.1 On Scope Stack Push of ma

The following procedure could be used to maintain the scope tree and ensure that
push operations on a schedulable’s scope stack do not violate the single parent rule.

1 precondition: ma.parent is set to the correct parent (either a scoped
2 memory area or the primordial scope) or to noParent.
3
4 t.scopeStack is the scope stack of the current schedulable
5
6 if ma is scoped,
7 parent = findFirstScope(t.scopeStack)
8 if ma.parent == noParent
9 ma.parent = parent.

10 else if ma.parent != parent
11 throw ScopedCycleException.
12 else
13 t.scopeStack.push(ma).

findFirstScope is a convenience function that looks down the scope stack for
the next entry that is a reference to an instance of ScopedMemoryArea.

1 findFirstScope(scopeStack)
2 {
3 for s = top of scope stack to bottom of scope stack
4 if s is an instance of scopedMemory
5 return s return primordial scope
6 }

11.5. THE SINGLE PARENT RULE 393

11.5.1.2 On Scope Stack Pop of ma

1 ma = t.scopeStack.pop.
2 if ma is scoped
3 if !(ma.in_use || ma.pinned)
4 ma.parent = noParent

394 CHAPTER 11. MEMORY MANAGEMENT

11.6 Interfaces

11.6.1 ChildScopeVisitor

This interface is used to visit the members of the set of scoped children of a memory
area. An object implementing this interface is passed to the MemoryArea.visitScopedChildren2

method.

11.6.1.1 Methods

11.6.1.1.1 visit(ScopedMemory)

Signature

public
java.lang.Object visit(ScopedMemory scope)

Parameters

scope The scoped memory area being visited.

Returns

Any object chosen by the application. If visit returns a non-null value, no
more scopes are visited and the MemoryArea.visitScopedChildren3 method
returns the value returned by {visit(ScopedMemory)4.

Visit the members of the set of child scopes. The set may be concurrently modified
by other tasks, but the view seen by the visitor may not be updated to reflect those
changes. The guarantees are:

• If the set is disturbed by other tasks, the visitor shall visit no member more
than once, and it shall visit only scopes that were a member of the set at some
time during the enumeration of the set, and it shall visit all the scopes that
are not deleted during the execution of the visitor.

2Section 11.8.7.2.21
3Section 11.8.7.2.21
4Section 11.6.1.1.1

11.6. INTERFACES 395

11.6.2 PhysicalMemoryCharacteristic

A tagging interface used to identify physical memory characteristics. Applications
can give names to regions of memory that are descibed by PhysicalMemoryModule.
The names are defined by creating instances of this interface. For example, final
static PhysicalMemoryCharacteristic STATIC RAM = ...;

Available since RTSJ version RTSJ 2.0

11.6.3 PhysicalMemoryFilter

An interface to the physical memory filters. Filters are created by a factory in the
PhysicalMemoryManager5 class.

Available since RTSJ version RTSJ 2.0

11.6.3.1 Methods

11.6.3.1.1 setVMCharacteristics(javax.realtime.VirtualMemoryCharacteristic[])

Signature

public
void setVMCharacteris-

tics(javax.realtime.VirtualMemoryCharacteristic[] required)

5Section 15.4.2

396 CHAPTER 11. MEMORY MANAGEMENT

11.6.4 VirtualMemoryCharacteristic

A tagging interface used to identify virtual memory characteristics. The Physi-
calMemoryManager defines static public objects that implement this interface. Each
instant represent a particular virtual memory characteristics supported by the host-
ing machine.

For example, public final static VirtualMemoryCharacteristic PERMANENTLY RESIDENT

Available since RTSJ version RTSJ 2.0

11.7. ENUMERATIONS 397

11.7 Enumerations

11.7.1 NewPhysicalMemoryManager.CachingBehavior

Inheritance
java.lang.Object

java.lang.Enum
javax.realtime.NewPhysicalMemoryManager.CachingBehavior

11.7.1.1 Enumeration Constants

11.7.1.1.1 DISABLED
public static final DISABLED

11.7.1.1.2 WRITE THROUGH
public static final WRITE THROUGH

11.7.1.1.3 WRITE BACK
public static final WRITE BACK

11.7.1.2 Constructors

11.7.1.2.1 NewPhysicalMemoryManager.CachingBehavior

Signature

private

NewPhysicalMemoryManager.CachingBehavior()

11.7.1.3 Methods

398 CHAPTER 11. MEMORY MANAGEMENT

11.7.1.3.1 values

Signature

public static
javax.realtime.NewPhysicalMemoryManager.CachingBehavior[]

values()

11.7.1.3.2 valueOf(String)

Signature

public static
javax.realtime.NewPhysicalMemoryManager.CachingBehavior

valueOf(String name)

11.7.2 NewPhysicalMemoryManager.PagingBehavior

Inheritance

java.lang.Object
java.lang.Enum

javax.realtime.NewPhysicalMemoryManager.PagingBehavior

11.7.2.1 Enumeration Constants

11.7.2.1.1 FIXED

public static final FIXED

11.7.2.1.2 SWAPPABLE

public static final SWAPPABLE

11.7.2.2 Constructors

11.7. ENUMERATIONS 399

11.7.2.2.1 NewPhysicalMemoryManager.PagingBehavior

Signature

private

NewPhysicalMemoryManager.PagingBehavior()

11.7.2.3 Methods

11.7.2.3.1 values

Signature
public static
javax.realtime.NewPhysicalMemoryManager.PagingBehavior[]

values()

11.7.2.3.2 valueOf(String)

Signature
public static
javax.realtime.NewPhysicalMemoryManager.PagingBehavior

valueOf(String name)

400 CHAPTER 11. MEMORY MANAGEMENT

11.8 Classes

11.8.1 GarbageCollector

Inheritance
java.lang.Object

javax.realtime.GarbageCollector
The system shall provide dynamic and static information characterizing the tempo-
ral behavior and imposed overhead of any garbage collection algorithm provided by
the system. This information shall be made available to applications via methods
on subclasses of GarbageCollector. Implementations are allowed to provide any
set of methods in subclasses as long as the temporal behavior and overhead are
sufficiently categorized. The implementations are also required to fully document
the subclasses.

A reference to the garbage collector responsible for heap memory is available
from RealtimeSystem.currentGC()6.

11.8.1.1 Constructors

11.8.1.2 Methods

11.8.1.2.1 getPreemptionLatency

Signature
public abstract
javax.realtime.RelativeTime getPreemptionLatency()

Returns
The worst-case preemption latency of the garbage collection algorithm rep-
resented by this. The returned object is allocated in the current allocation
context. If there is no constant that bounds garbage collector preemption
latency, this method shall return a relative time with Long.MAX VALUE mil-
liseconds. The number of nanoseconds in this special value is unspecified.

6Section 13.3.6.3.1

11.8. CLASSES 401

Preemption latency is a measure of the maximum time a schedulable object may
have to wait for the collector to reach a preemption-safe point.

Instances of NoHeapRealtimeThread7 and async event handlers with the no-heap
option preempt garbage collection immediately, but other schedulables must wait
until the collector reaches a preemption-safe point. For many garbage collectors
the only preemption safe point is at the end of garbage collection, but an imple-
mentation of the garbage collector could permit a schedulable to preempt garbage
collection before it completes. The getPreemptionLatency method gives such a
garbage collector a way to report the worst-case interval between release of a sched-
ulable during garbage collection, and the time the schedulable starts execution or
gains full access to heap memory, whichever comes later.

11.8.2 HeapMemory

Inheritance
java.lang.Object

javax.realtime.MemoryArea
javax.realtime.HeapMemory

The HeapMemory class is a singleton object that allows logic with a non-heap allo-
cation context to allocate objects in the Java heap.

11.8.2.1 Fields

11.8.2.1.1 heap
private static heap

11.8.2.2 Constructors

11.8.2.2.1 HeapMemory

Signature

7Section 5.4.1

402 CHAPTER 11. MEMORY MANAGEMENT

private

HeapMemory()

11.8.2.3 Methods

11.8.2.3.1 enter

Signature
public
void enter()

Throws
IllegalThreadStateException when the caller is a Java thread.
IllegalArgumentException @inheritDoc
MemoryAccessError when caller is a no-heap schedulable.

Associate this memory area with the current schedulable for the duration of the ex-
ecution of the run() method of the instance of Runnable given in the constructor.
During this period of execution, this memory area becomes the default allocation
context until another default allocation context is selected (using enter, or ex-

ecuteInArea8) or the enter method exits.

11.8.2.3.2 enter(Runnable)

Signature
public
void enter(Runnable logic)

Parameters
logic The Runnable object whose run() method should be invoked.

Throws
MemoryAccessError when caller is a no-heap schedulable.
IllegalThreadStateException @inheritDoc
IllegalArgumentException @inheritDoc

Associate this memory area with the current schedulable for the duration of the exe-
cution of the run() method of the given Runnable. During this period of execution,
this memory area becomes the default allocation context until another default allo-
cation context is selected (using enter, or executeInArea9) or the enter method

8Section 11.8.2.3.4
9Section 11.8.2.3.4

11.8. CLASSES 403

exits.

11.8.2.3.3 instance

Signature
public static
javax.realtime.HeapMemory instance()

Returns
The singleton HeapMemory10 object.

Returns a reference to the singleton instance of HeapMemory11 representing the Java
heap. The singleton instance of this class shall be allocated in the ImmortalMemory12

area.

11.8.2.3.4 executeInArea(Runnable)

Signature
public
void executeInArea(Runnable logic)

Parameters
logic The runnable object whose run() method should be executed.

Throws
IllegalArgumentException when logic is null.
MemoryAccessError when caller is a no-heap schedulable.

Execute the run method from the logic parameter using heap as the current allo-
cation context. For a schedulable, this saves the current scope stack and replaces
it with one consisting only of the HeapMemory instance; restoring the original scope
stack upon completion.

11.8.2.3.5 newArray(java.lang.Class, int)

Signature
public
java.lang.Object newArray(java.lang.Class type, int number)

Parameters
type @inheritDoc
number @inheritDoc

Throws

10Section 11.8.2
11Section 11.8.2
12Section 11.8.3

404 CHAPTER 11. MEMORY MANAGEMENT

MemoryAccessError when caller is a no-heap schedulable.
IllegalArgumentException @inheritDoc
OutOfMemoryError @inheritDoc

Returns
@inheritDoc

Allocate an array of the given type in this memory area. This method may be
concurrently used by multiple threads.

11.8.2.3.6 newInstance(java.lang.Class)

Signature
public
java.lang.Object newInstance(java.lang.Class type)

throws IllegalAccessException, InstantiationException

Parameters
type @inheritDoc

Throws
MemoryAccessError when caller is a no-heap schedulable.
IllegalAccessException @inheritDoc
IllegalArgumentException @inheritDoc
ExceptionInInitializerError @inheritDoc
OutOfMemoryError @inheritDoc
InstantiationException @inheritDoc

Returns
@inheritDoc

Allocate an object in this memory area. This method may be concurrently used by
multiple threads.

11.8.2.3.7 newInstance(java.lang.reflect.Constructor, java.lang.Object[])

Signature
public
java.lang.Object newInstance(java.lang.reflect.Constructor c,

java.lang.Object[] args)

throws IllegalAccessException, InstantiationException,

InvocationTargetException

Parameters
c T@inheritDoc
args @inheritDoc

Throws

11.8. CLASSES 405

MemoryAccessError when caller is a no-heap schedulable.
IllegalAccessException @inheritDoc
InstantiationException @inheritDoc
OutOfMemoryError @inheritDoc
IllegalArgumentException @inheritDoc
InvocationTargetException @inheritDoc

Returns

@inheritDoc

Allocate an object in this memory area. This method may be concurrently used by
multiple threads.

11.8.2.3.8 visitScopedChildren(ChildScopeVisitor)

Signature

public
java.lang.Object visitScopedChildren(ChildScopeVisitor visitor)

Parameters

visitor invoke the ChildScopeVisitor.visit(ScopedMemory)13 method for
each member of the set of scoped memory areas that was created in heap
memory and has the primordial scope as its parent.

Throws

IllegalArgumentException @inheritDoc

Returns

@inheritDoc

Visit each scoped memory area who’s parent is the primordial scope and was created
in heap memory.

11.8.3 ImmortalMemory

Inheritance

java.lang.Object
javax.realtime.MemoryArea

javax.realtime.ImmortalMemory

ImmortalMemory is a memory resource that is unexceptionally available to all schedu-
lables and Java threads for use and allocation.

13Section 11.6.1.1.1

406 CHAPTER 11. MEMORY MANAGEMENT

An immortal object may not contain references to any form of scoped memory,
e.g., LTMemory14, StackedMemory15, PinnableMemory16, or LTPhysicalMemory17.

Objects in immortal have the same states with respect to finalization as objects
in the standard Java heap, but there is no assurance that immortal objects will be
finalized even when the JVM is terminated.

Methods from ImmortalMemory should be overridden only by methods that use
super.

11.8.3.1 Fields

11.8.3.1.1 MEM SIZE
private static final MEM SIZE

11.8.3.1.2 immortal
private static immortal

11.8.3.2 Constructors

11.8.3.2.1 ImmortalMemory

Signature

private

ImmortalMemory()

11.8.3.3 Methods

14Section 11.8.5
15Section 11.8.15
16Section 11.8.11
17Section 11.8.6

11.8. CLASSES 407

11.8.3.3.1 instance

Signature
public static
javax.realtime.ImmortalMemory instance()

Returns
The singleton ImmortalMemory18 object.

Returns a pointer to the singleton ImmortalMemory19 object.

11.8.3.3.2 executeInArea(Runnable)

Signature
public
void executeInArea(Runnable logic)

Parameters
logic The runnable object whose run() method should be executed.

Throws
IllegalArgumentException when logic is null.

Execute the run method from the logic parameter using this memory area as the
current allocation context. For a schedulable, this saves the current scope stack and
replaces it with one consisting only of the ImmortalMemory instance; restoring the
original scope stack upon completion.

11.8.3.3.3 visitScopedChildren(ChildScopeVisitor)

Signature
public
java.lang.Object visitScopedChildren(ChildScopeVisitor visitor)

Parameters
visitor invoke the ChildScopeVisitor.visit(ScopedMemory)20 method for
each member of the set of scoped memory areas that was created in this
immortal memory area and has the primordial scope as its parent.

Throws
IllegalArgumentException @inheritDoc

Returns
@inheritDoc

Visit each scoped memory area who’s parent is the primordial scope and was created
in this memory area.

18Section 11.8.3
19Section 11.8.3
20Section 11.6.1.1.1

408 CHAPTER 11. MEMORY MANAGEMENT

11.8.4 ImmortalPhysicalMemory

Inheritance
java.lang.Object

javax.realtime.MemoryArea
javax.realtime.ImmortalPhysicalMemory

An instance of ImmortalPhysicalMemory allows objects to be allocated from a
range of physical memory with particular attributes, determined by their memory
type. This memory area has the same restrictive set of assignment rules as Im-

mortalMemory21 memory areas, and may be used in any execution context where
ImmortalMemory is appropriate.

No provision is made for sharing object in ImmortalPhysicalMemory with enti-
ties outside the JVM that creates them, and, while the memory backing an instance
of ImmortalPhysicalMemory could be shared by multiple JVMs, the class does not
support such sharing.

Methods from ImmortalPhysicalMemory should be overridden only by methods
that use super.

11.8.4.1 Constructors

11.8.4.1.1 ImmortalPhysicalMemory(PhysicalMemoryFilter, long)

Signature

public

ImmortalPhysicalMemory(PhysicalMemoryFilter type, long size)

Parameters
type An instance of a physical memory filter that defines the the required
characteristics of the physical memory and the required charcateristics of the
virtual memory it is to mapped to.
size The size of memory required.

Throws
IllegalArgumentException when size is less than zero.

21Section 11.8.3

11.8. CLASSES 409

OutOfMemoryError when there is insufficient memory for the ImmortalPhys-
icalMemory object or for the backing memory.
SizeOutOfBoundsException when the size extends into an invalid range of
memory.
SecurityException when the application doesn’t have permissions to access
physical memory or the given type of memory.

Create a phyical immortal memory area of the specified type and size.

Available since RTSJ version RTSJ 2.0

11.8.4.1.2 ImmortalPhysicalMemory(PhysicalMemoryFilter, SizeEstima-
tor)

Signature

public

ImmortalPhysicalMemory(PhysicalMemoryFilter type, SizeEstimator size)

Parameters
type An instance of a physical memory filter that defines the the required
characteristics of the physical memory and the required charcateristics of the
virtual memory it is to mapped to.
size A size estimator for this memory area.

Throws
IllegalArgumentException when size is less than zero.
OutOfMemoryError when there is insufficient memory for the ImmortalPhys-
icalMemory object or for the backing memory.
SizeOutOfBoundsException when the size extends into an invalid range of
memory.
SecurityException when the application doesn’t have permissions to access
physical memory or the given type of memory.

Create a phyical immortal memory area of the specified type and size.

Available since RTSJ version RTSJ 2.0

11.8.4.1.3 ImmortalPhysicalMemory(PhysicalMemoryFilter, long, Runnable)

Signature

410 CHAPTER 11. MEMORY MANAGEMENT

public

ImmortalPhysicalMemory(PhysicalMemoryFilter type, long size, Runnable logic)

Parameters

type An instance of a physical memory filter that defines the the required
characteristics of the physical memory and the required charcateristics of the
virtual memory it is to mapped to.
size The size of memory required.
logic The run() method of this object will be called whenever MemoryArea.enter()22

is called. If logic is null, logic must be supplied when the memory area is
entered.

Throws

IllegalArgumentException when size is less than zero.
OutOfMemoryError when there is insufficient memory for the ImmortalPhys-
icalMemory object or for the backing memory.
SizeOutOfBoundsException when the size extends into an invalid range of
memory.
SecurityException when the application doesn’t have permissions to access
physical memory or the given type of memory.

Create a phyical immortal memory area of the specified type and size.

Available since RTSJ version RTSJ 2.0

11.8.4.1.4 ImmortalPhysicalMemory(PhysicalMemoryFilter, SizeEstima-
tor, Runnable)

Signature

public

ImmortalPhysicalMemory(PhysicalMemoryFilter type, SizeEstimator size, Runnable logic)

Parameters

type An instance of a physical memory filter that defines the the required
characteristics of the physical memory and the required charcateristics of the
virtual memory it is to mapped to.
size A size estimator for this memory area.

22Section 11.8.7.2.1

11.8. CLASSES 411

logic The run() method of this object will be called whenever MemoryArea.enter()23

is called. If logic is null, logic must be supplied when the memory area is
entered.

Throws
IllegalArgumentException when size is less than zero.
OutOfMemoryError when there is insufficient memory for the ImmortalPhys-
icalMemory object or for the backing memory.
SizeOutOfBoundsException when the size extends into an invalid range of
memory.
SecurityException when the application doesn’t have permissions to access
physical memory or the given type of memory.

Create a phyical immortal memory area of the specified type and size.

Available since RTSJ version RTSJ 2.0

11.8.4.2 Methods

11.8.4.2.1 executeInArea(Runnable)

Signature
public
void executeInArea(Runnable logic)

Parameters
logic The runnable object whose run() method should be executed.

Throws
IllegalArgumentException when logic is null.

Open issue: AJW: Why is this method here? Execute the run method from the
logic parameter using this memory area as the current allocation context. For
a schedulable, this saves the current scope stack and replaces it with one consist-
ing only of the ImmortalMemory instance; restoring the original scope stack upon
completion. End of open issue

11.8.4.2.2 visitScopedChildren(ChildScopeVisitor)

Signature

23Section 11.8.7.2.1

412 CHAPTER 11. MEMORY MANAGEMENT

public
java.lang.Object visitScopedChildren(ChildScopeVisitor visitor)

Parameters
visitor invoke the ChildScopeVisitor.visit(ScopedMemory)24 method for
each member of the set of scoped memory areas that was created in this
immortal memory area and has the primordial scope as its parent.

Throws
IllegalArgumentException @inheritDoc

Returns
@inheritDoc

Open issue: AJW: Why is this method here? Visit each scoped memory area
who’s parent is the primordial scope and was created in this immortal memory area.
End of open issue

11.8.5 LTMemory

Inheritance
java.lang.Object

javax.realtime.MemoryArea
javax.realtime.ScopedMemory

javax.realtime.LTMemory
LTMemory represents a memory area guaranteed by the system to have linear time
allocation when memory consumption from the memory area is less than the mem-
ory area’s initial size. Execution time for allocation is allowed to vary when memory
consumption is between the initial size and the maximum size for the area. Fur-
thermore, the underlying system is not required to guarantee that memory between
initial and maximum will always be available.

The memory area described by a LTMemory instance does not exist in the Java
heap, and is not subject to garbage collection. Thus, it is safe to use a LTMem-

ory object as the initial memory area associated with a NoHeapRealtimeThread25,
or to enter the memory area using the ScopedMemory.enter26 method within a
NoHeapRealtimeThread27.

Enough memory must be committed by the completion of the constructor to
satisfy the initial memory requirement. (Committed means that this memory must
always be available for allocation). The initial memory allocation must behave, with

24Section 11.6.1.1.1
25Section 5.4.1
26Section 11.8.13.2.1
27Section 5.4.1

11.8. CLASSES 413

respect to successful allocation, as if it were contiguous; i.e., a correct implementa-
tion must guarantee that any sequence of object allocations that could ever succeed
without exceeding a specified initial memory size will always succeed without ex-
ceeding that initial memory size and succeed for any instance of LTMemory with that
initial memory size. (Note: to ensure that all requested memory is available set ini-
tial and maximum to the same value) Methods from LTMemory should be overridden
only by methods that use super.

See Section MemoryArea)

See Section ScopedMemory)

See Section RealtimeThread)

See Section NoHeapRealtimeThread)

11.8.5.1 Fields

11.8.5.1.1 initialSize
initialSize

11.8.5.1.2 maximumSize
maximumSize

11.8.5.2 Constructors

11.8.5.2.1 LTMemory(long, long)

Signature

public

LTMemory(long initial, long maximum)

Parameters

414 CHAPTER 11. MEMORY MANAGEMENT

initial The size in bytes of the memory to allocate for this area. This memory
must be committed before the completion of the constructor.
maximum The size in bytes of the memory to allocate for this area.

Throws
IllegalArgumentException when initial is greater than maximum, or if ini-

tial or maximum is less than zero.
OutOfMemoryError when there is insufficient memory for the LTMemory object
or for the backing memory.

Create an LTMemory of the given size.

11.8.5.2.2 LTMemory(long, long, Runnable)

Signature

public

LTMemory(long initial, long maximum, Runnable logic)

Parameters
initial The size in bytes of the memory to allocate for this area. This memory
must be committed before the completion of the constructor.
maximum The size in bytes of the memory to allocate for this area.
logic The run() of the given Runnable will be executed using this as its
initial memory area. If logic is null, this constructor is equivalent to LT-

Memory(long initial, long maximum)28.
Throws

IllegalArgumentException when initial is greater than maximum, or if ini-

tial or maximum is less than zero.
OutOfMemoryError when there is insufficient memory for the LTMemory object
or for the backing memory.
IllegalAssignmentError when storing logic in this would violate the assign-
ment rules.

Create an LTMemory of the given size.

11.8.5.2.3 LTMemory(SizeEstimator, SizeEstimator)

Signature

public

LTMemory(SizeEstimator initial, SizeEstimator maximum)

28Section 11.8.5.2.1

11.8. CLASSES 415

Parameters
initial An instance of SizeEstimator29 used to give an estimate of the initial
size. This memory must be committed before the completion of the construc-
tor.
maximum An instance of SizeEstimator30 used to give an estimate for the
maximum bytes to allocate for this area.

Throws
IllegalArgumentException when initial is null, maximum is null, initial.getEstimate()
is greater than maximum.getEstimate(), or if initial.getEstimate() is less
than zero.
OutOfMemoryError when there is insufficient memory for the LTMemory object
or for the backing memory.

Create an LTMemory of the given size.

11.8.5.2.4 LTMemory(SizeEstimator, SizeEstimator, Runnable)

Signature

public

LTMemory(SizeEstimator initial, SizeEstimator maximum, Runnable logic)

Parameters
initial An instance of SizeEstimator31 used to give an estimate of the initial
size. This memory must be committed before the completion of the construc-
tor.
maximum An instance of SizeEstimator32 used to give an estimate for the
maximum bytes to allocate for this area.
logic The run() of the given Runnable will be executed using this as its
initial memory area. If logic is null, this constructor is equivalent to LT-

Memory(SizeEstimator initial, SizeEstimator maximum)33.
Throws

IllegalArgumentException when initial is null, maximum is null, initial.getEstimate()
is greater than maximum.getEstimate(), or if initial.getEstimate() is less
than zero.
OutOfMemoryError when there is insufficient memory for the LTMemory object
or for the backing memory.

29Section 11.8.14
30Section 11.8.14
31Section 11.8.14
32Section 11.8.14
33Section 11.8.5.2.3

416 CHAPTER 11. MEMORY MANAGEMENT

IllegalAssignmentError when storing logic in this would violate the assign-
ment rules.

Create an LTMemory of the given size.

11.8.5.2.5 LTMemory(long)

Signature

public

LTMemory(long size)

Parameters
size The size in bytes of the memory to allocate for this area. This memory
must be committed before the completion of the constructor.

Throws
IllegalArgumentException when size is less than zero.
OutOfMemoryError when there is insufficient memory for the LTMemory object
or for the backing memory.

Create an LTMemory of the given size. This constructor is equivalent to LTMem-

ory(size, size)

Available since RTSJ version RTSJ 1.0.1

11.8.5.2.6 LTMemory(long, Runnable)

Signature

public

LTMemory(long size, Runnable logic)

Parameters
size The size in bytes of the memory to allocate for this area. This memory
must be committed before the completion of the constructor.
logic The run() of the given Runnable will be executed using this as its
initial memory area. If logic is null, this constructor is equivalent to LT-

Memory(long size)34.
Throws

34Section 11.8.5.2.5

11.8. CLASSES 417

IllegalArgumentException when size is less than zero.
OutOfMemoryError when there is insufficient memory for the LTMemory object
or for the backing memory.
IllegalAssignmentError when storing logic in this would violate the assign-
ment rules.

Create an LTMemory of the given size. This constructor is equivalent to LTMem-

ory(size, size, logic).

Available since RTSJ version RTSJ 1.0.1

11.8.5.2.7 LTMemory(SizeEstimator)

Signature

public

LTMemory(SizeEstimator size)

Parameters
size An instance of SizeEstimator35 used to give an estimate of the initial size.
This memory must be committed before the completion of the constructor.

Throws
IllegalArgumentException when size is null, or size.getEstimate() is less
than zero.
OutOfMemoryError when there is insufficient memory for the LTMemory object
or for the backing memory.

Create an LTMemory of the given size. This constructor is equivalent to LTMem-

ory(size, size).

Available since RTSJ version RTSJ 1.0.1

11.8.5.2.8 LTMemory(SizeEstimator, Runnable)

Signature

public

LTMemory(SizeEstimator size, Runnable logic)

35Section 11.8.14

418 CHAPTER 11. MEMORY MANAGEMENT

Parameters
size An instance of SizeEstimator36 used to give an estimate of the initial size.
This memory must be committed before the completion of the constructor.
logic The run() of the given Runnable will be executed using this as its
initial memory area. If logic is null, this constructor is equivalent to LT-

Memory(SizeEstimator initial)37.
Throws

IllegalArgumentException when size is null, or size.getEstimate() is less
than zero.
OutOfMemoryError when there is insufficient memory for the LTMemory object
or for the backing memory.
IllegalAssignmentError when storing logic in this would violate the assign-
ment rules.

Create an LTMemory of the given size.

Available since RTSJ version RTSJ 1.0.1

11.8.5.3 Methods

11.8.5.3.1 toString

Signature
public
java.lang.String toString()

Returns
A string representing the value of this.

Create a string representation of this object. The string is of the form
(LTMemory) Scoped memory # num

where num uniquely identifies the LTMemory area.

11.8.6 LTPhysicalMemory

Inheritance

36Section 11.8.14
37Section 11.8.5.2.7

11.8. CLASSES 419

java.lang.Object
javax.realtime.MemoryArea

javax.realtime.ScopedMemory
javax.realtime.LTPhysicalMemory

An instance of LTPhysicalMemory allows objects to be allocated from a range of
physical memory with particular attributes, determined by their memory type. This
memory area has the same semantics as ScopedMemory38 memory areas, and the
same performance restrictions as LTMemory39.

No provision is made for sharing object in LTPhysicalMemory with entities out-
side the JVM that creates them, and, while the memory backing an instance of
LTPhysicalMemory could be shared by multiple JVMs, the class does not support
such sharing.

Methods from LTPhysicalMemory should be overridden only by methods that
use super.

11.8.6.1 Fields

11.8.6.1.1 base
private base

11.8.6.2 Constructors

11.8.6.2.1 LTPhysicalMemory(PhysicalMemoryFilter, long)

Signature

public

LTPhysicalMemory(PhysicalMemoryFilter type, long size)

Parameters
type An instance of a physical memory filter that defines the the required
characteristics of the physical memory and the required charcateristics of the
virtual memory it is to mapped to.

38Section 11.8.13
39Section 11.8.5

420 CHAPTER 11. MEMORY MANAGEMENT

size The size of memory required.

Throws

IllegalArgumentException when size is less than zero.
OutOfMemoryError when there is insufficient memory for the LTPhysicalMem-
ory object or for the backing memory.
SizeOutOfBoundsException when the size extends into an invalid range of
memory.
SecurityException when the application doesn’t have permissions to access
physical memory or the given type of memory.

Create a phyical immortal memory area of the specified type and size.

Available since RTSJ version RTSJ 2.0

11.8.6.2.2 LTPhysicalMemory(PhysicalMemoryFilter, SizeEstimator)

Signature

public

LTPhysicalMemory(PhysicalMemoryFilter type, SizeEstimator size)

Parameters

type An instance of a physical memory filter that defines the the required
characteristics of the physical memory and the required charcateristics of the
virtual memory it is to mapped to.
size A size estimator for this memory area.

Throws

IllegalArgumentException when size is less than zero.
OutOfMemoryError when there is insufficient memory for the LTPhysicalMem-
ory object or for the backing memory.
SizeOutOfBoundsException when the size extends into an invalid range of
memory.
SecurityException when the application doesn’t have permissions to access
physical memory or the given type of memory.

Create a phyical immortal memory area of the specified type and size.

Available since RTSJ version RTSJ 2.0

11.8. CLASSES 421

11.8.6.2.3 LTPhysicalMemory(PhysicalMemoryFilter, long, Runnable)

Signature

public

LTPhysicalMemory(PhysicalMemoryFilter type, long size, Runnable logic)

Parameters
type An instance of a physical memory filter that defines the the required
characteristics of the physical memory and the required charcateristics of the
virtual memory it is to mapped to.
size The size of memory required.
logic The run() method of this object will be called whenever MemoryArea.enter()40

is called. If logic is null, logic must be supplied when the memory area is
entered.

Throws
IllegalArgumentException when size is less than zero.
OutOfMemoryError when there is insufficient memory for the LTPhysicalMem-
ory object or for the backing memory.
SizeOutOfBoundsException when the size extends into an invalid range of
memory.
SecurityException when the application doesn’t have permissions to access
physical memory or the given type of memory.

Create a phyical immortal memory area of the specified type and size.

Available since RTSJ version RTSJ 2.0

11.8.6.2.4 LTPhysicalMemory(PhysicalMemoryFilter, SizeEstimator, Runnable)

Signature

public

LTPhysicalMemory(PhysicalMemoryFilter type, SizeEstimator size, Runnable logic)

Parameters

40Section 11.8.7.2.1

422 CHAPTER 11. MEMORY MANAGEMENT

type An instance of a physical memory filter that defines the the required
characteristics of the physical memory and the required charcateristics of the
virtual memory it is to mapped to.
size A size estimator for this memory area.
logic The run() method of this object will be called whenever MemoryArea.enter()41

is called. If logic is null, logic must be supplied when the memory area is
entered.

Throws

IllegalArgumentException when size is less than zero.
OutOfMemoryError when there is insufficient memory for the LTPhysicalMem-
ory object or for the backing memory.
SizeOutOfBoundsException when the size extends into an invalid range of
memory.
SecurityException when the application doesn’t have permissions to access
physical memory or the given type of memory.

Create a phyical immortal memory area of the specified type and size.

Available since RTSJ version RTSJ 2.0

11.8.6.3 Methods

11.8.6.3.1 toString

Signature

public
java.lang.String toString()

Returns

A string representing the value of this.

Creates a string describing this object. The string is of the form
(LTPhysicalMemory) Scoped memory # num

where num is a number that uniquely identifies this LTPhysicalMemory memory
area. representing the value of this.

41Section 11.8.7.2.1

11.8. CLASSES 423

11.8.7 MemoryArea

Inheritance
java.lang.Object

javax.realtime.MemoryArea
MemoryArea is the abstract base class of all classes dealing with the representations
of allocatable memory areas, including the immortal memory area, physical mem-
ory and scoped memory areas. This is an abstract class, but no method in this
class is abstract. An application should not subclass MemoryArea without complete
knowledge of its implementation details.

11.8.7.1 Constructors

11.8.7.1.1 MemoryArea

Signature

MemoryArea()

Package protected no-arg constructor to make things compile nicely.

11.8.7.1.2 MemoryArea(long)

Signature

protected

MemoryArea(long size)

Parameters
size The size of MemoryArea to allocate, in bytes.

Throws
IllegalArgumentException when size is less than zero.
OutOfMemoryError when there is insufficient memory for the MemoryArea

object or for the backing memory.
Create an instance of MemoryArea.

424 CHAPTER 11. MEMORY MANAGEMENT

11.8.7.1.3 MemoryArea(SizeEstimator)

Signature

protected

MemoryArea(SizeEstimator size)

Parameters

size A SizeEstimator42 object which indicates the amount of memory re-
quired by this MemoryArea.

Throws

IllegalArgumentException when the size parameter is null, or size.getEstimate()
is negative.
OutOfMemoryError when there is insufficient memory for the MemoryArea

object or for the backing memory.

Create an instance of MemoryArea.

11.8.7.1.4 MemoryArea(long, Runnable)

Signature

protected

MemoryArea(long size, Runnable logic)

Parameters

size The size of MemoryArea to allocate, in bytes.
logic The run() method of this object will be called whenever enter()43 is
called. If logic is null, this constructor is equivalent to MemoryArea(long

size).

Throws

IllegalArgumentException when the size parameter is less than zero.
OutOfMemoryError when there is insufficient memory for the MemoryArea

object or for the backing memory.
IllegalAssignmentError when storing logic in this would violate the assign-
ment rules.

Create an instance of MemoryArea.

42Section 11.8.14
43Section 11.8.7.2.1

11.8. CLASSES 425

11.8.7.1.5 MemoryArea(SizeEstimator, Runnable)

Signature

protected

MemoryArea(SizeEstimator size, Runnable logic)

Parameters
size A SizeEstimator object which indicates the amount of memory required
by this MemoryArea.
logic The run() method of this object will be called whenever enter()44 is
called. If logic is null, this constructor is equivalent to MemoryArea(SizeEstimator
size).

Throws
IllegalArgumentException when size is null or size.getEstimate() is neg-
ative.
OutOfMemoryError when there is insufficient memory for the MemoryArea

object or for the backing memory.
IllegalAssignmentError when storing logic in this would violate the assign-
ment rules.

Create an instance of MemoryArea.

11.8.7.2 Methods

11.8.7.2.1 enter

Signature
public
void enter()

Throws
IllegalThreadStateException when the caller is a Java thread.
IllegalArgumentException when the caller is a schedulable and no non-null
value for logic was supplied when the memory area was constructed.
ThrowBoundaryError Thrown when the JVM needs to propagate an exception
allocated in this scope to (or through) the memory area of the caller. Storing
a reference to that exception would cause an IllegalAssignmentError45, so

44Section 11.8.7.2.1
45Section 14.4.3

426 CHAPTER 11. MEMORY MANAGEMENT

the JVM cannot be permitted to deliver the exception. The ThrowBoundary-

Error46 is allocated in the current allocation context and contains information
about the exception it replaces.
MemoryAccessError when caller is a no-heap schedulable and this memory
area’s logic value is allocated in heap memory.

Associate this memory area with the current schedulable for the duration of the ex-
ecution of the run() method of the instance of Runnable given in the constructor.
During this period of execution, this memory area becomes the default allocation
context until another default allocation context is selected (using enter, or ex-

ecuteInArea47) or the enter method exits.

11.8.7.2.2 enter(Runnable)

Signature
public
void enter(Runnable logic)

Parameters
logic The Runnable object whose run() method should be invoked.

Throws
IllegalThreadStateException when the caller is a Java thread.
IllegalArgumentException when the caller is a schedulable and logic is null.
ThrowBoundaryError Thrown when the JVM needs to propagate an exception
allocated in this scope to (or through) the memory area of the caller. Storing
a reference to that exception would cause an IllegalAssignmentError48, so
the JVM cannot be permitted to deliver the exception. The ThrowBoundary-

Error49 is allocated in the current allocation context and contains information
about the exception it replaces.

Associate this memory area with the current schedulable for the duration of the exe-
cution of the run() method of the given Runnable. During this period of execution,
this memory area becomes the default allocation context until another default allo-
cation context is selected (using enter, or executeInArea50) or the enter method
exits.

11.8.7.2.3 enter(java.util.function.Supplier¡T¿)

Signature

46Section 14.4.6
47Section 11.8.7.2.15
48Section 14.4.3
49Section 14.4.6
50Section 11.8.7.2.15

11.8. CLASSES 427

public
T enter(java.util.function.Supplier<T> logic)

Parameters
logic the object who’s get method will be executed.

Returns
a result from the computation.

Same as enter(Runnable)51 except that the executed method is called get and an
object is returned.

11.8.7.2.4 enter(BooleanSupplier)

Signature
public
boolean enter(BooleanSupplier logic)

Parameters
logic the object who’s get method will be executed.

Returns
a result from the computation.

Same as enter(Runnable)52 except that the executed method is called get and a
boolean is returned.

11.8.7.2.5 enter(IntSupplier)

Signature
public
int enter(IntSupplier logic)

Parameters
logic the object who’s get method will be executed.

Returns
a result from the computation.

Same as enter(Runnable)53 except that the executed method is called get and an
int is returned.

11.8.7.2.6 enter(LongSupplier)

Signature
public
long enter(LongSupplier logic)

51Section 11.8.7.2.2
52Section 11.8.7.2.2
53Section 11.8.7.2.2

428 CHAPTER 11. MEMORY MANAGEMENT

Parameters

logic the object who’s get method will be executed.

Returns

a result from the computation.

Same as enter(Runnable)54 except that the executed method is called get and a
long is returned.

11.8.7.2.7 enter(DoubleSupplier)

Signature

public
double enter(DoubleSupplier logic)

Parameters

logic the object who’s get method will be executed.

Returns

a result from the computation.

Same as enter(Runnable)55 except that the executed method is called get and a
double is returned.

11.8.7.2.8 getMemoryArea(Object)

Signature

public static
javax.realtime.MemoryArea getMemoryArea(Object object)

Throws

IllegalArgumentException when the value of object is null.

Returns

The instance of MemoryArea from which object was allocated.

Gets the MemoryArea in which the given object is located.

11.8.7.2.9 memoryConsumed

Signature

public
long memoryConsumed()

Returns

The amount of memory consumed in bytes.

54Section 11.8.7.2.2
55Section 11.8.7.2.2

11.8. CLASSES 429

For memory areas where memory is freed under program control this returns an
exact count, in bytes, of the memory currently used by the system for the allocated
objects. For memory areas (such as heap) where the definition of ”used” is imprecise,
this returns the best value it can generate in constant time.

11.8.7.2.10 memoryRemaining

Signature
public
long memoryRemaining()

Returns
The amount of remaining memory in bytes.

An approximation to the total amount of memory currently available for future
allocated objects, measured in bytes.

11.8.7.2.11 newArray(java.lang.Class, int)

Signature
public
java.lang.Object newArray(java.lang.Class type, int number)

Parameters
type The class of the elements of the new array. To create an array of a
primitive type use a type such as Integer.TYPE (which would call for an
array of the primitive int type.)
number The number of elements in the new array.

Throws
IllegalArgumentException when number is less than zero, type is null, or type
is java.lang.Void.TYPE.
OutOfMemoryError when space in the memory area is exhausted.

Returns
A new array of class type, of number elements.

Allocate an array of the given type in this memory area. This method may be
concurrently used by multiple threads.

11.8.7.2.12 newInstance(java.lang.Class)

Signature
public
java.lang.Object newInstance(java.lang.Class type)

throws InstantiationException, IllegalAccessException

Parameters

430 CHAPTER 11. MEMORY MANAGEMENT

type The class of which to create a new instance.
Throws

IllegalAccessException The class or initializer is inaccessible.
IllegalArgumentException when type is null.
InstantiationException when the specified class object could not be instanti-
ated. Possible causes are: it is an interface, it is abstract, it is an array, or an
exception was thrown by the constructor.
OutOfMemoryError when space in the memory area is exhausted.
ExceptionInInitializerError when an unexpected exception has occurred in a
static initializer
SecurityException when the caller does not have permission to create a new
instance.

Returns
A new instance of class type.

Allocate an object in this memory area. This method may be concurrently used by
multiple threads.

11.8.7.2.13 newInstance(java.lang.reflect.Constructor, java.lang.Object[])

Signature
public
java.lang.Object newInstance(java.lang.reflect.Constructor c,

java.lang.Object[] args)

throws IllegalAccessException, InstantiationException,

InvocationTargetException

Parameters
c The constructor for the new instance.
args An array of arguments to pass to the constructor.

Throws
ExceptionInInitializerError when an unexpected exception has occurred in a
static initializer
IllegalAccessException when the class or initializer is inaccessible under Java
access control.
IllegalArgumentException when c is null, or the args array does not contain
the number of arguments required by c. A null value of args is treated like
an array of length 0.
InstantiationException when the specified class object could not be instanti-
ated. Possible causes are: it is an interface, it is abstract, it is an array.
InvocationTargetException when the underlying constructor throws an excep-
tion.

11.8. CLASSES 431

OutOfMemoryError when space in the memory area is exhausted.

Returns

A new instance of the object constructed by c.

Allocate an object in this memory area. This method may be concurrently used by
multiple threads.

11.8.7.2.14 size

Signature

public
long size()

Returns

The size of the memory area in bytes.

Query the size of the memory area. The returned value is the current size. Current
size may be larger than initial size for those areas that are allowed to grow.

11.8.7.2.15 executeInArea(Runnable)

Signature

public
void executeInArea(Runnable logic)

Parameters

logic The runnable object whose run() method should be executed.

Throws

IllegalArgumentException when logic is null.

Execute the run method from the logic parameter using this memory area as
the current allocation context. The effect of executeInArea on the scope stack is
specified in the subclasses of MemoryArea.

11.8.7.2.16 executeInArea(java.util.function.Supplier¡T¿)

Signature

public
T executeInArea(java.util.function.Supplier<T> logic)

Parameters

logic the object who’s get method will be executed.

Returns

a result from the computation.

432 CHAPTER 11. MEMORY MANAGEMENT

Same as executeInArea(Runnable)56 except that the executed method is called
get and an object is returned.

11.8.7.2.17 executeInArea(BooleanSupplier)

Signature

public
boolean executeInArea(BooleanSupplier logic)

Parameters

logic the object who’s get method will be executed.

Returns

a result from the computation.

Same as executeInArea(Runnable)57 except that the executed method is called
get and a boolean is returned.

11.8.7.2.18 executeInArea(IntSupplier)

Signature

public
int executeInArea(IntSupplier logic)

Parameters

logic the object who’s get method will be executed.

Returns

a result from the computation.

Same as executeInArea(Runnable)58 except that the executed method is called
get and an int is returned.

11.8.7.2.19 executeInArea(LongSupplier)

Signature

public
long executeInArea(LongSupplier logic)

Parameters

logic the object who’s get method will be executed.

Returns

a result from the computation.

56Section 11.8.7.2.15
57Section 11.8.7.2.15
58Section 11.8.7.2.15

11.8. CLASSES 433

Same as executeInArea(Runnable)59 except that the executed method is called
get and a long is returned.

11.8.7.2.20 executeInArea(DoubleSupplier)

Signature

public
double executeInArea(DoubleSupplier logic)

Parameters

logic the object who’s get method will be executed.

Returns

a result from the computation.

Same as executeInArea(Runnable)60 except that the executed method is called
get and a double is returned.

11.8.7.2.21 visitScopedChildren(ChildScopeVisitor)

Signature

public
java.lang.Object visitScopedChildren(ChildScopeVisitor visitor)

Parameters

visitor determines the action to be performed on each of the children scopes.

Throws

IllegalArgumentException when visitor is null.

Returns

null when all elements where visited and some object when the visit is forced
to terminate at the end of visiting some element.

Perform an action on all children scopes of this memory area, so long as the Child-

ScopeVisitor.visit(LocalAllocationContext) method returns null. When that
method returns an object, the visit is terminated and that object is returned by this
method,

The set of children may be concurrently modified by other tasks, but the view
seen by the visitor might not be updated to reflect those changes. The guarantees
when the set is disturbed by other tasks are

• the visitor shall visit no member more than once,
• it shall visit only scopes that were a member of the set at some time during

the enumeration of the set,

59Section 11.8.7.2.15
60Section 11.8.7.2.15

434 CHAPTER 11. MEMORY MANAGEMENT

• it shall visit all the scopes that are not deleted during the enumeration of the
set,
• it shall visit only scopes that were a member of the set at some time during the

enumeration of the set, but need not visit all scopes that became a member of
the set during the enumeration of the set, and
• it shall visit all the scopes that are not deleted during the execution of the

visitor, but may also visit scopes that were deleted.
When execution of the visitor’s visit method terminated abruptly by throwing

an exception, then execution of visitScopedChildren also terminates abruptly by
throwing the same exception.

11.8.7.2.22 mayHoldReferenceTo

Signature
public
boolean mayHoldReferenceTo()

Returns
true when B can be assigned to a field of A, otherwise false.

Determine whether an object A allocated in the memory area represented by this

can hold a reference to an object B allocated in the current memory area.

11.8.7.2.23 mayHoldReferenceTo(Object)

Signature
public
boolean mayHoldReferenceTo(Object value)

Returns
true when value can be assigned to a field of A, otherwise false.

Determine whether an object A allocated in the memory area represented by this

can hold a reference to the object value.

11.8.8 MemoryParameters

Inheritance
java.lang.Object

javax.realtime.MemoryParameters
Interfaces

Cloneable
Serializable

11.8. CLASSES 435

Memory parameters can be given on the constructor of RealtimeThread61 and Async-

EventHandler62. These can be used both for the purposes of admission control by
the scheduler and for the purposes of pacing the garbage collector (if any) to satisfy
all of the schedulable memory allocation rates.

The limits in a MemoryParameters instance are enforced when a schedulable
creates a new object, e.g., uses the new operation. When a schedulable exceeds its
allocation or allocation rate limit, the error is handled as if the allocation failed be-
cause of insufficient memory. The object allocation throws an OutOfMemoryError.

When a reference to a MemoryParameters object is given as a parameter to a
constructor, the MemoryParameters object becomes bound to the object being cre-
ated. Changes to the values in the MemoryParameters object affect the constructed
object. If given to more than one constructor, then changes to the values in the
MemoryParameters object affect all of the associated objects. Note that this is a
one-to-many relationship and not a many-to-many.

A MemoryParameters object may be shared, but that does not cause the memory
budgets reflected by the parameter to be shared among the schedulables that are
associated with the parameter object.

Caution: This class is explicitly unsafe in multithreaded situations when it is
being changed. No synchronization is done. It is assumed that users of this class
who are mutating instances will be doing their own synchronization at a higher level.

11.8.8.1 Fields

11.8.8.1.1 serialVersionUID

private static final serialVersionUID

11.8.8.1.2 NO MAX

public static final NO MAX

Specifies no maximum limit.

11.8.8.2 Constructors

61Section 5.4.2
62Section 8.6.4

436 CHAPTER 11. MEMORY MANAGEMENT

11.8.8.2.1 MemoryParameters(long, long)

Signature

public

MemoryParameters(long maxMemoryArea, long maxImmortal)

Parameters
maxMemoryArea A limit on the amount of memory the schedulable may al-
locate in its initial memory area. Units are in bytes. If zero, no allocation
allowed in the memory area. To specify no limit, use NO MAX.
maxImmortal A limit on the amount of memory the schedulable may allocate
in the immortal area. Units are in bytes. If zero, no allocation allowed in
immortal. To specify no limit, use NO MAX.

Throws
IllegalArgumentException when any value other than positive. zero, or NO MAX

is passed as the value of maxMemoryArea or maxImmortal.
Create a MemoryParameters object with the given values.

11.8.8.2.2 MemoryParameters(long, long, long)

Signature

public

MemoryParameters(long maxMemoryArea, long maxImmortal, long allocationRate)

Parameters
maxMemoryArea A limit on the amount of memory the schedulable may al-
locate in its initial memory area. Units are in bytes. If zero, no allocation
allowed in the memory area. To specify no limit, use NO MAX.
maxImmortal A limit on the amount of memory the schedulable may allocate
in the immortal area. Units are in bytes. If zero, no allocation allowed in
immortal. To specify no limit, use NO MAX.
allocationRate A limit on the rate of allocation in the heap. Units are in bytes
per second of wall clock time. If allocationRate is zero, no allocation is al-
lowed in the heap. To specify no limit, use NO MAX. Measurement starts when
the schedulable is first released for execution (not when it is constructed.) En-
forcement of the allocation rate is an implementation option. If the implemen-
tation does not enforce allocation rate limits, it treats all non-zero allocation
rate limits as NO MAX.

11.8. CLASSES 437

Throws
IllegalArgumentException when any value other than positive. zero, or NO MAX

is passed as the value of maxMemoryArea or maxImmortal, or allocationRate.
Create a MemoryParameters object with the given values.

11.8.8.3 Methods

11.8.8.3.1 associateThread(Schedulable)

Signature

void associateThread(Schedulable t)

Parameters
t The RealtimeThread or AsyncEventHandler that will use this MemoryPa-

rameters object for budgeted allocation.
Associates the passed schedulable with this MemoryParameters object. This is to
implement the many-to-one functionality of MemoryParameters, specifically this is
to facilitate the requirements of setMaxMemoryArea and setMaxImmortal.

Available since RTSJ version RTSJ 1.0.1 Changed the parameter type to
Schedulable, and caused the method to throw UnsupportedOperationEx-
ception if the parameter does not reference a schedulable.

11.8.8.3.2 clone

Signature
public
java.lang.Object clone()

Return a clone of this. This method should behave effectively as if it constructed
a new object with the visible values of this.
• The new object is in the current allocation context.
• clone does not copy any associations from this and it does not implicitly

bind the new object to a SO.
•

Available since RTSJ version RTSJ 1.0.1

438 CHAPTER 11. MEMORY MANAGEMENT

11.8.8.3.3 deassociateThread(RealtimeThread)

Signature

void deassociateThread(RealtimeThread t)

Parameters
t RealtimeThread object that will no longer be using this MemoryParameters
object for budgeted allocation.

De-associates or removes the RealtimeThread object passed with this MemoryPa-

rameters object. This is to implement the many-to-one functionality of MemoryPa-
rameters, specifically this is to facilitate the requirements of setMaxMemoryArea
and setMaxImmortal.

11.8.8.3.4 getAllocationRate

Signature
public
long getAllocationRate()

Returns
The allocation rate in bytes per second. If zero, no allocation is allowed in the
heap. If the returned value is NO MAX63 then the allocation rate on the heap is
uncontrolled.

Gets the limit on the rate of allocation in the heap. Units are in bytes per second.

11.8.8.3.5 getMaxImmortal

Signature
public
long getMaxImmortal()

Returns
The limit on immortal memory allocation. If zero, no allocation is allowed in
immortal memory. If the returned value is NO MAX64 then there is no limit for
allocation in immortal memory.

Gets the limit on the amount of memory the schedulable may allocate in the im-
mortal area. Units are in bytes.

11.8.8.3.6 getMaxMemoryArea

63Section 11.8.8.1.2
64Section 11.8.8.1.2

11.8. CLASSES 439

Signature
public
long getMaxMemoryArea()

Returns
The allocation limit in the schedulable’s initial memory area. If zero, no allo-
cation is allowed in the initial memory area. If the returned value is NO MAX65

then there is no limit for allocation in the initial memory area.
Gets the limit on the amount of memory the schedulable may allocate in its initial
memory area. Units are in bytes.

11.8.8.3.7 setAllocationRate(long)

Signature
public
void setAllocationRate(long allocationRate)

Parameters
allocationRate Units are in bytes per second of wall-clock time. If alloca-

tionRate is zero, no allocation is allowed in the heap. To specify no limit,
use NO MAX. Measurement starts when the schedulable starts (not when it is
constructed.) Enforcement of the allocation rate is an implementation op-
tion. If the implementation does not enforce allocation rate limits, it treats
all non-zero allocation rate limits as NO MAX.

Throws
IllegalArgumentException when any value other than positive, zero, or NO MAX

is passed as the value of allocationRate.
Sets the limit on the rate of allocation in the heap.

11.8.9 NewPhysicalMemoryManager

Inheritance
java.lang.Object

javax.realtime.NewPhysicalMemoryManager
Each physical memory module can have more than one physical memory character-
istic.

A physical memory characteristic can apply to many physical memory modules:
The NewPhysicalMemoryManager determines the physical addresses from the

modules and keeps a relation between PhysicalMemoryModule <-> Physical Mem-
ory Addresses

65Section 11.8.8.1.2

440 CHAPTER 11. MEMORY MANAGEMENT

The range of physical addresses of modules should not overlap.
To find a memory range that supports PMC A and PMC B uses set intersection

modules(A) $
cap$ modules(B)

Need to consider exceptions that can be raised.

Available since RTSJ version RTSJ 2.0

11.8.9.1 Constructors

11.8.9.1.1 NewPhysicalMemoryManager

Signature

public

NewPhysicalMemoryManager()

11.8.9.2 Methods

11.8.9.2.1 associate(PhysicalMemoryCharacteristic, PhysicalMemoryMod-
ule)

Signature
public static
void associate(PhysicalMemoryCharacteristic name,

PhysicalMemoryModule module)

Parameters
name is the physical memory characteristic. e.g STATIC RAM.
module is the object representing a range of contiguous physical addresses

Throws
IllegalArgumentException if either name or module is null

Associates a programmer-defined name with a physical address range.

11.8. CLASSES 441

11.8.9.2.2 associate(javax.realtime.PhysicalMemoryCharacteristic[], Phys-
icalMemoryModule)

Signature
public static
void associate(javax.realtime.PhysicalMemoryCharacteristic[]

names, PhysicalMemoryModule module)

Parameters
names is the array of physical memory characteristics. e.g STATIC RAM.
module is the object representing a range of contiguous physical addresses

Throws
IllegalArgumentException if either names or module is null

Associates am array of programmer-defined names with a physical address range.

11.8.9.2.3 associate(PhysicalMemoryCharacteristic, javax.realtime.PhysicalMemoryModule[])

Signature
public static
void associate(PhysicalMemoryCharacteristic name,

javax.realtime.PhysicalMemoryModule[] modules)

Parameters
name is the physical memory characteristic. e.g STATIC RAM.
modules is an array of objects each representing a range of contiguous physical
addresses

Throws
IllegalArgumentException if either name or modules is null

Associates a programmer-defined name with an array of physical address ranges.

11.8.9.2.4 createFilter(javax.realtime.PhysicalMemoryCharacteristic[], New-
PhysicalMemoryManager.CachingBehavior, NewPhysicalMemoryManager.PagingBehavior)

Signature
public static
javax.realtime.PhysicalMemoryFilter create-

Filter(javax.realtime.PhysicalMemoryCharacteristic[] PMcharac-

teristics, NewPhysicalMemoryManager.CachingBehavior cacheBehav-

ior, NewPhysicalMemoryManager.PagingBehavior pageBehavior)

Parameters
PMcharacteristics is an array of required physical memory characteristics.

442 CHAPTER 11. MEMORY MANAGEMENT

cacheBehavior is the required caching behavior for mapped memory
pageBehavior is the required paging behavior for mapped memory

Throws

IllegalArgumentException when any of PMcharacteristics or cacheBehav-

ior or pageBehavior is null
IllegalStateException if the required paging or caching behavior is not setable.

Create a filter that will determine the appropriate place in physical memory that
meets the required physical memory characteristics and map it into virtual memory
with the given characteristic.

Open issue: name of exception End of open issue
Available since RTSJ version RTSJ 2.0

11.8.9.2.5 getSupportedCachingBehavior

Signature

public static
javax.realtime.NewPhysicalMemoryManager.CachingBehavior[]

getSupportedCachingBehavior()

Returns

an array of the supported cacheing behaviors.

Get the cacheing behaviors that are supported by this JVM

Available since RTSJ version RTSJ 2.0

11.8.9.2.6 getSupportedPagingBehavior

Signature

public static
javax.realtime.NewPhysicalMemoryManager.PagingBehavior[]

getSupportedPagingBehavior()

Returns

an array of the supported paging behaviors.

Get the paging behaviors that are supported by this JVM

Available since RTSJ version RTSJ 2.0

11.8. CLASSES 443

11.8.10 PhysicalMemoryModule

Inheritance

java.lang.Object
javax.realtime.PhysicalMemoryModule

A class that allows a range of physical memory addresses to be specified.

Available since RTSJ version RTSJ 2.0

11.8.10.1 Constructors

11.8.10.1.1 PhysicalMemoryModule(long, long)

Signature

public

PhysicalMemoryModule(long base, long length)

Parameters

base is a physical address
length is size of contiguous memory from that base

Throws

IllegalArgumentException if length is less than or equal to 0, or if base is less
than 0 or if this module overlaps with another memory module.
SizeOutOfBounds if base + length is greater than the physical address range
of the processor

Creates an instance representing a range of contiguous physical memory.

11.8.10.2 Methods

444 CHAPTER 11. MEMORY MANAGEMENT

11.8.10.2.1 getBase

Signature

public
long getBase()

Returns

the base address

Gets the base address of the contigous memory represented by this.

11.8.10.2.2 getLength

Signature

public
long getLength()

Returns

the length

Gets the length of the contigous memory represented by this.

11.8.11 PinnableMemory

Inheritance

java.lang.Object
javax.realtime.MemoryArea

javax.realtime.ScopedMemory
javax.realtime.PinnableMemory

Open issue: should this be a seperate class from StackedMemory66? End of open
issue

11.8.11.1 Constructors

11.8.11.1.1 PinnableMemory(long)

Signature

66Section 11.8.15

11.8. CLASSES 445

public

PinnableMemory(long size)

11.8.11.1.2 PinnableMemory(SizeEstimator)

Signature

public

PinnableMemory(SizeEstimator size)

11.8.11.2 Methods

11.8.11.2.1 pin

Signature
public
void pin()

11.8.11.2.2 unpin

Signature
public
void unpin()

11.8.11.2.3 isPinned

Signature
public
boolean isPinned()

11.8.11.2.4 getPinCount

Signature
public
int getPinCount()

446 CHAPTER 11. MEMORY MANAGEMENT

11.8.11.2.5 joinPinned

Signature
public
void joinPinned()

throws InterruptedException

11.8.11.2.6 joinPinned(HighResolutionTime)

Signature
public
void joinPinned(HighResolutionTime timeIn)

throws InterruptedException

11.8.11.2.7 joinPinnedAndEnter(Runnable)

Signature
public
void joinPinnedAndEnter(Runnable logic)

throws InterruptedException, ScopedCycleException

11.8.11.2.8 joinPinnedAndEnter(Runnable, HighResolutionTime)

Signature
public
void joinPinnedAndEnter(Runnable logic, HighResolutionTime

timeIn)

throws InterruptedException, ScopedCycleException

11.8.11.2.9 joinPinnedAndEnter

Signature
public
void joinPinnedAndEnter()

throws InterruptedException, IllegalThreadStateException,

ThrowBoundaryError, ScopedCycleException, MemoryAccessError

11.8.11.2.10 joinPinnedAndEnter(HighResolutionTime)

Signature
public

11.8. CLASSES 447

void joinPinnedAndEnter(HighResolutionTime time)

throws InterruptedException, IllegalThreadStateException,

IllegalArgumentException, UnsupportedOperationException,

ThrowBoundaryError, ScopedCycleException, MemoryAccessError

11.8.12 SchedulableSizingParameters

Inheritance
java.lang.Object

javax.realtime.SchedulableSizingParameters
Schedulable sizing parameters a way to specify various implementation-dependent
parameters such as Java and native stack sizes, and to configure the statically allo-
cated ThrowBoundaryError67 associated with a Schedulable68.

Note that these parameters are immutable.

Available since RTSJ version RTSJ 2.0

11.8.12.1 Constructors

11.8.12.1.1 SchedulableSizingParameters(int, int, long[])

Signature

public

SchedulableSizingParameters(int messageLength, int stackTraceLength, long[] sizes)

Parameters
messageLength Memory space in bytes dedicated to the message associated
with Schedulable69 objects created with these parameters’ preallocated ex-
ceptions, plus references to the method names/identifiers in the stack trace.
The value 0 indicates that no message should be stored.
stackTraceLength Length of the stack trace buffer dedicated to Schedulable70

67Section 14.4.6
68Section 6.4.2
69Section 6.4.2
70Section 6.4.2

448 CHAPTER 11. MEMORY MANAGEMENT

objects created with these parameters’ preallocated exceptions, in frames. The
amount of space this requires is implementation-specific. The value 0 indicates
that no stack trace should be stored.
sizes An array of implementation-specific values dictating memory parame-
ters for Schedulable objects created with these parameters, such as maxi-
mum Java and native stack sizes. The sizes array will not be stored in the
constructed object.

Creates a SchedulableSizingParameters with the specified values.

11.8.12.1.2 SchedulableSizingParameters(int, int)

Signature

public

SchedulableSizingParameters(int messageLength, int stackTraceLength)

Parameters
messageLength Memory space in bytes dedicated to the message associated
with Schedulable71 objects created with these parameters’ preallocated ex-
ceptions, plus references to the method names/identifiers in the stack trace.
The value 0 indicates that no message should be stored.
stackTraceLength Length of the stack trace buffer dedicated to Schedulable72

objects created with these parameters’ preallocated exceptions, in frames. The
amount of space this requires is implementation-specific. The value 0 indicates
that no stack trace should be stored.

Creates a SchedulableSizingParameters with the specified values.

11.8.12.2 Methods

11.8.12.2.1 getMessageLength

Signature
public
int getMessageLength()

Returns

71Section 6.4.2
72Section 6.4.2

11.8. CLASSES 449

Reserved memory size in bytes.
Gets the memory space in bytes dedicated to the message associated with Sched-

ulable73 objects created with these parameters’ preallocated exceptions, plus ref-
erences to the method names/identifiers in the stack trace. The value 0 indicates
that no message will be stored.

11.8.12.2.2 getStackTraceLength

Signature
public
int getStackTraceLength()

Returns
Reserved memory size in implementation-dependent stack frames.

Gets the length of the stack trace buffer dedicated to Schedulable74 objects created
with these parameters’ preallocated exceptions, in frames. The amount of space this
requires is implementation-specific. The value 0 indicates that no stack trace will
be stored.

11.8.12.2.3 getSizes

Signature
public
long[] getSizes()

Returns
Array of implementation-specific sizes.

Gets the array of implementation-specific sizes associated with Schedulable75 ob-
jects created with these parameters. This method may allocate memory.

11.8.13 ScopedMemory

Inheritance
java.lang.Object

javax.realtime.MemoryArea
javax.realtime.ScopedMemory

ScopedMemory is the abstract base class of all classes dealing with representations
of memory spaces which have a limited lifetime. In general, objects allocated in

73Section 6.4.2
74Section 6.4.2
75Section 6.4.2

450 CHAPTER 11. MEMORY MANAGEMENT

scoped memory are freed when (and only when) no schedulable object has access to
the objects in the scoped memory.

A ScopedMemory area is a connection to a particular region of memory and
reflects the current status of that memory. The object does not necessarily contain
direct references to the region of memory. That is implementation dependent.

When a ScopedMemory area is instantiated, the object itself is allocated from the
current memory allocation context, but the memory space that object represents
(it’s backing store) is allocated from memory that is not otherwise directly visible
to Java code; e.g., it might be allocated with the C malloc function. This backing
store behaves effectively as if it were allocated when the associated scoped memory
object is constructed and freed at that scoped memory object’s finalization.

The ScopedMemory.enter76 method of ScopedMemory is one mechanism used
to make a memory area the current allocation context. The other mechanism for
activating a memory area is making it the initial memory area for a realtime thread
or async event handler. Entry into the scope is accomplished, for example, by calling
the method:

public void enter(Runnable logic)

where logic is a instance of Runnable whose run() method represents the entry
point of the code that will run in the new scope. Exit from the scope occurs between
the time the runnable.run() method completes and the time control returns from
the enter method. By default, allocations of objects within runnable.run() are
taken from the backing store of the ScopedMemory.

ScopedMemory is an abstract class, but all specified methods include implemen-
tations. The responsibilities of MemoryArea, ScopedMemory and the classes that
extend ScopedMemory are not specified. Application code should not extend Scoped-

Memory without detailed knowledge of its implementation.

11.8.13.1 Constructors

11.8.13.1.1 ScopedMemory(long)

Signature

public

ScopedMemory(long size)

76Section 11.8.13.2.1

11.8. CLASSES 451

Parameters
size of the new ScopedMemory area in bytes.

Throws
IllegalArgumentException when size is less than zero.
OutOfMemoryError when there is insufficient memory for the ScopedMemory

object or for the backing memory.
Create a new ScopedMemory area with the given parameters.

11.8.13.1.2 ScopedMemory(long, Runnable)

Signature

public

ScopedMemory(long size, Runnable logic)

Parameters
size The size of the new ScopedMemory area in bytes.
logic The Runnable to execute when this ScopedMemory is entered. If logic is
null, this constructor is equivalent to constructing the memory area without
a logic value.

Throws
IllegalArgumentException when size is less than zero.
IllegalAssignmentError when storing logic in this would violate the assign-
ment rules.
OutOfMemoryError when there is insufficient memory for the ScopedMemory

object or for the backing memory.
Create a new ScopedMemory area with the given parameters.

11.8.13.1.3 ScopedMemory(SizeEstimator)

Signature

public

ScopedMemory(SizeEstimator size)

Parameters
size The size of the new ScopedMemory area estimated by an instance of SizeEs-
timator77.

77Section 11.8.14

452 CHAPTER 11. MEMORY MANAGEMENT

Throws
IllegalArgumentException when size is null, or size.getEstimate() is neg-
ative.
OutOfMemoryError when there is insufficient memory for the ScopedMemory

object or for the backing memory.
Create a new ScopedMemory area with the given parameters.

11.8.13.1.4 ScopedMemory(SizeEstimator, Runnable)

Signature

public

ScopedMemory(SizeEstimator size, Runnable logic)

Parameters
size The size of the new ScopedMemory area estimated by an instance of SizeEs-
timator78.
logic The logic which will use the memory represented by this as its initial
memory area. If logic is null, this constructor is equivalent to constructing
the memory area without a logic value.

Throws
IllegalArgumentException when size is null, or size.getEstimate() is neg-
ative.
OutOfMemoryError when there is insufficient memory for the ScopedMemory

object or for the backing memory.
IllegalAssignmentError when storing logic in this would violate the assign-
ment rules.

Create a new ScopedMemory area with the given parameters.

11.8.13.2 Methods

11.8.13.2.1 enter

Signature
public
void enter()

78Section 11.8.14

11.8. CLASSES 453

Throws
ScopedCycleException when this invocation would break the single parent rule.
ThrowBoundaryError Thrown when the JVM needs to propagate an exception
allocated in this scope to (or through) the memory area of the caller. Storing
a reference to that exception would cause an IllegalAssignmentError79, so
the JVM cannot be permitted to deliver the exception. The ThrowBoundary-

Error80 is allocated in the current allocation context and contains information
about the exception it replaces.
IllegalThreadStateException when the caller is a Java thread, or if this method
is invoked during finalization of objects in scoped memory and entering this
scoped memory area would force deletion of the SO that triggered finaliza-
tion. This would include the scope containing the SO, and the scope (if any)
containing the scope containing the SO.
IllegalArgumentException @inheritDoc
MemoryAccessError @inheritDoc

Associate this memory area with the current schedulable for the duration of the ex-
ecution of the run() method of the instance of Runnable given in the constructor.
During this period of execution, this memory area becomes the default allocation
context until another default allocation context is selected (using enter, or ex-

ecuteInArea81) or the enter method exits.

11.8.13.2.2 enter(Runnable)

Signature
public
void enter(Runnable logic)

Parameters
logic @inheritDoc

Throws
ScopedCycleException when this invocation would break the single parent rule.
ThrowBoundaryError Thrown when the JVM needs to propagate an exception
allocated in this scope to (or through) the memory area of the caller. Storing
a reference to that exception would cause an IllegalAssignmentError82, so
the JVM cannot be permitted to deliver the exception. The ThrowBoundary-

Error83 is allocated in the current allocation context and contains information
about the exception it replaces.

79Section 14.4.3
80Section 14.4.6
81Section 11.8.13.2.8
82Section 14.4.3
83Section 14.4.6

454 CHAPTER 11. MEMORY MANAGEMENT

IllegalThreadStateException when the caller is a Java thread, or if this method
is invoked during finalization of objects in scoped memory and entering this
scoped memory area would force deletion of the SO that triggered finaliza-
tion. This would include the scope containing the SO, and the scope (if any)
containing the scope containing the SO.
IllegalArgumentException @inheritDoc

Associate this memory area with the current schedulable for the duration of the exe-
cution of the run() method of the given Runnable. During this period of execution,
this memory area becomes the default allocation context until another default allo-
cation context is selected (using enter, or executeInArea84) or the enter method
exits.

11.8.13.2.3 enter(java.util.function.Supplier¡T¿)

Signature

public
T enter(java.util.function.Supplier<T> logic)

Parameters

logic the object who’s get method will be executed.

Returns

a result from the computation.

Same as enter(Runnable)85 except that the executed method is called get and an
object is returned.

11.8.13.2.4 enter(BooleanSupplier)

Signature

public
boolean enter(BooleanSupplier logic)

Parameters

logic the object who’s get method will be executed.

Returns

a result from the computation.

Same as enter(Runnable)86 except that the executed method is called get and a
boolean is returned.

84Section 11.8.13.2.8
85Section 11.8.13.2.2
86Section 11.8.13.2.2

11.8. CLASSES 455

11.8.13.2.5 enter(IntSupplier)

Signature

public
int enter(IntSupplier logic)

Parameters

logic the object who’s get method will be executed.

Returns

a result from the computation.

Same as enter(Runnable)87 except that the executed method is called get and an
int is returned.

11.8.13.2.6 enter(LongSupplier)

Signature

public
long enter(LongSupplier logic)

Parameters

logic the object who’s get method will be executed.

Returns

a result from the computation.

Same as enter(Runnable)88 except that the executed method is called get and a
long is returned.

11.8.13.2.7 enter(DoubleSupplier)

Signature

public
double enter(DoubleSupplier logic)

Parameters

logic the object who’s get method will be executed.

Returns

a result from the computation.

Same as enter(Runnable)89 except that the executed method is called get and a
double is returned.

87Section 11.8.13.2.2
88Section 11.8.13.2.2
89Section 11.8.13.2.2

456 CHAPTER 11. MEMORY MANAGEMENT

11.8.13.2.8 executeInArea(Runnable)

Signature
public
void executeInArea(Runnable logic)

Parameters
logic The runnable object whose run() method should be executed.

Throws
IllegalThreadStateException when the caller is a Java thread.
InaccessibleAreaException when the memory area is not in the schedulable’s
scope stack.
IllegalArgumentException when the caller is a schedulable and logic is null.

Execute the run method from the logic parameter using this memory area as the
current allocation context. This method behaves as if it moves the allocation context
down the scope stack to the occurrence of this.

11.8.13.2.9 executeInArea(java.util.function.Supplier¡T¿)

Signature
public
T executeInArea(java.util.function.Supplier<T> logic)

Parameters
logic the object who’s get method will be executed.

Returns
a result from the computation.

Same as executeInArea(Runnable)90 except that the executed method is called
get and an object is returned.

11.8.13.2.10 executeInArea(BooleanSupplier)

Signature
public
boolean executeInArea(BooleanSupplier logic)

Parameters
logic the object who’s get method will be executed.

Returns
a result from the computation.

Same as executeInArea(Runnable)91 except that the executed method is called
get and a boolean is returned.

90Section 11.8.13.2.8
91Section 11.8.13.2.8

11.8. CLASSES 457

11.8.13.2.11 executeInArea(IntSupplier)

Signature

public
int executeInArea(IntSupplier logic)

Parameters

logic the object who’s get method will be executed.

Returns

a result from the computation.

Same as executeInArea(Runnable)92 except that the executed method is called
get and an int is returned.

11.8.13.2.12 executeInArea(LongSupplier)

Signature

public
long executeInArea(LongSupplier logic)

Parameters

logic the object who’s get method will be executed.

Returns

a result from the computation.

Same as executeInArea(Runnable)93 except that the executed method is called
get and a long is returned.

11.8.13.2.13 executeInArea(DoubleSupplier)

Signature

public
double executeInArea(DoubleSupplier logic)

Parameters

logic the object who’s get method will be executed.

Returns

a result from the computation.

Same as executeInArea(Runnable)94 except that the executed method is called
get and a double is returned.

92Section 11.8.13.2.8
93Section 11.8.13.2.8
94Section 11.8.13.2.8

458 CHAPTER 11. MEMORY MANAGEMENT

11.8.13.2.14 getPortal

Signature
public
java.lang.Object getPortal()

Throws
IllegalAssignmentError when a reference to the portal object cannot be stored
in the caller’s allocation context; that is, if this is ”inner” relative to the
current allocation context or not on the caller’s scope stack.
IllegalThreadStateException when the caller is a Java thread.

Returns
A reference to the portal object or null if there is no portal object. The portal
value is always set to null when the contents of the memory are deleted.

Return a reference to the portal object in this instance of ScopedMemory.
Assignment rules are enforced on the value returned by getPortal as if the return

value were first stored in an object allocated in the current allocation context, then
moved to its final destination.

11.8.13.2.15 getReferenceCount

Signature
public
int getReferenceCount()

Returns
The reference count of this ScopedMemory.

Returns the reference count of this ScopedMemory.
Note: A reference count of 0 reliably means that the scope is not referenced,

but other reference counts are subject to artifacts of lazy/eager maintenance by the
implementation.

11.8.13.2.16 join

Signature
public
void join()

throws InterruptedException

Throws
InterruptedException If this schedulable is interrupted by RealtimeThread.interrupt()95

or AsynchronouslyInterruptedException.fire()96 while waiting for the ref-

95Section 5.4.2.2.21
96Section 8.5.1.3.5

11.8. CLASSES 459

erence count to go to zero.
IllegalThreadStateException when the caller is a Java thread.

Wait until the reference count of this ScopedMemory goes down to zero. Return
immediately if the memory is unreferenced.

11.8.13.2.17 join(HighResolutionTime)

Signature

public
void join(HighResolutionTime time)

throws InterruptedException

Parameters

time If this time is an absolute time, the wait is bounded by that point in time.
If the time is a relative time (or a member of the RationalTime subclass of
RelativeTime) the wait is bounded by a the specified interval from some time
between the time join is called and the time it starts waiting for the reference
count to reach zero.

Throws

InterruptedException If this schedulable is interrupted by RealtimeThread.interrupt()97

or AsynchronouslyInterruptedException.fire()98 while waiting for the ref-
erence count to go to zero.
IllegalThreadStateException when the caller is a Java thread.
IllegalArgumentException when the caller is a schedulable and time is null.
UnsupportedOperationException when the wait operation is not supported us-
ing the clock associated with time.

Wait at most until the time designated by the time parameter for the reference
count of this ScopedMemory to drop to zero. Return immediately if the memory
area is unreferenced.

Since the time is expressed as a HighResolutionTime99, this method is an accu-
rate timer with nanosecond granularity. The actual resolution of the timer and even
the quantity it measures depends on the clock associated with time. The delay time
may be relative or absolute. If relative, then the delay is the amount of time given
by time, and measured by its associated clock. If absolute, then the delay is until
the indicated value is reached by the clock. If the given absolute time is less than
or equal to the current value of the clock, the call to join returns immediately.

97Section 5.4.2.2.21
98Section 8.5.1.3.5
99Section 9.5.3

460 CHAPTER 11. MEMORY MANAGEMENT

11.8.13.2.18 joinAndEnter

Signature
public
void joinAndEnter()

throws InterruptedException

Throws
InterruptedException If this schedulable is interrupted by RealtimeThread.interrupt()100

or AsynchronouslyInterruptedException.fire()101 while waiting for the
reference count to go to zero.
IllegalThreadStateException when the caller is a Java thread, or if this method
is invoked during finalization of objects in scoped memory and entering this
scoped memory area would force deletion of the SO that triggered finaliza-
tion. This would include the scope containing the SO, and the scope (if any)
containing the scope containing the SO.
ThrowBoundaryError Thrown when the JVM needs to propagate an exception
allocated in this scope to (or through) the memory area of the caller. Storing
a reference to that exception would cause an IllegalAssignmentError102, so
the JVM cannot be permitted to deliver the exception. The ThrowBoundary-

Error103 is allocated in the current allocation context and contains information
about the exception it replaces.
ScopedCycleException when this invocation would break the single parent rule.
IllegalArgumentException when the caller is a schedulable and no non-null
logic value was supplied to the memory area’s constructor.
MemoryAccessError when caller is a non-heap schedulable and this memory
area’s logic value is allocated in heap memory.

In the error-free case, joinAndEnter combines join();enter(); such that no en-

ter() from another schedulable can intervene between the two method invocations.
The resulting method will wait for the reference count on this ScopedMemory to
reach zero, then enter the ScopedMemory and execute the run method from logic

passed in the constructor. If no instance of Runnable was passed to the memory
area’s constructor, the method throws IllegalArgumentException immediately.

If multiple threads are waiting in joinAndEnter family methods for a memory
area, at most one of them will be released each time the reference count goes to
zero.

Note that although joinAndEnter guarantees that the reference count is zero
when the schedulable is released for entry, it does not guarantee that the reference

100Section 5.4.2.2.21
101Section 8.5.1.3.5
102Section 14.4.3
103Section 14.4.6

11.8. CLASSES 461

count will remain one for any length of time. A subsequent enter could raise the
reference count to two.

11.8.13.2.19 joinAndEnter(HighResolutionTime)

Signature
public
void joinAndEnter(HighResolutionTime time)

throws InterruptedException

Parameters
time The time that bounds the wait.

Throws
ThrowBoundaryError Thrown when the JVM needs to propagate an exception
allocated in this scope to (or through) the memory area of the caller. Storing
a reference to that exception would cause an IllegalAssignmentError104, so
the JVM cannot be permitted to deliver the exception. The ThrowBoundary-

Error105 is allocated in the current allocation context and contains information
about the exception it replaces.
InterruptedException If this schedulable is interrupted by RealtimeThread.interrupt()106

or AsynchronouslyInterruptedException.fire()107 while waiting for the
reference count to go to zero.
IllegalThreadStateException when the caller is a Java thread, or if this method
is invoked during finalization of objects in scoped memory and entering this
scoped memory area would force deletion of the SO that triggered finaliza-
tion. This would include the scope containing the SO, and the scope (if any)
containing the scope containing the SO.
ScopedCycleException when the caller is a schedulable and this invocation
would break the single parent rule.
IllegalArgumentException when the caller is a schedulable, and time is null

or no non-null logic value was supplied to the memory area’s constructor.
UnsupportedOperationException when the wait operation is not supported us-
ing the clock associated with time.
MemoryAccessError when caller is a no-heap schedulable and this memory
area’s logic value is allocated in heap memory.

In the error-free case, joinAndEnter combines join();enter(); such that no en-

ter() from another schedulable can intervene between the two method invocations.
The resulting method will wait for the reference count on this ScopedMemory to reach

104Section 14.4.3
105Section 14.4.6
106Section 5.4.2.2.21
107Section 8.5.1.3.5

462 CHAPTER 11. MEMORY MANAGEMENT

zero, or for the current time to reach the designated time, then enter the ScopedMem-
ory and execute the run method from Runnable object passed to the constructor. If
no instance of Runnable was passed to the memory area’s constructor, the method
throws IllegalArgumentException immediately. *

If multiple threads are waiting in joinAndEnter family methods for a memory
area, at most one of them will be released each time the reference count goes to
zero.

Since the time is expressed as a HighResolutionTime108, this method has an
accurate timer with nanosecond granularity. The actual resolution of the timer and
even the quantity it measures depends on the clock associated with time. The delay
time may be relative or absolute. If relative, then the calling thread is blocked for
at most the amount of time given by time, and measured by its associated clock. If
absolute, then the time delay is until the indicated value is reached by the clock. If
the given absolute time is less than or equal to the current value of the clock, the
call to joinAndEnter behaves effectively like enter109.

Note that expiration of time may cause control to enter the memory area before
its reference count has gone to zero.

11.8.13.2.20 joinAndEnter(Runnable)

Signature
public
void joinAndEnter(Runnable logic)

throws InterruptedException

Parameters
logic The Runnable object which contains the code to execute.

Throws
InterruptedException If this schedulable is interrupted by RealtimeThread.interrupt()110

or AsynchronouslyInterruptedException.fire()111 while waiting for the
reference count to go to zero.
IllegalThreadStateException when the caller is a Java thread, or if this method
is invoked during finalization of objects in scoped memory and entering this
scoped memory area would force deletion of the SO that triggered finaliza-
tion. This would include the scope containing the SO, and the scope (if any)
containing the scope containing the SO.
ThrowBoundaryError Thrown when the JVM needs to propagate an exception
allocated in this scope to (or through) the memory area of the caller. Storing

108Section 9.5.3
109Section 11.8.13.2.1
110Section 5.4.2.2.21
111Section 8.5.1.3.5

11.8. CLASSES 463

a reference to that exception would cause an IllegalAssignmentError112, so
the JVM cannot be permitted to deliver the exception. The ThrowBoundary-

Error113 is allocated in the current allocation context and contains information
about the exception it replaces.
ScopedCycleException when this invocation would break the single parent rule.
IllegalArgumentException when the caller is a schedulable and logic is null.

In the error-free case, joinAndEnter combines join();enter(); such that no en-

ter() from another schedulable can intervene between the two method invocations.
The resulting method will wait for the reference count on this ScopedMemory to
reach zero, then enter the ScopedMemory and execute the run method from logic

If logic is null, throw IllegalArgumentException immediately.
If multiple threads are waiting in joinAndEnter family methods for a memory

area, at most one of them will be released each time the reference count goes to
zero.

Note that although joinAndEnter guarantees that the reference count is zero
when the schedulable is released for entry, it does not guarantee that the reference
count will remain one for any length of time. A subsequent enter could raise the
reference count to two.

11.8.13.2.21 joinAndEnter(java.util.function.Supplier¡T¿)

Signature
public
T joinAndEnter(java.util.function.Supplier<T> logic)

Parameters
logic the object who’s get method will be executed.

Returns
a result from the computation.

Same as joinAndEnter(Runnable)114 except that the executed method is called
get and an object is returned.

11.8.13.2.22 joinAndEnter(BooleanSupplier)

Signature
public
boolean joinAndEnter(BooleanSupplier logic)

Parameters

112Section 14.4.3
113Section 14.4.6
114Section 11.8.13.2.20

464 CHAPTER 11. MEMORY MANAGEMENT

logic the object who’s get method will be executed.
Returns

a result from the computation.
Same as joinAndEnter(Runnable)115 except that the executed method is called
get and a boolean is returned.

11.8.13.2.23 joinAndEnter(IntSupplier)

Signature
public
int joinAndEnter(IntSupplier logic)

Parameters
logic the object who’s get method will be executed.

Returns
a result from the computation.

Same as joinAndEnter(Runnable)116 except that the executed method is called
get and an int is returned.

11.8.13.2.24 joinAndEnter(LongSupplier)

Signature
public
long joinAndEnter(LongSupplier logic)

Parameters
logic the object who’s get method will be executed.

Returns
a result from the computation.

Same as joinAndEnter(Runnable)117 except that the executed method is called
get and a long is returned.

11.8.13.2.25 joinAndEnter(DoubleSupplier)

Signature
public
double joinAndEnter(DoubleSupplier logic)

Parameters
logic the object who’s get method will be executed.

115Section 11.8.13.2.20
116Section 11.8.13.2.20
117Section 11.8.13.2.20

11.8. CLASSES 465

Returns

a result from the computation.

Same as joinAndEnter(Runnable)118 except that the executed method is called
get and a double is returned.

11.8.13.2.26 joinAndEnter(Runnable, HighResolutionTime)

Signature

public
void joinAndEnter(Runnable logic, HighResolutionTime time)

throws InterruptedException

Parameters

logic The Runnable object which contains the code to execute.
time The time that bounds the wait.

Throws

InterruptedException If this schedulable is interrupted by RealtimeThread.interrupt()119

or AsynchronouslyInterruptedException.fire()120 while waiting for the
reference count to go to zero.
IllegalThreadStateException when the caller is a Java thread, or if this method
is invoked during finalization of objects in scoped memory and entering this
scoped memory area would force deletion of the SO that triggered finaliza-
tion. This would include the scope containing the SO, and the scope (if any)
containing the scope containing the SO.
ThrowBoundaryError Thrown when the JVM needs to propagate an exception
allocated in this scope to (or through) the memory area of the caller. Storing
a reference to that exception would cause an IllegalAssignmentError121, so
the JVM cannot be permitted to deliver the exception. The ThrowBoundary-

Error122 is allocated in the current allocation context and contains information
about the exception it replaces.
ScopedCycleException when the caller is a schedulable and this invocation
would break the single parent rule.
IllegalArgumentException when the caller is a schedulable and time or logic
is null.
UnsupportedOperationException when the wait operation is not supported us-
ing the clock associated with time.

118Section 11.8.13.2.20
119Section 5.4.2.2.21
120Section 8.5.1.3.5
121Section 14.4.3
122Section 14.4.6

466 CHAPTER 11. MEMORY MANAGEMENT

In the error-free case, joinAndEnter combines join();enter(); such that no en-

ter() from another schedulable can intervene between the two method invocations.
The resulting method will wait for the reference count on this ScopedMemory to
reach zero, or for the current time to reach the designated time, then enter the
ScopedMemory and execute the run method from logic.

Since the time is expressed as a HighResolutionTime123, this method is an
accurate timer with nanosecond granularity. The actual resolution of the timer and
even the quantity it measures depends on the clock associated with time. The delay
time may be relative or absolute. If relative, then the delay is the amount of time
given by time, and measured by its associated clock. If absolute, then the delay is
until the indicated value is reached by the clock. If the given absolute time is less
than or equal to the current value of the clock, the call to joinAndEnter behaves
effectively like enter(Runnable)124.

Throws IllegalArgumentException immediately if logic is null.
If multiple threads are waiting in joinAndEnter family methods for a memory

area, at most one of them will be released each time the reference count goes to
zero.

Note that expiration of time may cause control to enter the memory area before
its reference count has gone to zero.

11.8.13.2.27 joinAndEnter(java.util.function.Supplier¡T¿, HighResolution-
Time)

Signature
public
T joinAndEnter(java.util.function.Supplier<T> logic,

HighResolutionTime time)

Parameters
logic the object who’s get method will be executed.

Returns
a result from the computation.

Same as joinAndEnter(Runnable, HighResolutionTime)125 except that the exe-
cuted method is called get and an object is returned.

11.8.13.2.28 joinAndEnter(BooleanSupplier, HighResolutionTime)

Signature

123Section 9.5.3
124Section 11.8.13.2.2
125Section 11.8.13.2.26

11.8. CLASSES 467

public
boolean joinAndEnter(BooleanSupplier logic, HighResolutionTime

time)

Parameters
logic the object who’s get method will be executed.

Returns
a result from the computation.

Same as joinAndEnter(Runnable, HighResolutionTime)126 except that the exe-
cuted method is called get and a boolean is returned.

11.8.13.2.29 joinAndEnter(IntSupplier, HighResolutionTime)

Signature
public
int joinAndEnter(IntSupplier logic, HighResolutionTime time)

Parameters
logic the object who’s get method will be executed.

Returns
a result from the computation.

Same as joinAndEnter(Runnable, HighResolutionTime)127 except that the exe-
cuted method is called get and an int is returned.

11.8.13.2.30 joinAndEnter(LongSupplier, HighResolutionTime)

Signature
public
long joinAndEnter(LongSupplier logic, HighResolutionTime time)

Parameters
logic the object who’s get method will be executed.

Returns
a result from the computation.

Same as joinAndEnter(Runnable, HighResolutionTime)128 except that the exe-
cuted method is called get and a long is returned.

11.8.13.2.31 joinAndEnter(DoubleSupplier, HighResolutionTime)

Signature

126Section 11.8.13.2.26
127Section 11.8.13.2.26
128Section 11.8.13.2.26

468 CHAPTER 11. MEMORY MANAGEMENT

public
double joinAndEnter(DoubleSupplier logic, HighResolutionTime

time)

Parameters
logic the object who’s get method will be executed.

Returns
a result from the computation.

Same as joinAndEnter(Runnable, HighResolutionTime)129 except that the exe-
cuted method is called get and a double is returned.

11.8.13.2.32 getParent

Signature
public
javax.realtime.MemoryArea getParent()

Returns
a reference to the next outer scoped memory region on the caller’s scope stack.

– If there is no outer scoped memory and the primordial parent is heap
memory, return a reference to this.

– If there is no outer scoped memory and the primordial parent is immortal,
or if this is unreferenced and unpinned, return null

Problem. The single-parent tree is RTT-independent except for the primordial
scope. The type of the primordial scope is RTT-dependent. What should we
do about that? If called from a RTT that has entered this, the above rules
make some sense, but what if the caller has not even entered the scope, should
we throw an exception? Or just return null? I think the right solution is to
return this whatever the type of the primordial scope. The app can then know
that null means the scope is not pinned and not referenced, and this means
the parent is either heap or immortal. At that point, the app can learn what it
wants to know by just finding what memory area contains the scope object.

Return a reference to this scopes parent scope (e.g., its parent in the single-parent-
rule tree).

Available since RTSJ version RTSJ 2.0

11.8.13.2.33 visitScopedChildren(ChildScopeVisitor)

Signature

129Section 11.8.13.2.26

11.8. CLASSES 469

public
java.lang.Object visitScopedChildren(ChildScopeVisitor visitor)

Throws

IllegalArgumentException when visitor is null.

@inheritDoc

11.8.13.2.34 newArray(java.lang.Class, int)

Signature

public
java.lang.Object newArray(java.lang.Class type, int number)

Parameters

type @inheritDoc
number @inheritDoc

Throws

IllegalArgumentException @inheritDoc
OutOfMemoryError @inheritDoc
IllegalThreadStateException when the caller is a Java thread.
InaccessibleAreaException when the memory area is not in the schedulable’s
scope stack.

Returns

@inheritDoc

Allocate an array of the given type in this memory area. This method may be
concurrently used by multiple threads.

11.8.13.2.35 newInstance(java.lang.Class)

Signature

public
java.lang.Object newInstance(java.lang.Class type)

throws IllegalAccessException, InstantiationException

Parameters

type @inheritDoc

Throws

IllegalAccessException @inheritDoc
IllegalArgumentException @inheritDoc
ExceptionInInitializerError @inheritDoc
OutOfMemoryError @inheritDoc
InstantiationException @inheritDoc
IllegalThreadStateException when the caller is a Java thread.

470 CHAPTER 11. MEMORY MANAGEMENT

InaccessibleAreaException when the memory area is not in the schedulable’s
scope stack.

Returns

@inheritDoc

Allocate an object in this memory area. This method may be concurrently used by
multiple threads.

11.8.13.2.36 newInstance(java.lang.reflect.Constructor, java.lang.Object[])

Signature

public
java.lang.Object newInstance(java.lang.reflect.Constructor c,

java.lang.Object[] args)

throws IllegalAccessException, InstantiationException,

InvocationTargetException

Parameters

c T@inheritDoc
args @inheritDoc

Throws

IllegalAccessException @inheritDoc
InstantiationException @inheritDoc
OutOfMemoryError @inheritDoc
IllegalArgumentException @inheritDoc
IllegalThreadStateException when the caller is a Java thread.
InvocationTargetException @inheritDoc
InaccessibleAreaException when the memory area is not in the schedulable’s
scope stack.

Returns

@inheritDoc

Allocate an object in this memory area. This method may be concurrently used by
multiple threads.

11.8.13.2.37 setPortal(Object)

Signature

public
void setPortal(Object object)

Parameters

11.8. CLASSES 471

object The object which will become the portal for this. If null the previous
portal object remains the portal object for this or if there was no previous
portal object then there is still no portal object for this.

Throws
IllegalThreadStateException when the caller is a Java Thread.
IllegalAssignmentError when the caller is a schedulable, and object is not
allocated in this scoped memory instance and not null.
InaccessibleAreaException when the caller is a schedulable, this memory area
is not in the caller’s scope stack and object is not null.

Sets the portal object of the memory area represented by this instance of ScopedMem-
ory to the given object. The object must have been allocated in this ScopedMemory
instance.

11.8.13.2.38 toString

Signature
public
java.lang.String toString()

Returns
The string representation

Returns a user-friendly representation of this ScopedMemory of the form "Scoped-

Memory#<num>" where <num> is a number that uniquely identifies this scoped
memory area.

11.8.14 SizeEstimator

Inheritance
java.lang.Object

javax.realtime.SizeEstimator
This class maintains an estimate of the amount of memory required to store a set
of objects.

SizeEstimator is a floor on the amount of memory that should be allocated.
Many objects allocate other objects when they are constructed. SizeEstimator

only estimates the memory requirement of the object itself, it does not include
memory required for any objects allocated at construction time. If the instance
itself is allocated in several parts (if for instance the object and its monitor are
separate), the size estimate shall include the sum of the sizes of all the parts that
are allocated from the same memory area as the instance. Alignment considerations,
and possibly other order-dependent issues may cause the allocator to leave a small

472 CHAPTER 11. MEMORY MANAGEMENT

amount of unusable space, consequently the size estimate cannot be seen as more
than a close estimate.

See Section MemoryArea.MemoryArea(SizeEstimator))

See Section LTMemory.LTMemory(SizeEstimator))

11.8.14.1 Constructors

11.8.14.1.1 SizeEstimator

Signature

public

SizeEstimator()

11.8.14.2 Methods

11.8.14.2.1 reserve(java.lang.Class, int)

Signature
public
void reserve(java.lang.Class c, int number)

Parameters
c The class to take into account.
number The number of instances of c to estimate.

Throws
IllegalArgumentException when c is null.

Take into account additional number instances of Class c when estimating the size
of the MemoryArea130.

130Section 11.8.7

11.8. CLASSES 473

11.8.14.2.2 reserve(SizeEstimator, int)

Signature
public
void reserve(SizeEstimator estimator, int number)

Parameters
estimator The given instance of SizeEstimator131.
number The number of times to reserve the size denoted by estimator.

Throws
IllegalArgumentException when estimator is null.

Take into account additional number instances of SizeEstimator size when estimat-
ing the size of the MemoryArea132.

11.8.14.2.3 reserve(SizeEstimator)

Signature
public
void reserve(SizeEstimator size)

Parameters
size The given instance of SizeEstimator.

Throws
IllegalArgumentException when size is null.

Take into account an additional instance of SizeEstimator size when estimating the
size of the MemoryArea133.

11.8.14.2.4 reserveArray(int)

Signature
public
void reserveArray(int length)

Parameters
length The number of entries in the array.

Throws
IllegalArgumentException when length is negative.

Take into account an additional instance of an array of length reference values
when estimating the size of the MemoryArea134.

131Section 11.8.14
132Section 11.8.7
133Section 11.8.7
134Section 11.8.7

474 CHAPTER 11. MEMORY MANAGEMENT

Available since RTSJ version RTSJ 1.0.1

11.8.14.2.5 reserveArray(int, java.lang.Class)

Signature
public
void reserveArray(int length, java.lang.Class type)

Parameters
length The number of entries in the array.
type The class representing a primitive type. The reservation will leave room
for an array of length of the primitive type corresponding to type.

Throws
IllegalArgumentException when length is negative, or type does not represent
a primitive type.

Take into account an additional instance of an array of length primitive values
when estimating the size of the MemoryArea135.

Class values for the primitive types are available from the corresponding class
types; e.g., Byte.TYPE, Integer.TYPE, and Short.TYPE.

Available since RTSJ version RTSJ 1.0.1

11.8.14.2.6 getEstimate

Signature
public
long getEstimate()

Returns
The estimated size in bytes.

Gets an estimate of the number of bytes needed to store all the objects reserved.

11.8.15 StackedMemory

Inheritance
java.lang.Object

135Section 11.8.7

11.8. CLASSES 475

javax.realtime.MemoryArea
javax.realtime.ScopedMemory

javax.realtime.StackedMemory

StackedMemory implements a scoped memory allocation area and backing store
management system. It is designed to allow for safe, fragmentation-free management
of scoped allocation with certain strong guarantees provided by the virtual machine
and runtime libraries.

Each StackedMemory instance represents a single object allocation area and ad-
ditional memory associated with it in the form of a backing store. The backing store
associated with a StackedMemory is a fixed-size memory area allocated at or before
instantiation of the StackedMemory. The object allocation area is taken from the
associated backing store, and the backing store may be further subdivided into addi-
tional StackedMemory allocation areas or backing stores by instantiating additional
StackedMemory objects.

If a StackedMemory is created with a backing store, the backing store may be
taken from a notional global backing store, in which case it is effectively immortal,
or it may be taken from the enclosing StackedMemory’s backing store if the scope
in which it is created is also a StackedMemory, in which case it is returned to its
enclosing scope’s backing store when the object is finalized. Implementations are
not required to return the space occupied by backing stores taken from the global
backing store when their associated StackedMemory object is finalized.

These backing store semantics divide instances of StackedMemory into two cat-
egories:

• Host — this denotes a StackedMemory with an object allocation area created
in a new backing store, allocated either from the global store or from a parent
StackedMemory’s backing store.
• guest — this in turn indicates a StackedMemory with an object allocation area

taken directly from a parent StackedMemory’s backing store without creating
a sub-store.

In addition, there is one distinguished status for StackedMemory objects, root. A
root StackedMemory is a host StackedMemory created with a backing store drawn
directly from the global backing store, created in an allocation context of some type
other than StackedMemory.

Allocations from a StackedMemory object allocation area are guaranteed to run
in time linear in the size of the allocation. All memory for the backing store must
be reserved at object construction time.

StackedMemory memory areas have two additional stacking constraints in addi-
tion to the single parent rule, designed to enable fragmentation-free manipulation:

• A StackedMemory that is created when another StackedMemory is the current
allocation context can only be entered from the same allocation context in
which it was created.

476 CHAPTER 11. MEMORY MANAGEMENT

• A guest StackedMemory cannot be created from a StackedMemory that cur-
rently has another child area that is also a guest StackedMemory. (That is,
a StackedMemory can have at most one direct child that is a guest Stacked-

Memory.)

The StackedMemory constructor semantics also enforce the property that a Stacked-
Memory cannot be created from another StackedMemory allocation context unless it
is allocated from that context’s backing store as either a host or guest area.

The backing store of a StackedMemory behaves as if any StackedMemory object
allocation areas are at the “bottom” of the backing store, while the backing stores
for enclosed StackedMemory areas are taken from the “top” of the backing store.

There may be an implementation-specific memory overhead for creating a back-
ing store of a given size. This means that creating a StackedMemory with a backing
store of exactly the remaining available backing store of the current StackedMemory
may fail with an OutOfMemoryError. This overhead must be bounded by a constant.

Available since RTSJ version RTSJ 2.0

11.8.15.1 Constructors

11.8.15.1.1 StackedMemory(long, long)

Signature

public

StackedMemory(long scopeSize, long backingSize)

Parameters

scopeSize Size of the allocation area
backingSize Size of the total backing store

Throws

IllegalArgumentException when either scopeSize or backingSize is less than
zero, or if scopeSize is too large to be allocated from a backing store of size
backingSize.
OutOfMemoryError when there is insufficient memory available to reserve the
requested backing store.

11.8. CLASSES 477

Create a host StackedMemory with an object allocation area and backing store of
the specified sizes. The backing store is allocated from the currently active memory
area if it is also a StackedMemory, and the global backing store otherwise. The
object allocation area is allocated from the backing store.

11.8.15.1.2 StackedMemory(long, long, Runnable)

Signature

public

StackedMemory(long scopeSize, long backingSize, Runnable logic)

Parameters
scopeSize Size of the allocation area
backingSize Size of the total backing store
logic Runnable to be entered using this as its current memory area when
enter()136 is called.

Throws
IllegalArgumentException when either scopeSize or backingSize is less than
zero, or if scopeSize is too large to be allocated from a backing store of size
backingSize.
OutOfMemoryError when there is insufficient memory available to reserve the
requested backing store.

Create a host StackedMemory with an object allocation area and backing store of
the specified sizes, bound to the specified Runnable. The backing store is allocated
from the currently active memory area if it is also a StackedMemory, and the global
backing store otherwise. The object allocation area is allocated from the backing
store.

11.8.15.1.3 StackedMemory(SizeEstimator, SizeEstimator)

Signature

public

StackedMemory(SizeEstimator scopeSize, SizeEstimator backingSize)

Parameters
scopeSize SizeEstimator indicating the size of the object allocation area

136Section 11.8.15.2.3

478 CHAPTER 11. MEMORY MANAGEMENT

backingSize SizeEstimator indicating the size of the total backing store

Throws

IllegalArgumentException when either scopeSize or backingSize is less than
zero, or if scopeSize is too large to be allocated from a backing store of size
backingSize.
OutOfMemoryError when there is insufficient memory available to reserve the
requested backing store.

Create a host StackedMemory with an object allocation area and backing store of
the sizes estimated by the specified SizeEstimators. The backing store is allocated
from the currently active memory area if it is also a StackedMemory, and the global
backing store otherwise. The object allocation area is allocated from the backing
store.

11.8.15.1.4 StackedMemory(SizeEstimator, SizeEstimator, Runnable)

Signature

public

StackedMemory(SizeEstimator scopeSize, SizeEstimator backingSize, Runnable logic)

Parameters

scopeSize SizeEstimator indicating the size of the object allocation area
backingSize SizeEstimator indicating the size of the total backing store
logic Runnable to be entered using this as its current memory area when
enter()137 is called.

Throws

IllegalArgumentException when either scopeSize or backingSize is less than
zero, or if scopeSize is too large to be allocated from a backing store of size
backingSize.
OutOfMemoryError when there is insufficient memory available to reserve the
requested backing store.

Create a host StackedMemory with an object allocation area and backing store of the
sizes estimated by the specified SizeEstimators, bound to the specified Runnable.
The backing store is allocated from the currently active memory area if it is also a
StackedMemory, and the global backing store otherwise. The object allocation area
is allocated from the backing store.

137Section 11.8.15.2.3

11.8. CLASSES 479

11.8.15.1.5 StackedMemory(long)

Signature

public

StackedMemory(long scopeSize)

Parameters
scopeSize Size of the allocation area

Throws
IllegalStateException when the parent memory area is not a StackedMemory, or
if the parent StackedMemory already has a child that is also a guest Stacked-
Memory.
IllegalArgumentException when scopeSize is less than zero.
OutOfMemoryError when there is insufficient memory available in the parent
StackedMemory’s backing store to reserve the requested object allocation area.

Create a guest StackedMemory with an object allocation area of the specified size.
The object allocation area is drawn from the parent scope’s backing store, which
must be a StackedMemory.

11.8.15.1.6 StackedMemory(SizeEstimator)

Signature

public

StackedMemory(SizeEstimator scopeSize)

Parameters
scopeSize SizeEstimator indicating the size of the object allocation area

Throws
IllegalStateException when the parent memory area is not a StackedMemory, or
if the parent StackedMemory already has a child that is also a guest Stacked-
Memory.
IllegalArgumentException when scopeSize is less than zero.
OutOfMemoryError when there is insufficient memory available in the parent
StackedMemory’s backing store to reserve the requested object allocation area.

Create a guest StackedMemory with an object allocation area of the size estimated
by the specified SizeEstimator. The object allocation area is drawn from the parent
scope’s backing store, which must be a StackedMemory.

480 CHAPTER 11. MEMORY MANAGEMENT

11.8.15.1.7 StackedMemory(long, Runnable)

Signature

public

StackedMemory(long scopeSize, Runnable logic)

Parameters
scopeSize Size of the allocation area
logic Runnable to be entered using this as its current memory area when
enter()138 is called.

Throws
IllegalStateException when the parent memory area is not a StackedMemory, or
if the parent StackedMemory already has a child that is also a guest Stacked-
Memory.
IllegalArgumentException when scopeSize is less than zero.
OutOfMemoryError when there is insufficient memory available in the parent
StackedMemory’s backing store to reserve the requested object allocation area.

Create a guest StackedMemory with an object allocation area of the specified size,
bound to the specified Runnable. The object allocation area is drawn from the
parent scope’s backing store, which must be a StackedMemory.

11.8.15.1.8 StackedMemory(SizeEstimator, Runnable)

Signature

public

StackedMemory(SizeEstimator scopeSize, Runnable logic)

Parameters
scopeSize SizeEstimator indicating the size of the object allocation area
logic Runnable to be entered using this as its current memory area when
enter()139 is called.

Throws
IllegalStateException when the parent memory area is not a StackedMemory, or
if the parent StackedMemory already has a child that is also a guest Stacked-
Memory.
IllegalArgumentException when scopeSize is less than zero.

138Section 11.8.15.2.3
139Section 11.8.15.2.3

11.8. CLASSES 481

OutOfMemoryError when there is insufficient memory available in the parent
StackedMemory’s backing store to reserve the requested object allocation area.

Create a guest StackedMemory with an object allocation area of the size estimated
by the specified SizeEstimator, bound to the specified Runnable. The object
allocation area is drawn from the parent scope’s backing store, which must be a
StackedMemory.

11.8.15.2 Methods

11.8.15.2.1 resize(long)

Signature

public
void resize(long scopeSize)

Parameters

scopeSize The new allocation area size for this scope

Throws

IllegalStateException when the caller is not permitted to perform the requested
adjustment or there are additional guest StackedMemory allocation areas after
this one in the backing store.
OutOfMemoryException when the remaining backing store is insufficient for
the requested adjustment.

Change the size of the object allocation area for this scope. This method may be
used to either grow or shrink the allocation area if there are no objects allocated in
the scope and no Schedulable object has this area as its current allocation context.
It may be used to shrink the allocation area down to the size of its current usage
if the calling Schedulable object is the only object that has this area on its scope
stack and there are no guest StackedMemory object allocation areas created after
this area in the same backing store but not yet finalized.

11.8.15.2.2 getMaximumSize

Signature

public
long getMaximumSize()

Returns

The maximum size attainable.

482 CHAPTER 11. MEMORY MANAGEMENT

Get the maximum size this memory area can attain. The value returned by this
function is the maximum size that can currently be passed to resize(long)140

without triggering an OutOfMemoryException.

11.8.15.2.3 enter

Signature
public
void enter()

Throws
IllegalStateException when the currently active memory area is a Stacked-

Memory and is not the area in which this scope was created, or the current
memory area is not a StackedMemory and this StackedMemory is not a root
area.
ThrowBoundaryError @inheritDoc
IllegalThreadStateException @inheritDoc
MemoryAccessError @inheritDoc

Associate this memory area with the current Schedulable object for the duration
of the run() method of the instance of Runnable given in this object’s constructor.
During this period of execution, this memory area becomes the default allocation
context until another default allocation context is selected.

This method may only be called from the memory area in which this scope was
created.

See Section ScopedMemory.enter())

11.8.15.2.4 enter(Runnable)

Signature
public
void enter(Runnable logic)

Throws
IllegalStateException when the currently active memory area is a Stacked-

Memory and is not the area in which this scope was created, or the current
memory area is not a StackedMemory and this StackedMemory is not a root
area.
ThrowBoundaryError @inheritDoc
IllegalThreadStateException @inheritDoc

140Section 11.8.15.2.1

11.8. CLASSES 483

MemoryAccessError @inheritDoc
Associate this memory area with the current Schedulable object for the duration
of the run() method of the given Runnable. During this period of execution, this
memory area becomes the default allocation context until another default allocation
context is selected.

This method may only be called from the memory area in which this scope was
created.

See Section ScopedMemory.enter(Runnable))

11.8.15.2.5 joinAndEnter

Signature
public
void joinAndEnter()

Throws
IllegalStateException when the currently active memory area is a Stacked-

Memory and is not the area in which this scope was created, or the current
memory area is not a StackedMemory and this StackedMemory is not a root
area.
InterruptedException @inheritDoc
IllegalThreadStateException @inheritDoc
ThrowBoundaryError @inheritDoc
ScopedCycleException @inheritDoc
MemoryAccessError @inheritDoc

@inheritDoc

11.8.15.2.6 joinAndEnter(HighResolutionTime)

Signature
public
void joinAndEnter(HighResolutionTime time)

Throws
IllegalStateException when the currently active memory area is a Stacked-

Memory and is not the area in which this scope was created, or the current
memory area is not a StackedMemory and this StackedMemory is not a root
area.
InterruptedException @inheritDoc
IllegalThreadStateException @inheritDoc
ThrowBoundaryError @inheritDoc

484 CHAPTER 11. MEMORY MANAGEMENT

ScopedCycleException @inheritDoc
MemoryAccessError @inheritDoc

@inheritDoc

11.8.15.2.7 joinAndEnter(Runnable)

Signature

public
void joinAndEnter(Runnable logic)

Throws

IllegalStateException when the currently active memory area is a Stacked-

Memory and is not the area in which this scope was created, or the current
memory area is not a StackedMemory and this StackedMemory is not a root
area.
InterruptedException @inheritDoc
IllegalThreadStateException @inheritDoc
ThrowBoundaryError @inheritDoc
ScopedCycleException @inheritDoc
MemoryAccessError @inheritDoc

@inheritDoc

11.8.15.2.8 joinAndEnter(Runnable, HighResolutionTime)

Signature

public
void joinAndEnter(Runnable logic, HighResolutionTime time)

Throws

IllegalStateException when the currently active memory area is a Stacked-

Memory and is not the area in which this scope was created, or the current
memory area is not a StackedMemory and this StackedMemory is not a root
area.
InterruptedException @inheritDoc
IllegalThreadStateException @inheritDoc
ThrowBoundaryError @inheritDoc
ScopedCycleException @inheritDoc
MemoryAccessError @inheritDoc

@inheritDoc

11.9. THE RATIONALE 485

11.9 The Rationale

11.9.1 The scoped memory model

Languages that employ automatic reclamation of blocks of memory allocated in what
is traditionally called the heap by program logic also typically use an algorithm called
a garbage collector. Garbage collection algorithms and implementations vary in the
amount of non-determinacy they add to the execution of program logic. Rather
than require a garbage collector, and require it to meet realtime constraints that
would necessarily be a compromise, this specification constructs alternative systems
for “safe” management of memory. The scoped and immortal memory areas allow
program logic to allocate objects in a Java-like style, ignore the reclamation of those
objects, and not incur the latency of the implemented garbage collection algorithm.

The term scope stack might mislead a reader to infer that it contains only scoped
memory areas. This is incorrect. Although the scope stack may contain scoped
memory references, it may also contain heap and immortal memory areas. Also,
although the scope stack’s behavior is specified as a stack, an implementation is free
to use any data structure that preserves the stack semantics.

This specification does not specifically address the lifetime of objects allocated
in immortal memory areas. If they were reclaimed while they were still referenced,
the referential integrity of the JVM would be compromised which is not permissible.
Recovering immortal objects only at the termination of the application, or never
recovering them under any circumstances is consistent with this specification.

If a scoped memory area is used by both heap and non-heap SOs, there could
be cases where a finalizer executed in non-heap context could attempt to use a heap
reference left by a heap-using SO. The code in the finalizer would throw a memory
access error. If that exception is not caught in the finalizer, it will be handled by
the implementation so finalization will continue undisturbed, but the problem in
finalizer that caused the illegal memory access could be hard to locate. So, catch
clauses in finalizers for objects allocated in scoped memory are even more useful
than they are for normal finalizers.

Support for scoped non-default initial memory areas (SNDIMAs) for schedulables
has repercussions. These repercussions include:

• The SNDIMA’s parent is set when the SO is constructed, but its reference
count is not incremented until the realtime thread is started or the async
event handler becomes fireable. This lets a scope with a zero reference count
have a parent. This may cause unexpected scoped cycle exceptions. The most
surprising are from the joinAndEnter family of methods.
• Finalization of a scoped memory (when its reference count goes to zero) can

cause finalization of SNDIMAs of AEHs whose AEs are in the finalizing scope.
This can cause finalization of one scope to trigger finalization of numerous

486 CHAPTER 11. MEMORY MANAGEMENT

other scopes including scopes that are descendants of the scope whose final-
ization started the process.
• Any action that makes an AEH non-fireable (directly disassociating it from all

AEs, or indirectly disassociating it by finalizing the scopes containing those
AEs) must block until all all the resulting finalization completes.
• Any action that makes an AEH fireable must block until any ongoing finaliza-

tion of its SNDIMA completes.
These semantics are complicated (and so prone to bugs in use and in implemen-

tation), they may use significant CPU time at unexpected times, CPU time used
for this finalization is not controlled by cost enforcement and it is hard to include
in feasibility analysis. Open issue: This will not encourage the reader! End of
open issue

Entering the scoped memory when the AEH is fired or the realtime thread starts
has almost the same effect as using the scope as an initial memory area with much
less complexity that is recommended practice. A future release may deprecate sup-
port for SNDIMAs. Open issue: *** End of open issue

Using heap or immortal memory as the non-default initial memory area of an
SO is benign.

11.9.2 The physical memory model

Embedded systems may have many different types of directly addressable memory
available to them. Each type has its own characteristics [2] that determine whether
it is
• volatile – whether it maintains its state when the power is turned off;
• writable – whether it can be written at all, written once or written many times

and whether writing is under program control,
• synchronous or asynchronous – whether the memory is synchronized with the

system bus,
• erasable at the byte level – if the memory can be overwritten whether this

is done at the byte level or whether whole sectors of the memory need to be
erased,
• fast to access – both for reading and writing.

Examples include the following [2]:
• Dynamic Random Access Memory (DRAM) and Static Random Access Mem-

ory (SRAM) – these are volatile memory types that are usually writable at
the byte level. There are no limits on the number of times the memory con-
tents can be written. From the embedded systems designer’s view point, the
main differences between the two are their access times and their costs per
byte. SRAM has faster access times and is more expensive. Both DRAM
and SRAM are example of asynchronous memory, SDRAM and SSRAM are

11.9. THE RATIONALE 487

their synchronized counterparts. Another important difference is that DRAM
requires periodic refresh operations, which may interfere with execution time
determinism.
• Read-Only Memory (for example, Erasable Programmable Read-Only Memory

(EPROM)) – these are nonvolatile memory types that once initialized with
data can not be overwritten by the program (without recourse to some external
effect, usually ultraviolet light as in EPROM). They are fast to access and cost
less per byte than DRAM.
• Hybrid Memory (for example, Electrically Erasable Programmable Read-Only

Memory (EEPROM), and Flash) – these have some properties of both random
access and read-only memory.

– EEPROM – this is nonvolatile memory that is writable at the byte level.
However, there are typically limits on how many time the same location
can be overwritten. EEPROMs are expensive to manufacture, fast to
read but slow to write.

– FLASH memory – this is nonvolatile that is writable at the sector level.
Like EEPROM there are limits on how many times the same location can
be overwritten and they are fast to read but slow to write. Flash memory
is cheaper to manufacture than EEPROM.

Some embedded systems may have multiple types of random-access memory, and
multiple ways of accessing memory. For instance, there may be a small amount of
very fast RAM on the processor chip, memory that is on the same board as the
processor, memory that may be added and removed from the system dynamically,
memory that is accessed across a bus, access to memory that is mediated by a
cache, access where the cache is partially disabled so all stores are “write through”,
memory that is demand paged, and other types of memory and memory-access
attributes only limited by physics and the imagination of electrical engineers. Some
of these memory types will have no impact on the programmer, others will.

Individual computers are often targeted at a particular application domain. This
domain will often dictate the cost and performance requirements, and therefore, the
memory type used. Some embedded systems are highly optimized and need to
explore different options in memory to meet their performance requirements. Here
are five example scenarios.
• Ninety percent of performance-critical memory access is to a set of objects

that could fit in a half the total memory.
• The system enables the locking of a small amount of data in the cache, and a

small number of pages in the translation lookaside buffer (TLB). A few very
frequently accessed objects are to be locked in the cache and a larger number of
objects that have jitter requirements can be TLB-locked to avoid TLB faults.
• The boards accept added memory on daughter boards, but that memory is

not accessible to DMA from the disk and network controllers and it cannot

488 CHAPTER 11. MEMORY MANAGEMENT

be used for video buffers. Better performance is obtained if we ensure that
all data that might interact with disk, network, or video is not stored on the
daughter board.
• Improved video performance can be obtained by using an array as a video

buffer. This will only be effective if a physically contiguous, non-pageable,
DMA-accessible block of RAM is used for the buffer and all stores forced to
write through the cache. Of course, such an approach is dependent on the way
the JVM lays out arrays in memory, and it breaks the JVM abstraction by
depending on that layout.
• The system has banks of SRAM and saves power by automatically putting

them to “sleep” whenever they stay unused for 100 ms or so. To exploit this,
the objects used by each phase of our program can be collected in a separate
bank of this special memory.

To be clear, few embedded systems are this aggressive in their hardware opti-
mization. The majority of embedded systems have only ROM, RAM, and maybe
flash memory. Configuration-controlled memory attributes (such as page locking,
and TLB behavior) are more common.

As well as having different types of memory, many computers map input and
output devices so that their registers can be accessed as if they were resident within
the computer memory (see Section 12.2.1). Hence, some parts of the processor’s ad-
dress space map to real memory and other parts map to device registers. Logically,
even a device’s memory can be considered part of the memory hierarchy, even where
the device’s interface is accessed through special assembly instructions. Multipro-
cessor systems add a further dimension to the problem of memory access. Memory
may be local to a CPU, tightly shared between CPUs, or remotely accessible from
the CPU (but with a delay).

Traditionally, Java programmers are not concerned with these low-level issues;
they program at a higher level of abstraction and assume the JVM makes judicious
use of the underlying resources provided by the execution platform141. Embedded
systems programmers cannot afford this luxury. Consequently, any Java environ-
ment that wishes to facilitate the programming of embedded systems must enable
the programmer to exercise more control over memory.

11.9.2.1 Problems with the current RTSJ 1.0.2 Physical Memory Frame-
work

The RTSJ 1.0.2 supports three ways to allocate objects that can be placed in par-
ticular types of memory:

141This is reflected by the OS support provided. For example, most POSIX systems only offer
programs a choice of demand paged or page-locked memory.

11.9. THE RATIONALE 489

• ImmortalPhysicalMemory allocates immortal objects in memory with speci-
fied characteristics.
• LTPhysicalMemory allocates scoped memory objects in a memory with speci-

fied characteristics using a linear time memory allocation algorithm.
• VTPhysicalMemory allocates scoped memory objects in memory with specified

characteristics using an algorithm that may be worse than linear time but could
offer extra services (such as extensibility).

The only difference between the physical memory classes and the corresponding non-
physical classes is that the ordinary memory classes give access to normal system
RAM and the physical memory classes offer access to particular types of memory.

The RTSJ 1.0.2 supports access to physical memory via a memory manager and
one or more memory filters. The goal of the memory manager is to provide a single
interface with which the programmer can interact in order to access memory with
a particular characteristic. A memory filter enables access to a particular type of
physical memory. Memory filters may be dynamically added and removed from the
system, and there can only be a single filter for each memory type. The memory
manager is unaware of the physical addresses of each type of memory. This is
encapsulated by the filters. The filters also know the virtual memory characteristics
that have been allocated to their memory type. For example, whether the memory
is readable or writable.

In theory, any developer can create a new physical memory filter and register
it with the PMM. However, the programming of filters is difficult for the following
reasons.

• Physical memory type filters include a memory allocation function that must
respond to allocation requests with whether a requested range of physical
memory is free and if it is not, the physical address of the next free physical
memory of the requested type. This is complex because requests for compound
types of physical memory must find a free segment that satisfies all attributes
of the compound type.
• The Java runtime must continue to behave correctly under the Java memory

model when it is using physical memory. This is not a problem when a mem-
ory type behaves like the system’s normal RAM with respect to the properties
addressed by the memory model, or is more restricted than normal RAM (as,
for instance, write-through cache is more restricted than copy-back cache). If a
new memory type does not obey the memory model using the same instruction
sequences as normal RAM, the memory filter must cooperate with the inter-
preter, the JIT, and any ahead-of-time compilation to modify those instruction
sequences when accessing the new type of memory. That task is difficult for
someone who can easily modify the Java runtime and nearly impossible for
anyone else.

490 CHAPTER 11. MEMORY MANAGEMENT

Hence, the utility of the physical memory filter framework at Version 1.0.2 is
questionable, and hence is replaced in Version 2.0 with an easier to use framework.

11.9.2.2 The RTSJ Version 2.0 Physical Memory Framework

The main problem with the 1.0.2 framework is that it places too greater a burden
on the JVM implementer. Even for embedded systems, the JVM implementer re-
quires the VM to be portable between systems within the same processor family. It,
therefore, cannot have detailed knowledge of the underlying memory architecture.
It is only concerned with the standard RAM provided to it by the host operating
system.

The design of Version 2.0 model is based on two constraints:

• Java objects can only be allocated in a memory area if the physical backing
store supports the Java Memory Model without the JVM having to perform
any operation addition to those that it performs when accessing as the main
RAM for the host machine. No extra compiler or JVM interactions shall be
required. Hence memory types (such as EEPROM), which potentially require
special hardware instructions to perform write operations, cannot be used as
the backing store for physical memory areas. Similarly, non-volatile memory
can be used any objects store therein may contain references to objects in
volatile memory. Although these memory types are prohibited from being
used as backing stores, they contain objects of primitive Java types and be
accessed via the RTSJ Raw Memory facilities (see Section 12.2.1).
• Any API must delegates detailed knowledge of the memory architecture to the

programmer of the specific embedded system to be implemented. There is less
requirement for portability here, as embedded systems are usually optimized
for their host environment. The model assumes that the programmer is aware
of the memory map, either through some native operating system interface142

or from some property file read at program initialization time.

When accessing physical memory, there are two main considerations:

1. the characteristics of the required physical memory, and
2. how that memory is to be mapped into the virtual memory of the application.

Version 2.0 requires the program to identify (and inform the RTSJ’s physical memory
manager of) the physical memory characteristics and the range of physical addresses
those characteristic apply to. For example, that there is SRAM between physical
address range 0x100000000 and 0xA0000000.

142For example, the Advanced Configuration and Power Interface (ACPI) specification is an open
standard for device configuration and power management by the operating system. The ACPI
defines platform-independent interfaces for hardware discovery, configuration, power management
and monitoring. See http://www.acpi.info/

11.9. THE RATIONALE 491

The physical memory manager supports a range of options for mapping physical
memory into the virtual memory of the application. Examples of such options are
whether the range is to be permanently resident in memory (the default is that it
may be subject to paging/swapping), and whether data is written to the cache and
the main memory simultaneously (i.e., a write through cache).

Given the required physical and virtual memory characteristics, the programmer
requests that the PMM creates a memory filter for accessing this memory. This
filter can then be used with new constructors on the physical memory classes. For
example,

1 public ImmortalPhysicalMemory(PhysicalMemoryFilter filter, long size)

Use of this constructor enables the programmer to specify the allocation of the
backing store in a particular type of memory with a particular virtual memory
characteristic. The filter is used to locate an area in physical memory with the
required physical memory characteristics and to direct its mapping into the virtual
address space. Other constructors allow multiple filters to be passed.

Hence, once the filters have been created, physical memory areas can be cre-
ated and objects can be allocated within those memory areas using the usual RTSJ
mechanisms for changing the allocation context of the new operator.

11.9.2.3 An example

Consider an example of a system that has a SRAM physical memory module con-
figured at a physical base address of 0x10000000 and of length 0x20000000. An-
other module (base address of 0xA0000000 and of length 0x10000000) also supports
SRAM, but this module has been configured so that it saves power by sleeping when
not in use. The following subsections illustrate how the embedded programmer in-
forms the PMM about the structure during the program’s initialization phase, and
how the memory may be subsequently used after this. The example assumes that
the PMM supports the virtual memory characteristics defined above.

Program Initialization

For simplicity, the example requires that the address of the memory modules are
known, rather than being read from a property file. The program needs to have a
class that implements the PhysicalMemoryCharacteristic. In this simple exam-
ple, this is empty.

1 public class MyMemoryType implements PhysicalMemoryCharacteristic {}

492 CHAPTER 11. MEMORY MANAGEMENT

The initialization method must now create instances of the PhysicalMemory-

Module class to represent the physical memory module memory modules to represent

1 PhysicalMemoryModule staticRam = new PhysicalMemoryModule(
2 0x10000000L, 0x100000000L);
3 PhysicalMemoryModule staticSleepableRam = new PhysicalMemoryModule(
4 0xA0000000L, 0x100000000L);

It then creates names for the characteristics that the program wants to associate
with each memory module.

1 PhysicalMemoryCharacteristic STATIC_RAM = new MyMemoryType();
2 PhysicalMemoryCharacteristic AUTO_SLEEPABLE = new MyMemoryType();

It then informs the PMM of the appropriate associations:

1 NewPhysicalMemoryManager.associate(STATIC_RAM, staticRam);
2 NewPhysicalMemoryManager.associate(STATIC_RAM,
3 staticSleepableRam);
4 NewPhysicalMemoryManager.associate(AUTO_SLEEPABLE,
5 staticSleepableRam);

Once this is done, the program can now create a filter with the required properties.
In this case it is for some SRAM that must be auto sleepable.

1 PhysicalMemoryCharacteristic [] PMC =
2 new PhysicalMemoryCharacteristic[2];
3 PMC[0] = STATIC_RAM;
4 PMC[1] = AUTO_SLEEPABLE;
5
6 PhysicalMemoryFilter filter = NewPhysicalMemoryManager.
7 createFilter(PMC, DISABLED, FIXED);

If the program had just asked for SRAM then either of the memory modules could
satisfy the request.

The initialization is now complete, and the programmer can use the memory for
storing objects, as shown below.

Using Physical Memory

Once the programmer has configured the JVM so that it is aware of the physical
memory modules, and the programmer names for characteristics of those memory
modules, using the physical memory is straight forward. Here is an example.

11.9. THE RATIONALE 493

1 ImmortalPhysicalMemory IM = new ImmortalPhysicalMemory(filter,
2 0x1000);
3 IM.enter(new Runnable() {
4 public void run() {
5 // The code executing here is running with its allocation
6 // context set to a physical immortal memory area that is
7 // mapped to RAM which is auto sleepable.
8 // Any objects created will be placed in that
9 // part of physical memory.

10 }
11 });

It is the appropriate constructor of the physical memory classes that now interfaces
with the PMM. The physical memory manager keeps track of previously allocated
memory and is able to determine if memory is available with the appropriate char-
acteristics. Of course, the PMM has no knowledge of what these names mean; it is
merely providing a look-up service.

494 CHAPTER 11. MEMORY MANAGEMENT

Chapter 12

Devices and Triggering

Open issue: We need to say something about the relationship between this chapter
and Device Access API Proposal for Java ME 8, http://docs.oracle.com/javame/config/cldc/opt-
pkgs/api/daapi-c/index.html End of open issue

12.1 Overview

Interacting with the external environment in a timely manner is an important re-
quirement for realtime, embedded systems. From an embedded systems’ perspective,
all interactions with the physical world are performed by input and output devices.
Hence, the problem is one of controlling and monitoring of devices. This is an area
insufficiently addressed by other Java standards. A conventional Java Virtual Ma-
chine is not designed to support device access and interrupt handling. Programs
that need this functionality must resort to code written in another language and
called via the Java Native Interface (JNI). This specification addresses the prob-
lem by providing APIs for interrupt handling and direct memory access without
resorting to JNI.

In contrast to earlier versions of this specification, Version 2.0 has extended the
goals of the device interfaces to be type safe and user extensible, so that the user
can defined new devices without changing the underlying virtual machine.

There are at least four execution (runtime) environments for the RTSJ:

1. on a realtime operating system where the Java application runs in user mode;
2. on a realtime operating system where the Java application runs in a context

with a user space device driver;
3. as a “kernel module” incorporated into a realtime kernel where both kernel

and application run in supervisor mode; and
4. as part of an embedded device where the Java application runs stand-alone on

a hardware machine.

495

496 CHAPTER 12. DEVICES AND TRIGGERING

In execution environment 1, interaction with the embedded environment is usu-
ally via operating system calls using Java’s connection-oriented APIs. The Java
program will typically have no direct access to the I/O devices. Although some
limited access to physical memory may be provided, it is unlikely that interrupts
can be directly handled. However, asynchronous interaction with the environment
is still possible, for example, via POSIX signals.

In execution environments 2, 3, and 4, the Java program may be able to directly
access devices and handle interrupts.

A device can be anything from a simple set of registers wired to sensors and
actuators to a full processor performing some fixed task. The interface to a device
is usually through a set of device registers. Depending on the I/O architecture of
the processor, the programmer can either access these registers via predetermined
memory location (called memory mapped I/O) or via special assembler instructions
(called port-mapped I/O).

A computer system with processing devices can be considered to be a collection
of parallel threads. The device ‘thread’ can communicate and synchronize with the
tasks executing inside the main processor either by having the main processor poll
registers of the device or via a signal from the device. This signal is usually refered
to as an interrupt. All high-level models of device programming must provide [3]

1. facilities for representing, addressing and manipulating device registers; and
2. a suitable representation of interrupts (if interrupts are to be handled).
Version 1.0 of the RTSJ went some way towards supporting this model through

the notion of happenings and the physical and raw memory access facilities. Unfor-
tunately, happenings were under defined and the mechanisms for physical and raw
memory were overly complex with no clear delineation of the separations of concerns
between application developers and JVM implementers.

Version 2.0 has significantly enhanced the support for happenings, and has pro-
vided a clearer separation between physical and raw memory. This chapter first
considers the facilities for accessing raw memory and how these can be used to ac-
cess devices registers. It then addresses how interrupts and other externally triggered
happenings (for example, POSIX signals) are handled.

12.2 Semantics

There are several aspects of the API for supporting devices. Raw Memory provides
the means of accessing the I/O register of a device. Direct Memory Access (DMA)
support provide a means of transfering data using a DMA controller. Active events
and dispatchers support releasing event handlers based on external events. Interrupt
service routines and application-defined clocks are for linking external events to the
active events.

12.2. SEMANTICS 497

12.2.1 Raw Memory

Raw Memory provides means of accessing particular physical memory addresses as
variables of Java’s primitive data types, and thereby provides an application with
direct access to physical memory, for example, for memory-mapped I/O.

Java objects or references therefore cannot be stored in raw memory. The fol-
lowing specifies the RTSJ’s facilities for raw memory access.

• Each area of memory supporting raw memory access is identified by a tagging
interface called RawMemoryRegion.

– The raw memory region IO MEMORY MAPPED facilitates access to memory
location that are outside the main memory used by the JVM. It is used to
access input and output device registers when such registers are memory
mapped.

– The raw memory region IO PORT MAPPED facilitates access to locations
that are outside the main memory used by the JVM. It is used to access
input and output device registers when such registers are port-based and
can only be accessed by special hardware instructions.

– The application developer can define and register additional regions to
support things like emulated access to devices or access to a bus over a
bus controller.

• Access to raw memory is controlled by implementation-defined objects, called
accessor objects. These implement specification-defined interfaces (e.g., Raw-
Byte, RawByteArray etc) and are created by implementation-defined factory
objects. Each factory implements the RawIntegralAccessFactory interface,
and is identified by its raw memory name.
• The RawMemory class defines the applications programmers interface to the

raw memory facilities.
• The RawMemoryFactory interface defines the interface that all factories must

support for creating accessor objects.

12.2.1.1 Raw Memory Region

Raw memory is designed to support arbitrary I/O address spaces. The simplest is
through the processor address space and is accessible via standard memory access
instructions, such as load and store. This provide access to memory mapped I/O
devices, but there are others address spaces as well. Each of these address spaces is
referred to as a Raw Memory Region.

There are two raw memory regions that can be supported generically. Memory
mapped I/O is one. The other is port mapped I/O. The most common instance
is the I/O space provided by Intel x86 compatible processors through their in and
out instructions. The memory mapped I/O raw memory region must be supported

498 CHAPTER 12. DEVICES AND TRIGGERING

Visibility
+ = publ ic
= protected
~ = package

javax.realtime::RawMemory
«interface»

javax.realtime::RawLong
«interface»

javax.realtime::RawLongReader
«interface»

+getLong():long
+getLong(int offset):long
+get(int offset, long[] v):int
+get(int offset, long[] v,
 int start, int count):int
+address():long

javax.realtime::RawLongWriter
«interface»

+setLong(long v)
+setLong(int offset, long v)
+set(int offset, long[] v):int
+set(int offset, long[] v,
 int start, int count):int
+address():long

javax.realtime::RawInt
«interface»

javax.realtime::RawIntReader
«interface»

+getInt() : int
+getInt(int offset): int
+get(int offset, int[] v): int
+get(int offset, int[] v,
 int start, int count):int
+address():long

javax.realtime::RawIntWriter
«interface»

+setInt(int v)
+setInt(int offset, int v)
+set(int offset, int[] v):int
+set(int offset, int[] v,
 int start, int count):int
+address():long

javax.realtime::RawShort
«interface»

javax.realtime::RawShortReader
«interface»

+getShort():short
+getShort(int offset):short
+get(int offset, short[] v):int
+get(int offset, short[] v,
 int start, int count):int
+address():long

javax.realtime::RawShortWriter
«interface»

+setShort(short v)
+setShort(int offset, short v)
+set(int offset, short[] v):int
+set(int offset, short[] v,
 int start, int count):int
+address():long

javax.realtime::RawByteReader
«interface»

+getByte():byte
+getByte(int offset):byte
+get(int offset, byte[] v): int
+get(int offset, byte[] v,
 int start, int count):int
+address():long

javax.realtime::RawByte
«interface»

javax.realtime::RawByteWriter
«interface»

+setByte(byte v)
+setByte(int offset, byte v)
+set(int offset, byte[] v):int
+set(int offset, byte[] v,
 int start, int count):int
+address():long

javax.realtime::RawDouble
«interface»

javax.realtime::RawDoubleReader
«interface»

+get():double
+getDouble(int offset):double
+get(int offset, double[] v): int
+get(int offset, double[] v,
 int start, int count): int
+address():long

javax.realtime::RawDoubleWriter
«interface»

+setDouble(double v)
+setDouble(int offset, double data)
+set(int offset, double[] v): int
+set(int offset, double[] v,
 int start, int count): int
+address():long

javax.realtime::RawFloatReader
«interface»

+getFloat():f loat
+getFloat(int offset):float
+get(int offset, f loat[] v): int
+get(int offset, f loat[] v,
 int start, int count): int
+address():long

javax.realtime::RawFloat
«interface»

javax.realtime::RawFloatWriter
«interface»

+setFloat(float v)
+setFloat(int offset, float data)
+set(int offset, f loat[] v): int
+set(int offset, f loat[] v,
 int start, int count): int
+address():long

Figure 12.1: Raw Memory Interface

12.2. SEMANTICS 499

Visibility
+ = publ ic
= protected
~ = package

javax.realtime::PeriodicTimer

...

javax.realtime::OneShotTimer

...

javax.realtime::ActiveEvent
«interface»

+getID() : int
+getName() : String

javax.realtime::Timer

+start(boolean disabled)
+getDispatcher() : TimeDispatcher
...

javax.realtime::AbstractEvent
«abstract»

+get(String name): AbstractEvent
+name(AbstractEvent event, String name)
+unname(String name)
+unname(AbstractEvent event)
+addHandler(AbstractEventHandler)
+setHandler(AbstractEventHandler)
+removeHandler(AbstractEventHandler)
+handledBy(AbstractEventHandler):boolean

javax.realtime::AsyncObjectEvent

+fire(Object value)

javax.realtime::AsyncEvent

+f i re()

javax.realtime::POSIXRealtimeSignal

+get(String name): POSIXRealtimeSignal
+get(int id): POSIXRealtimeSignal
+trigger(int id, long value)

+getID() : int
+getName() : String
+getDispatcher() : POSIXRealtimeSignalDispatcher
+tigger(long value)

javax.realtime::POSIXSignal

+get(String name): POSIXSignal
+get(int id): POSIXSignal
+tr igger(int id)

+getID() : int
+getName() : String
+getDispatcher() : POSIXSignalDispatcher
+tr igger()

javax.realtime::Happening
+Happening(String name)
+getReference(String name): int
+get(String name): Happening
+get(int id): Happening
+trigger(int id)

+getId(): int
+getName() : String
+getDispatcher() : HappeningDispatcher
+tr igger()

+star t ()
+isRunning()
+stop()

javax.realtime::AsyncLongEvent

+fire(long value)

Figure 12.2: Event Classes

by all implementations, but the port mapped I/O raw memory region must only be
supported on processors that support it.

All other raw memory regions are optional and may be provided by a system
integrator or an application developer. The API provides an interface, RawMem-
oryRegionFactory, that can be implemented to provide a means of creating accessor
objects for that region. These additional regions can be anything from an I/O space
provided by a memory mapped device, using memory mapped I/O to implement it,
to a purely synthetic I/O space to emulated hardware that has not yet been built.

Each raw memory region is identified by its raw memory region object. These
“types” are defined by instances of RawMemoryRegion: IO MEMORY MAPPED for mem-
ory mapped devices and IO PORT MAPPED for port mapped devices for processors that
have instructions for reading and writing an I/O bus directly. The instances are used
to get accessors of a region instead of using a RawMemoryRegionFactory directly.

12.2.1.2 Raw Memory Factory

In order to support a variety of device address spaces efficiently, raw memory objects
are created using the factory methods provided by RawMemoryFactory. This factory
provides static methods to get accessors for a region via a region’s type. Regions

500 CHAPTER 12. DEVICES AND TRIGGERING

created during runtime can be provided by registering their factory with the main
raw memory factory, so the application code only needs to have a reference to
the object identifying the required region. For instance, one could create an I2C
raw memory region by implementing a factory for it using a memory mapped I2C
controller.

12.2.1.3 Stride

Since the word size of devices do not always match the word size of the memory or
I/O bus, the interface provides for the notion of stride. Stride defines the distance
between elements in a raw memory area. Normally elements of a memory area are
mapped sequentially, without any space between the elements. This is a stride of
one. A stride of two, means that every other element in physical memory is mapped
into the raw memory area.

For example, it is often easier to map a 16 bit device into a 32 bit system by
mapping the 16 bit registers at 32 bit intervals. This enables 16 bit accesses to the
device to be atomic on 32 bit addressed systems, even when the bus always does 32
bit transfers. One can create a RawShort area with a stride of two. Then the area
can be accessed as if the registers where contiguous.

12.2.2 Direct Memory Access Support

Many embedded systems provide a means of moving data without direct involvement
of the main processor. This is typically done with a special device called a DMA
controller. DMA controllers are treated specially since they are central to bulk
transfer in device drivers. The data to be transferred is not in device registers, but
in normal RAM. Java already provides an API form managing this kind of memory
in java.nio. The DMA API defined here provides a seamless means of integrating
those features into a device driver for DMA.

Each DMA controller is programmed after its own fashion, so only common low
level support is provided by this specification. supported. Raw memory can be used
to program the DMA controller, but there needs to be a means of representing bulk
data. The java.nio.ByteBuffer provides just such a representation. The only
difference is that the restrictions on the memory behind byte buffer objects is a bit
different that for other java.nio mechanisms.

These differences are covered with a special byte buffer factory: RawBufferFac-
tory. An instance of this factory can produce direct byte buffers within a given
memory range. This range can be chosen by the programmer to be within the range
of a given DMA controller. The factory also provides methods for getting the start
address of a buffer’s memory and checking if a buffer’s memory is within a given
range. These addresses should be compatible with DMA controllers in the system,

12.2. SEMANTICS 501

though some fixed offset may apply. The RawBufferFactory class also provides static
methods for ensuring that Java-generated changes to DMA-mapped memory buffers
are visible to native code, and vice-versa.

12.2.3 External Triggering

It is not enough to be able to read and write from devices; many applications, need
a means of being interrupted when an event happens. This specification provides
a two-level interrupt mechanism. For predefined interfaces, such as POSIX signals,
the first level handler is provided by the virtual machine and asynchronous events
provide the second level event handling. For external events and additional clocks,
where the programmer needs to be able to define new instances and provide for their
triggering, additional classes are provided to manage both the first level, as well as
the second level handling. In all cases, the user can control the priority and affinity
of the dispatching between the first level and second level handing.

Figure 12.3: Happening State Transition Diagram

502 CHAPTER 12. DEVICES AND TRIGGERING

12.2.3.1 Happenings

Prior to Version 2.0, happenings were represented as a String, but now they have
become an object in their own right. This makes it easier to type them and for
the user to define new happening for an application without the need to change the
JVM. Furthermore, indirection is minimized by making the new Happening class a
subclass of AsyncEvent.

Since a Happening needs to be triggerable from an external event, such as an
interrupt, the Happening class also implements ActiveEvent. This means that
there also needs to be a dispatcher class, HappeningDispatcher. There is a de-
fault dispatcher that is used when none is provided at creation time, otherwise, the
programmer can provide one to change the priority and affinity of dispatching.

Normally, happenings are triggered either from an InterruptServiceRoutine or
from JNI code. For the later, the interface provides a means of linking a happening
by name. This enables native code to get a handle for triggering a happening without
have a direct reference.

Figure 12.3 illustrates the sequence of actions necessary for defining and using a
Happening. After its creation, the object must be both named and registered with
a dispatcher to be triggered from native code. Of course, the JVM must have direct
access to an interrupt, either by being directly bound in the kernel or by some other
means, such as a system call, for setting up user-space device drivers.

12.2.4 Interrupt Service Routines

In Java-based systems, JNI is typically used to transfer control between the assem-
bler/C interrupt service routine (ISR) and the program. Version 2.0 of the RTSJ

supports the possibility of the ISR containing Java code. This is clearly an area
where it is difficult to maintain the portability goal of Java. Furthermore, not all
RTSJ deployments can support InterruptServiceRoutine. A JVM that runs in
user space does not generally have access to interrupts.

The JVM must either be standalone, running in a kernel module, or running in
a special I/O partition on a partitioning OS where interrupts are passed through
using some virtualization technique. Hence, JVM support for ISR is not required
for RTSJ compliance.

Interrupt handling is necessarily machine dependent. However, the RTSJ provides
an abstract model that can be implemented on top of all architectures.

The following semantic model shall be supported by the RTSJ:
• An occurrence of an interrupt consists of its generation and delivery.
• Generation of the interrupt is the mechanism in the underlying hardware or

system that makes the interrupt available to the Java program.

12.2. SEMANTICS 503

i d5
+Happening:getID(name) // as needed

loop

5
+Happening:trigger(id)

3
setUpLinkage

Interrupt 4
handle

2
register(interruptId)

isr

1
new()

:RealtimeThread:InterruptServiceRoutine

InterruptHandling

Figure 12.4: Interrupt servicing

• Delivery is the action that invokes an interrupt service routine (ISR) in re-
sponse to the occurrence of the interrupt. This may be performed by the JVM
or application native code linked with the JVM, or directly by the hardware
interrupt mechanism.
• Between generation and delivery, the interrupt is pending.
• Some or all interrupt occurrences may be inhibited. While an interrupt oc-

currence is inhibited, all occurrences of that interrupt shall be prevented from
being delivered. Whether such occurrences remain pending or are lost is im-
plementation defined, but it is expected that the implementation shall make
a best effort to avoid losing pending interrupts.
• Certain implementation-defined interrupts are reserved. Reserved interrupts

are either interrupts for which application-defined ISRs are not supported, or
those that already have ISRs by some other implementation-defined means.
For example, a clock interrupt, which is used for internal time keeping by the
JVM, is a reserved interrupt.
• An application-defined ISR can be registered with one or more non-reserved

interrupts. Registering an ISR for an interrupt shall implicitly deregister any
already registered ISR for that interrupt. Any daisy-chaining of interrupt

504 CHAPTER 12. DEVICES AND TRIGGERING

handlers shall be performed explicitly by the application interrupt handlers.
• While an ISR is registered to an interrupt, the handle method shall be called

once for each delivery of that interrupt. The handle method should be syn-
chronized. While the handle method executes, the corresponding interrupt
(and all lower priority interrupts) shall be inhibited. The default allocation
context of the handle method is the memory area passed during construction.
Any exception propagated from the handle method shall be caught by the
JVM and ignored.

The model assumes that
• the processor has a (logical) interrupt controller chip that monitors a number

of interrupt lines ;
• the interrupt controller may associate each interrupt line with a particular

interrupt priority;
• associated with the interrupt lines is a (logical) interrupt vector that contains

the address of the ISRs;
• the processor has instructions that allow interrupts from a particular line to

be disabled/masked irrespective of whether (or the type of) device attached;
• disabling interrupts from a specific line may disables the interrupts from lines

of lower priority;
• a device can be connected to an arbitrary interrupt line;
• when an interrupt is signalled on an interrupt line by a device, the processor

uses the identity of the interrupt line to index into the interrupt vector and
jumps to the address of the ISR; the hardware automatically disables further
interrupts (either of the same priority or, possibly, all interrupts);
• on return from the ISR, interrupts are automatically re-enabled.
For each of the interrupt, the RTSJ has an associated hardware priority that can

be used to set the ceiling of an ISR object. The RTSJ virtual machine uses this to
disable the interrupts from the associated interrupt line, and lower priority inter-
rupts, when it is executing a synchronized method of the interrupt-handling object.
For the handle method, this may be done automatically by the hardware interrupt
handling mechanism or it may require added support from the infrastructure. How-
ever, for clarity of the model, RTSJ recommends that the handle method should be
defined as synchronized.

Support for interrupt handling is encapsulated in the InterruptServiceRoutine
abstract class that has two main methods. The first is the final register method
that will register an instance of the class with the system so that the appropriate
interrupt vector can be initialised. The second is the abstract handle method that
provides the code to be executed in response to the interrupt occurring. An indi-
vidual real-time JVM may place restrictions of the code that can be written in this
method. The process is illustrated in Figure 12.4, and is described below.

1. The ISR is created by some application real-time thread.

12.2. SEMANTICS 505

2. The created ISR is registered with the JVM, the interrupt id is passed as a
parameter.

3. As part of the registration process, some internal interface is used to set up
the code that will set the underlying interrupt vectors to some C/assembler
code that will provide the necessary linkage to allow the callback to the Java
handler.

4. When the interrupt occurs, the handler is called.
In order to integrate further the interrupt handling with the Java application,

the handle method may trigger a happening or fire an event.
Typically an implementation of the RTSJ that supports first-level interrupt han-

dling will document the following items:
1. For each interrupt, its identifying integer value, the priority at which the

interrupt occurs and whether it can be inhibited or not, and the effects of
registering ISRs to non inhibitable interrupts (if this is permitted).

2. Which run-time stack the handle method uses when it executes.
3. Any implementation- or hardware-specific activity that happens before the

handle method is invoked (e.g., reading device registers, acknowledging de-
vices).

4. The state (inhibited/uninhibited) of the nonreserved interrupts when the pro-
gram starts; if some interrupts are uninhibited, what the mechanism is that a
program can use to protect itself before it can register the corresponding ISR.

5. The treatment of interrupt occurrences that are generated while the interrupt
is inhibited; i.e., whether one or more occurrences are held for later delivery,
or all are lost.

6. Whether predefined or implementation-defined exceptions are raised as a result
of the occurrence of any interrupt (for example, a hardware trap resulting
from a segmentation error), and the mapping between the interrupt and the
predefined exceptions.

7. On a multi-processor, the rules governing the delivery of an interrupt occur-
rence to a particular processor. For example, whether execution of the handle

method may spin if the lock of the associated object is held by another pro-
cessor.

506 CHAPTER 12. DEVICES AND TRIGGERING

12.3 Interfaces

12.3.1 RawByte

Interfaces
RawByteReader
RawByteWriter

A marker for an object that can be used to access to a single byte. Read and write
access to that byte is checked by the factory that creates the instance; therefore, no
access checking is provided by this interface.

Available since RTSJ version RTSJ 2.0

12.3.2 RawByteReader

Interfaces
RawMemory

A marker for a byte accessor object encapsulating the protocol for reading bytes
from raw memory. A byte accessor can always access at least one byte. Each byte is
transfered in a single atomic operation. Groups of bytes may be transfered together;
however, this is not required.

Objects of this type are created with the method RawMemoryFactory.createRawByteReader1

and RawMemoryFactory.createRawByte2. Each object references a range of ele-
ments in the RawMemoryRegion3 starting at the base address provided to the factory
method. The size provided to the factor method determines the number of elements
accessable.

Caching of the memory access is controlled by the factory that created this
object. If the memory is not cached, this method guarantees serialized access. In
other words, the memory access at the memory occurs in the same order as in the
program. Multiple writes to the same location may not be coalesced.

Available since RTSJ version RTSJ 2.0

1Section 12.5.5.3.4
2Section 12.5.5.3.3
3Section 12.5.6

12.3. INTERFACES 507

12.3.2.1 Methods

12.3.2.1.1 getByte

Signature
public
byte getByte()

Returns
the value at the base address provided to the factory method that created this
object.

Get the value at the first position referenced by this instance, i.e., the value at its
start address. This operation must be atomic with respect to all other raw memory
accesses to the address.

12.3.2.1.2 getByte(int)

Signature
public
byte getByte(int offset)

throws OffsetOutOfBoundsException

Parameters
offset of byte in the memory region starting from the address specified in the
associated factory method.

Throws
OffsetOutOfBoundsException when offset is negative or greater than or equal
to the number of elements in the raw memory region.

Returns
the value at the address specified.

Get the value of the nth element referenced by this instance, where n is offset and
the address is base address + (offset ∗ stride ∗ element size in bytes). When an
exception is thrown, no data is transfered.

12.3.2.1.3 get(int, byte[])

Signature
public
int get(int offset, byte[] values)

throws OffsetOutOfBoundsException, NullPointerException

508 CHAPTER 12. DEVICES AND TRIGGERING

Parameters

offset of the first byte in the memory region to transfere
values the array to received the bytes

Throws

OffsetOutOfBoundsException when offset is negative or greater than or equal
to the number of elements in the raw memory region.
NullPointerException when values is null.

Returns

the number of elements copied to values

Fill the values starting at the address referenced by this instance plus the offset
scaled by the element size in bytes and the object’s stride. Only the bytes in the
intersection of the start and end of values and the base address and the end of the
memory region are transfered. When an exception is thrown, no data is transfered.

12.3.2.1.4 get(int, byte[], int, int)

Signature

public
int get(int offset, byte[] values, int start, int count)

throws OffsetOutOfBoundsException,

ArrayIndexOutOfBoundsException, NullPointerException

Parameters

offset of the first byte in the memory region to transfere
values the array to received the bytes
start the first index in array to fill
count the maximum number of bytes to copy

Throws

OffsetOutOfBoundsException when offset is negative or either offset or
offset + count is greater than or equal to the size of this raw memory area.
ArrayIndexOutOfBoundsException when start is negative or either start or
start + count is greater than or equal to the size of values.
NullPointerException when values is null or count is negative.

Returns

the number of bytes actually transfered.

Fill values with data from the memory region, where offset is first byte in the
memory region and start is the first index in values. The number of bytes trans-
fered is the minimum of count, the size of the memory region minus offset, and
length of values minus start. When an exception is thrown, no data is transfered.

12.3. INTERFACES 509

12.3.3 RawByteWriter

Interfaces

RawMemory

A marker for a byte accessor object encapsulating the protocol for writing bytes
from raw memory. A byte accessor can always access at least one byte. Each byte is
transfered in a single atomic operation. Groups of bytes may be transfered together;
however, this is not required.

Objects of this type are created with the method RawMemoryFactory.createRawByteWriter4

and RawMemoryFactory.createRawByte5. Each object references a range of ele-
ments in the RawMemoryRegion6 starting at the base address provided to the factory
method. The size provided to the factor method determines the number of elements
accessable.

Caching of the memory access is controlled by the factory that created this
object. If the memory is not cached, this method guarantees serialized access. In
other words, the memory access at the memory occurs in the same order as in the
program. Multiple writes to the same location may not be coalesced.

Available since RTSJ version RTSJ 2.0

12.3.3.1 Methods

12.3.3.1.1 setByte(byte)

Signature

public
void setByte(byte value)

Set the value at the first position referenced by this instance, i.e., the value at its
start address. This operation must be atomic with respect to all other raw memory
accesses to the address. When an exception is thrown, no data is transfered.

4Section 12.5.5.3.5
5Section 12.5.5.3.3
6Section 12.5.6

510 CHAPTER 12. DEVICES AND TRIGGERING

12.3.3.1.2 setByte(int, byte)

Signature
public
void setByte(int offset, byte value)

throws OffsetOutOfBoundsException

Parameters
offset of byte in the memory region.

Throws
OffsetOutOfBoundsException when offset is negative or greater than or equal
to the number of elements in the raw memory region.

Set the value of the nth element referenced by this instance, where n is offset and
the address is base address + offset ∗ size of Byte. This operation must be atomic
with respect to all other raw memory accesses to the address. When an exception
is thrown, no data is transfered.

12.3.3.1.3 set(int, byte[])

Signature
public
int set(int offset, byte[] values)

throws OffsetOutOfBoundsException, NullPointerException

Throws
OffsetOutOfBoundsException when offset is negative or greater than or equal
to the number of elements in the raw memory region.
NullPointerException when values is null.

Returns
the number of elements copied to values

Copy values to the raw memory starting at the address referenced by this instance
plus the offset scaled by the element size in bytes and the objects stride. Only the
bytes in the intersection of values and the end of the memory region are transfered.
When an exception is thrown, no data is transfered.

12.3.3.1.4 set(int, byte[], int, int)

Signature
public
int set(int offset, byte[] values, int start, int count)

throws OffsetOutOfBoundsException,

ArrayIndexOutOfBoundsException, NullPointerException

Parameters

12.3. INTERFACES 511

offset of the first byte in the memory region to set
values the array from which to retrieve the bytes
start the first index in array to fill
count the maximum number of bytes to copy

Throws

OffsetOutOfBoundsException when offset is negative or either offset or
offset + count is greater than or equal to the size of this raw memory area.
ArrayIndexOutOfBoundsException when start is negative or either start or
start + count is greater than or equal to the size of values.
NullPointerException when values is null.

Returns

the number of bytes actually transfered.

Copy values to the memory region, where offset is first byte in the memory region
to write and start is the first index in values from which to read. The number
of bytes transfered is the minimum of count, the size of the memory region minus
offset, and length of values minus start. When an exception is thrown, no data
is transfered.

12.3.4 RawDouble

Interfaces

RawDoubleReader
RawDoubleWriter

A marker for an object that can be used to access to a single double. Read and write
access to that double is checked by the factory that creates the instance; therefore,
no access checking is provided by this interface.

Available since RTSJ version RTSJ 2.0

12.3.5 RawDoubleReader

Interfaces

RawMemory

A marker for a double accessor object encapsulating the protocol for reading dou-
bles from raw memory. A double accessor can always access at least one double.

512 CHAPTER 12. DEVICES AND TRIGGERING

Each double is transfered in a single atomic operation. Groups of doubles may be
transfered together; however, this is not required.

Objects of this type are created with the method RawMemoryFactory.createRawDoubleReader7

and RawMemoryFactory.createRawDouble8. Each object references a range of ele-
ments in the RawMemoryRegion9 starting at the base address provided to the factory
method. The size provided to the factor method determines the number of elements
accessable.

Caching of the memory access is controlled by the factory that created this
object. If the memory is not cached, this method guarantees serialized access. In
other words, the memory access at the memory occurs in the same order as in the
program. Multiple writes to the same location may not be coalesced.

Available since RTSJ version RTSJ 2.0

12.3.5.1 Methods

12.3.5.1.1 getDouble

Signature
public
double getDouble()

Returns
the value at the base address provided to the factory method that created this
object.

Get the value at the first position referenced by this instance, i.e., the value at its
start address. This operation must be atomic with respect to all other raw memory
accesses to the address.

12.3.5.1.2 getDouble(int)

Signature
public
double getDouble(int offset)

throws OffsetOutOfBoundsException

7Section 12.5.5.3.19
8Section 12.5.5.3.18
9Section 12.5.6

12.3. INTERFACES 513

Parameters
offset of double in the memory region starting from the address specified in
the associated factory method.

Throws
OffsetOutOfBoundsException when offset is negative or greater than or equal
to the number of elements in the raw memory region.

Returns
the value at the address specified.

Get the value of the nth element referenced by this instance, where n is offset and
the address is base address + (offset ∗ stride ∗ element size in bytes). When an
exception is thrown, no data is transfered.

12.3.5.1.3 get(int, double[])

Signature
public
int get(int offset, double[] values)

throws OffsetOutOfBoundsException, NullPointerException

Parameters
offset of the first double in the memory region to transfere
values the array to received the doubles

Throws
OffsetOutOfBoundsException when offset is negative or greater than or equal
to the number of elements in the raw memory region.
NullPointerException when values is null.

Returns
the number of elements copied to values

Fill the values starting at the address referenced by this instance plus the offset
scaled by the element size in bytes and the object’s stride. Only the doubles in the
intersection of the start and end of values and the base address and the end of the
memory region are transfered. When an exception is thrown, no data is transfered.

12.3.5.1.4 get(int, double[], int, int)

Signature
public
int get(int offset, double[] values, int start, int count)

throws OffsetOutOfBoundsException,

ArrayIndexOutOfBoundsException, NullPointerException

Parameters
offset of the first double in the memory region to transfere

514 CHAPTER 12. DEVICES AND TRIGGERING

values the array to received the doubles
start the first index in array to fill
count the maximum number of doubles to copy

Throws

OffsetOutOfBoundsException when offset is negative or either offset or
offset + count is greater than or equal to the size of this raw memory area.
ArrayIndexOutOfBoundsException when start is negative or either start or
start + count is greater than or equal to the size of values.
NullPointerException when values is null or count is negative.

Returns

the number of doubles actually transfered.

Fill values with data from the memory region, where offset is first double in
the memory region and start is the first index in values. The number of bytes
transfered is the minimum of count, the size of the memory region minus offset,
and length of values minus start. When an exception is thrown, no data is
transfered.

12.3.6 RawDoubleWriter

Interfaces

RawMemory

A marker for a double accessor object encapsulating the protocol for writing dou-
bles from raw memory. A double accessor can always access at least one double.
Each double is transfered in a single atomic operation. Groups of doubles may be
transfered together; however, this is not required.

Objects of this type are created with the method RawMemoryFactory.createRawDoubleWriter10

and RawMemoryFactory.createRawDouble11. Each object references a range of ele-
ments in the RawMemoryRegion12 starting at the base address provided to the factory
method. The size provided to the factor method determines the number of elements
accessable.

Caching of the memory access is controlled by the factory that created this
object. If the memory is not cached, this method guarantees serialized access. In
other words, the memory access at the memory occurs in the same order as in the
program. Multiple writes to the same location may not be coalesced.

10Section 12.5.5.3.20
11Section 12.5.5.3.18
12Section 12.5.6

12.3. INTERFACES 515

Available since RTSJ version RTSJ 2.0

12.3.6.1 Methods

12.3.6.1.1 setDouble(double)

Signature
public
void setDouble(double value)

Set the value at the first position referenced by this instance, i.e., the value at its
start address. This operation must be atomic with respect to all other raw memory
accesses to the address. When an exception is thrown, no data is transfered.

12.3.6.1.2 setDouble(int, double)

Signature
public
void setDouble(int offset, double value)

throws OffsetOutOfBoundsException

Parameters
offset of double in the memory region.

Throws
OffsetOutOfBoundsException when offset is negative or greater than or equal
to the number of elements in the raw memory region.

Set the value of the nth element referenced by this instance, where n is offset and
the address is base address + offset ∗ size of Double. This operation must be
atomic with respect to all other raw memory accesses to the address. When an
exception is thrown, no data is transfered.

12.3.6.1.3 set(int, double[])

Signature
public
int set(int offset, double[] values)

throws OffsetOutOfBoundsException, NullPointerException

Throws

516 CHAPTER 12. DEVICES AND TRIGGERING

OffsetOutOfBoundsException when offset is negative or greater than or equal
to the number of elements in the raw memory region.
NullPointerException when values is null.

Returns
the number of elements copied to values

Copy values to the raw memory starting at the address referenced by this instance
plus the offset scaled by the element size in bytes and the objects stride. Only
the doubles in the intersection of values and the end of the memory region are
transfered. When an exception is thrown, no data is transfered.

12.3.6.1.4 set(int, double[], int, int)

Signature
public
int set(int offset, double[] values, int start, int count)

throws OffsetOutOfBoundsException,

ArrayIndexOutOfBoundsException, NullPointerException

Parameters
offset of the first double in the memory region to set
values the array from which to retrieve the doubles
start the first index in array to fill
count the maximum number of doubles to copy

Throws
OffsetOutOfBoundsException when offset is negative or either offset or
offset + count is greater than or equal to the size of this raw memory area.
ArrayIndexOutOfBoundsException when start is negative or either start or
start + count is greater than or equal to the size of values.
NullPointerException when values is null.

Returns
the number of doubles actually transfered.

Copy values to the memory region, where offset is first double in the memory
region to write and start is the first index in values from which to read. The
number of bytes transfered is the minimum of count, the size of the memory region
minus offset, and length of values minus start. When an exception is thrown,
no data is transfered.

12.3.7 RawFloat

Interfaces

12.3. INTERFACES 517

RawFloatReader
RawFloatWriter

A marker for an object that can be used to access to a single float. Read and write
access to that float is checked by the factory that creates the instance; therefore, no
access checking is provided by this interface.

Available since RTSJ version RTSJ 2.0

12.3.8 RawFloatReader

Interfaces

RawMemory

A marker for a float accessor object encapsulating the protocol for reading floats
from raw memory. A float accessor can always access at least one float. Each float is
transfered in a single atomic operation. Groups of floats may be transfered together;
however, this is not required.

Objects of this type are created with the method RawMemoryFactory.createRawFloatReader13

and RawMemoryFactory.createRawFloat14. Each object references a range of ele-
ments in the RawMemoryRegion15 starting at the base address provided to the factory
method. The size provided to the factor method determines the number of elements
accessable.

Caching of the memory access is controlled by the factory that created this
object. If the memory is not cached, this method guarantees serialized access. In
other words, the memory access at the memory occurs in the same order as in the
program. Multiple writes to the same location may not be coalesced.

Available since RTSJ version RTSJ 2.0

12.3.8.1 Methods

13Section 12.5.5.3.16
14Section 12.5.5.3.15
15Section 12.5.6

518 CHAPTER 12. DEVICES AND TRIGGERING

12.3.8.1.1 getFloat

Signature

public
float getFloat()

Returns

the value at the base address provided to the factory method that created this
object.

Get the value at the first position referenced by this instance, i.e., the value at its
start address. This operation must be atomic with respect to all other raw memory
accesses to the address.

12.3.8.1.2 getFloat(int)

Signature

public
float getFloat(int offset)

throws OffsetOutOfBoundsException

Parameters

offset of float in the memory region starting from the address specified in the
associated factory method.

Throws

OffsetOutOfBoundsException when offset is negative or greater than or equal
to the number of elements in the raw memory region.

Returns

the value at the address specified.

Get the value of the nth element referenced by this instance, where n is offset and
the address is base address + (offset ∗ stride ∗ element size in bytes). When an
exception is thrown, no data is transfered.

12.3.8.1.3 get(int, float[])

Signature

public
int get(int offset, float[] values)

throws OffsetOutOfBoundsException, NullPointerException

Parameters

offset of the first float in the memory region to transfere
values the array to received the floats

Throws

12.3. INTERFACES 519

OffsetOutOfBoundsException when offset is negative or greater than or equal
to the number of elements in the raw memory region.
NullPointerException when values is null.

Returns
the number of elements copied to values

Fill the values starting at the address referenced by this instance plus the offset
scaled by the element size in bytes and the object’s stride. Only the floats in the
intersection of the start and end of values and the base address and the end of the
memory region are transfered. When an exception is thrown, no data is transfered.

12.3.8.1.4 get(int, float[], int, int)

Signature
public
int get(int offset, float[] values, int start, int count)

throws OffsetOutOfBoundsException,

ArrayIndexOutOfBoundsException, NullPointerException

Parameters
offset of the first float in the memory region to transfere
values the array to received the floats
start the first index in array to fill
count the maximum number of floats to copy

Throws
OffsetOutOfBoundsException when offset is negative or either offset or
offset + count is greater than or equal to the size of this raw memory area.
ArrayIndexOutOfBoundsException when start is negative or either start or
start + count is greater than or equal to the size of values.
NullPointerException when values is null or count is negative.

Returns
the number of floats actually transfered.

Fill values with data from the memory region, where offset is first float in the
memory region and start is the first index in values. The number of bytes trans-
fered is the minimum of count, the size of the memory region minus offset, and
length of values minus start. When an exception is thrown, no data is transfered.

12.3.9 RawFloatWriter

Interfaces
RawMemory

520 CHAPTER 12. DEVICES AND TRIGGERING

A marker for a float accessor object encapsulating the protocol for writing floats
from raw memory. A float accessor can always access at least one float. Each
float is transfered in a single atomic operation. Groups of floats may be transfered
together; however, this is not required.

Objects of this type are created with the method RawMemoryFactory.createRawFloatWriter16

and RawMemoryFactory.createRawFloat17. Each object references a range of ele-
ments in the RawMemoryRegion18 starting at the base address provided to the factory
method. The size provided to the factor method determines the number of elements
accessable.

Caching of the memory access is controlled by the factory that created this
object. If the memory is not cached, this method guarantees serialized access. In
other words, the memory access at the memory occurs in the same order as in the
program. Multiple writes to the same location may not be coalesced.

Available since RTSJ version RTSJ 2.0

12.3.9.1 Methods

12.3.9.1.1 setFloat(float)

Signature
public
void setFloat(float value)

Set the value at the first position referenced by this instance, i.e., the value at its
start address. This operation must be atomic with respect to all other raw memory
accesses to the address. When an exception is thrown, no data is transfered.

12.3.9.1.2 setFloat(int, float)

Signature
public
void setFloat(int offset, float value)

throws OffsetOutOfBoundsException

Parameters

16Section 12.5.5.3.17
17Section 12.5.5.3.15
18Section 12.5.6

12.3. INTERFACES 521

offset of float in the memory region.
Throws

OffsetOutOfBoundsException when offset is negative or greater than or equal
to the number of elements in the raw memory region.

Set the value of the nth element referenced by this instance, where n is offset and
the address is base address + offset ∗ size of Float. This operation must be atomic
with respect to all other raw memory accesses to the address. When an exception
is thrown, no data is transfered.

12.3.9.1.3 set(int, float[])

Signature
public
int set(int offset, float[] values)

throws OffsetOutOfBoundsException, NullPointerException

Throws
OffsetOutOfBoundsException when offset is negative or greater than or equal
to the number of elements in the raw memory region.
NullPointerException when values is null.

Returns
the number of elements copied to values

Copy values to the raw memory starting at the address referenced by this instance
plus the offset scaled by the element size in bytes and the objects stride. Only the
floats in the intersection of values and the end of the memory region are transfered.
When an exception is thrown, no data is transfered.

12.3.9.1.4 set(int, float[], int, int)

Signature
public
int set(int offset, float[] values, int start, int count)

throws OffsetOutOfBoundsException,

ArrayIndexOutOfBoundsException, NullPointerException

Parameters
offset of the first float in the memory region to set
values the array from which to retrieve the floats
start the first index in array to fill
count the maximum number of floats to copy

Throws
OffsetOutOfBoundsException when offset is negative or either offset or
offset + count is greater than or equal to the size of this raw memory area.

522 CHAPTER 12. DEVICES AND TRIGGERING

ArrayIndexOutOfBoundsException when start is negative or either start or
start + count is greater than or equal to the size of values.
NullPointerException when values is null.

Returns
the number of floats actually transfered.

Copy values to the memory region, where offset is first float in the memory region
to write and start is the first index in values from which to read. The number
of bytes transfered is the minimum of count, the size of the memory region minus
offset, and length of values minus start. When an exception is thrown, no data
is transfered.

12.3.10 RawInt

Interfaces
RawIntReader
RawIntWriter

A marker for an object that can be used to access to a single int. Read and write
access to that int is checked by the factory that creates the instance; therefore, no
access checking is provided by this interface.

Available since RTSJ version RTSJ 2.0

12.3.11 RawIntReader

Interfaces
RawMemory

A marker for a int accessor object encapsulating the protocol for reading ints from
raw memory. A int accessor can always access at least one int. Each int is transfered
in a single atomic operation. Groups of ints may be transfered together; however,
this is not required.

Objects of this type are created with the method RawMemoryFactory.createRawIntReader19

and RawMemoryFactory.createRawInt20. Each object references a range of ele-
ments in the RawMemoryRegion21 starting at the base address provided to the factory

19Section 12.5.5.3.10
20Section 12.5.5.3.9
21Section 12.5.6

12.3. INTERFACES 523

method. The size provided to the factor method determines the number of elements
accessable.

Caching of the memory access is controlled by the factory that created this
object. If the memory is not cached, this method guarantees serialized access. In
other words, the memory access at the memory occurs in the same order as in the
program. Multiple writes to the same location may not be coalesced.

Available since RTSJ version RTSJ 2.0

12.3.11.1 Methods

12.3.11.1.1 getInt

Signature
public
int getInt()

Returns
the value at the base address provided to the factory method that created this
object.

Get the value at the first position referenced by this instance, i.e., the value at its
start address. This operation must be atomic with respect to all other raw memory
accesses to the address.

12.3.11.1.2 getInt(int)

Signature
public
int getInt(int offset)

throws OffsetOutOfBoundsException

Parameters
offset of int in the memory region starting from the address specified in the
associated factory method.

Throws
OffsetOutOfBoundsException when offset is negative or greater than or equal
to the number of elements in the raw memory region.

Returns
the value at the address specified.

524 CHAPTER 12. DEVICES AND TRIGGERING

Get the value of the nth element referenced by this instance, where n is offset and
the address is base address + (offset ∗ stride ∗ element size in bytes). When an
exception is thrown, no data is transfered.

12.3.11.1.3 get(int, int[])

Signature
public
int get(int offset, int[] values)

throws OffsetOutOfBoundsException, NullPointerException

Parameters
offset of the first int in the memory region to transfere
values the array to received the ints

Throws
OffsetOutOfBoundsException when offset is negative or greater than or equal
to the number of elements in the raw memory region.
NullPointerException when values is null.

Returns
the number of elements copied to values

Fill the values starting at the address referenced by this instance plus the offset
scaled by the element size in bytes and the object’s stride. Only the ints in the
intersection of the start and end of values and the base address and the end of the
memory region are transfered. When an exception is thrown, no data is transfered.

12.3.11.1.4 get(int, int[], int, int)

Signature
public
int get(int offset, int[] values, int start, int count)

throws OffsetOutOfBoundsException,

ArrayIndexOutOfBoundsException, NullPointerException

Parameters
offset of the first int in the memory region to transfere
values the array to received the ints
start the first index in array to fill
count the maximum number of ints to copy

Throws
OffsetOutOfBoundsException when offset is negative or either offset or
offset + count is greater than or equal to the size of this raw memory area.
ArrayIndexOutOfBoundsException when start is negative or either start or
start + count is greater than or equal to the size of values.

12.3. INTERFACES 525

NullPointerException when values is null or count is negative.
Returns

the number of ints actually transfered.
Fill values with data from the memory region, where offset is first int in the mem-
ory region and start is the first index in values. The number of bytes transfered
is the minimum of count, the size of the memory region minus offset, and length
of values minus start. When an exception is thrown, no data is transfered.

12.3.12 RawIntWriter

Interfaces
RawMemory

A marker for a int accessor object encapsulating the protocol for writing ints from
raw memory. A int accessor can always access at least one int. Each int is transfered
in a single atomic operation. Groups of ints may be transfered together; however,
this is not required.

Objects of this type are created with the method RawMemoryFactory.createRawIntWriter22

and RawMemoryFactory.createRawInt23. Each object references a range of ele-
ments in the RawMemoryRegion24 starting at the base address provided to the factory
method. The size provided to the factor method determines the number of elements
accessable.

Caching of the memory access is controlled by the factory that created this
object. If the memory is not cached, this method guarantees serialized access. In
other words, the memory access at the memory occurs in the same order as in the
program. Multiple writes to the same location may not be coalesced.

Available since RTSJ version RTSJ 2.0

12.3.12.1 Methods

12.3.12.1.1 setInt(int)

22Section 12.5.5.3.11
23Section 12.5.5.3.9
24Section 12.5.6

526 CHAPTER 12. DEVICES AND TRIGGERING

Signature

public
void setInt(int value)

Set the value at the first position referenced by this instance, i.e., the value at its
start address. This operation must be atomic with respect to all other raw memory
accesses to the address. When an exception is thrown, no data is transfered.

12.3.12.1.2 setInt(int, int)

Signature

public
void setInt(int offset, int value)

throws OffsetOutOfBoundsException

Parameters

offset of int in the memory region.

Throws

OffsetOutOfBoundsException when offset is negative or greater than or equal
to the number of elements in the raw memory region.

Set the value of the nth element referenced by this instance, where n is offset and
the address is base address + offset ∗ size of Int. This operation must be atomic
with respect to all other raw memory accesses to the address. When an exception
is thrown, no data is transfered.

12.3.12.1.3 set(int, int[])

Signature

public
int set(int offset, int[] values)

throws OffsetOutOfBoundsException, NullPointerException

Throws

OffsetOutOfBoundsException when offset is negative or greater than or equal
to the number of elements in the raw memory region.
NullPointerException when values is null.

Returns

the number of elements copied to values

Copy values to the raw memory starting at the address referenced by this instance
plus the offset scaled by the element size in bytes and the objects stride. Only the
ints in the intersection of values and the end of the memory region are transfered.
When an exception is thrown, no data is transfered.

12.3. INTERFACES 527

12.3.12.1.4 set(int, int[], int, int)

Signature

public
int set(int offset, int[] values, int start, int count)

throws OffsetOutOfBoundsException,

ArrayIndexOutOfBoundsException, NullPointerException

Parameters

offset of the first int in the memory region to set
values the array from which to retrieve the ints
start the first index in array to fill
count the maximum number of ints to copy

Throws

OffsetOutOfBoundsException when offset is negative or either offset or
offset + count is greater than or equal to the size of this raw memory area.
ArrayIndexOutOfBoundsException when start is negative or either start or
start + count is greater than or equal to the size of values.
NullPointerException when values is null.

Returns

the number of ints actually transfered.

Copy values to the memory region, where offset is first int in the memory region
to write and start is the first index in values from which to read. The number
of bytes transfered is the minimum of count, the size of the memory region minus
offset, and length of values minus start. When an exception is thrown, no data
is transfered.

12.3.13 RawLong

Interfaces

RawLongReader
RawLongWriter

A marker for an object that can be used to access to a single long. Read and write
access to that long is checked by the factory that creates the instance; therefore, no
access checking is provided by this interface.

Available since RTSJ version RTSJ 2.0

528 CHAPTER 12. DEVICES AND TRIGGERING

12.3.14 RawLongReader

Interfaces

RawMemory

A marker for a long accessor object encapsulating the protocol for reading longs
from raw memory. A long accessor can always access at least one long. Each long is
transfered in a single atomic operation. Groups of longs may be transfered together;
however, this is not required.

Objects of this type are created with the method RawMemoryFactory.createRawLongReader25

and RawMemoryFactory.createRawLong26. Each object references a range of ele-
ments in the RawMemoryRegion27 starting at the base address provided to the factory
method. The size provided to the factor method determines the number of elements
accessable.

Caching of the memory access is controlled by the factory that created this
object. If the memory is not cached, this method guarantees serialized access. In
other words, the memory access at the memory occurs in the same order as in the
program. Multiple writes to the same location may not be coalesced.

Available since RTSJ version RTSJ 2.0

12.3.14.1 Methods

12.3.14.1.1 getLong

Signature

public
long getLong()

Returns

the value at the base address provided to the factory method that created this
object.

25Section 12.5.5.3.13
26Section 12.5.5.3.12
27Section 12.5.6

12.3. INTERFACES 529

Get the value at the first position referenced by this instance, i.e., the value at its
start address. This operation must be atomic with respect to all other raw memory
accesses to the address.

12.3.14.1.2 getLong(int)

Signature
public
long getLong(int offset)

throws OffsetOutOfBoundsException

Parameters
offset of long in the memory region starting from the address specified in the
associated factory method.

Throws
OffsetOutOfBoundsException when offset is negative or greater than or equal
to the number of elements in the raw memory region.

Returns
the value at the address specified.

Get the value of the nth element referenced by this instance, where n is offset and
the address is base address + (offset ∗ stride ∗ element size in bytes). When an
exception is thrown, no data is transfered.

12.3.14.1.3 get(int, long[])

Signature
public
int get(int offset, long[] values)

throws OffsetOutOfBoundsException, NullPointerException

Parameters
offset of the first long in the memory region to transfere
values the array to received the longs

Throws
OffsetOutOfBoundsException when offset is negative or greater than or equal
to the number of elements in the raw memory region.
NullPointerException when values is null.

Returns
the number of elements copied to values

Fill the values starting at the address referenced by this instance plus the offset
scaled by the element size in bytes and the object’s stride. Only the longs in the
intersection of the start and end of values and the base address and the end of the
memory region are transfered. When an exception is thrown, no data is transfered.

530 CHAPTER 12. DEVICES AND TRIGGERING

12.3.14.1.4 get(int, long[], int, int)

Signature
public
int get(int offset, long[] values, int start, int count)

throws OffsetOutOfBoundsException,

ArrayIndexOutOfBoundsException, NullPointerException

Parameters
offset of the first long in the memory region to transfere
values the array to received the longs
start the first index in array to fill
count the maximum number of longs to copy

Throws
OffsetOutOfBoundsException when offset is negative or either offset or
offset + count is greater than or equal to the size of this raw memory area.
ArrayIndexOutOfBoundsException when start is negative or either start or
start + count is greater than or equal to the size of values.
NullPointerException when values is null or count is negative.

Returns
the number of longs actually transfered.

Fill values with data from the memory region, where offset is first long in the
memory region and start is the first index in values. The number of bytes trans-
fered is the minimum of count, the size of the memory region minus offset, and
length of values minus start. When an exception is thrown, no data is transfered.

12.3.15 RawLongWriter

Interfaces
RawMemory

A marker for a long accessor object encapsulating the protocol for writing longs
from raw memory. A long accessor can always access at least one long. Each long is
transfered in a single atomic operation. Groups of longs may be transfered together;
however, this is not required.

Objects of this type are created with the method RawMemoryFactory.createRawLongWriter28

and RawMemoryFactory.createRawLong29. Each object references a range of ele-
ments in the RawMemoryRegion30 starting at the base address provided to the factory

28Section 12.5.5.3.14
29Section 12.5.5.3.12
30Section 12.5.6

12.3. INTERFACES 531

method. The size provided to the factor method determines the number of elements
accessable.

Caching of the memory access is controlled by the factory that created this
object. If the memory is not cached, this method guarantees serialized access. In
other words, the memory access at the memory occurs in the same order as in the
program. Multiple writes to the same location may not be coalesced.

Available since RTSJ version RTSJ 2.0

12.3.15.1 Methods

12.3.15.1.1 setLong(long)

Signature

public
void setLong(long value)

Set the value at the first position referenced by this instance, i.e., the value at its
start address. This operation must be atomic with respect to all other raw memory
accesses to the address. When an exception is thrown, no data is transfered.

12.3.15.1.2 setLong(int, long)

Signature

public
void setLong(int offset, long value)

throws OffsetOutOfBoundsException

Parameters

offset of long in the memory region.

Throws

OffsetOutOfBoundsException when offset is negative or greater than or equal
to the number of elements in the raw memory region.

Set the value of the nth element referenced by this instance, where n is offset and
the address is base address + offset ∗ size of Long. This operation must be atomic
with respect to all other raw memory accesses to the address. When an exception
is thrown, no data is transfered.

532 CHAPTER 12. DEVICES AND TRIGGERING

12.3.15.1.3 set(int, long[])

Signature

public
int set(int offset, long[] values)

throws OffsetOutOfBoundsException, NullPointerException

Throws

OffsetOutOfBoundsException when offset is negative or greater than or equal
to the number of elements in the raw memory region.
NullPointerException when values is null.

Returns

the number of elements copied to values

Copy values to the raw memory starting at the address referenced by this instance
plus the offset scaled by the element size in bytes and the objects stride. Only the
longs in the intersection of values and the end of the memory region are transfered.
When an exception is thrown, no data is transfered.

12.3.15.1.4 set(int, long[], int, int)

Signature

public
int set(int offset, long[] values, int start, int count)

throws OffsetOutOfBoundsException,

ArrayIndexOutOfBoundsException, NullPointerException

Parameters

offset of the first long in the memory region to set
values the array from which to retrieve the longs
start the first index in array to fill
count the maximum number of longs to copy

Throws

OffsetOutOfBoundsException when offset is negative or either offset or
offset + count is greater than or equal to the size of this raw memory area.
ArrayIndexOutOfBoundsException when start is negative or either start or
start + count is greater than or equal to the size of values.
NullPointerException when values is null.

Returns

the number of longs actually transfered.

Copy values to the memory region, where offset is first long in the memory region
to write and start is the first index in values from which to read. The number
of bytes transfered is the minimum of count, the size of the memory region minus

12.3. INTERFACES 533

offset, and length of values minus start. When an exception is thrown, no data
is transfered.

12.3.16 RawMemory

A marker for all raw memory accessor objects.

Available since RTSJ version RTSJ 2.0

12.3.16.1 Methods

12.3.16.1.1 getAddress

Signature
public
long getAddress()

Returns
the first physical address this raw memory object can access.

Get the base physical address of this object.

12.3.16.1.2 getSize

Signature
public
int getSize()

Returns
the size of this raw memory

Get the number of bytes that this object spans.

12.3.17 RawMemoryRegionFactory

534 CHAPTER 12. DEVICES AND TRIGGERING

Available since RTSJ version RTSJ 2.0

12.3.17.1 Methods

12.3.17.1.1 getRegion

Signature
public
javax.realtime.device.RawMemoryRegion getRegion()

Get the region for which this factory creates raw memory objects.

12.3.17.1.2 getName

Signature
public
java.lang.String getName()

Get the name of the region for which this factory creates raw memory objects.

12.3.17.1.3 createRawByte(long, int, int)

Signature
public
javax.realtime.device.RawByte createRawByte(long base, int

count, int stride)

throws SecurityException, OffsetOutOfBoundsException,

SizeOutOfBoundsException, UnsupportedRawMemoryRegionException,

MemoryTypeConflictException

Parameters
base The starting physical address accessible through the returned instance.
count The number of memory elements accessible through the returned in-
stance.
stride The distance to the next element in mulitple of element count, where a
value of 1 means the elements are adjacent in memory.

Throws
IllegalArgumentException when base is negative, count is not greater than
zero, or stride is not greater than zero.

12.3. INTERFACES 535

SecurityException when the caller does not have permissions to access the
given memory region or the specified range of addresses.
OffsetOutOfBoundsException when base is invalid.
SizeOutOfBoundsException when the memory addressed by the object would
extend into an invalid range of memory.
MemoryTypeConflictException when base does not point to memory that matches
the type served by this factory.

Returns
an object that implements RawByte31 and supports access to the specified
range in the memory region.

Create an instance of a class that implements RawByte32 and accesses memory of
getRegion33 in the address range described by base, stride, and count. The actual
extent of the memory addressed by the object is stride ∗ size of RawByte ∗ count.
The object is allocated in the current memory area of the calling thread.

Available since RTSJ version RTSJ 2.0

12.3.17.1.4 createRawByteReader(long, int, int)

Signature
public
javax.realtime.device.RawByteReader createRawByteReader(long

base, int count, int stride)

throws SecurityException, OffsetOutOfBoundsException,

SizeOutOfBoundsException, UnsupportedRawMemoryRegionException,

MemoryTypeConflictException

Parameters
base The starting physical address accessible through the returned instance.
count The number of memory elements accessible through the returned in-
stance.
stride The distance to the next element in mulitple of element count, where a
value of 1 means the elements are adjacent in memory.

Throws
IllegalArgumentException when base is negative, count is not greater than
zero, or stride is not greater than zero.
SecurityException when the caller does not have permissions to access the
given memory region or the specified range of addresses.

31Section 12.3.1
32Section 12.3.1
33Section 12.3.17.1.1

536 CHAPTER 12. DEVICES AND TRIGGERING

OffsetOutOfBoundsException when base is invalid.
SizeOutOfBoundsException when the memory addressed by the object would
extend into an invalid range of memory.
MemoryTypeConflictException when base does not point to memory that matches
the type served by this factory.

Returns

an object that implements RawByteReader34 and supports access to the spec-
ified range in the memory region.

Create an instance of a class that implements RawByteReader35 and accesses mem-
ory of getRegion36 in the address range described by base, stride, and count.
The actual extent of the memory addressed by the object is stride ∗ size of Raw-
ByteReader ∗ count. The object is allocated in the current memory area of the
calling thread.

Available since RTSJ version RTSJ 2.0

12.3.17.1.5 createRawByteWriter(long, int, int)

Signature

public
javax.realtime.device.RawByteWriter createRawByteWriter(long

base, int count, int stride)

throws SecurityException, OffsetOutOfBoundsException,

SizeOutOfBoundsException, UnsupportedRawMemoryRegionException,

MemoryTypeConflictException

Parameters

base The starting physical address accessible through the returned instance.
count The number of memory elements accessible through the returned in-
stance.
stride The distance to the next element in mulitple of element count, where a
value of 1 means the elements are adjacent in memory.

Throws

IllegalArgumentException when base is negative, count is not greater than
zero, or stride is not greater than zero.
SecurityException when the caller does not have permissions to access the
given memory region or the specified range of addresses.

34Section 12.3.2
35Section 12.3.2
36Section 12.3.17.1.1

12.3. INTERFACES 537

OffsetOutOfBoundsException when base is invalid.
SizeOutOfBoundsException when the memory addressed by the object would
extend into an invalid range of memory.
MemoryTypeConflictException when base does not point to memory that matches
the type served by this factory.

Returns

an object that implements RawByteWriter37 and supports access to the spec-
ified range in the memory region.

Create an instance of a class that implements RawByteWriter38 and accesses mem-
ory of getRegion39 in the address range described by base, stride, and count.
The actual extent of the memory addressed by the object is stride ∗ size of Raw-
ByteWriter ∗ count. The object is allocated in the current memory area of the
calling thread.

Available since RTSJ version RTSJ 2.0

12.3.17.1.6 createRawShort(long, int, int)

Signature

public
javax.realtime.device.RawShort createRawShort(long base, int

count, int stride)

throws SecurityException, OffsetOutOfBoundsException,

SizeOutOfBoundsException, UnsupportedRawMemoryRegionException,

MemoryTypeConflictException

Parameters

base The starting physical address accessible through the returned instance.
count The number of memory elements accessible through the returned in-
stance.
stride The distance to the next element in mulitple of element count, where a
value of 1 means the elements are adjacent in memory.

Throws

IllegalArgumentException when base is negative, count is not greater than
zero, or stride is not greater than zero.
SecurityException when the caller does not have permissions to access the
given memory region or the specified range of addresses.

37Section 12.3.3
38Section 12.3.3
39Section 12.3.17.1.1

538 CHAPTER 12. DEVICES AND TRIGGERING

OffsetOutOfBoundsException when base is invalid.
SizeOutOfBoundsException when the memory addressed by the object would
extend into an invalid range of memory.
MemoryTypeConflictException when base does not point to memory that matches
the type served by this factory.

Returns

an object that implements RawShort40 and supports access to the specified
range in the memory region.

Create an instance of a class that implements RawShort41 and accesses memory
of getRegion42 in the address range described by base, stride, and count. The
actual extent of the memory addressed by the object is stride ∗ size of RawShort
∗ count. The object is allocated in the current memory area of the calling thread.

Available since RTSJ version RTSJ 2.0

12.3.17.1.7 createRawShortReader(long, int, int)

Signature

public
javax.realtime.device.RawShortReader createRawShortReader(long

base, int count, int stride)

throws SecurityException, OffsetOutOfBoundsException,

SizeOutOfBoundsException, UnsupportedRawMemoryRegionException,

MemoryTypeConflictException

Parameters

base The starting physical address accessible through the returned instance.
count The number of memory elements accessible through the returned in-
stance.
stride The distance to the next element in mulitple of element count, where a
value of 1 means the elements are adjacent in memory.

Throws

IllegalArgumentException when base is negative, count is not greater than
zero, or stride is not greater than zero.
SecurityException when the caller does not have permissions to access the
given memory region or the specified range of addresses.
OffsetOutOfBoundsException when base is invalid.

40Section 12.3.18
41Section 12.3.18
42Section 12.3.17.1.1

12.3. INTERFACES 539

SizeOutOfBoundsException when the memory addressed by the object would
extend into an invalid range of memory.
MemoryTypeConflictException when base does not point to memory that matches
the type served by this factory.

Returns

an object that implements RawShortReader43 and supports access to the spec-
ified range in the memory region.

Create an instance of a class that implements RawShortReader44 and accesses mem-
ory of getRegion45 in the address range described by base, stride, and count. The
actual extent of the memory addressed by the object is stride ∗ size of RawShort-
Reader ∗ count. The object is allocated in the current memory area of the calling
thread.

Available since RTSJ version RTSJ 2.0

12.3.17.1.8 createRawShortWriter(long, int, int)

Signature

public
javax.realtime.device.RawShortWriter createRawShortWriter(long

base, int count, int stride)

throws SecurityException, OffsetOutOfBoundsException,

SizeOutOfBoundsException, UnsupportedRawMemoryRegionException,

MemoryTypeConflictException

Parameters

base The starting physical address accessible through the returned instance.
count The number of memory elements accessible through the returned in-
stance.
stride The distance to the next element in mulitple of element count, where a
value of 1 means the elements are adjacent in memory.

Throws

IllegalArgumentException when base is negative, count is not greater than
zero, or stride is not greater than zero.
SecurityException when the caller does not have permissions to access the
given memory region or the specified range of addresses.
OffsetOutOfBoundsException when base is invalid.

43Section 12.3.19
44Section 12.3.19
45Section 12.3.17.1.1

540 CHAPTER 12. DEVICES AND TRIGGERING

SizeOutOfBoundsException when the memory addressed by the object would
extend into an invalid range of memory.
MemoryTypeConflictException when base does not point to memory that matches
the type served by this factory.

Returns

an object that implements RawShortWriter46 and supports access to the spec-
ified range in the memory region.

Create an instance of a class that implements RawShortWriter47 and accesses mem-
ory of getRegion48 in the address range described by base, stride, and count. The
actual extent of the memory addressed by the object is stride ∗ size of RawShort-
Writer ∗ count. The object is allocated in the current memory area of the calling
thread.

Available since RTSJ version RTSJ 2.0

12.3.17.1.9 createRawInt(long, int, int)

Signature

public
javax.realtime.device.RawInt createRawInt(long base, int count,

int stride)

throws SecurityException, OffsetOutOfBoundsException,

SizeOutOfBoundsException, UnsupportedRawMemoryRegionException,

MemoryTypeConflictException

Parameters

base The starting physical address accessible through the returned instance.
count The number of memory elements accessible through the returned in-
stance.
stride The distance to the next element in mulitple of element count, where a
value of 1 means the elements are adjacent in memory.

Throws

IllegalArgumentException when base is negative, count is not greater than
zero, or stride is not greater than zero.
SecurityException when the caller does not have permissions to access the
given memory region or the specified range of addresses.
OffsetOutOfBoundsException when base is invalid.

46Section 12.3.20
47Section 12.3.20
48Section 12.3.17.1.1

12.3. INTERFACES 541

SizeOutOfBoundsException when the memory addressed by the object would
extend into an invalid range of memory.
MemoryTypeConflictException when base does not point to memory that matches
the type served by this factory.

Returns
an object that implements RawInt49 and supports access to the specified range
in the memory region.

Create an instance of a class that implements RawInt50 and accesses memory of
getRegion51 in the address range described by base, stride, and count. The
actual extent of the memory addressed by the object is stride ∗ size of RawInt ∗
count. The object is allocated in the current memory area of the calling thread.

Available since RTSJ version RTSJ 2.0

12.3.17.1.10 createRawIntReader(long, int, int)

Signature
public
javax.realtime.device.RawIntReader createRawIntReader(long base,

int count, int stride)

throws SecurityException, OffsetOutOfBoundsException,

SizeOutOfBoundsException, UnsupportedRawMemoryRegionException,

MemoryTypeConflictException

Parameters
base The starting physical address accessible through the returned instance.
count The number of memory elements accessible through the returned in-
stance.
stride The distance to the next element in mulitple of element count, where a
value of 1 means the elements are adjacent in memory.

Throws
IllegalArgumentException when base is negative, count is not greater than
zero, or stride is not greater than zero.
SecurityException when the caller does not have permissions to access the
given memory region or the specified range of addresses.
OffsetOutOfBoundsException when base is invalid.
SizeOutOfBoundsException when the memory addressed by the object would
extend into an invalid range of memory.

49Section 12.3.10
50Section 12.3.10
51Section 12.3.17.1.1

542 CHAPTER 12. DEVICES AND TRIGGERING

MemoryTypeConflictException when base does not point to memory that matches
the type served by this factory.

Returns

an object that implements RawIntReader52 and supports access to the speci-
fied range in the memory region.

Create an instance of a class that implements RawIntReader53 and accesses memory
of getRegion54 in the address range described by base, stride, and count. The
actual extent of the memory addressed by the object is stride ∗ size of RawIn-
tReader ∗ count. The object is allocated in the current memory area of the calling
thread.

Available since RTSJ version RTSJ 2.0

12.3.17.1.11 createRawIntWriter(long, int, int)

Signature

public
javax.realtime.device.RawIntWriter createRawIntWriter(long base,

int count, int stride)

throws SecurityException, OffsetOutOfBoundsException,

SizeOutOfBoundsException, UnsupportedRawMemoryRegionException,

MemoryTypeConflictException

Parameters

base The starting physical address accessible through the returned instance.
count The number of memory elements accessible through the returned in-
stance.
stride The distance to the next element in mulitple of element count, where a
value of 1 means the elements are adjacent in memory.

Throws

IllegalArgumentException when base is negative, count is not greater than
zero, or stride is not greater than zero.
SecurityException when the caller does not have permissions to access the
given memory region or the specified range of addresses.
OffsetOutOfBoundsException when base is invalid.
SizeOutOfBoundsException when the memory addressed by the object would
extend into an invalid range of memory.

52Section 12.3.11
53Section 12.3.11
54Section 12.3.17.1.1

12.3. INTERFACES 543

MemoryTypeConflictException when base does not point to memory that matches
the type served by this factory.

Returns

an object that implements RawIntWriter55 and supports access to the speci-
fied range in the memory region.

Create an instance of a class that implements RawIntWriter56 and accesses memory
of getRegion57 in the address range described by base, stride, and count. The
actual extent of the memory addressed by the object is stride ∗ size of RawIn-
tWriter ∗ count. The object is allocated in the current memory area of the calling
thread.

Available since RTSJ version RTSJ 2.0

12.3.17.1.12 createRawLong(long, int, int)

Signature

public
javax.realtime.device.RawLong createRawLong(long base, int

count, int stride)

throws SecurityException, OffsetOutOfBoundsException,

SizeOutOfBoundsException, UnsupportedRawMemoryRegionException,

MemoryTypeConflictException

Parameters

base The starting physical address accessible through the returned instance.
count The number of memory elements accessible through the returned in-
stance.
stride The distance to the next element in mulitple of element count, where a
value of 1 means the elements are adjacent in memory.

Throws

IllegalArgumentException when base is negative, count is not greater than
zero, or stride is not greater than zero.
SecurityException when the caller does not have permissions to access the
given memory region or the specified range of addresses.
OffsetOutOfBoundsException when base is invalid.
SizeOutOfBoundsException when the memory addressed by the object would
extend into an invalid range of memory.

55Section 12.3.12
56Section 12.3.12
57Section 12.3.17.1.1

544 CHAPTER 12. DEVICES AND TRIGGERING

MemoryTypeConflictException when base does not point to memory that matches
the type served by this factory.

Returns
an object that implements RawLong58 and supports access to the specified
range in the memory region.

Create an instance of a class that implements RawLong59 and accesses memory of
getRegion60 in the address range described by base, stride, and count. The actual
extent of the memory addressed by the object is stride ∗ size of RawLong ∗ count.
The object is allocated in the current memory area of the calling thread.

Available since RTSJ version RTSJ 2.0

12.3.17.1.13 createRawLongReader(long, int, int)

Signature
public
javax.realtime.device.RawLongReader createRawLongReader(long

base, int count, int stride)

throws SecurityException, OffsetOutOfBoundsException,

SizeOutOfBoundsException, UnsupportedRawMemoryRegionException,

MemoryTypeConflictException

Parameters
base The starting physical address accessible through the returned instance.
count The number of memory elements accessible through the returned in-
stance.
stride The distance to the next element in mulitple of element count, where a
value of 1 means the elements are adjacent in memory.

Throws
IllegalArgumentException when base is negative, count is not greater than
zero, or stride is not greater than zero.
SecurityException when the caller does not have permissions to access the
given memory region or the specified range of addresses.
OffsetOutOfBoundsException when base is invalid.
SizeOutOfBoundsException when the memory addressed by the object would
extend into an invalid range of memory.
MemoryTypeConflictException when base does not point to memory that matches
the type served by this factory.

58Section 12.3.13
59Section 12.3.13
60Section 12.3.17.1.1

12.3. INTERFACES 545

Returns

an object that implements RawLongReader61 and supports access to the spec-
ified range in the memory region.

Create an instance of a class that implements RawLongReader62 and accesses mem-
ory of getRegion63 in the address range described by base, stride, and count.
The actual extent of the memory addressed by the object is stride ∗ size of Raw-
LongReader ∗ count. The object is allocated in the current memory area of the
calling thread.

Available since RTSJ version RTSJ 2.0

12.3.17.1.14 createRawLongWriter(long, int, int)

Signature

public
javax.realtime.device.RawLongWriter createRawLongWriter(long

base, int count, int stride)

throws SecurityException, OffsetOutOfBoundsException,

SizeOutOfBoundsException, UnsupportedRawMemoryRegionException,

MemoryTypeConflictException

Parameters

base The starting physical address accessible through the returned instance.
count The number of memory elements accessible through the returned in-
stance.
stride The distance to the next element in mulitple of element count, where a
value of 1 means the elements are adjacent in memory.

Throws

IllegalArgumentException when base is negative, count is not greater than
zero, or stride is not greater than zero.
SecurityException when the caller does not have permissions to access the
given memory region or the specified range of addresses.
OffsetOutOfBoundsException when base is invalid.
SizeOutOfBoundsException when the memory addressed by the object would
extend into an invalid range of memory.
MemoryTypeConflictException when base does not point to memory that matches
the type served by this factory.

61Section 12.3.14
62Section 12.3.14
63Section 12.3.17.1.1

546 CHAPTER 12. DEVICES AND TRIGGERING

Returns

an object that implements RawLongWriter64 and supports access to the spec-
ified range in the memory region.

Create an instance of a class that implements RawLongWriter65 and accesses mem-
ory of getRegion66 in the address range described by base, stride, and count. The
actual extent of the memory addressed by the object is stride ∗ size of RawLong-
Writer ∗ count. The object is allocated in the current memory area of the calling
thread.

Available since RTSJ version RTSJ 2.0

12.3.17.1.15 createRawFloat(long, int, int)

Signature

public
javax.realtime.device.RawFloat createRawFloat(long base, int

count, int stride)

throws SecurityException, OffsetOutOfBoundsException,

SizeOutOfBoundsException, UnsupportedRawMemoryRegionException,

MemoryTypeConflictException

Parameters

base The starting physical address accessible through the returned instance.
count The number of memory elements accessible through the returned in-
stance.
stride The distance to the next element in mulitple of element count, where a
value of 1 means the elements are adjacent in memory.

Throws

IllegalArgumentException when base is negative, count is not greater than
zero, or stride is not greater than zero.
SecurityException when the caller does not have permissions to access the
given memory region or the specified range of addresses.
OffsetOutOfBoundsException when base is invalid.
SizeOutOfBoundsException when the memory addressed by the object would
extend into an invalid range of memory.
MemoryTypeConflictException when base does not point to memory that matches
the type served by this factory.

64Section 12.3.15
65Section 12.3.15
66Section 12.3.17.1.1

12.3. INTERFACES 547

Returns

an object that implements RawFloat67 and supports access to the specified
range in the memory region.

Create an instance of a class that implements RawFloat68 and accesses memory
of getRegion69 in the address range described by base, stride, and count. The
actual extent of the memory addressed by the object is stride ∗ size of RawFloat
∗ count. The object is allocated in the current memory area of the calling thread.

Available since RTSJ version RTSJ 2.0

12.3.17.1.16 createRawFloatReader(long, int, int)

Signature

public
javax.realtime.device.RawFloatReader createRawFloatReader(long

base, int count, int stride)

throws SecurityException, OffsetOutOfBoundsException,

SizeOutOfBoundsException, UnsupportedRawMemoryRegionException,

MemoryTypeConflictException

Parameters

base The starting physical address accessible through the returned instance.
count The number of memory elements accessible through the returned in-
stance.
stride The distance to the next element in mulitple of element count, where a
value of 1 means the elements are adjacent in memory.

Throws

IllegalArgumentException when base is negative, count is not greater than
zero, or stride is not greater than zero.
SecurityException when the caller does not have permissions to access the
given memory region or the specified range of addresses.
OffsetOutOfBoundsException when base is invalid.
SizeOutOfBoundsException when the memory addressed by the object would
extend into an invalid range of memory.
MemoryTypeConflictException when base does not point to memory that matches
the type served by this factory.

Returns

67Section 12.3.7
68Section 12.3.7
69Section 12.3.17.1.1

548 CHAPTER 12. DEVICES AND TRIGGERING

an object that implements RawFloatReader70 and supports access to the spec-
ified range in the memory region.

Create an instance of a class that implements RawFloatReader71 and accesses mem-
ory of getRegion72 in the address range described by base, stride, and count. The
actual extent of the memory addressed by the object is stride ∗ size of RawFloa-
tReader ∗ count. The object is allocated in the current memory area of the calling
thread.

Available since RTSJ version RTSJ 2.0

12.3.17.1.17 createRawFloatWriter(long, int, int)

Signature

public
javax.realtime.device.RawFloatWriter createRawFloatWriter(long

base, int count, int stride)

throws SecurityException, OffsetOutOfBoundsException,

SizeOutOfBoundsException, UnsupportedRawMemoryRegionException,

MemoryTypeConflictException

Parameters

base The starting physical address accessible through the returned instance.
count The number of memory elements accessible through the returned in-
stance.
stride The distance to the next element in mulitple of element count, where a
value of 1 means the elements are adjacent in memory.

Throws

IllegalArgumentException when base is negative, count is not greater than
zero, or stride is not greater than zero.
SecurityException when the caller does not have permissions to access the
given memory region or the specified range of addresses.
OffsetOutOfBoundsException when base is invalid.
SizeOutOfBoundsException when the memory addressed by the object would
extend into an invalid range of memory.
MemoryTypeConflictException when base does not point to memory that matches
the type served by this factory.

Returns

70Section 12.3.8
71Section 12.3.8
72Section 12.3.17.1.1

12.3. INTERFACES 549

an object that implements RawFloatWriter73 and supports access to the spec-
ified range in the memory region.

Create an instance of a class that implements RawFloatWriter74 and accesses mem-
ory of getRegion75 in the address range described by base, stride, and count. The
actual extent of the memory addressed by the object is stride ∗ size of RawFloatWriter
∗ count. The object is allocated in the current memory area of the calling thread.

Available since RTSJ version RTSJ 2.0

12.3.17.1.18 createRawDouble(long, int, int)

Signature

public
javax.realtime.device.RawDouble createRawDouble(long base, int

count, int stride)

throws SecurityException, OffsetOutOfBoundsException,

SizeOutOfBoundsException, UnsupportedRawMemoryRegionException,

MemoryTypeConflictException

Parameters

base The starting physical address accessible through the returned instance.
count The number of memory elements accessible through the returned in-
stance.
stride The distance to the next element in mulitple of element count, where a
value of 1 means the elements are adjacent in memory.

Throws

IllegalArgumentException when base is negative, count is not greater than
zero, or stride is not greater than zero.
SecurityException when the caller does not have permissions to access the
given memory region or the specified range of addresses.
OffsetOutOfBoundsException when base is invalid.
SizeOutOfBoundsException when the memory addressed by the object would
extend into an invalid range of memory.
MemoryTypeConflictException when base does not point to memory that matches
the type served by this factory.

Returns

73Section 12.3.9
74Section 12.3.9
75Section 12.3.17.1.1

550 CHAPTER 12. DEVICES AND TRIGGERING

an object that implements RawDouble76 and supports access to the specified
range in the memory region.

Create an instance of a class that implements RawDouble77 and accesses memory
of getRegion78 in the address range described by base, stride, and count. The
actual extent of the memory addressed by the object is stride ∗ size of RawDouble
∗ count. The object is allocated in the current memory area of the calling thread.

Available since RTSJ version RTSJ 2.0

12.3.17.1.19 createRawDoubleReader(long, int, int)

Signature

public
javax.realtime.device.RawDoubleReader createRawDoubleReader(long

base, int count, int stride)

throws SecurityException, OffsetOutOfBoundsException,

SizeOutOfBoundsException, UnsupportedRawMemoryRegionException,

MemoryTypeConflictException

Parameters

base The starting physical address accessible through the returned instance.
count The number of memory elements accessible through the returned in-
stance.
stride The distance to the next element in mulitple of element count, where a
value of 1 means the elements are adjacent in memory.

Throws

IllegalArgumentException when base is negative, count is not greater than
zero, or stride is not greater than zero.
SecurityException when the caller does not have permissions to access the
given memory region or the specified range of addresses.
OffsetOutOfBoundsException when base is invalid.
SizeOutOfBoundsException when the memory addressed by the object would
extend into an invalid range of memory.
MemoryTypeConflictException when base does not point to memory that matches
the type served by this factory.

Returns

76Section 12.3.4
77Section 12.3.4
78Section 12.3.17.1.1

12.3. INTERFACES 551

an object that implements RawDoubleReader79 and supports access to the
specified range in the memory region.

Create an instance of a class that implements RawDoubleReader80 and accesses mem-
ory of getRegion81 in the address range described by base, stride, and count. The
actual extent of the memory addressed by the object is stride ∗ size of RawDou-
bleReader ∗ count. The object is allocated in the current memory area of the calling
thread.

Available since RTSJ version RTSJ 2.0

12.3.17.1.20 createRawDoubleWriter(long, int, int)

Signature

public
javax.realtime.device.RawDoubleWriter createRawDoubleWriter(long

base, int count, int stride)

throws SecurityException, OffsetOutOfBoundsException,

SizeOutOfBoundsException, UnsupportedRawMemoryRegionException,

MemoryTypeConflictException

Parameters

base The starting physical address accessible through the returned instance.
count The number of memory elements accessible through the returned in-
stance.
stride The distance to the next element in mulitple of element count, where a
value of 1 means the elements are adjacent in memory.

Throws

IllegalArgumentException when base is negative, count is not greater than
zero, or stride is not greater than zero.
SecurityException when the caller does not have permissions to access the
given memory region or the specified range of addresses.
OffsetOutOfBoundsException when base is invalid.
SizeOutOfBoundsException when the memory addressed by the object would
extend into an invalid range of memory.
MemoryTypeConflictException when base does not point to memory that matches
the type served by this factory.

Returns

79Section 12.3.5
80Section 12.3.5
81Section 12.3.17.1.1

552 CHAPTER 12. DEVICES AND TRIGGERING

an object that implements RawDoubleWriter82 and supports access to the
specified range in the memory region.

Create an instance of a class that implements RawDoubleWriter83 and accesses mem-
ory of getRegion84 in the address range described by base, stride, and count. The
actual extent of the memory addressed by the object is stride ∗ size of RawDou-
bleWriter ∗ count. The object is allocated in the current memory area of the calling
thread.

Available since RTSJ version RTSJ 2.0

12.3.18 RawShort

Interfaces

RawShortReader
RawShortWriter

A marker for an object that can be used to access to a single short. Read and write
access to that short is checked by the factory that creates the instance; therefore,
no access checking is provided by this interface.

Available since RTSJ version RTSJ 2.0

12.3.19 RawShortReader

Interfaces

RawMemory

A marker for a short accessor object encapsulating the protocol for reading shorts
from raw memory. A short accessor can always access at least one short. Each
short is transfered in a single atomic operation. Groups of shorts may be transfered
together; however, this is not required.

82Section 12.3.6
83Section 12.3.6
84Section 12.3.17.1.1

12.3. INTERFACES 553

Objects of this type are created with the method RawMemoryFactory.createRawShortReader85

and RawMemoryFactory.createRawShort86. Each object references a range of ele-
ments in the RawMemoryRegion87 starting at the base address provided to the factory
method. The size provided to the factor method determines the number of elements
accessable.

Caching of the memory access is controlled by the factory that created this
object. If the memory is not cached, this method guarantees serialized access. In
other words, the memory access at the memory occurs in the same order as in the
program. Multiple writes to the same location may not be coalesced.

Available since RTSJ version RTSJ 2.0

12.3.19.1 Methods

12.3.19.1.1 getShort

Signature

public
short getShort()

Returns

the value at the base address provided to the factory method that created this
object.

Get the value at the first position referenced by this instance, i.e., the value at its
start address. This operation must be atomic with respect to all other raw memory
accesses to the address.

12.3.19.1.2 getShort(int)

Signature

public
short getShort(int offset)

throws OffsetOutOfBoundsException

Parameters

85Section 12.5.5.3.7
86Section 12.5.5.3.6
87Section 12.5.6

554 CHAPTER 12. DEVICES AND TRIGGERING

offset of short in the memory region starting from the address specified in the
associated factory method.

Throws
OffsetOutOfBoundsException when offset is negative or greater than or equal
to the number of elements in the raw memory region.

Returns
the value at the address specified.

Get the value of the nth element referenced by this instance, where n is offset and
the address is base address + (offset ∗ stride ∗ element size in bytes). When an
exception is thrown, no data is transfered.

12.3.19.1.3 get(int, short[])

Signature
public
int get(int offset, short[] values)

throws OffsetOutOfBoundsException, NullPointerException

Parameters
offset of the first short in the memory region to transfere
values the array to received the shorts

Throws
OffsetOutOfBoundsException when offset is negative or greater than or equal
to the number of elements in the raw memory region.
NullPointerException when values is null.

Returns
the number of elements copied to values

Fill the values starting at the address referenced by this instance plus the offset
scaled by the element size in bytes and the object’s stride. Only the shorts in the
intersection of the start and end of values and the base address and the end of the
memory region are transfered. When an exception is thrown, no data is transfered.

12.3.19.1.4 get(int, short[], int, int)

Signature
public
int get(int offset, short[] values, int start, int count)

throws OffsetOutOfBoundsException,

ArrayIndexOutOfBoundsException, NullPointerException

Parameters
offset of the first short in the memory region to transfere
values the array to received the shorts

12.3. INTERFACES 555

start the first index in array to fill
count the maximum number of shorts to copy

Throws

OffsetOutOfBoundsException when offset is negative or either offset or
offset + count is greater than or equal to the size of this raw memory area.
ArrayIndexOutOfBoundsException when start is negative or either start or
start + count is greater than or equal to the size of values.
NullPointerException when values is null or count is negative.

Returns

the number of shorts actually transfered.

Fill values with data from the memory region, where offset is first short in the
memory region and start is the first index in values. The number of bytes trans-
fered is the minimum of count, the size of the memory region minus offset, and
length of values minus start. When an exception is thrown, no data is transfered.

12.3.20 RawShortWriter

Interfaces

RawMemory

A marker for a short accessor object encapsulating the protocol for writing shorts
from raw memory. A short accessor can always access at least one short. Each
short is transfered in a single atomic operation. Groups of shorts may be transfered
together; however, this is not required.

Objects of this type are created with the method RawMemoryFactory.createRawShortWriter88

and RawMemoryFactory.createRawShort89. Each object references a range of ele-
ments in the RawMemoryRegion90 starting at the base address provided to the factory
method. The size provided to the factor method determines the number of elements
accessable.

Caching of the memory access is controlled by the factory that created this
object. If the memory is not cached, this method guarantees serialized access. In
other words, the memory access at the memory occurs in the same order as in the
program. Multiple writes to the same location may not be coalesced.

Available since RTSJ version RTSJ 2.0

88Section 12.5.5.3.8
89Section 12.5.5.3.6
90Section 12.5.6

556 CHAPTER 12. DEVICES AND TRIGGERING

12.3.20.1 Methods

12.3.20.1.1 setShort(short)

Signature
public
void setShort(short value)

Set the value at the first position referenced by this instance, i.e., the value at its
start address. This operation must be atomic with respect to all other raw memory
accesses to the address. When an exception is thrown, no data is transfered.

12.3.20.1.2 setShort(int, short)

Signature
public
void setShort(int offset, short value)

throws OffsetOutOfBoundsException

Parameters
offset of short in the memory region.

Throws
OffsetOutOfBoundsException when offset is negative or greater than or equal
to the number of elements in the raw memory region.

Set the value of the nth element referenced by this instance, where n is offset and
the address is base address + offset ∗ size of Short. This operation must be atomic
with respect to all other raw memory accesses to the address. When an exception
is thrown, no data is transfered.

12.3.20.1.3 set(int, short[])

Signature
public
int set(int offset, short[] values)

throws OffsetOutOfBoundsException, NullPointerException

Throws
OffsetOutOfBoundsException when offset is negative or greater than or equal
to the number of elements in the raw memory region.
NullPointerException when values is null.

Returns

12.3. INTERFACES 557

the number of elements copied to values

Copy values to the raw memory starting at the address referenced by this instance
plus the offset scaled by the element size in bytes and the objects stride. Only the
shorts in the intersection of values and the end of the memory region are transfered.
When an exception is thrown, no data is transfered.

12.3.20.1.4 set(int, short[], int, int)

Signature
public
int set(int offset, short[] values, int start, int count)

throws OffsetOutOfBoundsException,

ArrayIndexOutOfBoundsException, NullPointerException

Parameters
offset of the first short in the memory region to set
values the array from which to retrieve the shorts
start the first index in array to fill
count the maximum number of shorts to copy

Throws
OffsetOutOfBoundsException when offset is negative or either offset or
offset + count is greater than or equal to the size of this raw memory area.
ArrayIndexOutOfBoundsException when start is negative or either start or
start + count is greater than or equal to the size of values.
NullPointerException when values is null.

Returns
the number of shorts actually transfered.

Copy values to the memory region, where offset is first short in the memory
region to write and start is the first index in values from which to read. The
number of bytes transfered is the minimum of count, the size of the memory region
minus offset, and length of values minus start. When an exception is thrown,
no data is transfered.

558 CHAPTER 12. DEVICES AND TRIGGERING

12.4 Exceptions

12.4.1 UnsupportedRawMemoryRegionException

Inheritance
java.lang.Object

java.lang.Throwable
java.lang.Exception

java.lang.RuntimeException
javax.realtime.device.UnsupportedRawMemoryRegionException

12.4.1.1 Fields

12.4.1.1.1 serialVersionUID
private static final serialVersionUID

12.4.1.2 Constructors

12.4.1.2.1 UnsupportedRawMemoryRegionException

Signature

public

UnsupportedRawMemoryRegionException()

12.4.1.2.2 UnsupportedRawMemoryRegionException(String)

Signature

public

UnsupportedRawMemoryRegionException(String s)

12.4. EXCEPTIONS 559

12.4.1.2.3 UnsupportedRawMemoryRegionException(Throwable)

Signature

public

UnsupportedRawMemoryRegionException(Throwable ex)

12.4.1.2.4 UnsupportedRawMemoryRegionException(String, Throwable)

Signature

public

UnsupportedRawMemoryRegionException(String s, Throwable ex)

560 CHAPTER 12. DEVICES AND TRIGGERING

12.5 Classes

12.5.1 Happening

Inheritance
java.lang.Object

javax.realtime.AbstractAsyncEvent
javax.realtime.AsyncEvent

javax.realtime.device.Happening
Interfaces

ActiveEvent
This class replaces the original happening strings. There are three main differences
between this mechanism and the string based API.
• This class is first-class entity in the RTSJ, not buried in the implementation

and identified only by a String name.
• They include the trigger(int)91 method that enables a happening to be

explicitly triggered by Java code, and at the implementation’s option, a native
code function that permits native application code to trigger the happening.
• Happening is a subclass of AsyncEvent92 just as with Timer93 instead of having

happenings attached to async events.
Happenings may be assigned unique names by the application, or the system

will assign a name when none is provided. The name space for system names is all
strings beginning with @.

Available since RTSJ version RTSJ 2.0

12.5.1.1 Constructors

12.5.1.1.1 Happening(String)

Signature

91Section 12.5.1.2.5
92Section 8.6.3
93Section 10.5.6

12.5. CLASSES 561

Happening(String name)

throws IllegalStateException, IllegalArgumentException

Parameters
name of the happening.

Create a Happening with the given name.

12.5.1.1.2 Happening(String, HappeningDispatcher)

Signature

Happening(String name, HappeningDispatcher dispatcher)

throws IllegalStateException, IllegalArgumentException

Parameters
name of the happening.

Create a Happening with the given name.

12.5.1.2 Methods

12.5.1.2.1 getHappening(String)

Signature
public static
javax.realtime.device.Happening getHappening(String name)

Parameters
name of the happening to get.

Returns
a reference to the happening with name name, or null if no happening is found.

Find a running happening by its name.

12.5.1.2.2 createID(String)

Signature
public static
int createID(String name)

562 CHAPTER 12. DEVICES AND TRIGGERING

Parameters

name a string that might name a running happening.

Throws

IllegalStateException when name is already registered.

Returns

an ID assigned by the system

Sets up a mapping between a name and a system dependent ID. This should be done
either in the constructor of an instance of InterruptServiceRoutine94 or in native
code that sets up an interrupt service routine in native code. Once create, it cannot
be removed.

This must take no more than linear time in the number of ID (n) registered, but
should be O(ln(n)).

12.5.1.2.3 getID(String)

Signature

public static
int getID(String name)

Parameters

name a string that might name a running happening.

Returns

The ID, or zero if no happening is found by that name.

Return the ID of name, when one exists or -1, when name is not registered.

This must take no more than linear time in the number of ID (n) registered, but
should be O(ln(n)).

12.5.1.2.4 isHappening(String)

Signature

public static
boolean isHappening(String name)

Parameters

name A string that might name a running happening.

Returns

True iff there is a running happening with name name.

Is there a running happening with name name?

94Section 12.5.3

12.5. CLASSES 563

12.5.1.2.5 trigger(int)

Signature
public static
boolean trigger(int happeningId)

Parameters
happeningId

Returns
true if a happening with id happeningId was found, false otherwise.

Causes the event dispatcher corresponding to happeningId to be scheduled for ex-
ecution. This should be light-weight so that it can be done in the context of the
happening.

trigger() and any native code analog interact with other ActiveEvent95 code
effectively as if trigger() signals a POSIX counting semaphore that the happening
is waiting on.

The implementation is encouraged to create (and document) a native code analog
to this method that can be used without a Java context.

This method must execute in constant time.

12.5.1.2.6 start

Signature
public final
void start()

throws IllegalStateException

Throws
IllegalStateException when this Happening has already been started.

Start this Happening, i.e., change to a running state. A running happening is a
source of activation when in a scoped memory and is a member of the root set when
in the heap. A running happening can be triggered.

See Section stop())

12.5.1.2.7 start(boolean)

Signature
public final
void start(boolean disabled)

95Section 9.4.1

564 CHAPTER 12. DEVICES AND TRIGGERING

throws IllegalStateException

Parameters
disabled true for starting in a disabled state.

Throws
IllegalStateException when this Happening has already been started.

Start this Happening, i.e., change to a running state. A running happening is a
source of activation when in a scoped memory and is a member of the root set when
in the heap. A running happening can be triggered.

See Section stop())

12.5.1.2.8 stop

Signature
public final
boolean stop()

throws IllegalStateException

Throws
IllegalStateException when this Happening is not running.

Returns
true if this was enabled and false otherwise.

Stop this happening. A stopped happening ceases to be a source of activation and
no longer cause any AE attached to it to be a source of activation. The trigger
method on an stopped happening ceases to function. Its name is released for use by
another happening as well.

12.5.1.2.9 isActive

Signature
public
boolean isActive()

Returns
true when active, false otherwise.

Determine the activation state of this happening, i.e., it has been started.

12.5.1.2.10 isEnabled

Signature
public
boolean isEnabled()

12.5. CLASSES 565

Returns

true when releasing, false when skipping.

Determine the firing state (releasing or skipping) of this happening, i.e., it is enabled.

12.5.2 HappeningDispatcher

Inheritance

java.lang.Object
javax.realtime.ActiveEventDispatcher

javax.realtime.device.HappeningDispatcher

This class provides a means of dispatching a set of Happening96. The process()
method is called each time the signal is triggered.

12.5.2.1 Constructors

12.5.2.1.1 HappeningDispatcher(int)

Signature

public

HappeningDispatcher(int priority)

Parameters

priority at which to dispatch.

Create a new dispatcher.

12.5.2.2 Methods

96Section 12.5.1

566 CHAPTER 12. DEVICES AND TRIGGERING

12.5.2.2.1 getDefaultHappeningDispatcher

Signature

public static
javax.realtime.device.HappeningDispatcher

getDefaultHappeningDispatcher()

Returns

the default happening dispatcher.

This provides a means of obtaining the system provided happening dispatcher so
that new happenings can be use it.

12.5.2.2.2 dispatch(Happening)

Signature

protected abstract
void dispatch(Happening happening)

Parameters

happening to dispatch

Actually dispatch the Happening97. This can be overridden in a subclass to provide
for more sophisticated dispatching.

12.5.2.2.3 register(Happening)

Signature

final
void register(Happening happening)

Parameters

happeing to register

Register a Happening98 with this dispatcher.

12.5.2.2.4 unregister(Happening)

Signature

final
void unregister(Happening happening)

Parameters

happening to unregister

97Section 12.5.1
98Section 12.5.1

12.5. CLASSES 567

Deregister a Happening form this dispatcher. (This is a really naive implementa-
tion.)

12.5.2.2.5 trigger(Happening)

Signature
final
void trigger(Happening happening)

Parameters
happening the happening that needs to be dispatched

Queue the happening for dispatching by this dispatcher. This should only be called
from @{link Happening#trigger()}.

12.5.3 InterruptServiceRoutine

Inheritance
java.lang.Object

javax.realtime.device.InterruptServiceRoutine
A class for defining a first level interrupt handler. The implementation must override
the handle99 method to provide the code to be run when an interrupt occurs. This
class must always be present in the Device module, but may do nothing in a context
that does not provide direct access to interrupts, e.g., in user space on an operating
system that does not support user space device drivers.

12.5.3.1 Constructors

12.5.3.1.1 InterruptServiceRoutine(MemoryArea)

Signature

public

InterruptServiceRoutine(MemoryArea area)

Parameters

99Section 12.5.3.2.3

568 CHAPTER 12. DEVICES AND TRIGGERING

area in which the handler is run.
Throws

NullPointerException when initial area is null.
IllegalArgumentException when id is not a valid interrupt id.

Create an interrupt service routine with a particular memory area.

12.5.3.2 Methods

12.5.3.2.1 getMaximumInterruptPriority

Signature
public static
int getMaximumInterruptPriority()

Returns
the maximum interrupt priority.

Retrieve the maximum interrupt priority. It must be greater than or equal to the
result of getMinimumInterruptPriority100.

12.5.3.2.2 getMinimumInterruptPriority

Signature
public static
int getMinimumInterruptPriority()

Returns
the minimum interrupt priority.

Retrieve the minimum interrupt priority. It must be higher than all other priorities
provided by the system.

12.5.3.2.3 handle

Signature
protected abstract
void handle()

The code to execute for first level interrupt handling. A subclass defines this to
give the required behavior. No code that could self-suspend may be called here.
Unless the overridden method is synchronized, the infrastructure shall provide no

100Section 12.5.3.2.2

12.5. CLASSES 569

synchronization for the execution of this method. When the MemoryArea101 provided
at creation is a ScopedMemory102, its count is incremented on entry to this method
and decremented on exit.

12.5.3.2.4 getName

Signature

public final
java.lang.String getName()

Returns

the name of this interrupt service routine.

Get the name of this interrupt service routine.

12.5.3.2.5 register(int)

Signature

public
void register(int interrupt)

throws RegistrationException

Parameters

interrupt a system dependent identifier for the interrupt.

Throws

RegistrationException when this interrupt service routine is already registered

Register this interrupt service routine with the system so that it can be triggered.

12.5.3.2.6 unregister

Signature

public
void unregister()

throws DeregistrationException

Throws

DeregistrationException when this interrupt service routine is not registered.

Unregister this interrupt service routine with the system so that it can no longer be
triggered.

101Section 11.8.7
102Section 11.8.13

570 CHAPTER 12. DEVICES AND TRIGGERING

12.5.3.2.7 isRegistered

Signature
public final
boolean isRegistered()

Returns
true when registered, otherwise false.

Registration predicate

12.5.3.2.8 getHandler(int)

Signature
public static
javax.realtime.device.InterruptServiceRoutine getHandler(int

interrupt)

Returns
the InterruptServiceRoutine registered to the given interrupt. Null is re-
turned when nothing is registered for that interrupt.

See what InterruptServiceRoutine is handling a given interrupt.

12.5.3.2.9 getInterruptPriority(int)

Signature
public static
int getInterruptPriority(int InterruptId)

Throws
IllegalArgument if there is no interrupt corresponding to InterruptId

Returns
the priority the code is run at that services the given interrupt. The returned
value is always greater than PriorityScheduler.getMaxPriority()103.

Get the interrupt priority of a given interrupt.

12.5.4 RawBufferFactory

Inheritance
java.lang.Object

javax.realtime.device.RawBufferFactory

103Section 6.5.6.3.2

12.5. CLASSES 571

A factory class for generating raw byte buffers. This is useful for limiting the area
from which a buffer may be taken.

12.5.4.1 Constructors

12.5.4.1.1 RawBufferFactory(long, long)

Signature

public

RawBufferFactory(long base, long size)

throws MemoryInUseException

Parameters
base is the base address of a memory range for buffer allocation
size is the number of bytes in the memory range

Throws
MemoryInUseException when the memory area provide is already in use by or
reserved for a MemoryArea104, program code, or other sytem or VM structure.

Create a factory for allocating buffers in a particular memory area. Whether the
address is physical or virtual is system dependent.
Open issue: jjh—I am not sure how to handle the issue of mapping addresses that
the system knows about to ones that can be used in a DMA controller or other driver
that requires buffers. Alternatives include providing more information to the factory
or having a translation function to get the ”right” address. An implementation may
need or need to provide a means of mapping a physical page into virtual memory.
End of open issue

12.5.4.2 Methods

12.5.4.2.1 allocateDirectByteBuffer(int)

Signature

104Section 11.8.7

572 CHAPTER 12. DEVICES AND TRIGGERING

public
java.nio.ByteBuffer allocateDirectByteBuffer(int capacity)

Parameters

capacity the number of bytes in the buffer.

Returns

the new buffer.

Create a direct byte buffer with the given capacity within the range of this factory.

Open issue: jjh—what if a subclass is needed? One could add a reflection call,
but it would be hard to implement in general. End of open issue

12.5.4.2.2 defineDirectByteBuffer(long, int)

Signature

public
java.nio.ByteBuffer defineDirectByteBuffer(long start, int

capacity)

throws RangeOutOfBoundsException

Parameters

start is the beginning of the memory range
capacity is number of bytes in the range

Throws

RangeOutOfBoundsException when start or start + capacity extends out-
side of the allocation area of this factory.

Returns

the new buffer object

Given a range of memory within the allocation area defined by this factory, create
a direct byte buffer to represent that memory range.

12.5.4.2.3 inRange(Buffer)

Signature

public
boolean inRange(Buffer buffer)

Parameters

buffer to check

Returns

true when and only when buffer’s data area is within the range of this factory;
otherwise false

Check to see if the buffer’s data area is within the range of this factory.

12.5. CLASSES 573

12.5.4.2.4 addressOf(ByteBuffer)

Signature

public
long addressOf(ByteBuffer buffer)

Parameters

buffer

Returns

the start address of the data range of this buffer

Give the location of this buffers data in memory. The address should be usable for
use in a device driver.

12.5.4.2.5 writeBarrier(ByteBuffer)

Signature

public static
void writeBarrier(ByteBuffer buffer)

Parameters

buffer the byte buffer which will be flushed

Ensures that all changes to the @code DirectByteBuffer buffer by the current thread
have been flushed to its backing memory in a manner that makes it visible to other
threads (including native threads), and behaves as a volatile store with respect to
the Java Memory Model synchronization order.

This method should invoke a memory barrier operation that is understood by
the VM, runtime, native compiler, and platform to provide visibility to all changes
to the associated buffer made before its invocation.

12.5.4.2.6 readBarrier(ByteBuffer)

Signature

public static
void readBarrier(ByteBuffer buffer)

Parameters

buffer the byte buffer which will be updated

Ensures that any previous changes to the backing memory of the given @code Di-
rectByteBuffer by other threads (including native threads) will be visible when it is
next accessed by the current thread, and behaves as a volatile load with respect to
the Java Memory Model synchronization order.

This method should invoke a memory barrier operation that is understood by
the VM, runtime, native compiler, and platform to provide visibility for any changes

574 CHAPTER 12. DEVICES AND TRIGGERING

to the associated buffer previously flushed with a call to writeBarrier(ByteBuffer

buffer)105 or its native equivalent on the buffer’s backing memory.

12.5.5 RawMemoryFactory

Inheritance
java.lang.Object

javax.realtime.device.RawMemoryFactory
This class is the hub of a system that constructs special purpose objects to access
particular types and ranges of raw memory. This facility is supported by the reg-

ister(RawMemoryRegionFactory)106 methods. An application developer can use
this method to add support for any ram memory region that is not supported out
of the box.

Each create method returns an object of the corresponding type, e.g., the cre-

ateRawByte(RawMemoryRegion, long, int, int)107 method returns a reference
to an object that implements the RawByte108 interface and supports access to the
requested type of memory and address range. Each create method is permitted to
optimize error checking and access based on the requested memory type and address
range.

The useage pattern for raw memory, assuming the necessary factory has been reg-
istered, is illustrated by this example.
// Get an accessor object that can access memory starting at
// baseAddress, for size bytes.
RawInt memory =

RawMemoryFactory.createRawInt(RawMemoryFactory.MEMORY MAPPED REGION,
address, count, stride, false);

// Use the accessor to load from and store to raw memory.
int loadedData = memory.getInt(someOffset);
memory.setInt(otherOffset, intVal);
When an application needs to access a class of memory that is not already sup-

ported by a registered factory, the developer must define a memory region by imple-
menting a factory which can create objects to access memory in that region. Thus,
the application must implement a factory that implements the RawMemoryRegion-

Factory109 interface.

105Section 12.5.4.2.5
106Section 12.5.5.3.1
107Section 12.5.5.3.3
108Section 12.3.1
109Section 12.3.17

12.5. CLASSES 575

A raw memory region factory is identified by a RawMemoryRegion110 that is
used by each create method, e.g., createRawByte(RawMemoryRegion, long, int,

int)111, to locate the appropriate factory. The name is not passed to register(RawMemoryRegionFactory)112

as an argument; the name is available to register(RawMemoryRegionFactory)113

through the factory’s RawMemoryRegionFactory.getName114 method.

The register(RawMemoryRegionFactory)115 method is only used when by ap-
plication code when it needs to add support for a new type of raw memory.

Whether an offset addresses the high-order or low-order byte is normally based
on the value of the RealtimeSystem.BYTE ORDER116 static byte variable in class
RealtimeSystem117. If the type of memory supported by a raw memory accessor
class implements non-standard byte ordering, accessor methods in that instance
continue to select bytes starting at offset from the base address and continuing
toward greater addresses. The accessor instance may control the mapping of these
bytes into the primitive data type. The accessor could even select bytes that are
not contiguous. In each case the documentation for the raw memory access factory
must document any mapping other than the ”normal” one specified above.

The RawMemory class enables a realtime program to implement device drivers,
memory-mapped I/O, flash memory, battery-backed RAM, and similar low-level
software.

A raw memory region cannot contain references to Java objects. Such a capa-
bility would be unsafe (since it could be used to defeat Java’s type checking) and
error prone (since it is sensitive to the specific representational choices made by the
Java compiler).

Atomic loads and stores on raw memory are defined in terms of physical memory.
This memory may be accessible to threads outside the JVM and to non-programmed
access (e.g., DMA), consequently atomic access must be supported by hardware.
This specification is written with the assumption that all suitable hardware plat-
forms support atomic loads from raw memory for aligned bytes, shorts, and ints.
Atomic access beyond the specified minimum may be supported by the implemen-
tation.

Storing values into raw memory is more hardware-dependent than loading val-
ues. Many processor architectures do not support atomic stores of variables except
for aligned stores of the processor’s word size. For instance, storing a byte into

110Section 12.5.6
111Section 12.5.5.3.3
112Section 12.5.5.3.1
113Section 12.5.5.3.1
114Section 12.3.17.1.2
115Section 12.5.5.3.1
116Section 13.3.6.1.3
117Section 13.3.6

576 CHAPTER 12. DEVICES AND TRIGGERING

memory might require reading a 32-bit quantity into a processor register, updating
the register to reflect the new byte value, then re-storing the whole 32-bit quantity.
Changes to other bytes in the 32-bit quantity that take place between the load and
the store are lost.

Some processors have mechanisms that can be used to implement an atomic store
of a byte, but those mechanisms are often slow and not universally supported.

This class need not support unaligned access to data; but if it does, it is not
require the implementation to make such access atomic. Accesses to data aligned
on its natural boundary will be atomic if the processor implements atomic loads and
stores of that data size.

Except where noted, accesses to raw memory are not atomic with respect to
the memory or with respect to schedulable objects. A raw memory region could
be updated by another schedulable object, or even unmapped in the middle of an
access method, or even removed mid method.

The characteristics of raw-memory access are necessarily platform dependent.
This specification provides a minimum requirement for the RTSJ platform, but it
also supports optional system properties that identify a platform’s level of support
for atomic raw put and get. The properties represent a four-dimensional sparse
array with boolean values indicating whether that combination of access attributes
is atomic. The default value for array entries is false. The dimension are

12.5. CLASSES 577

Attribute Values Comment
Access type read, write

Data type

• byte,
• short,
• int,
• long,
• float,
• double

Alignment 0 to 7 For each data type,
the possible align-
ments range from
• 0 == aligned
• to data size - 1 ==

only the first byte of
the data is alignment
bytes away from nat-
ural alignment.

Atomicity

• processor,
• smp,
• memory

• processor means ac-
cess is atomic with
respect to other
schedulable objects
on that processor.
• smp means that

access is processor
atomic, and atomic
with respect across
the processors in an
SMP.
• memory means that

access is smp atomic,
and atomic with re-
spect to all access to
the memory includ-
ing DMA.

The true values in the table are represented by properties of the following form.
javax.realtime.atomicaccess <access> <type> <alignment> atomicity=true for ex-
ample,

javax.realtime.atomicaccess read byte 0 memory=true
Table entries with a value of false may be explicitly represented, but since false is

578 CHAPTER 12. DEVICES AND TRIGGERING

the default value, such properties are redundant.
All raw memory access is treated as volatile, and serialized. The runtime must be

forced to read memory or write to memory on each call to a raw memory objects’s
getter or setter method, and to complete the reads and writes in the order they
appear in the program order.
Open issue: Do we need these properties? End of open issue
Available since RTSJ version RTSJ 2.0

12.5.5.1 Fields

12.5.5.1.1 MEMORY MAPPED REGION
public static final MEMORY MAPPED REGION

This raw memory name is used to request access to I/O device space implemented
by processor instructions.

Available since RTSJ version RTSJ 2.0

12.5.5.1.2 IO PORT MAPPED REGION
public static final IO PORT MAPPED REGION

This raw memory name is used to request access to memory mapped I/O devices.

Available since RTSJ version RTSJ 2.0

12.5.5.2 Constructors

12.5.5.2.1 RawMemoryFactory

Signature

public

RawMemoryFactory()

12.5. CLASSES 579

12.5.5.3 Methods

12.5.5.3.1 register(RawMemoryRegionFactory)

Signature

public static
void register(RawMemoryRegionFactory factory)

12.5.5.3.2 deregister(RawMemoryRegionFactory)

Signature

public static
void deregister(RawMemoryRegionFactory factory)

12.5.5.3.3 createRawByte(RawMemoryRegion, long, int, int)

Signature

public
javax.realtime.device.RawByte createRawByte(RawMemoryRegion

region, long base, int count, int stride)

throws SecurityException, OffsetOutOfBoundsException,

SizeOutOfBoundsException, MemoryTypeConflictException,

UnsupportedRawMemoryRegionException

Parameters

base The starting physical address accessible through the returned instance.
count The number of memory elements accessible through the returned in-
stance.
stride The distance to the next element as a mulitple of element size, where 1

means the elements are adjacent in memory.

Throws

IllegalArgumentException when base is negative, count is not greater than
zero, or stride is less than one.
SecurityException when the caller does not have permissions to access the
given memory region or the specified range of addresses.
OffsetOutOfBoundsException when base is invalid.
SizeOutOfBoundsException when the memory addressed by the object would
extend into an invalid range of memory.

580 CHAPTER 12. DEVICES AND TRIGGERING

MemoryTypeConflictException when base does not point to memory that matches
the type served by this factory.

Returns

an object that implements RawByte118 and supports access to the specified
range in the memory region.

Create an instance of a class that implements RawByte119 and accesses memory of
region in the address range described by base, stride, and count. The actual
extent of the memory addressed by the object is stride ∗ size of RawByte ∗ count.
The object is allocated in the current memory area of the calling thread.

Available since RTSJ version RTSJ 2.0

12.5.5.3.4 createRawByteReader(RawMemoryRegion, long, int, int)

Signature

public
javax.realtime.device.RawByteReader

createRawByteReader(RawMemoryRegion region, long base, int

count, int stride)

throws SecurityException, OffsetOutOfBoundsException,

SizeOutOfBoundsException, MemoryTypeConflictException,

UnsupportedRawMemoryRegionException

Parameters

base The starting physical address accessible through the returned instance.
count The number of memory elements accessible through the returned in-
stance.
stride The distance to the next element as a mulitple of element size, where 1

means the elements are adjacent in memory.

Throws

IllegalArgumentException when base is negative, count is not greater than
zero, or stride is less than one.
SecurityException when the caller does not have permissions to access the
given memory region or the specified range of addresses.
OffsetOutOfBoundsException when base is invalid.
SizeOutOfBoundsException when the memory addressed by the object would
extend into an invalid range of memory.

118Section 12.3.1
119Section 12.3.1

12.5. CLASSES 581

MemoryTypeConflictException when base does not point to memory that matches
the type served by this factory.

Returns
an object that implements RawByteReader120 and supports access to the spec-
ified range in the memory region.

Create an instance of a class that implements RawByteReader121 and accesses mem-
ory of region in the address range described by base, stride, and count. The
actual extent of the memory addressed by the object is stride ∗ size of Raw-
ByteReader ∗ count. The object is allocated in the current memory area of the
calling thread.

Available since RTSJ version RTSJ 2.0

12.5.5.3.5 createRawByteWriter(RawMemoryRegion, long, int, int)

Signature
public
javax.realtime.device.RawByteWriter

createRawByteWriter(RawMemoryRegion region, long base, int

count, int stride)

throws SecurityException, OffsetOutOfBoundsException,

SizeOutOfBoundsException, MemoryTypeConflictException,

UnsupportedRawMemoryRegionException

Parameters
base The starting physical address accessible through the returned instance.
count The number of memory elements accessible through the returned in-
stance.
stride The distance to the next element as a mulitple of element size, where 1

means the elements are adjacent in memory.
Throws

IllegalArgumentException when base is negative, count is not greater than
zero, or stride is less than one.
SecurityException when the caller does not have permissions to access the
given memory region or the specified range of addresses.
OffsetOutOfBoundsException when base is invalid.
SizeOutOfBoundsException when the memory addressed by the object would
extend into an invalid range of memory.

120Section 12.3.2
121Section 12.3.2

582 CHAPTER 12. DEVICES AND TRIGGERING

MemoryTypeConflictException when base does not point to memory that matches
the type served by this factory.

Returns

an object that implements RawByteWriter122 and supports access to the spec-
ified range in the memory region.

Create an instance of a class that implements RawByteWriter123 and accesses mem-
ory of region in the address range described by base, stride, and count. The
actual extent of the memory addressed by the object is stride ∗ size of Raw-
ByteWriter ∗ count. The object is allocated in the current memory area of the
calling thread.

Available since RTSJ version RTSJ 2.0

12.5.5.3.6 createRawShort(RawMemoryRegion, long, int, int)

Signature

public
javax.realtime.device.RawShort createRawShort(RawMemoryRegion

region, long base, int count, int stride)

throws SecurityException, OffsetOutOfBoundsException,

SizeOutOfBoundsException, MemoryTypeConflictException,

UnsupportedRawMemoryRegionException

Parameters

base The starting physical address accessible through the returned instance.
count The number of memory elements accessible through the returned in-
stance.
stride The distance to the next element as a mulitple of element size, where 1

means the elements are adjacent in memory.

Throws

IllegalArgumentException when base is negative, count is not greater than
zero, or stride is less than one.
SecurityException when the caller does not have permissions to access the
given memory region or the specified range of addresses.
OffsetOutOfBoundsException when base is invalid.
SizeOutOfBoundsException when the memory addressed by the object would
extend into an invalid range of memory.

122Section 12.3.3
123Section 12.3.3

12.5. CLASSES 583

MemoryTypeConflictException when base does not point to memory that matches
the type served by this factory.

Returns
an object that implements RawShort124 and supports access to the specified
range in the memory region.

Create an instance of a class that implements RawShort125 and accesses memory
of region in the address range described by base, stride, and count. The actual
extent of the memory addressed by the object is stride ∗ size of RawShort ∗ count.
The object is allocated in the current memory area of the calling thread.

Available since RTSJ version RTSJ 2.0

12.5.5.3.7 createRawShortReader(RawMemoryRegion, long, int, int)

Signature
public
javax.realtime.device.RawShortReader createRawShort-

Reader(RawMemoryRegion region, long base, int count, int stride)

throws SecurityException, OffsetOutOfBoundsException,

SizeOutOfBoundsException, MemoryTypeConflictException,

UnsupportedRawMemoryRegionException

Parameters
base The starting physical address accessible through the returned instance.
count The number of memory elements accessible through the returned in-
stance.
stride The distance to the next element as a mulitple of element size, where 1

means the elements are adjacent in memory.
Throws

IllegalArgumentException when base is negative, count is not greater than
zero, or stride is less than one.
SecurityException when the caller does not have permissions to access the
given memory region or the specified range of addresses.
OffsetOutOfBoundsException when base is invalid.
SizeOutOfBoundsException when the memory addressed by the object would
extend into an invalid range of memory.
MemoryTypeConflictException when base does not point to memory that matches
the type served by this factory.

124Section 12.3.18
125Section 12.3.18

584 CHAPTER 12. DEVICES AND TRIGGERING

Returns

an object that implements RawShortReader126 and supports access to the
specified range in the memory region.

Create an instance of a class that implements RawShortReader127 and accesses mem-
ory of region in the address range described by base, stride, and count. The
actual extent of the memory addressed by the object is stride ∗ size of RawShort-
Reader ∗ count. The object is allocated in the current memory area of the calling
thread.

Available since RTSJ version RTSJ 2.0

12.5.5.3.8 createRawShortWriter(RawMemoryRegion, long, int, int)

Signature

public
javax.realtime.device.RawShortWriter createRawShort-

Writer(RawMemoryRegion region, long base, int count, int stride)

throws SecurityException, OffsetOutOfBoundsException,

SizeOutOfBoundsException, MemoryTypeConflictException,

UnsupportedRawMemoryRegionException

Parameters

base The starting physical address accessible through the returned instance.
count The number of memory elements accessible through the returned in-
stance.
stride The distance to the next element as a mulitple of element size, where 1

means the elements are adjacent in memory.

Throws

IllegalArgumentException when base is negative, count is not greater than
zero, or stride is less than one.
SecurityException when the caller does not have permissions to access the
given memory region or the specified range of addresses.
OffsetOutOfBoundsException when base is invalid.
SizeOutOfBoundsException when the memory addressed by the object would
extend into an invalid range of memory.
MemoryTypeConflictException when base does not point to memory that matches
the type served by this factory.

Returns

126Section 12.3.19
127Section 12.3.19

12.5. CLASSES 585

an object that implements RawShortWriter128 and supports access to the
specified range in the memory region.

Create an instance of a class that implements RawShortWriter129 and accesses mem-
ory of region in the address range described by base, stride, and count. The
actual extent of the memory addressed by the object is stride ∗ size of RawShort-
Writer ∗ count. The object is allocated in the current memory area of the calling
thread.

Available since RTSJ version RTSJ 2.0

12.5.5.3.9 createRawInt(RawMemoryRegion, long, int, int)

Signature
public
javax.realtime.device.RawInt createRawInt(RawMemoryRegion

region, long base, int count, int stride)

throws SecurityException, OffsetOutOfBoundsException,

SizeOutOfBoundsException, MemoryTypeConflictException,

UnsupportedRawMemoryRegionException

Parameters
base The starting physical address accessible through the returned instance.
count The number of memory elements accessible through the returned in-
stance.
stride The distance to the next element as a mulitple of element size, where 1

means the elements are adjacent in memory.
Throws

IllegalArgumentException when base is negative, count is not greater than
zero, or stride is less than one.
SecurityException when the caller does not have permissions to access the
given memory region or the specified range of addresses.
OffsetOutOfBoundsException when base is invalid.
SizeOutOfBoundsException when the memory addressed by the object would
extend into an invalid range of memory.
MemoryTypeConflictException when base does not point to memory that matches
the type served by this factory.

Returns
an object that implements RawInt130 and supports access to the specified range

128Section 12.3.20
129Section 12.3.20
130Section 12.3.10

586 CHAPTER 12. DEVICES AND TRIGGERING

in the memory region.
Create an instance of a class that implements RawInt131 and accesses memory of
region in the address range described by base, stride, and count. The actual
extent of the memory addressed by the object is stride ∗ size of RawInt ∗ count.
The object is allocated in the current memory area of the calling thread.

Available since RTSJ version RTSJ 2.0

12.5.5.3.10 createRawIntReader(RawMemoryRegion, long, int, int)

Signature
public
javax.realtime.device.RawIntReader

createRawIntReader(RawMemoryRegion region, long base, int count,

int stride)

throws SecurityException, OffsetOutOfBoundsException,

SizeOutOfBoundsException, MemoryTypeConflictException,

UnsupportedRawMemoryRegionException

Parameters
base The starting physical address accessible through the returned instance.
count The number of memory elements accessible through the returned in-
stance.
stride The distance to the next element as a mulitple of element size, where 1

means the elements are adjacent in memory.
Throws

IllegalArgumentException when base is negative, count is not greater than
zero, or stride is less than one.
SecurityException when the caller does not have permissions to access the
given memory region or the specified range of addresses.
OffsetOutOfBoundsException when base is invalid.
SizeOutOfBoundsException when the memory addressed by the object would
extend into an invalid range of memory.
MemoryTypeConflictException when base does not point to memory that matches
the type served by this factory.

Returns
an object that implements RawIntReader132 and supports access to the spec-
ified range in the memory region.

131Section 12.3.10
132Section 12.3.11

12.5. CLASSES 587

Create an instance of a class that implements RawIntReader133 and accesses memory
of region in the address range described by base, stride, and count. The actual
extent of the memory addressed by the object is stride ∗ size of RawIntReader ∗
count. The object is allocated in the current memory area of the calling thread.

Available since RTSJ version RTSJ 2.0

12.5.5.3.11 createRawIntWriter(RawMemoryRegion, long, int, int)

Signature
public
javax.realtime.device.RawIntWriter

createRawIntWriter(RawMemoryRegion region, long base, int count,

int stride)

throws SecurityException, OffsetOutOfBoundsException,

SizeOutOfBoundsException, MemoryTypeConflictException,

UnsupportedRawMemoryRegionException

Parameters
base The starting physical address accessible through the returned instance.
count The number of memory elements accessible through the returned in-
stance.
stride The distance to the next element as a mulitple of element size, where 1

means the elements are adjacent in memory.
Throws

IllegalArgumentException when base is negative, count is not greater than
zero, or stride is less than one.
SecurityException when the caller does not have permissions to access the
given memory region or the specified range of addresses.
OffsetOutOfBoundsException when base is invalid.
SizeOutOfBoundsException when the memory addressed by the object would
extend into an invalid range of memory.
MemoryTypeConflictException when base does not point to memory that matches
the type served by this factory.

Returns
an object that implements RawIntWriter134 and supports access to the spec-
ified range in the memory region.

Create an instance of a class that implements RawIntWriter135 and accesses memory

133Section 12.3.11
134Section 12.3.12
135Section 12.3.12

588 CHAPTER 12. DEVICES AND TRIGGERING

of region in the address range described by base, stride, and count. The actual
extent of the memory addressed by the object is stride ∗ size of RawIntWriter ∗
count. The object is allocated in the current memory area of the calling thread.

Available since RTSJ version RTSJ 2.0

12.5.5.3.12 createRawLong(RawMemoryRegion, long, int, int)

Signature

public
javax.realtime.device.RawLong createRawLong(RawMemoryRegion

region, long base, int count, int stride)

throws SecurityException, OffsetOutOfBoundsException,

SizeOutOfBoundsException, MemoryTypeConflictException,

UnsupportedRawMemoryRegionException

Parameters

base The starting physical address accessible through the returned instance.
count The number of memory elements accessible through the returned in-
stance.
stride The distance to the next element as a mulitple of element size, where 1

means the elements are adjacent in memory.

Throws

IllegalArgumentException when base is negative, count is not greater than
zero, or stride is less than one.
SecurityException when the caller does not have permissions to access the
given memory region or the specified range of addresses.
OffsetOutOfBoundsException when base is invalid.
SizeOutOfBoundsException when the memory addressed by the object would
extend into an invalid range of memory.
MemoryTypeConflictException when base does not point to memory that matches
the type served by this factory.

Returns

an object that implements RawLong136 and supports access to the specified
range in the memory region.

Create an instance of a class that implements RawLong137 and accesses memory of
region in the address range described by base, stride, and count. The actual

136Section 12.3.13
137Section 12.3.13

12.5. CLASSES 589

extent of the memory addressed by the object is stride ∗ size of RawLong ∗ count.
The object is allocated in the current memory area of the calling thread.

Available since RTSJ version RTSJ 2.0

12.5.5.3.13 createRawLongReader(RawMemoryRegion, long, int, int)

Signature
public
javax.realtime.device.RawLongReader

createRawLongReader(RawMemoryRegion region, long base, int

count, int stride)

throws SecurityException, OffsetOutOfBoundsException,

SizeOutOfBoundsException, MemoryTypeConflictException,

UnsupportedRawMemoryRegionException

Parameters
base The starting physical address accessible through the returned instance.
count The number of memory elements accessible through the returned in-
stance.
stride The distance to the next element as a mulitple of element size, where 1

means the elements are adjacent in memory.
Throws

IllegalArgumentException when base is negative, count is not greater than
zero, or stride is less than one.
SecurityException when the caller does not have permissions to access the
given memory region or the specified range of addresses.
OffsetOutOfBoundsException when base is invalid.
SizeOutOfBoundsException when the memory addressed by the object would
extend into an invalid range of memory.
MemoryTypeConflictException when base does not point to memory that matches
the type served by this factory.

Returns
an object that implements RawLongReader138 and supports access to the spec-
ified range in the memory region.

Create an instance of a class that implements RawLongReader139 and accesses mem-
ory of region in the address range described by base, stride, and count. The
actual extent of the memory addressed by the object is stride ∗ size of RawLon-

138Section 12.3.14
139Section 12.3.14

590 CHAPTER 12. DEVICES AND TRIGGERING

gReader ∗ count. The object is allocated in the current memory area of the calling
thread.

Available since RTSJ version RTSJ 2.0

12.5.5.3.14 createRawLongWriter(RawMemoryRegion, long, int, int)

Signature
public
javax.realtime.device.RawLongWriter createRawLong-

Writer(RawMemoryRegion region, long base, int count, int stride)

throws SecurityException, OffsetOutOfBoundsException,

SizeOutOfBoundsException, MemoryTypeConflictException,

UnsupportedRawMemoryRegionException

Parameters
base The starting physical address accessible through the returned instance.
count The number of memory elements accessible through the returned in-
stance.
stride The distance to the next element as a mulitple of element size, where 1

means the elements are adjacent in memory.
Throws

IllegalArgumentException when base is negative, count is not greater than
zero, or stride is less than one.
SecurityException when the caller does not have permissions to access the
given memory region or the specified range of addresses.
OffsetOutOfBoundsException when base is invalid.
SizeOutOfBoundsException when the memory addressed by the object would
extend into an invalid range of memory.
MemoryTypeConflictException when base does not point to memory that matches
the type served by this factory.

Returns
an object that implements RawLongWriter140 and supports access to the spec-
ified range in the memory region.

Create an instance of a class that implements RawLongWriter141 and accesses mem-
ory of region in the address range described by base, stride, and count. The
actual extent of the memory addressed by the object is stride ∗ size of RawLong-
Writer ∗ count. The object is allocated in the current memory area of the calling

140Section 12.3.15
141Section 12.3.15

12.5. CLASSES 591

thread.

Available since RTSJ version RTSJ 2.0

12.5.5.3.15 createRawFloat(RawMemoryRegion, long, int, int)

Signature

public
javax.realtime.device.RawFloat createRawFloat(RawMemoryRegion

region, long base, int count, int stride)

throws SecurityException, OffsetOutOfBoundsException,

SizeOutOfBoundsException, MemoryTypeConflictException,

UnsupportedRawMemoryRegionException

Parameters

base The starting physical address accessible through the returned instance.
count The number of memory elements accessible through the returned in-
stance.
stride The distance to the next element as a mulitple of element size, where 1

means the elements are adjacent in memory.

Throws

IllegalArgumentException when base is negative, count is not greater than
zero, or stride is less than one.
SecurityException when the caller does not have permissions to access the
given memory region or the specified range of addresses.
OffsetOutOfBoundsException when base is invalid.
SizeOutOfBoundsException when the memory addressed by the object would
extend into an invalid range of memory.
MemoryTypeConflictException when base does not point to memory that matches
the type served by this factory.

Returns

an object that implements RawFloat142 and supports access to the specified
range in the memory region.

Create an instance of a class that implements RawFloat143 and accesses memory
of region in the address range described by base, stride, and count. The actual
extent of the memory addressed by the object is stride ∗ size of RawFloat ∗ count.
The object is allocated in the current memory area of the calling thread.

142Section 12.3.7
143Section 12.3.7

592 CHAPTER 12. DEVICES AND TRIGGERING

Available since RTSJ version RTSJ 2.0

12.5.5.3.16 createRawFloatReader(RawMemoryRegion, long, int, int)

Signature

public
javax.realtime.device.RawFloatReader

createRawFloatReader(RawMemoryRegion region, long base, int

count, int stride)

throws SecurityException, OffsetOutOfBoundsException,

SizeOutOfBoundsException, MemoryTypeConflictException,

UnsupportedRawMemoryRegionException

Parameters

base The starting physical address accessible through the returned instance.
count The number of memory elements accessible through the returned in-
stance.
stride The distance to the next element as a mulitple of element size, where 1

means the elements are adjacent in memory.

Throws

IllegalArgumentException when base is negative, count is not greater than
zero, or stride is less than one.
SecurityException when the caller does not have permissions to access the
given memory region or the specified range of addresses.
OffsetOutOfBoundsException when base is invalid.
SizeOutOfBoundsException when the memory addressed by the object would
extend into an invalid range of memory.
MemoryTypeConflictException when base does not point to memory that matches
the type served by this factory.

Returns

an object that implements RawFloatReader144 and supports access to the
specified range in the memory region.

Create an instance of a class that implements RawFloatReader145 and accesses mem-
ory of region in the address range described by base, stride, and count. The
actual extent of the memory addressed by the object is stride ∗ size of RawFloa-
tReader ∗ count. The object is allocated in the current memory area of the calling

144Section 12.3.8
145Section 12.3.8

12.5. CLASSES 593

thread.

Available since RTSJ version RTSJ 2.0

12.5.5.3.17 createRawFloatWriter(RawMemoryRegion, long, int, int)

Signature
public
javax.realtime.device.RawFloatWriter

createRawFloatWriter(RawMemoryRegion region, long base, int

count, int stride)

throws SecurityException, OffsetOutOfBoundsException,

SizeOutOfBoundsException, MemoryTypeConflictException,

UnsupportedRawMemoryRegionException

Parameters
base The starting physical address accessible through the returned instance.
count The number of memory elements accessible through the returned in-
stance.
stride The distance to the next element as a mulitple of element size, where 1

means the elements are adjacent in memory.
Throws

IllegalArgumentException when base is negative, count is not greater than
zero, or stride is less than one.
SecurityException when the caller does not have permissions to access the
given memory region or the specified range of addresses.
OffsetOutOfBoundsException when base is invalid.
SizeOutOfBoundsException when the memory addressed by the object would
extend into an invalid range of memory.
MemoryTypeConflictException when base does not point to memory that matches
the type served by this factory.

Returns
an object that implements RawFloatWriter146 and supports access to the
specified range in the memory region.

Create an instance of a class that implements RawFloatWriter147 and accesses mem-
ory of region in the address range described by base, stride, and count. The ac-
tual extent of the memory addressed by the object is stride ∗ size of RawFloatWriter
∗ count. The object is allocated in the current memory area of the calling thread.

146Section 12.3.9
147Section 12.3.9

594 CHAPTER 12. DEVICES AND TRIGGERING

Available since RTSJ version RTSJ 2.0

12.5.5.3.18 createRawDouble(RawMemoryRegion, long, int, int)

Signature

public
javax.realtime.device.RawDouble createRawDouble(RawMemoryRegion

region, long base, int count, int stride)

throws SecurityException, OffsetOutOfBoundsException,

SizeOutOfBoundsException, MemoryTypeConflictException,

UnsupportedRawMemoryRegionException

Parameters

base The starting physical address accessible through the returned instance.
count The number of memory elements accessible through the returned in-
stance.
stride The distance to the next element as a mulitple of element size, where 1

means the elements are adjacent in memory.

Throws

IllegalArgumentException when base is negative, count is not greater than
zero, or stride is less than one.
SecurityException when the caller does not have permissions to access the
given memory region or the specified range of addresses.
OffsetOutOfBoundsException when base is invalid.
SizeOutOfBoundsException when the memory addressed by the object would
extend into an invalid range of memory.
MemoryTypeConflictException when base does not point to memory that matches
the type served by this factory.

Returns

an object that implements RawDouble148 and supports access to the specified
range in the memory region.

Create an instance of a class that implements RawDouble149 and accesses memory
of region in the address range described by base, stride, and count. The actual
extent of the memory addressed by the object is stride ∗ size of RawDouble ∗
count. The object is allocated in the current memory area of the calling thread.

Available since RTSJ version RTSJ 2.0

148Section 12.3.4
149Section 12.3.4

12.5. CLASSES 595

12.5.5.3.19 createRawDoubleReader(RawMemoryRegion, long, int, int)

Signature

public
javax.realtime.device.RawDoubleReader

createRawDoubleReader(RawMemoryRegion region, long base, int

count, int stride)

throws SecurityException, OffsetOutOfBoundsException,

SizeOutOfBoundsException, MemoryTypeConflictException,

UnsupportedRawMemoryRegionException

Parameters

base The starting physical address accessible through the returned instance.
count The number of memory elements accessible through the returned in-
stance.
stride The distance to the next element as a mulitple of element size, where 1

means the elements are adjacent in memory.

Throws

IllegalArgumentException when base is negative, count is not greater than
zero, or stride is less than one.
SecurityException when the caller does not have permissions to access the
given memory region or the specified range of addresses.
OffsetOutOfBoundsException when base is invalid.
SizeOutOfBoundsException when the memory addressed by the object would
extend into an invalid range of memory.
MemoryTypeConflictException when base does not point to memory that matches
the type served by this factory.

Returns

an object that implements RawDoubleReader150 and supports access to the
specified range in the memory region.

Create an instance of a class that implements RawDoubleReader151 and accesses
memory of region in the address range described by base, stride, and count.
The actual extent of the memory addressed by the object is stride ∗ size of Raw-
DoubleReader ∗ count. The object is allocated in the current memory area of the
calling thread.

150Section 12.3.5
151Section 12.3.5

596 CHAPTER 12. DEVICES AND TRIGGERING

Available since RTSJ version RTSJ 2.0

12.5.5.3.20 createRawDoubleWriter(RawMemoryRegion, long, int, int)

Signature

public
javax.realtime.device.RawDoubleWriter

createRawDoubleWriter(RawMemoryRegion region, long base, int

count, int stride)

throws SecurityException, OffsetOutOfBoundsException,

SizeOutOfBoundsException, MemoryTypeConflictException,

UnsupportedRawMemoryRegionException

Parameters

base The starting physical address accessible through the returned instance.
count The number of memory elements accessible through the returned in-
stance.
stride The distance to the next element as a mulitple of element size, where 1

means the elements are adjacent in memory.

Throws

IllegalArgumentException when base is negative, count is not greater than
zero, or stride is less than one.
SecurityException when the caller does not have permissions to access the
given memory region or the specified range of addresses.
OffsetOutOfBoundsException when base is invalid.
SizeOutOfBoundsException when the memory addressed by the object would
extend into an invalid range of memory.
MemoryTypeConflictException when base does not point to memory that matches
the type served by this factory.

Returns

an object that implements RawDoubleWriter152 and supports access to the
specified range in the memory region.

Create an instance of a class that implements RawDoubleWriter153 and accesses
memory of region in the address range described by base, stride, and count.
The actual extent of the memory addressed by the object is stride ∗ size of Raw-
DoubleWriter ∗ count. The object is allocated in the current memory area of the

152Section 12.3.6
153Section 12.3.6

12.5. CLASSES 597

calling thread.

Available since RTSJ version RTSJ 2.0

12.5.6 RawMemoryRegion

Inheritance
java.lang.Object

javax.realtime.device.RawMemoryRegion
RawMemoryRegion is a tagging class for objects that identify raw memory regions .
It is returned by the RawMemoryRegionFactory.getRegion154 methods of the raw
memory region factory classes, and it is used with methods such as RawMemory-

Factory.createRawByte(RawMemoryRegion, long, int, int)155 and RawMemo-

ryFactory.createRawDouble(RawMemoryRegion, long, int, int)156 methods to
identify the region from which the application wants to get an accessor instance.

This is distinct from the, similarly named PhysicalMemoryName157 class, which
is used with memory area classes, specifically ImmortalPhysicalMemory158 and LT-

PhysicalMemory159.

Available since RTSJ version RTSJ 2.0

12.5.6.1 Fields

12.5.6.1.1 regions
private static final regions

12.5.6.1.2 name
private final name

154Section 12.3.17.1.1
155Section 12.5.5.3.3
156Section 12.5.5.3.18
157Section 15.3.1
158Section 11.8.4
159Section 11.8.6

598 CHAPTER 12. DEVICES AND TRIGGERING

12.5.6.2 Constructors

12.5.6.2.1 RawMemoryRegion(String)

Signature

private

RawMemoryRegion(String name)

12.5.6.3 Methods

12.5.6.3.1 getRegion(String)

Signature
public static
javax.realtime.device.RawMemoryRegion getRegion(String name)

12.5.6.3.2 isRawMemoryRegion(String)

Signature
public static
boolean isRawMemoryRegion(String name)

12.5.6.3.3 getName

Signature
public final
java.lang.String getName()

12.5.6.3.4 toString

Signature
public final
java.lang.String toString()

12.6. RATIONALE 599

12.6 Rationale

12.6.1 Raw Memory

Open issue: Need to be checked with current API End of open issue
Raw memory in the RTSJ refers to any memory in which only objects of primitive

types can be stored; Java objects or their references cannot be stored in raw memory.
Version 2.0 of specification distinguishes between three categories:
• memory that is used to access memory-mapped device registers,
• logical memory that can be used to access port-based device registers,
• memory that falls outside that used to accessing devices registers but may be

used for other purposes, such as emulating device access.
Each of these categories of memory is represented by a tagging interface called
RawMemoryRegion.

Java’s primitive types are partitioned into two groups: integral (short, int, long,
byte) and real (float, double) types, including arrays of each type. For integral
types, individual interfaces are also defined to facilitate greater type security during
access. Objects that support these interfaces are created by factory methods, which
again have predefined interfaces. Such objects are called accessor objects as they
encapsulates the access protocol to the raw memory.

Control over all these objects is managed by the RawMemoryFactory class that
provides a set of static methods, as shown in Figure 12.5. There are two groups of
methods, those that
• enable a factory to be registered, and
• request the creation of accessor object for a particular memory type at a

physical address in memory.
The latter consists of methods to create
• general accessor objects, (createRawAccessInstance, createRawIntegral-
AccessInstance, and createRawRealAccessInstance) which provide full ac-
cess to the memory and will deal with all issues of memory alignment when
reading data of primitive types; and
• Java-primitive-type accessor objets, which will throw exceptions if the ap-

propriate addresses are not on correct boundaries to enable the underlying
machine instructions to be used without causing hardware exceptions (e.g.,
createRawByteInstance).

As with interrupt handling, some realtime JVMs may not be able to support
all of the memory categories. However, the expectation is that for all supported
categories, they will also provide and register the associated factories for object
creation.

600 CHAPTER 12. DEVICES AND TRIGGERING

javax.realtime::RawMemoryRegion
RawMemoryRegion(String name)
+toString(): String

javax.realtime::RawMemoryFactory
+getDefaultRawMemoryFactory(): RawMemoryFactory
+register(RawMemoryRegionFactory creator)
+createRawLong(RawMemoryRegion type, long base, int size, int stride): RawLong
+createRawInt(RawMemoryRegion type, long base, int size, int stride): RawInt
+createRawShort(RawMemoryRegion type, long base, int size, int stride): RawShort
+createRawByte(RawMemoryRegion type, long base, int size, int stride): RawByte
+createRawFloat(RawMemoryRegion type, long base, int size, int stride): RawFloat
+createRawDouble(RawMemoryRegion type, long base, int size, int stride): RawDouble
...

javax.realtime::RawMemoryRegionFactory
«interface»

+createRawLong(long base, int size, int stride): RawLong
+createRawInt(long base, int size, int stride): RawInt
+createRawShort(long base, int size, int stride): RawShort
+createRawByte(long base, int size, int stride): RawByte
+createRawFloat(long base, int size, int stride): RawFloat
+createRawDouble(long base, int size, int stride): RawDouble
...

Figure 12.5: Creating Raw Memory Accessors

For the case of IO PORT MAPPED raw memory, the accessor objects will need
to arrange to execute the appropriate assemble instructions to access the device
registers.

Consider, the simple case where a device has a two device registers: a control/s-
tatus register that is a 32 bits integer, and a data register that is a 64 bits long.
The registers have been memory mapped to locations: 0x20 and 0x24 respectively.
Assuming the real-time JVM has registered a factory for the IO MEM MAPPED raw
memory name, then the following code will create the objects that facilitate the
memory access

1 RawInt controlReg =
2 RawMemoryFactory.createRawIntAccessInstance(RawMemoryFactory.IO_PORT_MAPPED, 0x20);
3 RawLong dataReg =
4 RawMemoryFactory.createRawLongAccessInstance(RawMemoryFactory.IO_PORT_MAPPED, 0x24);

12.6. RATIONALE 601

The above definitions reflect the structure of the actual registers. The JVM will
check that the memory locations are on the correct boundaries and that they can
be accessed without any hardware exceptions being generated. If they cannot, the
create methods will throw an appropriate exceptions. If successfully created, all
future access to the controlReg and dataReg will be exception free. The registers
can be manipulated by calling the appropriate methods, as in the following example.

1 dataReg.put(l);
2 // where l is of type long and is data to be sent to the device
3 controlReg.put(i);
4 // where i is of type int and is the command to the device

In the general case, programmers themselves may create their own memory cat-
egories and provide associated factories (that may use the implementation-defined
factories). These factories are written in Java and are, therefore, constrained by
what the language allows them to do. Typically, they will use the JVM-supplied
raw memory types to facilitate access to a device’s external memory. In addition to
the above facilities, the RTSJ also supports the notion of removable memory. When
this memory is inserted or removed, an asynchronous event can be set up to fire,
thereby alerting the application that the device has become active. Of course, any
removable memory has to be treated with extreme caution by the real-time JVM.
Hence, the RTSJ allows it only to be accessed as a raw memory device. An example
of these latter facilities will be given in Section 12.6.3.

12.6.1.1 Direct memory access

DMA requires access to memory out side of the heap. It is often crucial for perfor-
mance in embedded systems; however, it does cause problems both from a realtime
analysis perspective and from a JVM-implementation perspective. The latter is the
primary concern here.

There are a few crucial points to note about DMA and the RTSJ.
• The RTSJ does not address issues of persistent objects; so the input and output

of Java objects to devices (other than by using the Java serialization mecha-
nism) is not supported.
• The RTSJ requires that RTSJ programs can be compiled by regular Java com-

pilers. Different bytecode compilers (and their supporting JVM) use different
representation for objects. Java arrays (even of primitive types) are objects,
and the data they contain might not be stored in contiguous memory.
• The package java.nio.channels provides a mechanism for I/O that was not

specifically designed for DMA, but provides an applicable pattern for it.
For these reasons, without explicit knowledge of the compiler and JVM, allowing

any DMA into any RTSJ memory area is a very dangerous action; therefore, the RTSJ

602 CHAPTER 12. DEVICES AND TRIGGERING

provides some special support for DMA. Unfortunately, it would be difficult to find
a general patter to fit all DMA controllers. With raw memory and raw byte buffers,
one could construct a higher level API that would cover most DMA controllers, but
there will always odd casses that would still not fit the general pattern, especially
for embedded systems. For this reason, only this low level API is provided.

Flash Memory Stick

Flash Memory Socket

Figure 12.6: Flash memory device

12.6.2 Interrupt Handling

Handling interrupts is a necessary part of many embedded systems. Interrupt han-
dlers have traditionally been implemented in assembler code or C. With the growing
popularity of high-level concurrent languages, there has been interest in better inte-
gration between the interrupt handling code and the application. Ada, for example,
allows a “protected” procedure to be called directly from an interrupt [3].

Regehr [5] defines the terms used for the core components of interrupts and their
handlers as follows.
• Interrupt—a hardware supported asynchronous transfer of control mechanism

initiated by an event external to the processor. Control of the processor is
transferred through an interrupt vector.
• Interrupt vector—a dedicated (or configurable) location that specifies the lo-

cation of an interrupt handler.
• Interrupt handler—code that is reachable from the interrupt vector.
• An interrupt controller—a peripheral device that manages interrupts for the

processor.
He further identifies the following problems with programming interrupt-driven

software on single processors:
• Stack overflow—the difficulty determining how much call-chain stack is re-

quired to handle an interrupt. The problem is compounded if the stack is
borrowed from the currently executing thread or process.

12.6. RATIONALE 603

• Interrupt overload—the problem of ensuring that non-interrupt driven pro-
cessing is not swamped by unexpected or misbehaving interrupts.
• Real-time analysis—the need to have appropriate schedulability analysis mod-

els to bound the impact of interrupt handlers.

The problems above are accentuated in multiprocessor systems where interrupts
can be handled globally. Fortunately, many multiprocessor systems allow interrupts
to be bound to particular processors. For example, the ARM Cortex A9-MPCore
supports the Arm Generic Interrupt Controller160. This enables a target list of CPUs
to be specified for each hardware interrupt. Software generated interrupts can also
be sent to the list or set up to be delivered to all but the requesting CPU or only
the requesting CPU.

Regehr’s problems are all generic and can be solved irrespective of the language
used to implement the handlers. In general they can be addressed by a combination
of techniques.

• Stack overflow—static analysis techniques can usually be used to determine
the worst-case stack usage of all interrupt handlers. If stack is borrowed from
the executing thread then this amount must be added to the worst-case stack
usage of all threads.
• Interrupt overload—this is typically managed by aperiodic server technology

in combination with interrupt masking (see Section 13.6 of [3]).
• Real-time analysis—again this can be catered for in modern schedulability

analysis techniques, such as response-time analysis (see Section 14.6 of [3]).

From a RTSJ perspective, the following distinctions are useful

• The first-level interrupt handlers are the code that the platform executes in re-
sponse to the hardware interrupts (or traps). A first-level interrupt is assumed
to be executed at an execution eligibility (priority) and by a processor dictated
by the underlying platform (which may be controllable at the platform level).
On some RTSJ implementations it will not be possible to write Java code
for these handlers. Implementations that do enable Java-level handlers may
restrict the code that can be written. For example, the handler code should not
suspend itself or throw unhandled exceptions. The RTSJ Version 2.0 optional
InterruptServiceRoutine class supports first level interrupt handling.
• The external event handler is the code that the JVM executes as a result of

being notified that an external event (be it an operating system signal, an ISR
or some other program) is targeted at the RTSJ application. The programmer
should be able to specify the processor affinity and execution eligibility of this
code. In RTSJ Version 2.0, all external events are represented by instances of
the Happening interface. Every happening has an associated dispatcher which
is responsible for the initial response to an occurrence of the event.

160 See http://infocenter.arm.com/help/index.jsp?topic=/com.arm.doc.ddi0375a/Cegbfjhf.html

604 CHAPTER 12. DEVICES AND TRIGGERING

handler for

handler for

«Interface»
RawIntegralAccess

«Interface»
RawIntegralAccessFactory

«Interface»
RemovableMemory

«AsyncEventHandler»
FAController

fires

fires

FMRemoved: AsyncEvent

FMInserted: AsyncEvent
handler

 for

FlashEvent: ExternalHappening
name="FlashHappening"

«AsyncEventHandler»
FMSocketController

Figure 12.7: Flash memory classes

• A happening dispatcher is able to find one or more associated RTSJ asyn-
chronous events and fire them. This then releases the associated asynchronous
event handlers. A happening dispatcher is not required to fire events. If ap-
propriate, the dispatcher can provide an in-line handler itself.

12.6.3 An Illustrative Example

Consider an embedded system that has a simple flash memory device that supports
a single type of removable flash memory stick, as illustrated in Figure 12.6.

When the memory stick is inserted or removed, an interrupt is generated. This
interrupt is known to the real-time JVM. The interrupt is also generated when
operations requested on the device are completed. For simplicity, it is assumed
that real-time JVM has mapped this interrupt to an external happening called
FlashHappening with a default happening dispatcher.

The example illustrates how
1. a programmer can use the RTSJ facilities to write a device handler,
2. a factory class can be constructed and how the accessor objects police the

access,
3. removable memory is handled.
The flash memory device is accessed via several associated registers, which are

shown in Table 12.1. These have all been memory mapped to the indicated locations.

12.6.3.1 Software architecture

There are many ways in which the software architecture for the example could be
constructed. Here, for simplicity of representation, an architecture is chosen with

12.6. RATIONALE 605

Register Location Bit Positions Values

Command 0x20 0 0 = Disable device, 1 = Enable device
4 0 = Disable interrupts, 1 = Enable interrupts

5-8 1 = Read byte, 2 = Write byte
3 = Read short, 4 = Write short
5 = Read int, 6 = Write int
7 = Read long, 8 = Write long

9 0 = DMA Read, 1 = DMA
31-63 Offset into flash memory

Data 0x28 0-63 Simple data or memory address if DMA
Length 0x30 0-31 Length of data transfer
Status 0x38 0 1 = Device enabled

3 1 = Interrupts enabled
4 1 = Device in error
5 1 = Transfer complete
6 1 = Memory stick present

0 = Memory stick absent
7 1 = Memory stick inserted
8 0 = Memory stick removed

Table 12.1: Device registers

a minimal number of classes. It is illustrated in Figure 12.7. There are three key
components.

• FlashHappening—This is the external happening that is associated with the
flash device’s interrupt. The RTSJ will provide a default dispatcher, which will
fire the asynchronous event when the interrupt occurs.
• FMSocketController—This is the object that encapsulates the access to the

flash memory device. In essence, it is the device driver; it is also the handler
for the FlashHappening and is responsibly for firing the FMInserted and FM-

Removed asynchronous events.
• FAController—This is the object that controls access to the flash memory, it

– acts as the factory for the creating objects that will facilitate access to
the flash memory itself (using the mechanisms provided by the FMSocket-
Controller),

– is the asynchronous event handler that responds to the firing of the FM-

Inserted and FMRemoved asynchronous events, and
– also acts as the accessor object for the memory.

606 CHAPTER 12. DEVICES AND TRIGGERING

12.6.3.2 Device initialization

Figure 12.8 shows the sequence of operations that the program must perform to
initialize the flash memory device. The main steps are as follows.

... getName

RawMemory

8 addHandler(FAController)
7 new

5 new

FMEvent

4 initDevice

3 addHandler(FMSocketController)

2 new

1 new("FlashHappening")

Flash Memory
Inialisation

10 Set up device

FAControllerFlashEvent FMSocketController

Figure 12.8: Sequence diagram showing initialization operations

1 The external happening (FlashEvent) associated with the flash happening
must be created.

2-3 The (FMSocketController) object is created and added as a handler for Fla-
shEvent.

4 An initialization method is called (initDevice) to perform all the operations
necessary to configure the infrastructure and initialize the hardware device.

5-6 Two new asynchronous events are created to represent insertion and removal
of the flash memory stick.

7-9 The FAController class is created. It is added as the handler for the two
events created in steps 5 and 6.

10 Setting up the device and registering the factory is shown in detail in Figure
12.9. It involves: registering the FAController object via the static methods
in the RawMemory class, and creating and using the JVM-supplied factory to
access the memory-mapped I/O registers.

12.6. RATIONALE 607

statusRegAccess =

dataRegAccess =

commandRegAccess =

FLASH_MEMORY

getName

FMFactory:

registerFactory
(FMFactory)

Set up device

setLong

set bits to enable
the device and
 its interrupts

getLong

createRawByte
(IO_MEMORY_MAPPED, 0x38)

createRawLong
(IO_MEMORY_MAPPED, 0x28)

statusRegAccess:
RawByte

_

commandRegAccess:
RawLong

_

createRawLong
(IO_MEMORY_MAPPED, 0x20)

RawMemory

initDevice

FMSocketController

Flash Memory
Initialization

Figure 12.9: Sequence diagrams showing operations to initialize the hardware device

12.6.3.3 Responding to external happenings

In the example, interrupts are handled by the JVM, which turns them into an
external happening. The application code that indirectly responds to the happening
is provided in the handleAsyncEvent method in the FMSocketController object.
Figure 12.10 illustrates the approach. In this example, the actions in response to
the memory stick inserted and memory stick removed flash events is simply shown
as the execution of the FMInserted and FMRemoved handlers. These will inform the
application. The memory accessor classes themselves will ensure that the stick is
present when performing the required application accesses.
12.6.3.4 Access to the flash controller’s device registers

Figure 12.11 shows the sequence of events that the application follows. First it must
register a handler with the FMInserted asynchronous event. Here, the application
itself is an asynchronous event handler. When this is released, the memory has been
inserted.

608 CHAPTER 12. DEVICES AND TRIGGERING

determine whether
stick inserted or
removed

Transfer
complete

fire(EventType)

FMEvent

getByte

see later

statusRegAccess:

handleAsyncEvent

FMSocketController

Flash Memory
Interrupt
Handling

Figure 12.10: The FMSocketController.handleAsync method

In this simple example, the application simply reads a byte from an offset within
the memory stick. It, therefore, creates an accessor to access the data. When
this has been returned (it is the FAController itself), the application can now call
the get method (called FA get, in the following, for clarity). This method must
implement the sequence of raw memory access on the device’s registers to perform
the operation. In Figure 12.11, they are as follows.

1. FA get calls the get method of the status register’s accessor object. This can
check to make sure that the flash memory is present (bit 6, as shown in Table
12.1). If it is not, an exception can be thrown.

2. Assuming the memory is present, it then sets the control register with the
offset required (bits 31–63, as shown in Table 12.1) and sets the read byte
request bit (bits 5-8, as shown in Table 12.1).

12.6. RATIONALE 609

handleAsyncEvent

FMEvent

addHandler
(This)

data

5 get

 4 get

3. notify
completion

 3. wait completion

Transfer Complete
 handleAsyncEvent

2. set
Access the
device
register
to perform
the required
operation

 1. get
ge t

FAController
FAAccessor

dataRegAccess
_

newRawByte
(0x00,0x800)

FMFactory statusRegAccess
_

commandRegAccess
_

 createRawByte
(FLASH_MEMORY,ox800)

RawMemory«AEH»
Application

Flash
Memory
Access

Figure 12.11: Application usage

3. The FA get method must then wait for indication that the requested operation
has been completed by the device. This is detected by the handleAsyncEvent

method of the FMController, which performs the necessary notify.
4. Once notified of completion, the FA get method, again reads the status register

to make sure there were no errors on the device (bit 4 in Table 12.1) and that
the memory is still present

5. The FA get then reads the data register to get the requested data, which it
returns.

610 CHAPTER 12. DEVICES AND TRIGGERING

Chapter 13

System and Options

13.1 Overview

This section contains classes describe the handling of POSIX signals, or related to
the system as a whole. These classes provide
• a common idiom for binding POSIX signals to instances of AsyncEventHand-
ler when POSIX signals are available on the underlying platform;
• a class that contains operations and semantics that affect the entire system;

and
• the security semantics required by the additional features in the entirety of

this specification, which are additional to those required by implementations
of the Java Language Specification.

The RealtimeSecurity class provides security primarily for physical memory
access.

13.2 Semantics

This list establishes the semantics that are applicable across the classes of this
section. Semantics that apply to particular classes, constructors, methods, and
fields will be found in the class description and the constructor, method, and field
detail sections.
• The POSIX signal handler class is required to be available when implemen-

tations of this specification execute on an underlying platform that provides
POSIX signals or any subset of signals named with the POSIX names.
• The RealtimeSecurity class is required.
• If applications execute the method call, System.getProperty(‘‘javax.realtime.version’’),

the return value will be a string of the form, “x.y.z”. Where ’x’ is the major
version number and ’y’ and ’z’ are minor version numbers. These version num-

611

612 CHAPTER 13. SYSTEM AND OPTIONS

bers state to which version of the RTSJ the underlying implementation claims
conformance. The first release of the RTSJ, dated 11/2001, is numbered as,
1.0.0. Since this property is required in only subsequent releases of the RTSJ

implementations of the RTSJ which intend to conform to 1.0.0 may return the
String “1.0.0” or null.

13.2.0.5 POSIX Signals

The POSIXSignal class represents POSIX signals. As a Happening, it is a sub-
class of AsyncEvent and implements ActiveEvent. Unlike Happening, it cannot
be instantiated by the user. Instead, an instance exists for each POSIX signal de-
fined on the system. They can be retrieved either by name or number using the
POSIXSignal.get(int) and POSIXSignal.get(String) methods.

13.2.0.6 POSIX Realtime Signals

The POSIXRealtimeSignal class represents POSIX realtime events. It is also imple-
ments ActiveEvent, but is a subclass of AsyncLongEvent, so that it can pass the
data sent with its signal. As with POSIXSignal, it cannot be instantiated by the
user, rather an instance exists for each POSIX signal defined on the system, which
can be retrieves either by name or number using the POSIXRealtimeSignal.get(int)
and POSIXRealtimeSignal.get(String) methods.

13.3. CLASSES 613

13.3 Classes

13.3.1 POSIXRealtimeSignal

Inheritance
java.lang.Object

javax.realtime.AbstractAsyncEvent
javax.realtime.AsyncLongEvent

javax.realtime.POSIXRealtimeSignal
Interfaces

ActiveEvent
A ActiveEvent1 subclass for defining a POSIX realtime signal.

Available since RTSJ version RTSJ 2.0

13.3.1.1 Fields

13.3.1.1.1 signals
private static signals

A lookup table for realtime signals based on their name.

13.3.1.1.2 signal by id
private static signal by id

A lookup table for realtime signals based on their ID.

13.3.1.2 Constructors

13.3.1.3 Methods

1Section 9.4.1

614 CHAPTER 13. SYSTEM AND OPTIONS

13.3.1.3.1 isPOSIXRealtimeSignal(String)

Signature
public static
boolean isPOSIXRealtimeSignal(String name)

Parameters
name of the signal

Returns
true when a signal with the given name is registered

Determine if a signal with a given name is registered.

13.3.1.3.2 get(String)

Signature
public static
javax.realtime.POSIXRealtimeSignal get(String name)

Parameters
name of the signal to get.

Returns
the registered signal with name or null.

Get the registered realtime signal with the given name.

13.3.1.3.3 getId(String)

Signature
public static
int getId(String name)

Parameters
name of the signal for which to search

Returns
the ID of the signal named by name

Get the ID of a registered signal.

13.3.1.3.4 get(int)

Signature
public static
javax.realtime.POSIXRealtimeSignal get(int id)

Parameters
id of a registered signal

Returns

13.3. CLASSES 615

the signal corresponding to id.
Get the realtime signal corresponding to a given id.

13.3.1.3.5 trigger(int, long)

Signature
public static
void trigger(int id, long value)

Parameters
id of a registered signal
value passed from the signaler.

Release the manager for the Realtime Signal identified by the given integer. The
id range for POSiX Signals is distinct from that of Happening2s. This method is
provided for simulating realtime POSIX signals.

13.3.1.3.6 getId

Signature
public
int getId()

Returns
its name.

Get the name of this realtime signal.

13.3.1.3.7 getName

Signature
public final
java.lang.String getName()

Returns
the name of this signal.

Get the name of this signal.

13.3.1.3.8 start

Signature
public final synchronized
void start()

throws IllegalStateException

2Section 12.5.1

616 CHAPTER 13. SYSTEM AND OPTIONS

Throws

IllegalStateException when this POSIXRealtimeSignal has already been started.

Start this POSIXRealtimeSignal, i.e., change to a running state. A running realtime
signal is a source of activation when in a scoped memory and is a member of the
root set when in the heap. A running realtime signal can be triggered.

See Section stop())

13.3.1.3.9 start(boolean)

Signature

public final synchronized
void start(boolean disabled)

throws IllegalStateException

Parameters

disabled true for starting in a disabled state.

Throws

IllegalStateException when this POSIXRealtimeSignal has already been started.

Start this POSIXRealtimeSignal, i.e., change to a running state. A running realtime
signal is a source of activation when in a scoped memory and is a member of the
root set when in the heap. A running realtime signal can be triggered.

See Section stop())

13.3.1.3.10 stop

Signature

public final
boolean stop()

throws IllegalStateException

Throws

IllegalStateException when this POSIXRealtimeSignal is not running.

Returns

true when this was enabled and false otherwise.

Stop this POSIXRealtimeSignal. A stopped realtime signal ceases to be a source of
activation and no longer cause any AE attached to it to be a source of activation.

13.3. CLASSES 617

13.3.1.3.11 isActive

Signature
public
boolean isActive()

Returns
true when active, false otherwise.

Determine the activation state of this signal, i.e., it has been started.

13.3.1.3.12 isEnabled

Signature
public
boolean isEnabled()

Returns
true when releasing, false when skipping.

Determine the firing state (releasing or skipping) of this signal, i.e., it is enabled.

13.3.1.3.13 trigger(long)

Signature
final
void trigger(long value)

Parameters
value

Trigger this signal if it is registered.

13.3.1.3.14 getNextValue

Signature
public
long getNextValue()

Returns
the value of the next signal

13.3.1.3.15 send(long)

Signature
public native
boolean send(long pid)

Parameters

618 CHAPTER 13. SYSTEM AND OPTIONS

pid of the process to which to send the signal
Returns

true when signal can be sent, otherwise false.
Send this signal to another process

13.3.2 POSIXRealtimeSignalDispatcher

Inheritance
java.lang.Object

javax.realtime.ActiveEventDispatcher
javax.realtime.POSIXRealtimeSignalDispatcher

13.3.2.1 Constructors

13.3.2.1.1 POSIXRealtimeSignalDispatcher(int, int)

Signature

public

POSIXRealtimeSignalDispatcher(int priority, int size)

Parameters
size gives the maximum number of outstanding trigger requests.

Create a new dispatcher.

13.3.2.2 Methods

13.3.2.2.1 getDefaultPOSIXRealtimeSignalDispatcher

Signature
public static
javax.realtime.POSIXRealtimeSignalDispatcher

getDefaultPOSIXRealtimeSignalDispatcher()

13.3. CLASSES 619

Returns
the default event manager.

This provides a means of obtaining the system provided event manager so that new
events can be added to it.

13.3.2.2.2 dispath(POSIXRealtimeSignal, long)

Signature
protected abstract
void dispath(POSIXRealtimeSignal signal, long payload)

Parameters
signal to dispatch

Actually dispatch the POSIXRealtimeSignal3. This can be overridden in a subclass
to provide for more sophisticated dispatching.

13.3.2.2.3 register(POSIXRealtimeSignal)

Signature
final
void register(POSIXRealtimeSignal signal)

Parameters
event to register

Register a POSIX realtime signal with this dispatcher.

13.3.2.2.4 unregister(POSIXRealtimeSignal)

Signature
final
void unregister(POSIXRealtimeSignal signal)

Parameters
event to unregister

Deregister a POSIX realtime signal form this dispatcher.

13.3.2.2.5 trigger(POSIXRealtimeSignal, long)

Signature
public
void trigger(POSIXRealtimeSignal signal, long value)

Parameters

3Section 13.3.1

620 CHAPTER 13. SYSTEM AND OPTIONS

signal the event that needs to be dispatched
value

Queue the event for dispatching by this manager. This should only be called from
@{link POSIXRealtimeSignal#trigger()}.

13.3.2.2.6 getSignalProcessId

Signature
public native
long getSignalProcessId()

Returns
the process identifier for sending a POSIX signal

Get the process identifier that, upon receiving a POSIX signal, will cause the POSIX
signal handlers within this VM to be triggered. On a system that supports sending
signals to a process, all instances of this class in a virtual machine return the same
value.

13.3.2.2.7 waitForNextTrigger(boolean)

Signature
private
javax.realtime.POSIXRealtimeSignal waitForNextTrigger(boolean

interruptable)

Parameters
interruptable indicated what to do if this method is interrupted.

Returns
the POSIX realtime signal that was triggered.

Wait for the next trigger to occur and return the POSIXRealtimeSignal4 that caused
it. The wait also terminates when no more realtime signals are registered or when
both interruptable is true and an interrupt occurs.

13.3.3 POSIXSignal

Inheritance
java.lang.Object

javax.realtime.AbstractAsyncEvent
javax.realtime.AsyncEvent

javax.realtime.POSIXSignal

4Section 13.3.1

13.3. CLASSES 621

Interfaces

ActiveEvent

A ActiveEvent5 subclass for defining a POSIX signal.

Available since RTSJ version RTSJ 2.0

13.3.3.1 Fields

13.3.3.1.1 MAX NUM SIGNALS

public static final MAX NUM SIGNALS

this number of signals can be processed.

13.3.3.2 Constructors

13.3.3.3 Methods

13.3.3.3.1 isPOSIXSignal(String)

Signature

public static
boolean isPOSIXSignal(String name)

Parameters

name of the signal

Returns

true when a signal with the given name is registered

Determine if a signal with a given name is registered.

5Section 9.4.1

622 CHAPTER 13. SYSTEM AND OPTIONS

13.3.3.3.2 get(String)

Signature
public static
javax.realtime.POSIXSignal get(String name)

Parameters
name of the signal to get.

Returns
the registered signal with name or null.

Get the registered signal with the given name.

13.3.3.3.3 getId(String)

Signature
public static
int getId(String name)

Parameters
name of the signal for which to search

Returns
the ID of the signal named by name

Get the ID of a registered signal.

13.3.3.3.4 get(int)

Signature
public static
javax.realtime.POSIXSignal get(int id)

Parameters
id of a registered signal

Returns
the signal corresponding to id or null.

Get the signal corresponding to a given id.

13.3.3.3.5 trigger(int)

Signature
public static
void trigger(int id)

Parameters
id of a registered signal

13.3. CLASSES 623

Release the manager for the Signal identified by the given integer. The id range for
Signals is distinct from that of Happenings. This method is provided for simulating
POSIX signals.

13.3.3.3.6 getId

Signature
public final
int getId()

Returns
the signal number

Get the number of this signal.

13.3.3.3.7 getName

Signature
public final
java.lang.String getName()

Returns
the name of this signal.

Get the name of this signal.

13.3.3.3.8 start

Signature
public final
void start()

throws IllegalStateException

Throws
IllegalStateException when this POSIXSignal has already been started.

Start this POSIXSignal, i.e., change to a running state. A running signal is a source
of activation when in a scoped memory and is a member of the root set when in the
heap. A running signal can be triggered.

See Section stop())

13.3.3.3.9 start(boolean)

Signature

624 CHAPTER 13. SYSTEM AND OPTIONS

public final
void start(boolean disabled)

throws IllegalStateException

Parameters
disabled true for starting in a disabled state.

Throws
IllegalStateException when this POSIXSignal has already been started.

Start this POSIXSignal, i.e., change to a running state. A running signal is a source
of activation when in a scoped memory and is a member of the root set when in the
heap. A running signal can be triggered.

See Section stop())

13.3.3.3.10 stop

Signature
public final
boolean stop()

throws IllegalStateException

Throws
IllegalStateException when this POSIXSignal is not running.

Returns
true when this was enabled and false otherwise.

Stop this POSIXSignal. A stopped signal ceases to be a source of activation and no
longer cause any AE attached to it to be a source of activation.

13.3.3.3.11 isActive

Signature
public
boolean isActive()

Returns
true when active, false otherwise.

Determine the activation state of this signal, i.e., it has been started.

13.3.3.3.12 isEnabled

Signature
public
boolean isEnabled()

13.3. CLASSES 625

Returns
true when releasing, false when skipping.

Determine the firing state (releasing or skipping) of this signal, i.e., it is enabled.

13.3.3.3.13 send(long)

Signature
public native
boolean send(long pid)

Parameters
pid of the process to which to send the signal

Returns
true when signal can be sent, otherwise false.

Send this signal to another process.

13.3.4 POSIXSignalDispatcher

Inheritance
java.lang.Object

javax.realtime.ActiveEventDispatcher
javax.realtime.POSIXSignalDispatcher

This class provides a means of dispatching a set of POSIXSignal6s. An application
can provide its own dispatcher, providing the priority for the internal dispatching
thread. This dispatching thread calls process() each time the signal is triggered.

13.3.4.1 Constructors

13.3.4.1.1 POSIXSignalDispatcher(int)

Signature

public

POSIXSignalDispatcher(int priority)

Parameters

6Section 13.3.3

626 CHAPTER 13. SYSTEM AND OPTIONS

priority at which to dispatch.
Create a new dispatcher, whose dispatching thread runs at the given priority.

13.3.4.2 Methods

13.3.4.2.1 getDefaultPOSIXSignalDispatcher

Signature
public static
javax.realtime.POSIXSignalDispatcher

getDefaultPOSIXSignalDispatcher()

Returns
the default event manager.

This provides a means of obtaining the system provided event manager so that new
events can be added to it.

13.3.4.2.2 getSignalProcessId

Signature
public native
long getSignalProcessId()

Returns
the process identifier for sending a POSIX signal

Get the process identifier that, upon receiving a POSIX signal, will cause the POSIX
signal handlers within this VM to be triggered. On a system that supports sending
signals to a process, all instances of this class in a virtual machine return the same
value.

13.3.4.2.3 dispatch(POSIXSignal)

Signature
protected
void dispatch(POSIXSignal signal)

Parameters
signal to dispatch

Actually dispatch the POSIXSignal7. This can be overridden in a subclass to provide
for more sophisticated dispatching.

7Section 13.3.3

13.3. CLASSES 627

13.3.4.2.4 register(POSIXSignal)

Signature

final synchronized
void register(POSIXSignal signal)

throws RegistrationException

Parameters

event to register

Register a POSIX signal with this dispatcher.

13.3.4.2.5 unregister(POSIXSignal)

Signature

final synchronized
void unregister(POSIXSignal signal)

throws DeregistrationException

Parameters

event to unregister

Deregister a POSIX Signal form this dispatcher. (This is a really naive implemen-
tation.)

13.3.4.2.6 trigger(int)

Signature

static
void trigger(int java signal)

Parameters

java signal the java signal number that occurred.

Signal this dispatcher to fire all events for a given signal. This should only be called
from @{link POSIXSignal#trigger()}.

13.3.4.2.7 handleSignal(int)

Signature

static native
void handleSignal(int signal)

Parameters

signal the system signal number that needs to be handled.

called to inform a system that handling of a specific signal is required.

628 CHAPTER 13. SYSTEM AND OPTIONS

13.3.4.2.8 init

Signature

private static native
void init()

native initialization code to setup POSIX signal handler:

13.3.4.2.9 waitForSignal

Signature

private static native
void waitForSignal()

wait for the next signal to occur.

13.3.4.2.10 getNextSignal

Signature

private static native
int getNextSignal()

return the next system signal that has occurred.

13.3.4.2.11 getSystemSignal(int)

Signature

static native
int getSystemSignal(int javaSignal)

Parameters

javaSignal the Java signal as defined in the constants in this class.

Returns

the corresponding system signal.

get the system-level signal that corresponds to a given Java-level signal.

13.3.5 RealtimeSecurity

Inheritance

java.lang.Object
javax.realtime.RealtimeSecurity

13.3. CLASSES 629

Security policy object for realtime specific issues. Primarily used to control access
to physical memory.

Security requirements are generally application-specific. Every implementation
shall have a default RealtimeSecurity instance, and a way to install a replacement
at run-time, RealtimeSystem.setSecurityManager8. The default security is mini-
mal. All security managers should prevent access to JVM internal data and the Java
heap; additional protection is implementation-specific and must be documented.

13.3.5.1 Constructors

13.3.5.1.1 RealtimeSecurity

Signature

public

RealtimeSecurity()

Create an RealtimeSecurity object.

13.3.5.2 Methods

13.3.5.2.1 checkAccessPhysical

Signature

public
void checkAccessPhysical()

throws SecurityException

Throws

SecurityException The application doesn’t have permission to access physical
memory.

Check whether the application is allowed to access physical memory.

8Section 13.3.6.3.7

630 CHAPTER 13. SYSTEM AND OPTIONS

13.3.5.2.2 checkAccessPhysicalRange(long, long)

Signature
public
void checkAccessPhysicalRange(long base, long size)

throws SecurityException

Parameters
base The beginning of the address range.
size The size of the address range.

Throws
SecurityException The application doesn’t have permission to access the mem-
ory in the given range.

Checks whether the application is allowed to access physical memory within the
specified range.

13.3.5.2.3 checkSetFilter

Signature
public
void checkSetFilter()

throws SecurityException

Throws
SecurityException The application doesn’t have permission to register filter
objects.

Checks whether the application is allowed to register PhysicalMemoryTypeFilter9

objects with the PhysicalMemoryManager10.

13.3.5.2.4 checkSetMonitorControl(MonitorControl)

Signature
public
void checkSetMonitorControl(MonitorControl policy)

throws SecurityException

Parameters
policy The new policy

Throws
SecurityException when the application doesn’t have permission to change the
default monitor control policy to policy.

9Section 15.3.2
10Section 15.4.2

13.3. CLASSES 631

Checks whether the application is allowed to set the default monitor control policy.

Available since RTSJ version RTSJ 1.0.1

13.3.5.2.5 checkAEHSetDaemon

Signature
public
void checkAEHSetDaemon()

throws SecurityException

Throws
SecurityException when the application is not permitted to alter the daemon
status.

Checks whether the application is allowed to set the daemon status of an AEH.

Available since RTSJ version RTSJ 1.0.1

13.3.5.2.6 checkSetScheduler

Signature
public
void checkSetScheduler()

throws SecurityException

Throws
SecurityException The application doesn’t have permission to set the sched-
uler.

Checks whether the application is allowed to set the scheduler.

13.3.5.2.7 checkCreateRealtimeThread

Signature
public
void checkCreateRealtimeThread()

throws SecurityException

13.3.5.2.8 checkCreateTimer

Signature

632 CHAPTER 13. SYSTEM AND OPTIONS

public
void checkCreateTimer()

throws SecurityException

13.3.5.2.9 checkCreateHappening

Signature

public
void checkCreateHappening()

throws SecurityException

13.3.6 RealtimeSystem

Inheritance

java.lang.Object
javax.realtime.RealtimeSystem

RealtimeSystem provides a means for tuning the behavior of the implementation
by specifying parameters such as the maximum number of locks that can be in use
concurrently, and the monitor control policy. In addition, RealtimeSystem provides
a mechanism for obtaining access to the security manager, garbage collector and
scheduler, to make queries from them or to set parameters.

Open issue: Should there be flags to indicate which options are implemented?
End of open issue

13.3.6.1 Fields

13.3.6.1.1 BIG ENDIAN

public static final BIG ENDIAN

Value to indicate the byte ordering for the underlying hardware.

13.3.6.1.2 LITTLE ENDIAN

public static final LITTLE ENDIAN

Value to indicate the byte ordering for the underlying hardware.

13.3. CLASSES 633

13.3.6.1.3 BYTE ORDER
public static final BYTE ORDER

The byte ordering of the underlying hardware.

13.3.6.2 Constructors

13.3.6.2.1 RealtimeSystem

Signature

private

RealtimeSystem()

Private No-arg constructor to keep javadoc from creating a public one.

13.3.6.3 Methods

13.3.6.3.1 currentGC

Signature
public static
javax.realtime.GarbageCollector currentGC()

Returns
A GarbageCollector11 object which is the current collector collecting objects
on the traditional Java heap.

Return a reference to the currently active garbage collector for the heap.

13.3.6.3.2 getConcurrentLocksUsed

Signature
public static
int getConcurrentLocksUsed()

Returns

11Section 11.8.1

634 CHAPTER 13. SYSTEM AND OPTIONS

An integer whose value is the maximum number of locks that have been used
concurrently. If the number of concurrent locks is not tracked by the im-
plementation, return -1. Note that if the number of concurrent locks is not
tracked, the number of available concurrent locks is effectively unlimited.

Gets the maximum number of locks that have been used concurrently. This value
can be used for tuning the concurrent locks parameter, which is used as a hint by
systems that use a monitor cache.

13.3.6.3.3 getMaximumConcurrentLocks

Signature
public static
int getMaximumConcurrentLocks()

Returns
An integer whose value is the maximum number of locks that can be in simul-
taneous use.

Gets the maximum number of locks that can be used concurrently without incurring
an execution time increase as set by the setMaximumConcurrentLocks() methods.

Note: Any relationship between this method and setMaximumConcurrentLocks

is implementation-specific. This method returns the actual maximum number of
concurrent locks the platform can currently support, or Integer.MAX VALUE if there
is no maximum. The setMaximumConcurrentLocks method give the implementa-
tion a hint as to the maximum number of concurrent locks it should expect.

13.3.6.3.4 getSecurityManager

Signature
public static
javax.realtime.RealtimeSecurity getSecurityManager()

Returns
A RealtimeSecurity12 object representing the default realtime security man-
ager.

Gets a reference to the security manager used to control access to realtime system
features such as access to physical memory.

13.3.6.3.5 setMaximumConcurrentLocks(int)

Signature
public static

12Section 13.3.5

13.3. CLASSES 635

void setMaximumConcurrentLocks(int numLocks)

Parameters
numLocks An integer whose value becomes the number of locks that can be
in simultaneous use without incurring an execution time increase. If num-

ber is less than or equal to zero nothing happens. If the system does not
use this hint this method has no effect other than on the value returned by
getMaximumConcurrentLocks()13.

Sets the anticipated maximum number of locks that may be held or waited on
concurrently. Provide a hint to systems that use a monitor cache as to how much
space to dedicate to the cache.

13.3.6.3.6 setMaximumConcurrentLocks(int, boolean)

Signature
public static
void setMaximumConcurrentLocks(int number, boolean hard)

Parameters
number The maximum number of locks that can be in simultaneous use with-
out incurring an execution time increase. If number is less than or equal to
zero nothing happens. If the system does not use this hint this method has no
effect other than on the value returned by getMaximumConcurrentLocks()14.
hard If true, number sets a limit. If a lock is attempted which would cause the
number of locks to exceed number then a ResourceLimitError15 is thrown.
If the system does not limit use of concurrent locks, this parameter is silently
ignored.

Sets the anticipated maximum number of locks that may be held or waited on
concurrently. Provide a limit for the size of the monitor cache on systems that
provide one if hard is true.

13.3.6.3.7 setSecurityManager(RealtimeSecurity)

Signature
public static
void setSecurityManager(RealtimeSecurity manager)

Parameters
manager A RealtimeSecurity16 object which will become the new security
manager.

13Section 13.3.6.3.3
14Section 13.3.6.3.3
15Section 14.4.5
16Section 13.3.5

636 CHAPTER 13. SYSTEM AND OPTIONS

Throws
SecurityException when security manager has already been set.

Sets a new realtime security manager.

13.3.6.3.8 getInitialMonitorControl

Signature
public static
javax.realtime.MonitorControl getInitialMonitorControl()

Returns
The initial monitor control policy.

Returns the monitor control object that represents the initial monitor control policy.

Available since RTSJ version RTSJ 1.0.1

13.4 Rationale

This specification accommodates the variation in underlying system variation in a
number of ways. One of the most important is the concept of optionally required
classes (e.g., the POSIX signal handler class). This class provides a commonality
that can be relied upon by program logic that intends to execute on implementations
that themselves execute on POSIX compliant systems.

The RealtimeSystem class functions in similar capacity to java.lang.System.
Similarly, the RealtimeSecurity class functions similarly to java.lang.SecurityManager.

Chapter 14

Exceptions

14.1 Overview

This section contains exceptions defined by the RTSJ. These exception classes:
• Provide additional exception classes required for other sections of this specifi-

cation.
• Provide the ability to asynchronously transfer the control of program logic (see
AsynchronouslyInterruptedException).

14.1.1 Semantics

This list establishes the semantics that are applicable across the classes of this
section. Semantics that apply to particular classes, constructors, methods, and
fields will be found in the class description and the constructor, method, and field
detail sections.
• All classes in this section are required.
• All exceptions, except AsynchronouslyInterruptedException, are required

to have semantics exactly as those of their eventual superclass in the java.*

hierarchy.
The AsynchronouslyInterruptedException class is not included in this chap-

ter. It is more closely related to asynchronous operation than to exception handling
and so can be found in the Asynchrony chapter.

637

638 CHAPTER 14. EXCEPTIONS

14.2 Interfaces

14.2.1 PreallocatedThrowable

A marker class to indicate that a Throwable is intended to be created once and
reused. Throwables that implement this interface kept their state in a Schedulable

Object (SO)local data structure instead of the object itself. This means that data
is only valid until the next PreallocatedThrowable is thrown in the current SO.
Having a marker interface makes it easier to provide checking tools to ensure the
proper throw sequence for all Throwables thrown from user code.

14.2.1.1 Methods

14.2.1.1.1 fillInStackTrace

Signature
public
java.lang.Throwable fillInStackTrace()

Returns
a reference to this Throwable.

Calls into the virtual machine to capture the current stack trace in SO local memory.

14.2.1.1.2 getMessage

Signature
public
java.lang.String getMessage()

Returns
the message given to the constructor or null if no message was set.

get the message describing the problem from SO local memory.

14.2.1.1.3 getLocalizedMessage

Signature
public

14.2. INTERFACES 639

java.lang.String getLocalizedMessage()

Returns

the value of getMessage().

Subclasses may override this message to get an error message that is localized to
the default locale.

By default it returns getMessage().

14.2.1.1.4 initMessage(String)

Signature

public
void initMessage(String message)

Parameters

message is the text to save.

Set the message in SO local storage. This is the only method that is not also defined
in Throwable.

14.2.1.1.5 getCause

Signature

public
java.lang.Throwable getCause()

Returns

The cause or null.

getCause returns the cause of this exception or null if no cause was set. The cause
is another exception that was caught before this exception was created.

14.2.1.1.6 initCause(Throwable)

Signature

public
java.lang.Throwable initCause(Throwable causingThrowable)

Parameters

causingThrowable the reason why this Throwable gets Thrown.

Throws

IllegalArgumentException if the cause is this Throwable itself.

Returns

the reference to this Throwable.

Initializes the cause to the given Throwable is SO local memory.

640 CHAPTER 14. EXCEPTIONS

14.2.1.1.7 printStackTrace

Signature
public
void printStackTrace()

Print stack trace of this Throwable to System.err.
The printed stack trace contains the result of toString() as the first line followed

by one line for each stack trace element that contains the name of the method or
constructor, optionally followed by the source file name and source file line number
if available.

For JamaicaVM, this routine also works before System was initialized by using
low-level exception printing mechanisms provided by class com.aicas.jamaica.lang.Debug.

14.2.1.1.8 printStackTrace(PrintStream)

Signature
public
void printStackTrace(PrintStream stream)

Parameters
stream the stream to print to.

Print the stack trace of this Throwable to the given stream.
The printed stack trace contains the result of toString() as the first line followed

by one line for each stack trace element that contains the name of the method or
constructor, optionally followed by the source file name and source file line number
if available.

For JamaicaVM, if printing to the stream causes another exception, low-level
exception printing mechanisms provided by class com.aicas.jamaica.lang.Debug will
be used to print the exception to stderr.

14.2.1.1.9 printStackTrace(PrintWriter)

Signature
public
void printStackTrace(PrintWriter s)

Parameters
s the PrintWriter to write to.

Print the stack trace of this Throwable to the given PrintWriter.
The printed stack trace contains the result of toString() as the first line followed

by one line for each stack trace element that contains the name of the method or
constructor, optionally followed by the source file name and source file line number
if available.

14.2. INTERFACES 641

For JamaicaVM, if printing to the PrintWriter causes another exception, low-
level exception printing mechanisms provided by class com.aicas.jamaica.lang.Debug
will be used to print the exception to stderr.

14.2.1.1.10 getStackTrace

Signature
public
java.lang.StackTraceElement[] getStackTrace()

Returns
array representing the stack trace, never null.

Get the stack trace created by fillInStackTrace for this Throwable as an array of
StackTraceElements.

The stack trace does not need to contain entries for all methods that are actually
on the call stack, the virtual machine may decide to skip some stack trace entries.
Even an empty array is a valid result of this function.

Repeated calls of this function without intervening calls to fillInStackTrace will
return the same result.

For JamaicaVM, the stack trace may omit methods that are compiled by the
static compiler. Particularly, methods are compiled and that do not contain an
exception handler themselves usually do not require the creation of a stack frame at
runtime. To improve performance, no stack frame is generated in these cases.

If memory areas of the RTSJ are used (see MemoryArea1), and this Throwable
was allocated in a different memory area than the current allocation context, the
resulting stack trace will be allocated in either the same memory area this was
allocated in or the current memory area, depending on which is the least deeply
nested, thereby creating objects that are assignment compatible with both areas.

14.2.1.1.11 setStackTrace(java.lang.StackTraceElement[])

Signature
public
void setStackTrace(java.lang.StackTraceElement[] new stackTrace)

throws NullPointerException

Parameters
new stackTrace the stack trace to replace be used.

Throws
NullPointerException if new stackTrace or any element of new stackTrace is
null.

1Section 11.8.7

642 CHAPTER 14. EXCEPTIONS

This method allows overriding the stack trace that was filled during construction of
this object. It is intended to be used in a serialization context when the stack trace
of a remote exception should be treated like a local.

14.3. EXCEPTIONS 643

14.3 Exceptions

14.3.1 ArrivalTimeQueueOverflowException

Inheritance
java.lang.Object

java.lang.Throwable
java.lang.Exception

java.lang.RuntimeException
javax.realtime.ArrivalTimeQueueOverflowException

If an arrival time occurs and should be queued but the queue already holds a number
of times equal to the initial queue length defined by this an instance of this class
may be thrown. If the arrival time is a result of a happening to which the instance
of AsyncEventHandler is bound then the arrival time is ignored.

Available since RTSJ version RTSJ 1.0.1 Becomes unchecked

14.3.1.1 Fields

14.3.1.1.1 serialVersionUID
private static final serialVersionUID

14.3.1.2 Constructors

14.3.1.2.1 ArrivalTimeQueueOverflowException

Signature

public

ArrivalTimeQueueOverflowException()

A constructor for ArrivalTimeQueueOverflowException.

644 CHAPTER 14. EXCEPTIONS

14.3.1.2.2 ArrivalTimeQueueOverflowException(String)

Signature

public

ArrivalTimeQueueOverflowException(String description)

Parameters

description A description of the exception.

A descriptive constructor for ArrivalTimeQueueOverflowException.

14.3.2 CeilingViolationException

Inheritance

java.lang.Object
java.lang.Throwable

java.lang.Exception
java.lang.RuntimeException

java.lang.IllegalArgumentException
java.lang.IllegalThreadStateException

javax.realtime.CeilingViolationException

This exception is thrown when a schedulable or java.lang.Thread attempts to lock
an object governed by an instance of PriorityCeilingEmulation2 and the thread
or SO’s base priority exceeds the policy’s ceiling.

14.3.2.1 Fields

14.3.2.1.1 serialVersionUID

private static final serialVersionUID

14.3.2.2 Constructors

2Section 7.3.2

14.3. EXCEPTIONS 645

14.3.2.2.1 CeilingViolationException

Signature

CeilingViolationException()

Construct a CeilingViolationException instance with a message consisting of a
zero-length string and default values for the callerPriority and ceiling.

14.3.2.2.2 CeilingViolationException(String)

Signature

CeilingViolationException(String description)

Parameters

description The message

Construct a CeilingViolationException instance with the specified message and
default values for the callerPriority and ceiling.

14.3.2.2.3 CeilingViolationException(int, int)

Signature

CeilingViolationException(int callerPriority, int ceiling)

Parameters

callerPriority The priority of the schedulable that attempted to acquire the
lock.
ceiling The lock’s ceiling.

Construct a CeilingViolationException instance with the a zero-length string for
a message and the specified callerPriority and ceiling.

646 CHAPTER 14. EXCEPTIONS

14.3.2.2.4 CeilingViolationException(String, int, int)

Signature

CeilingViolationException(String description, int callerPriority, int ceiling)

Parameters
description A description of the exception.
callerPriority The priority of the schedulable that attempted to acquire the
lock.
ceiling The lock’s ceiling.

Construct a CeilingViolationException instance.

14.3.2.3 Methods

14.3.2.3.1 getCeiling

Signature
public
int getCeiling()

Returns
The ceiling of the PriorityCeilingEmulation policy which caused this ex-
ception to be thrown.

Gets the ceiling of the PriorityCeilingEmulation policy which was exceeded by
the base priority of an SO or thread that attempted to synchronize on an object
governed by the policy, which resulted in throwing of this.

14.3.2.3.2 getCallerPriority

Signature
public
int getCallerPriority()

Returns
The synchronizing thread’s base priority.

Gets the base priority of the SO or thread whose attempt to synchronize resulted
in the throwing of this.

14.3. EXCEPTIONS 647

14.3.3 DeregistrationException

Inheritance

java.lang.Object
java.lang.Throwable

java.lang.Exception
java.lang.RuntimeException

javax.realtime.DeregistrationException

14.3.3.1 Fields

14.3.3.1.1 serialVersionUID

private static final serialVersionUID

14.3.3.2 Constructors

14.3.3.2.1 DeregistrationException

Signature

public

DeregistrationException()

14.3.3.2.2 DeregistrationException(String)

Signature

public

DeregistrationException(String message)

648 CHAPTER 14. EXCEPTIONS

14.3.3.2.3 DeregistrationException(Throwable)

Signature

public

DeregistrationException(Throwable cause)

14.3.3.2.4 DeregistrationException(String, Throwable)

Signature

public

DeregistrationException(String message, Throwable cause)

14.3.4 DuplicateEventException

Inheritance

java.lang.Object
java.lang.Throwable

java.lang.Exception
javax.realtime.DuplicateEventException

14.3.4.1 Fields

14.3.4.1.1 serialVersionUID

private static final serialVersionUID

14.3.4.2 Constructors

14.3. EXCEPTIONS 649

14.3.4.2.1 DuplicateEventException

Signature

public

DuplicateEventException()

14.3.5 DuplicateFilterException

Inheritance
java.lang.Object

java.lang.Throwable
java.lang.Exception

javax.realtime.DuplicateFilterException
PhysicalMemoryManager3 can only accommodate one filter object for each type of
memory. It throws this exception if an attempt is made to register more than one
filter for a type of memory.

14.3.5.1 Fields

14.3.5.1.1 serialVersionUID
private static final serialVersionUID

14.3.5.2 Constructors

14.3.5.2.1 DuplicateFilterException

Signature

public

DuplicateFilterException()

3Section 15.4.2

650 CHAPTER 14. EXCEPTIONS

A constructor for DuplicateFilterException.

14.3.5.2.2 DuplicateFilterException(String)

Signature

public

DuplicateFilterException(String description)

Parameters

description Description of the error.

A descriptive constructor for DuplicateFilterException.

14.3.6 DuplicateHappeningException

Inheritance

java.lang.Object
java.lang.Throwable

java.lang.Exception
javax.realtime.DuplicateHappeningException

14.3.6.1 Fields

14.3.6.1.1 serialVersionUID

private static final serialVersionUID

14.3.6.2 Constructors

14.3.6.2.1 DuplicateHappeningException

Signature

14.3. EXCEPTIONS 651

public

DuplicateHappeningException()

14.3.7 InaccessibleAreaException

Inheritance
java.lang.Object

java.lang.Throwable
java.lang.Exception

java.lang.RuntimeException
javax.realtime.InaccessibleAreaException

The specified memory area is not on the current thread’s scope stack.

Available since RTSJ version RTSJ 1.0.1 Becomes unchecked

14.3.7.1 Fields

14.3.7.1.1 serialVersionUID
private static final serialVersionUID

14.3.7.2 Constructors

14.3.7.2.1 InaccessibleAreaException

Signature

public

InaccessibleAreaException()

A constructor for InaccessibleAreaException.

652 CHAPTER 14. EXCEPTIONS

14.3.7.2.2 InaccessibleAreaException(String)

Signature

public

InaccessibleAreaException(String description)

Parameters

description Description of the error.

A descriptive constructor for InaccessibleAreaException.

14.3.8 LateStartException

Inheritance

java.lang.Object
java.lang.Throwable

java.lang.Exception
javax.realtime.LateStartException

Exception thrown when a periodic realtime thread or timer is started after its as-
signed, absolute, start time.

Available since RTSJ version RTSJ 2.0

14.3.8.1 Fields

14.3.8.1.1 serialVersionUID

private static final serialVersionUID

14.3.8.2 Constructors

14.3. EXCEPTIONS 653

14.3.8.2.1 LateStartException

Signature

public

LateStartException()

14.3.8.2.2 LateStartException(String)

Signature

public

LateStartException(String description)

14.3.9 MITViolationException

Inheritance

java.lang.Object
java.lang.Throwable

java.lang.Exception
java.lang.RuntimeException

javax.realtime.MITViolationException

Thrown by the AsyncEvent.fire()4 on a minimum interarrival time violation. More
specifically, it is thrown under the semantics of the base priority scheduler’s sporadic
parameters’ mitViolationExcept policy when an attempt is made to introduce a
release that would violate the MIT constraint.

Available since RTSJ version RTSJ 1.0.1 Becomes unchecked

14.3.9.1 Fields

4Section 8.6.3.2.1

654 CHAPTER 14. EXCEPTIONS

14.3.9.1.1 serialVersionUID
private static final serialVersionUID

14.3.9.2 Constructors

14.3.9.2.1 MITViolationException

Signature

public

MITViolationException()

A constructor for MITViolationException.

14.3.9.2.2 MITViolationException(String)

Signature

public

MITViolationException(String description)

Parameters
description Description of the error.

A descriptive constructor for MITViolationException.

14.3.10 MemoryInUseException

Inheritance
java.lang.Object

java.lang.Throwable
java.lang.Exception

java.lang.RuntimeException
javax.realtime.MemoryInUseException

There has been attempt to allocate a range of physical or virtual memory that is
already in use.

14.3. EXCEPTIONS 655

14.3.10.1 Fields

14.3.10.1.1 serialVersionUID
private static final serialVersionUID

14.3.10.2 Constructors

14.3.10.2.1 MemoryInUseException

Signature

public

MemoryInUseException()

A constructor for MemoryInUseException.

14.3.10.2.2 MemoryInUseException(String)

Signature

public

MemoryInUseException(String description)

Parameters
description Description of the error.

A descriptive constructor for MemoryInUseException.

14.3.11 MemoryScopeException

Inheritance
java.lang.Object

java.lang.Throwable
java.lang.Exception

656 CHAPTER 14. EXCEPTIONS

java.lang.RuntimeException
javax.realtime.MemoryScopeException

when construction of any of the wait-free queues is attempted with the ends of the
queue in incompatible memory areas. Also thrown by wait-free queue methods when
such an incompatibility is detected after the queue is constructed.

14.3.11.1 Fields

14.3.11.1.1 serialVersionUID

private static final serialVersionUID

14.3.11.2 Constructors

14.3.11.2.1 MemoryScopeException

Signature

public

MemoryScopeException()

A constructor for MemoryScopeException.

14.3.11.2.2 MemoryScopeException(String)

Signature

public

MemoryScopeException(String description)

Parameters

description A description of the exception.

A descriptive constructor for MemoryScopeException.

14.3. EXCEPTIONS 657

14.3.12 MemoryTypeConflictException

Inheritance
java.lang.Object

java.lang.Throwable
java.lang.Exception

java.lang.RuntimeException
javax.realtime.MemoryTypeConflictException

This exception is thrown when the PhysicalMemoryManager5 is given conflicting
specifications for memory. The conflict can be between types in an array of memory
type specifiers, or between the specifiers and a specified base address.

Available since RTSJ version RTSJ 1.0.1 Changed to an unchecked ex-
ception.

14.3.12.1 Fields

14.3.12.1.1 serialVersionUID
private static final serialVersionUID

14.3.12.2 Constructors

14.3.12.2.1 MemoryTypeConflictException

Signature

public

MemoryTypeConflictException()

A constructor for MemoryTypeConflictException.

5Section 15.4.2

658 CHAPTER 14. EXCEPTIONS

14.3.12.2.2 MemoryTypeConflictException(String)

Signature

public

MemoryTypeConflictException(String description)

Parameters

description A description of the exception.

A descriptive constructor for MemoryTypeConflictException.

14.3.13 OffsetOutOfBoundsException

Inheritance

java.lang.Object
java.lang.Throwable

java.lang.Exception
java.lang.RuntimeException

javax.realtime.OffsetOutOfBoundsException

when the constructor of an ImmortalPhysicalMemory6, LTPhysicalMemory7, VT-
PhysicalMemory8, RawMemoryAccess9, or RawMemoryFloatAccess10 is given an in-
valid address.

Available since RTSJ version RTSJ 1.0.1 Becomes unchecked

14.3.13.1 Fields

14.3.13.1.1 serialVersionUID

private static final serialVersionUID

6Section 11.8.4
7Section 11.8.6
8Section 15.4.7
9Section 15.4.4

10Section 15.4.5

14.3. EXCEPTIONS 659

14.3.13.2 Constructors

14.3.13.2.1 OffsetOutOfBoundsException

Signature

public

OffsetOutOfBoundsException()

A constructor for OffsetOutOfBoundsException.

14.3.13.2.2 OffsetOutOfBoundsException(String)

Signature

public

OffsetOutOfBoundsException(String description)

Parameters

description A description of the exception.

A descriptive constructor for OffsetOutOfBoundsException.

14.3.14 ProcessorAffinityException

Inheritance

java.lang.Object
java.lang.Throwable

java.lang.Exception
javax.realtime.ProcessorAffinityException

Exception used to report processor affinity-related errors.

Available since RTSJ version RTSJ 2.0

660 CHAPTER 14. EXCEPTIONS

14.3.14.1 Fields

14.3.14.1.1 serialVersionUID
private static final serialVersionUID

14.3.14.2 Constructors

14.3.14.2.1 ProcessorAffinityException

Signature

public

ProcessorAffinityException()

14.3.14.2.2 ProcessorAffinityException(String)

Signature

public

ProcessorAffinityException(String msg)

14.3.15 RegistrationException

Inheritance
java.lang.Object

java.lang.Throwable
java.lang.Exception

java.lang.RuntimeException
javax.realtime.RegistrationException

14.3. EXCEPTIONS 661

14.3.15.1 Fields

14.3.15.1.1 serialVersionUID

private static final serialVersionUID

14.3.15.2 Constructors

14.3.15.2.1 RegistrationException

Signature

public

RegistrationException()

14.3.15.2.2 RegistrationException(String, Throwable)

Signature

public

RegistrationException(String message, Throwable cause)

14.3.15.2.3 RegistrationException(String)

Signature

public

RegistrationException(String message)

662 CHAPTER 14. EXCEPTIONS

14.3.15.2.4 RegistrationException(Throwable)

Signature

public

RegistrationException(Throwable cause)

14.3.16 ScopedCycleException

Inheritance
java.lang.Object

java.lang.Throwable
java.lang.Exception

java.lang.RuntimeException
javax.realtime.ScopedCycleException

Thrown when a schedulable attempts to enter an instance of ScopedMemory11 where
that operation would cause a violation of the single parent rule.

14.3.16.1 Fields

14.3.16.1.1 serialVersionUID
private static final serialVersionUID

14.3.16.2 Constructors

14.3.16.2.1 ScopedCycleException

Signature

public

ScopedCycleException()

11Section 11.8.13

14.3. EXCEPTIONS 663

A constructor for ScopedCycleException.

14.3.16.2.2 ScopedCycleException(String)

Signature

public

ScopedCycleException(String description)

Parameters
description Description of the error.

A descriptive constructor for ScopedCycleException.

14.3.17 SizeOutOfBoundsException

Inheritance
java.lang.Object

java.lang.Throwable
java.lang.Exception

java.lang.RuntimeException
javax.realtime.SizeOutOfBoundsException

To throw when the constructor of an ImmortalPhysicalMemory12, LTPhysicalMem-
ory13, or VTPhysicalMemory14 is given an invalid size or if a memory access gener-
ated by a raw memory accessor instance (See RawMemory15.) would cause access to
an invalid address.

Available since RTSJ version RTSJ 1.0.1 Becomes unchecked

14.3.17.1 Fields

14.3.17.1.1 serialVersionUID
private static final serialVersionUID

12Section 11.8.4
13Section 11.8.6
14Section 15.4.7
15Section 12.3.16

664 CHAPTER 14. EXCEPTIONS

14.3.17.2 Constructors

14.3.17.2.1 SizeOutOfBoundsException

Signature

public

SizeOutOfBoundsException()

A constructor for SizeOutOfBoundsException.

14.3.17.2.2 SizeOutOfBoundsException(String)

Signature

public

SizeOutOfBoundsException(String description)

Parameters

description The description of the exception.

A descriptive constructor for SizeOutOfBoundsException.

14.3.18 UnknownHappeningException

Inheritance

java.lang.Object
java.lang.Throwable

java.lang.Exception
java.lang.RuntimeException

javax.realtime.UnknownHappeningException

This exception is used to indicate a situation where an instance of AsyncEvent16

attempts to bind to a happening that does not exist.

16Section 8.6.3

14.3. EXCEPTIONS 665

14.3.18.1 Fields

14.3.18.1.1 serialVersionUID
private static final serialVersionUID

14.3.18.2 Constructors

14.3.18.2.1 UnknownHappeningException

Signature

public

UnknownHappeningException()

A constructor for UnknownHappeningException.

14.3.18.2.2 UnknownHappeningException(String)

Signature

public

UnknownHappeningException(String description)

Parameters
description Description of the error.

A descriptive constructor for UnknownHappeningException.

14.3.19 UnsupportedPhysicalMemoryException

Inheritance
java.lang.Object

java.lang.Throwable
java.lang.Exception

666 CHAPTER 14. EXCEPTIONS

java.lang.RuntimeException
javax.realtime.UnsupportedPhysicalMemoryException

Thrown when the underlying hardware does not support the type of physical memory
requested from an instance of one of the physical memory or raw memory access
classes.

See Section RawMemoryAccess)

See Section RawMemoryFloatAccess)

See Section ImmortalPhysicalMemory)

See Section LTPhysicalMemory)

See Section VTPhysicalMemory)

Available since RTSJ version RTSJ 1.0.1 Becomes unchecked

14.3.19.1 Fields

14.3.19.1.1 serialVersionUID
private static final serialVersionUID

14.3.19.2 Constructors

14.3.19.2.1 UnsupportedPhysicalMemoryException

Signature

public

UnsupportedPhysicalMemoryException()

A constructor for UnsupportedPhysicalMemoryException.

14.3. EXCEPTIONS 667

14.3.19.2.2 UnsupportedPhysicalMemoryException(String)

Signature

public

UnsupportedPhysicalMemoryException(String description)

Parameters
description The description of the exception.

A descriptive constructor for UnsupportedPhysicalMemoryException.

668 CHAPTER 14. EXCEPTIONS

14.4 Classes

14.4.1 AlignmentError

Inheritance
java.lang.Object

java.lang.Throwable
java.lang.Error

javax.realtime.AlignmentError
The exception thrown on an on a request for a raw memory factory to return memory
for a base address that is aligned such that the factory cannot guarantee that loads
and stores based on that address will meet the factory’s specifications. For instance,
on many processors, odd addresses are unsuitable for anything but byte access.

14.4.1.1 Fields

14.4.1.1.1 serialVersionUID
private static final serialVersionUID

14.4.1.2 Constructors

14.4.1.2.1 AlignmentError

Signature

public

AlignmentError()

14.4.2 BacktraceManagement

Inheritance

14.4. CLASSES 669

java.lang.Object
javax.realtime.BacktraceManagement

Provide the static methods for managing the thread local memory used for storing
the data needed by preallocated exceptions. Preallocated methods can implement
their methods using these methods. User code should not call these methods directly.

Available since RTSJ version RTSJ 2.0

14.4.2.1 Constructors

14.4.2.1.1 BacktraceManagement

Signature

public

BacktraceManagement()

14.4.2.2 Methods

14.4.2.2.1 fillInStackTrace

Signature
public static
void fillInStackTrace()

Capture the current thread’s stack trace and save it in thread local storage. Only
the part of the stack trace that fits in the preallocated buffer is stored. This method
should be called by a preallocated exception to implement its method of the same
name.

14.4.2.2.2 getMessage

Signature
public static

670 CHAPTER 14. EXCEPTIONS

java.lang.String getMessage()

Returns
the message

Get the message from thread local storage that was saved by the last preallocated
exception thrown. This method should be called by a preallocated exception to
implement its method of the same name.

14.4.2.2.3 initMessage(String)

Signature
public static
void initMessage(String message)

Parameters
message the message to save.

Save the message in thread local storage for later retrieval. Only the part of the
message that fits in the preallocated buffer is stored. This method should be called
by a preallocated exception to implement its method of the same name.

14.4.2.2.4 getCause

Signature
public static
java.lang.Throwable getCause()

Returns
the message

Get the cause from thread local storage that was saved by the last preallocated
exception thrown. The actual exception that of the cause is not saved, but just a
reference to its type. This returns a newly allocated exception without any valid
content, i.e., no valid stack trace. This method should be called by a preallocated
exception to implement its method of the same name.

14.4.2.2.5 initCause(Throwable)

Signature
public static
void initCause(Throwable causingThrowable)

Parameters
causingThrowable

Save the message in thread local storage for later retrieval. Only a reference to the
exception class is stored. The rest of its information is lost. This method should be
called by a preallocated exception to implement its method of the same name.

14.4. CLASSES 671

14.4.2.2.6 getStackTrace

Signature

public static
java.lang.StackTraceElement[] getStackTrace()

Returns

an array of the elements of the stack trace.

Get the stack trace from thread local storage that was saved by the last preallocated
exception thrown. This method should be called by a preallocated exception to
implement its method of the same name.

14.4.3 IllegalAssignmentError

Inheritance

java.lang.Object
java.lang.Throwable

java.lang.Error
javax.realtime.IllegalAssignmentError

The exception thrown on an attempt to make an illegal assignment. For example,
this will be thrown on any attempt to assign a reference to an object in scoped
memory (an area of memory identified be an instance of ScopedMemory17) to a field
of an object in immortal memory.

14.4.3.1 Fields

14.4.3.1.1 serialVersionUID

private static final serialVersionUID

14.4.3.2 Constructors

17Section 11.8.13

672 CHAPTER 14. EXCEPTIONS

14.4.3.2.1 IllegalAssignmentError

Signature

public

IllegalAssignmentError()

A constructor for IllegalAssignmentError.

14.4.3.2.2 IllegalAssignmentError(String)

Signature

public

IllegalAssignmentError(String description)

Parameters
description Description of the error.

A descriptive constructor for IllegalAssignmentError.

14.4.4 MemoryAccessError

Inheritance
java.lang.Object

java.lang.Throwable
java.lang.Error

javax.realtime.MemoryAccessError
This error is thrown on an attempt to refer to an object in an inaccessible Memory-

Area18. For example this will be when logic in a NoHeapRealtimeThread19 attempts
to refer to an object in the traditional Java heap.

14.4.4.1 Fields

18Section 11.8.7
19Section 5.4.1

14.4. CLASSES 673

14.4.4.1.1 serialVersionUID
private static final serialVersionUID

14.4.4.2 Constructors

14.4.4.2.1 MemoryAccessError

Signature

public

MemoryAccessError()

A constructor for MemoryAccessError.

14.4.4.2.2 MemoryAccessError(String)

Signature

public

MemoryAccessError(String description)

Parameters
description Description of the error.

A descriptive constructor for MemoryAccessError.

14.4.5 ResourceLimitError

Inheritance
java.lang.Object

java.lang.Throwable
java.lang.Error

javax.realtime.ResourceLimitError
when an attempt is made to exceed a system resource limit, such as the maximum
number of locks.

674 CHAPTER 14. EXCEPTIONS

14.4.5.1 Fields

14.4.5.1.1 serialVersionUID
private static final serialVersionUID

14.4.5.2 Constructors

14.4.5.2.1 ResourceLimitError

Signature

public

ResourceLimitError()

A constructor for ResourceLimitError.

14.4.5.2.2 ResourceLimitError(String)

Signature

public

ResourceLimitError(String description)

Parameters
description The description of the exception.

A descriptive constructor for ResourceLimitError.

14.4.6 ThrowBoundaryError

Inheritance
java.lang.Object

java.lang.Throwable
java.lang.Error

14.4. CLASSES 675

javax.realtime.ThrowBoundaryError
The error thrown by MemoryArea.enter(Runnable logic)20 when a Throwable

allocated from memory that is not usable in the surrounding scope tries to propagate
out of the scope of the enter.

14.4.6.1 Fields

14.4.6.1.1 serialVersionUID
private static final serialVersionUID

14.4.6.2 Constructors

14.4.6.2.1 ThrowBoundaryError

Signature

public

ThrowBoundaryError()

A constructor for ThrowBoundaryError.

14.4.6.2.2 ThrowBoundaryError(String)

Signature

public

ThrowBoundaryError(String description)

Parameters
description Description of the error.

A descriptive constructor for ThrowBoundaryError.

20Section 11.8.7.2.2

676 CHAPTER 14. EXCEPTIONS

14.4.7 Rationale

The need for additional exceptions given the new semantics added by the other
sections of this specification is obvious. That the specification attaches new, non-
traditional, exception semantics to AsynchronouslyInterruptedException is, per-
haps, not so obvious. However, after careful thought, and given our self-imposed
directive that only well-defined code blocks would be subject to having their control
asynchronously transferred, the chosen mechanism is logical.

Chapter 15

Deprecated Classes

15.1 Overview

Since modules are new in Version 2.0 and this version introduces new ways of han-
dling happening, POSIX signals, and raw memory access, there is no need to include
the old API in the RTSJ subsets. Therefore the depricated classes have moved here.
Only full implementation of the RTSJ should implement them.

15.2 Semantics

Implementations of these classes are optional. They are only needed for backward
compatibility. They should not be included in implementations that do not include
all modules.

677

678 CHAPTER 15. DEPRECATED CLASSES

15.3 Interfaces

15.3.1 PhysicalMemoryName

Tagging interface used to identify objects used to name physical memory types.

Available since RTSJ version RTSJ 2.0

15.3.2 PhysicalMemoryTypeFilter

Implementation or device providers may include classes that implement Physi-

calMemoryTypeFilter which allow additional characteristics of memory in devices
to be specified. Implementations of PhysicalMemoryTypeFilter are intended to be
used by the PhysicalMemoryManager1, not directly from application code.

Deprecated since RTSJ version as of RTSJ 2.0

15.3.2.1 Methods

15.3.2.1.1 contains(long, long)

Signature
public
boolean contains(long base, long size)

Parameters
base The physical address of the beginning of the memory region.
size The size of the memory region.

Throws
IllegalArgumentException when base or size is negative.

1Section 15.4.2

15.3. INTERFACES 679

OffsetOutOfBoundsException when base is less than zero.
SizeOutOfBoundsException when base plus size would be greater than the
physical addressing range of the processor.

Returns

true if the specified range contains ANY of this type of memory.

Queries the system about whether the specified range of memory contains any of
this type.

See Section PhysicalMemoryManager.isRemovable)

15.3.2.1.2 find(long, long)

Signature

public
long find(long base, long size)

Parameters

base The physical address at which to start searching.
size The amount of memory to be found.

Throws

OffsetOutOfBoundsException when base is less than zero.
SizeOutOfBoundsException when base plus size would be greater than the
physical addressing range of the processor.
IllegalArgumentException when base or size is negative.

Returns

The address where memory was found or -1 if it was not found.

Search for physical memory of the right type.

15.3.2.1.3 getVMAttributes

Signature

public
int getVMAttributes()

Returns

The virtual memory attributes as an integer.

Gets the virtual memory attributes of this. The value of this field is as defined for
the POSIX mmap function’s prot parameter for the platform. The meaning of the bits
is platform-dependent. POSIX defines constants for PROT READ, PROT WRITE,
PROT EXEC, and PROT NONE.

680 CHAPTER 15. DEPRECATED CLASSES

15.3.2.1.4 getVMFlags

Signature
public
int getVMFlags()

Returns
The virtual memory flags as an integer.

Gets the virtual memory flags of this. The value of this field is as defined for the
POSIX mmap function’s flags parameter for the platform. The meaning of the bits is
platform-dependent. POSIX defines constants for MAP SHARED, MAP PRIVATE,
and MAP FIXED.

15.3.2.1.5 initialize(long, long, long)

Signature
public
void initialize(long base, long vBase, long size)

Parameters
base The address of the beginning of the physical memory region.
vBase The address of the beginning of the virtual memory region.
size The size of the memory region.

Throws
IllegalArgumentException when base or size is negative.
OffsetOutOfBoundsException when base is less than zero.
SizeOutOfBoundsException when base plus size would be greater than the
physical addressing range of the processor, or vBase plus size would exceed
the virtual addressing range of the processor.

If configuration is required for memory to fit the attribute of this object, do the
configuration here.

15.3.2.1.6 isPresent(long, long)

Signature
public
boolean isPresent(long base, long size)

Parameters
base The address of the beginning of the memory region.
size The size of the memory region.

Throws
IllegalArgumentException if the base and size do not fall into this type of
memory.

15.3. INTERFACES 681

OffsetOutOfBoundsException when base is less than zero.
SizeOutOfBoundsException when base plus size would be greater than the
physical addressing range of the processor.

Returns

True if all of the memory is present. False if any of the memory has been
removed.

Queries the system about the existence of the specified range of physical memory.

See Section PhysicalMemoryManager.isRemoved)

15.3.2.1.7 isRemovable

Signature

public
boolean isRemovable()

Returns

true if this type of memory is removable.

Queries the system about the removability of this memory.

15.3.2.1.8 onInsertion(long, long, AsyncEvent)

Signature

public
void onInsertion(long base, long size, AsyncEvent ae)

Parameters

base The starting address in physical memory.
size The size of the memory area.
ae The async event to fire.

Throws

IllegalArgumentException when ae is null, or if the specified range contains
no removable memory of this type. IllegalArgumentException may also be
thrown if size is less than zero.
OffsetOutOfBoundsException when base is less than zero.
SizeOutOfBoundsException when base plus size would be greater than the
physical addressing range of the processor.

Register the specified AsyncEvent2 to fire when any memory of this type in the
range is added to the system.

2Section 8.6.3

682 CHAPTER 15. DEPRECATED CLASSES

Available since RTSJ version RTSJ 1.0.1

15.3.2.1.9 onRemoval(long, long, AsyncEvent)

Signature
public
void onRemoval(long base, long size, AsyncEvent ae)

Parameters
base The starting address in physical memory.
size The size of the memory area.
ae The async event to register.

Throws
IllegalArgumentException when the specified range contains no removable mem-
ory of this type, if ae is null, or if size is less than zero.
OffsetOutOfBoundsException when base is less than zero.
SizeOutOfBoundsException when base plus size would be greater than the
physical addressing range of the processor.

Register the specified AE to fire when any memory in the range is removed from
the system.

Available since RTSJ version RTSJ 1.0.1

15.3.2.1.10 unregisterInsertionEvent(long, long, AsyncEvent)

Signature
public
boolean unregisterInsertionEvent(long base, long size,

AsyncEvent ae)

Parameters
base The starting address in physical memory associated with ae.
size The size of the memory area associated with ae.
ae The event to unregister.

Throws
IllegalArgumentException when size is less than 0.
OffsetOutOfBoundsException when base is less than zero.
SizeOutOfBoundsException when base plus size would be greater than the
physical addressing range of the processor.

Returns

15.3. INTERFACES 683

True if at least one event matched the pattern, false if no such event was found.
Unregister the specified insertion event. The event is only unregistered if all three
arguments match the arguments used to register the event, except that ae of null
matches all values of ae and will unregister every ae that matches the address range.

Note: This method has no effect on handlers registered directly as async event
handlers.

Available since RTSJ version RTSJ 1.0.1

15.3.2.1.11 unregisterRemovalEvent(long, long, AsyncEvent)

Signature
public
boolean unregisterRemovalEvent(long base, long size, AsyncEvent

ae)

Parameters
base The starting address in physical memory associated with ae.
size The size of the memory area associated with ae.
ae The async event to unregister.

Throws
IllegalArgumentException when size is less than 0.
OffsetOutOfBoundsException when base is less than zero.
SizeOutOfBoundsException when base plus size would be greater than the
physical addressing range of the processor.

Returns
True if at least one event matched the pattern, false if no such event was found.

Unregister the specified removal event. The async event is only unregistered if all
three arguments match the arguments used to register the event, except that ae of
null matches all values of ae and will unregister every ae that matches the address
range. Note: This method has no effect on handlers registered directly as async
event handlers.

Available since RTSJ version RTSJ 1.0.1

15.3.2.1.12 vFind(long, long)

Signature
public
long vFind(long base, long size)

684 CHAPTER 15. DEPRECATED CLASSES

Parameters
base The address at which to start searching.
size The amount of memory to be found.

Throws
OffsetOutOfBoundsException when base is less than zero.
SizeOutOfBoundsException when base plus size would be greater than the
physical addressing range of the processor.
IllegalArgumentException when base or size is negative. IllegalArgumentEx-
ception may also be when base is an invalid virtual address.

Returns
The address where memory was found or -1 if it was not found.

Search for virtual memory of the right type. This is important for systems where
attributes are associated with particular ranges of virtual memory.

15.4. CLASSES 685

15.4 Classes

15.4.1 POSIXSignalHandler

Inheritance
java.lang.Object

javax.realtime.POSIXSignalHandler
Jamaica Real-Time Specification for Java class POSIXSignalHandler.
This class permits the use of an AsyncEventHandler to react on the occurrence

of POSIX signals.
On systems that support POSIX signals fully, the 13 signals required by POSIX

will be supported. Any further signals defined in this class may be supported by
the system. On systems that do not support POSIX signals, even the 13 standard
signals may never be fired.

15.4.1.1 Fields

15.4.1.1.1 TRUE
private static final TRUE

true value that cannot be optimized by the compiler.

15.4.1.1.2 SIGHUP
public static final SIGHUP

Hangup (POSIX).

15.4.1.1.3 SIGINT
public static final SIGINT

interrupt (ANSI)

15.4.1.1.4 SIGQUIT
public static final SIGQUIT

quit (POSIX)

15.4.1.1.5 SIGILL
public static final SIGILL

illegal instruction (ANSI)

686 CHAPTER 15. DEPRECATED CLASSES

15.4.1.1.6 SIGTRAP
public static final SIGTRAP

trace trap (POSIX), optional signal.

15.4.1.1.7 SIGABRT
public static final SIGABRT

Abort (ANSI).

15.4.1.1.8 SIGBUS
public static final SIGBUS

BUS error (4.2 BSD), optional signal.

15.4.1.1.9 SIGFPE
public static final SIGFPE

floating point exception

15.4.1.1.10 SIGKILL
public static final SIGKILL

Kill, unblockable (POSIX).

15.4.1.1.11 SIGUSR1
public static final SIGUSR1

User-defined signal 1 (POSIX).

15.4.1.1.12 SIGSEGV
public static final SIGSEGV

Segmentation violation (ANSI).

15.4.1.1.13 SIGUSR2
public static final SIGUSR2

User-defined signal 2 (POSIX).

15.4.1.1.14 SIGPIPE
public static final SIGPIPE

Broken pipe (POSIX).

15.4.1.1.15 SIGALRM
public static final SIGALRM

Alarm clock (POSIX).

15.4. CLASSES 687

15.4.1.1.16 SIGTERM

public static final SIGTERM

Termination (ANSI).

15.4.1.1.17 SIGCHLD

public static final SIGCHLD

Child status has changed (POSIX).

15.4.1.1.18 SIGCONT

public static final SIGCONT

Continue (POSIX), optional signal.

15.4.1.1.19 SIGSTOP

public static final SIGSTOP

Stop, unblockable (POSIX), optional signal.

15.4.1.1.20 SIGTSTP

public static final SIGTSTP

Keyboard stop (POSIX), optional signal.

15.4.1.1.21 SIGTTIN

public static final SIGTTIN

Background read from tty (POSIX), optional signal.

15.4.1.1.22 SIGTTOU

public static final SIGTTOU

Background write to tty (POSIX), optional signal.

15.4.1.1.23 SIGURG

public static final SIGURG

Urgent condition on socket (4.2 BSD).

Deprecated since RTSJ version as of RTSJ 1.0.1 not part of POSIX 9945-
1-1996 standard

688 CHAPTER 15. DEPRECATED CLASSES

15.4.1.1.24 SIGXCPU

public static final SIGXCPU

CPU limit exceeded (4.2 BSD).

Deprecated since RTSJ version as of RTSJ 1.0.1 not part of POSIX 9945-
1-1996 standard

15.4.1.1.25 SIGXFSZ

public static final SIGXFSZ

File size limit exceeded (4.2 BSD).

Deprecated since RTSJ version as of RTSJ 1.0.1 not part of POSIX 9945-
1-1996 standard

15.4.1.1.26 SIGVTALRM

public static final SIGVTALRM

Virtual alarm clock (4.2 BSD).

Deprecated since RTSJ version as of RTSJ 1.0.1 not part of POSIX 9945-
1-1996 standard

15.4.1.1.27 SIGPROF

public static final SIGPROF

Profiling alarm clock (4.2 BSD).

Deprecated since RTSJ version as of RTSJ 1.0.1 not part of POSIX 9945-
1-1996 standard

15.4.1.1.28 SIGWINCH

public static final SIGWINCH

Window size change (4.3 BSD, Sun).

Deprecated since RTSJ version as of RTSJ 1.0.1 not part of POSIX 9945-
1-1996 standard

15.4. CLASSES 689

15.4.1.1.29 SIGIO
public static final SIGIO

I/O now possible (4.2 BSD).

Deprecated since RTSJ version as of RTSJ 1.0.1 not part of POSIX 9945-
1-1996 standard

15.4.1.1.30 SIGPWR
public static final SIGPWR

Power failure restart (System V).

Deprecated since RTSJ version as of RTSJ 1.0.1 not part of POSIX 9945-
1-1996 standard

15.4.1.1.31 SIGSYS
public static final SIGSYS

Bad system call, optional signal.

15.4.1.1.32 SIGIOT
public static final SIGIOT

IOT instruction (4.2 BSD), optional signal.

15.4.1.1.33 SIGPOLL
public static final SIGPOLL

Pollable event occurred (System V).

Deprecated since RTSJ version as of RTSJ 1.0.1 not part of POSIX 9945-
1-1996 standard

15.4.1.1.34 SIGCLD
public static final SIGCLD

Same as SIGCHLD (System V), optional signal.

15.4.1.1.35 SIGEMT
public static final SIGEMT

EMT instruction, optional signal.

690 CHAPTER 15. DEPRECATED CLASSES

15.4.1.1.36 SIGLOST

public static final SIGLOST

Deprecated since RTSJ version as of RTSJ 1.0.1 not part of POSIX 9945-
1-1996 standard

15.4.1.1.37 SIGCANCEL

public static final SIGCANCEL

Deprecated since RTSJ version as of RTSJ 1.0.1 not part of POSIX 9945-
1-1996 standard

15.4.1.1.38 SIGFREEZE

public static final SIGFREEZE

Deprecated since RTSJ version as of RTSJ 1.0.1 not part of POSIX 9945-
1-1996 standard

15.4.1.1.39 SIGLWP

public static final SIGLWP

Deprecated since RTSJ version as of RTSJ 1.0.1 not part of POSIX 9945-
1-1996 standard

15.4.1.1.40 SIGTHAW

public static final SIGTHAW

Deprecated since RTSJ version as of RTSJ 1.0.1 not part of POSIX 9945-
1-1996 standard

15.4.1.1.41 SIGWAITING

public static final SIGWAITING

15.4. CLASSES 691

Deprecated since RTSJ version as of RTSJ 1.0.1 not part of POSIX 9945-
1-1996 standard

15.4.1.2 Constructors

15.4.1.2.1 POSIXSignalHandler

Signature

public

POSIXSignalHandler()

15.4.1.3 Methods

15.4.1.3.1 isSignalDefined(int)

Signature
static
boolean isSignalDefined(int signal)

Parameters
signal the signal number.

Returns
true iff the given system is defined by one of the constants in this class.

check if a given signal is defined in this class. The fact that it is defined does,
however, not imply that it will be supported by the underlying platform.

15.4.1.3.2 addHandler(int, AsyncEventHandler)

Signature
public static
void addHandler(int signal, AsyncEventHandler handler)

Parameters

692 CHAPTER 15. DEPRECATED CLASSES

signal The POSIX signal as defined in the constants SIG*.
handler the handler to be released on the given signal.

Throws
IllegalArgumentException iff signal is not defined by any of the constants in
this class or handler is null.

addHandler adds the handler provided to the set of handlers that will be released
on the provided signal.

15.4.1.3.3 removeHandler(int, AsyncEventHandler)

Signature
public static
void removeHandler(int signal, AsyncEventHandler handler)

Parameters
signal The POSIX signal as defined in the constants SIG*.
handler the handler to be removed from the given signal. If this handler is
null or has not been added to the signal, nothing will happen.

Throws
IllegalArgumentException iff signal is not defined by any of the constants in
this class.

removeHandler removes a handler that was added for a given signal.

15.4.1.3.4 setHandler(int, AsyncEventHandler)

Signature
public static
void setHandler(int signal, AsyncEventHandler handler)

Parameters
signal The POSIX signal as defined in the constants SIG*.
handler the handler to be released on the given signal, null to remove all
handlers for the given signal.

Throws
IllegalArgumentException iff signal is not defined by any of the constants in
this class.

setHandler sets the set of handlers that will be released on the provided signal to
the set with the provided handler being the single element.

15.4.2 PhysicalMemoryManager

15.4. CLASSES 693

Inheritance
java.lang.Object

javax.realtime.PhysicalMemoryManager
The PhysicalMemoryManager is not ordinarily used by applications, except that the
implementation may require the application to use the registerFilter3 method to
make the physical memory manager aware of the memory types on their platform.
The PhysicalMemoryManager class is primarily intended for use by the various
physical memory accessor objects (VTPhysicalMemory4, LTPhysicalMemory5, and
ImmortalPhysicalMemory6) to create objects of the types requested by the appli-
cation. The physical memory manager is responsible for finding areas of physical
memory with the appropriate characteristics and access rights, and moderating any
required combination of physical and virtual memory characteristics.

The Physical Memory Manager assumes that the physical adresss space is linear
but not necessarily contiguous. That is, addresses range from 0 .. MAX LONG but
there may be holes in the memory space. Some of these holes may be filled with
removable memory.

The physical memory is partitioned into chunks (pages, segments, etc.). Each
chunk of memory has a base address and a length.

Each chunk of memory has certain properties. Some of these properties may re-
quire actions to be performed by the Physical Memory Manager when the memory is
accessed. For example, access to IO PAGE may require the use of special instructions
to even reach the devices, or it may require special code sequences to ensure proper
handling of processor write queues and caches.

Filters tell the Physical Memory Manager about the properties of the memory
that are available on the machine by registering with the Physical Memory Manager.

When the program requests a physical memory area with particular properties,
the constructor communicates with the Physical Memory Manager through a private
interface. The Physical Memory Manager asks the filter if the the address specified
has the required properties and whether it is free, or asks for a chunk of memory
with the requested size.

The Physical Memory Manager then maps the physical memory chunk into vir-
tual memory (on systems that support virtual memory). and locks the virtual
memory to the memory chunk.

Examples of characteristics that might be specified are: DMA memory, hardware
byte swapping, non-cached access to memory, etc. Standard ”names” for some
memory characteristics are included in this class — DMA, SHARED, ALIGNED,
BYTESWAP, and IO PAGE — support for these characteristics is optional, but

3Section 15.4.2.3.7
4Section 15.4.7
5Section 11.8.6
6Section 11.8.4

694 CHAPTER 15. DEPRECATED CLASSES

if they are supported they must use these names. Additional characteristics may
be supported, but only names defined in this specification may be visible in the
PhysicalMemoryManager API.

The base implementation will provide a PhysicalMemoryManager.
Original Equipment Manufacturers or other interested parties may provide Phys-

icalMemoryTypeFilter7 classes that allow additional characteristics of memory de-
vices to be specified.

Deprecated since RTSJ version as of RTSJ 2.0

15.4.2.1 Fields

15.4.2.1.1 ALIGNED
public static final ALIGNED

If aligned memory is supported by the implementation specify ALIGNED to identify
aligned memory. This type of memory ignores low-order bits in load and store
accesses to force accesses to fall on natural boundaries for the access type even if
the processor uses a poorly aligned address.

Deprecated since RTSJ version as of RTSJ 2.0 This is only applicable to
raw memory. Use RawMemory8.

15.4.2.1.2 BYTESWAP
public static final BYTESWAP

If automatic byte swapping is supported by the implementation specify BYTESWAP

if byte swapping should be used. Byte-swapping memory re-orders the bytes in
accesses for 16 bits or more such that little-endian data in memory is accessed as
big-endian, and vice-versa. Such memory would typically be available in swapped
mode in one physical address range and in un-swapped mode in another address
range.

Deprecated since RTSJ version as of RTSJ 2.0 This is only applicable to
raw memory. Use RawMemory9.

7Section 15.3.2
8Section 12.3.16
9Section 12.3.16

15.4. CLASSES 695

15.4.2.1.3 DMA
public static final DMA

If DMA (Direct Memory Access) memory is supported by the implementation, spec-
ify DMA to identify DMA memory. This memory is visible to devices that use DMA.
In some systems, only a portion of the physical address space is available to DMA
devices. On such systems, memory that will be used for DMA must be allocated
from the range of addresses that DMA can reach.

Deprecated since RTSJ version as of RTSJ 2.0 This is only applicable to
raw memory. Use RawMemory10.

15.4.2.1.4 IO PAGE
public static final IO PAGE

If access to the system I/O space is supported by the implementation specify IO PAGE

if I/O space should be used. Addresses tagged with the name IO PAGE are used for
memory mapped I/O devices. Such addresses are almost certainly not suitable for
physical memory, but only for raw memory access.

Available since RTSJ version RTSJ 1.0.1

15.4.2.1.5 SHARED
public static final SHARED

If shared memory is supported by the implementation specify SHARED to identify
shared memory. In a NUMA (Non-Uniform Memory Access) architecture, processors
may make some part of their local memory available to other processors. This
memory would be tagged with SHARED, as would memory that is shared and non-
local.

A fully built-out NUMA system might well need sub-classifications of SHARED to
reflect different paths to memory. Note that, as with other physical memory names,
a single byte of memory may be visible at several physical addresses with different
access properties at each address. For instance, a byte of shared memory accesses at
address x might be shared with high-performance access, but without the support
of coherent caches. The same byte accessed at address y might be shared with
coherent cache support, but substantially longer access times.

10Section 12.3.16

696 CHAPTER 15. DEPRECATED CLASSES

15.4.2.2 Constructors

15.4.2.2.1 PhysicalMemoryManager

Signature

private

PhysicalMemoryManager()

Private constructor to prevent a default constructor from appearing. This class
should not be instantiated except possibly by internal logic.

15.4.2.3 Methods

15.4.2.3.1 isRemovable(long, long)

Signature
public static
boolean isRemovable(long base, long size)

Parameters
base The starting address in physical memory.
size The size of the memory area.

Throws
IllegalArgumentException when size is less than zero.
SizeOutOfBoundsException when base plus size would be greater than the
physical addressing range of the processor.
OffsetOutOfBoundsException when base is less than zero.

Returns
true if any part of the specified range can be removed.

Queries the system about the removability of the specified range of memory.

15.4.2.3.2 isRemoved(long, long)

Signature
public static

15.4. CLASSES 697

boolean isRemoved(long base, long size)

Parameters
base The starting address in physical memory.
size The size of the memory area.

Throws
IllegalArgumentException when size is less than zero.
OffsetOutOfBoundsException when base is less than zero.
SizeOutOfBoundsException when base plus size would be greater than the
physical addressing range of the processor.

Returns
true if any part of the specified range is currently not usable.

Queries the system about the removed state of the specified range of memory. This
method is used for devices that lie in the memory address space and can be removed
while the system is running. (Such as PC cards).

15.4.2.3.3 onInsertion(long, long, AsyncEvent)

Signature
public static
void onInsertion(long base, long size, AsyncEvent ae)

Parameters
base The starting address in physical memory.
size The size of the memory area.
ae The async event to fire.

Throws
IllegalArgumentException when ae is null, or if the specified range contains
no removable memory, or if size is less than zero.
OffsetOutOfBoundsException when base is less than zero.
SizeOutOfBoundsException when base plus size would be greater than the
physical addressing range of the processor.

Register the specified AsyncEvent11 to fire when any memory in the range is added
to the system. If the specified range of physical memory contains multiple different
types of removable memory, the AE will be registered with each of them.

Available since RTSJ version RTSJ 1.0.1

15.4.2.3.4 onInsertion(long, long, AsyncEventHandler)

11Section 8.6.3

698 CHAPTER 15. DEPRECATED CLASSES

Signature
public static
void onInsertion(long base, long size, AsyncEventHandler aeh)

Parameters
base The starting address in physical memory.
size The size of the memory area.
aeh The handler to register.

Throws
IllegalArgumentException when aeh is null, or if the specified range contains
no removable memory, or if aeh is null and size and base are both greater
than or equal to zero.
SizeOutOfBoundsException when base plus size would be greater than the
physical addressing range of the processor.

Register the specified AsyncEventHandler12 to run when any memory in the range
is added to the system. If the specified range of physical memory contains multiple
different types of removable memory, the AEH will be registered with each of them.
If the size or the base is less than 0, unregister all ”onInsertion” references to the
handler.

Note: This method only removes handlers that were registered with the same
method. It has no effect on handlers that were registered using an associated async
event.

15.4.2.3.5 onRemoval(long, long, AsyncEvent)

Signature
public static
void onRemoval(long base, long size, AsyncEvent ae)

Parameters
base The starting address in physical memory.
size The size of the memory area.
ae The async event to register.

Throws
IllegalArgumentException when the specified range contains no removable mem-
ory, if ae is null, or if size is less than zero.
OffsetOutOfBoundsException when base is less than zero.
SizeOutOfBoundsException when base plus size would be greater than the
physical addressing range of the processor.

Register the specified AE to fire when any memory in the range is removed from the
system. If the specified range of physical memory contains multiple different types

12Section 8.6.4

15.4. CLASSES 699

of removable memory, the AE will be registered with each of them.

15.4.2.3.6 onRemoval(long, long, AsyncEventHandler)

Signature

public static
void onRemoval(long base, long size, AsyncEventHandler aeh)

Parameters

base The starting address in physical memory.
size The size of the memory area.
aeh The handler to register.

Throws

IllegalArgumentException when the specified range contains no removable mem-
ory, or if aeh is null and size and base are both greater than or equal to
zero.
SizeOutOfBoundsException when base plus size would be greater than the
physical addressing range of the processor.

Register the specified AEH to run when any memory in the range is removed from
the system. If the specified range of physical memory contains multiple different
types of removable memory, the AEH will be registered with each of them. If
size or base is less than 0, unregister all ”onRemoval” references to the handler
parameter.

Note: This method only removes handlers that were registered with the same
method. It has no effect on handlers that were registered using an associated async
event.

15.4.2.3.7 registerFilter(Object, PhysicalMemoryTypeFilter)

Signature

public static final
void registerFilter(Object name, PhysicalMemoryTypeFilter

filter)

throws DuplicateFilterException

Parameters

name The type of memory handled by this filter.
filter The filter object.

Throws

DuplicateFilterException when a filter for this type of memory already exists.
ResourceLimitError when the system is configured for a bounded number of
filters. This filter exceeds the bound.

700 CHAPTER 15. DEPRECATED CLASSES

IllegalArgumentException when the name parameter is an array of objects, if
the name and filter are not both in immortal memory, or if either name or
filter is null.
SecurityException when this operation is not permitted.

Register a memory type filter with the physical memory manager.
Values of name are compared using reference equality (==) not value equality

(equals()).

15.4.2.3.8 removeFilter(Object)

Signature
public static final
void removeFilter(Object name)

Parameters
name The identifying object for this memory attribute.

Throws
IllegalArgumentException when name is null.
SecurityException when this operation is not permitted.

Remove the identified filter from the set of registered filters. If the filter is not
registered, silently do nothing.

Values of name are compared using reference equality (==) not value equality
(equals()).

15.4.2.3.9 unregisterInsertionEvent(long, long, AsyncEvent)

Signature
public static
boolean unregisterInsertionEvent(long base, long size,

AsyncEvent ae)

Parameters
base The starting address in physical memory associated with ae.
size The size of the memory area associated with ae.
ae The event to unregister.

Throws
IllegalArgumentException when size is less than 0.
OffsetOutOfBoundsException when base is less than zero.
SizeOutOfBoundsException when base plus size would be greater than the
physical addressing range of the processor.

Returns
True if at least one event matched the pattern, false if no such event was found.

15.4. CLASSES 701

Unregister the specified insertion event. The event is only unregistered if all three
arguments match the arguments used to register the event, except that ae of null
matches all values of ae and will unregister every ae that matches the address range.

Note: This method has no effect on handlers registered directly as async event
handlers.

Available since RTSJ version RTSJ 1.0.1

15.4.2.3.10 unregisterRemovalEvent(long, long, AsyncEvent)

Signature
public static
boolean unregisterRemovalEvent(long base, long size, AsyncEvent

ae)

Parameters
base The starting address in physical memory associated with ae.
size The size of the memory area associated with ae.
ae The async event to unregister.

Throws
IllegalArgumentException when size is less than 0.
OffsetOutOfBoundsException when base is less than zero.
SizeOutOfBoundsException when base plus size would be greater than the
physical addressing range of the processor.

Returns
True if at least one event matched the pattern, false if no such event was found.

Unregister the specified removal event. The async event is only unregistered if all
three arguments match the arguments used to register the event, except that ae of
null matches all values of ae and will unregister every ae that matches the address
range.

Note: This method has no effect on handlers registered directly as async event
handlers.

Available since RTSJ version RTSJ 1.0.1

15.4.3 RationalTime

Inheritance

702 CHAPTER 15. DEPRECATED CLASSES

java.lang.Object
javax.realtime.HighResolutionTime

javax.realtime.RelativeTime
javax.realtime.RationalTime

An object that represents a time interval milliseconds/103 + nanoseconds/109 sec-
onds long that is divided into subintervals by some frequency. This is generally used
in periodic events, threads, and feasibility analysis to specify periods where there
is a basic period that must be adhered to strictly (the interval), but within that
interval the periodic events are supposed to happen frequency times, as uniformly
spaced as possible, but clock and scheduling jitter is moderately acceptable.

Caution: This class is explicitly unsafe in multithreaded situations when it is
being changed. No synchronization is done. It is assumed that users of this class
who are mutating instances will be doing their own synchronization at a higher level.
All Implemented Interfaces: java.lang.Comparable

Deprecated since RTSJ version as of RTSJ 1.0.1

15.4.3.1 Fields

15.4.3.1.1 freq
freq

15.4.3.2 Constructors

15.4.3.3 Methods

15.4.4 RawMemoryAccess

Inheritance
java.lang.Object

15.4. CLASSES 703

javax.realtime.RawMemoryAccess
An instance of RawMemoryAccess models a range of physical memory as a fixed
sequence of bytes. A complement of accessor methods enable the contents of the
physical area to be accessed through offsets from the base, interpreted as byte, short,
int, or long data values or as arrays of these types.

Whether an offset addresses the high-order or low-order byte is normally based on
the value of the RealtimeSystem.BYTE ORDER13 static byte variable in class Real-

timeSystem14. If the type of memory used for this RawMemoryAccess region imple-
ments non-standard byte ordering, accessor methods in this class continue to select
bytes starting at offset from the base address and continuing toward greater ad-
dresses. The memory type may control the mapping of these bytes into the primitive
data type. The memory type could even select bytes that are not contiguous. In
each case the documentation for the PhysicalMemoryTypeFilter15 must document
any mapping other than the ”normal” one specified above.

The RawMemoryAccess class allows a realtime program to implement device drivers,
memory-mapped I/O, flash memory, battery-backed RAM, and similar low-level
software.

A raw memory area cannot contain references to Java objects. Such a capability
would be unsafe (since it could be used to defeat Java’s type checking) and error-
prone (since it is sensitive to the specific representational choices made by the Java
compiler).

Many of the constructors and methods in this class throw OffsetOutOfBound-

sException16. This exception means that the value given in the offset parameter is
either negative or outside the memory area.

Many of the constructors and methods in this class throw SizeOutOfBound-

sException17. This exception means that the value given in the size parameter is
either negative, larger than an allowable range, or would cause an accessor method
to access an address outside of the memory area.

Unlike other integral parameters in this chapter, negative values are valid for
byte, short, int, and long values that are copied in and out of memory by the
set and get methods of this class.

All offset values used in this class are measured in bytes.
Atomic loads and stores on raw memory are defined in terms of physical memory.

This memory may be accessible to threads outside the JVM and to non-programmed
access (e.g., DMA), consequently atomic access must be supported by hardware.
This specification is written with the assumption that all suitable hardware plat-

13Section 13.3.6.1.3
14Section 13.3.6
15Section 15.3.2
16Section 14.3.13
17Section 14.3.17

704 CHAPTER 15. DEPRECATED CLASSES

forms support atomic loads for aligned bytes, shorts, and ints. Atomic access beyond
the specified minimum may be supported by the implementation.

Storing values into raw memory is more hardware-dependent than loading val-
ues. Many processor architectures do not support atomic stores of variables except
for aligned stores of the processor’s word size. For instance, storing a byte into
memory might require reading a 32-bit quantity into a processor register, updating
the register to reflect the new byte value, then re-storing the whole 32-bit quantity.
Changes to other bytes in the 32-bit quantity that take place between the load and
the store will be lost.

Some processors have mechanisms that can be used to implement an atomic store
of a byte, but those mechanisms are often slow and not universally supported.

This class supports unaligned access to data, but it does not require the im-
plementation to make such access atomic. Accesses to data aligned on its natural
boundary will be atomic if the processor implements atomic loads and stores of that
data size.

Except where noted, accesses to raw memory are not atomic with respect to the
memory or with respect to schedulables. A raw memory area could be updated by
another schedulable, or even unmapped in the middle of a method.

The characteristics of raw-memory access are necessarily platform dependent.
This specification provides a minimum requirement for the RTSJ platform, but it
also supports optional system properties that identify a platform’s level of support
for atomic raw put and get. The properties represent a four-dimensional sparse
array with boolean values indicating whether that combination of access attributes
is atomic. The default value for array entries is false. The dimension are

15.4. CLASSES 705

Attribute Values Comment
Access type read, write

Data type

• byte,
• short,
• int,
• long,
• float,
• double

Alignment 0 to 7 For each data type,
the possible align-
ments range from
• 0 == aligned
• to data size - 1 ==

only the first byte of
the data is alignment
bytes away from nat-
ural alignment.

Atomicity

• processor,
• smp,
• memory

• processor means ac-
cess is atomic with
respect to other
schedulables on that
processor.
• smp means that

access is processor
atomic, and atomic
with respect across
the processors in an
SMP.
• memory means that

access is smp atomic,
and atomic with re-
spect to all access to
the memory includ-
ing DMA.

The true values in the table are represented by properties of the following form.
javax.realtime.atomicaccess <access> <type> <alignment> atomicity=true for ex-
ample:

javax.realtime.atomicaccess read byte 0 memory=true
Table entries with a value of false may be explicitly represented, but since false is

706 CHAPTER 15. DEPRECATED CLASSES

the default value, such properties are redundant.
All raw memory access is treated as volatile, and serialized. The run-time must

be forced to re-read memory or write to memory on each call to a raw memory
getxxx or putxxx method, and to complete the reads and writes in the order they
appear in the program order.

Deprecated since RTSJ version as of RTSJ 2.0. Use RawMemoryFactory18

to create the appropriate RawMemory19 object.

15.4.4.1 Constructors

15.4.4.1.1 RawMemoryAccess(Object, long)

Signature

public

RawMemoryAccess(Object type, long size)

Parameters
type An instance of Object representing the type of memory required (e.g.,
dma, shared) - used to define the base address and control the mapping. If
the required memory has more than one attribute, type may be an array of
objects. If type is null or a reference to an array with no entries, any type
of memory is acceptable. Note that type values are compared by reference
(==), not by value (equals).
size The size of the area in bytes.

Throws
SecurityException when the application doesn’t have permissions to access
physical memory, the specified range of addresses, or the given type of memory.
SizeOutOfBoundsException when the size is negative or extends into an invalid
range of memory.
UnsupportedPhysicalMemoryException when the underlying hardware does not
support the given type, or if no matching PhysicalMemoryTypeFilter20 has

18Section 12.5.5
19Section 12.3.16
20Section 15.3.2

15.4. CLASSES 707

been registered with the PhysicalMemoryManager21.
MemoryTypeConflictException when the specified base does not point to mem-
ory that matches the request type, or if type specifies incompatible memory
attributes.
OutOfMemoryError when the requested type of memory exists, but there is
not enough of it free to satisfy the request.
SecurityException when the application doesn’t have permissions to access
physical memory or the given range of memory.

Construct an instance of RawMemoryAccess with the given parameters, and set the
object to the mapped state. If the platform supports virtual memory, map the raw
memory into virtual memory.

The run time environment is allowed to choose the virtual address where the
raw memory area corresponding to this object will be mapped. The attributes
of the mapping operation are controlled by the vMFlags and vMAttributes of the
PhysicalMemoryTypeFilter objects that matched this object’s type parameter.
(See PhysicalMemoryTypeFilter.getVMAttributes22 and PhysicalMemoryType-

Filter.getVMFlags23.

Deprecated since RTSJ version as of RTSJ 2.0. Use RawMemoryFactory24

to create the appropriate RawMemory25 object.

15.4.4.1.2 RawMemoryAccess(Object, long, long)

Signature

public

RawMemoryAccess(Object type, long base, long size)

Parameters
type An instance of Object representing the type of memory required (e.g.,
dma, shared) - used to define the base address and control the mapping. If
the required memory has more than one attribute, type may be an array of
objects. If type is null or a reference to an array with no entries, any type
of memory is acceptable. Note that type values are compared by reference
(==), not by value (equals).

21Section 15.4.2
22Section 15.3.2.1.3
23Section 15.3.2.1.4
24Section 12.5.5
25Section 12.3.16

708 CHAPTER 15. DEPRECATED CLASSES

base The physical memory address of the region.
size The size of the area in bytes.

Throws

SecurityException when application doesn’t have permissions to access physi-
cal memory, the specified range of addresses, or the given type of memory.
OffsetOutOfBoundsException when the address is invalid.
SizeOutOfBoundsException when the size is negative or extends into an invalid
range of memory.
UnsupportedPhysicalMemoryException when the underlying hardware does not
support the given type, or if no matching PhysicalMemoryTypeFilter26 has
been registered with the PhysicalMemoryManager27.
MemoryTypeConflictException when the specified base does not point to mem-
ory that matches the request type, or if type specifies incompatible memory
attributes.
OutOfMemoryError when the requested type of memory exists, but there is
not enough of it free to satisfy the request.

Construct an instance of RawMemoryAccess with the given parameters, and set the
object to the mapped state. If the platform supports virtual memory, map the raw
memory into virtual memory.

The run time environment is allowed to choose the virtual address where the
raw memory area corresponding to this object will be mapped. The attributes
of the mapping operation are controlled by the vMFlags and vMAttributes of the
PhysicalMemoryTypeFilter objects that matched this object’s type parameter.
(See PhysicalMemoryTypeFilter.getVMAttributes28 and PhysicalMemoryType-

Filter.getVMFlags29.

Deprecated since RTSJ version as of RTSJ 2.0. Use RawMemoryFactory30

to create the appropriate RawMemory31 object.

15.4.4.2 Methods

26Section 15.3.2
27Section 15.4.2
28Section 15.3.2.1.3
29Section 15.3.2.1.4
30Section 12.5.5
31Section 12.3.16

15.4. CLASSES 709

15.4.4.2.1 getByte(long)

Signature

public
byte getByte(long offset)

Parameters

offset The offset in bytes from the beginning of the raw memory from which
to load the byte.

Throws

SizeOutOfBoundsException when the object is not mapped, or if the byte falls
in an invalid address range.
OffsetOutOfBoundsException when the offset is negative or greater than the
size of the raw memory area. The role of the SizeOutOfBoundsException32

somewhat overlaps this exception since it is when the offset is within the object
but outside the mapped area.
SecurityException when this access is not permitted by the security manager.

Returns

The byte from raw memory.

Gets the byte at the given offset in the memory area associated with this object.
The byte is always loaded from memory in a single atomic operation.

Caching of the memory access is controlled by the memory type requested when
the RawMemoryAccess instance was created. If the memory is not cached, this
method guarantees serialized access (that is, the memory access at the memory
occurs in the same order as in the program. Multiple writes to the same location
may not be coalesced.)

See Section RawMemoryAccess.map(long,long).)

15.4.4.2.2 getBytes(long, byte[], int, int)

Signature

public
void getBytes(long offset, byte[] bytes, int low, int number)

Parameters

offset The offset in bytes from the beginning of the raw memory from which
to start loading.
bytes The array into which the loaded items are placed.

32Section 14.3.17

710 CHAPTER 15. DEPRECATED CLASSES

low The offset which is the starting point in the given array for the loaded
items to be placed.
number The number of items to load.

Throws

OffsetOutOfBoundsException when the offset is negative or greater than the
size of the raw memory area. The role of the SizeOutOfBoundsException33

somewhat overlaps this exception since it is when the offset is within the object
but outside the mapped area.
SizeOutOfBoundsException when the object is not mapped, or if the byte falls
in an invalid address range. This is checked at every entry in the array to allow
for the possibility that the memory area could be unmapped or remapped.
The bytes array could, therefore, be partially updated if the raw memory is
unmapped or remapped mid-method.
ArrayIndexOutOfBoundsException when low is less than 0 or greater than
bytes.length - 1, or if low + number is greater than or equal to bytes.length.
SecurityException when this access is not permitted by the security manager.

Gets number bytes starting at the given offset in the memory area associated with
this object and assigns them to the byte array passed starting at position low. Each
byte is loaded from memory in a single atomic operation. Groups of bytes may be
loaded together, but this is unspecified.

Caching of the memory access is controlled by the memory type requested when
the RawMemoryAccess instance was created. If the memory is not cached, this
method guarantees serialized access (that is, the memory access at the memory
occurs in the same order as in the program. Multiple writes to the same location
may not be coalesced.)

See Section RawMemoryAccess.map(long,long).)

15.4.4.2.3 getInt(long)

Signature

public
int getInt(long offset)

Parameters

offset The offset in bytes from the beginning of the raw memory area from
which to load the integer.

Throws

33Section 14.3.17

15.4. CLASSES 711

OffsetOutOfBoundsException when the offset is negative or greater than the
size of the raw memory area. The role of the SizeOutOfBoundsException34

somewhat overlaps this exception since it is when the offset is within the object
but outside the mapped area.
SizeOutOfBoundsException when the object is not mapped, or if the integer
falls in an invalid address range.
SecurityException when this access is not permitted by the security manager.

Returns

The integer from raw memory.

Gets the int at the given offset in the memory area associated with this object. If
the integer is aligned on a ”natural” boundary it is always loaded from memory in
a single atomic operation. If it is not on a natural boundary it may not be loaded
atomically, and the number and order of the load operations is unspecified.

Caching of the memory access is controlled by the memory type requested when
the RawMemoryAccess instance was created. If the memory is not cached, this
method guarantees serialized access (that is, the memory access at the memory
occurs in the same order as in the program. Multiple writes to the same location
may not be coalesced.)

See Section RawMemoryAccess.map(long,long).)

15.4.4.2.4 getInts(long, int[], int, int)

Signature

public
void getInts(long offset, int[] ints, int low, int number)

Parameters

offset The offset in bytes from the beginning of the raw memory area at which
to start loading.
ints The array into which the integers read from the raw memory are placed.
low The offset which is the starting point in the given array for the loaded
items to be placed.
number The number of integers to loaded.

Throws

OffsetOutOfBoundsException when the offset is negative or greater than the
size of the raw memory area. The role of the SizeOutOfBoundsException35

34Section 14.3.17
35Section 14.3.17

712 CHAPTER 15. DEPRECATED CLASSES

somewhat overlaps this exception since it is when the offset is within the object
but outside the mapped area.
SizeOutOfBoundsException when the object is not mapped, or if the integers
fall in an invalid address range. This is checked at every entry in the ar-
ray to allow for the possibility that the memory area could be unmapped or
remapped. The ints array could, therefore, be partially updated if the raw
memory is unmapped or remapped mid-method.
ArrayIndexOutOfBoundsException when low is less than 0 or greater than
bytes.length - 1, or if low + number is greater than or equal to bytes.length.
SecurityException when this access is not permitted by the security manager.

Gets number integers starting at the given offset in the memory area associated with
this object and assign them to the int array passed starting at position low.

If the integers are aligned on natural boundaries each integer is loaded from
memory in a single atomic operation. Groups of integers may be loaded together,
but this is unspecified. If the integers are not aligned on natural boundaries they may
not be loaded atomically and the number and order of load operations is unspecified.

Caching of the memory access is controlled by the memory type requested when
the RawMemoryAccess instance was created. If the memory is not cached, this
method guarantees serialized access (that is, the memory access at the memory
occurs in the same order as in the program. Multiple writes to the same location
may not be coalesced.)

See Section RawMemoryAccess.map(long,long).)

15.4.4.2.5 getLong(long)

Signature

public
long getLong(long offset)

Parameters

offset The offset in bytes from the beginning of the raw memory area from
which to load the long.

Throws

OffsetOutOfBoundsException when the offset is invalid.
SizeOutOfBoundsException when the object is not mapped, or if the double
falls in an invalid address range.
SecurityException when this access is not permitted by the security manager.

Returns

The long from raw memory.

15.4. CLASSES 713

Gets the long at the given offset in the memory area associated with this object.
The load is not required to be atomic even it is located on a natural boundary.
Caching of the memory access is controlled by the memory type requested when

the RawMemoryAccess instance was created. If the memory is not cached, this
method guarantees serialized access (that is, the memory access at the memory
occurs in the same order as in the program. Multiple writes to the same location
may not be coalesced.)

15.4.4.2.6 getLongs(long, long[], int, int)

Signature
public
void getLongs(long offset, long[] longs, int low, int number)

Parameters
offset The offset in bytes from the beginning of the raw memory area at which
to start loading.
longs The array into which the loaded items are placed.
low The offset which is the starting point in the given array for the loaded
items to be placed.
number The number of longs to load.

Throws
OffsetOutOfBoundsException when the offset is negative or greater than the
size of the raw memory area. The role of the SizeOutOfBoundsException36

somewhat overlaps this exception since it is when the offset is within the object
but outside the mapped area.
SizeOutOfBoundsException when the object is not mapped, or if a long falls in
an invalid address range. This is checked at every entry in the array to allow
for the possibility that the memory area could be unmapped or remapped.
The longs array could, therefore, be partially updated if the raw memory is
unmapped or remapped mid-method.
ArrayIndexOutOfBoundsException when low is less than 0 or greater than
bytes.length - 1, or if low + number is greater than or equal to bytes.length.
SecurityException when this access is not permitted by the security manager.

Gets number longs starting at the given offset in the memory area associated with
this object and assign them to the long array passed starting at position low.

The loads are not required to be atomic even if they are located on natural
boundaries.

Caching of the memory access is controlled by the memory type requested when
the RawMemoryAccess instance was created. If the memory is not cached, this

36Section 14.3.17

714 CHAPTER 15. DEPRECATED CLASSES

method guarantees serialized access (that is, the memory access at the memory
occurs in the same order as in the program. Multiple writes to the same location
may not be coalesced.)

See Section RawMemoryAccess.map(long,long).)

15.4.4.2.7 getMappedAddress

Signature
public
long getMappedAddress()

Throws
IllegalStateException when the raw memory object is not in the mapped state.

Returns
The virtual address to which this is mapped (for reference purposes). Same
as the base address if virtual memory is not supported.

Gets the virtual memory location at which the memory region is mapped.

Deprecated since RTSJ version as of RTSJ 2.0 The program should never
need this information.

15.4.4.2.8 getShort(long)

Signature
public
short getShort(long offset)

Parameters
offset The offset in bytes from the beginning of the raw memory area from
which to load the short.

Throws
OffsetOutOfBoundsException when the offset is negative or greater than the
size of the raw memory area. The role of the SizeOutOfBoundsException37

somewhat overlaps this exception since it is when the offset is within the object
but outside the mapped area.
SizeOutOfBoundsException when the object is not mapped, or if the short
falls in an invalid address range.
SecurityException when this access is not permitted by the security manager.

37Section 14.3.17

15.4. CLASSES 715

Returns
The short loaded from raw memory.

Gets the short at the given offset in the memory area associated with this object.
If the short is aligned on a natural boundary it is always loaded from memory in
a single atomic operation. If it is not on a natural boundary it may not be loaded
atomically, and the number and order of the load operations is unspecified.

Caching of the memory access is controlled by the memory type requested when
the RawMemoryAccess instance was created. If the memory is not cached, this
method guarantees serialized access (that is, the memory access at the memory
occurs in the same order as in the program. Multiple writes to the same location
may not be coalesced.)

See Section RawMemoryAccess.map(long,long).)

15.4.4.2.9 getShorts(long, short[], int, int)

Signature
public
void getShorts(long offset, short[] shorts, int low, int number)

Parameters
offset The offset in bytes from the beginning of the raw memory area from
which to start loading.
shorts The array into which the loaded items are placed.
low The offset which is the starting point in the given array for the loaded
shorts to be placed.
number The number of shorts to load.

Throws
OffsetOutOfBoundsException when the offset is negative or greater than the
size of the raw memory area. The role of the SizeOutOfBoundsException38

somewhat overlaps this exception since it is when the offset is within the object
but outside the mapped area.
SizeOutOfBoundsException when the object is not mapped, or if a short falls in
an invalid address range. This is checked at every entry in the array to allow
for the possibility that the memory area could be unmapped or remapped.
The shorts array could, therefore, be partially updated if the raw memory is
unmapped or remapped mid-method.
ArrayIndexOutOfBoundsException when low is less than 0 or greater than
bytes.length - 1, or if low + number is greater than or equal to bytes.length.

38Section 14.3.17

716 CHAPTER 15. DEPRECATED CLASSES

SecurityException when this access is not permitted by the security manager.

Gets number shorts starting at the given offset in the memory area associated with
this object and assign them to the short array passed starting at position low.

If the shorts are located on natural boundaries each short is loaded from memory
in a single atomic operation. Groups of shorts may be loaded together, but this is
unspecified.

If the shorts are not located on natural boundaries the load may not be atomic,
and the number and order of load operations is unspecified. Caching of the memory
access is controlled by the memory type requested when the RawMemoryAccess

instance was created. If the memory is not cached, this method guarantees serialized
access (that is, the memory access at the memory occurs in the same order as in the
program. Multiple writes to the same location may not be coalesced.)

See Section RawMemoryAccess.map(long,long).)

15.4.4.2.10 map

Signature

public
long map()

Throws

OutOfMemoryError when there is insufficient free virtual address space to
map the object.

Returns

The starting point of the virtual memory range.

Maps the physical memory range into virtual memory. No-op if the system doesn’t
support virtual memory.

The run time environment is allowed to choose the virtual address where the
raw memory area corresponding to this object will be mapped. The attributes
of the mapping operation are controlled by the vMFlags and vMAttributes of the
PhysicalMemoryTypeFilter objects that matched this object’s type parameter.
(See PhysicalMemoryTypeFilter.getVMAttributes39 and PhysicalMemoryType-

Filter.getVMFlags40.

If the object is already mapped into virtual memory, this method does not change
anything.

39Section 15.3.2.1.3
40Section 15.3.2.1.4

15.4. CLASSES 717

15.4.4.2.11 map(long)

Signature

public
long map(long base)

Parameters

base The location to map at the virtual memory space.

Throws

OutOfMemoryError when there is insufficient free virtual memory at the spec-
ified address.
IllegalArgumentException when base is not a legal value for a virtual address,
or the memory-mapping hardware cannot place the physical memory at the
designated address.

Returns

The starting point of the virtual memory.

Maps the physical memory range into virtual memory at the specified location.
No-op if the system doesn’t support virtual memory.

The attributes of the mapping operation are controlled by the vMFlags and
vMAttributes of the PhysicalMemoryTypeFilter objects that matched this ob-
ject’s type parameter. (See PhysicalMemoryTypeFilter.getVMAttributes41 and
PhysicalMemoryTypeFilter.getVMFlags42.

If the object is already mapped into virtual memory at a different address, this
method remaps it to base.

If a remap is requested while another schedulable is accessing the raw memory,
the map will block until one load or store completes. It can interrupt an array
operation between entries.

Deprecated since RTSJ version as of RTSJ 2.0 No replacement

15.4.4.2.12 map(long, long)

Signature

public
long map(long base, long size)

Parameters

base The location to map at the virtual memory space.

41Section 15.3.2.1.3
42Section 15.3.2.1.4

718 CHAPTER 15. DEPRECATED CLASSES

size The size of the block to map in. If the size of the raw memory area is
greater than size, the object is unchanged but accesses beyond the mapped
region will throw SizeOutOfBoundsException43. If the size of the raw memory
area is smaller than the mapped region access to the raw memory will behave
as if the mapped region matched the raw memory area, but additional virtual
address space will be consumed after the end of the raw memory area.

Throws

IllegalArgumentException when size is not greater than zero, base is not a
legal value for a virtual address, or the memory-mapping hardware cannot
place the physical memory at the designated address.

Returns

The starting point of the virtual memory.

Maps the physical memory range into virtual memory. No-op if the system doesn’t
support virtual memory.

The attributes of the mapping operation are controlled by the vMFlags and
vMAttributes of the PhysicalMemoryTypeFilter objects that matched this ob-
ject’s type parameter. (See PhysicalMemoryTypeFilter.getVMAttributes44 and
PhysicalMemoryTypeFilter.getVMFlags45.

If the object is already mapped into virtual memory at a different address, this
method remaps it to base.

If a remap is requested while another schedulable is accessing the raw memory,
the map will block until one load or store completes. It can interrupt an array
operation between entries.

Deprecated since RTSJ version as of RTSJ 2.0 No replacement

15.4.4.2.13 setByte(long, byte)

Signature

public
void setByte(long offset, byte value)

Parameters

offset The offset in bytes from the beginning of the raw memory area to which
to write the byte.
value The byte to write.

Throws

43Section 14.3.17
44Section 15.3.2.1.3
45Section 15.3.2.1.4

15.4. CLASSES 719

OffsetOutOfBoundsException when the offset is negative or greater than the
size of the raw memory area. The role of the SizeOutOfBoundsException46

somewhat overlaps this exception since it is when the offset is within the object
but outside the mapped area.
SizeOutOfBoundsException when the object is not mapped, or if the byte falls
in an invalid address range.
SecurityException when this access is not permitted by the security manager.

Sets the byte at the given offset in the memory area associated with this object.
This memory access may involve a load and a store, and it may have unspecified

effects on surrounding bytes in the presence of concurrent access.
Caching of the memory access is controlled by the memory type requested when

the RawMemoryAccess instance was created. If the memory is not cached, this
method guarantees serialized access (that is, the memory access at the memory
occurs in the same order as in the program. Multiple writes to the same location
may not be coalesced.)

See Section RawMemoryAccess.map(long,long).)

15.4.4.2.14 setBytes(long, byte[], int, int)

Signature

public
void setBytes(long offset, byte[] bytes, int low, int number)

Parameters

offset The offset in bytes from the beginning of the raw memory area to which
to start writing.
bytes The array from which the items are obtained.
low The offset which is the starting point in the given array for the items to
be obtained.
number The number of items to write.

Throws

OffsetOutOfBoundsException when the offset is negative or greater than the
size of the raw memory area. The role of the SizeOutOfBoundsException47

somewhat overlaps this exception since it is when the offset is within the object
but outside the mapped area.
SizeOutOfBoundsException when the object is not mapped, or if the a short
falls in an invalid address range. This is checked at every entry in the ar-

46Section 14.3.17
47Section 14.3.17

720 CHAPTER 15. DEPRECATED CLASSES

ray to allow for the possibility that the memory area could be unmapped
or remapped. The store of the array into memory could, therefore, be only
partially complete if the raw memory is unmapped or remapped mid-method.
ArrayIndexOutOfBoundsException when low is less than 0 or greater than
bytes.length - 1, or if low + number is greater than or equal to bytes.length.
SecurityException when this access is not permitted by the security manager.

Sets number bytes starting at the given offset in the memory area associated with
this object from the byte array passed starting at position low.

This memory access may involve multiple load and a store operations, and it
may have unspecified effects on surrounding bytes (even bytes in the range being
stored) in the presence of concurrent access.

Caching of the memory access is controlled by the memory type requested when
the RawMemoryAccess instance was created. If the memory is not cached, this
method guarantees serialized access (that is, the memory access at the memory
occurs in the same order as in the program. Multiple writes to the same location
may not be coalesced.)

See Section RawMemoryAccess.map(long,long).)

15.4.4.2.15 setInt(long, int)

Signature
public
void setInt(long offset, int value)

Parameters
offset The offset in bytes from the beginning of the raw memory area at which
to write the integer.
value The integer to write.

Throws
OffsetOutOfBoundsException when the offset is negative or greater than the
size of the raw memory area. The role of the SizeOutOfBoundsException48

somewhat overlaps this exception since it is when the offset is within the object
but outside the mapped area.
SizeOutOfBoundsException when the object is not mapped, or if the integer
falls in an invalid address range.
SecurityException when this access is not permitted by the security manager.

Sets the int at the given offset in the memory area associated with this object. On
most processor architectures an aligned integer can be stored in an atomic operation,

48Section 14.3.17

15.4. CLASSES 721

but this is not required.

This memory access may involve multiple load and a store operations, and it
may have unspecified effects on surrounding bytes (even bytes in the range being
stored) in the presence of concurrent access.

Caching of the memory access is controlled by the memory type requested when
the RawMemoryAccess instance was created. If the memory is not cached, this
method guarantees serialized access (that is, the memory access at the memory
occurs in the same order as in the program. Multiple writes to the same location
may not be coalesced.)

See Section RawMemoryAccess.map(long,long).)

15.4.4.2.16 setInts(long, int[], int, int)

Signature

public
void setInts(long offset, int[] ints, int low, int number)

Parameters

offset The offset in bytes from the beginning of the raw memory area at which
to start writing.
ints The array from which the items are obtained.
low The offset which is the starting point in the given array for the items to
be obtained.
number The number of items to write.

Throws

OffsetOutOfBoundsException when the offset is negative or greater than the
size of the raw memory area. The role of the SizeOutOfBoundsException49

somewhat overlaps this exception since it is when the offset is within the object
but outside the mapped area.
SizeOutOfBoundsException when the object is not mapped, or if an int falls in
an invalid address range. This is checked at every entry in the array to allow
for the possibility that the memory area could be unmapped or remapped. The
store of the array into memory could, therefore, be only partially complete if
the raw memory is unmapped or remapped mid-method.
ArrayIndexOutOfBoundsException when low is less than 0 or greater than
bytes.length - 1, or if low + number is greater than or equal to bytes.length.
SecurityException when this access is not permitted by the security manager.

49Section 14.3.17

722 CHAPTER 15. DEPRECATED CLASSES

Sets number ints starting at the given offset in the memory area associated with
this object from the int array passed starting at position low. On most processor
architectures each aligned integer can be stored in an atomic operation, but this is
not required.

This memory access may involve multiple load and a store operations, and it
may have unspecified effects on surrounding bytes (even bytes in the range being
stored) in the presence of concurrent access.

Caching of the memory access is controlled by the memory type requested when
the RawMemoryAccess instance was created. If the memory is not cached, this
method guarantees serialized access (that is, the memory access at the memory
occurs in the same order as in the program. Multiple writes to the same location
may not be coalesced.)

See Section RawMemoryAccess.map(long,long).)

15.4.4.2.17 setLong(long, long)

Signature
public
void setLong(long offset, long value)

Parameters
offset The offset in bytes from the beginning of the raw memory area at which
to write the long.
value The long to write.

Throws
OffsetOutOfBoundsException when the offset is negative or greater than the
size of the raw memory area. The role of the SizeOutOfBoundsException50

somewhat overlaps this exception since it is when the offset is within the object
but outside the mapped area.
SizeOutOfBoundsException when the object is not mapped, or if the long falls
in an invalid address range.
SecurityException when this access is not permitted by the security manager.

Sets the long at the given offset in the memory area associated with this object.
Even if it is aligned, the long value may not be updated atomically. It is unspecified
how many load and store operations will be used or in what order.

This memory access may involve multiple load and a store operations, and it
may have unspecified effects on surrounding bytes (even bytes in the range being
stored) in the presence of concurrent access.

50Section 14.3.17

15.4. CLASSES 723

Caching of the memory access is controlled by the memory type requested when
the RawMemoryAccess instance was created. If the memory is not cached, this
method guarantees serialized access (that is, the memory access at the memory
occurs in the same order as in the program. Multiple writes to the same location
may not be coalesced.)

See Section RawMemoryAccess.map(long,long).)

15.4.4.2.18 setLongs(long, long[], int, int)

Signature

public
void setLongs(long offset, long[] longs, int low, int number)

Parameters

offset The offset in bytes from the beginning of the raw memory area at which
to start writing.
longs The array from which the items are obtained.
low The offset which is the starting point in the given array for the items to
be obtained.
number The number of items to write.

Throws

OffsetOutOfBoundsException when the offset is negative or greater than the
size of the raw memory area. The role of the SizeOutOfBoundsException51

somewhat overlaps this exception since it is when the offset is within the object
but outside the mapped area.
SizeOutOfBoundsException when the object is not mapped, or if the a short
falls in an invalid address range. This is checked at every entry in the ar-
ray to allow for the possibility that the memory area could be unmapped
or remapped. The store of the array into memory could, therefore, be only
partially complete if the raw memory is unmapped or remapped mid-method.
ArrayIndexOutOfBoundsException when low is less than 0 or greater than
bytes.length - 1, or if low + number is greater than or equal to bytes.length.
SecurityException when this access is not permitted by the security manager.

Sets number longs starting at the given offset in the memory area associated with
this object from the long array passed starting at position low. Even if they are
aligned, the long values may not be updated atomically. It is unspecified how many
load and store operations will be used or in what order.

51Section 14.3.17

724 CHAPTER 15. DEPRECATED CLASSES

This memory access may involve multiple load and a store operations, and it
may have unspecified effects on surrounding bytes (even bytes in the range being
stored) in the presence of concurrent access.

Caching of the memory access is controlled by the memory type requested when
the RawMemoryAccess instance was created. If the memory is not cached, this
method guarantees serialized access (that is, the memory access at the memory
occurs in the same order as in the program. Multiple writes to the same location
may not be coalesced.)

See Section RawMemoryAccess.map(long,long).)

15.4.4.2.19 setShort(long, short)

Signature
public
void setShort(long offset, short value)

Parameters
offset The offset in bytes from the beginning of the raw memory area at which
to write the short.
value The short to write.

Throws
OffsetOutOfBoundsException when the offset is negative or greater than the
size of the raw memory area. The role of the SizeOutOfBoundsException52

somewhat overlaps this exception since it is when the offset is within the object
but outside the mapped area.
SizeOutOfBoundsException when the object is not mapped, or if the short
falls in an invalid address range.
SecurityException when this access is not permitted by the security manager.

Sets the short at the given offset in the memory area associated with this object.
This memory access may involve a load and a store, and it may have unspecified

effects on surrounding shorts in the presence of concurrent access.
Caching of the memory access is controlled by the memory type requested when

the RawMemoryAccess instance was created. If the memory is not cached, this
method guarantees serialized access (that is, the memory access at the memory
occurs in the same order as in the program. Multiple writes to the same location
may not be coalesced.)

See Section RawMemoryAccess.map(long,long).)

52Section 14.3.17

15.4. CLASSES 725

15.4.4.2.20 setShorts(long, short[], int, int)

Signature
public
void setShorts(long offset, short[] shorts, int low, int number)

Parameters
offset The offset in bytes from the beginning of the raw memory area at which
to start writing.
shorts The array from which the items are obtained.
low The offset which is the starting point in the given array for the items to
be obtained.
number The number of items to write.

Throws
OffsetOutOfBoundsException when the offset is negative or greater than the
size of the raw memory area. The role of the SizeOutOfBoundsException53

somewhat overlaps this exception since it is when the offset is within the object
but outside the mapped area.
SizeOutOfBoundsException when the object is not mapped, or if the a short
falls in an invalid address range. This is checked at every entry in the ar-
ray to allow for the possibility that the memory area could be unmapped
or remapped. The store of the array into memory could, therefore, be only
partially complete if the raw memory is unmapped or remapped mid-method.
ArrayIndexOutOfBoundsException when low is less than 0 or greater than
bytes.length - 1, or if low + number is greater than or equal to bytes.length.
SecurityException when this access is not permitted by the security manager.

Sets number shorts starting at the given offset in the memory area associated with
this object from the short array passed starting at position low.

Each write of a short value may involve a load and a store, and it may have
unspecified effects on surrounding shorts in the presence of concurrent access - even
on other shorts in the array.

Caching of the memory access is controlled by the memory type requested when
the RawMemoryAccess instance was created. If the memory is not cached, this
method guarantees serialized access (that is, the memory access at the memory
occurs in the same order as in the program. Multiple writes to the same location
may not be coalesced.)

See Section RawMemoryAccess.map(long,long).)

53Section 14.3.17

726 CHAPTER 15. DEPRECATED CLASSES

15.4.4.2.21 unmap

Signature
public
void unmap()

Unmap the physical memory range from virtual memory. This changes the raw
memory from the mapped state to the unmapped state. If the platform supports
virtual memory, this operation frees the virtual addresses used for the raw memory
region.

If the object is already in the unmapped state, this method has no effect.
While a raw memory object is unmapped all attempts to set or get values in the

raw memory will throw SizeOutOfBoundsException54.
An unmapped raw memory object can be returned to mapped state with any of

the object’s map methods.
If an unmap is requested while another schedulable is accessing the raw memory,

the unmap will throw an IllegalStateException. The unmap method can interrupt
an array operation between entries.

15.4.5 RawMemoryFloatAccess

Inheritance
java.lang.Object

javax.realtime.RawMemoryAccess
javax.realtime.RawMemoryFloatAccess

This class holds the accessor methods for accessing a raw memory area by float and
double types. Implementations are required to implement this class if and only if
the underlying Java Virtual Machine supports floating point data types.

See RawMemoryAccess55 for commentary on changes in the preferred use of this
class following RTSJ 2.0.

By default, the byte addressed by offset is the byte at the lowest address of the
floating point processor’s floating point representation. If the type of memory used
for this RawMemoryFloatAccess region implements a non-standard floating point
format, accessor methods in this class continue to select bytes starting at offset

from the base address and continuing toward greater addresses. The memory type
may control the mapping of these bytes into the primitive data type. The memory

54Section 14.3.17
55Section 15.4.4

15.4. CLASSES 727

type could even select bytes that are not contiguous. In each case the documentation
for the PhysicalMemoryTypeFilter56 must document any mapping other than the
”normal” one specified above.

All offset values used in this class are measured in bytes.
Atomic loads and stores on raw memory are defined in terms of physical memory.

This memory may be accessible to threads outside the JVM and to non-programmed
access (e.g., DMA), consequently atomic access must be supported by hardware.
This specification is written with the assumption that all suitable hardware plat-
forms support atomic loads for aligned floats. Atomic access beyond the specified
minimum may be supported by the implementation.

Storing values into raw memory is more hardware-dependent than loading values.
Many processor architectures do not support atomic stores of variables except for
aligned stores of the processor’s word size.

This class supports unaligned access to data, but it does not require the im-
plementation to make such access atomic. Accesses to data aligned on its natural
boundary will be atomic if the processor implements atomic loads and stores of that
data size.

Except where noted, accesses to raw memory are not atomic with respect to
the memory or with respect to threads. A raw memory area could be updated by
another thread, or even unmapped in the middle of a method.

The characteristics of raw-memory access are necessarily platform dependent.
This specification provides a minimum requirement for the RTSJ platform, but it
also supports a optional system properties that identify a platform’s level of support
for atomic raw put and get. (See RawMemoryAccess57.) The properties represent
a four-dimensional sparse array with boolean values whether that combination of
access attributes is atomic. The default value for array entries is false.

Many of the constructors and methods in this class throw OffsetOutOfBound-

sException58. This exception means that the value given in the offset parameter is
either negative or outside the memory area.

Many of the constructors and methods in this class throw SizeOutOfBound-

sException59. This exception means that the value given in the size parameter is
either negative, larger than an allowable range, or would cause an accessor method
to access an address outside of the memory area.

Deprecated since RTSJ version as of RTSJ 2.0. Use RawMemory60.

56Section 15.3.2
57Section 15.4.4
58Section 14.3.13
59Section 14.3.17
60Section 12.3.16

728 CHAPTER 15. DEPRECATED CLASSES

15.4.5.1 Constructors

15.4.5.1.1 RawMemoryFloatAccess(Object, long)

Signature

public

RawMemoryFloatAccess(Object type, long size)

Parameters
type An instance of Object representing the type of memory required (e.g.,
dma, shared) - used to define the base address and control the mapping. If
the required memory has more than one attribute, type may be an array of
objects. If type is null or a reference to an array with no entries, any type
of memory is acceptable. Note that type values are compared by reference
(==), not by value (equals).
size The size of the area in bytes.

Throws
SecurityException when the application doesn’t have permissions to access
physical memory, the specified range of addresses, or the given type of memory.
SizeOutOfBoundsException when the size is negative or extends into an invalid
range of memory.
UnsupportedPhysicalMemoryException when the underlying hardware does not
support the given type, or if no matching PhysicalMemoryTypeFilter61 has
been registered with the PhysicalMemoryManager62.
MemoryTypeConflictException when the specified base does not point to mem-
ory that matches the request type, or if type specifies incompatible memory
attributes.
OutOfMemoryError when the requested type of memory exists, but there is
not enough of it free to satisfy the request.

Construct an instance of RawMemoryFloatAccess with the given parameters, and
set the object to the mapped state. If the platform supports virtual memory, map
the raw memory into virtual memory.

The run time environment is allowed to choose the virtual address where the
raw memory area corresponding to this object will be mapped. The attributes

61Section 15.3.2
62Section 15.4.2

15.4. CLASSES 729

of the mapping operation are controlled by the vMFlags and vMAttributes of the
PhysicalMemoryTypeFilter objects that matched this object’s type parameter.
(See PhysicalMemoryTypeFilter.getVMAttributes63 and PhysicalMemoryType-

Filter.getVMFlags64.

Deprecated since RTSJ version as of RTSJ 2.0. Use RawMemoryFactory.createRawFloat(RawMemoryRegion,

long, int, int)65 or RawMemoryFactory.createRawDouble(RawMemoryRegion,

long, int, int)66.

15.4.5.1.2 RawMemoryFloatAccess(Object, long, long)

Signature

public

RawMemoryFloatAccess(Object type, long base, long size)

Parameters
type An instance of Object representing the type of memory required (e.g.,
dma, shared) - used to define the base address and control the mapping. If
the required memory has more than one attribute, type may be an array of
objects. If type is null or a reference to an array with no entries, any type
of memory is acceptable. Note that type values are compared by reference
(==), not by value (equals).
base The physical memory address of the region.
size The size of the area in bytes.

Throws
SecurityException when the application doesn’t have permissions to access
physical memory, the specified range of addresses, or the given type of memory.
OffsetOutOfBoundsException when the address is invalid.
SizeOutOfBoundsException when the size is negative or extends into an invalid
range of memory.
UnsupportedPhysicalMemoryException when the underlying hardware does not
support the given type, or if no matching PhysicalMemoryTypeFilter67 has
been registered with the PhysicalMemoryManager68.

63Section 15.3.2.1.3
64Section 15.3.2.1.4
65Section 12.5.5.3.15
66Section 12.5.5.3.18
67Section 15.3.2
68Section 15.4.2

730 CHAPTER 15. DEPRECATED CLASSES

MemoryTypeConflictException when the specified base does not point to mem-
ory that matches the request type, or if type specifies incompatible memory
attributes.
OutOfMemoryError when the requested type of memory exists, but there is
not

Construct an instance of RawMemoryFloatAccess with the given parameters, and
set the object to the mapped state. If the platform supports virtual memory, map
the raw memory into virtual memory.

The run time environment is allowed to choose the virtual address where the
raw memory area corresponding to this object will be mapped. The attributes
of the mapping operation are controlled by the vMFlags and vMAttributes of the
PhysicalMemoryTypeFilter objects that matched this object’s type parameter.
(See PhysicalMemoryTypeFilter.getVMAttributes69 and PhysicalMemoryType-

Filter.getVMFlags70.

Deprecated since RTSJ version as of RTSJ 2.0. Use RawMemoryFactory.createRawFloat(RawMemoryRegion,

long, int, int)71 or RawMemoryFactory.createRawDouble(RawMemoryRegion,

long, int, int)72.

15.4.5.1.3 RawMemoryFloatAccess(PhysicalMemoryName, long)

Signature

RawMemoryFloatAccess(PhysicalMemoryName type, long size)

throws SecurityException, OffsetOutOfBoundsException,

SizeOutOfBoundsException, UnsupportedPhysicalMemoryException,

MemoryTypeConflictException

Parameters
type
size

Throws
SecurityException
OffsetOutOfBoundsException

69Section 15.3.2.1.3
70Section 15.3.2.1.4
71Section 12.5.5.3.15
72Section 12.5.5.3.18

15.4. CLASSES 731

SizeOutOfBoundsException
UnsupportedPhysicalMemoryException
MemoryTypeConflictException

Available since RTSJ version RTSJ 2.0

15.4.5.2 Methods

15.4.5.2.1 getDouble(long)

Signature
public
double getDouble(long offset)

Parameters
offset The offset in bytes from the beginning of the raw memory area from
which to load the long.

Throws
OffsetOutOfBoundsException when the offset is invalid.
SizeOutOfBoundsException when the object is not mapped, or if the double
falls in an invalid address range.
SecurityException when this access is not permitted by the security manager.

Returns
The double from raw memory.

Gets the double at the given offset in the memory area associated with this object.
The load is not required to be atomic even it is located on a natural boundary.
Caching of the memory access is controlled by the memory type requested when

the RawMemoryAccess instance was created. If the memory is not cached, this
method guarantees serialized access (that is, the memory access at the memory
occurs in the same order as in the program. Multiple writes to the same location
may not be coalesced.)

15.4.5.2.2 getDoubles(long, double[], int, int)

Signature
public
void getDoubles(long offset, double[] doubles, int low, int

number)

732 CHAPTER 15. DEPRECATED CLASSES

Parameters
offset The offset in bytes from the beginning of the raw memory area at which
to start loading.
doubles The array into which the loaded items are placed.
low The offset which is the starting point in the given array for the loaded
items to be placed.
number The number of doubles to load.

Throws
OffsetOutOfBoundsException when the offset is negative or greater than the
size of the raw memory area. The role of the SizeOutOfBoundsException

somewhat overlaps this exception since it is when the offset is within the object
but outside the mapped area. (See RawMemoryAccess.map(long,long)73).
SizeOutOfBoundsException when the object is not mapped, or if a double falls
in an invalid address range. This is checked at every entry in the array to allow
for the possibility that the memory area could be unmapped or remapped.
The doubles array could, therefore, be partially updated if the raw memory
is unmapped or remapped mid-method.
ArrayIndexOutOfBoundsException when low is less than 0 or greater than
bytes.length - 1, or if low + number is greater than or equal to bytes.length.
SecurityException when this access is not permitted by the security manager.

Gets number doubles starting at the given offset in the memory area associated with
this object and assign them to the double array passed starting at position low.

The loads are not required to be atomic even if they are located on natural
boundaries.

Caching of the memory access is controlled by the memory type requested when
the RawMemoryAccess instance was created. If the memory is not cached, this
method guarantees serialized access (that is, the memory access at the memory
occurs in the same order as in the program. Multiple writes to the same location
may not be coalesced.)

15.4.5.2.3 getFloat(long)

Signature
public
float getFloat(long offset)

Parameters
offset The offset in bytes from the beginning of the raw memory area from
which to load the float.

Throws

73Section 15.4.4.2.12

15.4. CLASSES 733

OffsetOutOfBoundsException when the offset is negative or greater than the
size of the raw memory area. The role of the SizeOutOfBoundsException

somewhat overlaps this exception since it is when the offset is within the object
but outside the mapped area. (See RawMemoryAccess.map(long,long)74).
SizeOutOfBoundsException when the object is not mapped, or if the float falls
in an invalid address range.
SecurityException when this access is not permitted by the security manager.

Returns
The float from raw memory.

Gets the float at the given offset in the memory area associated with this object.
If the float is aligned on a ”natural” boundary it is always loaded from memory in
a single atomic operation. If it is not on a natural boundary it may not be loaded
atomically, and the number and order of the load operations is unspecified.

Caching of the memory access is controlled by the memory type requested when
the RawMemoryAccess instance was created. If the memory is not cached, this
method guarantees serialized access (that is, the memory access at the memory
occurs in the same order as in the program. Multiple writes to the same location
may not be coalesced.)

15.4.5.2.4 getFloats(long, float[], int, int)

Signature
public
void getFloats(long offset, float[] floats, int low, int number)

Parameters
offset The offset in bytes from the beginning of the raw memory area at which
to start loading.
floats The array into which the floats loaded from the raw memory are placed.
low The offset which is the starting point in the given array for the loaded
items to be placed.
number The number of floats to loaded.

Throws
OffsetOutOfBoundsException when the offset is negative or greater than the
size of the raw memory area. The role of the SizeOutOfBoundsException

somewhat overlaps this exception since it is when the offset is within the object
but outside the mapped area. (See RawMemoryAccess.map(long,long)75).
SizeOutOfBoundsException when the object is not mapped, or if a float falls in
an invalid address range. This is checked at every entry in the array to allow

74Section 15.4.4.2.12
75Section 15.4.4.2.12

734 CHAPTER 15. DEPRECATED CLASSES

for the possibility that the memory area could be unmapped or remapped.
The floats array could, therefore, be partially updated if the raw memory is
unmapped or remapped mid-method.
ArrayIndexOutOfBoundsException when low is less than 0 or greater than
bytes.length - 1, or if low + number is greater than or equal to bytes.length.
SecurityException when this access is not permitted by the security manager.

Gets number floats starting at the given offset in the memory area associated with
this object and assign them to the int array passed starting at position low.

If the floats are aligned on natural boundaries each float is loaded from memory
in a single atomic operation. Groups of floats may be loaded together, but this is
unspecified.

If the floats are not aligned on natural boundaries they may not be loaded
atomically and the number and order of load operations is unspecified.

Caching of the memory access is controlled by the memory type requested when
the RawMemoryAccess instance was created. If the memory is not cached, this
method guarantees serialized access (that is, the memory access at the memory
occurs in the same order as in the program. Multiple writes to the same location
may not be coalesced.)

15.4.5.2.5 setDouble(long, double)

Signature
public
void setDouble(long offset, double value)

Parameters
offset The offset in bytes from the beginning of the raw memory area at which
to write the double.
value The double to write.

Throws
OffsetOutOfBoundsException when the offset is negative or greater than the
size of the raw memory area. The role of the SizeOutOfBoundsException

somewhat overlaps this exception since it is when the offset is within the object
but outside the mapped area. (See RawMemoryAccess.map(long,long)76).
SizeOutOfBoundsException when the object is not mapped, or if the double
falls in an invalid address range.
SecurityException when this access is not permitted by the security manager.

Sets the double at the given offset in the memory area associated with this ob-
ject. Even if it is aligned, the double value may not be updated atomically. It is
unspecified how many load and store operations will be used or in what order.

76Section 15.4.4.2.12

15.4. CLASSES 735

Caching of the memory access is controlled by the memory type requested when
the RawMemoryAccess instance was created. If the memory is not cached, this
method guarantees serialized access (that is, the memory access at the memory
occurs in the same order as in the program. Multiple writes to the same location
may not be coalesced.)

15.4.5.2.6 setDoubles(long, double[], int, int)

Signature
public
void setDoubles(long offset, double[] doubles, int low, int

number)

Parameters
offset The offset in bytes from the beginning of the raw memory area at which
to start writing.
doubles The array from which the items are obtained.
low The offset which is the starting point in the given array for the items to
be obtained.
number The number of items to write.

Throws
OffsetOutOfBoundsException when the offset is negative or greater than the
size of the raw memory area. The role of the SizeOutOfBoundsException

somewhat overlaps this exception since it is when the offset is within the object
but outside the mapped area. (See RawMemoryAccess.map(long,long)77).
SizeOutOfBoundsException when the object is not mapped, or if the a short
falls in an invalid address range. This is checked at every entry in the ar-
ray to allow for the possibility that the memory area could be unmapped or
remapped. The doubles array could, therefore, be partially updated if the
raw memory is unmapped or remapped mid-method.
ArrayIndexOutOfBoundsException when low is less than 0 or greater than
bytes.length - 1, or if low + number is greater than or equal to bytes.length.
SecurityException when this access is not permitted by the security manager.

Sets number doubles starting at the given offset in the memory area associated with
this object from the double array passed starting at position low. Even if they are
aligned, the double values may not be updated atomically. It is unspecified how
many load and store operations will be used or in what order.

Caching of the memory access is controlled by the memory type requested when
the RawMemoryAccess instance was created. If the memory is not cached, this
method guarantees serialized access (that is, the memory access at the memory

77Section 15.4.4.2.12

736 CHAPTER 15. DEPRECATED CLASSES

occurs in the same order as in the program. Multiple writes to the same location
may not be coalesced.)

15.4.5.2.7 setFloat(long, float)

Signature

public
void setFloat(long offset, float value)

Parameters

offset The offset in bytes from the beginning of the raw memory area at which
to write the integer.
value The float to write.

Throws

OffsetOutOfBoundsException when the offset is negative or greater than the
size of the raw memory area. The role of the SizeOutOfBoundsException

somewhat overlaps this exception since it is when the offset is within the object
but outside the mapped area. (See RawMemoryAccess.map(long,long)78).
SizeOutOfBoundsException when the object is not mapped, or if the float falls
in an invalid address range.
SecurityException when this access is not permitted by the security manager.

Sets the float at the given offset in the memory area associated with this object. On
most processor architectures an aligned float can be stored in an atomic operation,
but this is not required.

Caching of the memory access is controlled by the memory type requested when
the RawMemoryAccess instance was created. If the memory is not cached, this
method guarantees serialized access (that is, the memory access at the memory
occurs in the same order as in the program. Multiple writes to the same location
may not be coalesced.)

15.4.5.2.8 setFloats(long, float[], int, int)

Signature

public
void setFloats(long offset, float[] floats, int low, int number)

Parameters

offset The offset in bytes from the beginning of the raw memory area at which
to start writing.
floats The array from which the items are obtained.

78Section 15.4.4.2.12

15.4. CLASSES 737

low The offset which is the starting point in the given array for the items to
be obtained.
number The number of floats to write.

Throws
OffsetOutOfBoundsException when the offset is negative or greater than the
size of the raw memory area. The role of the SizeOutOfBoundsException

somewhat overlaps this exception since it is when the offset is within the object
but outside the mapped area. (See RawMemoryAccess.map(long, long)79).
SizeOutOfBoundsException when the object is not mapped, or if the float falls
in an invalid address range. This is checked at every entry in the array to allow
for the possibility that the memory area could be unmapped or remapped. The
store of the array into memory could, therefore, be only partially complete if
the raw memory is unmapped or remapped mid-method.
ArrayIndexOutOfBoundsException when low is less than 0 or greater than
bytes.length - 1, or if low + number is greater than or equal to bytes.length.
SecurityException when this access is not permitted by the security manager.

Sets number floats starting at the given offset in the memory area associated with
this object from the float array passed starting at position low. On most processor
architectures each aligned float can be stored in an atomic operation, but this is
not required. Caching of the memory access is controlled by the memory type

requested when the RawMemoryAccess instance was created. If the memory is not
cached, this method guarantees serialized access (that is, the memory access at the
memory occurs in the same order as in the program. Multiple writes to the same
location may not be coalesced.)

15.4.6 VTMemory

Inheritance
java.lang.Object

javax.realtime.MemoryArea
javax.realtime.ScopedMemory

javax.realtime.VTMemory
VTMemory is similar to LTMemory80 except that the execution time of an allocation
from a VTMemory area need not complete in linear time.

Methods from VTMemory should be overridden only by methods that use super.

Deprecated since RTSJ version as of RTSJ 2.0

79Section 15.4.4.2.12
80Section 11.8.5

738 CHAPTER 15. DEPRECATED CLASSES

15.4.6.1 Constructors

15.4.6.1.1 VTMemory(long, long)

Signature

public

VTMemory(long initial, long maximum)

Parameters
initial The size in bytes of the memory to initially allocate for this area.
maximum The maximum size in bytes this memory area to which the size may
grow.

Throws
IllegalArgumentException when initial is greater than maximum or if initial
or maximum is less than zero.
OutOfMemoryError when there is insufficient memory for the VTMemory object
or for the backing memory.

Creates a VTMemory with the given parameters.

15.4.6.1.2 VTMemory(long, long, Runnable)

Signature

public

VTMemory(long initial, long maximum, Runnable logic)

Parameters
initial The size in bytes of the memory to initially allocate for this area.
maximum The maximum size in bytes this memory area to which the size may
grow.
logic An instance of Runnable whose run() method will use this as its ini-
tial memory area. If logic is null, this constructor is equivalent to VTMem-

ory(long initial, long maximum)81.

81Section 15.4.6.1.1

15.4. CLASSES 739

Throws
IllegalArgumentException when initial is greater than maximum, or if ini-

tial or maximum is less than zero.
OutOfMemoryError when there is insufficient memory for the VTMemory object
or for the backing memory.
IllegalAssignmentError when storing logic in this would violate the assign-
ment rules.

Creates a VTMemory with the given parameters.

15.4.6.1.3 VTMemory(SizeEstimator, SizeEstimator)

Signature

public

VTMemory(SizeEstimator initial, SizeEstimator maximum)

Parameters
initial The size in bytes of the memory to initially allocate for this area.
maximum The maximum size in bytes this memory area to which the size may
grow estimated by an instance of SizeEstimator82.

Throws
IllegalArgumentException when initial is null, maximum is null, initial.getEstimate()
is greater than maximum.getEstimate(), or if initial.getEstimate() is less
than zero.
OutOfMemoryError when there is insufficient memory for the VTMemory object
or for the backing memory.

Creates a VTMemory with the given parameters.

15.4.6.1.4 VTMemory(SizeEstimator, SizeEstimator, Runnable)

Signature

public

VTMemory(SizeEstimator initial, SizeEstimator maximum, Runnable logic)

Parameters
initial The size in bytes of the memory to initially allocate for this area.

82Section 11.8.14

740 CHAPTER 15. DEPRECATED CLASSES

maximum The maximum size in bytes this memory area to which the size may
grow estimated by an instance of SizeEstimator83.
logic An instance of Runnable whose run() method will use this as its ini-
tial memory area. If logic is null, this constructor is equivalent to VTMem-

ory(SizeEstimator initial, SizeEstimator maximum)84.
Throws

IllegalArgumentException when initial is null, maximum is null, initial.getEstimate()
is greater than maximum.getEstimate(), or if initial.getEstimate() is less
than zero.
OutOfMemoryError when there is insufficient memory for the VTMemory object
or for the backing memory.
IllegalAssignmentError when storing logic in this would violate the assign-
ment rules.

Creates a VTMemory with the given parameters.

15.4.6.1.5 VTMemory(long)

Signature

public

VTMemory(long size)

Parameters
size The size in bytes of the memory to allocate for this area. This memory
must be committed before the completion of the constructor.

Throws
IllegalArgumentException when size is less than zero.
OutOfMemoryError when there is insufficient memory for the VTMemory object
or for the backing memory.

Create an VTMemory of the given size. This constructor is equivalent to VTMem-

ory(size, size)

Available since RTSJ version RTSJ 1.0.1

15.4.6.1.6 VTMemory(long, Runnable)

Signature

83Section 11.8.14
84Section 15.4.6.1.3

15.4. CLASSES 741

public

VTMemory(long size, Runnable logic)

Parameters

size The size in bytes of the memory to allocate for this area. This memory
must be committed before the completion of the constructor.
logic The run() of the given Runnable will be executed using this as its
initial memory area. If logic is null, this constructor is equivalent to VT-

Memory(long size)85.

Throws

IllegalArgumentException when size is less than zero.
OutOfMemoryError when there is insufficient memory for the VTMemory object
or for the backing memory.
IllegalAssignmentError when storing logic in this would violate the assign-
ment rules.

Create an VTMemory of the given size. This constructor is equivalent to VTMem-

ory(size, size, logic).

Available since RTSJ version RTSJ 1.0.1

15.4.6.1.7 VTMemory(SizeEstimator)

Signature

public

VTMemory(SizeEstimator size)

Parameters

size An instance of SizeEstimator86 used to give an estimate of the initial size.
This memory must be committed before the completion of the constructor.

Throws

IllegalArgumentException when size is null, or size.getEstimate() is less
than zero.
OutOfMemoryError when there is insufficient memory for the VTMemory object
or for the backing memory.

85Section 15.4.6.1.5
86Section 11.8.14

742 CHAPTER 15. DEPRECATED CLASSES

Create an VTMemory of the given size. This constructor is equivalent to VTMem-

ory(size, size).

Available since RTSJ version RTSJ 1.0.1

15.4.6.1.8 VTMemory(SizeEstimator, Runnable)

Signature

public

VTMemory(SizeEstimator size, Runnable logic)

Parameters

size An instance of SizeEstimator87 used to give an estimate of the initial size.
This memory must be committed before the completion of the constructor.
logic The run() of the given Runnable will be executed using this as its
initial memory area. If logic is null, this constructor is equivalent to VT-

Memory(SizeEstimator initial)88.

Throws

IllegalArgumentException when size is null, or size.getEstimate() is less
than zero.
OutOfMemoryError when there is insufficient memory for the VTMemory object
or for the backing memory.
IllegalAssignmentError when storing logic in this would violate the assign-
ment rules.

Create an VTMemory of the given size.

Available since RTSJ version RTSJ 1.0.1

15.4.6.2 Methods

87Section 11.8.14
88Section 15.4.6.1.7

15.4. CLASSES 743

15.4.6.2.1 toString

Signature
public
java.lang.String toString()

Returns
A string representing the value of this.

Create a string representing this object. The string is of the form
(VTMemory) Scoped memory # num

where num uniquely identifies the VTMemory area.

15.4.7 VTPhysicalMemory

Inheritance
java.lang.Object

javax.realtime.MemoryArea
javax.realtime.ScopedMemory

javax.realtime.VTPhysicalMemory
An instance of VTPhysicalMemory allows objects to be allocated from a range of
physical memory with particular attributes, determined by their memory type. This
memory area has the same semantics as ScopedMemory89 memory areas, and the
same performance restrictions as VTMemory.

No provision is made for sharing object in VTPhysicalMemory with entities out-
side the JVM that creates them, and, while the memory backing an instance of
VTPhysicalMemory could be shared by multiple JVMs, the class does not support
such sharing.

Methods from VTPhysicalMemory should be overridden only by methods that
use super.

See Section MemoryArea)

See Section ScopedMemory)

See Section VTMemory)

See Section LTMemory)

See Section LTPhysicalMemory)

89Section 11.8.13

744 CHAPTER 15. DEPRECATED CLASSES

See Section ImmortalPhysicalMemory)

See Section RealtimeThread)

See Section NoHeapRealtimeThread)

Deprecated since RTSJ version as of RTSJ 2.0

15.4.7.1 Constructors

15.4.7.1.1 VTPhysicalMemory(Object, long)

Signature

public

VTPhysicalMemory(Object type, long size)

Parameters
type An instance of Object representing the type of memory required (e.g.,
dma, shared) - used to define the base address and control the mapping. If
the required memory has more than one attribute, type may be an array of
objects. If type is null or a reference to an array with no entries, any type
of memory is acceptable. Note that type values are compared by reference
(==), not by value (equals).
size The size of the area in bytes.

Throws
SecurityException when the application doesn’t have permissions to access
physical memory or the given range of memory.
SizeOutOfBoundsException when the implementation detects that size ex-
tends beyond physically addressable memory.
UnsupportedPhysicalMemoryException when the underlying hardware does not
support the given type, or if no matching PhysicalMemoryTypeFilter90 has
been registered with the PhysicalMemoryManager91.

90Section 15.3.2
91Section 15.4.2

15.4. CLASSES 745

MemoryTypeConflictException when the specified base does not point to mem-
ory that matches the requested type, or if type specifies incompatible memory
attributes.
IllegalArgumentException when size is less than zero.

Create an instance of VTPhysicalMemory with the given parameters.

See Section PhysicalMemoryManager)

15.4.7.1.2 VTPhysicalMemory(Object, long, long)

Signature

public

VTPhysicalMemory(Object type, long base, long size)

Parameters
type An instance of Object representing the type of memory required (e.g.,
dma, shared) - used to define the base address and control the mapping. If
the required memory has more than one attribute, type may be an array of
objects. If type is null or a reference to an array with no entries, any type
of memory is acceptable. Note that type values are compared by reference
(==), not by value (equals).
base The physical memory address of the area.
size The size of the area in bytes.

Throws
SecurityException when the application doesn’t have permissions to access
physical memory or the given range of memory.
SizeOutOfBoundsException when the implementation detects that size ex-
tends beyond physically addressable memory.
OffsetOutOfBoundsException when the base address is invalid.
UnsupportedPhysicalMemoryException when the underlying hardware does not
support the given type, or if no matching PhysicalMemoryTypeFilter92 has
been registered with the PhysicalMemoryManager93.
MemoryTypeConflictException when the specified base does not point to mem-
ory that matches the requested type, or if type specifies incompatible memory
attributes.
MemoryInUseException when the specified memory is already in use.

92Section 15.3.2
93Section 15.4.2

746 CHAPTER 15. DEPRECATED CLASSES

Create an instance of VTPhysicalMemory with the given parameters.

See Section PhysicalMemoryManager)

15.4.7.1.3 VTPhysicalMemory(Object, SizeEstimator)

Signature

public

VTPhysicalMemory(Object type, SizeEstimator size)

Parameters

type An instance of Object representing the type of memory required (e.g.,
dma, shared) - used to define the base address and control the mapping. If
the required memory has more than one attribute, type may be an array of
objects. If type is null or a reference to an array with no entries, any type
of memory is acceptable. Note that type values are compared by reference
(==), not by value (equals).
size A size estimator for this area.

Throws

SecurityException when the application doesn’t have permissions to access
physical memory or the given range of memory.
SizeOutOfBoundsException when the implementation detects that the size es-
timate from size extends beyond physically addressable memory.
UnsupportedPhysicalMemoryException when the underlying hardware does not
support the given type, or if no matching PhysicalMemoryTypeFilter94 has
been registered with the PhysicalMemoryManager95.
MemoryTypeConflictException when the specified base does not point to mem-
ory that matches the requested type, or if type specifies incompatible memory
attributes.
IllegalArgumentException when size is null, or size.getEstimate() is neg-
ative.

Create an instance of VTPhysicalMemory with the given parameters.

See Section PhysicalMemoryManager)

94Section 15.3.2
95Section 15.4.2

15.4. CLASSES 747

15.4.7.1.4 VTPhysicalMemory(Object, long, SizeEstimator)

Signature

public

VTPhysicalMemory(Object type, long base, SizeEstimator size)

Parameters
type An instance of Object representing the type of memory required (e.g.,
dma, shared) - used to define the base address and control the mapping. If
the required memory has more than one attribute, type may be an array of
objects. If type is null or a reference to an array with no entries, any type
of memory is acceptable. Note that type values are compared by reference
(==), not by value (equals).
base The physical memory address of the area.
size A size estimator for this memory area.

Throws
SecurityException when the application doesn’t have permissions to access
physical memory or the given range of memory.
SizeOutOfBoundsException when the implementation detects that the size es-
timate from size extends beyond physically addressable memory.
OffsetOutOfBoundsException when the base address is invalid.
UnsupportedPhysicalMemoryException when the underlying hardware does not
support the given type, or if no matching PhysicalMemoryTypeFilter96 has
been registered with the PhysicalMemoryManager97.
MemoryTypeConflictException when the specified base does not point to mem-
ory that matches the requested type, or if type specifies incompatible memory
attributes.
MemoryInUseException when the specified memory is already in use.
IllegalArgumentException when size is null, or size.getEstimate() is neg-
ative.

Create an instance of VTPhysicalMemory with the given parameters.

See Section PhysicalMemoryManager)

15.4.7.1.5 VTPhysicalMemory(Object, long, Runnable)

96Section 15.3.2
97Section 15.4.2

748 CHAPTER 15. DEPRECATED CLASSES

Signature

public

VTPhysicalMemory(Object type, long size, Runnable logic)

Parameters
type An instance of Object representing the type of memory required (e.g.,
dma, shared) - used to define the base address and control the mapping. If
the required memory has more than one attribute, type may be an array of
objects. If type is null or a reference to an array with no entries, any type
of memory is acceptable. Note that type values are compared by reference
(==), not by value (equals).
size The size of the area in bytes.
logic The run() method of this object will be called whenever MemoryArea.enter()98

is called. If logic is null, logic must be supplied when the memory area is
entered.

Throws
SecurityException when the application doesn’t have permissions to access
physical memory or the given range of memory.
SizeOutOfBoundsException when the implementation detects that size ex-
tends beyond physically addressable memory.
UnsupportedPhysicalMemoryException when the underlying hardware does not
support the given type, or if no matching PhysicalMemoryTypeFilter99 has
been registered with the PhysicalMemoryManager100.
MemoryTypeConflictException when the specified base does not point to mem-
ory that matches the requested type, or if type specifies incompatible memory
attributes.
IllegalAssignmentError when storing logic in this would violate the assign-
ment rules.

Create an instance of VTPhysicalMemory with the given parameters.

See Section PhysicalMemoryManager)

15.4.7.1.6 VTPhysicalMemory(Object, long, long, Runnable)

Signature

98Section 11.8.7.2.1
99Section 15.3.2

100Section 15.4.2

15.4. CLASSES 749

public

VTPhysicalMemory(Object type, long base, long size, Runnable logic)

Parameters
type An instance of Object representing the type of memory required (e.g.,
dma, shared) - used to define the base address and control the mapping. If
the required memory has more than one attribute, type may be an array of
objects. If type is null or a reference to an array with no entries, any type
of memory is acceptable. Note that type values are compared by reference
(==), not by value (equals).
base The physical memory address of the area.
size The size of the area in bytes.
logic The run() method of this object will be called whenever MemoryArea.enter()101

is called. If logic is null, logic must be supplied when the memory area is
entered.

Throws
SizeOutOfBoundsException when the implementation detects that size ex-
tends beyond physically addressable memory.
SecurityException when the application doesn’t have permissions to access
physical memory or the given range of memory.
OffsetOutOfBoundsException when the base address is invalid.
UnsupportedPhysicalMemoryException when the underlying hardware does not
support the given type, or if no matching PhysicalMemoryTypeFilter102 has
been registered with the PhysicalMemoryManager103.
MemoryTypeConflictException when the specified base does not point to mem-
ory that matches the requested type, or if type specifies incompatible memory
attributes.
MemoryInUseException when the specified memory is already in use.
IllegalAssignmentError when storing logic in this would violate the assign-
ment rules.

Create an instance of VTPhysicalMemory with the given parameters.

See Section PhysicalMemoryManager)

15.4.7.1.7 VTPhysicalMemory(Object, SizeEstimator, Runnable)

101Section 11.8.7.2.1
102Section 15.3.2
103Section 15.4.2

750 CHAPTER 15. DEPRECATED CLASSES

Signature

public

VTPhysicalMemory(Object type, SizeEstimator size, Runnable logic)

Parameters
type An instance of Object representing the type of memory required (e.g.,
dma, shared) - used to define the base address and control the mapping. If
the required memory has more than one attribute, type may be an array of
objects. If type is null or a reference to an array with no entries, any type
of memory is acceptable. Note that type values are compared by reference
(==), not by value (equals).
size A size estimator for this area.
logic The run() method of this object will be called whenever MemoryArea.enter()104

is called. If logic is null, logic must be supplied when the memory area is
entered.

Throws
SecurityException when the application doesn’t have permissions to access
physical memory or the given range of memory.
SizeOutOfBoundsException when the implementation detects that the size es-
timate from size extends beyond physically addressable memory.
UnsupportedPhysicalMemoryException when the underlying hardware does not
support the given type, or if no matching PhysicalMemoryTypeFilter105 has
been registered with the PhysicalMemoryManager106.
MemoryTypeConflictException when the specified base does not point to mem-
ory that matches the requested type, or if type specifies incompatible memory
attributes.
IllegalArgumentException when size is null, or size.getEstimate() is neg-
ative.
IllegalAssignmentError when storing logic in this would violate the assign-
ment rules.

Create an instance of VTPhysicalMemory with the given parameters.

See Section PhysicalMemoryManager)

15.4.7.1.8 VTPhysicalMemory(Object, long, SizeEstimator, Runnable)

104Section 11.8.7.2.1
105Section 15.3.2
106Section 15.4.2

15.4. CLASSES 751

Signature

public

VTPhysicalMemory(Object type, long base, SizeEstimator size, Runnable logic)

Parameters

type An instance of Object representing the type of memory required (e.g.,
dma, shared) - used to define the base address and control the mapping. If
the required memory has more than one attribute, type may be an array of
objects. If type is null or a reference to an array with no entries, any type
of memory is acceptable. Note that type values are compared by reference
(==), not by value (equals).
base The physical memory address of the area.
size A size estimator for this memory area.
logic The run() method of this object will be called whenever MemoryArea.enter()107

is called. If logic is null, logic must be supplied when the memory area is
entered.

Throws

SecurityException when the application doesn’t have permissions to access
physical memory or the given range of memory.
SizeOutOfBoundsException when the implementation detects that the size es-
timate from size extends beyond physically addressable memory.
OffsetOutOfBoundsException when the base address is invalid.
UnsupportedPhysicalMemoryException when the underlying hardware does not
support the given type, or if no matching PhysicalMemoryTypeFilter108 has
been registered with the PhysicalMemoryManager109.
MemoryTypeConflictException when the specified base does not point to mem-
ory that matches the requested type, or if type specifies incompatible memory
attributes.
MemoryInUseException when the specified memory is already in use.
IllegalArgumentException when size is null, or size.getEstimate() is neg-
ative.
IllegalAssignmentError when storing logic in this would violate the assign-
ment rules.

Create an instance of VTPhysicalMemory with the given parameters.

107Section 11.8.7.2.1
108Section 15.3.2
109Section 15.4.2

752 CHAPTER 15. DEPRECATED CLASSES

See Section PhysicalMemoryManager)

15.4.7.1.9 VTPhysicalMemory(PhysicalMemoryName, long)

Signature

public

VTPhysicalMemory(PhysicalMemoryName type, long size)

throws SecurityException, SizeOutOfBoundsException,

UnsupportedPhysicalMemoryException, MemoryTypeConflictException

Parameters
type Used to define the base address and control the mapping. If type is null
any type of memory is acceptable. Note that type values are compared by
reference (==), not by value (equals).
size The size of the area in bytes.

Throws
SecurityException The application doesn’t have permissions to access physical
memory or the given type of memory.
SizeOutOfBoundsException size is negative or extends into an invalid range
of memory.
UnsupportedPhysicalMemoryException when the underlying hardware does not
support type.
MemoryTypeConflictException The specified base does not point to memory
that matches the request type, or if type specifies attributes with a conflict.

Create an instance of VTPhysicalMemory with the given parameters.

See Section PhysicalMemoryManager)

Available since RTSJ version RTSJ 2.0

15.4.7.1.10 VTPhysicalMemory(PhysicalMemoryName, long, long)

Signature

public

VTPhysicalMemory(PhysicalMemoryName type, long base, long size)

15.4. CLASSES 753

throws SecurityException, SizeOutOfBoundsException,

OffsetOutOfBoundsException, UnsupportedPhysicalMemoryException,

MemoryTypeConflictException, MemoryInUseException

Parameters
type Used to define the base address and control the mapping. If type is null
any type of memory is acceptable. Note that type values are compared by
reference (==), not by value (equals).
base The physical memory address of the area.
size The size of the area in bytes.

Throws
SecurityException The application doesn’t have permissions to access physical
memory or the given range of memory.
OffsetOutOfBoundsException The address is invalid.
SizeOutOfBoundsException size is negative or extends into an invalid range
of memory.
UnsupportedPhysicalMemoryException when the underlying hardware does not
support type.
MemoryTypeConflictException when base does not point to memory that matches
type, or if type specifies conflicting attributes.
MemoryInUseException The specified memory is already in use.

Create an instance of VTPhysicalMemory with the given parameters.

See Section PhysicalMemoryManager)

Available since RTSJ version RTSJ 2.0

15.4.7.1.11 VTPhysicalMemory(PhysicalMemoryName, SizeEstimator)

Signature

public

VTPhysicalMemory(PhysicalMemoryName type, SizeEstimator size)

throws SecurityException, SizeOutOfBoundsException,

UnsupportedPhysicalMemoryException, MemoryTypeConflictException

Parameters
type Used to define the base address and control the mapping. If type is null
any type of memory is acceptable. Note that type values are compared by
reference (==), not by value (equals).

754 CHAPTER 15. DEPRECATED CLASSES

size A size estimator for this area.
Throws

SecurityException The application doesn’t have permissions to access physical
memory or the given type of memory.
SizeOutOfBoundsException size is negative or extends into an invalid range
of memory.
UnsupportedPhysicalMemoryException when the underlying hardware does not
support type.
MemoryTypeConflictException when base does not point to memory that matches
type, or if type specifies conflicting attributes.

Create an instance of VTPhysicalMemory with the given parameters.

See Section PhysicalMemoryManager)

Available since RTSJ version RTSJ 2.0

15.4.7.1.12 VTPhysicalMemory(PhysicalMemoryName, long, SizeEsti-
mator)

Signature

public

VTPhysicalMemory(PhysicalMemoryName type, long base, SizeEstimator size)

throws SecurityException, SizeOutOfBoundsException,

OffsetOutOfBoundsException, UnsupportedPhysicalMemoryException,

MemoryTypeConflictException, MemoryInUseException

Parameters
type Used to define the base address and control the mapping. If type is null
any type of memory is acceptable. Note that type values are compared by
reference (==), not by value (equals).
base The physical memory address of the area.
size A size estimator for this memory area.

Throws
SecurityException The application doesn’t have permissions to access physical
memory or the given range of memory.
OffsetOutOfBoundsException The address is invalid.
SizeOutOfBoundsException size is negative or extends into an invalid range
of memory.

15.4. CLASSES 755

UnsupportedPhysicalMemoryException when the underlying hardware does not
support type.
MemoryTypeConflictException when base does not point to memory that matches
type, or if type specifies conflicting attributes.
MemoryInUseException The specified memory is already in use.

Create an instance of VTPhysicalMemory with the given parameters.

See Section PhysicalMemoryManager)

Available since RTSJ version RTSJ 2.0

15.4.7.1.13 VTPhysicalMemory(PhysicalMemoryName, long, Runnable)

Signature

public

VTPhysicalMemory(PhysicalMemoryName type, long size, Runnable logic)

throws SecurityException, SizeOutOfBoundsException,

UnsupportedPhysicalMemoryException, MemoryTypeConflictException

Parameters
type Used to define the base address and control the mapping. If type is null
any type of memory is acceptable. Note that type values are compared by
reference (==), not by value (equals).
logic enter this memory area with this Runnable after the memory area is
created.

Throws
SecurityException The application doesn’t have permissions to access physical
memory or the given type of memory.
SizeOutOfBoundsException size is negative or extends into an invalid range
of memory.
UnsupportedPhysicalMemoryException when the underlying hardware does not
support type.
MemoryTypeConflictException when base does not point to memory that matches
type, or if type specifies conflicting attributes.

Create an instance of VTPhysicalMemory with the given parameters.

See Section PhysicalMemoryManager)

756 CHAPTER 15. DEPRECATED CLASSES

Available since RTSJ version RTSJ 2.0

15.4.7.1.14 VTPhysicalMemory(PhysicalMemoryName, long, long, Runnable)

Signature

public

VTPhysicalMemory(PhysicalMemoryName type, long base, long size, Runnable logic)

throws SecurityException, SizeOutOfBoundsException,

OffsetOutOfBoundsException, UnsupportedPhysicalMemoryException,

MemoryTypeConflictException, MemoryInUseException

Parameters
type Used to define the base address and control the mapping. If type is null
any type of memory is acceptable. Note that type values are compared by
reference (==), not by value (equals).
base The physical memory address of the area.
size The size of the area in bytes.
logic enter this memory area with this Runnable after the memory area is
created.

Throws
SecurityException The application doesn’t have permissions to access physical
memory or the given range of memory.
OffsetOutOfBoundsException The address is invalid.
SizeOutOfBoundsException size is negative or extends into an invalid range
of memory.
UnsupportedPhysicalMemoryException when the underlying hardware does not
support type.
MemoryTypeConflictException when base does not point to memory that matches
type, or if type specifies conflicting attributes.
MemoryInUseException The specified memory is already in use.

Create an instance of VTPhysicalMemory with the given parameters.

See Section PhysicalMemoryManager)

Available since RTSJ version RTSJ 2.0

15.4. CLASSES 757

15.4.7.1.15 VTPhysicalMemory(PhysicalMemoryName, SizeEstimator,
Runnable)

Signature

public

VTPhysicalMemory(PhysicalMemoryName type, SizeEstimator size, Runnable logic)

throws SecurityException, SizeOutOfBoundsException,

UnsupportedPhysicalMemoryException, MemoryTypeConflictException

Parameters
type Used to define the base address and control the mapping. If type is null
any type of memory is acceptable. Note that type values are compared by
reference (==), not by value (equals).
size A size estimator for this area.
logic enter this memory area with this Runnable after the memory area is
created.

Throws
SecurityException The application doesn’t have permissions to access physical
memory or the given type of memory.
SizeOutOfBoundsException size is negative or extends into an invalid range
of memory.
UnsupportedPhysicalMemoryException when the underlying hardware does not
support type.
MemoryTypeConflictException when base does not point to memory that matches
type, or if type specifies conflicting attributes.

Create an instance of VTPhysicalMemory with the given parameters.

See Section PhysicalMemoryManager)

Available since RTSJ version RTSJ 2.0

15.4.7.1.16 VTPhysicalMemory(PhysicalMemoryName, long, SizeEsti-
mator, Runnable)

Signature

public

VTPhysicalMemory(PhysicalMemoryName type, long base, SizeEstimator size, Runnable logic)

758 CHAPTER 15. DEPRECATED CLASSES

throws SecurityException, SizeOutOfBoundsException,

OffsetOutOfBoundsException, UnsupportedPhysicalMemoryException,

MemoryTypeConflictException, MemoryInUseException

Parameters
type Used to define the base address and control the mapping. If type is null
any type of memory is acceptable. Note that type values are compared by
reference (==), not by value (equals).
base The physical memory address of the area.
size A size estimator for this memory area.
logic enter this memory area with this Runnable after the memory area is
created.

Throws
SecurityException The application doesn’t have permissions to access physical
memory or the given range of memory.
OffsetOutOfBoundsException The address is invalid.
SizeOutOfBoundsException size is negative or extends into an invalid range
of memory.
UnsupportedPhysicalMemoryException when the underlying hardware does not
support type.
MemoryTypeConflictException when base does not point to memory that matches
type, or if type specifies conflicting attributes.
MemoryInUseException The specified memory is already in use.

Create an instance of VTPhysicalMemory with the given parameters.

See Section PhysicalMemoryManager)

Available since RTSJ version RTSJ 2.0

15.4.7.2 Methods

15.4.7.2.1 toString

Signature
public
java.lang.String toString()

Returns
A string representing the value of this.

15.5. RATIONALE 759

Creates a string representing this object. The string is of the form
(VTPhysicalMemory) Scoped memory # num

where num is a number that uniquely identifies this VTPhysicalMemory memory
area.

15.5 Rationale

These are interface that have been shown to be less the ideal. They have been
replaced by classes that better fulfill the requirements. Compatibility can be pro-
vided by implemenations that use existing facilities so there is not reason to continue
requiring their inclusion new implementations.

760 CHAPTER 15. DEPRECATED CLASSES

Appendix A

Conformance, Compliance, and
Portability

A.1 Minimum Implementations

The flexibility of the RTSJ indicates that implementations may provide different se-
mantics for scheduling, synchronization, and garbage collection. This section defines
what minimum semantics for these areas and other semantics and APIs required of
all implementations of the RTSJ. Other than what is described in the optional mod-
ules or explicitly noted as optionally required, the RTSJ does not allow any subsetting
of the APIs in the javax.realtime package; however, some of the classes are spe-
cific to certain well-known scheduling or synchronization algorithms and may have
no underlying support in a minimum implementation of the RTSJ. The RTSJ pro-
vides these classes as standard parent classes for implementations supporting such
algorithms.

A.2 Modules

As described in Section 3.2, the RTSJ now has modules. Every implementation must
implement the Core module. If any of the other modules is provided, it must be
provided in full. None of the classes of an unimplemented module should be present.

A.3 Optionally Required Components

The RTSJ does not, in general, support the concept of optional components of the
specification. Optional components would further complicate the already difficult
task of writing WORA (Write Once Run Anywhere) software components for real-

761

762 APPENDIX A. CONFORMANCE, COMPLIANCE, AND PORTABILITY

time systems. However, understanding the difficulty of providing implementations
of mechanisms for which there is no underlying support, the RTSJ does provide for a
few exceptions. Any components that are considered optional will be listed as such
in the class definitions.

The most notable optional component of the specification is the POSIXSignal-

Handler. A conformant implementation which implements the Device module must
support POSIX signals if and only if the underlying system supports them.

A.3.1 Deployment Implementation

The minimum scheduling semantics that must be supported in all implementations
of the RTSJ are fixed-priority preemptive scheduling and at least 28 unique priority
levels. By fixed-priority we mean that the system does not change the priority of any
RealtimeThread or NoHeapRealtimeThread except, temporarily, for priority inver-
sion avoidance. Note, however, that application code may change such priorities.
What the RTSJ precludes by this statement is scheduling algorithms that change
thread priorities according to policies for optimizing throughput (such as increas-
ing the priority of threads that have been receiving few processor cycles because of
higher priority threads (aging)). The 28 unique priority levels are required to be
unique to preclude implementations from using fewer priority levels of underlying
systems to implement the required 28 by simplistic algorithms (such as lumping four
RTSJ priorities into seven buckets for an underlying system that only supports seven
priority levels). It is sufficient for systems with fewer than 28 priority levels to use
more sophisticated algorithms to implement the required 28 unique levels as long
as RealtimeThreads and NoHeapRealtimeThreads behave as though there were at
least 28 unique levels. (e.g. if there were 28 RealtimeThreads (t1, ..., t28) with pri-
orities (p1, ..., p28), respectively, where the value of p1 was the highest priority and
the value of p2 the next highest priority, etc., then for all executions of threads t1
through t28 thread t1 would always execute in preference to threads t2, ..., t28 and
thread t2 would always execute in preference to threads t3, ..., t28, etc.)

The minimum synchronization semantics that must be supported in all deploy-
ment implementations of the RTSJ are detailed in the above section on synchroniza-
tion and repeated here.

All deployment implementations of the RTSJ must provide an implementation
of the synchronized primitive with default behavior that ensures that there is no
unbounded priority inversion. Furthermore, this must apply to code if it is run
within the implementation as well as to realtime threads. The priority inheritance
protocol must be implemented by default.

All threads waiting to acquire a resource must be queued in priority order. This
applies to the processor as well as to synchronized blocks. If threads with the same
exact priority are possible under the active scheduling policy, threads with the same

A.4. SIMULATION IMPLEMENTATION 763

priority are queued in FIFO order. (Note that these requirements apply only to
the required base scheduling policy and hence use the specific term ”priority”). In
particular:

• Threads waiting to enter synchronized blocks are granted access to the syn-
chronized block in priority order.
• A blocked thread that becomes ready to run is given access to the processor

in priority order.
• A thread whose execution eligibility is explicitly set by itself or another thread

is given access to the processor in priority order.
• A thread that performs a yield() will be given access to the processor after

waiting threads of the same priority.
• However, threads that are preempted in favor of a thread with higher priority

may be given access to the processor at any time as determined by a particular
implementation. The implementation is required to provide documentation
stating exactly the algorithm used for granting such access.

The RTSJ does not require any particular garbage collection algorithm; how-
ever, every deployment implementation must either support memory areas or have
a realtime garbage collection. In the later case, the realtime limitations must be
documented. All implementations of the RTSJ must support the class GarbageCol-
lector and implement all of its methods.

A.4 Simulation Implementation

An implementation that chooses not to provide realtime guarentees, is termed a
simulation implementation. Such an implementation does not need to provide the
realtime characteristic described above, but does need to at least provide all the
APIs of the core module. A simulation implementation can be a production system,
but not for realtime applications. This enables a conventional JVM to make the base
APIs available to a wider audience without changing its performance characteristics.

A.5 Documentation Requirements

In order to properly engineer a realtime system, an understanding of the cost asso-
ciated with any arbitrary code segment is required. This is especially important for
operations that are performed by the runtime system, largely hidden from the pro-
grammer. (An example of this is the maximum expected latency before the garbage
collector can be interrupted.)

The RTSJ does not require specific performance or latency numbers to be matched.
Rather, to be conformant to this specification, an implementation must provide doc-

764 APPENDIX A. CONFORMANCE, COMPLIANCE, AND PORTABILITY

umentation regarding the expected behavior of particular mechanisms. The mech-
anisms requiring such documentation, and the specific data to be provided, will be
detailed in the class and method definitions.

Appendix B

Epilogue

765

766 APPENDIX B. EPILOGUE

Appendix C

Changes from the First Edition

This document describes the API changes made to the Real-Time Specification for
Java after its 1.0 release in 2002.

C.1 Version 1.0.2

Version 1.0.2 is primarily a set of clarifications and changes derived from exchanges
with several teams implementing RTSJ. Version 1.0.2 also tightens the specification
a little where those changes will not greatly harm implementability.

C.1.1 Finalization

The revised finalization semantics attempt to clarify the algorithm for finalizing
objects in a scope in passes until there are no more finalizable objects or the finalizers
create a schedulable that references the scope. The revised semantics also require the
schedulable object exiting the scope when it becomes finalizable to run the finalizers.

C.1.2 Cost enforcement

The concept of deferred suspension has been added to cost enforcement for schedu-
lables, and enforced priority has been defined for processing groups.

C.1.3 AsyncEventHandler

A conflict between the 1.0.1 semantics, and the method documentation and RI was
resolved by specifying that an async event handler’s fire count is decremented before
invoking handleAsyncEvent.

The semantics for the fire count manipulation methods have been specified for
all callers.

767

768 APPENDIX C. CHANGES FROM THE FIRST EDITION

C.1.4 Non-Default Initial Memory Area

Detailed semantics have been added for the treatment of non-default initial memory
areas for realtime threads and async event handlers. This had ramifications in the
scoped memory joinAndEnter methods.

C.1.5 AsynchronouslyInterruptedException

Interruptible blocking methods are defined, as are the semantics for interrupting
those methods.

C.1.6 Exceptions

In some cases where there was ambiguity about which exception should be thrown,
the exception precedence has been clarified.

C.2 Version 1.0.1

The primary objective of the 1.0.1 version of the RTSJ was clarification. That clar-
ification resulted in a nearly complete re-write of the semantics sections, but those
revisions were not intended to express different semantics. They were intended to
express the original semantics:
• More carefully and completely
• More conveniently (also more redundantly. Some statements that were made

once in the first edition of the RTSJ are now replaced with the method-by-
method consequences of those statements.)
• Without constraining the implementation except where that is necessary to

achieve compatibility between implementations.
Deprecation in this version should be treated as emphatic advice to avoid the

deprecated feature. In RTSJ 1.0.1, deprecation usually means that the semantics
for a class or method may not be actively dangerous, but for various reasons its
semantics cannot be clarified in a reasonable and unambiguous way. These methods
(and one class) are not necessary, and they will almost certainly be entirely removed
soon. In any case, their semantics are not well-defined, they cannot be adequately
tested, and any application that values portability should not use them.

C.2.1 Requirements

The processing group enforcement option has been separated from the cost enforce-
ment option, and support for processing group deadline less than period has been
made optional.

C.2. VERSION 1.0.1 769

A profile for development tools has been introduced. This permits a development
tool to implement RTSJ classes without implementing all the RTSJ semantics.

C.2.2 Threads and Scheduling

As much as possible, semantics that relate to scheduling have been made attributes
of the scheduler, this caused many semantics to move from the Threads chapter to
the Scheduling chapter.

C.2.2.1 New Methods and Signature Changes

C.2.2.1.1 RealtimeThread
• Added MemoryArea getMemoryArea() to return the initial memory area of the
RealtimeThread. This method that was in the 1.0 reference implementation
and the TCK, but was left out of the specification.
• Changes to the operation of setPriority in java.lang.Thread are described.
• waitForNextPeriod is made static since it would be dangerous for a thread

to invoke the method on any other thread.
• Added waitForNextPeriodInterruptible because (especially for realtime sys-

tems) blocking methods should be interruptible.
• Added two new setIfFeasible methods (See the Schedulable interface.)

C.2.2.1.2 NoHeapRealtimeThread None

C.2.2.1.3 Scheduler Let fireSchedulable throw UnsupportedOperationEx-

ception because only specific classes (possibly no classes) that implement the Sched-
ulable interface can be fired by any given scheduler.

Add method
• public abstract boolean setIfFeasible(Schedulable schedulable, Sched-

ulingParameters scheduling, ReleaseParameters release, MemoryParam-

eters memory, ProcessingGroupParameters group)

The following methods were made abstract:
• public abstract boolean setIfFeasible(Schedulable schedulable, Re-

leaseParameters release, MemoryParameters memory)

• public abstract boolean setIfFeasible(Schedulable schedulable, Re-

leaseParameters release, MemoryParameters memory, ProcessingGroup-

Parameters group)

C.2.2.1.4 Schedulable A number of methods were consistently present in classes
that implement Schedulable and should have been included in Schedulable. They
were added to the Schedulable interface:

770 APPENDIX C. CHANGES FROM THE FIRST EDITION

• boolean addIfFeasible(),
• boolean setIfFeasible(ReleaseParameters release, MemoryParameters

memory),
• boolean setIfFeasible(ReleaseParameters release, MemoryParameters

memory, ProcessingGroupParameters group),
• boolean setIfFeasible(ReleaseParameters release, ProcessingGroup-

Parameters group)

Two methods were added to improve the parallel construction of the Scheduler and
the Schedulable interface. The new methods also make it possible to update the
scheduling parameters considering feasibility:
• boolean setIfFeasible(SchedulingParameters sched, ReleaseParamet-

ers release, MemoryParameters memory)

• boolean setIfFeasible(SchedulingParameters sched, ReleaseParamet-

ers release, MemoryParameters memory, ProcessingGroupParameters group)

IllegalThreadStateException was removed from the throws clause of the setSched-
uler methods because there is no case where that exception will be thrown.

C.2.2.1.5 ReleaseParameters ReleaseParameters now implements Clone-

able and has a public clone method.

C.2.2.1.6 SchedulingParameters SchedulingParameters now implements Clone-
able and has a public clone method.

The constructor is changed to protected to match similar classes, such as Re-

leaseParameters.

C.2.2.1.7 PeriodicParameters Two new constructors,
• PeriodicParameters(RelativeTime period)

• PeriodicParameters(HighResolutionTime start, RelativeTime period)

were added to conveniently support common patterns, and as pro-active support for
a safety-critical specification.

C.2.2.1.8 ProcessingGroupParameters ProcessingGroupParameters now im-
plements Cloneable and has a public clone method.

C.2.2.1.9 AperiodicParameters The methods and constants that relate to
the arrival time queue overflow behavior have been moved from SporadicParame-

ters to AperiodicParameters because the arrival time queue is an aspect of ape-
riodic tasks. The implementation had to maintain the queue, but the application
could not control it unless it used sporadic parameters. The list of moved methods
and constants is:

C.2. VERSION 1.0.1 771

• String arrivalTimeQueueOverflowExcept

• String arrivalTimeQueueOverflowIgnore

• String arrivalTimeQueueOverflowReplace

• String arrivalTimeQueueOverflowSave

• int getInitialArrivalTimeQueueLength()

• void setInitialArrivalTimeQueueLength(int length)

• void setArrivalTimeQueueOverflowBehavior(String behavior)

• String getArrivalTimeQueueOverflowBehavior()

A new constructor has been added to make a common case easier to write, and
to proactively support work on the safety critical Java specification: AperiodPa-

rameters().

C.2.2.1.10 SporadicParameters The methods and constants listed as moved
to AperiodicParameters are moved from SporadicParameters. They still appear
in the sporadic parameters class, but now they are inherited from aperiodic param-
eters.

A new constructor:
SporadicParameters(RelativeTime minInterarrival)

has been added to make a common case easier to write, and to proactively
support work on the safety critical Java specification.

C.2.2.1.11 PriorityScheduler The semantics for the REPLACE MIT viola-
tion policy for sporadic parameters has been revised to ”If the last event has not
been processed revise its release time to the current time. This will alter the dead-
line at any time up to completion of its processing or the time it misses its deadline.
If event processing for the replaced release has been completed or it
has already missed its deadline, the behavior of the REPLACE policy is
equivalent to IGNORE.

The fireSchedulable method is permitted to throw UnsupportedOperationEx-

ception if the scheduler does not support the method for parameter object. The
base instance of the priority scheduler is expected to throw UnsupportedOpera-

tionException in every case. The fireSchedulable method has never worked,
and its semantics are hard to clarify without significantly extending the semantics
of schedulables. The method is not deprecated because the semantics of schedula-
bles quite likely will be extended to make this method useful, but that goes beyond
clarification.

C.2.2.1.12 SchedulingParameters SchedulingParameters now implements
Cloneable and has a public clone method.

The constructor is changed from public to protected.

772 APPENDIX C. CHANGES FROM THE FIRST EDITION

C.2.2.1.13 PriorityParameters No changes

C.2.2.1.14 ImportanceParameters No changes

C.2.2.1.15 ProcessingGroupParameters ProcessingGroupParameters now
implements Cloneable and has a public clone method

C.2.2.2 Deleted and Deprecated Methods

C.2.2.2.1 PriorityScheduler

• MAX PRIORITY, and MIN PRIORITY are deprecated because they may bind the
maximum and minimum priorities into an application at compile time and the
available priority range is an attribute of the run-time platform.

C.2.3 Memory Management

C.2.3.1 New Methods and Signature Changes

C.2.3.1.1 MemoryArea The throws clause of:

• newArray(Class type, int number)

has been changed from (IllegalAccessException InstantiationException) to
no exceptions to better reflect the checked exceptions thrown when the underlying
platform creates a new array.

The throws clause of

• newInstance(reflect.Constructor c, Object[] args)

has been changed from (IllegalAccessException InstantiationException) to
(IllegalAccessException, InstantiationException, InvocationTargetExcep-

tion) to reflect the checked exceptions thrown when the underlying platform creates
a new instance.

The throws clause of:

• newInstance(Class c)

has been changed from(IllegalAccessException InstantiationException) to
(IllegalAccessException, InstantiationException, NoSuchMethodException)

to reflect the checked exceptions thrown when the underlying platform creates a new
instance.

C.2.3.1.2 HeapMemory None

C.2. VERSION 1.0.1 773

C.2.3.1.3 ImmortalMemory The executeInArea method and the family of newIn-
stance methods may be used by Java threads. Previously this was ambiguous, but
since a Java thread can switch between heap and immortal without the full seman-
tics of a scope stack, this limited access to RTSJ memory areas can be supported
without modifying Java threads. Moreover, a mechanism to switch Java threads to
”immortal mode” has always been implied by the memory area semantics of static
initializers.

C.2.3.1.4 SizeEstimator There was no way to estimate the size of an array
object so

public void reserveArray(int dimension)

for arrays of references and
public void reserveArray(int dimension, Class type)

for arrays of primitive types were added.

C.2.3.1.5 ScopedMemory The getPortal() method now throws the (unchecked)
exceptions MemoryAccessError and IllegalAssignmentError. These exceptions
were implicit in the existing reference and assignment rules, but the exact rules for
generating them from this method were unclear. They are declared to make their
possibility clear to the caller.

The ScopedCycleException exception has been removed from the throws clause
of the joinAndEnter methods that do not take a time parameter. There is no case
where these methods need to throw that exception.

The joinAndEnter methods are altered to throw IllegalArgumentException

immediately when they have no non-null logic value. Previously, this behavior was
ambiguous with the possibilities to either return immediately (as stated explicitly)
or throw IllegalArgumentException as required to behave like indivisible join

and enter.

C.2.3.1.6 LTMemory Added four new constructors to simplify a common use
case, and for symmetry with the LTPhysicalMemory class:
• LTMemory(long size)

• LTMemory(long size, Runnable logic)

• LTMemory(SizeEstimator size)

• LTMemory(SizeEstimator size, Runnable logic)

C.2.3.1.7 VTMemory Added four new constructors to simplify a common use
case, and for symmetry with the VTPhysicalMemory class:
• VTMemory(long size)

• VTMemory(long size, Runnable logic)

774 APPENDIX C. CHANGES FROM THE FIRST EDITION

• VTMemory(SizeEstimator size)

• VTMemory(SizeEstimator size, Runnable logic)

C.2.3.1.8 PhysicalMemoryManager The type of the static final fields ALIGNED,
BYTESWAP, SHARED, and DMA is changed from String to Object. This is a compatible
change that supports more flexibility of implementation.

A new static final field, IO PAGE, is added.
The methods
• public static void onInsertion(long base, long size, AsyncEvent ae)

• public static void onRemoval(long base, long size, AsyncEvent ae)

• public static boolean unregisterInsertionEvent(long base, long size,

AsyncEvent ae)

• public static boolean unregisterRemovalEvent(long base, long size,

AsyncEvent ae)

have been added to replace deprecated insertion and removal methods.
All methods now throw OffsetOutOfBoundsException when the base is nega-

tive, and SizeOutOfBoundsException when the extent of memory passes the phys-
ical or virtual addressing boundary. This brings them in line with the methods in
the classes commonly used by applications (such as ImmortalPhysicalMemory.)

C.2.3.1.9 PhysicalMemoryTypeFilter The methods
• public void onInsertion(long base, long size, AsyncEvent ae)

• public void onRemoval(long base, long size, AsyncEvent ae)

• public boolean unregisterInsertionEvent(long base, long size, Async-

Event ae)

• public boolean unregisterRemovalEvent(long base, long size, Async-

Event ae)

have been added to replace deprecated insertion and removal methods.
All methods now throw OffsetOutOfBoundsException when the base is nega-

tive, and SizeOutOfBoundsException when the extent of memory passes the phys-
ical or virtual addressing boundary. This brings them in line with the methods in
the classes commonly used by applications (such as ImmortalPhysicalMemory.)

C.2.3.1.10 RawMemoryAccess The constructors for this class now specifi-
cally mention the possibility of OutOfMemoryError.

C.2.3.1.11 RawMemoryFloatAccess The constructors for this class now specif-
ically mention the possibility of OutOfMemoryError.

C.2.3.1.12 LTPhysicalMemory None

C.2. VERSION 1.0.1 775

C.2.3.1.13 VTPhysicalMemory None

C.2.3.1.14 ImmortalPhysicalMemory None

C.2.3.1.15 MemoryParameters Changed setAllocationRateIfFeasible()

to accept a long argument for consistency with all the other allocation rate methods
that take and return long.

The class now implements Cloneable and includes public Object clone()

C.2.3.1.16 GarbageCollector None

C.2.3.2 Deprecated Methods

The public constructor for the GarbageCollector is deprecated.

The onInsertion(long base, long size, AsyncEventHandler aeh) and on-

Removal(long base, long size, AsyncEventHandler aeh) methods in both Phys-

icalMemoryManager and PhysicalMemoryTypeFilter are deprecated in favor of
new methods. The deprecated methods use async event handlers in a unnecessar-
ily clumsy way (without an async event), and causing special argument values to
unregister handlers is not good Java practice.

C.2.4 Synchronization

Significant changes have been made to the way priority ceiling protocol interacts
with priority inheritance protocol.

C.2.4.1 New Methods and Signature Changes

Priority ceiling emulation was essentially unworkable as specified in the 1.0 spec.
The 1.0.1 revision has semantics that can be implemented, but several changes to
the APIs have been necessary.

C.2.4.1.1 MonitorControl Made the constructor protected since MonitorCon-
trol is abstract, and each subclass should be a singleton.

Changed both setMonitorControl() methods to return the old policy instead
of returning void.

776 APPENDIX C. CHANGES FROM THE FIRST EDITION

C.2.4.1.2 PriorityCeilingEmulation Added static PriorityCeilingEmula-

tion instance(int ceiling) to return a priority ceiling emulation object for each
ceiling value. This lets the implementation check for equal ceilings by checking for
equality of the object references.

Added getCeiling() replacing getDefaultCeiling. The getCeiling method
has the same semantics as getDefaultCeiling. The name, getDefaultCeiling is
misleading because there is no value that can correctly be called the default ceiling.

Added static PriorityCeilingEmulation getMaxCeiling() which returns a
singleton universally usable priority ceiling emulation object. This object is usable
in cases where an application wishes to make priority ceiling emulation the default
monitor control policy.

C.2.4.1.3 PriorityInheritance None

C.2.4.1.4 WaitFreeWriteQueue There is little purpose for the reader and writer
parameters for the constructor. The class can support multiple readers and writers,
so these are at best hints. The constructor with the reader and writer parameters
was retained, but two new constructors without those parameters were added to
reduce the confusion caused by those parameters.

Added the constructor WaitFreeWriteQueue(int maximum) throws IllegalArgu-

mentException

Added the constructor WaitFreeWriteQueue(int maximum, MemoryArea mem-

ory) throws IllegalArgumentException.
Added InterruptedException to the throws clause of read().

C.2.4.1.5 WaitFreeReadQueue There is little purpose for the reader and writer
parameters for the constructor. The class can support multiple readers and writers,
so these are at best hints. The constructor with the reader and writer parameters
was retained, but two new constructors without those parameters were added to
reduce the confusion caused by those parameters.

Added the constructor WaitFreeReadQueue(int maximum, boolean notify)

throws IllegalArgumentException

Added the constructor WaitFreeReadQueue(int maximum, MemoryArea mem-

ory, boolean notify) throws IllegalArgumentException

Changed the return type of write(Object object) from boolean to void be-
cause the method could never return anything but true, and added Interrupt-

edException to its throws clause because it is a general principle that all blocking
methods should be interruptible.

Added InterruptedException to the throws clause of waitForData() because
it is a blocking method that should be interruptible.

C.2. VERSION 1.0.1 777

C.2.4.1.6 WaitFreeDequeue This class has been deprecated because it does
not do anything that the separate WaitFreeReadQueue and WaitFreeWriteQueue do
not do as well, and proper use of the proper read and write methods is unnecessarily
confusing.

Changed the return type of blockingWrite(Object object) from boolean to
void because the method could never return anything but true.

C.2.4.2 Deleted and Deprecated Methods

The public constructors from the PriorityCeilingEmulation and PriorityInher-

itance classes have been removed. An implementation that exposes constructors
for these methods as specified in version 1.0 would be needlessly complicated and
it must leak immortal memory. The revised APIs require the implementation to
produce (possibly lazily) singleton instances for each distinct value of the monitor
control classes

C.2.4.2.1 PriorityCeilingEmulation Removed the public constructor because
this class is supposed to be able to generate a unique instance per ceiling value.

Deprecated getDefaultCeiling() because the method name is misleading. The
new getCeiling method should be used instead.

C.2.4.2.2 PriorityInheritance Removed the public constructor because this
is supposed to be a singleton.

C.2.5 Time

C.2.5.1 New Methods and Signature Changes

C.2.5.1.1 HighResolutionTime Revised RelativeTime relative(Clock clock,

HighResolutionTime time) to require a RelativeTime argument. Previously any
HighResolutionTime argument was syntactically correct, but only RelativeTime

could be used without causing the method to throw a runtime exception.
There was no way to recover the clock property of a HighResolutionTime object,

so the getClock() method was added. There are many ways to alter (re-associate)
the clock, so no symmetrical setClock() method was required.

The signature of set(HighResolutionTime time) is not changed, but its mean-
ing is altered. Version 1.0 had it defined to set the value of the parameter to a value
corresponding to the current date. This is completely at odds with Java conventions,
and while the Javadoc in the reference implementation agrees with the 1.0 specifica-
tion, the code alters the time value of this to match the parameter. The TCK was
consistent with the RI code. The most likely conclusion is that the semantics for

778 APPENDIX C. CHANGES FROM THE FIRST EDITION

the method were a cut-and-paste error. The error is so surprising and potentially
destructive that instead of deprecating the method (as would be normal for a case
like this) the semantics were corrected to agree with the RI and TCK and set the
millis and nanos values of this to the values from the parameter.

HighResolution time now implements Cloneable. It also has a public clone

method and public hashCode and equals methods that work correctly with clone.

C.2.5.1.2 AbsoluteTime Added four new constructors that include the clock
association:
• AbsoluteTime(Clock clock)

• AbsoluteTime(long millis, int nanos, Clock clock)

• AbsoluteTime(AbsoluteTime time, Clock clock)

• AbsoluteTime(java.util.Date date, Clock clock)

Changed several methods that were specified as final to non-final. Some arith-
metic methods were final and some were not with no discernible rationale for the
difference. Changing them all to non-final was the most compatible way to resolve
the inconsistency.
• add(RelativeTime time),
• subtract(AbsoluteTime time)

• subtract(AbsoluteTime time, RelativeTime destination)

• subtract(RelativeTime time)

were specified as final and now have that attribute removed.
One version of the relative method:
RelativeTime relative(Clock clock, AbsoluteTime dest)

could not be implemented as specified since it called for returning a Relative-

Time value in an AbsoluteTime object. It was changed to:
RelativeTime relative(Clock clock, RelativeTime dest)

C.2.5.1.3 RelativeTime Added three new constructors that include the clock
association:
• RelativeTime(Clock clock)

• RelativeTime(long millis, int nanos, Clock clock)

• RelativeTime(RelativeTime time, Clock clock)

Changed two methods that were specified as final to non-final. Some arithmetic
methods were final and some were not with no discernible rationale for the differ-
ence. Changing them all not non-final was the most compatible way to resolve the
inconsistency.
• add(RelativeTime time)

• subtract(RelativeTime time)

were specified as final and now have that attribute removed.

C.2. VERSION 1.0.1 779

C.2.5.1.4 RationalTime None. The class is deprecated.

C.2.5.2 Deprecated Methods

C.2.5.2.1 HighResolutionTime none.

C.2.5.2.2 RelativeTime

• getInterarrivalTime(),
• getInterarrivalTime(RelativeTime destination), and
• addInterarrivalTo(AbsoluteTime timeAndDestination)

are deprecated because their only purpose is to support the deprecated Rational-

Time class.

C.2.5.3 Deprecated Classes

C.2.5.3.1 RationalTime The RationalTime class was defined so it has two
reasonable and incompatible descriptions. Neither of them can be implemented
well. We have deprecated the class and hope to revisit the underlying concepts and
abstract them better in a future revision.

C.2.6 Clocks and Timers

C.2.6.1 New Methods and Signature Changes

C.2.6.1.1 Clock Added RelativeTime getEpochOffset() throws Unsupport-

edOperationException to let applications compare clocks with different epochs,
and to let them discover clocks that have no concept of an epoch.

Changed the return type of getTime(AbsoluteTime time) from void to Abso-

luteTime to make the method consistent with the RTSJ conventions of returning a
reference to the destination parameter when it is provided. This is also required to
give it consistent behavior when a null parameter is passed.

C.2.6.1.2 Timer The fire() method inherited from AsyncEventHandler is
now overridden in this class since this is the most appropriate place to note that it
throws UnsupportedOperationException if the class is Timer.

The void start(boolean disabled) throws IllegalStateException method
has been added because without such a method there would be no way to start a
timer in the disabled state that does not have a possible race condition.

Added new method:

• public AbsoluteTime getFireTime(AbsoluteTime fireTime)

780 APPENDIX C. CHANGES FROM THE FIRST EDITION

C.2.6.1.3 OneShotTimer No changes except those inherited from Timer.

C.2.6.1.4 PeriodicTimer No changes except those inherited from Timer.

C.2.7 Asynchrony

C.2.7.1 New Methods and Signature Changes

C.2.7.1.1 AsyncEventHandler Two methods were defined as final with no
justification when compared to other methods in the same class that were not final:
• getAndClearPendingFireCount

• getPendingFireCount

Their final attribute was removed to make them consistent with other similar
methods.

Two new methods were added:
• boolean isDaemon()

• void setDaemon(boolean on)

To control the ”daemon nature” of the AEH.
The two methods added to the Schedulable interface are also added here.

C.2.7.1.2 AsyncEvent None.

C.2.7.1.3 BoundAsyncEventHandler The BoundAsyncEventHandler class is
no longer an abstract class. Since the class includes a constructor with a logic

parameter, it could operate without being subclassed. There was no reason it should
be abstract, and leaving it abstract was inconvenient for application developers.

C.2.7.1.4 Interruptible None

C.2.7.1.5 AsynchronouslyInterruptedException Added the boolean clear()

method to implement the safe semantics of happened(), but not offer to secretly
throw AIE.

C.2.7.1.6 Timed None.

C.2.7.2 Deprecated Methods

C.2.7.2.1 AsynchronouslyInterruptedException Deprecated happened() and

propagate(). These methods are defined to throw the AsynchronouslyInterr-

uptedException and they do not include that checked exception in their throws
clauses. They may be actively dangerous to methods up their call chain that are

C.2. VERSION 1.0.1 781

not expecting an exception, but the danger is not bad enough to justify deleting
these methods without warning.

An application can achieve the effect of propagate by throwing an AIE after it
catches it, and it can achieve the effect of happened by combining the new clear()

method with fire.

C.2.8 System and Options

C.2.8.0.2 POSIXSignalHandler Deprecated many signal names that are not
found in the POSIX 9945-1-1996 standard:
• SIGCANCEL,
• SIGFREEZE,
• SIGIO,
• SIGLOST,
• SIGWP,
• SIGPOLL,
• SIGPROF,
• SIGPWR,
• SIGTHAW,
• SIGURG,
• SIGVTALRM,
• SIGWAITING,
• SIGWINCH,
• SIGXCPU, and
• SIGXFSZ.

Removed the default no-arg constructor leaving the class with no public constructor.

C.2.8.0.3 RealtimeSecurity Added methods
public void checkSetMonitorControl(MonitorControl policy) throws Se-

curityException

and
public void checkSetDaemon() throws SecurityException

because the specification already says that these operations are checked by the
security manager.

C.2.8.0.4 RealtimeSystem The no-arg constructor was an artifact of javadoc.
Since this class’s implementation is entirely static, the constructor is pointless and
has been removed.

If applications execute the method call, System.getProperty("javax.realtime.version"),
the return value will be a string of the form, “x.y.z”. Where ‘x’ is the major version

782 APPENDIX C. CHANGES FROM THE FIRST EDITION

number and ‘y’ and ‘z’ are minor version numbers. These version numbers state to
which version of the RTSJ the underlying implementation claims conformance. The
first release of the RTSJ, dated 11/2001, is numbered as, 1.0.0. Since this property is
required in only subsequent releases of the RTSJ implementations of the RTSJ which
intend to conform to 1.0.0 may return the String “1.0.0” or null.

Added getInitialMonitorControl() to support the monitor control classes.

C.2.9 Exceptions

C.2.9.1 Added Classes

Added the class ArrivalTimeQueueOverflowException to indicate overflow of an
async event handlers arrival queue, and CeilingViolationException to signify
that a thread has attempted to lock a priority ceiling lock when its base priority
exceeds the priority of the lock.

C.2.9.2 Changed Classes

The following exceptions have been changed from checked to unchecked:

• MemoryScopeException

• InnaccessibleAreaException

• MemoryTypeConflictException

• MITViolationException

• OffsetOutOfBoundsException

• SizeOutOfBoundsException

• UnsupportedPhysicalMemoryException

Each of these exceptions is characteristic of a programming error, not a fault that a
programmer should anticipate and handle.

C.3 Global Terms

Throughout the RTSJ, when we use the word code, we mean code written in the
Java programming language. When we mention the Java language in the RTSJ, that
also refers to the Java programming language. The use of the term heap in the RTSJ
will refer to the heap used by the runtime of the Java language. If we refer to other
heaps, such as the heap used by the C language runtime or the operating system’s
heap, we will explicitly state which heap.

Throughout the RTSJ we will use the term Thread to refer to the class Thread

in The Java Language Specification and thread to refer to a sequence of instructions
or to an instance of the class Thread. The context of uses of thread should be

C.4. COLOPHON 783

sufficient to distinguish between the two meanings. We will be explicit where we
think necessary.

C.4 Colophon

This specification document was generated from a set of Java and HTML source
files. They were compiled using javadoc and the doclet-from-hell: mifdoclet. The
recent development of mifdoclet was driven largely by the Real Time for Java
Expert Group. We wanted to be able to produce a specification document that had
been checked, as much as possible, by whatever compilation tools we could find.
The specification source compiles as a Java program, and even contains a scaffold
implementation which was used to compile and run the examples.

The mifdoclet generates is output in MIF format, which was processed through
Adobe FrameMaker, http://www.adobe.com/products/framemaker, a truly wonder-
ful publishing package without which this book would have been much more difficult.

The source files used to produce this specification will eventually be available at
http://www.rtj.org

C.5 Conventions

C.5.1 Parameter Objects

A number of constructors in this specification take objects generically named feasi-

bility parameters (classes named <string>Parameters where <string> iden-
tifies the kind of parameter). When a reference to a Parameters object is given as a
parameter to a constructor the Parameters object becomes bound to the object be-
ing created. Changes to the values in the Parameters object affect the constructed
object. For example, if a reference to a SchedulingParameters object, sp, is given
to the constructor of a RealtimeThread, rt, then calls to sp.setPriority() will
change the priority of rt. There is no restriction on the number of constructors
to which a reference to a single Parameters object may be given. If a Parame-

ters object is given to more than one constructor, then changes to the values in
the Parameters object affect all of the associated schedulables. Note that this is a
one-to-many relationship, not a many-to-many relationship, that is, a schedulable
(e.g., an instance of RealtimeThread) must have zero or one associated instance of
each Parameter object type.

Caution: <string>Parameter objects are explicitly unsafe in multithreaded
situations when they are being changed. No synchronization is done. It is assumed
that users of this class who are mutating instances will be doing their own synchro-
nization at a higher level.

784 APPENDIX C. CHANGES FROM THE FIRST EDITION

C.5.2 Java Platform Dependencies

In some cases the classes and methods defined in this specification are dependent
on the underlying Java platform.
• The Comparable interface is available in JavaTM2 Version 1.2 and 1.3 and

not in what was formally known as JDK’s 1.0 and 1.1. Thus, we expect
implementations of this specification which are based on JDK’s 1.0 or 1.1 to
include a Comparable interface.
• The class RawMemoryFloatAccess is required if and only if the underlying Java

Virtual Machine supports floating point data types.

C.5.3 Illegal Parameter Values

Except as noted explicitly in the descriptions of constructors, methods, and param-
eters an instance of IllegalArgumentException will be thrown if the value of the
parameter or of a field of an instance of an object given as a parameter is as given
in the following table:

Type Value
Object null
type[] null
String null
int less than zero
long less than zero
float less than zero
boolean N/A
Class null

Explicit exceptions to these semantics may also be global at the Chapter, Class,
or Method level.

Bibliography

[1] Portable Operating System Interface (POSIX R©) Part 1: System Application Pro-
gram Interface, International Standard ISO/IEC 9945-1, 1996 (E) IEEE Std
1003.1, 1996 edition ed. The Institute of Electrical and Electronics Engineers,
Inc., 1996.

[2] Barr, M. Memory types. Embedded Systems Programming (2001), 103–104.

[3] Burns, A., and Wellings, A. J. Real-Time Systems and Programming
Languages:, 4th ed. Addison Wesley, 2010.

[4] Dos Santos, O. M., and Wellings, A. Cost enforcement in the real-time
specification for java. Real-Time Syst. 37, 2 (Nov. 2007), 139–179.

[5] Regehr, J. Safe and structured use of interrupts in real-time and embedded
software. In Handbook of Real-Time and Embedded Systems, I. Lee, J. Y.-T.
Leug, and S. H. Son, Eds. Chapman and Hall/CRC, 2007, pp. 16–1–16–12.

785

	Introduction
	Guiding Principles
	Applicability to Particular Java Environments
	Backward Compatibility
	Write Once, Run Anywhere
	Current Practice vs. Advanced Features
	Predictable Execution
	No Syntactic Extension
	Allow Variation in Implementation Decisions
	Interoperability

	Areas of Enhancement
	Thread Scheduling and Dispatching
	Memory Management
	Synchronization and Resource Sharing
	Asynchronous Event Handling
	Task Interruption
	Raw Memory Access
	Physical Memory Access
	Modularization

	Overview
	Threads and Scheduling
	Synchronization
	Priority Inversion
	Priority Inversion Avoidance
	Execution Eligibility
	Wait-Free Queues

	Asynchrony
	Asynchronous Events
	Asynchronous Transfer of Control
	Principles
	Asynchronous Realtime Thread Termination

	Clocks, Time, and Timers
	Memory Management
	Memory Areas
	Heap Memory
	Immortal Memory
	Scoped Memory
	Physical Memory Areas
	Budgeted Allocation

	Device Access and Raw Memory
	Raw Memory Access

	System Options
	Exceptions
	Summary

	Requirements and Conventions
	Base Requirements
	Modules
	Base Module
	Device Module
	Alternate Memory Management Module
	Optional Features
	Deprecated Classes

	Conditionally-Required Facilities
	Options for Development Platforms

	Required Documentation
	Conventions
	Definitions

	Conventional Java Classes and Language
	Priority
	Setting Priority
	Getting Priority

	Thread Groups
	Current Thread
	Java Memory Model
	InterruptedException
	System Properties
	Garbage Collection
	Realtime Garbage Collections
	Thread-Based Collectors
	Allocation-Based Collectors
	Alternatives to Garbage Collection
	Developer Implementation

	Realtime Threads
	Overview
	Semantics
	Enumerations
	PhasingPolicy
	Enumeration Constants
	Constructors
	Methods

	Classes
	NoHeapRealtimeThread
	Constructors
	Methods

	RealtimeThread
	Constructors
	Methods

	Rationale

	Scheduling
	Overview
	Definitions
	Semantics
	Schedulers
	The Base Scheduler
	Priorities
	Dispatching
	Parameter Values
	Cost Monitoring and Cost Enforcement
	Release of Realtime Threads
	Aperiodic Release Control
	Sporadic Release Control
	Release Control for Asynchronous Event Handlers
	Processing Groups

	Interfaces
	BoundSchedulable
	Schedulable
	Methods

	Classes
	Affinity
	Constructors
	Methods

	AperiodicParameters
	Fields
	Constructors
	Methods

	ImportanceParameters
	Fields
	Constructors
	Methods

	PeriodicParameters
	Constructors
	Methods

	PriorityParameters
	Fields
	Constructors
	Methods

	PriorityScheduler
	Fields
	Constructors
	Methods

	ProcessingGroupParameters
	Fields
	Constructors
	Methods

	ReleaseParameters
	Fields
	Constructors
	Methods

	Scheduler
	Constructors
	Methods

	SchedulingParameters
	Fields
	Constructors
	Methods

	SporadicParameters
	Fields
	Constructors
	Methods

	Rationale
	Multiprocessor Support
	Impact of Clock Granularity
	Deadline Miss Detection

	Synchronization
	Overview
	Semantics
	The Base Priority Scheduler
	Additional Schedulers

	Classes
	MonitorControl
	Constructors
	Methods

	PriorityCeilingEmulation
	Constructors
	Methods

	PriorityInheritance
	Constructors
	Methods

	WaitFreeDequeue
	Constructors
	Methods

	WaitFreeReadQueue
	Constructors
	Methods

	WaitFreeWriteQueue
	Constructors
	Methods

	Rationale

	Asynchrony
	Overview
	Definitions
	Semantics
	Asynchronous Events and their Handlers
	Active Events and Dispatching
	Asynchronous Transfer of Control
	Summary of ATC Operation

	Interfaces
	BoundAbstractAsyncEventHandler
	Interruptible
	Methods

	Exceptions
	AsynchronouslyInterruptedException
	Fields
	Constructors
	Methods

	Timed
	Fields
	Constructors
	Methods

	Classes
	AbstractAsyncEvent
	Constructors
	Methods

	AbstractAsyncEventHandler
	Constructors
	Methods

	AsyncEvent
	Constructors
	Methods

	AsyncEventHandler
	Constructors
	Methods

	AsyncLongEvent
	Constructors
	Methods

	AsyncLongEventHandler
	Constructors
	Methods

	AsyncObjectEvent
	Constructors
	Methods

	AsyncObjectEventHandler
	Constructors
	Methods

	BoundAsyncEventHandler
	Constructors

	BoundAsyncLongEventHandler
	Constructors

	BoundAsyncObjectEventHandler
	Constructors

	Rationale

	Time
	Overview
	Definitions
	Semantics
	Interfaces
	ActiveEvent
	Methods

	Classes
	AbsoluteTime
	Constructors
	Methods

	ActiveEventDispatcher
	Constructors

	HighResolutionTime
	Fields
	Constructors
	Methods

	RelativeTime
	Constructors
	Methods

	Rationale

	Clocks and Timers
	Overview
	Definitions
	Semantics
	Clocks and Timables
	Timers
	Counter Model
	Comparator Model
	Triggering
	Behavior of Timers
	Phasing

	Interfaces
	Timable
	Methods

	Classes
	Alarm
	Fields
	Constructors
	Methods

	Clock
	Constructors
	Methods

	OneShotTimer
	Constructors

	PeriodicTimer
	Constructors
	Methods

	TimeDispatcher
	Constructors
	Methods

	Timer
	Pseudo-Code Representation of State Transitions for Timer
	Compact Graphic Representation of State Transitions for Timer
	Constructors
	Methods

	Rationale

	Memory Management
	Overview
	Physical Memory
	Stacked Memory
	Summary

	Definitions
	Semantics
	Allocation time
	The allocation context
	The Parent Scope
	Memory areas and schedulables
	Scoped memory reference counting
	Immortal memory
	Maintaining referential integrity
	Object initialization

	Maintaining the Scope Stack
	The enter method
	The executeInArea or newInstance methods
	Constructor methods for Schedulables

	The Single Parent Rule
	Scope Tree Maintenance
	On Scope Stack Push of ma
	On Scope Stack Pop of ma

	Interfaces
	ChildScopeVisitor
	Methods

	PhysicalMemoryCharacteristic
	PhysicalMemoryFilter
	Methods

	VirtualMemoryCharacteristic

	Enumerations
	NewPhysicalMemoryManager.CachingBehavior
	Enumeration Constants
	Constructors
	Methods

	NewPhysicalMemoryManager.PagingBehavior
	Enumeration Constants
	Constructors
	Methods

	Classes
	GarbageCollector
	Constructors
	Methods

	HeapMemory
	Fields
	Constructors
	Methods

	ImmortalMemory
	Fields
	Constructors
	Methods

	ImmortalPhysicalMemory
	Constructors
	Methods

	LTMemory
	Fields
	Constructors
	Methods

	LTPhysicalMemory
	Fields
	Constructors
	Methods

	MemoryArea
	Constructors
	Methods

	MemoryParameters
	Fields
	Constructors
	Methods

	NewPhysicalMemoryManager
	Constructors
	Methods

	PhysicalMemoryModule
	Constructors
	Methods

	PinnableMemory
	Constructors
	Methods

	SchedulableSizingParameters
	Constructors
	Methods

	ScopedMemory
	Constructors
	Methods

	SizeEstimator
	Constructors
	Methods

	StackedMemory
	Constructors
	Methods

	The Rationale
	The scoped memory model
	The physical memory model
	Problems with the current RTSJ 1.0.2 Physical Memory Framework
	The RTSJ Version 2.0 Physical Memory Framework
	An example

	Devices and Triggering
	Overview
	Semantics
	Raw Memory
	Raw Memory Region
	Raw Memory Factory
	Stride

	Direct Memory Access Support
	External Triggering
	Happenings

	Interrupt Service Routines

	Interfaces
	RawByte
	RawByteReader
	Methods

	RawByteWriter
	Methods

	RawDouble
	RawDoubleReader
	Methods

	RawDoubleWriter
	Methods

	RawFloat
	RawFloatReader
	Methods

	RawFloatWriter
	Methods

	RawInt
	RawIntReader
	Methods

	RawIntWriter
	Methods

	RawLong
	RawLongReader
	Methods

	RawLongWriter
	Methods

	RawMemory
	Methods

	RawMemoryRegionFactory
	Methods

	RawShort
	RawShortReader
	Methods

	RawShortWriter
	Methods

	Exceptions
	UnsupportedRawMemoryRegionException
	Fields
	Constructors

	Classes
	Happening
	Constructors
	Methods

	HappeningDispatcher
	Constructors
	Methods

	InterruptServiceRoutine
	Constructors
	Methods

	RawBufferFactory
	Constructors
	Methods

	RawMemoryFactory
	Fields
	Constructors
	Methods

	RawMemoryRegion
	Fields
	Constructors
	Methods

	Rationale
	Raw Memory
	Direct memory access

	Interrupt Handling
	An Illustrative Example
	Software architecture
	Device initialization
	Responding to external happenings
	Access to the flash controller's device registers

	System and Options
	Overview
	Semantics
	POSIX Signals
	POSIX Realtime Signals

	Classes
	POSIXRealtimeSignal
	Fields
	Constructors
	Methods

	POSIXRealtimeSignalDispatcher
	Constructors
	Methods

	POSIXSignal
	Fields
	Constructors
	Methods

	POSIXSignalDispatcher
	Constructors
	Methods

	RealtimeSecurity
	Constructors
	Methods

	RealtimeSystem
	Fields
	Constructors
	Methods

	Rationale

	Exceptions
	Overview
	Semantics

	Interfaces
	PreallocatedThrowable
	Methods

	Exceptions
	ArrivalTimeQueueOverflowException
	Fields
	Constructors

	CeilingViolationException
	Fields
	Constructors
	Methods

	DeregistrationException
	Fields
	Constructors

	DuplicateEventException
	Fields
	Constructors

	DuplicateFilterException
	Fields
	Constructors

	DuplicateHappeningException
	Fields
	Constructors

	InaccessibleAreaException
	Fields
	Constructors

	LateStartException
	Fields
	Constructors

	MITViolationException
	Fields
	Constructors

	MemoryInUseException
	Fields
	Constructors

	MemoryScopeException
	Fields
	Constructors

	MemoryTypeConflictException
	Fields
	Constructors

	OffsetOutOfBoundsException
	Fields
	Constructors

	ProcessorAffinityException
	Fields
	Constructors

	RegistrationException
	Fields
	Constructors

	ScopedCycleException
	Fields
	Constructors

	SizeOutOfBoundsException
	Fields
	Constructors

	UnknownHappeningException
	Fields
	Constructors

	UnsupportedPhysicalMemoryException
	Fields
	Constructors

	Classes
	AlignmentError
	Fields
	Constructors

	BacktraceManagement
	Constructors
	Methods

	IllegalAssignmentError
	Fields
	Constructors

	MemoryAccessError
	Fields
	Constructors

	ResourceLimitError
	Fields
	Constructors

	ThrowBoundaryError
	Fields
	Constructors

	Rationale

	Deprecated Classes
	Overview
	Semantics
	Interfaces
	PhysicalMemoryName
	PhysicalMemoryTypeFilter
	Methods

	Classes
	POSIXSignalHandler
	Fields
	Constructors
	Methods

	PhysicalMemoryManager
	Fields
	Constructors
	Methods

	RationalTime
	Fields
	Constructors
	Methods

	RawMemoryAccess
	Constructors
	Methods

	RawMemoryFloatAccess
	Constructors
	Methods

	VTMemory
	Constructors
	Methods

	VTPhysicalMemory
	Constructors
	Methods

	Rationale

	Conformance, Compliance, and Portability
	Minimum Implementations
	Modules
	Optionally Required Components
	Deployment Implementation

	Simulation Implementation
	Documentation Requirements

	Epilogue
	Changes from the First Edition
	Version 1.0.2
	Finalization
	Cost enforcement
	AsyncEventHandler
	Non-Default Initial Memory Area
	AsynchronouslyInterruptedException
	Exceptions

	Version 1.0.1
	Requirements
	Threads and Scheduling
	New Methods and Signature Changes
	Deleted and Deprecated Methods

	Memory Management
	New Methods and Signature Changes
	Deprecated Methods

	Synchronization
	New Methods and Signature Changes
	Deleted and Deprecated Methods

	Time
	New Methods and Signature Changes
	Deprecated Methods
	Deprecated Classes

	Clocks and Timers
	New Methods and Signature Changes

	Asynchrony
	New Methods and Signature Changes
	Deprecated Methods

	System and Options
	Exceptions
	Added Classes
	Changed Classes

	Global Terms
	Colophon
	Conventions
	Parameter Objects
	Java Platform Dependencies
	Illegal Parameter Values

