Realtime and Embedded

Specification for Java
Version 2.0

Draft 5

For 12" of October face-to-face Meeting

11 of October 2014

Editor
James J. Hunt
aicas GmbH
Haid-und-Neu-Strafie 18
D-76131 Karlsruhe, Germany

Copyright © 1999 — 2012 TimeSys
Copyright (© 2012 — 2014 aicas GmbH

All rights reserved

The Realtime Specification for Java (RTSJ) is under development within the Java

Community Process (JCP) by the members of the JSR-282 Expert Group (EG).

This group, was lead by TimeSys Inc. Corporation, but has been taken over by
aicas GmbH.

JOR-282 Expert Group Membership

James J. Hunt aicas GmbH
Benjamin Brosgol
Andy Wellings
Kelvin Nilsen Atego Systems
Ethan Blanton

Past Expert Group Members

Peter Dibble TimeSys
David Holmes Oracle

i

Contents

(1__Introductionl 1
(1.1 Guiding Principles| 2
(1.1.1 Applicability to Particular Java Environments| 3
[1.1.2 Backward Compatibility] 3
(1.1.3 Write Once, Run Anywhere] 3
(L.1.4 Current Practice vs. Advanced Features 3
(.1.5 Predictable Executionl 3
[1.1.6 No Syntactic Extension|. 3
(1.1.7 Allow Variation in Implementation Decisions| 3
(1.1.8 Interoperability| 4
(1.2 Areas of Enhancement! oL 4
(1.2.1 Thread Scheduling and Dispatching| 4
1.2.2 Memory Management|. 5)
[1.2.3 Synchronization and Resource Sharingl 5
(1.2.4 Asynchronous Event Handlingl)
(1.2.5 Task Interruption| 5
(1.2.6 Raw Memory Access|, 6
(1.2.7 Physical Memory Access| 6
[.2.8 Modularizationl 0oL 6
2__Overview 7
2.1~ Threads and Schedulingl 7
[2.2° Synchronization| o oo 9
[2.2.1 A Generalized Notion of Priority|. 9
[2.2.2 Priority Inversion| o000 9
[2.2.3 Priority Inversion Avoidance| 10
[2.2.4 Wait-Free Queues| 11
[2.3° Asynchrony|o 11
[2.3.1 Asynchronous Events| 12
[2.3.2 Asynchronous Transter of Controll 13
2.3.3 Principles| 13

ii CONTENTS

[2.3.4 Asynchronous Realtime Thread Termination| 15
[2.4 Clocks, Time, and Timers| 15
2.5 Memory Management| 16

2.5.1 Memory Areas|. 16

2.5.2 Heap Memory| 17

2.5.3 Immortal Memory|. oL 17

[2.5.4 Scoped Memory| 17

[2.5.5 Physical Memory Areas|. 18

[2.5.6 Budgeted Allocation| 18
[2.6 Devices and Special Memory| 18

2.6.1 Raw Memory Access| 19
2.7 System and Options| 19
2.8 Exceptions| 19

[3 Requirements and Conventions| 21
B.1 Modules 22

B.1.1 Base Modulel. o 22

B.1.2 Device Modulef o o0 24

[3.1.3 Alternate Memory Management Module] 25

[3.1.4 Optional Features| 26

[3.1.5 Deprecated Classes| 27
[3.2 Conditionally-Required Facilities| 28

[3.2.1 Options for Development Plattorms 28
[3.3 Required Documentation| 000 29
8.4 Conventions 30
8.5 Definitionsl 30

[4 Standard Java Classes and Language| 33
4.1 Priority| 33

[4.1.1 ~ Thread.setPriority()| 33

[4.1.2 Thread.getPriority(O| 34
4.2 Thread Groups| 34
M3 Current Threadl. o o 35
4.4 Java Memory Model| 36
[4.5 InterruptedException| oL 36
4.6 System Properties| 36
[4.7 Garbage Collection| o 36

[4.7.1 Realtime Garbage Collections| 37

4711 Thread-Based Collectorsl 37
4712 Allocation-Based Collectors 37

CONTENTS

[4.7.1.4 Developer Implementation|

B Realtime Threads|

D1 Overviewl

Hh.3.1.3 Methodsl

B4 Classed
b.4.1 NoHeapRealtimeThread|

Hh4.1.1 sonstructorsl L

6 Scheduling)
6.1 Overview| e

[6.3 Semantics and Requirements|
[6.3.1 Semantics and Requirements of Schedulers|
[6.3.2 Semantics and Requirements of the Base Scheduler]

6.3.2.1 Priorities
[6.3.2.2 Dispatching|.

[6.3.2.4 Cost Monitoring and Cost Entorcement|

[6.3.2.6 Aperiodic Release Control|.
6.3.2.7 Sporadic Release Control|
[6.3.2.8 Release Control for Asynchronous Event Handlers|
[6.3.2.9 Processing Groups| L

6.4.1.1 Methodsl

65 Classed o o o o
[6.5.1 Afhmity|. o
6.5.1.1 Constructorsl

il

iv CONTENTS

[6.5.2 AperiodicParameters|o 126
6.5.2.1 Freldsl o o 127
6.5.2.2 Constructorsl 129
6.5.2.3 Methods 131

[6.5.3 ImportanceParameters 133
6.5.3.1 Freldsl oo 134
06532 Constructors| 134
[6.5.3.3 Methods 134

6.5.4 PeriodicParameters 135
6.5.4.1 Constructors| 137
6.5.4.2 Methodsl L 140

[6.5.5 PriorityParameters L. 142
[6.5.5.1 Freldsl o 142
[6.5.5.2 Constructors 142
[6.5.5.3 Methodsl 143

[6.5.6 PriorityScheduler{o 144
6.5.6.1 Freldsl o 145
6.5.6.2 Constructors| 145
6.5.6.3 Methodsl 145

[06.0.7 ProcessingGroupParameters| 148
[6.5.7.1 Freldsl 151
[6.5.7.2 Constructors| 151
6.5.7.3 Methodd 152

6.5.8 ReleaseParameters 156
[6.5.8.1 Freldsl o 158
6.5.82 Constructors| 158
6.5.8.3 Methodsl L 160

659 Scheduler] 163
[6.5.9.1 Constructorsl 164
[6.5.9.2 Methods 164

[6.5.10 SchedulingParameters|. 166
65101 Fieldsl 167
[6.5.10.2 Constructors| 167
65103 Methods 167

[6.5.11 SporadicParameters|. o000 168
6.5.11.1 Frelds o 169
6.5.11.2 Constructors 171
65 11.3 Methodsl 173

6.6 Rationalel 174

[6.6.1 Multiprocessor Support|. L. 175

[6.6.2 Impact of Clock Granularity| 176

CONTENTS

[7 Synchronization|
(L1 Overviewl e e e e e e
[7.2 Semantics and Requirements|,
[7.2.1 Semantics for the Base Priority Scheduler|.
[7.2.2 Requirements For Additional Schedulers|

[r.3.1.1 constructorsl L
[7.3.1.2 Methodsl
[7.3.2 PriorityCeilingkmulationl
[(.3.2.1 constructorsl L L

[7.3.3 Prioritylnheritance] o 000

[7.3.4 WaitkreeDequeueo

[7.3.4.2 Methodsl
[7.3.5 WaitkreeReadQueue| 000
[.3.5.1 Constructors|
[(.3.5.2 Methodsl
[7.3.6 WaitkreeWriteQueue|o o000
[(.3.6.1 Constructorsl

[8 Asynchrony|
8.1 Overviewl e e e e e

[8.3 Semantics and Requirements
[8.3.1 Asynchronous Events and their Handlers|
[8.3.2 Active Events and Dispatching.
[8.3.3 Asynchronous Transfer of Control|

[8.3.3.1 summary of ATC Operation

[8.4.1 BoundAbstractAsynckventHandler|
[8.4.2 Interruptible]o oo
8.4.2.1 Methodsl
(8.5 Exceptions|

177

179
179
179
180
182
184
184
184
184
186
188
188
190
190
190
191
191
192
192
193
196
199
200
202
205

vi CONTENTS

[8.5.1 AsynchronouslylnterruptedException| 219
85.1.1 Fields 220
[8.5.1.2 Constructorsl 220
[8.5.1.3 Methodsl 221

[8.5.2 [imed 224
8521 Fields 225
[8.0.22 Constructors Lo 225
[8.5.2.3 Methodd 226

BE Classedot 228

[8.6.1 AbstractAsyncEvent|o 228
[8.6.1.1 Constructors| 228
[8.6.1.2 Methoddl 228

[8.6.2 AbstractAsynckventHandler| 232
[8.6.2.1 Constructorsl 232
[8.6.2.2 Methodd 234

[8.6.3 Asynckvent|o 243
[8.6.3.1 Constructors| 243
8632 Methodd 243

[8.6.4 AsyncEventHandler| 244
[8.6.4.1 Constructorslo 245
[8.6.4.2 Methodd 252

[8.6.5 AsyncLongkvent| o000 254
[8.6.5.1 Constructors 254
[8.6.5.2 Methodd 254

[8.6.6 AsyncLongkventHandler| 255
[8.6.6.1 Constructors| 256
[8.6.6.2 Methodsl 259

[8.6.7 AsyncObjectEvent| 261
[8.6.7.1 Constructorsl 262
[8.6.7.2 Methodd 262

[8.6.8 AsyncObjectEventHandler| 263
[8.6.8.1 Constructors| 263
[8.6.8.2 Methoddl 267

[8.6.9 Asynchronouslylnterruptedbkixception| 269

[8.6.10 BoundAsyncEventHandler| 271
8.6.10.1 Constructors 271

[8.6.11 BoundAsyncLongbventHandler 274
8.6.11.1 Constructors Lo 275

[8.6.12 BoundAsyncObjectkventHandler| 277
8.6.12.1 Constructorsl 278

CONTENTS

[0 Timel

9.1 Overviewl

9.4.1 ActiveBvent]
9.4.1.1 Methodsl

9.5.1.1 Constructorsl

[9.5.2 ActiveEventDispatcher|o

[9.5.3 HighResolutionTime]
9.5.3.1 Fieldsl o
9.5.3.2 Constructors]
9.5.3.3 Methodsl

I:),;i,A l;f:lali&f:l i“lf:l
9.5.4.1 constructors L L L
9.5.4.2 Methodsl

9.6 Rationalel

(10 Clocks and Timersl

(10.3.2.2 Comparator Model|.
(10.3.2.3 Triggeringl
(10.3.2.4 Behavior of Timers
(10.3.2.5 Phasingl

{0511 Fields oo

[105.1.2 Constructors
[10.5.1.3 Methodsl

vil

viii CONTENTS

1052 Clockl. 337
[10.5.2.1 Constructorsl 338
10.5.2.2 Methodd 338

[10.5.3 OneShotTimerl. 345
[10.5.3.1 constructorsl . .. L. L L L 346

10.5.4 PeriodicTimer 348
(05471 Constructorsl 348
10542 Methodd 350

(10.5.5 TimeDispatcher|o 356
[10.5.5.1 Constructors 356
[10.5.5.2 Methodsl 356

[10.5.6 Timerl 358

{10.5.6.1 Pseudo-Code Representation of State Transitions for Timer| . 358
[10.5.6.2 Compact Graphic Representation of State Transitions for Timer{367

(10.5.6.3 Constructors| 367
10.5.6.4 Methodd 368
(10.6 Rationalel 378
(11 Memory Management| 381
LT OVerviewl o o o 381
(11.1.1 Physical Memory| 382
(11.1.2 Stacked Memory| 383
(11.1.3 Summary| 386
(112 Definitions 387
[11.3 Semantics and Requirements| 388
(11.3.1 Allocation timel 388
I1.3.2 The allocation contextl 388
(11.3.3 'The Parent Scope| 389
(11.3.4 Memory areas and schedulable objects| 390
(11.3.5 Scoped memory reference counting| 390
(11.3.6 Immortal memory|. 392
(11.3.7 Maintaining reterential integrity| 392
[11.3.8 Object initialization|. 393
(11.4 Maintaining the Scope Stack| 393
[1.41 The enter method 394
11.4.2 The executeInArea or newlnstance methods 394
[11.4.3 Constructor methods for Schedulable Objects| 395
(11.5 The Single Parent Rule, 395
[11.5.1 Scope Tree Maintenance| 396
(11.5.1.1 On Scope Stack Pushoftma). 396

(11.5.1.2 On Scope Stack Popofmal 397

CONTENTS ix

(1.6 Interfaced 398
(11.6.1 ChildScopeVisitor| 398
(11.6.1.1 Methods 398
(11.6.2 PhysicalMemoryCharacteristicf 399
[11.6.3 PhysicalMemoryFilter] 399
01.6.3.1 Methods 399
(11.6.4 VirtualMemoryCharacteristic, 400
L7 Enumerationd 401
(11.7.1 NewPhysicalMemoryManager.CachingBehavior{. 401
1. 7.1.1 FEnumeration Constantsl 401
1.7.1.2 Constructorsl, 401
I1.7.1.3 Methods 401
(11.7.2 NewPhysicalMemoryManager.PagingBehaviorf 402
(1.7.2.1 FEnumeration Constantsl 402
1.7.22 Constructors 402
1.7.2.3 Methodsl 403
ML8Classed v v vt 404
(11.8.1 GarbageCollector] 404
[[1.81.1 Constructorsl 404
1.8.1.2 Methodsl 404
(11.8.2 HeapMemory| 405
01.821 Fields 405
[11.82.2 Constructorsl 405
[11.823 Methods 406
(11.8.3 ImmortalMemory| 409
11.831 Fieldd 410
11.8.32 Constructorsl, 410
1.833 Methodsl 410
(11.8.4 ImmortalPhysicalMemory| 412
I1.84.1 Constructors 412
[11.84.2 Methodsl 415
(11.8.5 LTMemoryl. 416
I1.85.1 Fieldd 417
[1.85.2 Constructorsl 417
[11.853 Methods 422
(11.8.6 LTPhysicalMemory| 422
1.86.1 Fieldsl 423
(11.8.6.2 Constructorsl Lo 423
11.8.6.3 Methodsl 426
(11.8.7 MemoryAreal. 427

11.8.7.1 Constructorslo, 427

S CONTENTS

1.8.72 Methodd 429
(11.8.8 MemoryParameters| 438
L8881 Fields o o 439
[11.88.2 Constructors, 439
11.8.83 Methodd 441
(11.8.9 NewPhysicalMemoryManager| 443
11.8.9.1 sonstructors] L. Lo L L 444
11.89.2 Methods 444
(11.8.10 PhysicalMemoryModule| 447
{1.810.1 Constructorso 447
[11.8.10.2 Methodsl 447
[11.8.11 PinnableMemory| 448
1.8 11.1 Constructors, 448
MIL8IT2 Methodd 449
(11.8.12 SchedulableSizingParameters| 451
H1.812.1 Constructors 451
(11.812.2 Methodsl 452
[11.8.13 ScopedMemory|o 453
1.813.1 Constructors L 454
11.8.13.2 Methodd 456
[11.8.14 Sizebsstimator] Lo 475
I1.8.14.1 Constructors 476
18142 Methods 476
(11.8.15 StackedMemory| L 478
({1.8.15.1 Constructors o 480
(1.8.15.2 Methodsl 485
1.9 The Rationald 489
(11.9.1 The scoped memory model| 489
(11.9.2 The physical memory model| 490
(11.9.2.1 Problems with the current RTSJ 1.0.2 Physical Memory Frame- |

[workl ... 492
(11.9.2.2 The RTSJ Version 2.0 Physical Memory Framework{. 494
(11.9.2.3 Anexample]. o 495

[12 Devices and Triggering| 499
2.1 Overview] o o e 499
[12.2 Semantics and Requirements| 500
(12.2.1 Raw Memory | 501
(12.2.1.1 Raw Memory Regionl 501
(12.2.1.2 Raw Memory Factoryl 503

12213 Stridelo 504

CONTENTS xi

(12.2.2 Direct Memory Access Support| 504
(12.2.3 External Triggering| 505
(12.2.3.1 Happenings|. 506
[12.2.4 Interrupt Service Routines| 506
12.3 Interfaces 510
(12.3.1 RawBytel 510
(12.3.2 RawByteReader| 510
12321 Methods 511
[12.3.3 RawByteWriter]00 513
12.3.3.1 Methodsl o 513
12.3.4 RawDoublel 515
[12.3.5 RawDoubleReader] 515
12351 Methods 516
12.3.6 RawDoubleWriterd 518
12.3.6.1 Methodsl 519
(12.3.7 RawFloatl 520
[2.38 RawFloatReaded 521
12381 Methods 521
12.3.9 RawFloatWriterl 523
12.3.9.1 Methodsl o 524
12310 Rawlntl 526
12.3.11 RawIntReader| 526
2.3 11.1 Methodsl 527
[12.3.12 RawIntWriter] 529
123121 Methods 529
(12.3.13 RawlLong|. 531
[12.3.14 RawLongReader|. 532
(12.3.14.1 Methodsl 532
(12.3.15 RawLongWriter| 534
(12.3.15.1 Methodsl 535
[12.3.16 RawMemory|o 537
12.3.16.1 Methodsl 537
(12.3.17 RawMemoryRegionkactory|. 537
123171 Methodsl 538
12.3.18 RawShortl 556
[2.3.19 RawShortReaded 556
12.3.19.1 Methodsl 557
12.3.20 RawshortWriter|o oo 559
12.3.20.1 Methodsl 559
(12.4 Exceptions| 562

(12.4.1 UnsupportedRawMemoryRegionException| 562

xii CONTENTS

12411 Fields 562
(12.4.1.2 Constructors 562
D25 Classed oo 564
(12.5.1 Happening| 564
[2511 Constructors 564
12512 Methods 565
[12.5.2 HappeningDispatcher| 569
(12521 Constructors Lo 569
(12.5.2.2 Methodsl 569
(12.5.3 InterruptServiceRoutinel o71
[12.5.3.1 Constructors 571
(2532 Methodd 572
(12.5.4 RawBufterFactory|. 574
12541 Constructors YE)
(12542 Methodsl 575
(12.5.5 RawMemoryFactory|. 278
02551 Fields 582
[12.5.5.2 Constructors 582
(12553 Methods 583
(12.5.6 RawMemoryRegion| 0. 601
12561 Fields 601
[12.5.6.2 Constructors 602
(2563 Methodd 602
[12.6 Rationalel 603
(12.6.1 Raw Memory| 603
(12.6.1.1 Direct memory access| 605
(12.6.2 Interrupt Handlingl 606
(12.6.3 An lllustrative Example, 608
12.6.3.1 Software architecturel 608
[12.6.3.2 Device initialization| 610
[12.6.3.3 Responding to external happenings{. 611
[12.6.3.4 Access to the flash controller’s device registers| 611

(13 System and Options| 615
3.1 Overview] e 615
[13.2 Semantics and Requirements| 615
[13.2.0.5 POSIX Signals| 0L 616
(13.2.0.6 POSIX Realtime Signals| 616
M337CMassed . . . o o o 617
(13.3.1 POSIXRealtimeSignalf 617

CONTENTS xiii

13.3.1.2 Constructorsl, 617
(13.3.1.3 Methods 617
[13.3.2 POSIXRealtimeSignalDispatcher|. 622
13321 Constructorsl 622
13322 Methods 622
[13.3.3 POSIXSignall 624
13331 Fieldd 625
M3332 Constructors 625
13.3.3.3 Methods 625
[13.3.4 POSIXSignalDispatcher) 629
13341 Constructorsl 629
(13342 Methods 630
[13.3.5 RealtimeSecurity] 632
(13.3.5.1 Constructors|, 633
13.3.5.2 Methods 633
[13.3.6 RealtimeSystem| 636
13361 Fields 636
[13.3.6.2 Constructors 637
13.3.6.3 Methodsl 637
13.4 Rationalel 640
(14 Exceptions| 641
4.1 Overview] e 641
[14.1.1 Semantics and Requirements| 641
14.2 Interfaced 642
(14.2.1 PreallocatedThrowablel 642
14211 Methods 642
(14.3 Exceptions| 647
(14.3.1 Arrival TimeQueueOverflowkxception| 647
143.1.1 Fieldd 647
4312 Constructors 647
(14.3.2 CeilingViolationkException| 648
14321 Fields 648
14.3.22 Constructorsl 648
14323 Methods 650
(14.3.3 Deregistrationkxception| 651
14331 Fieldd 651
14.3.3.2 Constructorsl 651
(14.3.4 DuplicateEventException|.o 652
14341 Fieldd 652

CONTENTS

(14.3.5 DuplicateFilterbExceptionl o000 653
14351 Fieldd 653
[14.3.5.2 Constructors 653

(14.3.6 DuplicateHappeningkixceptionl 654
14.3.6.1 Fieldd 654
14.3.6.2 Constructors 654

(14.3.7 InaccessibleArealkxception| 655
(14.3.7.1 Fields o 655
[14.3.72 Constructors 655

(14.3.8 LateStartkxception| oo oo 656
14381 Fields 656
14382 Constructors Lo 656

(14.3.9 MI'TViolationkxception|. 657
(14.3.9.1 Fields o o 657
[14.3.9.2 Constructors 658

(14.3.10 MemoryInUselxception| 658
143101 Fields o 659
14.3.10.2 Constructors L 659

(14.3.11 MemoryScopekxception| 659
143111 Fieldslo 660
[4311.2 Constructors 660

(14.3.12 MemoryTypeConflictException| 661
43121 Reldslo 661
(14.3.12.2 Constructors 661

(14.3.13 OftsetOutOtBoundskExceptionl 662
143131 Fieldsl 662
14.3.13.2 Constructors Lo 663

(14.3.14 ProcessorAfhinityException| 663
(143141 Fieldsl o 664
[14.3.14.2 Constructorsl 664

(14.3.15 Registrationkixception| 664
[14.3.15.1 Fieldsl 665
(14.3.15.2 Constructorso 665

(14.3.16 ScopedCyclekxception| 666
(14.3.16.1 Fieldsl o 666
[14.3.16.2 Constructorsl 666

(14.3.17 SizeOutOfBoundsException| 667
143171 Fields 667
143172 Constructorso 668

(14.3.18 UnknownHappeningkxception| 668

CONTENTS XV

14.3.182 Constructorsl Lo 669
(14.3.19 UnsupportedPhysicalMemoryException| 669
143191 Fieldsl 670
14.3.19.2 Constructorsl 670
MAZ Classed . . o o oo oo 672
(14.4.1 AlignmentError| 672
14411 Fieldd 672
4.4.1.2 Constructorsl 672
[14.4.2 BacktraceManagement|o 672
14421 Constructorsl 673
14.4.2.2 Methods 673
(14.4.3 IllegalAssignmentErrorf 675
14431 Fieldslo 675
14432 Constructors|, 675
(14.4.4 MemoryAccesskrror|.o o000 676
4441 Fields o 676
14442 Constructorsl Lo 677
14.45 ResourceLimitErrord 677
14451 Fieldd 678
14.452 Constructors 678
(14.4.6 ThrowBoundarykrror|. 678
14.46.1 Fieldd 679
14.4.6.2 Constructorsl Lo 679
14.4.7 Rationalel 680
(15 Deprecated Classes| 681
5.1 Overviewl e e e e e 681
[15.2 Semantics and Requirements|, 681
(15.3 Interfaces o 682
(15.3.1 PhysicalMemoryName| 682
(15.3.2 PhysicalMemory'lypekilter{. 682
(15.3.2.1 Methodsl 682
M54 Classes o oo 689
(15.4.1 POSIXSignalHandler| 689
154.1.1 Fieldsl 689
[15.4.1.2 Constructorsl 695
15.4.1.3 Methods 695
(15.4.2 PhysicalMemoryManager|{ 696
15421 Fieldd 698
(15422 Constructorsl Lo o 700

xvi CONTENTS

(1543 RationalTimel o 705
(15431 Fields 706
[15.4.3.2 Constructors 706
15433 Methodd 706

(15.4.4 RawMemoryAccess| L 706
05441 Constructors 710
(15.4.4.2 Methodd 712

(15.4.5 RawMemoryFloatAccess 730
15451 Constructors 732
5452 Methodd 735

[15.4.6 VIMemory| 741
15.4.6.1 onstructors| 742
15.4.6.2 Methodd 746

(15.4.7 V'TPhysicalMemory{. 747
05471 Constructors 748
(15.4.72 Methodsl 762

(5.5 Rationalel 763
[A Conformance, Compliance, and Portability| 765
[A.1 Minimum Implementations| 765
(A2 Modules 765
[A.3 Optionally Required Components| 765
[A.3.1 Deployment Implementation| 766
[A.4 Simulation Implementation| 767
[A.5 Documentation Requirements| 767

B pilog, 769
[C Changes from the First Edition| 771
[CI Version T.02] 771

(C.1.1 Finalizationl 771

[C.1.2 Cost enforcement! 771

(C.1.3 AsyncEventHandler| 771

(C.1.4 Non-Default Initial Memory Areal 772

(C.1.5 Asynchronouslylnterruptedbkxception| 772

(C.1.6 Exceptions|. 772

[C2 Version 1.0l 772

(C.2.1 Requirements| 773

(C.2.2 Threads and Schedulingl 773
(C.2.2.1 New Methods and Signature Changes| 773

(C.2.2.2 Deleted and Deprecated Methods|. 776

(C.2.3 Memory Management|. 776

(C.2.3.1 New Methods and Signature Changes| 776
(C.2.3.2 Deprecated Methods|., 779
(C.2.4 Synchronizationl 779
(C.2.4.1 New Methods and Signature Changes| 779
(C.2.4.2 Deleted and Deprecated Methods|. 781
C25 Time 781
(C.2.5.1 New Methods and Signature Changes| 781
(C.2.5.2 Deprecated Methods|. 783
(C.2.5.3 Deprecated Classes|, 783
[C2.6 Clocks and Timers 783
(C.2.6.1 New Methods and Signature Changes| 783
(C.2.7 Asynchrony| 784
(C.2.7.1 New Methods and Signature Changes| 784
(C.2.7.2 Deprecated Methods| 784
[C.2.8 System and Options| 785
(C.2.9 Exceptions|. 786
(€291 Added Classes|, 786
(C.2.9.2 Changed Classes|, 786
(C.3 Global Termsl 786
[C.4 Colophon| 787
[C5 Conventions 787
(C.5.1 Parameter Objects| 787
(C.5.2 Java Plattorm Dependencies| 788
(C.5.3 lIllegal Parameter Values| 788

List of Figures

(8.1 The Event Class Higherarchy| 210
[10.1 Sequence Diagram for Using a Timer| 327
[10.2 Sequence Diagram for Realtime Sleep| 328
(11.1 Manipulation of StackedMemory Areas 385
(12.1 Raw Memory Interface| 502
122 Fvent Classes| o 503

[12.3 Happening State Transition Diagram| 505

(12.4 Interrupt servicing | 507
[12.5 Creating Raw Memory Accessors| 604
(12.6 Flash memory device| 0. 606
(12.7 Flash memory classes| 608
[12.8 Sequence diagram showing initialization operations| 610
[12.9 Sequence diagrams showing operations to initialize the hardware devicel611
(12.10The FMSocketController.handleAsync method, 612
(12.11Application usage| 613

List of Tables

(12.1 Device registers| 609

XVviil

Chapter 1

Introduction

The goal of the Real-Time Specification for Java (RTSJ) is to support the use of
Java technology in embedded and realtime systems. It provides a specification for
refining the Java Language Specification and the Java Virtual Machine Specification
and of providing an extended Application Programming Interface that enables the
creation, verification, analysis, execution, and management of Java programs for
control and sensor applications.

The Java Virtual Machine and the Java Language where concieved as a portable
environment for desktop and server applications. The emphasis has been on through-
put and responsiveness. These are characteristics obtainable with time-sharing sys-
tems. For this conventional Java environment, it is more important that each task
make progress, then that a particular task completes within a predefine time slot.

In a realtime system, the system tries to schedule the most critical task that
is ready to run first. When this is the most critical task, it runs until either until
it is finished, it starts a more critical task, or it needs to wait for some event or
data. When it is not the most critical task in the system, i.e., a more critical task
is waiting on some event or data, it can also be preempted by a more critical task
that ceases to wait for its event or data.

Realtime scheduling is commonly done with a priority preemptive scheduler,
where tasks that have frequent short deadlines are given priority of tasks that have
longer deadline. The programmer is responsible for encoding some notion of task
importance to priorities. The goal is to see that all tasks finish within there deadline.
Scheduling analysis, such as Rate Monotonic Analysis, can be used to help determine
this.

Many realtime systems have nonrealtime components, so it is desirable to be
able to combine realtime and nonrealtime tasks in a single system. Realtime tasks
are then given preference over nonrealtime tasks. For Java, this means that realtime
tasks must be scheduled before threads with conventional Java priorities (1-10). Be-
ing able to synchronize between tasks, both realtime and conventional Java threads,

2 CHAPTER 1. INTRODUCTION

adds additional requirements as well.

Providing realtime semantics and the additional programming interfaces required
is a core part of this specification. So much so that the original specification pro-
vided special memory areas to avoid the use of garbage collection. The availability of
various techniques for realtime garbage collection has changed the picture. Though
still part of the specification, these special are no longer central to it. Realtime
scheduling and priority inversion avoidance for synchronization are the core of pro-
viding realtime response. These are provided through refinements to the base Java
semantics and additional classes.

Realtime task can be modeled both with realtime threads and with event han-
dlers. Realtime threads are much the same as conventional Java threads except
for how they are scheduled. Event handlers encapsulate a bit of work that is done
every time some event occurs. Events are referred to as asynchronous because they
generally occur independent of program flow. Thus, event a timed event is con-
sidered to be an asynchronous event, but scheduled periodically. Event handling
provides a less resource intensive means of writing control applications the under-
lying thread mechanism can be shared between event handlers. Deadline analysis
is also somewhat simpler because the end of the work to be done is well bounded.
Event handling is ideal for period task and responding to external impulses. The
specification provides both paradigms.

Though realtime is necessary for many control tasks, it is not sufficient. A
significant part of the RTSJ API address communication with the outside world
through devices and signals. This makes it possible to write control applications
without resorting to JNI, thereby maintaining the integrity and safety that Java
offers.

Since not all application need all aspects of the specification, there are now
modules to suite the major application scenarios. This should make it easier for
conventional JVM providers to include basic specification facilities without nega-
tively impacting their core application domains, but still be compatible with hard
realtime implementations. The goal is to make the transition between conventional
JVMs and realtime JVMs easier.

1.1 Guiding Principles

Providing a coherent semantics and set of programming interfaces requires some
guiding principles around which to organize the RTSJ. These principles delimit the
scope of the RTSJ and its compatibility requirements with conventional Java.

1.1. GUIDING PRINCIPLES 3

1.1.1 Applicability to Particular Java Environments

The RTSJ shall not include specifications that restrict its use to a particular Java en-
vironment, such as a particular versions of the Java Development Kit, an Embedded
Java Application Environment, or a Java Edition, beyond the natural development
of the Java language.

1.1.2 Backward Compatibility

The RTSJ shall not prevent existing, properly written, conventional Java programs
from executing on implementations of the RTSJ.

1.1.3 Write Once, Run Anywhere

The RTSJ should recognize the importance of “Write Once, Run Anywhere”, but it
should also recognize the difficulty of achieving WORA for realtime programs and
not attempt to increase or maintain binary portability at the expense of predictabil-
ity. Hence, the goal should be “Write Once Carefully, Run Anywhere Conditionally”.

1.1.4 Current Practice vs. Advanced Features

The RTSJ should address current realtime system practice as well as allow future
implementations to include advanced features.

1.1.5 Predictable Execution

The RTSJ shall hold predictable execution as first priority in all trade-offs; this may
sometimes be at the expense of typical general-purpose computing performance
measures.

1.1.6 No Syntactic Extension

In order to facilitate the job of tool developers, and thus to increase the likelihood of
timely implementations, the RTSJ shall not introduce new keywords or make other
syntactic extensions to the Java language.

1.1.7 Allow Variation in Implementation Decisions

Implementations of the RTSJ may vary in a number of implementation decisions,
such as the use of efficient or inefficient algorithms, trade-offs between time and
space efficiency, inclusion of scheduling algorithms not required in the minimum

4 CHAPTER 1. INTRODUCTION

implementation, and variation in code path length for the execution of byte codes.
The RTSJ should not mandate algorithms or specific time constants for such, but
require that the semantics of the implementation be met and where necessary put
limits on execution time complexity. The RTSJ offers implementers the flexibility to
create implementations suited to meet the requirements of their customers.

1.1.8 Interoperability

It should be possible to implement all aspects of the RTSJ on a conventional JVM
with the exception that realtime response and pointer assignment rules would not
necessarily be guaranteed. This should ease the transition between conventional and
realtime programming and aid functional testing on a conventional JVM. The API
should support modules for this as well.

1.2 Areas of Enhancement

In each guiding principle has had a direct effect on the develop of the specification.
There are eight aspects of these refinements and additions in the specification. Their
enumeration should aid the understanding of the rest of the specification.

1.2.1 Thread Scheduling and Dispatching

Portability dictates the specification of at least one standard realtime scheduler,
but in light of the significant diversity in scheduling and dispatching models and the
recognition that each model has wide applicability in the diverse realtime systems
industry, the specification should provide an underlying scheduling infrastructure
that can be extended to use other scheduling algorithms for scheduling realtime
Java threads and events.

The specification should be constructed to allow implementations to provide
unanticipated scheduling algorithms. Implementations will enable the programmatic
assignment of parameters appropriate for the underlying scheduling mechanism as
well as provide any necessary methods for the creation, management, admittance,
and termination of realtime Java threads. For now, a particular thread scheduling
and dispatching mechanism may be bound to an implementation; however, there
should be enough flexibility in the thread scheduling framework to enable future
versions of the specification to build on this release.

To accommodate current practice, the RTSJ shall require a base scheduler in all
implementations. The required base scheduler will be familiar to realtime system
programmers. It is priority preemptive scheduler with priorities above the conven-
tion Java priorities (1-10).

1.2. AREAS OF ENHANCEMENT 5

1.2.2 Memory Management

Automatic memory management is a particularly important feature of the Java
programming environment. The specification should enable, as much as possible,
the job of memory management to be implemented automatically by the underly-
ing system and not intrude on the programming task. Many automatic memory
management algorithms, also known as garbage collection (GC), exist, and many of
those apply to certain classes of realtime programming styles and systems. In an
attempt to accommodate a diverse set of GC algorithms, the specification defines a
memory allocation and reclamation paradigm that should
e be independent of any particular GC algorithm,
e enable the program to precisely characterize a GC algorithm’s effect on the
execution time, preemption, and dispatching of realtime Java threads, and
e enable the allocation and reclamation of objects outside of any interference by
any GC algorithm.

1.2.3 Synchronization and Resource Sharing

Logic often requires serial access to resources and realtime systems introduce an
additional complexity: the need to minimize priority inversion and hence the exces-
sive delay of more critical tasks. The least intrusive specification for enabling real-
time safe synchronization is to require that implementations of the Java keyword
synchronized implement one or more algorithms that prevent priority inversion
among realtime Java threads that share the serialized resource. In addition, the
specification should provide other data passing mechanisms to minimize the need
for synchronization.

1.2.4 Asynchronous Event Handling

Realtime systems typically interact closely with the real world. With respect to
the execution of logic, the real world is asynchronous; therefor the specification
includes efficient mechanisms for programming disciplines that would accommodate
this inherent asynchrony. The RTSJ requires a general mechanism for asynchronous
event handling. Required classes represent things that can happen and logic that
executes when those things happen. A notable feature is that the execution of the
logic should be scheduled and dispatched by an implemented scheduler.

1.2.5 Task Interruption

Sometimes, the real world changes so drastically (and asynchronously) that the cur-
rent point of logic execution should be immediately and efficiently ended and control

6 CHAPTER 1. INTRODUCTION

transferred to another point of execution. The RTSJ should include a mechanism
which extends Java’s exception handling to enable applications to programmatically
change the locus of control of another Java thread. This mechanism may restrict
this asynchronous transfer of control to logic specifically written with the assump-
tion that its locus of control may asynchronously change. Due to the inherent
susceptibility to deadlock, thread stop cannot be used for this.

1.2.6 Raw Memory Access

Accessing device memory is not in and of itself a realtime issue, many realtime
systems require it for providing realtime control of a system. This requires an API
providing programmers with byte-level access to physical device registers, whether
in main memory or in some [/O space. This API must be as efficient as possible,
since such access is often under tight time constraints.

1.2.7 Physical Memory Access

Some systems provide memory areas that differ in important aspects, such as time
to read or write data and its persistence. Being able to take advantage of these areas
can have an impact on performance. This specification should enable their efficient
use.

1.2.8 Modularization

No all applications require all aspects of the specification. In fact, having a core set
of the APIs presented would even be useful for conventional Java programming and
aid overall interoperability. To this end, the specification should provide a core set
of APIs and a few optional modules as well as a semantics for use in conventional
JVMs that do not offer realtime guarantees. This should enable implementations to
be optimized for particular use cases and enable convention Java environments to
be used to help develop code that can be more easily shared between realtime and
conventional systems.

Chapter 2

Overview

The RTSJ comprises several areas of extended semantics. These areas are discussed
in approximate order of their relevance to realtime programming. The semantics
and mechanisms of each of threads and scheduling, synchronization, asynchronous
event handling, asynchronous transfer of control, memory management, and physical
memory access are all crucial to the acceptance of the RTSJ as a viable realtime
development platform. Further details, exact requirements, class documentation,
and rationale for these extensions are given in subsequent chapters.

2.1 Threads and Scheduling

One of the concerns of realtime programming is to ensure the timely or predictable
execution of sequences of machine instructions. Various scheduling schemes name
these sequences of instructions differently, for example, thread, task, module, or
block. In Java, this computation is executed in the context of a thread. Since Java
threads where designed for fair executionﬂ rather than predictable execution, the
RTSJ introduces the concept of a schedulables. These are the objects managed by the
base scheduler: [RealtimeThread|and its subclasses and [Abstract AsyncEventHandler
and its subclasses. RealtimeThread is a specialization of Java’s Thread.

Timely execution of schedulables means that the programmer can determine,
by analysis of the program, testing the program on particular implementations,
or both, whether particular threads will always complete execution before a given
timeliness constraint. This is the essence of realtime programming: the addition of
temporal constraints to the correctness conditions for computation. For example,
for a program to compute the sum of two numbers, it may no longer be acceptable to

!Actually, neither the Java Virtual Machine Specification[?] nor the Java Language
Specification[?] defines how Java threads should be scheduled, but most implementations, including
the reference implementations, use some sort of fair scheduling.

7

8 CHAPTER 2. OVERVIEW

compute only the correct arithmetic answer but the answer must be computed within
a particular time interval. Typically, temporal constraints are deadlines expressed
in either relative or absolute time.

The term scheduling (or scheduling algorithm) refers to the production of a se-
quence (or ordering) for the execution of a set of schedulables (a schedule). This
schedule attempts to optimize a particular metric (a metric that measures how well
the system is meeting the temporal constraints). A feasibility analysis determines
if a schedule has an acceptable value for the metric. For example in hard realtime
systems, the typical metric is “number of missed deadlines” and the only acceptable
value for that metric is zero. So called soft realtime systems use other metrics (such
as mean tardiness) and may accept various values for the metric in use.

Many systems, including most conventional Java implementations, use thread
priority to guide the determination of a schedule. Priority is typically an integer
associated with a thread; these integers convey to the system the order in which the
threads should execute. The generalization of the concept of priority is execution
eligibility. The term dispatching refers to that portion of the system which selects
the thread with the highest execution eligibility from the pool of threads that are
ready to run.

In current realtime system practice, the assignment of priorities is typically under
programmer control as opposed to under system control. As base scheduler for
realtime tasks, the RTSJ provides preemptive priority-based first-in-first-out (FIFO)
scheduler, which also leaves the assignment of priorities to programmer control.
Most realtime operation systems (RTOS) are also based on priority preemptive
FIFO scheduling.

The RTSJ defines a number of classes with names of the format <string>Par-
ameters such as ReleaseParameters, which provide parameters for resource man-
agement. An instance of one of these parameter classes holds a particular resource-
demand characteristic for one or more schedulable objects. For example, the Prior-
ityParameters subclass of SchedulingParameters contains the execution eligibil-
ity metric of the base scheduler, i.e., a priority. At some time (construction-time or
later when the parameters are replaced using setter methods), instances of parame-
ter classes are bound to a schedulable object. The schedulable object then assumes
the characteristics of the values in the parameter object. For example, a Prior-
ityParameters instance with its priority set to the value representing the highest
priority available on a system is bound to a schedulable, then that schedulable will
assume the characteristic that it will execute whenever it is ready in preference to
all other schedulables (except, of course, those also with the same priority).

The RTSJ provides implementers with the flexibility to install arbitrary schedul-
ing algorithms in an implementation of the specification. This is to support the
widely varying requirements of the realtime systems industry with respect to schedul-
ing. Use of the Java platform may help produce code written once but able to be

2.2. SYNCHRONIZATION 9

executed on many different computing platforms (known as Write Once, Run Any-
where.) The RTSJ contributes to this goal, but the rigors of realtime systems detract
from it. The RTSJ’s rigorous specification of the required priority scheduler is critical
for portability of time-critical code, but the RTSJ permits and supports platform-
specific schedulers which are not necessarily portable.

2.2 Synchronization

If the computation in each thread was independent of the computation in all other
threads, scheduling alone would be enough to ensure timeliness; however, this is
usually not the case. Threads often need to communicate with one another or share
data. Resources must be shared as well. Two threads cannot read different data
from the disk at the same time nor write data to a disk at the same time. They
cannot send a message to another machine at the same time. They cannot update
the same data at the same time. One thread may have to wait for another thread
to get the data it needs. Just as in a normal system, synchronization is required.
In a realtime system, this synchronization must not prevent other threads from
completing their tasks on time.

2.2.1 A Generalized Notion of Priority

For the purpose of discussing synchronization, the use of the term priority is inter-
preted a bit more loosely than in conventional usage. In particular, the term highest
priority thread merely indicates the most eligible thread (the thread that the dis-
patcher would choose among all of the threads that are ready to run) and doesn’t
necessarily presume a strict priority-based dispatch mechanism. This more general
notion of priority divorces the discussion of synchronization from a particular notion
of realtime scheduling.

2.2.2 Priority Inversion

The additional concern for synchronization in a realtime system, as opposed to a
conventional system, is that blocking can cause the wrong thread to run first. A
high priority thread can be blocked by a low priority thread that is vying for the
same resource. A priority queue can be used to ensure that a highest priority thread
goes first, when more than one thread are waiting to enter a synchronized block,
but this is not always sufficient.

For example, in a system with three threads, t;, t5, and t3, where t; has the
highest priority and ¢3 has the lowest priority, ¢, can prevent ¢; from running by
preempting to. Whenever thread ¢; attempts to acquire a lock that is held by thread

10 CHAPTER 2. OVERVIEW

t3, it is blocked until ¢3 is finished; but, if thread t, is becomes ready to run before
t3 is finished, if it does run it could prevent t3 from running indefinitely, thereby
keeping t; blocked past its deadline.

What is needed is a mechanism the ensure that, while ¢; is waiting on a resource
in used by t3, thread t3 runs before all threads with a priority less than ¢;.

2.2.3 Priority Inversion Avoidance

Two of the most common mechanisms for avoiding priority inversion are priority
inheritance and priority ceiling emulation (a.k.a. highest locker protocol). Both of
these boost the priority of the tread holding the lock in order to prevent a third
thread from preventing the holder from finishing executing the synchronized code
when a higher priority thread is waiting. The difference is how high the priority is
raised and when. Both take effect when a thread is in a synchronized section of
code.

The first is the default behavior for synchronized blocks and methods. It applies
to all code running within the implementation not just to realtime threads. The
priority inheritance protocol is a well-known algorithm in the realtime scheduling
literature and it has the following effect. If thread t; attempts to acquire a lock that
is held by a lower-priority thread t3, then t3’s priority is raised to that of ¢; as long
as t3 holds the lock (and recursively if ¢3 is itself waiting to acquire a lock held by
an even lower-priority thread).

The specification also provides a mechanism by which the programmer can over-
ride the default system-wide policy, or control the policy to be used for a particular
monitor, provided that policy is supported by the implementation. The second
policy, priority ceiling emulation protocol, can be set using this mechanism. It is
also a well-known algorithm in the literature. The folloing three points provide a
somewhat simplified description of its effect.

e A monitor is given a “priority ceiling” when it is created; the programmer
should choose the highest priority of any thread that could attempt to enter
the monitor.

e Assoon as a thread enters synchronized code, its (active) priority is raised to
the monitor’s ceiling priority. If, through programming error, a thread has a
higher base priority than the ceiling of the monitor it is attempting to enter,
then an exception is thrown.

e On leaving the monitor, the thread has its active priority reset. In simple
cases it will set be to the thread’s previous active priority, but under some
circumstances (e.g. a dynamic change to the thread’s base priority while it
was in the monitor) a different value is possible

Threads and asynchronous event handlers waiting to acquire a resource must be
released in execution eligibility order. This applies to the processor as well as to

2.3. ASYNCHRONY 11

synchronized blocks. If schedulable objects with the same execution eligibility are
possible under the active scheduling policy, such schedulable objects are awakened
in FIFO order. This is exemplified in the following scenarios.

e Threads waiting to enter synchronized blocks are granted access to the syn-
chronized block in execution eligibility order.

e A blocked thread that becomes ready to run is given access to the processor
in execution eligibility order.

e A thread whose execution eligibility is explicitly set by itself or another thread
is given access to the processor in execution eligibility order.

e A thread that performs a yield will be given access to the processor after
waiting threads of the same execution eligibility.

e Threads that are preempted in favor of a thread with higher execution eligi-
bility may be given access to the processor at any time as determined by a
particular implementation. The implementation is required to provide docu-
mentation stating exactly the algorithm used for granting such access.

In any case, there needs to be a fixed upper bound on the time required to enter
a synchronized block for an unlocked monitor.

2.2.4 Wait-Free Queues

While the RTSJ requires that the execution of nonheap schedulable objects must not
be delayed by garbage collection on behalf of lower-priority schedulable objects, an
application can cause a no-heap schedulable object to wait for garbage collection by
synchronizing using an object between an heap-using thread or schedulable object
and a non-heap schedulable object. The RTSJ provides wait-free queue classes to
provide protected, non-blocking, shared access to objects accessed by both regular
Java threads and no-heap realtime threads. These classes are provided explicitly
to enable communication between the realtime execution of non-heap schedulable
objects and regular Java threads or heap-using schedulable objects.

2.3 Asynchrony

Since a realtime system must be able to react to the outside world, the system need
to be able to change its execution flow asynchronously to the current execution.
All external signals, where interrupts, messages, or timed events are asynchronous
with respect to ongoing computation. This means that computation must be both
startable and stoppable based on external stimuli.

12 CHAPTER 2. OVERVIEW

2.3.1 Asynchronous Events

Asynchronous event provide a means of starting computation based on external
stimuli. The asynchronous event facility is based on two classes: AbstractAsync-
Event and AbstractAsyncEventHandler. An AbstractAsyncEvent object rep-
resents something that can happen, like a POSIX signal, a hardware interrupt,
or a computed event like an airplane entering a specified region. When one of
these events occurs, which is indicated by the fire() method being called, the
associated instances of AbstractAsyncEventHandler are scheduled and the han-
dleAsyncEvent () methods are invoked, thus the required logic is performed. Also,
methods on AbstractAsyncEvent are provided to manage the set of instances of Ab-
stractAsyncEventHandler associated with the instance of AbstractAsyncEvent.

An instance of an AbstractAsyncEventHandler can be thought of as some-
thing similar to a thread. When an event fires, the associated handlers are sched-
uled and the handleAsyncEvent () methods are invoked. What distinguishes an
AbstractAsyncEventHandler from a simple Runnable is that an AbstractAsync-
EventHandler has associated instances of ReleaseParameters, SchedulingParam-
eters and MemoryParameters that control the actual execution of the handler once
the associated AbstractAsyncEvent is fired. When an event is fired, the handlers
are executed asynchronously, scheduled according to the associated ReleaseParam-
eters and SchedulingParameters objects, in a manner that looks like the handler
has just been assigned to its own thread. It is intended that the system can cope
well with situations where there are large numbers of instances of AbstractAsync-
Event and AbstractAsyncEventHandler (tens of thousands), since the number of
fired (in process) handlers is expected to be much smaller.

There are specialized forms of AbstractAsyncEvent, AsyncEvent, AsyncLong-
Event, and AsyncObjectEvent, for event that are stateless, carry a long payload,
and carry an Object payload respectively. They are matched by specialized forms
of AbstractAsyncEventHandler, AsyncEventHandler, AsyncLongEventHandler,
and AsyncObjectEventHandler. Most external events are stateless, but sometimes
it is helpful to be able to receive some information about the event or event pass
some data with it. The Long and Object variants enable this and the new POSIXRe-
altimeSignal takes advantage of it.

Another specialized form of an AsyncEvent is the Timer class, which represents
an event whose occurrence is driven by time. There are two forms of Timers: the
OneShotTimer and the PeriodicTimer. Instances of OneShotTimer fire once, at
the specified time. Periodic timers fire initially at the specified time, and then
periodically according to a specified interval.

Timers are driven by Clock objects. There is a special Clock object, Clock.
getRealtimeClock (), that represents the realtime clock. The Clock class may be
extended to represent other clocks the underlying system might make available (such

2.3. ASYNCHRONY 13

as a execution time clock of some granularity).

2.3.2 Asynchronous Transfer of Control

Many event-driven computer systems that tightly interact with external physical
systems (e.g., humans, machines, control processes, etc.) may require mode changes
in their computational behavior as a result of significant changes in the non-computer
real-world system. It would be convenient to programmatically terminate a task
when an abnormal external physical system change causes the thread to no longer be
useful. Without this facility, a thread or set of threads have to be coded so that their
computational behavior anticipated all of the possible transitions among possible
states of the external system. It is an easier task to code threads to computationally
cooperate for only one (or a very few) possible states of the external system. When
the external system makes a state transition, the changes in computation behavior
might then be managed by an oracle, that terminates a set of threads useful for
the old state of the external system, and invokes a new set of threads appropriate
for the new state of the external system. Since the possible state transitions of the
external system are encoded in only the oracle and not in each thread, the overall
system design is simpler.

There are two main reasons to stop a computation before it is finished. The
first is that a change external to the system can make the current computation
irrelevant, often with the result that a new computation needs to be performed.
The second is that an unbound computation needs to be done in a bound period of
time. In this case, if that computation can be executed with an algorithm that is
iterative, and produces successively refined results, the system could abandon the
computation early and still have usable results. The RTSJ supports aborting a task
by signalling from another thread with a feature termed Asynchronous Transfer of

Control (ATC).

An example of the second case is processing compressed video for a human con-
troller. The system knows that a new frame must be produced at a constant update
frequency. The cost of each iteration is highly variable and the minimum required
latency to terminate the computation and receive the last consistent result is much
less the mean iteration cost and bound. Therefore using ATC from the computa-
tion to the result transmission code at the expiration of the known time bound is a

convenient programming style. Of course, there are other kinds programming tasks
that also benefit from ATC.

2.3.3 Principles
The RTSJ’s approach to ATC is based on several guiding principles.

14 CHAPTER 2. OVERVIEW

2.3.3.0.1 Methodological Principles

e A method must explicitly indicate its susceptibility to ATC. Since legacy code
or library methods might have been written assuming no ATC, by default ATC
must be turned off (more precisely, must be deferred as long as control is in
such code).

e Even if a method allows ATC, some code sections must be executed to comple-
tion and thus ATC is deferred in such sections. These ATC-deferred sections
are synchronized methods, static initializers, and synchronized statements.

e Code that responds to an ATC does not return to the point in the schedulable
object where the ATC was triggered; that is, an ATC is an unconditional
transfer of control. Resumptive semantics, which returns control from the
handler to the point of interruption, are not needed since they can be achieved
through other mechanisms (in particular, an AsyncEventHandler).

2.3.3.0.2 Expressibility Principles

e A mechanism is needed through which an ATC can be explicitly triggered in a
target schedulable object. This triggering may be direct (from a source thread
or schedulable object) or indirect (through an asynchronous event handler).

e [t must be possible to trigger an ATC based on any asynchronous event in-
cluding an external happening or an explicit event firing from another thread
or schedulable object. In particular, it must be possible to base an ATC on a
timer going off.

e Through ATC it must be possible to abort a realtime thread but in a manner
that does not carry the dangers of the Thread class’s stop() and destroy()
methods.

2.3.3.0.3 Semantic Principles

o [f ATC is modeled by exception handling, there must be some way to ensure
that an asynchronous exception is only caught by the intended handler and not,
for example, by an all-purpose handler that happens to be on the propagation
path.

e Nested ATCs must work properly. For example, consider two, nested ATC-
based timers and assume that the outer timer has a shorter time-out than the
nested, inner timer. If the outer timer times out while control is in the nested
code of the inner timer, then the nested code must be aborted (as soon as
it is outside an ATC-deferred section), and control must then transfer to the
appropriate catch clause for the outer timer. An implementation that either
handles the outer time-out in the nested code, or that waits for the longer
(nested) timer, is incorrect.

2.4. CLOCKS, TIME, AND TIMERS 15

2.3.3.0.4 Pragmatic Principles
e There should be straightforward idioms for common cases such as timer han-
dlers and realtime thread termination.
e If code with a time-out completes before the timer’s expiration, the timer
needs to be automatically stopped and its resources returned to the system.

2.3.4 Asynchronous Realtime Thread Termination

A special case of stopping a particular computation is stopping a thread. Earlier
versions of the Java language supplied mechanisms for achieving these effects: in
particular the methods stop() and destroy() in class Thread. However, since
stop() could leave shared objects in an inconsistent state, stop() has been depre-
cated. The use of destroy() can lead to deadlock (if a thread is destroyed while
it is holding a lock) and although it was not deprecated until version 1.5 of the
Java specification, its usage has long been discouraged. A goal of the RTSJ was to
meet the requirements of asynchronous thread termination without introducing the
dangers of the stop() or destroy() methods.

The RTSJ accommodates safe asynchronous realtime thread termination through

a combination of the asynchronous event handling and the asynchronous transfer of
control mechanisms. To create such a set of realtime threads consider the following
steps:

e make all of the application methods of the realtime thread interruptible;

e create an oracle which monitors the external world by setting up an asyn-
chronous event with a number of asynchronous event handlers, which is fired
when an appropriate mode change;

e have the handlers call interrupt() on each of the realtime threads affected
by the change; then

e after the handlers call interrupt (), have them create a new set of realtime
threads appropriate to the current state of the external world.

The effect of the event is to cause each interruptible method to abort abnormally by
transferring control to the appropriate catch clause. Ultimately the run() method
of the realtime thread will complete normally.

This idiom provides a quick (if coded to be so) but orderly clean up and termi-

nation of the realtime thread. Note that the oracle can comprise as many or as few
asynchronous event handlers as appropriate.

2.4 Clocks, Time, and Timers

Time plays a central role in realtime systems.

16 CHAPTER 2. OVERVIEW

Realtime System require a high resolution notion of time. Both very small units
and very long periods of time must be uniformly representable, a range that is not
even represenatable with a long value. Furthermore, a time can represent an absolue
point in time, usually represents some absolute fixed point in time plus an offset,
or it can represent an interval of time. The time classes defined in Chapter [9] below
support a longs worth of seconds and another integer for nanoseconds.

2.5 Memory Management

The java language is designed around automatic memory management, in particular
garbage collection. Unfortunately, though gargbage collection is a functional safety
and security feature, convention garbage collectors interrupt the normal flow of con-
trol in a program. Therefore garbage-collected memory heaps had been considered
an obstacle to realtime programming due to the potential for unpredictable latencies
introduced by the garbage collector. Though convention collectors still have these
drawbacks, there are now realtime collectors that can be used for hard realtime
application. Still, the RTSJ provides an alternates to garbage collection for system
which require it, either because they do not have a garbage collector or deterministic
garbage collector, or require heap partitioning for some other reason. Extensions
to the memory model, which support memory management in a manner that does
not interfere with the ability of realtime code to provide deterministic behavior,
are provided to support these alternatives. This goal is accomplished by providing
memory areas for the allocation of objects outside of the garbage-collected heap for
both short-lived and long-lived objects.

2.5.1 Memory Areas

The RTSJ introduces the concept of a memory area. A memory area represents an
area of memory that may be used for the allocation of objects. Some memory areas
exist outside of the heap and place restrictions on what the system and garbage
collector may do with objects allocated within. Objects in some memory areas are
never garbage collected; however, the garbage collector must be capable of scanning
these memory areas for references to any object within the heap to preserve the
integrity of the heap.
There are four basic types of memory areas:
e Scoped memory provides a mechanism, more general than stack allocated ob-
jects, for managing objects that have a lifetime defined by scope.
e Physical memory allows objects to be created within specific physical memory
regions that have particular important characteristics, such as memory that
has substantially faster access.

2.5. MEMORY MANAGEMENT 17

e Immortal memory represents an area of memory containing objects that may
be referenced without exception or garbage collection delay by any schedul-
able object, specifically including no-heap realtime threads and no-heap asyn-
chronous event handlers.

e Heap memory represents an area of memory that is the heap. The RTSJ does
not change the determinant of lifetime of objects on the heap. The lifetime is
still determined by visibility.

2.5.2 Heap Memory

2.5.3 Immortal Memory

ImmortalMemory is a memory resource shared among all schedulable objects and
threads in an application. Objects allocated in ImmortalMemory are always available
to non-heap threads and asynchronous event handlers without the possibility of a
delay for garbage collection.

2.5.4 Scoped Memory

The RTSJ introduces the concept of scoped memory. A memory scope is used to give
bounds to the lifetime of any objects allocated within it. When a scope is entered,
every use of new causes the memory to be allocated from the active memory scope.
A scope may be entered explicitly, or it can be attached to a schedulable object
which will effectively enter the scope before it executes the object’s run() method.

The contents of a scoped memory are discarded when no object in the scope can
be referenced. This is done by a technique similar to reference counting the scope.
A conformant implementation might maintain a count of the number of external
references to each memory area. The reference count for a ScopedMemory area would
be increased by entering a new scope through the enter () method of MemoryArea,
by the creation of a schedulable object using the particular ScopedMemory area,
or by the opening of an inner scope. The reference count for a ScopedMemory area
would be decreased when returning from the enter () method, when the schedulable
object using the ScopedMemory terminates, or when an inner scope returns from its
enter () method. When the count drops to zero, the finalize method for each object
in the memory would be executed to completion. Reuse of the scope is blocked until
finalization is complete.

Scopes may be nested. When a nested scope is entered, all subsequent allocations
are taken from the memory associated with the new scope. When the nested scope
is exited, the previous scope is restored and subsequent allocations are again taken
from that scope.

18 CHAPTER 2. OVERVIEW

Because of the lifetimes of scoped objects, it is necessary to limit the references
to scoped objects, by means of a restricted set of assignment rules. A reference to a
scoped object cannot be assigned to a variable from an outer scope, or to a field of an
object in either the heap or the immortal area. A reference to a scoped object may
only be assigned into the same scope or into an inner scope. The virtual machine
must detect illegal assignment attempts and must throw an appropriate exception
when they occur.

The flexibility provided in choice of scoped memory types allows the application
to use a memory area that has characteristics that are appropriate to a particular
syntactically defined region of the code.

2.5.5 Physical Memory Areas

In many cases, systems needing the predictable execution of the RTSJ will also
need to access various kinds of memory at particular addresses for performance or
other reasons. Consider a system in which very fast static RAM was program-
matically available. A design that could optimize performance might wish to place
various frequently used Java objects in the fast static RAM. The LTPhysicalMemory
and ImmortalPhysicalMemory classes provide the programmer this flexibility. The
programmer would construct a physical memory object on the memory addresses
occupied by the fast RAM.

2.5.6 Budgeted Allocation

The RTSJ also provides limited support for providing memory allocation budgets for
schedulable objects using memory areas. Maximum memory area consumption and
maximum allocation rates for individual schedulable objects may be specified when
they are created.

2.6 Devices and Special Memory

The RTSJ defines classes for programmers wishing to directly access physical mem-
ory from code written in the Java language. The RawMemory<Size> types define
methods that enable the programmer to construct an object that represents a range
of physical addresses, where the Size represents a word size, i.e., byte, short, int,
long, float, and double. Access to the physical memory is then accomplished through
get<Size>() and set<Size>() methods of that object. No semantics other than
the set<Size>() and get<Size>() methods are implied. One the other hand, the
LTPhysicalMemory and ImmortalPhysicalMemory classes enable programmers to
construct an object that represents a range of physical memory addresses. When

2.7. SYSTEM AND OPTIONS 19

this object is used as a MemoryArea other objects can be constructed in the physical
memory using the new keyword as appropriate. Factories can be used to create the
desired type of both physical and raw memory.

2.6.1 Raw Memory Access

An instance of RawMemoryType models a range of physical memory locations as a
fixed sequence of elements of a given size. The elements correspond to Java primitive
types. For objects that access more than a single physical address, elements can be
accessed through offsets from the base, where the offset is measured in multiples of
the element size, not necessarily the byte offset in memory.

The RawMemoryType interface enables a realtime program to implement de-
vice drivers, memory-mapped registers, [/O space mapped registers, flash memory,
battery-backed RAM, and similar low-level hardware.

A raw memory area cannot contain references to Java objects. Such a capability
would be unsafe (since it could be used to defeat Java’s type checking) and error
prone (since it is sensitive to the specific representational choices made by the Java
compiler).

2.7 System and Options

POSIX defines some convenient interfaces for interacting with the system. These
interactions include catching keyboard interrupts, user to process signaling, and
interprocess signaling. Many, but not all, realtime operating systems support this
POSIX signal interface. They are useful enough, that the RTSJ provides a POSIX
signal interface for using them. Though many of these features are also supported on
most other operating systems, the specification does not require the POSIX signal
interface to be emulated on these other platforms. Thus they are optional in the
sense that they are only required on systems that directly support POSIX signals.

2.8 Exceptions

Aside from several new exceptions, the RTSJ provides a new interface for using excep-
tions without creating garbage and some new treatment of exceptions surrounding
asynchronous transfer of control.

Using exceptions in scoped memory is resource intensive, since a new exception
is allocated for each throw. This can means that scopes need to be size much larger
than strictly necessary to hold exceptions and their stack traces. Additionally, the
information they contain cannot be propagated beyond the scope in which they

20 CHAPTER 2. OVERVIEW

occur. To better support scoped, immortal, and physical memory, a new class of
throwable has been included: Preallocated Throwable. Exceptions and Errors which
implement this interface are not thrown in the usual manner, but with a style that
does not require memory to be allocated at all.

Asynchronous transfer of control can cause the exception that triggered it to be
propagated even when it is caught but the underlying interrupt is not cleared. The
system rethrows the exception once the catch is finished. This is necessary since
the exception hierarchy is poorly designed. There is no common base class for all
777 exceptions, so use code often contains a catch for Exception when only 777
exceptions need to be caught. Even the JVM specification wording is awkward on
this point.

Chapter 3

Requirements and Conventions

The base requirements of this specification are as follows.

Except as specifically required by this specification, any implementation shall
fully conform to a Java platform configuration.

Any implementation of this specification shall implement all classes and meth-
ods in the base module of this specification. In particular, every implemen-
tation must include a conformant implementation of the PriorityScheduler
class.

Except as noted in this chapter, all classes and methods in an implemented
module must be implemented.

The javax.realtime package shall contain no public or protected methods
not included in this specification.

A realtime JVM implementation shall not be implemented in a way that per-
mits unbounded priority inversion in any scheduling interaction it implements.
Subject to the usual assumptions, the methods in javax.realtime can safely
be used concurrently by multiple threads unless otherwise documented.
Static final values, as found in AperiodicParameters, PhysicalMemoryMan-
ager, SporadicParameters, RealtimeSystem, and PriorityScheduler, must
be handled by the implementation such that their values cannot be resolved
at compile time.

Many aspects of this specification set a minimum requirement, but permit the im-
plementation latitude in its implementation. For instance, the required priority
scheduler requires at least 28 consecutively numbered realtime priorities. It does
not, however, specify the numeric value of the maximum and minimum priorities.
Implementations are encouraged to offer as many realtime priority levels as they can
support.

Except where otherwise specified, when this specification requires object creation
the object is created in the current allocation context.

21

22 CHAPTER 3. REQUIREMENTS AND CONVENTIONS

3.1 Modules

The original RTSJ specification was concieved, with the exception of some optional
features, as a monolith specification. This has inhibited the adoption of the RTSJ be-
yond the hard realtime community, because some of the features were considered to
have an overly negative impact on overall JVM performance. Version 2.0 addresses
this by breaking the specification into modules.

Modules provide a means of grouping like functionality together in a way that
promotes maximal adoption for various implementation classes. A conventional
JVM could simply implement the Base Module, without providing any realtime
guarantees at all, to provide programmers with the benefits of asynchronous event
programming as an alternative to conventional threading. A hard realtime im-
plementation could implement all modules to provide the maximal flexibility and
functionality to the realtime programmer. Both would benefit from easier migration
of code to realtime systems.

Every RTSJ implementation must provide the Base Module functionality, but all
other modules are optional. The optional modules are the Device Module and the
Alternate Memory Management module. In addition, there are a couple of optional
features as well. This give the implementation some choice over which modules and
features to include and which not.

3.1.1 Base Module

The Base Module adds the concepts of processor affinity. threads with realtime
scheduling, and asynchronous event handling. This includes the notion of executing
code at a given time interval, providing a much more stable response than using
sleep in a loop. These features should have no impact on the overall performance
of a system that implements them, but enrich the programming modules available
to the programmer. The classes required in this module are listed below.

e [AbsoluteTime] (Section [9.5.1))

Abstract AsyncEventHandler| (Section [8.6.2))

Abstract AsyncEvent| (Section [8.6.1))

ActiveEventDispatcher| (Section

ActiveEvent| (Section 9.4.1))

Affinity| (Section [6.5.1])

Alarm| (Section [10.5.1))

AperiodicParameters| (Section [6.5.2))

Arrival TimeQueueOverflowException| (Section

AsyncEventHandler| (Section [8.6.4))

AsyncEvent| (Section [8.6.3)

AsyncLongEventHandler| (Section

3.1.

MODULES 23

AsyncLongEvent| (Section
AsyncObjectEventHandler] (Section [8.6.8))
AsyncObject Event| (Section [8.6.7])
[BoundAbstractAsyncEventHandler] (Section [8.4.1])
[BoundAsyncEventHandler] (Section [8.6.10)
[BoundAsyncLongEventHandler] (Section [8.6.11]
[BoundAsyncObjectEventHandler] (Section [8.6.12)
[Clock] (Section [10.5.2))

[DeregistrationException| (Section
[DuplicateEventException| (Section [14.3.4)
[DuplicateFilterException]| (Section [14.3.5]
[DuplicateHappeningException| (Section [14.3.6
[GarbageCollector] (Section [11.8.1])
[HeapMemory]| (Section [11.8.2)
[HighResolutionTime| (Section
E_mporta,nceParameters| (Section
[LateStartException| (Section [14.3.8)
[MemoryArea] (Section [11.8.7)

[OneShot Timer] (Section
[PeriodicParameters (Section
[PeriodicTimer] (Section [10.5.4)

[PhasingPolicy] (Section [5.3.]]

[PriorityInheritance] (Section [7.3.3
[PriorityParameters| (Section [6.5.5
[PriorityScheduler] (Section [6.5.6))
[ProcessingGroupParameters (Section
[Processor AffinityException| (Section [14.3.14)
[RealtimeSecurity| (Section [13.3.5))
[RealtimeSystem| (Section [13.3.6)
[RealtimeThread| (Section [5.4.2)
[RegistrationException] (Section [14.3.15)
[RelativeTime] (Section [0.5.4)
[ReleaseParameters] (Section [6.5.§
[ResourceLimitError] (Section [14.4.5)
[Schedulable| (Section [6.4.1))
[Scheduler] (Section [6.5.9)

[SchedulingParameters| (Section [6.5.10)
[SporadicParameters (Section [6.5.11))

[Timable] (Section [10.4.1))

[TimeDispatcher] (Section [10.5.5)

[Timer] (Section [10.5.6)

24 CHAPTER 3. REQUIREMENTS AND CONVENTIONS

3.1.2 Device Module

The Device Module provides a low level interface for interacting with real world.
Though realtime control systems need this kind of interaction, other systems can
benefit from it as well. Data collection, that is not time critical is a good example.
For instance, monitoring the temperature or humidity in a room could be done easily
with off-the-self hardware using this module. The classes required in this module
are listed below.

[Happening] (Section [12.5.1))
[HappeningDispatcher] (Section [12.5.2)
[POSIXRealtimeSignal (Section [13.3.1))
[POSIXRealtimeSignalDispatcher] (Section
POSIXSignal| (Section |13.3.3))
[POSIXSignalDispatcher] (Section [13.3.4))
[RawBufferFactory| (Section [12.5.4)

[RawMemory| (Section [12.3.16))
[RawMemoryFactory] (Section [12.5.5)
RawMemoryRegion] (Section [12.5.6)

|RaWMemoryRegionFactory| (Section [12.3.17))
[UnsupportedRawMemoryRegionException| (Section [12.4.1)
[RawByte (Section [12.3.1])

[RawByteReader] (Section [12.3.2)
[RawByteWriter] (Section [12.3.3)
[RawDouble| (Section [12.3.4)
[RawDoubleReader] (Section [12.3.5)

[RawDoubleWriter] (Section [12.3.6)
[RawFloat] (Section [12.3.7)

[RawFloatReader] (Section [12.3.8)
[RawFloatWriter] (Section [12.3.9)
[RawInt] (Section [12.3.10
[RawIntReader] (Section [12.3.11])

[RawIntWriter] (Section [12.3.12))
[RawLong] (Section [12.3.13
[RawLongReader] (Section [12.3.14))
(Section [23.15)
[RawMemoryFactory] (Section

[RawMemoryRegionFactory] (Section [12.3.17)
[RawShort] (Section [12.3.1§

[RawShortReader] (Section [12.3.19)
[RawShort Writer] (Section [12.3.20

3.1. MODULES 25

3.1.3 Alternate Memory Management Module

The Alternate Memory Management Module provides an alternative to a single
heap with garbage collection model for memory management. Most of the facilities
are centered around providing an alternative to garbage collection, but facilities
for providing what memory to use for JAva objects is also addressed. The classes
required in this module are listed below.

e [AlignmentError| (Section [14.4.1])

e [CeilingViolationException] (Section [14.3.2)
e [ChildScopeVisitor] (Section [11.6.1])

e [legalAssignmentError] (Section [14.4.3)

e [ImmortalMemory]| (Section [11.8.3))

e [mmortalPhysicalMemory| (Section [I1.8.4)
e [[naccessibleAreaException| (Section [14.3.7)
e [LTMemory] (Section [11.8.5)

e [LTPhysicalMemory]| (Section [11.8.6)

e [MemoryAccessError] (Section [14.4.4)
e [MemoryInUseException| (Section [14.3.10)

e [MemoryParameters| (Section [11.8.8)

e [MemoryScopeException] (Section [14.3.11]
e [MemoryTypeConflictException| (Section [14.3.12)
e [MITViolationException| (Section [14.3.9)

e [MonitorControl (Section [7.3.1])

e [NewPhysicalMemoryManager] (Section [11.8.9)

e [NoHeapRealtimeThread| (Section [5.4.1)

e [OffsetOutOfBoundsException| (Section
e [PhysicalMemoryCharacteristid (Section [11.6.2))

e [PhysicalMemoryFilter] (Section [11.6.3)

e [PhysicalMemoryManager] (Section [15.4.2]
e [PhysicalMemoryModule| (Section [11.8.10
e [PhysicalMemoryNam¢ (Section

e [PhysicalMemoryTypeFilter (Section [15.3.2)

e [PinnableMemory] (Section [11.8.11))

e [SchedulableSizingParameters| (Section [11.8.12)
e [ScopedCycleException] (Section [14.3.16))

e [ScopedMemory]| (Section [11.8.13

. (Section [11.8.14)
e [SizeOutOfBoundsException]| (Section [14.3.17))

e [StackedMemory] (Section [11.8.1F))
e [ThrowBoundaryError] (Section [14.4.6))

e [UnsupportedPhysicalMemoryException]| (Section [14.3.19)

26 CHAPTER 3. REQUIREMENTS AND CONVENTIONS

e [VirtualMemoryCharacteristic| (Section
e [WaitFreeDequeue] (Section [7.3.4)

o [WaitFreeReadQueue (Section [7.3.5)
e [WaitFreeWriteQueue| (Section [7.3.6)

3.1.4 Optional Features

Even with modules it is difficult to elliminate all optional features. These features
are either not easy to implement on all platforms or have the potential to cause
a significant performance overhead. Therefore, an application cannot depend on
them to be present in every implementation. However, if an optional facility is
implemented, the application may rely on it to behave as specified here. Those
extensions are illustrated in table B.1]

Table 3.1: RTSJ Extensions
Enables the application to control the processor

utilization of a schedulable object.

Cost enforcement

enforce-

Processing Group
ment

Enables the application to control the processor
utilization of a group of schedulable objects

Processing Group deadline
less than period

Enables the application to specify a processing
group deadline less than the processing group
period

Priority Ceiling Emulation

Protocol

An alternative to priority inheritance for prior-
ity inversion avoidance

Atomic access to a raw mem-
ory elements

Most atomic access is optional. The imple-
mentation may provide the raw memory access

characteristics in system properties of the form
javax.realtime.atomicaccess_<xxx>.
Enables the application to limit the rate at
which a schedulable object creates objects in the
heap.

provides first level interrupt processing in Java.

Allocation-rate enforcement
on heap allocation

Interrupt Service Routine

The ProcessingGroupParameters class is only functional on systems that sup-
port the processing group enforcement option. Cost enforcement, and cost overruns
handlers are only functional on systems that support the cost enforcement option.
If processing group enforcement is supported, ProcessingGroupParameters must
function as specified. If cost enforcement is supported, cost enforcement, and cost
overrun handlers must function as specified.

In implementations where the processing group deadline less than period is not
supported, values passed to the constructor for ProcessingGroupParameters and

3.1. MODULES 27

its setDeadline method are constrained to be equal to the period. If the option is
supported, processing group deadlines less than the period must be supported and
function as specified.

In implementations where priority ceiling emulation is supported, Priority-
CeilingEmulation must be implemented as specified. Where priority ceiling em-
ulation is not supported, PriorityCeilingEmulation must be present, but the
implementation may not permit its use as a monitor control policy.

In implementations where heap allocation rate enforcement is supported, it must
be implemented as specified. If heap allocation rate enforcement is not supported,
the allocation rate attribute of MemoryParameters must be checked for validity but
otherwise ignored by the implementation.

First level device handling can only be supported in certain contexts, such as in
kernel space and in a device driver context in user space on systems that support
this feature. Normally user space programs cannot handle interrupts directly. The
class should be present in every system that implements the device module, but
in implementations that do not support first level interrupt handling, the
should always throw an UnsupportedOperationException.

e [Timed| (Section [8.5.2))

e [AsynchronouslyInterrupted Exception| (Section
e [Interruptible] (Section [8.4.2)
° EnterruptServiceRoutind (Section [12.5.3]
e [PriorityCeilingEmulation| (Section [7.3.2)
There are no bounds on extensions based on this specification, except that only
extensions that conform with future versions of this specification may be imple-
mented in the javax.realtime package tree.

3.1.5 Deprecated Classes

Classes that have been deprecated as of this specification are not part of any module,
but may be implemented by a full RTSJ implementation. They comprise the following
class:

e [PhysicalMemoryManager] (Section

e [PhysicalMemoryName (Section [15.3.1)

e [PhysicalMemoryTypeFilter] (Section [15.3.2))

e [POSIXSignalHandler] (Section [15.4.1

e [RationalTime| (Section [15.4.3)

e [RawMemoryAccess| (Section [15.4.4]

e [RawMemoryFloatAccess| (Section [15.4.5))

e [VTMemory] (Section [15.4.6)

e [VTPhysicalMemory| (Section [15.4.7)
They are documented in fully in Chapter [15]

28

CHAPTER 3. REQUIREMENTS AND CONVENTIONS

3.2 Conditionally-Required Facilities

An implementation must support conditionally-required facilities if the underly-
ing hardware and software permits. This specification includes three conditionally-
required facilities:

POSIXSignalHandler | This class shall be implemented on every platform

where POSIX signals are supported

RawMemory If the system supports address translation, the imple-

mentation shall support the memory mapping features
of the raw memory access classes.

If POSIX signals are not supported, the POSIXSignalHandler class must not

be present. If POSIX signals are supported, POSIXSignalHandler must be imple-
mented as specified.

If floating point is not supported by the platform, RawMemoryFloatAccess must

not be present. If floating point is supported, then RawMemoryFloatAccess must
be implemented as specified.

3.2.1 Options for Development Platforms

The following semantics are optional for an RTSJ implementation designed and li-
censed exclusively as a development tool.

e The priority scheduler need not support fixed-priority preemptive scheduling

or priority inheritance. This does not excuse an implementation from fully
supporting the relevant APIs. It only reduces the required behavior of the
underlying scheduler to the level of the scheduler in the Java specification
extended to at least 28 priorities.

No semantics constraining timing beyond the requirements of the Java spec-
ifications need be supported. Specifically, garbage collection may delay any
thread without bound and any delay in delivering asynchronously interrupted
exceptions is permissible including never delivering the exception. Note, how-
ever, that if any AIE other than the generic AIE is delivered, it must meet the
AIE semantics, and all heap-memory-related semantics other than preemption
remain fully in effect. Further, relaxed timing does not imply relaxed sequenc-
ing. For instance, semantics for scoped memory must be fully implemented.
The RTSJ semantics that alter standard Java method behavior, such as the
modified semantics for Thread.setPriority and Thread.interrupt, are not
required for a development tool, but such deviations from the RTSJ must be
documented, and the implementation must be able to generate a runtime
warning each time one of these methods deviates from standard RTSJ behavior.

3.3. REQUIRED DOCUMENTATION 29

These relaxed requirements set a floor for RTSJ development system tool im-
plementations. A development tool may choose to implement semantics that
are not required.

3.3 Required Documentation

Each implementation of the RTSJ is required to provide documentation for several
behaviors.

If schedulers other than the base priority scheduler are available to applica-
tions, document the behavior of the scheduler and its interaction with each
other scheduler as detailed in the Scheduling chapter. Document the list of
classes that constitute schedulable objects for the scheduler unless that list is
the same as the list of schedulable objects for the base scheduler. If there are
restrictions on use of the scheduler from a non-heap context, document those
restrictions.

A schedulable object that is preempted by a higher-priority schedulable object
is placed in the queue for its active priority, at a position determined by the
implementation. If the preempted schedulable object is not placed at the front
of the appropriate queue the implementation must document the algorithm
used for such placement. Placement at the front of the queue may be required
in a future version of this specification.

If the implementation supports cost enforcement, then the implementation is
required to document the granularity at which the current CPU consumption
is updated.

The implementation must fully document the behavior of any subclasses of
GarbageCollector.

An implementation that provides any MonitorControl subclasses not detailed
in this specification must document their effects, particularly with respect to
priority inversion control and which (if any) schedulers fail to support the new
policy.

If on losing “boosted” priority due to a priority inversion avoidance algorithm,
the schedulable object is not placed at the front of its new queue, the imple-
mentation must document the queuing behavior.

For any available scheduler other than the base scheduler, an implementation
must document how, if at all, the semantics of synchronization differ from the
rules defined for the default PriorityInheritance monitor control policy. It
must supply documentation for the behavior of the new scheduler with pri-
ority inheritance (and, if it is supported, priority ceiling emulation protocol)
equivalent to the semantics for the base priority scheduler found in the Syn-
chronization chapter. If there are restrictions on use of the scheduler from a

30 CHAPTER 3. REQUIREMENTS AND CONVENTIONS

no-heap context, the documentation must detail the effect of these restrictions
for each RTSJ APL

e The worst-case response interval between firing an AsyncEvent because of a
bound happening to releasing an associated AsyncEventHandler (assuming
no higher-priority schedulable objects are runnable) must be documented for
some reference architecture.

e The interval between firing an AsynchronouslyInterruptedException at an
ATC-enabled thread and first delivery of that exception (assuming no higher-
priority schedulable objects are runnable) must be documented for some ref-
erence architecture.

e If cost enforcement is supported, and the implementation assigns the cost of
running finalizers for objects in scoped memory to any schedulable object other
than the one that caused the scope’s reference count to drop to zero by leaving
the scope, the rules for assigning the cost shall be documented.

e If cost enforcement is supported, and enforcement (blocked-by-cost-overrun)
can be delayed beyond the enforcement time granularity, the maximum such
delay shall be documented.

o [f the implementation of RealtimeSecurity is more restrictive than the re-
quired implementation, or has run-time configuration options, those features
shall be documented.

e For each supported clock, the documentation must specify whether the res-
olution is settable, and if it is settable the documentation must indicate the
supported values.

e If an implementation includes any clocks other than the required realtime
clock, their documentation must indicate in what contexts those clocks can
be used. If they cannot be used in no-heap context, the documentation must
detail the consequences of passing the clock, or a time that uses the clock to
a no-heap schedulable object.

3.4 Conventions
Throughout the RTSJ, when we use the word code, we mean code written in the Java
programming language. When we mention the Java language in the RTSJ, that also

refers to the Java programming language. The use of the term heap in the RTSJ will
refer to the heap used by the runtime of the Java language.

3.5 Definitions

A thread is an instance of the java.lang.Thread class.

3.5. DEFINITIONS 31

A realtime thread is an instance of the javax.realtime.RealtimeThread class.

A Java thread is a thread that is not a realtime thread.

A no-heap realtime thread is an instance of the javax.realtime.NoHeapRealtime-
Thread class.

An event handler is an instance of the javax.realtime.AbstractAsyncEventHand-
ler class.

The term Schedulable object is distinct from the termschedulable object (SO).
Every object that implements the Schedulable interface can be termed a Sched-
ulable object, but only objects that are recognized as dispatchable entities by the
base scheduler are schedulable objects with respect to that scheduler. The base
scheduler’s set of schedulable objects comprises instances of RealtimeThread and
AsyncEventHandler. Other schedulers may support a different set of schedulable
objects, but this specification only defines the behavior of the base scheduler so the
term schedulable object should be understood as ”schedulable by the base sched-
uler.”

32

CHAPTER 3. REQUIREMENTS AND CONVENTIONS

Chapter 4

Standard Java Classes and
Language

Though compatibility is the first concern of this specification, there are several
several cases where being able to meet realtime constraints requires a tightening
of the semantics of the virtual machine and alter the sematics of two key classes:
java.lang.Thread and java.lang.ThreadGroup.

e The sematics of set and get methods for priority in Thread differ for realtime

threads.

e The ThreadGroup class’s behavior differs with respect to realtime threads.

e The behavior of the ThreadGroup-related methods in Thread differ when they

are applied to realtime threads.

This specification introduces a new types of concurrent activity called an asyn-
chronous event handler. Hence, the mean of current thread has a different interpreta-
tion than in standard java. Finally, this specification places additional requirements
on synchronization and garbage collection.

4.1 Priority

The methods setPriority and getPriority in java.lang.Thread are final.
The realtime thread classes are consequently not able to override them and mod-
ify their behavior to suit the requirements of the RTSJ scheduler. To bring the
java.lang.Thread class in line with its realtime subclasses, the semantics of the
getPriority and setPriority methods must be modified.

4.1.1 Thread.setPriority()

33

34

CHAPTER 4. STANDARD JAVA CLASSES AND LANGUAGE

Use of Thread.setPriority() shall not affect the correctness of the priority
inversion avoidance algorithms controlled by PriorityCeilingEmulation and
PriorityInheritance. Changes to the base priority of a realtime thread as
a result of invoking Thread.setPriority() are governed by semantics from
Chapter [7| on Synchronization.

realtime threads may use setPriority to apply the expanded range of prior-
ities available to realtime threads. If a realtime thread’s priority parameters
object is not shared, setPriority behaves effectively as if it included the
following code snippet:

PriorityParameters pp = getSchedulingParameters();
pp-setPriority(newPriority);

If the realtime thread’s priority parameters object is shared with other sched-
ulable objects, setPriority must give the thread an unshared PriorityPar-
ameters instance allocated in the same memory area as the realtime thread
object and containing the new priority value.

setPriority throws IllegalArgumentException if the thread is a realtime
thread and the new priority is outside the range allowed by the realtime
thread’s scheduler.

setPriority throws ClassCastException if the thread is a realtime thread
and its current scheduling parameters object is not an instance of Priority-
Parameters.

4.1.2 Thread.getPriority()

e When used on a realtime thread, getPriority behaves effectively as if it

included the following code snippet:

(PriorityParameters)t.getSchedulingParameters()).getPriority()};

o [f the scheduling parameters are not of type PriorityParameters, then a

ClassCastException is thrown.

All supported monitor control policies must apply to Java threads as well as to all
schedulable objects.

4.2 Thread Groups

Thread groups are rooted at a base ThreadGroup object which may be created in
heap or immortal memory. All thread group objects hold references to all their

4.3. CURRENT THREAD 35

member threads, and subgroups, and a reference to their parent group. Since heap
and immortal memory can not hold references to scoped memory, it follows that
a thread group can never be allocated in scoped memory. It then follows that no
thread allocated in scoped memory may be referenced from any thread group, and
consequently such threads are not part of any thread group and will hold a null
thread group reference. Similarly, a NoHeapRealtimeThread can not be a member
of a heap allocated thread group.

1. realtime threads with null thread groups are not included when thread groups
are enumerated, interrupted, stopped, resumed, or suspended. However, when
the current thread is a realtime thread with a null thread group:

e The Thread.enumerate class method returns the integer 1, and populates
its array argument with the current realtime thread.

e Thread.activeCount returns 1.

e Thread.getThreadGroup returns null in all cases, not only when the
thread has terminated.

2. A Java thread (not a realtime thread) that is created from a realtime thread
without an explicit thread group and is not assigned a thread group by the
security manager inherits the thread group of the realtime thread, if it has
one; otherwise an attempt is made to add it to the application root thread
group. The constructor shall throw a SecurityException if the Java thread
is not permitted to use the application root thread group.

3. The thread group of a Java thread created by an asynchronous event handler
is assigned as if it was created by a realtime thread without a thread group
(as described in 2. above)

4. A thread group cannot be created in scoped memory. The constructor shall
throw an IllegalAssignmentError.

5. Limits on priority set in the thread group have no influence on realtime threads.

6. Except as specified previously, realtime threads have the same ThreadGroup
membership rules as the parent Thread class.

4.3 Current Thread

In Java, the currently executing thread can always be determined by calling the
static method Thread.currentThread (). In the RTSJ, there are two types of sched-
ulable entities: threads and asynchronous event handlers. The latter may be mapped
dynamically by the real-time JVM onto the underlying thread model. The method
Thread.currentThread () when called from an asynchronous event handler will re-
turn the current thread that is being used as the current execution engine for that
event handler. The program should not rely of this being constant for the lifetime
of the program. It can rely on it being constant for the current release of the han-

36 CHAPTER 4. STANDARD JAVA CLASSES AND LANGUAGE

dler (see [6.2] for the definition of a release). However, it is not recommended that
the program should perform any operations of this underlying thread as it may an
impact beyond that of the current event handler.

4.4 Java Memory Model

Some aspects of the Java Memory Model must be tightened for this specification, in
particular with regards to interactions with native code or when using the Device
Module. A conforming implementation must ensure that volatile loads and stores,
raw memory operations (see [12.2.1)), and [RawBufferFactory| barrier methods are all
ordered in a way that is consistent with respect to native code or hardware devices
using platform-native memory coherence protocols to access raw memory or raw
byte buffers shared with the virtual machine.

Open issue: Do we still want to say something about happens-before and JNI
here? 1 think we probably do, but it seems Really Hard to get right. —elb End of
open issue

4.5 InterruptedException

The interruptible methods in the standard libraries (such as Object.wait, Thread.sleep,
and Thread.join) have their contract expanded slightly such that they will re-
spond to interruption not only when the interrupt method is invoked on the cur-
rent thread, but also, for schedulable objects, when executing within a call to
ATE.doInterruptible and that AIE is fired. See Chapter [8 on Asynchrony.

4.6 System Properties

System properties and their String values allocated during system initialization
shall be allocated in immortal memory.

4.7 Garbage Collection

Garbage collection is an important safety feature of the Java language and runtime
environment. Unfortunately, the garbage collection process can interfere with a
realtime program’s ability to always meet its timing deadlines. This specification
provides two main means of circumventing this problem: using a realtime garbage
collection or using the memory area module as an alternative to garbage collection
for realtime code. Additionally, an implementation may ignore the problem for an

4.7. GARBAGE COLLECTION 37

implementation meant as a development system or for systems that choose not to
provide realtime guarantees. In any case, an implementation must document what
realtime guarantees it gives and which method it uses to do so.

4.7.1 Realtime Garbage Collections

Industrial realtime garbage collectors are available with varying approaches to pro-
viding realtime response. Though new collectors will undoubtably be developed,
all current ones use a variant of the mark-and-sweep algorithm. In all cases, the
collectors are incremental: realtime response is obtained by limiting how much of a
collection cycle is done each time the collector runs.

4.7.1.1 Thread-Based Collectors

A realtime thread-based collector is an incremental garbage collector that has its
own thread of control and runs at intervals. In this case, the garbage collector needs
to be scheduled to ensure that it runs often enough and long enough at each interval
to recycle disgarded objects fast enough to keep up with allocations. There should
also be some maximum time at which the the garbage collector can be interrupted.

4.7.1.2 Allocation-Based Collectors

A realtime allocation-based garbage collector does not have its own thread of control.
Instead, some interval of garbage collection work is dones at each allocation. This
work is generally a function of the size of the object being allocated. This work
becomes part of the execution time of the program. Again, there should be some
maximum time at which the the garbage collector can be interrupted.

4.7.1.3 Alternatives to Garbage Collection

This specification provide an Alternate Memory Management Module for managing
memory without garbage collection. An implementation of this specification may
provide realtime response by requiring appllications to use that module instead of
providing a realtime garbage collector. This means that all realtime threads would
have to run above the priority of the garbage collector and all communication with
nonrealtime threads would have to use some nonblocking protocol.

4.7.1.4 Developer Implementation

An implementation that simply provides all the API but no realtime guarentees is
also permitted. This is useful as a development environment. Also, many of the
APIs are useful event in a convention Java implementation.

38

CHAPTER 4. STANDARD JAVA CLASSES AND LANGUAGE

Chapter 5

Realtime Threads

This section describes the two realtime thread classes. These classes provide for the
creation of

e realtime threads that have more precise scheduling semantics than java.-

lang.Thread, and

e realtime threads that have no dependency on the heap.

The RealtimeThread class extends java.lang.Thread. The ReleaseParamet-
ers, SchedulingParameters, and MemoryParameters objects passed to the Real-
timeThread constructor allow the temporal and processor demands of the thread to
be communicated to the scheduler. The PhasingPolicy class defines the relation-
ship between the threads start time and its first release time when the start time is
in the past.

The NoHeapRealtimeThread class extends RealtimeThread. A NoHeapReal-
timeThread is not allowed to allocate or even reference objects from the Java heap,
and can thus safely execute in preference to the garbage collector.

5.1 Overview

The RTSJ provides two types of objects which implement the Schedulable interface:
realtime threads and asynchronous event handlers. This chapter defines the facilities
that are available to realtime threads. In many cases these facilities are also available
to asynchronous event handlers. In particular:
e the default scheduler must support the scheduling of both realtime threads
and asynchronous event handlers;
e realtime threads and asynchronous event handlers are allowed to enter into
memory areas and consequently they have associated scope stacks;
e the flow of control of realtime threads and asynchronous event handlers are
affected by the RTSJ asynchronous transfer of control facilities;

39

40 CHAPTER 5. REALTIME THREADS

Where the semantics and requirements apply to both realtime threads and asyn-
chronous event handlers, the term schedulable object will be used.

5.2 Semantics and Requirements for Realtime Threads

1. Garbage collection executing in the context of a Java thread must not in itself
block execution of a no-heap thread with a higher execution eligibility; however
application locks work as specified even when the lock causes synchronization
between a heap-using thread and a no-heap thread.

2. Each realtime thread has an attribute which indicates whether an Asynchron-
ouslyInterruptedException is pending. This attribute is set when a call
to RealtimeThread. interrupt () is made on the associated realtime thread,
and when an asynchronously interrupted exception’s fire method is invoked
between the time the realtime thread has entered that exception’s doInt-
erruptible method, and before it has return from doInterruptible. (See
Chapter [8| on Asynchrony.)

3. A call to RealtimeThread. interrupt () generates the system’s generic Asyn-
chronouslyInterruptedException. (See Chapter |8 on Asynchrony.)

4. The RealtimeThread.waitForNextPeriod, RealtimeThread.-waitForNext-
Release, RealtimeThread.waitForNextPeriodInterruptible and Realtime-
Thread.waitForNextReleaseInterruptible methods are for use by realtime
threads that have periodic or aperiodic release parameters. In the absence
of any deadline miss or cost overrun (or an interrupt in the case of wait-
ForNextPeriodInterruptible and waitForNextReleaseInterruptible), the
methods return when the realtime thread’s next period/release is due.

5. In the presence of a cost overrun or a deadline miss, the behavior of wait-
ForNextPeriod and waitForNextRelease is governed by the thread’s sched-
uler.

6. The first release time of a realtime thread is governed by: the value of any
start time in its associated ReleaseParameter object and the time at which
the RealtimeThread.start method is called (or the RealtimeThread.start-
Periodic method is called and the value of any PhaseingPolicy parameter
passed to it).

7. Instances of RealtimeThread that are created in scoped memory and in-
stances of NoHeapRealtimeThread do not have conventional references to
thread groups nor do thread groups have conventional references to these
threads. For the purposes of this version of the specification, those references
are null.

8. Realtime threads with null thread groups handle uncaught exceptions as fol-
lows:

5.2. SEMANTICS AND REQUIREMENTS FOR REALTIME THREADS 41

e if the exception is a subclass of ThreadDeath the thread simply termi-
nates

e otherwise the thread prints a stack trace of the exception to System.err
before it terminates.

9. System-related termination activity (such as execution of finalizers for scoped

objects in scoped that become unreferenced) triggered by termination of a

realtime thread is not subject to cost enforcement or deadline miss detection.

42 CHAPTER 5. REALTIME THREADS

5.3 Enumerations

5.3.1 PhasingPolicy

Inheritance

java.lang.Object
java.lang.Enum
[avax.realtime.PhasingPolicy]

This class defines a set of constants that specify the supported policies for handling
a start (phasingPolicy) (of a thread or a periodic timer) later than the assigned
absolute time. The following table specifies the effective start time (that is, the first
release time of a periodic real-time thread. The algorithm is the same for a periodic
timer, where the first firing is equivalent to the first rlease.

5.3. ENUMERATIONS 43
Phasing STRICT ADJUST ADJUST ADJUST
start time PHASING FORWARD | BACK- TO START
WARD
Relative The time of | The time of | The time of | The time of
start method | start method | start method | start method
invocation invocation invocation invocation
plus start | plus start | plus start | plus start
time. time. time. time.
Absolute If the time of | If the time of | If the time of | If the time of
start method | start method | start method | start method
is after the | is after the | is after the | is after the
start time, | start time, | start time, | start time,
throw an | release at | release imme- | release im-
exception. start plus | diately and | mediately
Otherwize, period. Oth- | set next re- | and set next
first release is | erwize, first | lease time to | release time
at start time | release is at | be at start | to be at the
start time plus period. | time the start
Otherwize, method was
first release is | invoked plus
at start time | period. Oth-
erwize, first
release is at
start time
null The time of | The time of | The time of | The time of
start method | start method | start method | start method
invocation invocation invocation invocation

The Effects of the Phasing Policy on the First Release of a Real-time

Thread with Periodic Release Parameters

Available since RTSJ version RTSJ 2.0

5.3.1.1 Enumeration Constants

44 CHAPTER 5. REALTIME THREADS

5.3.1.1.1 STRICT_PHASING
public static final STRICT_PHASING

5.3.1.1.2 ADJUST FORWARD
public static final ADJUST_FORWARD

5.3.1.1.3 ADJUST_BACKWARD
public static final ADJUST_BACKWARD

5.3.1.1.4 ADJUST _TO_START
public static final ADJUST_TO_START

5.3.1.2 Constructors

5.3.1.2.1 PhasingPolicy

Signature

private
PhasingPolicy()

5.3.1.3 Methods

5.3.1.3.1 values

Signature

public static
javax.realtime.PhasingPolicy[] values()

5.3.1.3.2 valueOf(String)

Signature

public static
javax.realtime.PhasingPolicy valueOf (String name)

5.4. CLASSES 45

5.4 Classes

5.4.1 NoHeapRealtimeThread

Inheritance

java.lang.Object
java.lang.Thread
[javax.realtime.RealtimeT'hread]
[javax.realtime.NoHeapRealtimeThread|

A NoHeapRealtimeThread is a specialized form of RealtimeThreadf| Because an
instance of NoHeapRealtimeThread may immediately preempt any implemented
garbage collector, logic contained in its run () is never allowed to allocate or reference
any object allocated in the heap. At the byte-code level, it is illegal for a reference
to an object allocated in heap to appear on a no-heap realtime thread’s operand
stack.

Thus, it is always safe for a NoHeapRealtimeThread to interrupt the garbage
collector at any time, without waiting for the end of the garbage collection cycle
or a defined preemption point. Due to these restrictions, a NoHeapRealtimeThread
object must be placed in a memory area such that thread logic may unexceptionally
access instance variables and such that Java methods on Thread (e.g., enumerate
and join) complete normally except where execution would cause access violations.
The constructors of NoHeapRealtimeThread require a reference to [ScopedMemoryf|
or [ImmortalMemoryl|

When the thread is started, all execution occurs in the scope of the given memory
area. Thus, all memory allocation performed with the new operator is taken from
this given area.

5.4.1.1 Constructors

5.4.1.1.1 NoHeapRealtimeThread(SchedulingParameters)

Signature

public

1Section |5.4.2

2Section [11.8.13
3Section [11.8.3

46 CHAPTER 5. REALTIME THREADS

NoHeapRealtimeThread(SchedulingParameters sp)

throws IllegalArgumentException
Create a no-heap realtime thread with the given [SchedulingParameters| and de-
fault values for all other parameters.
This constructor is equivalent to NoHeapRealtimeThread(scheduling, null,
null, null, null, null, null).

Available since RTSJ version RTSJ 2.0

5.4.1.1.2 NoHeapRealtimeThread(SchedulingParameters, MemoryArea)

Signature

public
NoHeapRealtimeThread(SchedulingParameters scheduling, MemoryArea area)

Create a realtime thread with the given [SchedulingParametersP|and MemoryAreal|
and default values for all other parameters.

This constructor is equivalent to NoHeapRealtimeThread(scheduling, null,
null, area, null, null, null).

5.4.1.1.3 NoHeapRealtimeThread(SchedulingParameters, MemoryArea,
Runnable)

Signature

public
NoHeapRealtimeThread(SchedulingParameters sp, MemoryArea ma, Runnable 1

throws IllegalArgumentException
Create a realtime thread with the given [Schedul ingParameters|| MemoryAreaf| and
a specified Runnable and default values for all other parameters.

4Section [6.5.10
5Section [6.5.10)
6Section [11.8.7|
"Section [6.5.1

8Gection [11.8.

o] EaN|

~J

5.4. CLASSES 47

This constructor is equivalent to RealtimeThread(scheduling, null, area,
null, null, null, logic).

Available since RTSJ version RTSJ 2.0

5.4.1.1.4 NoHeapRealtimeThread(SchedulingParameters, ReleaseParam-
eters, MemoryArea)

Signature

public
NoHeapRealtimeThread(SchedulingParameters scheduling, ReleaseParameters relea:

Create a no-heap realtime thread with the given|SchedulingParameters’, Release-]|
lParametersf | and MemoryAreal'| and default values for all other parameters. This
constructor is equivalent to NoHeapRealtimeThread (scheduling, release, null,
area, null, null, null).

5.4.1.1.5 NoHeapRealtimeThread(SchedulingParameters, ReleaseParam-
eters, Runnable)

Signature

public
NoHeapRealtimeThread(SchedulingParameters scheduling, ReleaseParameters relea:

Create a no-heap realtime thread with the given [SchedulingParameters{“, Re-|
lleaseParameters'”| and a specified Runnable and default values for all other pa-
rameters. This constructor is equivalent to NoHeapRealtimeThread(scheduling,
release, null, null, null, null, logic).

Available since RTSJ version RTSJ 2.0

9Section [6.5.10
10Gection [6.5.8]
HGection [11.8.7]
12Gection [6.5.10
3Section [6.5.8

48 CHAPTER 5. REALTIME THREADS

5.4.1.1.6 NoHeapRealtimeThread(SchedulingParameters, ReleaseParam-
eters, MemoryArea, Runnable)

Signature

public
NoHeapRealtimeThread (SchedulingParameters scheduling, ReleaseParameters

Create a no-heap realtime thread with the given [SchedulingParameters{‘, [Re-|
[leaseParameterd’ MemoryAred 9| and a specified Runnable and default values for
all other parameters.

This constructor is equivalent to NoHeapRealtimeThread (scheduling, release,
null, area, null, null, logic).

Available since RTSJ version RTSJ 2.0

5.4.1.1.7 NoHeapRealtimeThread(SchedulingParameters, ReleaseParam-
eters, MemoryParameters, MemoryArea, ProcessingGroupParameters,
SchedulableSizingParameters, Runnable)

Signature

public
NoHeapRealtimeThread(SchedulingParameters scheduling, ReleaseParameters

Parameters

scheduling The |[SchedulingParameters| ‘| associated with this (and possibly
other instances of [Schedulablel®). If scheduling is null, the default is a
clone of the creator’s scheduling parameters created in the same memory area
as the new NoHeapRealtimeThread.

release The ReleaseParameters®| associated with this (and possibly other
instances of [Schedulablel’)). If release is null the it defaults to the a clone
of the creator’s release parameters created in the same memory area as the
new NoHeapRealtimeThread.

1 Gection [6.5.10
15Section [6.5.8]
16Section |11.8.7]
17Section [6.5.10
18Gection [6.4.1
19Gection [6.5.8
20Section [6.4.1

5.4. CLASSES 49

memory The MemoryParametersf | associated with this (and possibly other
instances of [Schedulablef?). If memory is null, the new NoHeapRealtime-
Thread will have a null value for its memory parameters, and the amount or
rate of memory allocation is unrestricted.
area The MemoryAreal”| associated with this. If area is null, an name is
thrown.
group The |ProcessingGroupParametersf| associated with this (and possibly
other instances of [Schedulable™)). If null, the new NoHeapRealtimeThread
will not be associated with any processing group.
sizing The |[SchedulableSizingParameters’| associated with this (and pos-
sibly other instances of [Schedulablef’l If sizing is null, this NoHeapReal-
timeThread will reserve no space for preallocated exceptions and implementation-
specific values will be set to their implementation-defined defaults.
logic The Runnable object whose run() method will serve as the logic for the
new NoHeapRealtimeThread. If logic is null, the run() method in the new
object will serve as its logic.

Throws

lllegal ArgumentException when the parameters are not compatible with the as-
sociated scheduler, if area is null, if area is heap memory, if area, schedul-
ing, release, memory or group is allocated in heap memory, if this is in heap
memory, or if logic is in heap memory.
IllegalAssignmentError when the new NoHeapRealtimeThread instance can-
not hold references to non-null values of the scheduling, release, memory
and group, or if those parameters cannot hold a reference to the new No-
HeapRealtimeThread. Also when area or logic cannot be stored in the new
RealtimeThread object.
Create a realtime thread with the given characteristics and a Runnable. The thread
group of the new thread is (effectively) null.
The newly-created no-heap realtime thread is associated with the scheduler in
effect during execution of the constructor.
The newly-created realtime thread inherits the affinity of its creator unless it
was created by a Java thread or an unbound asynchronous event handler. In these
cases, the affinity is that which is returned from |[Affinity.getNoHeapDefault ()f°|

21Section
22Gection [6.4.
23Section |
24Gection [6.5.
25Gection [6.4.1
26Section 11.8.12|

27Section [6.4.1
28Section [6.5.1.2.10)

20 CHAPTER 5. REALTIME THREADS

If the newly-created realtime thread has [ProcessingGroupParametersf”| and the
intersection of the group’s affinity and the newly-created realtime thread’s affinity
(as specified above) is null, then the newly-created realtime thread’s affinity is set
to that which is returned by [Affinity.getProcessingGroupDefaultf’|

5.4.1.2 Methods

5.4.1.2.1 start

Signature

public
void start()

Checks if the NoHeapRealtimeThread is startable and starts it if it is.

5.4.1.2.2 startPeriodic(PhasingPolicy)

Signature
public
void startPeriodic(PhasingPolicy phasingPolicy)

throws LateStartException
Checks if the NoHeapRealtimeThread is startable and starts it if it is. ***AJW Is
it obvious that this inherits the properties of super.start ****

Available since RTSJ version RTSJ 2.0

5.4.2 RealtimeThread

Inheritance

java.lang.Object
java.lang.Thread
[avax.realtime.RealtimeThread|

Interfaces

[Schedulablel

29Section [6.5.7]
30Section [6.5.1.2.11

5.4. CLASSES 51

Class RealtimeThread extends Thread and adds access to realtime services such
as asynchronous transfer of control, non-heap memory, and advanced scheduler ser-
vices.
As with java.lang.Thread, there are two ways to create a usable Realtime-
Thread.
e (Create a new class that extends RealtimeThread and override the run () method
with the logic for the thread.
e Create an instance of RealtimeThread using one of the constructors with a
logic parameter. Pass a Runnable object whose run() method implements
the logic of the thread.

5.4.2.1 Constructors

5.4.2.1.1 RealtimeThread
Signature
public

RealtimeThread()

Create a realtime thread with default values for all parameters. This constructor is
equivalent to RealtimeThread(null, null, null, null, null, null, null).

5.4.2.1.2 RealtimeThread(SchedulingParameters)
Signature

public
RealtimeThread(SchedulingParameters scheduling)

Create a realtime thread with the given [SchedulingParametersf'|and default values
for all other parameters. This constructor is equivalent to RealtimeThread (scheduling,
null, null, null, null, null, null).

31Section

52 CHAPTER 5. REALTIME THREADS

5.4.2.1.3 RealtimeThread(SchedulingParameters, TimeDispatcher)

Signature

public
RealtimeThread(SchedulingParameters scheduling, TimeDispatcher dispatct

Create a realtime thread with the given|SchedulingParametersf|and default values
for all other parameters. This constructor is equivalent to RealtimeThread (scheduling,
null, null, null, null, null, null).

Available since RTSJ version RTSJ 2.0

5.4.2.1.4 RealtimeThread(SchedulingParameters, ReleaseParameters)

Signature

public
RealtimeThread(SchedulingParameters scheduling, ReleaseParameters rele:

Create a realtime thread with the given [SchedulingParametersf”| and [Release-|
IParametersf’| and default values for all other parameters.

This constructor is equivalent to RealtimeThread (scheduling, release, null,
null, null, null, null).

5.4.2.1.5 RealtimeThread(SchedulingParameters, ReleaseParameters, Runnable

Signature

public
RealtimeThread(SchedulingParameters scheduling, ReleaseParameters relec

Create a realtime thread with the given [SchedulingParametersf| ReleaseParam-|
and a specified Runnable and default values for all other parameters.

32Gection [6.5.10
33Section [6.5.10
34Section [6.5.8]
35Section [6.5.10
36Section [6.5.8

5.4. CLASSES 23

This constructor is equivalent to RealtimeThread (scheduling, release, null,
null, null, null, logic).

Available since RTSJ version RTSJ 2.0

5.4.2.1.6 RealtimeThread(SchedulingParameters, ReleaseParameters, Mem-
oryArea)
Signature

public
RealtimeThread(SchedulingParameters scheduling, ReleaseParameters release, Mer

Create a realtime thread with the given [SchedulingParameters]'| ReleaseParam-|
leters®| and MemoryAreal”| and default values for all other parameters.
This constructor is equivalent to RealtimeThread (scheduling, release, null,

area, null, null, null).

Available since RTSJ version RTSJ 2.0

5.4.2.1.7 RealtimeThread(SchedulingParameters, ReleaseParameters, Mem-
oryArea, Runnable)
Signature

public
RealtimeThread(SchedulingParameters scheduling, ReleaseParameters release, Mer

Create a realtime thread with the given [SchedulingParameters’, ReleaseParam-|
leters''| MemoryAreal| and a specified Runnable and default values for all other
parameters.

This constructor is equivalent to RealtimeThread (scheduling, release, null,
area, null, null, logic).

37Section [6.5.10
38Section [6.5.8
39Gection [11.8.7]
40Gection [6.5.10]
4Section [6.5.8
42G0ction [11.8.7]

o4 CHAPTER 5. REALTIME THREADS

Available since RTSJ version RTSJ 2.0

5.4.2.1.8 RealtimeThread(SchedulingParameters, ReleaseParameters, Mem-
oryParameters, MemoryArea, ProcessingGroupParameters, Schedulable-
SizingParameters, Runnable)

Signature

public
RealtimeThread(SchedulingParameters scheduling, ReleaseParameters rele:

Parameters
scheduling The [SchedulingParameters”| associated with this (And possibly
other instances of |Schedu1able“MD. If scheduling is null and the creator is a
schedulable object, [SchedulingParameters{”|is a clone of the creator’s value
created in the same memory area as this. If scheduling is null and the
creator is a Java thread, the contents and type of the new SchedulingParam-
eters object is governed by the associated scheduler.
release The ReleaseParameters | associated with this (and possibly other
instances of [Schedulable'’). If release is null the new RealtimeThread
will use a clone of the default ReleaseParameters for the associated scheduler
created in the memory area that contains the RealtimeThread object.
memory The MemoryParameters®| associated with this (and possibly other
instances of [Schedulable™). If memory is null, the new RealtimeThread
receives null value for its memory parameters, and the amount or rate of
memory allocation for the new thread is unrestricted.
area The MemoryAreaP’| associated with this. If area is null, the initial
memory area of the new RealtimeThread is the current memory area at the
time the constructor is called.
group The [ProcessingGroupParameters’ |associated with this (and possibly

o
ot

43Section [6.5.10
44Gection
45Section |
46Gection
47Section
Gection
49Gection |
50Section

51Section

S B
4 by

[=2)
o

<
L Bk

—
—_

&
¢ b P
= P =l P =) oo = =) —

[0s)

—
—_
-~

&
o

5.4. CLASSES 25

other instances of [SchedulableP?). If null, the new RealtimeThread will not
be associated with any processing group.

sizing The|SchedulableSizingParameters|associated with this (and possi-
bly other instances of [SchedulableP?| If sizing is null, this RealtimeThread
will reserve no space for preallocated exceptions and implementation-specific
values will be set to their implementation-defined defaults.

logic The Runnable object whose run() method will serve as the logic for the
new RealtimeThread. If logic is null, the run() method in the new object
will serve as its logic.

Throws
lllegal ArgumentException when the parameters are not compatible with the
associated scheduler.
IllegalAssignmentFError when the new RealtimeThread instance cannot hold
a reference to non-null values of scheduling release memory and group, or
if those parameters cannot hold a reference to the new RealtimeThread. Also
when the new RealtimeThread instance cannot hold a reference to non-null
values of area or logic. Also when area isnull and the new RealtimeThread
instance cannot hold a reference to the default initial memory area.
Create a realtime thread with the given characteristics and a specified Runnable.
The thread group of the new thread is inherited from its creator unless the newly-
created realtime thread is allocated in scoped memory, then its thread group is
(effectively) null.

The newly-created realtime thread is associated with the scheduler in effect dur-
ing execution of the constructor.

The newly-created realtime thread inherits the affinity of its creator unless it
was created by a Java thread or an unbound asynchronous event handler. In these
cases, the affinity is that which is returned from |[Affinity.getHeapDefault ()P°l
If the newly-created realtime thread has [ProcessingGroupParametersf®| and the
intersection of the group’s affinity and the newly-created realtime thread’s affinity
(as specified above) is null, then the newly-created realtime thread’s affinity is set
to that which is returned by [Affinity.getProcessingGroupDefaultf’|

5.4.2.1.9 RealtimeThread(SchedulingParameters, ReleaseParameters, Mem-
oryParameters, MemoryArea, ProcessingGroupParameters, TimeDispatcher,

52Section [6.4.1
53Section [11.8.12

54Gection [6.4.1
55Gection [6.5.1.2.8
56Section [6.5.
57Section [6.5.1.2.11

26 CHAPTER 5. REALTIME THREADS

SchedulableSizingParameters, Runnable)

Signature

public
RealtimeThread(SchedulingParameters scheduling, ReleaseParameters relez:

Parameters
scheduling The [SchedulingParametersP®| associated with this (And possibly
other instances of [Schedulablef”)). If scheduling is null and the creator is a
schedulable object, [SchedulingParametersf'|is a clone of the creator’s value
created in the same memory area as this. If scheduling is null and the
creator is a Java thread, the contents and type of the new SchedulingParam-
eters object is governed by the associated scheduler.
release The ReleaseParameters| associated with this (and possibly other
instances of [Schedulablel|). If release is null the new RealtimeThread
will use a clone of the default ReleaseParameters for the associated scheduler
created in the memory area that contains the RealtimeThread object.
memory The MemoryParameters| associated with this (and possibly other
instances of [Schedulable’®). If memory is null, the new RealtimeThread
receives null value for its memory parameters, and the amount or rate of
memory allocation for the new thread is unrestricted.
area The MemoryAreal| associated with this. If area is null, the initial
memory area of the new RealtimeThread is the current memory area at the
time the constructor is called.
group The |ProcessingGroupParameters | associated with this (and possibly
other instances of [Schedulablel’). If null, the new RealtimeThread will not
be associated with any processing group.
sizing The|SchedulableSizingParameters|associated with this (and possi-
bly other instances of [Schedulablef®| If sizing is null, this RealtimeThread

58Gection [6.5.10
39Gection [6.4.1

60Section [6.5.10|
61Section [6.5.8
62Section [6.4.1
83Section [11.8.8|
64Section [6.4.1

65Section [11.8.7
66Section [6.5.7]
67Section [6.4.1
68Section [11.8.12
69Section [6.4.1

5.4. CLASSES o7

will reserve no space for preallocated exceptions and implementation-specific
values will be set to their implementation-defined defaults.
logic The Runnable object whose run() method will serve as the logic for the
new RealtimeThread. If logic is null, the run() method in the new object
will serve as its logic.
Throws
lllegal ArgumentException when the parameters are not compatible with the
associated scheduler.
IllegalAssignmentError when the new RealtimeThread instance cannot hold
a reference to non-null values of scheduling release memory and group, or
if those parameters cannot hold a reference to the new RealtimeThread. Also
when the new RealtimeThread instance cannot hold a reference to non-null
values of area or logic. Also when area isnull and the new RealtimeThread
instance cannot hold a reference to the default initial memory area.
Create a realtime thread with the given characteristics and a specified Runnable.
The thread group of the new thread is inherited from its creator unless the newly-
created realtime thread is allocated in scoped memory, then its thread group is
(effectively) null.

The newly-created realtime thread is associated with the scheduler in effect dur-
ing execution of the constructor.

The newly-created realtime thread inherits the affinity of its creator unless it
was created by a Java thread or an unbound asynchronous event handler. In these
cases, the affinity is that which is returned from [Affinity.getHeapDefault)f"|
If the newly-created realtime thread has [ProcessingGroupParameters | and the
intersection of the group’s affinity and the newly-created realtime thread’s affinity
(as specified above) is null, then the newly-created realtime thread’s affinity is set
to that which is returned by [Affinity.getProcessingGroupDefault|

5.4.2.2 Methods

5.4.2.2.1 currentRealtimeThread

Signature

public static
javax.realtime.RealtimeThread currentRealtimeThread()

70Section [6.5.1.2.8

"1Section [6.5.
72Section [6.5.1.2.11

o8 CHAPTER 5. REALTIME THREADS

Throws

ClassCastEzception if the current execution context is that of a Java thread.
Returns

A reference to the current instance of RealtimeThread.
Gets a reference to the current instance of RealtimeThread.

It is permissible to call currentRealtimeThread when control is in an

IEventHandler®| The method will return a reference to the RealtimeThread sup-
porting that release of the async event handler.

5.4.2.2.2 getCurrentMemoryArea

Signature

public static
javax.realtime.MemoryArea getCurrentMemoryArea()

Returns
A reference to the MemoryAreal| object representing the current allocation
context.
Return a reference to the MemoryAreal| object representing the current allocation
context.
If this method is invoked from a Java thread it will return that thread’s current
memory area (heap or immortal.)

5.4.2.2.3 getInitialMemoryArealndex

Signature

public static
int getInitialMemoryAreaIndex()

Throws
lllegalState Exception when the memory area at the initial memory area index,
in the current scope stack is not the initial memory area.
ClassCastEzception when the current execution context is that of a Java thread.
Returns
The index into the initial memory area stack of the initial memory area of the
current RealtimeThread.
Returns the position in the initial memory area stack, of the initial memory area
for the current realtime thread. Memory area stacks may include inherited stacks
from parent threads. The initial memory area of a RealtimeThread or AsyncEvent-
Handler is the memory area given as a parameter to its constructor. The index in

73Section [8.6.4
7Section [11.8.7
75Section [11.8.7

5.4. CLASSES 29

the initial memory area stack of the initial memory area is a fixed property of the
realtime thread.

If the current memory area stack of the current realtime thread is not the original
stack and the memory area at the initial memory area index is not the initial memory
area, then IllegalStateException is thrown.

5.4.2.2.4 getMemoryAreaStackDepth

Signature

public static
int getMemoryAreaStackDepth()

Throws

ClassCastEzception when the current execution context is that of a Java thread.
Returns

The size of the stack of MemoryAreal’®| instances.
Gets the size of the stack of MemoryArea'’|instances to which the current schedulable
object has access.

Note: The current memory area (getCurrentMemoryArea ()[®) is found at mem-

ory area stack index getMemoryAreaStackDepth() - 1.

5.4.2.2.5 getOuterMemoryArea(int)

Signature

public static
javax.realtime.MemoryArea getOuterMemoryArea(int index)

Parameters
index The offset into the memory area stack.
Throws
ClassCastEzception when the current execution context is that of a Java thread.
MemoryAccessError when the memory area is allocate in heap memory and
the caller is a no-heap schedulable object.
Returns
The instance of MemoryArea'”| at index or null if the given value is does not
correspond to a position in the stack.
Gets the instance of MemoryAreaf|in the memory area stack at the index given. If
the given index does not exist in the memory area scope stack then null is returned.

76Section [11.8.7]
77Section [11.8.7]
8Section [5.4.2.2.2
7Section [11.8.7
80Section [11.8.7]

60 CHAPTER 5. REALTIME THREADS

Note: The current memory area (getCurrentMemoryArea (f-) is found at mem-
ory area stack index getMemoryAreaStackDepth() - 1., so getCurrentMemoryArea()
== getOutMemoryArea(getMemoryAreaStackDepth() - 1).

5.4.2.2.6 sleep(HighResolutionTime)

Signature

public static
void sleep(HighResolutionTime time)

throws InterruptedException
A sleep method that is controlled by the realtime clock.
Equivalent to sleep(Clock.getRealtimeClock(), time)

5.4.2.2.7 waitForNextPeriod

Signature

public static
boolean waitForNextPeriod()

Throws
Illegal ThreadState Exception when this does not have a reference to a
[LleaseParametersP| type of PeriodicParametersf|
ClassCastEzception when the current thread is not an instance of Realtime-
Thread.
Returns
True when the thread is not in a deadline miss condition. Otherwise the return
value is governed by this thread’s scheduler.
Causes the current realtime thread to delay until the beginning of the next period.
Used by threads that have a reference to a ReleaseParametersf”| type of
licParametersP’|to block until the start of each period. The first period starts when
this thread is first released. Each time it is called this method will block until the
start of the next period unless the thread is in a deadline miss condition. In that
case the operation of waitForNextPeriod is controlled by this thread’s scheduler.
(See [PrioritySchedulerf®|)

Available since RT'SJ version RTSJ 1.0.1 Changed from an instance method

81Section [5.4.2.2.2]
82Gection [6.5.8
83Section [6.5.4]
84Gection [6.5.8
85Section [6.5.4
86Section [6.5.6

5.4. CLASSES 61

to a static method.

5.4.2.2.8 waitForNextPeriodInterruptible

Signature

public static
boolean waitForNextPeriodInterruptible()

throws InterruptedException
Throws
Interrupted Exception when the thread is interrupted by [interrupt OF|or|Asynl-
lchronouslyInterruptedException.fire OF°| during the time between call-
ing this method and returning from it.
An interrupt during waitForNextPeriodInterruptible is treated as a release
for purposes of scheduling. This is likely to disrupt proper operation of the
periodic thread. The periodic behavior of the thread is unspecified until the
state is reset by altering the thread’s periodic parameters.
ClassCastEzception when the current thread is not an instance of Realtime-
Thread.
Illegal ThreadState Exception when this does not have a reference to a
lleaseParameters”’| type of [PeriodicParametersf |
Returns
True when the thread is not in a deadline miss condition. Otherwise the return
value is governed by this thread’s scheduler.
The waitForNextPeriodInterruptible () method is a duplicate of waitForNextPer
except that waitForNextPeriodInterruptible is able to throw Inter-
ruptedException.

Used by threads that have a reference to a|[ReleaseParameters]-|type of
lodicParameters| to block until the start of each period. The first period starts
when this thread is first released. Each time it is called this method will block
until the start of the next period unless the thread is in a deadline miss condition.
In that case the operation of waitForNextPeriodInterruptible is controlled by
this thread’s scheduler. (See PrioritySchedulerf”|)

87Section [5.4.2.2.21
88Section mr‘
89Section [6.5.8
90Section [6.5.4
91Section 5.4.2.2.7|
92Section [6.5.8
93Section [6.5.4
94Section [6.5.6

62 CHAPTER 5. REALTIME THREADS
Available since RTSJ version RTSJ 1.0.1

5.4.2.2.9 waitForNextRelease

Signature

public static
boolean waitForNextRelease()

Throws
IllegalThreadState Exception when this does not have a reference to a
[leaseParameters”|type of [AperiodicParametersf"|
ClassCastEzception when the current thread is not an instance of Realtime-
Thread.
Returns
True when the thread is not in a deadline miss condition. Otherwise the return
value is governed by this thread’s scheduler.
Andy: Should release be overloaded to pass a
parameter?Causes the current realtime thread to delay until the next release. (See
release O"]) Used by threads that have a reference to aperiodic [ReleaseParam-|
eter

The first release starts when this thread is released as a consequence of the
action of one of the family of methods. Each time it is called this method
will block until the next release unless the thread is in a deadline miss condition.
In that case the operation of waitForNextRelease is controlled by this thread’s
scheduler. (See[PriorityScheduler{"’)

Available since RTSJ version RTSJ 2.0

5.4.2.2.10 waitForNextReleaselnterruptible

Signature

public static
boolean waitForNextReleaseInterruptible()

throws InterruptedException

95Section [6.5.8
96Section [6.5.2

97Section [5.4.2.2.11

9%8Section [6.5.8

99Gection |5.4.2.2.31
100Gection [6.5.6

5.4. CLASSES 63

Throws
Interrupted Exception
IllegalThreadState Ezception when this does not have a reference to a
lleaseParameters| | type of [AperiodicParameters| -}
ClassCastEzception when the current thread is not an instance of Realtime-
Thread.
Returns
True when the thread is not in a deadline miss condition. Otherwise the return
value is governed by this thread’s scheduler.
Causes the current realtime thread to delay until the next release. (Seerelease Of*])
Used by threads that have a reference to aperiodic [ReleaseParameters| | The first
release starts when this thread is released as a consequence of the action of one
of the family of methods. Each time it is called this method will block
until the next release unless the thread is in a deadline miss condition. In that case
the operation of waitForNextRelease is controlled by this thread’s scheduler. (See
IPriorityScheduler"|)

Available since RTSJ version RTSJ 2.0

5.4.2.2.11 release

Signature

public
void release()

Throws
Illegal ThreadState Exception when this does not have a reference to a
[leaseParameters|''| type of |AperiodicParameters| ")
Generate a release for this RealtimeThread. The action of this release is governed
by the schedule. It may, for instance, act immediately, or be queued, delayed, or

discarded.

Available since RTSJ version RTSJ 2.0

101Gection [6.5.8
102Gection [6.5.2
103Gection [5.4.2.2.11
104Gection [6.5.8
105Gection 5.4.2.2.31|
106GQection [6.5.6
107GSection [6.5.8
108Gection [6.5.2

64 CHAPTER 5. REALTIME THREADS

5.4.2.2.12 deschedule

Signature

public
void deschedule()

If the ReleaseParameters|"’| object associated with this RealtimeThread is an
instance of is [AperiodicParameters ', perform any deschedule actions specified
by this thread’s scheduler. If the type of the associated instance of ReleaseParam-|

is not [AperiodicParametersf | nothing happens.

Available since RTSJ version RTSJ 1.0.1

5.4.2.2.13 deschedulePeriodic

Signature

public

void deschedulePeriodic()
If the |ReleaseParameters’Ff3] object associated with this RealtimeThread is an in-
stance of is [PeriodicParameters{ % perform any deschedulePeriodic actions spec-
ified by this thread’s scheduler. If the type of the associated instance of

IParameters| | is not [PeriodicParameters| ' °| nothing happens.

5.4.2.2.14 getMemoryArea

Signature

public
javax.realtime.MemoryArea getMemoryArea()

Returns
A reference to the initial memory area for this thread.

109Gection [6.5.8
H0Gection [6.5.2
H1Gection [6.5.8
H2Gection [6.5.2
H13Gection [6.5.8
H4Gection [6.5.4
15Gection [6.5.8
16Gection [6.5.4

5.4. CLASSES 65

Return the initial memory area for this RealtimeThread (corresponding to the area
parameter for the constructor.)

Note: Unlike the scheduling-related parameter objects, there is never a case
where a default parameter will be constructed for the thread. The default is a
reference to the current allocation context when this is constructed.

Available since RTSJ version RTSJ 1.0.1

5.4.2.2.15 getMemoryParameters

Signature

public
javax.realtime.MemoryParameters getMemoryParameters()

Returns
@inheritDoc
@inheritDoc

5.4.2.2.16 getProcessingGroupParameters

Signature

public
javax.realtime.ProcessingGroupParameters

getProcessingGroupParameters ()
Returns

@inheritDoc
@inheritDoc

5.4.2.2.17 getSchedulableSizingParameters

Signature
public
javax.realtime.SchedulableSizingParameters

getSchedulableSizingParameters()
Returns

@inheritDoc
@inheritDoc

5.4.2.2.18 getReleaseParameters

Signature

66 CHAPTER 5. REALTIME THREADS

public
javax.realtime.ReleaseParameters getReleaseParameters()

Returns
@inheritDoc
@inheritDoc

5.4.2.2.19 getScheduler

Signature

public
javax.realtime.Scheduler getScheduler()

Returns
@inheritDoc
@inheritDoc

5.4.2.2.20 getSchedulingParameters

Signature
public
javax.realtime.SchedulingParameters getSchedulingParameters()

Returns
@inheritDoc
@inheritDoc

5.4.2.2.21 interrupt

Signature

public
void interrupt()

Extends the function of Thread.interrupt(), generates the generic Asynchron-
ouslyInterruptedException and targets it at this, and sets the interrupted state to
pending. (See [AsynchronouslyInterruptedExceptionf |

The semantics of Thread.interrupt() are preserved.

5.4.2.2.22 schedule

Signature

public
void schedule()

17Gection W

5.4. CLASSES 67

Begin unblocking [RealtimeThread.waitForNextReleasd '°|for an periodic thread.
If deadline miss detection is disabled, enable it. Typically used when an aperiodic
schedulable object is in a deadline miss condition.

The details of the interaction of this method with [descheduld™’] waitForNex-|

tRelease <] and are dictated by this thread’s scheduler. If this Real-
timeThread does not have a type of |AperiodicParametersfm] as its
nothing happens.

Available since RTSJ version RTSJ 2.0

5.4.2.2.23 schedulePeriodic

Signature

public

void schedulePeriodic()
Begin unblocking RealtimeThread.waitForNextPeriod/*!| for a periodic thread.
If deadline miss detection is disabled, enable it. Typically used when a periodic
schedulable object is in a deadline miss condition. The details of the interaction of
this method with [deschedulePeriodid™ and waitForNextPeriod®] are dictated
by this thread’s scheduler.

If this RealtimeThread does not have a type of PeriodicParameterd > as its

ReleaseParameters > nothing happens.

5.4.2.2.24 setMemoryParameters(MemoryParameters)

Signature

public

void setMemoryParameters(MemoryParameters memory)
Parameters

memory QinheritDoc

18Gection [5.4.2.2.9

19Gection
120Gection
121GQection [5.4.2.2.

122Gection [6.5.2
123Gection [6.5.8

124GQection [5.4.2.2.
125Gection
126GQection [5.4.2.2.
127Gection [6.5.4
128Gection [6.5.8

68 CHAPTER 5. REALTIME THREADS

Throws
LllegalArgumentException QinheritDoc
LllegalAssignmentError QinheritDoc
lllegal ThreadState Exzception QinheritDoc
@inheritDoc

5.4.2.2.25 setProcessingGroupParameters(ProcessingGroupParameters)

Signature
public
void setProcessingGroupParameters(ProcessingGroupParameters
group)
Parameters
group QinheritDoc
Throws
Lllegal ArgumentException QinheritDoc
LllegalAssignmentError QinheritDoc
lllegal ThreadState Exception QinheritDoc
@inheritDoc

5.4.2.2.26 setReleaseParameters(ReleaseParameters)

Signature

public
void setReleaseParameters(ReleaseParameters release)

Parameters
release @inheritDoc
Throws
lllegal ArgumentException QinheritDoc
LllegalAssignmentError @QinheritDoc
lllegal ThreadState Exception @QinheritDoc
@inheritDoc

5.4.2.2.27 setScheduler(Scheduler)

Signature

public

void setScheduler(Scheduler scheduler)
Parameters

scheduler @inheritDoc

5.4. CLASSES 69

Throws
lllegal ArgumentException QinheritDoc
Lllegal AssignmentError QinheritDoc
SecurityFxception QinheritDoc
Illegal ThreadState Exception QinheritDoc
@inheritDoc

5.4.2.2.28 setScheduler(Scheduler, SchedulingParameters, ReleasePar-
ameters, MemoryParameters, ProcessingGroupParameters)

Signature
public
void setScheduler(Scheduler scheduler, SchedulingParameters
scheduling, ReleaseParameters release, MemoryParameters
memoryParameters, ProcessingGroupParameters group)
Parameters
scheduler @QinheritDoc
scheduling QinheritDoc
release @inheritDoc
memoryParameters QinheritDoc
group @inheritDoc
Throws
Illegal ArgumentException QinheritDoc
LllegalAssignmentError QinheritDoc
lllegal ThreadState Exception @QinheritDoc
SecurityException QinheritDoc
@inheritDoc

5.4.2.2.29 setSchedulingParameters(SchedulingParameters)

Signature

public
void setSchedulingParameters(SchedulingParameters scheduling)

Parameters
scheduling @QinheritDoc
Throws
Illegal ArgumentException QinheritDoc
IllegalAssignmentError QinheritDoc
lllegal ThreadState Exception QinheritDoc
@inheritDoc

70 CHAPTER 5. REALTIME THREADS

5.4.2.2.30 startPeriodic(PhasingPolicy)

Signature

public
void startPeriodic(PhasingPolicy phasingPolicy)

throws LateStartException

Parameters
phasingPolicy The phasing policy to be applied if the start time given in the
realtime thread’s associated [PeriodicParameters{ <’ is in the past.

Throws
javaz.realtime. LateStartEzception when the actual start time is after the as-
signed start time and the phasing policy is[PhasingPolicy.STRICT_PHASING |
lllegalArgumentException when the thread is not periodic, or if its start time
is not absolute.

Start the thread with the specified phasing policy.

Available since RTSJ version RTSJ 2.0

5.4.2.2.31 start

Signature

public
void start()

Set up the realtime thread’s environment and start it. The set up might include
delaying it until the assigned start time and initializing the thread’s scope stack.
(See |[ScopedMemoryf~'|)

5.4.2.2.32 getLastReleaseTime

Signature

public
javax.realtime.AbsoluteTime getLastReleaseTime()

Equivalent to getLastReleaseTime (null)

Available since RTSJ version RTSJ 2.0

129Gection 16.5.41

130Gection [5.3.1.1.1
131Gection |11.8.13

5.4. CLASSES 71

5.4.2.2.33 getLastReleaseTime(AbsoluteTime)

Signature

public
javax.realtime.AbsoluteTime getLastReleaseTime(AbsoluteTime

dest)
Returns
the last release time in dest. If dest is null, create a new absolute time
instance in the current memory area.
Return the absolute time of this thread’s last release, whether periodic or aperiodic.
The clock in the returned absolute time shall be the realtime clock for aperiodic
releases and the clock used for the periodic release for periodic releases.

Available since RTSJ version RTSJ 2.0

5.4.2.2.34 getEffectiveStartTime

Signature

public
javax.realtime.AbsoluteTime getEffectiveStartTime()

Equivalent to getEffectiveStartTime (null).

Available since RTSJ version RTSJ 2.0

5.4.2.2.35 getEffectiveStartTime(AbsoluteTime)

Signature

public
javax.realtime.AbsoluteTime getEffectiveStartTime(AbsoluteTime

dest)
Returns

The effective start time in dest. If dest is null, return the effective start

time in an [AbsoluteTime{ 4 instance created in the current memory area.
Return the effective start time of this realtime thread. This is not necessarily the
same as the start time in the release parameters.

o If the release parameters’ start time is relative, the effective start time is the
time of the first release.

132Gection m

72 CHAPTER 5. REALTIME THREADS

e If the release parameters’ start time is an absolute time after start() is invoked,
the effective start time is the same as the release parameters’ start time.
e If the release parameters’ start time is an absolute time before start() is in-
voked, the effective start time depends on the phasing policy.
The default is to set the effective start time equal to the time start() is invoked.

Available since RTSJ version RTSJ 2.0

5.4.2.2.36 getCurrentConsumption(RelativeTime)

Signature

public static
javax.realtime.RelativeTime getCurrentConsumption(RelativeTime

dest)

Throws
IllegalState Exception when the caller is not a [RealtimeThread ™|

Returns
The CPU consumption for this release. If dest is null, return the CPU
consumption in an otherwise unused RelativeTimef | instance in the current
execution context. If dest is not null, return the CPU consumption in dest

Available since RTSJ version RTSJ 2.0

5.4.2.2.37 getCurrentConsumption

Signature

public static
javax.realtime.RelativeTime getCurrentConsumption()

Equivalent to getCurrentConsumption(null).

Available since RTSJ version RTSJ 2.0

5.4.2.2.38 getMinConsumption(RelativeTime)

Signature

133Gection |5.4.2
134Gection [9.5.4

5.4. CLASSES 73

public
javax.realtime.RelativeTime getMinConsumption(RelativeTime dest)

Returns
the minimum CPU consumption in dest. If dest is null return the mini-
mum CPU consumption in a [RelativeTimef*°|instance created in the current
memory area.

Get the minimum CPU consumption measured for any completed release of this
thread.

Available since RTSJ version RTSJ 2.0

5.4.2.2.39 getMinConsumption

Signature

public
javax.realtime.RelativeTime getMinConsumption()

Equivalent to getMinConsumption(null).

Available since RTSJ version RTSJ 2.0

5.4.2.2.40 getMaxConsumption(RelativeTime)

Signature
public
javax.realtime.RelativeTime getMaxConsumption(RelativeTime dest)
Returns
the maximum CPU consumption in dest. If dest is null return the maxi-
mum CPU consumption in a [RelativeTimeg™" instance created in the current
memory area.
Get the maximum CPU consumption measured for any completed release of this
thread.

Available since RTSJ version RTSJ 2.0

135Gection [9.5.4]
136Section [9.5.41

74 CHAPTER 5. REALTIME THREADS

5.4.2.2.41 getMaxConsumption

Signature

public
javax.realtime.RelativeTime getMaxConsumption()

Equivalent to getMaxConsumption(null).

Available since RTSJ version RTSJ 2.0

5.4.2.2.42 getDispatcher

Signature

public
javax.realtime.TimeDispatcher getDispatcher ()

ISee Section Timable.getDispatcher())|

Available since RTSJ version RTSJ 2.0

5.4.2.2.43 fire

Signature
public
void fire()

Indicate that a sleep has come to its end.
See Section Timable.trigger())

Available since RTSJ version RTSJ 2.0

5.5 Rationale

The Java platform’s priority-preemptive dispatching model is very similar to the
dispatching model found in the majority of commercial realtime operating systems.
However, the dispatching semantics were purposefully relaxed in order to allow ex-
ecution on a wide variety of operating systems. Thus, it is appropriate to specify
realtime threads by extending java.lang.Thread.

5.5. RATIONALE 75

The ReleaseParameters and MemoryParameters provided to the Realtime-
Thread constructor allow for a number of common realtime thread types, including
periodic threads.

The NoHeapRealtimeThread class is provided in order to allow time-critical threads
to execute in preference to the garbage collector given appropriate assignment of
execution eligibility. The memory access and assignment semantics of the NoHeap-
RealtimeThread are designed to guarantee that the execution of such threads does
not lead to an inconsistent heap state.

76

CHAPTER 5. REALTIME THREADS

Chapter 6

Scheduling

6.1 Overview

The scheduler required by this specification is fixed-priority preemptive with at least
28 unique priority levels. It is represented by the class PriorityScheduler and is
called the base scheduler.

The schedulable objects required by this specification are defined by the classes
RealtimeThread, NoHeapRealtimeThread, AsyncEventHandler, and BoundAsyncEven-
tHandler. The base scheduler assigns processor resources according to the schedul-
able objects’ release characteristics, execution eligibility, and processing group val-
ues. Subclasses of the schedulable objects are also schedulable objects and behave
as these required classes.

An instance of the SchedulingParameters class contains values of execution
eligibility. A schedulable object is considered to have the execution eligibility rep-
resented by the SchedulingParameters object currently bound to it. For imple-
mentations providing only the base scheduler, the scheduling parameters object is
an instance of PriorityParameters (a subclass of SchedulingParameters).

An instance of the ReleaseParameters class or its subclasses, PeriodicPa-
rameters, AperiodicParameters, and SporadicParameters, contains values that
define a particular release characteristic. A schedulable object is considered to have
the release characteristics of a single associated instance of the ReleaseParameters
class.

For a realtime thread, the scheduler defines the behavior of the realtime thread’s
waitForNextPeriod, waitForNextPeriodInterruptible, waitForNextRelease, and
waitForNextReleaseInterruptible methods, and monitors cost overrun and dead-
line miss conditions based on its release parameters. For asynchronous event han-
dlers, the scheduler monitors cost overruns and deadline misses.

Release parameters also govern the treatment of the minimum interarrival time

77

78 CHAPTER 6. SCHEDULING

for sporadic schedulable objects.

An instance of the ProcessingGroupParameters class contains values that de-
fine a temporal scope for a processing group on a single processor. If a schedulable
object has an associated instance of the ProcessingGroupParameters class, it is
said to execute within the temporal scope defined by that instance. A single instance
of the ProcessingGroupParameters class can be (and typically is) associated with
many SOs. If the implementation supports cost enforcement, the combined processor
demand of all of the SOs associated with an instance of the ProcessingGroupParam-
eters class must not exceed the values in that instance (i.e., the defined temporal
scope). The processor demand is determined by the Scheduler.

The scheduling classes provide the necessary support for realtime scheduling.
These classes

e allow the definition of schedulable objects,

e manage the assignment of execution eligibility to schedulable objects,

e manage the execution of instances of the AsyncEventHandler and Realtime-

Thread classes,

e assign release characteristics to schedulable objects,

e assign execution eligibility values to schedulable objects, and

e manage the execution of groups of schedulable objects that collectively exhibit

additional release characteristics.

6.2 Definitions and Abbreviations

Classes that implement the scheduling behavior of realtime tasks implement the
Schedulable interface. Instances of these classes are referred to as Schedulable
Objects (SO) and provide three execution states: executing, blocked, and eligible-
for-ezxecution.
e Fxecuting refers to the state where the SO is currently running on a processor.
e Blocked refers to the state where the SO is not among those SO’s that could
be selected to have their state changed to executing. The blocked state will
have a reason associated with it, e.g., blocked-for-1/O-completion, blocked-for-
release-event, or blocked-by-cost-overrun.
o FEligible-for-execution refers to the state where the SO could be selected to
have its state changed to executing.
Each type of schedulable object defines its own release events, for example, the
release events for a periodic SO are caused by the passage of time and occur at
programmatically specified intervals.
Release is the changing of the state of a schedulable object from blocked-for-
release-event to eligible-for-execution. If the state of an SO is blocked-for-release-
event when a release event occurs then the state of the SO is changed to eligible-for-

6.2. DEFINITIONS AND ABBREVIATIONS 79

execution. Otherwise, a state transition from blocked-for-release-event to eligible-
for-execution is queued; this is known as a pending release. When the next transition
of the SO into state blocked-for-release-event occurs, and there is a pending release,
the state of the SO is immediately changed to eligible-for-execution. (Some actions
implicitly clear any pending releases.)

Completion is the changing of the state of a schedulable object from executing
to blocked-for-release-event. Each completion corresponds to a release. A realtime
thread is deemed to complete its most recent release when it terminates.

Deadline refers to a time before which a schedulable object expects to complete.
The i*" deadline is associated with the i*" release event and a deadline miss occurs
if the i*" completion would occur after the i*" deadline.

Deadline monitoring is the process by which the implementation responds to
deadline misses. If a deadline miss occurs for a schedulable object, the deadline
miss handler, if any, for that SO is released. This behaves as if there were an
asynchronous event associated with the SO, to which the miss handler was bound,
and which was fired when the deadline miss occurred.

Periodic, sporadic, and aperiodic are adjectives applied to schedulable objects
which describe the temporal relationship between consecutive release events. Let R;
denote the time at which an SO has had the i release event occur. Ignoring the
effect of release jitter:

e an SO is periodic when there exists a value T > 0 such that for all i, R, 1—R; =

T, where T is called the period;
e an SO that is not periodic is said to be aperiodic; and
e an aperiodic SO is said to be sporadic when there is a known value T" > 0 such
that for all ¢, R;11 — R; >=T'. T is then called the minimum interarrival time
(MIT).
The cost of a schedulable object is an estimate of the maximum amount of CPU
time that the SO requires between a release and its associated completion.

The current CPU consumption of a schedulable object is the amount of CPU
time that the SO has consumed since its last release.

A cost overrun occurs when the schedulable object’s current CPU consumption
becomes greater than, or equal to, its cost.

Cost monitoring is the process by which the implementation tracks CPU con-
sumption and responds to cost overruns. If a cost overrun occurs for a schedulable
object, the cost overrun handler, if any, for that SO is released. This behaves as
if there were an asynchronous event associated with the SO, to which the overrun
handler was bound, and which was fired when the cost overrun occurred.

Cost enforcement is the process by which the implementation ensures that the
CPU consumption of a SO is no more than the value of the cost parameter in
its associated ReleaseParameters. (Cost enforcement is an optional facility in an
implementation of the RTSJ.)

80 CHAPTER 6. SCHEDULING

The base priority of a schedulable object is the priority given in its associated
PriorityParameters object; the base priority of a Java thread is the priority re-
turned by its getPriority method.

When it is not in the enforced state, the active priority of a schedulable object
or a Java thread is the maximum of its base priority and any priority it has acquired
due to the action of priority inversion avoidance algorithms (see the Synchronization
Chapter).

A processing group is a collection of schedulable objects whose combined execu-
tion has further execution time constraints which the scheduler uses to govern the
group’s execution eligibility.

A scheduler manages the execution of schedulable objects: it detects deadline
misses, and performs admission control and cost monitoring. It also manages the
execution of Java threads.

The base scheduler is an instance of the PriorityScheduler class as defined in
this specification. This is the initial default scheduler.

A processor is a logical processing element that is capable of physically executing
a single thread of control at any point in time. Hence, multicore platforms have
multiple processors, platforms that support hyperthreading also have more than
one processor. It is assumed that all processors are capable of executing the same
instruction sets.

An affinity is a set of processors on which the global scheduling of a schedulable
object can be supported.

6.3 Semantics and Requirements

This section establishes the semantics and requirements that are applicable across
the classes of this chapter, and also defines the required scheduling algorithm. Se-
mantics that apply to particular classes, constructors, methods, and fields will be
found in the class description and the constructor, method, and field detail sections.

6.3.1 Semantics and Requirements of Schedulers

1. Schedulers other than the base scheduler may change the execution eligibility
of the schedulable objects which they manage according to their scheduling
algorithm.

2. If an implementation provides any public schedulers other than the base sched-
uler it shall provide documentation describing each scheduler’s semantics in
language and constructs appropriate to the provided scheduling algorithms.
This documentation must include the list of classes that constitute schedulable

6.3. SEMANTICS AND REQUIREMENTS 81

objects for the scheduler unless that list is the same as the list of schedulable
objects for the base scheduler.

6.3.2 Semantics and Requirements of the Base Scheduler

The semantics for the base scheduler assume a uniprocessor or shared memory mul-
tiprocessor execution environment.

The base scheduler supports the execution of all schedulable objects and Java
threads.

6.3.2.1 Priorities

1. The base scheduler must support at least 28 distinct values (realtime pri-
orities) that can be stored in an instance of PriorityParameters in addi-
tion to the values 1 through 10 required to support the priorities defined by
java.lang.Thread. The base priority of each schedulable object under the
control of the base scheduler must be from the range of realtime priorities. The
realtime priority values must be greater than 10, and they must include all
integers from the base scheduler’s getMinPriority() value to its getMaxPri-
ority() value inclusive. The 10 priorities defined for java.lang.Thread must
effectively have lower execution eligibility than the realtime priorities, but be-
yond this, their behavior is as defined by the specification of java.lang.Thread.

2. Higher priority values in an instance of PriorityParameters have a higher
execution eligibility.

3. Assignment of any of the realtime priority values to any schedulable object
controlled by the base priority scheduler is legal. It is the responsibility of
application logic to make rational priority assignments.

4. The base scheduler does not use the importance value in the ImportancePa-
rameters subclass of PriorityParameters.

5. For schedulable objects managed by the base scheduler, the implementation
must not change the execution eligibility for any reason other than

e implementation of a priority inversion avoidance algorithm or

e as a result of a program’s request to change the priority parameters as-
sociated with one or more schedulable objects; e.g., by changing a value
in a scheduling parameter object that is used by one or more schedulable
objects, or by using setSchedulingParameters() to give a schedulable
object a different SchedulingParameters value.

6. Use of Thread.setPriority(), any of the methods defined for schedulable
objects, or any of the methods defined for parameter objects must not affect
the correctness of the priority inversion avoidance algorithms controlled by

82

8.

1
2
3

CHAPTER 6. SCHEDULING

PriorityCeilingEmulation and PriorityInheritance — see the Synchro-
nization chapter.

If schedulable object A managed by the base scheduler creates a Java thread,
B, then the initial base priority of B is the priority value returned by the
getMaxPriority method of B’s java.lang.ThreadGroup object.
PriorityScheduler.getNormPriority() shall be set to:

((PriorityScheduler.getMaxPriority() —
PriorityScheduler.getMinPriority()) / 3) +
PriorityScheduler.getMinPriority()

6.3.2.2 Dispatching

The execution scheduling semantics described in this section are defined in terms
of a conceptual model that contains a set of queues of schedulable objects that are
eligible for execution. There is, conceptually, one queue for each priority on each
processor. No implementation structures are necessarily implied by the use of this
conceptual model. It is assumed that no time elapses during operations described
using this model, and therefore no simultaneous operations are possible.

The RTSJ dispatching model specifies its dispatching rules for the default priority
scheduler.

1.

2.

A schedulable object can become a running schedulable object only if it is
ready and one of the processors in its requested affinity is available.

If two schedulable objects have different active priorities and request the same
processor, the schedulable object with the higher active priority will always
execute in preference to the schedulable object with the lower value when both
are eligible for execution.

. Processors are allocated to schedulable objects based on each schedulable ob-

ject’s active priority and their associated affinity.

. Schedulable object dispatching is the process by which one ready schedulable

object is selected for execution on a processor. This selection is done at certain
points during the execution of a schedulable object called schedulable object
dispatching points.

. A schedulable object reaches a schedulable object dispatching point whenever

it becomes blocked, when it terminates, or when a higher priority schedulable
object becomes ready for execution on its processor. That is, a schedulable ob-
ject that is executing will continue to execute until it either blocks, terminates
or is preempted by a higher-priority schedulable object.

The dispatching policy is specified in terms of ready queues and schedulable
object states. The ready queues are purely conceptual; there is no requirement

6.3.

10.

11.

12.

13.

14.

SEMANTICS AND REQUIREMENTS 83

that such lists physically exist in an implementation. A ready queue is an
ordered list of ready schedulable objects. The first position in a queue is
called the head of the queue, and the last position is called the tail of the
queue.

. A schedulable object is ready if it is in a ready queue, or if it is running.

Each processor has one ready queue for each priority value. At any instant,
each ready queue of a processor contains exactly the set of schedulable objects
of that priority that are ready for execution on that processor, but are not
running on any processor; that is, those schedulable objects that are ready,
are not running on any processor, and can be executed using that processor.

. A schedulable object can be on the ready queues of more than one processor.
. Each processor has one running schedulable object, which is the schedulable

object currently being executed by that processor. Whenever a schedulable
object running on a processor reaches a schedulable object dispatching point,
a new schedulable object is selected to run on that processor. The schedulable
object selected is the one at the head of the highest priority nonempty ready
queue for that processor; this schedulable object is then removed from all ready
queues to which it belongs.

In a multiprocessor system, a schedulable object can be on the ready queues
of more than one processor. At the extreme, if several processors share the
same set of ready schedulable objects, the contents of their ready queues are
identical, and so they can be viewed as sharing one ready queue, and can be
implemented that way. Thus, the dispatching model covers multiprocessors
where dispatching is implemented using a single ready queue, as well as those
with separate dispatching domains.

The dispatching mechanism must allow the preemption of the execution of
schedulable objects and Java threads with a bounded delay at a point not gov-
erned by the preempted object. The bound on this delay may be implementation-
defined, and could be the time to the next point in execution that the heap is
in a consistent state or some similar restriction. The implementation should
document this bound.

A schedulable object that is preempted by a higher priority schedulable object
is placed in the queue for its active priority, at a position determined by the
implementation. The implementation must document the algorithm used for
such placement. It is recommended that a preempted schedulable object be
placed at the front of the appropriate queue.

A realtime thread that performs a yield() is placed at the tail of the queues
(dictated by its affinity) for its active priority level.

A blocked schedulable object that becomes eligible for execution is added to
the tail of the queues (dictated by its affinity) for that priority. This behavior
also applies to the initial release of a schedulable object.

84 CHAPTER 6. SCHEDULING

15. For a schedulable object whose active priority is changed as a result of explic-
itly setting its base priority (through the PriorityParameters setPrior-
ity () method, the RealtimeThread setSchedulingParameters() method,
or Thread’s setPriority () method), this schedulable object is added to the
tail of the queues (dictated by its affinity) for its new priority level. Queu-
ing when priorities are adjusted by priority inversion avoidance algorithms is
governed by semantics specified in the Synchronization chapter.

6.3.2.3 Parameter Values

The scheduler uses the values contained in the different parameter objects associated
with a schedulable object to control the behavior of the schedulable object. The
scheduler determines what values are valid for the schedulable objects it manages,
which defaults apply and how changes to parameter values are acted upon by the
scheduler. Invalid parameter values result in exceptions, as documented in the
relevant classes and methods.

1. The default values for the base scheduler are:

(a) Scheduling parameters are copied from the creating SO if possible; if
the creating SO does not have scheduling parameters, the default is an
instance of the default priority parameters value.

(b) Release parameters default to an instance of the default aperiodic param-
eters (see AperiodicParameters).

(c) Memory parameters default to null which signifies that memory allocation
by the schedulable object is not constrained by the scheduler.

(d) Processing group parameters default to null which signifies that the sched-
ulable object is not a member of any processing group and is not subject
to processing group based limits on processor utilization.

(e) The default scheduling parameter values for parameter objects created by
an SO controlled by the base scheduler are: (see PriorityScheduler)

Attribute Default Value
Priority parameters
priority norm priority
Importance parameters
importance No default.
A value must be supplied.

2. All numeric or RelativeTime attributes in parameter values must be greater
than or equal to zero.

3. Values of period must be greater than zero.

4. Deadline values in ReleaseParameters objects must be less than or equal to
their period values (where applicable), but the deadline may be greater than
the minimum interarrival time in a SporadicParameters object.

6.3. SEMANTICS AND REQUIREMENTS 85

5. Changes to scheduling, release, memory, and processing group parameters (by
methods on the schedulable objects bound to the parameters or by altering
the parameter objects themselves) have the following effect effects:

(a) They potentially modify the behavior of the scheduler with regard to
those schedulable objects. When such changes in behavior take effect
depends on the parameter in question, and the type of schedulable object,
as described below.

6. Changes to scheduling, release, memory, and processing group parameters are
acted upon by the base scheduler as follows:

(a) Changes to scheduling parameters take effect immediately except when
constrained by priority inversion avoidance algorithms.

(b) Changes to release parameters depend on the parameter being changed,
the type of release parameter object and the type of schedulable object:

i. Changes to the deadline and the deadline miss handler take effect at
each release event as follows: if the 7, release event occurred at a
time ¢;, then the i*" deadline is the time ¢; + D;, where D; is the value
of the deadline stored in the schedulable object’s release parameters
object at the time t;. If a deadline miss occurs then it is the deadline
miss handler that was installed in the schedulable object’s release
parameters at time ¢; that is released.

ii. Changes to cost and the cost overrun handler take effect immediately.

iii. Changes to the period and start time values in PeriodicParameters
objects are described in “Release of realtime Threads” below. (The
base scheduler does not manage the release of periodic schedulable
objects other than periodic realtime threads.)

iv. Changes to the additional values in AperiodicParameters objects
and SporadicParameters are described, respectively, in “Aperiodic
Release Control” and “Sporadic Release Control”, below.

v. Changes to the type of release parameters object generally take effect
after completion, except as documented in the following sections.

(c) Changes to memory parameters take effect immediately.

(d) Changes to processing group parameters take effect as described in “Pro-
cessing Groups” below.

(e) Changes to the scheduler responsible for a schedulable object take effect
at completion.

6.3.2.4 Cost Monitoring and Cost Enforcement

The cost of an SO is defined by the value returned by invoking the getCost method
of the SO’s release parameters object. When an SO is initially released it’s current
CPU consumption is zero and as the SO executes, the current CPU consumption

86 CHAPTER 6. SCHEDULING

increases. For cost monitoring, an implementation must conform to the following
requirements.

1. If at any time, due to either execution of the SO or a change in the SO’s
cost, the current CPU consumption becomes greater than, or equal to, the
current cost of the SO, then a cost overrun is triggered. The implementation
is required to document the granularity at which the current CPU consumption
is updated.

2. When a cost overrun is triggered, the cost overrun handler associated with the
SO, if any, is released. No further action is taken.

3. The current CPU consumption is reset to zero when the SO is next released (i.e.
it moves from the blocked-for-release-event state to the eligible-for-execution
state).

If cost enforcement is supported, an implementation must conform to the following
requirements.

1. When a cost overrun is triggered, in addition to releasing any cost overrun
handler, the following actions must be performed.

2. If the most recent release of the SO is the i'" release, and the i + 1 release
event has not yet occurred, then:

(a) If the state of the SO is either executing or eligible-for-execution, then
the SO is placed into the state blocked-by-cost-overrun. There may be a
bounded delay between the time at which a cost overrun occurs and the
time at which the SO becomes blocked-by-cost-overrun.

(b) Otherwise, the SO must have been blocked for a reason other than blocked-
by-cost-overrun. In this case, the state change to blocked-by-cost-overrun
is left pending: if the blocking condition for the SO is removed, then its
state changes to blocked-by-cost-overrun. There may be a bounded delay
between the time at which the blocking condition is removed and the
time at which the SO becomes blocked-by-cost-overrun.

Otherwise, if the 1+1 release event has occurred, the current CPU consumption
is set to zero, the SO remains in its current state and the cost monitoring
system considers the most recent release to now be the 7 + 1 release.

3. When the ¥ release event occurs for an SO, the action taken depends on the
state of the SO:

(a) If the SO is blocked-by-cost-overrun then the cost monitoring system
considers the most recent release to be the i** release, the current CPU
consumption is set to zero and the SO is made eligible for execution;

(b) Otherwise, if the SO is blocked for a reason other than blocked-by-cost-
overrun then:

i. If there is a pending state change to blocked-by-cost-overrun then:
the pending state change is removed, the cost monitoring system
considers the most recent release to be the i release, the current

6.3. SEMANTICS AND REQUIREMENTS 87

CPU consumption is set to zero and the SO remains in its current
blocked state;

ii. Otherwise, no cost monitoring action occurs.

(c¢) Otherwise no cost monitoring action occurs.

4. When the " release of an SO completes, and the cost monitoring system
considers the most recent release to be the i'* release, then the current CPU
consumption is set to zero and the cost monitoring system considers the most
recent release to be the i + 1 release. Otherwise, no cost monitoring action
occurs.

5. Changes to the cost parameter take effect immediately:

(a) If the new cost is less than or equal to the current CPU consumption,
and the old cost was greater than the current CPU consumption, then a
cost overrun is triggered.

(b) If the new cost is greater than the current CPU consumption:

i. If the SO is blocked-by-cost-overrun, then the SO is made eligible for
execution;

ii. Otherwise, if the SO is blocked for a reason other than blocked-by-
cost-overrun, and there is a pending state change to blocked-by-cost-
overrun, then the pending state change is removed;

iii. Otherwise, no cost monitoring action occurs.

6. The state of the cost monitoring system for an SO can be reset by the scheduler
(see |6e| in the Release of realtime Threads section, below). If the most recent
release of the SO is considered to be the m'* release, and the most recent
release event for the SO was the n'* release event (where n > m), then a reset
causes the cost monitoring system to consider the most recent release to be
the n" release, and to zero the current CPU consumption.

6.3.2.5 Release of Realtime Threads

The repeated release of realtime threads is achieved by executing in a loop and invok-
ing the RealtimeThread.waitForNextPeriod or RealtimeThread.waitForNextRelease
methods, or their interruptible equivalents (RealtimeThread.waitForNextPeriodInterruptible
RealtimeThread.waitForNextReleaseInterruptible) within that loop. For sim-
plicity, unless otherwise stated, the semantics in this section apply to both forms of
those methods.
1. A realtime thread’s release characteristics are determined by the following;:
(a) The invocation of the realtime thread’s start method and the value of
its phasing policy parameter (if applicable).
(b) The action of the RealtimeThread methods: waitForNextPeriod, wait-
ForNextPeriodInterruptible, schedulePeriodic, deschedulePeriodic,
waitForNextRelease, waitForNextReleaseInterruptible, schedule,

88

CHAPTER 6. SCHEDULING

and deschedule;

(c) The occurrence of deadline misses and whether or not a miss handler is
installed; and

(d) The passing of time that generates periodic release events and a call of
the release method that generates aperiodic release events.

. The initial release event of a periodic realtime thread occurs in response to the

invocation of the its start method in accordance with the start time specified
in its release parameters and its assigned phasing policy — see Periodic-
Parameters and PhasingPolicy. The nitial release event of an aperiodic
realtime thread occurs immediately in response to the invocation of the its
start method.

. Changes to the start time in a realtime thread’s PeriodicParameters object

only have an effect on its initial release time. Consequently, if a PeriodicPa-
rameters object is bound to multiple realtime threads, a change in the start
time may affect all, some or none, of those threads, depending on whether or
not start has been invoked on them.

. Subsequent release events occur

(a) for periodic realtime threads: when each period falls due, except as de-
scribed below (in [6¢]), at times determined as follows: if the i" release
event occurred at a time ¢;, then the i+ 1 release event occurs at the time
t; +T;, where T; is the value of the period stored in the realtime thread’s
PeriodicParameters object at the time ;.

(b) for aperiodic realtime thread: with each call of the release method, except
as described below (in

(c) for sporadic realtime threads: with each call of the release method, except
as described below (in with additional regulation to enforce MIT are
required as defined in Sporadic Release Control below.

. Each release of an aperiodic realtime thread is an arrival. If the thread has re-

lease parameters of type AperiodicParameters, then the arrival may become
a release event for the thread according to the semantics given in “Aperiodic
Release Control” below. If the thread has release parameters of type Spo-
radicParameters, then the arrival may become a release event for the thread
according to the semantics given in “Sporadic Release Control” below. If the
thread has release parameters of a type other than SporadicParameters then
the arrival is a release event, and the arrival-time is the release event time.

. The implementation should behave effectively as if the following state variables

were added to a realtime thread’s state,
boolean descheduled,
integer pendingReleases,
integer missCount, and
boolean lastReturn.

6.3. SEMANTICS AND REQUIREMENTS 89

and manipulated by the actions as described below:

(a)

(b)

Initially:
descheduled = false,
pendingReleases = 0,
missCount = 0, and
lastReturn = true.

When the realtime thread’s deschedulePeriodic or deschedule method
is invoked: set the value of descheduled to true.

When the realtime thread’s schedulePeriodic or schedule method is
invoked: set the value of descheduled to false; then if the thread is
blocked-for-release-event, set the value of pendingReleases to zero, and
tell the cost monitoring and enforcement system to reset for this thread.
When descheduled is true, the realtime thread is said to be descheduled.
A realtime thread that has been descheduled and is blocked-for-release-
event will not receive any further release events until after it has been
rescheduled by a call to schedulePeriodic or schedule; this means that
no deadline misses can occur until the thread has been rescheduled. The
descheduling of a realtime thread has no effect on its initial release.
When each release event occurs:

i. If the state of the realtime thread is blocked-for-release-event (that is,
it is waiting in waitForNextPeriod or waitForNextRelease), then
if the thread is descheduled then do nothing, else increment the value
of pendingReleases, inform cost monitoring and enforcement that
the next release event has occurred, and notify the thread to make
it eligible for execution;

ii. Otherwise, increment the value of pendingReleases, and inform cost
monitoring and enforcement that the next release event has occurred.

On each deadline miss:

i. If the realtime thread has a deadline miss handler: set the value of
descheduled to true, atomically release the handler with its fire-
Count increased by the value of missCount + 1 and zero missCount;

ii. Otherwise add one to the missCount value.

When the waitForNextPeriod or waitForNextRelease method is in-
voked by the current realtime thread there are two possible behaviors
depending on the value of missCount:

i. If missCount is greater than zero: decrement the missCount value;
then if the lastReturn value is false, completion occurs: apply any
pending parameter changes, decrement pendingReleases, inform cost
monitoring and enforcement the realtime thread has completed and
return false; otherwise set the lastReturn value to false and return
false.

90

CHAPTER 6. SCHEDULING

ii. Otherwise, apply any pending parameter changes, inform cost moni-
toring and enforcement of completion, and then wait while desched-
uled is true, or pendingReleases is zero. Then set the lastReturn
value to true, decrement pendingReleases, and return true.

7. An invocation of the waitForNextPeriodInterruptible or waitForNextRe-
leaseInterruptiblemethod behaves as described above with the following
additions:

(a) If the invocation commences when an instance of AsynchronouslyInterr-
uptedException (AIE) is pending on the realtime thread, then the invo-
cation immediately completes abruptly by throwing that pending instance
as an InterruptedException. If this occurs, the most recent release has
not completed. If the pending instance is the generic AIE instance then
the interrupt state of the realtime thread is cleared.

(b) If an instance of AIE becomes pending on the realtime thread while it
is blocked-for-release-event, and the realtime thread is descheduled, then
the AIE remains pending until the realtime thread is no longer desched-
uled. The associated reschedule acts as a release event. Execution then
continues as in (d) where the time value used as t;,,; is the time at which
the SO was rescheduled.

(c) If an instance of AIE becomes pending on the realtime thread while it
is blocked-for-release-event, and it is not descheduled, then this acts as
a release event. Execution the continues as in (d) where the time value
used as t;,; is the time at which the AIE becomes pending.

(d) i. The realtime thread is made eligible for execution.

ii. Upon execution, the invocation completes abruptly by throwing the
pending AIE instance as an InterruptedException. If the pending
instance is the generic AIE instance then the interrupt state of the
realtime thread is cleared.

iii. The deadline associated with this release is the time t;,;+D;,;, where
D;,.: is the value of the deadline stored in the realtime thread’s release
parameters object at the time t;,;.

iv. The next release time for the realtime thread will be t;,,;+7T;,:, where
T, is the value of the period stored in the realtime thread’s release
parameters object at the time t;,;.

v. Cost monitoring and enforcement is informed of the release event.
When the thrown AIE instance is caught, the AIE becomes pending again (as
per the usual semantics for AIE) until it is explicitly cleared.

8. Changes to release parameter types are treated as a pseudo RE-START of the
realtime thread and

(a) any old pending releases are cleared

(b) any old arrival queue is flushed

6.3. SEMANTICS AND REQUIREMENTS 91

(c) any outstanding call to deschedule is cleared
(d) any outstanding deadline misses are cleared
The semantics are described below:
(a) Effect on the realtime thread if it is not waiting for next release event
(and is not descheduled)
i. no effect until the end of current release
ii. when the change occurs it is a pseudo re-start of the thread. i.e.
if new parameters are aperiodic — the release is immediate; if new
parameters are periodic — the periodic start time algorithm is used.
(b) Effect on the realtime thread if it is not waiting for next release event
(but there is an outstanding descheduled).
i. there is an immediate “schedule” of the thread
ii. there is no further effect until end of current release
iii. when change occurs it is a pseudo re-start of the thread, i.e. if new
parameters are aperiodic — the release is immediate; if new param-
eters are periodic — the periodic start time algorithm is used.
(c) Effect on the realtime thread if it is waiting for next release event (and
not descheduled)
i. From Periodic to Aperiodic — when the next periodic release event
occurs, the thread becomes aperiodic with an immediate release
ii. From Aperiodic to Periodic — there is an immediate pseudo re-start
of the thread using the periodic start time algorithm
(d) Effect on realtime thread if waiting for next release event (but there is
an outstanding descheduled)
i. there is an immediate “schedule” of the thread
ii. From Periodic to Aperiodic — when the next periodic release event
occurs, the thread becomes aperiodic with an immediate release
iii. From Aperiodic to Periodic — there is an immediate pseudo re-start
of the thread using the periodic start time algorithm

6.3.2.5.1 Pseudo-Code for Periodic and Aperiodic Thread Actions The
semantics of the previous section can be more clearly understood by viewing them in
pseudo-code form for each of the methods and actions involved. In the following no
mechanism for blocking and unblocking a thread is prescribed. The use of the wait
and notify terminology in places is purely an aid to expressing the desired semantics
in familiar terms.

1 // These values are part of thread state.
2 boolean descheduled = false;

3 int pendingReleases = 0;

4 boolean lastReturn = true;

© 00 O Ot

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
93

92

int missCount = 0;

int currentRP;

int newRP;

int periodic = 1;

int aperiodic = 2;

int sporadic = 3;

boolean RPchange = false;

boolean started = false; // set to true on first release;

changeReleaseParameters(int newP)

{

newRP = newP;

descheduled = false; // automatic re—schedule
if (blocked—for—release—event)

{

if (currentRP == periodic)

// defer until next release
RPChange = true;

}

else
{
// immediate change; current is aperiodic or sporadic
performParameterChanges();
assert pendingReleases = 0
assert missCount = 0;
started = false; // flush arrival queue
costMonitoringReset();
currentRP = newRP;
if (newRP == periodic)
{
// consider this as the equivalent of call the
// start method of the RT thread.
// If start time has passed, generate a
// an "onNextPeriodDue" event.
// Otherwise, arrange for the event to be
// generate at the appropriate time

}

else
// aperiodic or sporadic
// generate a releaseArrivalEvent

}
}
}

else

{

// not at end of release, defer change

CHAPTER 6. SCHEDULING

6.3. SEMANTICS AND REQUIREMENTS

54 RPChange = true;
55 }
56 }
57
58 schedulePeriodic()
59 {
60 descheduled = false;
61 if (blocked—for—release—event)
62 {
63 pendingReleases = 0; // flush arrival time queue
64 costMonitoringReset();
65 }
66 }
67
68 deschedulePeriodic()
69 {
70 if ('RPChange started)
71
72 // no deschedule if outstanding RPchange
73 // or not started
74 descheduled = true;
™}
76 }
77
78 schedule()
79 {
80 descheduled = false;
81 if (blocked—for—release—event)
82 {
83 pendingReleases = 0; // flush arrival time queue
84 costMonitoringReset();
8 }
86 }
87
88 deschedule()
89 {
90 if ('RPChange started)
91
92 // no deschedule if outstanding RPchange
93 // or not started
94 descheduled = true;
95 }
96 }
97
98 onAperiodicReleaseArrival()
99 {
100 if (!started) started = true;
101 if (currentRP == periodic) throw IllegalThreadStateException;
102 if (descheduled)

93

103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151

94 CHAPTER 6. SCHEDULING

; // do nothing
}
else
{
perform_any_execution_regulation
// For a sporadic thread, the onReleaseDue event
// will be generated when MIT concerns have been satisfied
// For an aperiodic thread, this will
// immediately generate an onReleaseDue event.
}
}
onAperiodicReleaseDue()
{
if (currentRP == periodic) throw panic;
if (blocked—for—release—event)
{
if (descheduled)
{
; // do nothing
}
else
{
pendingReleases++;
notifyCostMonitoringOfReleaseEvent()
notify it; // make eligible for execution
}
}
else
{
pendingReleases++;
notifyCostMonitoringOfReleaseEvent();
}
}
onNextPeriodeDue()
{
// also called on first release
if (Istarted) started = true;
if (currentRP != periodic) panic;
if (blocked—for—release—event)
{
if (descheduled)
{
; // do nothing
}
else
{

152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200

6.3. SEMANTICS AND REQUIREMENTS

pendingReleases++;
notifyCostMonitoringOfReleaseEvent();
notify it; // make eligible for execution

}

}

else

{
pendingReleases++;
notifyCostMonitoringOfReleaseEvent();

}
}

onDeadlineMiss()

{

if (there is a miss handler)

{
descheduled = true;
release miss handler with fireCount increased by missCount+1
missCount = 0;

}

else

{
missCount—++;
}
}

waitForNextRelease()

{
assert(pendingReleases \& = 0);
if (missCount > 0)

// Missed a deadline without a miss handler

missCount——;

if (LastReturn == false)

{
// Changes on completion take place here
performParameterChanges()
notifyCostMonitoring0fCompletion();
if (RPchange)

RPChangeNow();
return true;

}

else

{

pendingReleases——;

}
}

lastReturn = false;

95

201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249

96

return false;

}

else

{
// Changes on completion take place here
performParameterChanges();
notifyCostMonitoring0fCompletion();
if (RPchange)

RPChangeNow();
return True;

}

wait while (descheduled || pendingReleases == 0);

// blocked—for—release—event
// check again for RP change
if (RPchange)
{

RPChangeNow();
}
pendingReleases——;
lastReturn = true;
return true;

}
}

waitForNextPeriod
{
assert(pendingReleases >= 0);
if (missCount > 0)
{
// Missed a deadline without a miss handler
missCount——;
if (lastReturn == false)

// Changes "on completion” take place here
performParameterChanges();
pendingReleases——;
notifyCostMonitoring0fCompletion();

}

lastReturn = false;

return false;

}

else

{
// Changes "on completion” take place here
performParameterChanges();
notifyCostMonitoring0fCompletion();
if (RPchange)

CHAPTER 6. SCHEDULING

6.3. SEMANTICS AND REQUIREMENTS

250 RPChangeNow();
251 return True;
252 }

253 wait while (descheduled || pendingReleases == 0);
254 // blocked—for—release—event

255 pendingReleases——;

256 lastReturn = true;

257 return true;

258 }

259 }

260

261

262 changeRPNow()

263 {

264 // Changing over RP

265 // Assuming clean slate!

266 RPchange = false;

267 pendingReleases = 0;

268 flushArrivalQueue();

269 // this removes all outstanding releases
270 missCount = 0;

271 // restart here

272 if (newRP == periodic)

273

274 // consider this as the equivalent of call the
275 // start method of the RT thread

276 if Istart time has passed

277 {

278 // arrange for timing event to be generated
279 started = false;

280 currentRP — newRP;

281 wait while (pendingReleases == 0);
282 // blocked—for—release—event

283 }

284 }

285 else

286 {

287 // aperiodic or sporadic

288 // record a releaseArrivalEvent

289 }

290 started = true;
291 currentRP = newRP;
292 lastReturn = true;
293 }

98 CHAPTER 6. SCHEDULING

6.3.2.6 Aperiodic Release Control

Aperiodic schedulable objects are released in response to events occurring, such as
the starting of a realtime thread, the calling of the release method of a realtime
thread, or the firing of an associated asynchronous event for an asynchronous event
handler. The occurrence of these events, each of which is a potential release event,
is termed an arrival, and the time that they occur is termed the arrival time.

The base scheduler behaves effectively as if it maintained a queue, called the
arrival time queue, for each aperiodic schedulable object. This queue maintains
information related to each release event (including any parameters passed with the
release mechanism) from its “arrival” time until the associated release completes,
or another release event occurs — whichever is later. If an arrival is accepted into
the arrival time queue, then it is a release event and the time of the release event
is the arrival time. The initial size of this queue is an attribute of the schedulable
object’s aperiodic parameters, and is set when an aperiodic parameter object is first
associated with the SO. Over time the queue may become full and its behavior
in this situation is determined by the queue overflow policy specified in the SO’s
aperiodic parameters. There are four overflow policies defined:

Policy Action on Overflow

IGNORE | Silently ignore the arrival. The arrival is not accepted,
no release event occurs, and, if the arrival was caused
programmatically (such as by invoking fire on an asyn-
chronous event), the caller is not informed that the arrival
has been ignored.

EXCEPT | Throw an ArrivalTimeQueueOverflowException. The
arrival is not accepted, and no release event occurs, but
if the arrival was caused programmatically, the caller will
have ArrivalTimeQueueOverflowException thrown.
REPLACE | The arrival is not accepted and no release event occurs. If
the completion associated with the last release event in the
queue has not yet occurred, and the deadline has not been
missed, then the release event time for that release event
is replaced with the arrival time of the new arrival and
any associated parameters overwritten. This will alter the
deadline for that release event. If the completion associated
with the last release event has occurred, or the deadline
has already been missed, then the behavior of the REPLACE
policy is equivalent to the IGNORE policy.

SAVE Behave effectively as if the queue were expanded as nec-
essary to accommodate the new arrival. The arrival is ac-
cepted and a release event occurs.

6.3. SEMANTICS AND REQUIREMENTS 99

Open issue: We did consider adding ReplaceOldest—see SI-105 End of open
issue

Under the SAVE policy the queue can grow and shrink over time.

Changes to the queue overflow policy take effect immediately. When an arrival
occurs and the queue is full, the policy applied is the policy as defined at that time.

6.3.2.7 Sporadic Release Control

Sporadic parameters include a minimum interarrival time, MIT, that characterizes
the expected frequency of releases. When an arrival is accepted implementation
behaves as if it calculates the earliest time at which the next arrival could be ac-
cepted, by adding the current MIT to the arrival time of this accepted arrival. The
scheduler guarantees that each sporadic schedulable object it manages, is released
at most once in any MIT. It implements two mechanisms for enforcing this rule:

1. Arrival-time requlation controls the work-load by considering the time between
arrivals. If a new arrival occurs earlier than the expected next arrival time
then a MIT violation has occurred, and the scheduler acts to prevent a release

from occurring that would break the “one release per MIT” guarantee. Three
arrival-time MIT-violation policies are supported:

Policy Action on Violation

IGNORE | Silently ignore the violating arrival. The arrival is not
accepted, no release event occurs, and, if the arrival was
caused programmatically (such as by invoking fire on an
asynchronous event), the caller is not informed that the
arrival has been ignored.

EXCEPT | Throw a MITViolationException. The arrival is not ac-
cepted, and no release event occurs, but if the arrival was
caused programmatically, the caller will have MITViola-
tionException thrown.

REPLACE | The arrival is not accepted and no release event occurs. If
the completion associated with the last release event in the
queue has not yet occurred, and the deadline has not been
missed, then the release event time for that release event
is replaced with the arrival time of the new arrival and
any associated parameters overwritten. This will alter the
deadline for that release event. If the completion associated
with the last release event has occurred, or the deadline has
already been missed, then the behavior of the REPLACE
policy is equivalent to the IGNORE policy.

2. Ezecution-time requlation occurs if the MIT violation policy SAVE is in effect.

Under this policy all arrivals are accepted, but the scheduler behaves effectively

100 CHAPTER 6. SCHEDULING

as if released schedulable objects were further constrained by a scheduling
policy that restricts execution to at most one release per MIT. This policy is
only able to delay the effective release of a schedulable object. The deadline
of each release event is always set relative to its arrival time. This policy
may not schedule the effective release of an async event handler until after
its deadline has passed. In this case the deadline miss handler is released at
the deadline time even though the related async event has not yet reached its
effective release.
The SAVE policy makes no direct use of the next expected arrival time, but
it maintains the value in case the MIT violation policy is changed from SAVE
to one of the arrival-time regulation policies.
The effective release time of a release event i is the earliest time that the handler
can be released in response to that release event. It is determined for each release
event based on the MIT policy in force at the release event time:
1. For IGNORE, EXCEPT and REPLACE the effective release time is the release
event time.
2. For SAVE the effective release time of release event i is the effective release
time of release event i-1 plus the current value of the MIT.
The scheduler will delay the release associated with the release event at the head of
the arrival time queue until the current time is greater than or equal to the effective
release time of that release event.
Changes to minimum interarrival time and the MIT violation policy take effect
immediately, but only affect the next expected arrival time, and effective release
time, for release events that occur after the change.

6.3.2.8 Release Control for Asynchronous Event Handlers

Asynchronous event handlers can be associated with one or more asynchronous
events. When an asynchronous event is fired, all handlers associated with it are
released, according to the semantics below:

1. Each firing of an associated asynchronous event is an arrival. If the handler
has release parameters of type AperiodicParameters, then the arrival may
become a release event for the handler, according to the semantics given in
“Aperiodic Release Control” above. If the handler has release parameters of
type SporadicParameters, then the arrival may become a release event for
the handler, according to the semantics given in “Sporadic Release Control”
above. If the handler has release parameters of a type other than SporadicPa-
rameters then the arrival is a release event, and the arrival-time is the release
event time.

2. For each release event that occurs for a handler, an entry is made in the
arrival-time queue and the handler’s fireCount is incremented by one.

6.3. SEMANTICS AND REQUIREMENTS 101

3.

4.

Initially a handler is considered to be blocked-for-release-event and its fire-
Count is zero.
Releases of a handler are serialized by having its handleAsyncEvent method
invoked repeatedly while its fireCount is greater than zero:
(a) Before invoking handleAsyncEvent, the fireCount is decremented and
the front entry (if still present) removed from the arrival-time queue.
(b) Each invocation of handleAsyncEvent, in this way, is a release.
(c) The return from handleAsyncEvent is the completion of a release.
(d) Processing of any exceptions thrown by handleAsyncEvent occurs prior
to completion.

. The deadline for a release is relative to the release event time and determined

at the release event time according to the value of the deadline contained
in the handler’s release parameters. This value does not change, except as
described previously for handlers using a REPLACE policy for MIT violation
or arrival-time queue overflow.

. The application code can directly modify the fireCount as follows:

(a) The getAndDecrementPendingFireCount method decreases the fire-
Count by one (if it was greater than zero), and returns the old value.
This removes the front entry from the arrival-time queue but otherwise
has no effect on the scheduling of the current schedulable object, nor the
handler itself. Any data parameter passed with the associated fire request
is lost.

(b) The getAndClearPendingFireCount method is functionally equivalent
to invoking getAndDecrementPendingFireCount until it returns zero,
and returning the original fireCount value. Any data parameters passed
with the associated fire requests are lost.

. The scheduler may delay the invocation of handleAsyncEvent to ensure the

effective release time honors any restrictions imposed by the MIT violation
policy, if applicable, of that release event.

Cost monitoring and enforcement for an asynchronous event handler interacts
with release events and completions as previously defined with the added re-
quirement that at the completion of handleAsyncEvent, if the fireCount is
now zero, then the cost monitoring and enforcement system is told to reset for
this handler.

6.3.2.9 Processing Groups

A processing group is defined by a processing group parameters object, and each SO

that is bound to that parameter object is called a member of that processing group.

A processing group has an associated affinity that contains only one processor.
Processing groups are only functional in a system that implements processing

102 CHAPTER 6. SCHEDULING

group enforcement. Although the processing group itself does not consume CPU
time, it acts as a proxy for its members.

6.3.2.9.1 Definitions for Processing Groups The enforced priority of a sched-
ulable object is a priority with no execution eligibility.

6.3.2.9.2 Semantics for Processing Groups

1. The deadline of a processing group is defined by the value returned by invoking
the getDeadline method of the processing group parameters object.

2. A deadline miss for the processing group is triggered if any member of the
processing group consumes CPU time at a time greater than the deadline for
the most recent release of the processing group.

3. When a processing group misses a deadline:

(a) If the processing group has a miss handler, it is released for execution

(b) If the processing group has no miss handler, no action is taken.

4. The cost of a processing group is defined by the value returned by invoking
the getCost method of the processing group parameters object.

5. When a processing group is initially released, its current CPU consumption
is zero and as the members of the processing group execute, the current CPU
consumption increases. The current CPU consumption is set to zero in re-
sponse to certain actions as described below.

6. If at any time, due to either execution of the members of the processing group
or a change in the parameter group’s cost, the current CPU consumption
becomes greater than, or equal to, the current cost of the processing group,
then a cost overrun is triggered. The implementation is required to document
the granularity at which the current CPU consumption is updated.

7. When a cost overrun is triggered, the cost overrun handler associated with
the processing group, if any, is released, and the processing group enters the
enforced state. For each member of the processing group:

(a) The SO is placed into the enforced state.

(b) When a SO is in the enforced state the base scheduler schedules that SO
effectively as if the enforced priority were used in place of the SO’s base
priority.

8. When the release event occurs for a processing group, the action taken depends
on the state of the processing group:

(a) If the processing group is not in the enforced state then the current CPU
consumption for the group is set to zero;

(b) Otherwise the processing group is in the enforced state. It is removed
from the enforced state, the current CPU consumption of the group is
set to zero, and each member of the group is removed from the enforced

6.3. SEMANTICS AND REQUIREMENTS 103

state.
9. Changes to the cost parameter take effect immediately:

(a) If the new cost is less than or equal to the current CPU consumption,
and the old cost was greater than the current CPU consumption, then a
cost overrun is triggered.

(b) If the new cost is greater than the current CPU consumption:

i. If the processing group is enforced, then the processing group behaves
as defined in semantic [§
ii. Otherwise, no cost monitoring and enforcement action occurs.
10. Changes to other parameters take place as follows:

(a) Start: can only be changed before the parameters group is started; i.e.,
before the start time or before the parameter object is associated with
any SO. Changes take effect immediately.

(b) Period: at each release the next period is set based on the current value
of the processing group’s period.

(c) Deadline: at each release the next deadline is set based on the current
value of the processing group’s deadline.

(d) OverrunHandler: at each release the overrunHandler is set based on the
current value of the processing group’s overrunHandler.

(e) MissHandler: at each release the missHandler is set based on the current
value of the processing group’s missHandler.

11. Changes to the membership of the processing group take effect immediately.
12. The start time for the processing group may be relative or absolute.

(a) If the start time is absolute, the processing group behaves effectively as
if the initial release time were the start time.

(b) If the start time is relative, the initial release time is computed relative
to the time start or fire (as appropriate) is first called for a member
of the processing group.

Note: Until a processing group starts, its budget cannot be replenished, but its
members will be enforced if they exceed the initial budget. Also, once a processing
group is started it behaves effectively as if it continued running continuously until
the defining ProcessingGroupParameters object is freed.

104 CHAPTER 6. SCHEDULING
6.4 Interfaces

6.4.1 Schedulable

Interfaces
Runnable

Mimablel

Handlers and other objects can be run by a |[Schedulerf| if they provide a run()
method and the methods defined below. The [Schedulexrf| uses this information to
create a suitable context to execute the run() method.

6.4.1.1 Methods

6.4.1.1.1 getMemoryParameters

Signature

public
javax.realtime.MemoryParameters getMemoryParameters()

Returns
A reference to the current MemoryParametersp| object.
Gets a reference to the MemoryParameters]| object for this schedulable object.

6.4.1.1.2 getProcessingGroupParameters

Signature
public
javax.realtime.ProcessingGroupParameters
getProcessingGroupParameters ()
Returns
A reference to the current ProcessingGroupParametersf| object.

ISection [6.5.9
2Section [6.5.9
3Section [11.8.8
4Section [11.8.8

5Section [6.5.7

6.4. INTERFACES 105

Gets a reference to the [ProcessingGroupParameters|’| object for this schedulable
object.

6.4.1.1.3 getSchedulableSizingParameters

Signature
public
javax.realtime.SchedulableSizingParameters
getSchedulableSizingParameters()
Returns
A reference to the associated [SchedulableSizingParameters||object.
Gets a reference to the|SchedulableSizingParametersf|object for this schedulable
object.

Available since RTSJ version RTSJ 2.0

6.4.1.1.4 getReleaseParameters

Signature

public
javax.realtime.ReleaseParameters getReleaseParameters()

Returns
A reference to the current ReleaseParametersf| object.
Gets a reference to the ReleaseParameters | object for this schedulable object.

6.4.1.1.5 getScheduler

Signature

public
javax.realtime.Scheduler getScheduler()
Returns

A reference to the associated [Scheduler| object.
Gets a reference to the |[Scheduler] object for this schedulable object.

6Section [6.5.7

"Section [11.8.12
8Section [11.8.12
9Section [6.5.8
10Gection [6.5.8
HSection [6.5.9
2Gection [6.5.9

106 CHAPTER 6. SCHEDULING

6.4.1.1.6 getSchedulingParameters

Signature

public
javax.realtime.SchedulingParameters getSchedulingParameters()

Returns
A reference to the current [SchedulingParameters} | object.
Gets a reference to the SchedulingParameters| *| object for this schedulable object.

6.4.1.1.7 setMemoryParameters(MemoryParameters)

Signature

public
void setMemoryParameters(MemoryParameters memory)

Parameters

memory A MemoryParameters| | object which will become the memory param-
eters associated with this after the method call. If null, the default value
is governed by the associated scheduler (a new object is created if the default
value is not null). (See[PrioritySchedulen]®})

Throws

Lllegal ArgumentFEzxception when memory is not compatible with the schedulable
object’s scheduler. Also when this schedulable object is no-heap and memory
is located in heap memory.

IllegalAssignmentError when the schedulable object cannot hold a reference
to memory, or if memory cannot hold a reference to this schedulable object
instance.

lllegal ThreadState Exception when the schedulable object’s scheduler prohibits
this parameter change at this time due to the state of the schedulable object.

Sets the memory parameters associated with this instance of Schedulable.

This change becomes effective under conditions determined by the scheduler
controlling the schedulable object. For instance, the change may be immediate
or it may be delayed until the next release of the schedulable object. See the
documentation for the scheduler for details.

Since this affects the constraints expressed in the memory parameters of the
existing schedulable objects, this may change the feasibility of the current system.

13Gection [6.5.10
14Gection [6.5.10
15Gection |11.8.8
16Section [6.5.6

6.4. INTERFACES 107

6.4.1.1.8 setProcessingGroupParameters(ProcessingGroupParameters)

Signature
public
void setProcessingGroupParameters(ProcessingGroupParameters
group)

Parameters
group A [ProcessingGroupParameters| ‘| object which will take effect as de-
termined by the associated scheduler. If null, the default value is governed
by the associated scheduler (a new object is created if the default value is not
null). (See[PrioritySchedulen®})

Throws
Illegal ArgumentEzception Thrown when group is not compatible with the sched-
uler for this schedulable object. Also when this schedulable object is no-heap
and group is located in heap memory.
IllegalAssignmentError when this object cannot hold a reference to group or
group cannot hold a reference to this.
lllegal ThreadState Exception when the schedulable object’s scheduler prohibits
the changing of the processing group parameter at this time due to the state
of the schedulable object.

Sets the [ProcessingGroupParameters) | of this.

This change becomes effective under conditions determined by the scheduler
controlling the schedulable object. For instance, the change may be immediate
or it may be delayed until the next release of the schedulable object. See the
documentation for the scheduler for details.

Since this affects the constraints expressed in the processing group parameters
of the existing schedulable objects, this may change the feasibility of the current
system.

6.4.1.1.9 setReleaseParameters(ReleaseParameters)

Signature

public
void setReleaseParameters(ReleaseParameters release)

Parameters
release A ReleaseParameterst'| object which will become the release param-
eters associated with this after the method call, and take effect as determined

17Section [6.5.7]
18Section [6.5.6
9Gection [6.5.7]
20Section [6.5.8

108 CHAPTER 6. SCHEDULING

by the associated scheduler. If null, the default value is governed by the
associated scheduler (a new object is created if the default value is not null).
(See PrioritySchedulerf”])

Throws

lllegal ArgumentException Thrown when release is not compatible with the
associated scheduler. Also when this schedulable object is no-heap and re-
lease is located in heap memory.
lllegalAssignmentError when this object cannot hold a reference to release
or release cannot hold a reference to this.
lllegal ThreadState Exception when the schedulable object’s scheduler prohibits
the changing of the release parameter at this time due to the state of the
schedulable object.
Sets the release parameters associated with this instance of Schedulable.
Since this affects the constraints expressed in the release parameters of the ex-
isting schedulable objects, this may change the feasibility of the current system.
This change becomes effective under conditions determined by the scheduler
controlling the schedulable object. For instance, the change may be immediate or
it may be delayed until the next release of the schedulable object. The different
properties of the release parameters may take effect at different times. See the
documentation for the scheduler for details.

6.4.1.1.10 setScheduler(Scheduler)

Signature
public
void setScheduler(Scheduler scheduler)

Parameters
scheduler A reference to the scheduler that will manage execution of this sched-
ulable object. Null is not a permissible value.

Throws
Lllegal ArgumentException Thrown when scheduler is null, or the schedulable
object’s existing parameter values are not compatible with scheduler. Also
when this schedulable object is no-heap and scheduler is located in heap
memory.
IllegalAssignmentError when the schedulable object cannot hold a reference
to scheduler.
SecurityException when the caller is not permitted to set the scheduler for this
schedulable object.

21Section W

6.4. INTERFACES 109

lllegal ThreadStateException when scheduler refuses to accept this schedul-
able object at this time due to the state of the schedulable object.
Sets the reference to the Scheduler object. The timing of the change must be
agreed between the scheduler currently associated with this schedulable object, and
scheduler.

6.4.1.1.11 setScheduler(Scheduler, SchedulingParameters, ReleasePar-
ameters, MemoryParameters, ProcessingGroupParameters)

Signature
public
void setScheduler (Scheduler scheduler, SchedulingParameters
scheduling, ReleaseParameters release, MemoryParameters
memoryParameters, ProcessingGroupParameters group)

Parameters
scheduler A reference to the scheduler that will manage the execution of this
schedulable object. Null is not a permissible value.
scheduling A reference to the [SchedulingParametersf? which will be associ-
ated with this. If null, the default value is governed by scheduler (a new
object is created if the default value is not null). (See[PrioritySchedulerf™})
release A reference to the [ReleaseParameterst”| which will be associated with
this. If null, the default value is governed by scheduler (a new object is
created if the default value is not null). (See PrioritySchedulerf”|)
memoryParameters A reference to the MemoryParametersf®| which will be as-
sociated with this. If null, the default value is governed by scheduler (a
new object is created if the default value is not null). (See |PrioritySched-|
uted)
group A reference to the [ProcessingGroupParametersf| which will be asso-
ciated with this. * If null, the default value is governed by scheduler (a
new object is created). (See PrioritySchedulerf})

Throws
lllegal ArgumentException Thrown when scheduler is null or the parameter
values are not compatible with scheduler. Also thrown when this schedulable

22Section 6.5.10|
23Section [6.5.6
24Section [6.5.8
25Section [6.5.6
26Section 11.8.8|
27Section [6.5.6
28Section [6.5.7]
29Section [6.5.6

110 CHAPTER 6. SCHEDULING

object is no-heap and scheduler, scheduling release, memoryParameters,
or group is located in heap memory.
LllegalAssignmentError when this object cannot hold references to all the
parameter objects or the parameters cannot hold references to this.
LllegalThreadState Exception when scheduler prohibits the changing of the
scheduler or a parameter at this time due to the state of the schedulable
object.
SecurityFxception when the caller is not permitted to set the scheduler for this
schedulable object.
Sets the scheduler and associated parameter objects. The timing of the change must
be agreed between the scheduler currently associated with this schedulable object,
and scheduler.

6.4.1.1.12 setSchedulingParameters(SchedulingParameters)

Signature

public
void setSchedulingParameters(SchedulingParameters scheduling)

Parameters
scheduling A reference to the [SchedulingParametersf’| object. If null, the
default value is governed by the associated scheduler (a new object is created
if the default value is not null). (See [PriorityScheduler'|)

Throws

LllegalArgumentFEzxception Thrown when scheduling is not compatible with
the associated scheduler. Also when this schedulable object is no-heap and
scheduling is located in heap memory.
lllegalAssignmentError when this object cannot hold a reference to schedul-
ing or scheduling cannot hold a reference to this.
LllegalThreadState Exception when the schedulable object’s scheduler prohibits
the changing of the scheduling parameter at this time due to the state of the
schedulable object.

Sets the scheduling parameters associated with this instance of Schedulable.

Since this affects the scheduling parameters of the existing schedulable objects,
this may change the feasibility of the current system.

This change becomes effective under conditions determined by the scheduler
controlling the schedulable object. For instance, the change may be immediate
or it may be delayed until the next release of the schedulable object. See the
documentation for the scheduler for details.

30Section [6.5.10
31Section [6.5.6

6.4. INTERFACES 111

6.4.1.1.13 getMinConsumption(RelativeTime)

Signature
public
javax.realtime.RelativeTime getMinConsumption(RelativeTime dest)
Returns
The minimum CPU consumption for this schedulable object in any single
release. If this method is called on the current schedulable object, the CPU
consumption of the current release is not considered. If dest is null, return
the minimum consumption in an otherwise unused [RelativeTimel’?| instance
in the current execution context. If dest is not null, return the minimum
consumption in dest

Available since RTSJ version RTSJ 2.0

6.4.1.1.14 getMinConsumption

Signature

public
javax.realtime.RelativeTime getMinConsumption()

Equivalent to getMinConsumption(null).

Available since RTSJ version RTSJ 2.0

6.4.1.1.15 getMaxConsumption(RelativeTime)

Signature
public
javax.realtime.RelativeTime getMaxConsumption(RelativeTime dest)
Returns
The maximum CPU consumption for this schedulable object in any single
release. If this method is called on the current schedulable object, the CPU
consumption of the current release is not considered. If dest is null, return
the maximum consumption in an otherwise unused RelativeTimel”| instance
in the current execution context. If dest is not null, return the maximum
consumption in dest

32Section [9.5.4
33Section [9.5.4

112 CHAPTER 6. SCHEDULING

Available since RTSJ version RTSJ 2.0

6.4.1.1.16 getMaxConsumption

Signature

public
javax.realtime.RelativeTime getMaxConsumption()

Equivalent to getMaxConsumption(null).

Available since RTSJ version RTSJ 2.0

6.5. CLASSES 113

6.5 Classes

6.5.1 Affinity

Inheritance

java.lang.Object
[[avax.realtime. Afhnity]
This class is the API for all processor-affinity-related aspects of the RTSJ. It includes
a factory that generates Affinity objects, and methods that control the default
affinity sets used when affinity set inheritance does not apply.

An affinity set is a set of processors that can be associated with a Thread, async
event handler or processing group parameters instance. For instances of Thread
and async event handlers, the associated affinity set binds the Thread or async
event handler to the set of processors.

Each implements supports an array of predefined affinity sets. They can be used
either to reflect the scheduling arrangement of the underlying OS or they can be
used by the system designer to impose defaults for, say, Java threads, non-heap
realtime schedulable objects etc. A program is only allowed to dynamically create
new affinity sets with cardinality of one. This restriction reflects the concern that
not all operating systems will support multiprocessor affinity sets.

The processor membership of an affinity set is immutable. The Java thread,
schedulable object, and [ProcessingGroupParametersf’| associations of an affinity
set are mutable. The processor affinity of instances of Thread (including real-time
threads and no-heap threads) and bound async event handlers can be changed by
static methods in this class. The processor affinity of un-bound asnc event handlers
is fixed to a default value, as returned by the |getHeapDefault ()f’| and |getNo-|
HeapDefault)P’ methods.

The internal representation of a set of processors in an Affinity instance is
not specified, but the representation that is used to communicate with this class
is a BitSet where each bit corresponds to a logical processor ID. The relationship
between logical and physical processors is beyond the scope of this specification, and
may change.

The affinity set factory only generates usable Affinity instances; i.e., affinity
sets that (at least when they are created) can be used with [set (Affinity, Bound-|

1Section [6.5.7]
*Section [6.5.1.2.8§|
*®Section [6.5.1.2.10|

114 CHAPT R 6. SCHEDULING

AsyncEventHandler)f'| [set (Affinity, Thread)®| and|set (Affinity, Process-
ingGroupParameters)P’] The factory cannot create an affinity set with more than
one processor member, but such affinity sets are supported. They may be internally
created by the RT'SJ runtime, probably at startup time.

The set of affinity sets created at startup (the predined set) is visible through
the getPredefinedAffinities(Affinity[])H method.

The affinity set factory may be used to create affinity sets with a single processor
member at any time, though this operation only supports processor members that
are valid as the processor affinity for a thread (at the time of the affinity set’s
creation.)

External changes to the set of processors available to the RT'SJ runtime is likely to
cause serious trouble ranging from violation of assumptions underlying schedulability
analysis to freezing the entire RTSJ runtime, so if a system is capable of such
manipulation it should not exercise it on RTSJ processes.

Real-time threads and bound async event handlers that have processing group
parameters are members of that processing group, and their processor affinity is
governed by the intersection of the processing group’s affinity and the schedulable
object’s affinity. The affinity set of a processing group must have exactly one proces-
sor. The intersection of a non-default PG affinity set with the schedulable object’s
affinity set must contain at most one entry. If the intersection is empty, the affinity
defaults.

Ordinarily, an execution context inherits its creator’s affinity set, but:

e Java threads do not inherit affinity from SOs

e Unbound async event handlers cannot be assigned a non-default affinity.

e SOs do not inherit affinity from Java threads.

When an execution context does not inherit its creator’s affinity set, its initial affinity
set defaults as specified in this class:

e The default used when a heap-using SO does not inherit its creator’s affinity

set, and for all unbound heap-using async event handlers.

e The default used when a no-heap SO does not inherit its creator’s affinity set,

and for all unbound no-heap async event handlers.

e The default used for Java threads created by SOs.

This class also controls the default affinity used when a processing group is created.
That value is the set of all available processors. (Which permits each member of
the processing group to use the affinity set it would use if it were in no processing
group.) The processor affinity of the processing group can subsequently be altered

37Section [6.5.1.2.20
38Section [6.5.1.2.21
39Gection |6.5.1.2.22
40Gection 77

6.5. CLASSES 115

with the {jset (Affinity, ProcessingGroupParameters)["|method.
There is no public constructor for this class. All instances must be created by
the factory method (generate).

Available since RTSJ version RTSJ 2.0

6.5.1.1 Constructors

6.5.1.1.1 Affinity

Signature

Affinity()

Package-protected default constructor.

6.5.1.2 Methods

6.5.1.2.1 generate(BitSet)

Signature

public static final
javax.realtime.Affinity generate(BitSet bitSet)

Parameters
bitSet The BitSet associated with the generated Affinity.

Throws
NullPointerException when bitSet is null.
Lllegal ArgumentException when bitSet does not refer to a valid set of pro-
cessors, where “valid” is defined as the bitset from a pre-defined affinity set,
or a bitset of cardinality one containing a processor from the set returned by
getAvailableProcessors(). The definition of “valid set of processors” is

4 Gection

116 CHAPTER 6. SCHEDULING

system dependent; however, every set consisting of one valid processor makes
up a valid bit set, and every bit set correspond to a pre-defined affinity set is
valid.
Returns
The resulting Affinity.
Returns an Affinity set with the affinity BitSet bitSet and no associations.
Platforms that support specific affinity sets will register those Affinity instances

with [Affinityf?l They appear in the arrays returned by [getPredefinedAffini-|

ties Q| and getPredefinedAffinities(Affinity[])@.

6.5.1.2.2 get(BoundAsyncEventHandler)

Signature

public static final
javax.realtime.Affinity get(BoundAsyncEventHandler handler)

Parameters
handler a bound async event handler.
Returns
The associated affinity set.
Return the affinity set instance associated with handler.

6.5.1.2.3 get(Thread)

Signature

public static final
javax.realtime.Affinity get(Thread thread)

Parameters

thread a Java thread, or one of its subclasses (including RealtimeThread ™).
Returns

The associated affinity set.
Return the affinity set instance associated with thread.

6.5.1.2.4 get(ProcessingGroupParameters)

Signature

public static final
javax.realtime.Affinity get(ProcessingGroupParameters pgp)

42Section [6.5.1
43Section [6.5.1.2.13
44Gection 77

45Section

6.5. CLASSES 117

Parameters

pgp An instance of [ProcessingGroupParameters|
Returns

The associated affinity set.
Return the affinity set instance associated with pgp.

6.5.1.2.5 get(ActiveEventDispatcher)

Signature

public static final
javax.realtime.Affinity get(ActiveEventDispatcher dispatcher)

Parameters

pgp An instance of [ProcessingGroupParameters|"’|
Returns

The associated affinity set.
Return the affinity set instance associated with dispatcher.

6.5.1.2.6 getAvailableProcessors

Signature

public static final
java.util.BitSet getAvailableProcessors()

Returns

the set of processors available to the program.
This method is equivalent to[getAvailableProcessors (BitSet)[" with a null ar-
gument.

6.5.1.2.7 getAvailableProcessors(BitSet)

Signature

public static final
java.util.BitSet getAvailableProcessors(BitSet dest)

Parameters
dest If dest is non-null, use dest as the returned value. If it is null, create a
new BitSet.

Returns

46Section [6.5.7]
47Section [6.5.7]
48Section [6.5.1.2.7

118 CHAPTER 6. SCHEDULING

A BitSet representing the set of processors currently valid for use in the
bitset argument to [generate (BitSet)|”|
In systems where the set of processors available to a process is dynamic (e.g., because
of system management operations or because of fault tolerance capabilities), the set
of available processors shall reflect the processsors that are allocated to the RTSJ
runtime and are currently available to execute tasks.

6.5.1.2.8 getHeapDefault

Signature

public static final
javax.realtime.Affinity getHeapDefault()

Returns
The current default processor affinity set for heap-using schedulable objects.
Return the default processor affinity set for heap-using schedulable objects.

6.5.1.2.9 getDefault

Signature

public static final
javax.realtime.Affinity getDefault()

Returns
The current default processor affinity set for Java threads.
Return the default processor affinity for Java threads.

6.5.1.2.10 getNoHeapDefault

Signature

public static final
javax.realtime.Affinity getNoHeapDefault ()

Returns
The current default processor affinity set for non-heap mode schedulable ob-
jects.

Return the default processor affinity for non-heap mode schedulable objects.

6.5.1.2.11 getProcessingGroupDefault

Signature
public static final

9Section

6.5. CLASSES 119

javax.realtime.Affinity getProcessingGroupDefault ()
Returns

The affinity set associated with SOs for which the intersection of their affinity

and their ProcessingGroupParameters’| affinity would be the empty set.
Return the processor affinity set used for SOs where the intersection of their affinity
set and their processing group parameters’ affinity set yields the empty set.

6.5.1.2.12 getPredefinedAffinitiesCount

Signature

public static final
int getPredefinedAffinitiesCount ()

Returns
The minimum array size required to store references to all the predefined
affinity sets.
Return the minimum array size required to store references to all the predefined
processor affinity sets.

6.5.1.2.13 getPredefined Affinities

Signature

public static final
javax.realtime.Affinity[] getPredefinedAffinities()

Returns
an array of the pre-defined affinity sets.
Equivalent to invoking getPredefinedAffinitySets(null).

6.5.1.2.14 getPredefined Affinities(javax.realtime.Affinity(])

Signature

public static final
javax.realtime.Affinity[]

getPredefinedAffinities(javax.realtime.Affinity[] dest)
Parameters

dest The destination array, or null.
Throws

Illegal ArgumentException when dest is not large enough.
Returns

50Section m

120 CHAPTER 6. SCHEDULING

dest or a newly created array if dest was null, populated with references to
the pre-defined affinity sets.
If dest has excess entries, they are filled with null.

Return an array containing all affinity sets that were predefined by the Java runtime.

6.5.1.2.15 getProcessorAddedEvent

Signature

static
javax.realtime.AsyncEvent getProcessorAddedEvent ()

Returns
The async event that will be fired when a processor is added to the set available
to the JVM. Returns null if change notification is not supported, or if no async
event has been designated.

Available since RTSJ version RTSJ 2.0

6.5.1.2.16 getProcessorRemovedEvent

Signature

static
javax.realtime.AsyncEvent getProcessorRemovedEvent ()

Returns
The async event that will be fired when a processor is removed from the set
available to the JVM. Returns null if change notification is not supported, or
if no async event has been designated.

Available since RTSJ version RTSJ 2.0

6.5.1.2.17 isAffinityChangeNotificationSupported

Signature

static final
boolean isAffinityChangeNotificationSupported()

Returns
True if change notification is supported. (See[setProcessorAddedEvent (AsyncEvent)f
and |[setProcessorRemovedEvent (AsyncEvent)f?|)

51Gection [6.5.1.2.19
528ection [6.5.1.2.24]

6.5. CLASSES 121

Available since RTSJ version RTSJ 2.0

6.5.1.2.18 isSetAffinitySupported

Signature

public static final
boolean isSetAffinitySupported()

Returns
True if the |set (Affinity, Thread)P’|family of methods is supported.
Return true if the [set (Affinity, Thread)P?| family of methods is supported.

6.5.1.2.19 setProcessorAddedEvent(AsyncEvent)

Signature

static
void setProcessorAddedEvent (AsyncEvent event)

Parameters
event The async even to fire in case an added processor is detected, or null
to cause no AE to be called in case an added processor is detected.

Throws
UnsupportedOperationException when change notification is not supported.
lllegal ArgumentExceptoin when event is not in immortal memory.

Set the AsyncEvent that will be fired when a processor is added to the set available
to the JVM.

6.5.1.2.20 set(Affinity, BoundAsyncEventHandler)

Signature

public static final
void set(Affinity set, BoundAsyncEventHandler aeh)

throws ProcessorAffinityException
Parameters

set The processor affinity set

aeh The bound async event handler
Throws

53Section [6.5.1.2.21
54Section [6.5.1.2.21

122 CHAPTER 6. SCHEDULING

ProcessorAffinityFException Thrown when the runtime fails to set the affinity
for platform-specific reasons.
NullPointerEzception if set or aeh is null.

Set the processor affinity of a bound AEH to set.

6.5.1.2.21 set(Affinity, Thread)

Signature

public static final
void set(Affinity set, Thread thread)

throws ProcessorAffinityException
Parameters
set The processor affinity set
thread The thread or real-time thread.
Throws
ProcessorAffinityException when the runtime fails to set the affinity for platform-
specific reasons.
NullPointerException if set or thread is null.
Set the processor affinity of a Java thread or RealtimeThreadP”|to set.

6.5.1.2.22 set(Affinity, ProcessingGroupParameters)

Signature

public static final
void set(Affinity set, ProcessingGroupParameters pgp)

throws ProcessorAffinityException

Parameters
set The processor affinity set
pgp The processing group parameters instance.

Throws
ProcessorAffinityException when the runtime fails to set the affinity for platform-
specific reasons or pgp contains more than one processor.
NullPointerEzception if set pgp is null.

Set the processor affinity of pgp to set.

6.5.1.2.23 set(Affinity, ActiveEventDispatcher)

Signature
public static final

55Section m

6.5. CLASSES 123

void set(Affinity set, ActiveEventDispatcher dispatcher)
throws ProcessorAffinityException

Parameters
set The processor affinity set

Throws
ProcessorAffinityException when the runtime fails to set the affinity for platform-
specific reasons or pgp contains more than one processor.
NullPointerException if set pgp is null.

Set the processor affinity of dispatcher to set.

6.5.1.2.24 setProcessorRemovedEvent(AsyncEvent)

Signature

static
void setProcessorRemovedEvent (AsyncEvent event)

Parameters
event
Throws
Unsupported OperationEzception when change notification is not supported.
Illegal ArgumentEzceptoin when event is not null or in immortal memory.
Set the [AsyncEvent®| that will be fired when a processor is removed from the set
available to the JVM.

6.5.1.2.25 getProcessors

Signature

public final
java.util.BitSet getProcessors()

Returns
A newly created BitSet representing this Affinity.
Return a BitSet representing the processor affinity set for this Affinity.

6.5.1.2.26 getProcessors(BitSet)

Signature

public final
java.util.BitSet getProcessors(BitSet dest)

Parameters

56Section W

124 CHAPTER 6. SCHEDULING

dest Set dest to the BitSet value. If dest is null, create a new BitSet in
the current allocation context.

Returns
A BitSet representing the processor affinity set of this Affinity.

Return a BitSet representing the processor affinity set of this Affinity.

Available since RTSJ version RTSJ 2.0

6.5.1.2.27 isProcessorInSet(int)

Signature

public final
boolean isProcessorInSet(int processorNumber)

Parameters

processorNumber
Returns

True if and only if processorNumber is represented in this affinity set.
Ask whether a processor is included in this affinity set.

Available since RTSJ version RTSJ 2.0

6.5.1.2.28 applyTo(BoundAsyncEventHandler)

Signature

public final
void applyTo(BoundAsyncEventHandler aeh)

throws ProcessorAffinityException
Parameters
aeh The bound async event handler
Throws
ProcessorAffinityException Thrown when the runtime fails to set the affinity
for platform-specific reasons.
NullPointerFxception aeh is null.
Set the processor affinity of a bound AEH to this.

6.5.1.2.29 applyTo(Thread)

Signature

6.5. CLASSES 125

public final
void applyTo(Thread thread)

throws ProcessorAffinityException
Parameters
thread The thread or real-time thread.
Throws
ProcessorAffinityEzxception when the runtime fails to set the affinity for platform-
specific reasons.
NullPointerException if thread is null.
Set the processor affinity of a Java thread or RealtimeThreadP’|to this.

6.5.1.2.30 applyTo(ProcessingGroupParameters)

Signature

public final
void applyTo(ProcessingGroupParameters pgp)

throws ProcessorAffinityException

Parameters
pgp The processing group parameters instance.

Throws
ProcessorAffinityEzception when the runtime fails to set the affinity for platform-
specific reasons or pgp contains more than one processor.
NullPointerEzception if pgp is null.

Set the processor affinity of pgp to this.

6.5.1.2.31 applyTo(ActiveEventDispatcher)

Signature

public final
void applyTo(ActiveEventDispatcher dispatcher)

throws ProcessorAffinityException
Parameters
dispatcher is the dispatcher instance.
Throws
ProcessorAffinityException when the runtime fails to set the affinity for platform-
specific reasons.
NullPointerEzception when dispatcher is null.
Set the processor affinity of dispatcher to this.

57Section m

126 CHAPTER 6. SCHEDULING

6.5.2 AperiodicParameters

Inheritance

java.lang.Object
[avax.realtime.ReleaseParameters|
[avax.realtime. AperiodicParameters|

When a reference to an AperiodicParameters object is given as a parameter to
a schedulable object’s constructor or passed as an argument to one of the schedul-
able object’s setter methods, the AperiodicParameters object becomes the release
parameters object bound to that schedulable object. Changes to the values in the
AperiodicParameters object affect that schedulable object. If bound to more than
one schedulable object then changes to the values in the AperiodicParameters ob-
ject affect all of the associated objects. Note that this is a one-to-many relationship
and not a many-to-many.

Only changes to an AperiodicParameters object caused by methods on that
object cause the change to propagate to all schedulable objects using the object. For
instance, calling setCost on an AperiodicParameters object will make the change,
then notify that the scheduler that the parameter object has changed. At that
point the object is reconsidered for every schedulable object that uses it. Invoking
a method on the RelativeTime object that is the cost for this object may change
the cost but it does not pass the change to the scheduler at that time. That change
must not change the behavior of the schedulable object’s that use the parameter
object until a setter method on the AperiodicParameters object is invoked, or
the parameter object is used in setReleaseParameters() or a constructor for a
schedulable object.

The implementation must use modified copy semantics for each HighResolu-
parameter value. The value of each time object should be treated as if

it were copied at the time it is passed to the parameter object, but the object ref-
erence must also be retained. For instance, the value returned by getCost () must
be the same object passed in by setCost(), but any changes made to the time value
of the cost must not take effect in the associated AperiodicParameters instance
unless they are passed to the parameter object again, e.g. with a new invocation of
setCost.

Correct initiation of the deadline miss and cost overrun handlers requires that
the underlying system know the arrival time of each sporadic task. For an instance
of RealtimeThreadP”| the arrival time is the time at which the start() is invoked.

58Gection [9.5.3
59Section [5.4.2

6.5. CLASSES 127

For other instances of [Schedulablel’’| required behaviors may require the implemen-
tation to behave effectively as if it maintained a queue of arrival times.

Caution: This class is explicitly unsafe in multithreaded situations when it is
being changed. No synchronization is done. It is assumed that users of this class
who are mutating instances will be doing their own synchronization at a higher level.

Attribute Value
cost new RelativeTime(0,0)
deadline new RelativeTime(Long.MAX_VALUE,999999)
overrunHandler None
missHandler None
Arrival time queue size | 0
Queue overflow policy | SAVE

Correct initiation of the deadline miss and cost overrun handlers requires that
the underlying system know the arrival time of each aperiodic task. For an in-
stance of RealtimeThreadP’| the arrival time is the time at which the start() is
invoked. For other instances of [Schedulablel“| required behaviors may require the
implementation to behave effectively as if it maintained a queue of arrival times.

6.5.2.1 Fields

6.5.2.1.1 arrivalTimeQueueOverflowExcept
public static final arrivalTimeQueueOverflowExcept

Represents the “EXCEPT” policy for dealing with arrival time queue overflow. Un-
der this policy, if an arrival occurs and its time should be queued but the queue
already holds a number of times equal to the initial queue length defined by this
then the fire() method shall throw a [ArrivalTimeQueueOverflowExceptionf|
Any other associated semantics are governed by the schedulers for the schedulable
objects using these aperiodic parameters. If the arrival is a result of a happening
to which the instance of |AsyncEventHandlerf?| is bound then the arrival time is
ignored.

60Section [6.4.1
61Section [5.4.2
62Section [6.4.1
63Section [14.3.1
64Section [8.6.4

128 CHAPTER 6. SCHEDULING

Available since RTSJ version RTSJ 1.0.1 Moved here from SporadicPa-
rameters.

6.5.2.1.2 arrivalTimeQueueOverflowlIgnore

public static final arrivalTimeQueueOverflowIgnore
Represents the “IGNOR” policy for dealing with arrival time queue overflow. Under
this policy, if an arrival occurs and its time should be queued, but the queue already
holds a number of times equal to the initial queue length defined by this then the
arrival is ignored. Any other associated semantics are governed by the schedulers
for the schedulable objects using these aperiodic parameters.

Available since RTSJ version RTSJ 1.0.1 Moved here from SporadicPa-
rameters.

6.5.2.1.3 arrivalTimeQueueOverflowReplace
public static final arrivalTimeQueueOverflowReplace

Represents the “REPLACE” policy for dealing with arrival time queue overflow.
Under this policy if an arrival occurs and should be queued but the queue already
holds a number of times equal to the initial queue length defined by this then
the information for this arrival replaces a previous arrival. Any other associated
semantics are governed by the schedulers for the schedulable objects using these
aperiodic parameters.

Available since RTSJ version RTSJ 1.0.1 Moved here from SporadicPa-
rameters.

6.5.2.1.4 arrivalTimeQueueOverflowSave
public static final arrivalTimeQueueOverflowSave

Represents the “SAVE” policy for dealing with arrival time queue overflow. Under
this policy if an arrival occurs and should be queued but the queue is full, then the
queue is lengthened and the arrival time is saved. Any other associated semantics
are governed by the schedulers for the schedulable objects using these aperiodic
parameters. This policy does not update the “initial queue length” as it alters the
actual queue length. Since the SAVE policy grows the arrival time queue as necessary,
for the SAVE policy the initial queue length is only an optimization.

6.5. CLASSES 129

Available since RTSJ version RTSJ 1.0.1 Moved here from SporadicPa-
rameters.

6.5.2.2 Constructors

6.5.2.2.1 AperiodicParameters

Signature
public
AperiodicParameters ()
Create an AperiodicParameters object. This constructor is equivalent to:
AperiodicParameters(null, null, null, null)

Available since RTSJ version RTSJ 1.0.1

6.5.2.2.2 AperiodicParameters(RelativeTime)

Signature

public
AperiodicParameters(RelativeTime deadline)
Parameters

deadline

Available since RTSJ version RTSJ 2.0

130 CHAPTER 6. SCHEDULING

6.5.2.2.3 AperiodicParameters(RelativeTime, AsyncEventHandler)

Signature

public
AperiodicParameters(RelativeTime deadline, AsyncEventHandler missHandle

Create an AperiodicParameters object. This constructor is equivalent to:

AperiodicParameters(null, deadline, null, missHandler)

Available since RTSJ version RTSJ 2.0

6.5.2.2.4 AperiodicParameters(RelativeTime, RelativeTime, AsyncEvent-
Handler, AsyncEventHandler)

Signature

public
AperiodicParameters(RelativeTime cost, RelativeTime deadline, AsyncEver

Parameters
cost Processing time per invocation. On implementations which can measure
the amount of time a schedulable object is executed, this value is the maxi-
mum amount of time a schedulable object receives. On implementations which
cannot measure execution time, this value is used as a hint to the feasibility
algorithm. On such systems it is not possible to determine when any par-
ticular object exceeds cost. If null, the default value is a new instance of
RelativeTime(0,0).
deadline The latest permissible completion time measured from the release
time of the associated invocation of the schedulable object. If null, the default
value is a new instance of RelativeTime (Long.MAX _VALUE, 999999).
overrunHandler This handler is invoked if an invocation of the schedulable
object exceeds cost. Not required for minimum implementation. If null, the
default value is no overrun handler.
missHandler This handler is invoked if the run() method of the schedulable
object is still executing after the deadline has passed. Although minimum
implementations do not consider deadlines in feasibility calculations, they must
recognize variable deadlines and invoke the miss handler as appropriate. If
null, the default value is no miss handler.

6.5. CLASSES 131

Throws
Lllegal ArgumentException when the time value of cost is less than zero, or the
time value of deadline is less than or equal to zero.
lllegalAssignmentFError when cost, deadline, overrunHandler or missHan-
dler cannot be stored in this.

Create an AperiodicParameters object.

Available since RTSJ version RTSJ 2.0

6.5.2.3 Methods

6.5.2.3.1 getArrivalTimeQueueOverflowBehavior

Signature

public
java.lang.String getArrivalTimeQueueOverflowBehavior ()

Returns
The behavior of the arrival time queue as a string.
Gets the behavior of the arrival time queue in the event of an overflow.

Available since RTSJ version RTSJ 1.0.1 Moved from SporadicParameters

6.5.2.3.2 getlnitialArrivalTimeQueueLength

Signature

public
int getInitialArrivalTimeQueueLength()

Returns

The initial length of the queue.
Gets the initial number of elements the arrival time queue can hold. This returns the
initial queue length currently associated with this parameter object. If the overflow
policy is SAVE the initial queue length may not be related to the current queue
lengths of schedulable objects associated with this parameter object.

Available since RTSJ version RTSJ 1.0.1 Moved here from SporadicPa-

132 CHAPTER 6. SCHEDULING

rameters.

6.5.2.3.3 setDeadline(RelativeTime)

Signature

public
void setDeadline(RelativeTime deadline)

Parameters
deadline The latest permissible completion time measured from the release
time of the associated invocation of the schedulable object. If deadline is
null, the deadline is set to a new instance of RelativeTime (Long.MAX_VALUE,
999999).

Throws
LllegalArgumentException when the time value of deadline is less than or
equal to zero, or if the new value of this deadline is incompatible with the
scheduler for any associated schedulable object.
LllegalAssignmentError @QinheritDoc

Sets the deadline value.

If this parameter object is associated with any schedulable object (by being
passed through the schedulable object’s constructor or set with a method such as
[RealtimeThread.setReleaseParameters(ReleaseParameters)P”) the deadline of
those schedulable objects is altered as specified by each schedulable object’s respec-
tive scheduler.

6.5.2.3.4 setArrivalTimeQueueOverflowBehavior(String)

Signature

public
void setArrivalTimeQueueOverflowBehavior (String behavior)

Parameters
behavior A string representing the behavior.
Throws
Lllegal ArgumentException when behavior is not one of the final queue over-
flow behavior values defined in this class.
Sets the behavior of the arrival time queue in the case where the insertion of a new
element would make the queue size greater than the initial size given in this.
Values of behavior are compared using reference equality (==) not value equal-
ity (equalsQ)).

65Section

6.5. CLASSES 133

Available since RTSJ version RTSJ 1.0.1 Moved here from SporadicPa-
rameters.

6.5.2.3.5 setlnitial ArrivalTimeQueueLength(int)

Signature

public
void setInitialArrivalTimeQueuelLength(int initial)

Parameters

initial The initial length of the queue.
Throws

Lllegal ArgumentException when initial is less than zero.
Sets the initial number of elements the arrival time queue can hold without length-
ening the queue. The initial length of an arrival queue is set when the schedulable
object using the queue is constructed, after that time changes in the initial queue
length are ignored.

Available since RTSJ version RTSJ 1.0.1 Moved here from SporadicPa-
rameters.

6.5.3 ImportanceParameters

Inheritance

java.lang.Object
avax.realtime.SchedulingParameters|
[javax.realtime.Priority Parameters|
[avax.realtime.ImportanceParameters|

Importance is an additional scheduling metric that may be used by some priority-
based scheduling algorithms during overload conditions to differentiate execution
order among threads of the same priority.

In some realtime systems an external physical process determines the period of
many threads. If rate-monotonic priority assignment is used to assign priorities
many of the threads in the system may have the same priority because their periods
are the same. However, it is conceivable that some threads may be more impor-
tant than others and in an overload situation importance can help the scheduler

134 CHAPTER 6. SCHEDULING

decide which threads to execute first. The base scheduling algorithm represented by
IPrioritySchedulerf® must not consider importance.

6.5.3.1 Fields

6.5.3.1.1 serialVersionUID
private static final serialVersionUID

6.5.3.2 Constructors

6.5.3.2.1 ImportanceParameters(int, int)

Signature

public
ImportanceParameters(int priority, int importance)

Parameters
priority The priority value assigned to schedulable objects that use this param-
eter instance. This value is used in place of the value passed to Thread.setPriority.
importance The importance value assigned to schedulable objects that use this
parameter instance.

Create an instance of ImportanceParameters.

6.5.3.3 Methods

6.5.3.3.1 getImportance

Signature
public

66Section W

6.5. CLASSES 135

int getImportance()
Returns

The value of importance for the associated instances of [Schedulablel
Gets the importance value.

6.5.3.3.2 setImportance(int)

Signature

public
void setImportance(int importance)

Parameters
importance The value to which importance is set.
Throws
lllegal ArgumentException when the given importance value is incompatible
with the scheduler for any of the schedulable objects which are presently using
this parameter object.
Set the importance value. If this parameter object is associated with any schedulable
object (by being passed through the schedulable object’s constructor or set with a
method such asRealtimeThread.setSchedulingParameters(SchedulingParameters)[®)
the importance of those schedulable objects is altered at a moment controlled by
the schedulers for the respective schedulable objects.

6.5.3.3.3 toString

Signature
public
java.lang.String toString()
Print the value of the priority and importance values of the associated instance of

ISchedulablel”l

6.5.4 PeriodicParameters

Inheritance

java.lang.Object
avax.realtime.ReleaseParameters|
[javax.realtime.PeriodicParameters|

67Section [6.4.1

68Section [5.4.2.2.29
69Section [6.4.1

136 CHAPTER 6. SCHEDULING

This release parameter indicates that the schedulable object is released on a regular
basis. For an [AsyncEventHandler|"|, this means that the handler is either released
by a periodic timer, or the associated event occurs periodically. For a [Realtime-]
Thread ! this means that the RealtimeThread.waitForNextPeriod 2| or Real-
timeThread.waitForNextPeriodInterruptiblds| method will unblock the associ-
ated realtime thread at the start of each period.

When a reference to a PeriodicParameters object is given as a parameter to
a schedulable object’s constructor or passed as an argument to one of the schedul-
able object’s setter methods, the PeriodicParameters object becomes the release
parameters object bound to that schedulable object. Changes to the values in the
PeriodicParameters object affect that schedulable object. If bound to more than
one schedulable object then changes to the values in the PeriodicParameters ob-
ject affect all of the associated objects. Note that this is a one-to-many relationship
and not a many-to-many.

Only changes to a PeriodicParameters object caused by methods on that object
cause the change to propagate to all schedulable objects using the object. For
instance, calling setCost on an PeriodicParameters object will make the change,
then notify that the scheduler that the parameter object has changed. At that
point the object is reconsidered for every SO that uses it. Invoking a method on
the RelativeTime object that is the cost for this object may change the cost but
it does not pass the change to the scheduler at that time. That change must not
change the behavior of the SOs that use the parameter object until a setter method
on the PeriodicParameters object is invoked, or the parameter object is used in
setReleaseParameters() or a constructor for an SO.

Periodic parameters use [HighResolutionTimg " values for blocking time, period
and start time. Since these times are expressed as a|[HighResolutionTime | values,
these values use accurate timers with nanosecond granularity. The actual resolution
available and even the quantity the timers measure depend on the clock associated
with each time value.

The implementation must use modified copy semantics for each
parameter value. The value of each time object should be treated as if
it were copied at the time it is passed to the parameter object, but the object ref-
erence must also be retained. For instance, the value returned by getCost () must
be the same object passed in by setCost(), but any changes made to the time value

70Section [8.6.4
"Section [5.4.2
"2Section [5.4.2.2.7
73Section [5.4.2.2.8
7Section [9.5.3
75Section [9.5.3
"6Section [9.5.3

6.5. CLASSES 137

of the cost must not take effect in the associated PeriodicParameters instance
unless they are passed to the parameter object again, e.g. with a new invocation of

setCost.

Periodic release parameters are strictly informational when they are applied to
async event handlers. They must be used for any feasibility analysis, but release of
the async event handler is not entirely controlled by the scheduler.

Caution: This class is explicitly unsafe in multithreaded situations when it is
being changed. No synchronization is done. It is assumed that users of this class
who are mutating instances will be doing their own synchronization at a higher level.

Caution: An implementation is not required to ensure that each AsyncEvent-
Handler with periodic parameters is released periodically.

Attribute Default Value
blocking new RelativeTime(0,0)
start new RelativeTime(0,0)
period No default. A value must be supplied
cost new RelativeTime(0,0)
deadline new RelativeTime(period)
overrunHandler None
missHandler None
6.5.4.1 Constructors

6.5.4.1.1 PeriodicParameters(RelativeTime)

Signature

public

PeriodicParameters(RelativeTime period)

Create a PeriodicParameters object with the specified period and all other at-
tributes set to their default values. This constructor has the same effect as invoking
PeriodicParameters(null, period, null, null, null, null)

Available since RTSJ version RTSJ 1.0.1

138 CHAPTER 6. SCHEDULING

6.5.4.1.2 PeriodicParameters(HighResolutionTime, RelativeTime)

Signature

public
PeriodicParameters(HighResolutionTime start, RelativeTime period)

Create a PeriodicParameters object with the specified period and start times, and
all other attributes set to their default values. This constructor has the same effect
as invoking PeriodicParameters(start, period, null, null, null, null)

Available since RTSJ version RTSJ 1.0.1

6.5.4.1.3 PeriodicParameters(HighResolutionTime, RelativeTime, Re-
lativeTime)

Signature

public
PeriodicParameters(HighResolutionTime start, RelativeTime period, Relat

Create a PeriodicParameters object with the specified deadline, period and start
times, and all other attributes set to their default values. This constructor has the
same effect as invoking PeriodicParameters(start, period, null, deadline,
null, null, null)

Available since RTSJ version RTSJ 2.0

6.5.4.1.4 PeriodicParameters(HighResolutionTime, RelativeTime, Re-
lativeTime, RelativeTime, AsyncEventHandler, AsyncEventHandler)

Signature

public
PeriodicParameters(HighResolutionTime start, RelativeTime period, Relat

Parameters

6.5. CLASSES 139

start Time at which the first release begins (i.e. the real-time thread becomes
eligible for execution.) If a RelativeTime, this time is relative to the first
time the thread becomes activated (that is, when start() is called). If an
AbsoluteTime, then the first release is the maximum of the start parameter
and the time of the call to the associated RealtimeThread.start() method
(modified according to any phasing policy). If null, the default value is a new
instance of RelativeTime (0,0).

period The period is the interval between successive unblocks of the[Realtime-]
Thread.waitForNextPeriod ‘|andRealtimeThread.waitForNextPeriodInterruptiblel®|
methods. There is no default value. If period is null an exception is thrown.
cost Processing time per release. On implementations which can measure the
amount of time a schedulable object is executed, this value is the maximum
amount of time a schedulable object receives per release. If null, the default
value is a new instance of RelativeTime(0,0).

deadline The latest permissible completion time measured from the release
time of the associated invocation of the schedulable object. If null, the default
value is new instance of RelativeTime (period) .

overrunHandler This handler is invoked if an invocation of the schedulable
object exceeds cost in the given release. Implementations may ignore this
parameter. If null, the default value no overrun handler.

missHandler This handler is invoked if the run() method of the schedulable
object is still executing after the deadline has passed. Although minimum
implementations do not consider deadlines in feasibility calculations, they must
recognize variable deadlines and invoke the miss handler as appropriate. If null,
the default value no deadline miss handler.

Throws

Illegal ArgumentFEzception when the period is null or its time value is not
greater than zero, or if the time value of cost is less than zero, or if the time
value of deadline is not greater than zero, or if the clock associated with
the cost is not the real-time clock, or if the clock associated with the start,
deadline and period parameters are not the same.

lllegalAssignmentFError when start period, cost, deadline, overrunHan-
dler or missHandler cannot be stored in this.

Create a PeriodicParameters object with a default blocking time and all other
attributes set to the specified values.

""Section [5.4.2.2.7]
"8Section [5.4.2.2.8

140 CHAPTER 6. SCHEDULING

6.5.4.2 Methods

6.5.4.2.1 getPeriod

Signature

public
javax.realtime.RelativeTime getPeriod()

Returns
The current value in period.
Gets the period.

6.5.4.2.2 getStart

Signature

public
javax.realtime.HighResolutionTime getStart()

Returns
The current value in start. This is the value that was specified in the con-
structor or by setStart (), not the actual absolute time corresponding to the
start of one of the schedulable objects associated with this PeriodicParame-
ters object.

Gets the start time.

6.5.4.2.3 setDeadline(RelativeTime)

Signature

public
void setDeadline(RelativeTime deadline)

Parameters
deadline The latest permissible completion time measured from the release
time of the associated invocation of the schedulable object. If deadline is
null, the deadline is set to a new instance of RelativeTime equal to period.
Throws
lllegalArgumentException when the time value of deadline is less than or
equal to zero, or if the new value of this deadline is incompatible with the
scheduler for any associated schedulable object.
Lllegal AssignmentError QinheritDoc

6.5. CLASSES 141

Sets the deadline value.

If this parameter object is associated with any schedulable object (by being
passed through the schedulable object’s constructor or set with a method such as
RealtimeThread.setReleaseParameters(ReleaseParameters)|”) the deadline of
those schedulable objects is altered as specified by each schedulable object’s respec-
tive scheduler.

6.5.4.2.4 setPeriod(RelativeTime)

Signature

public
void setPeriod(RelativeTime period)

Parameters
period The value to which period is set.

Throws
lllegal ArgumentException when the given period is null or its time value is
not greater than zero. Also when period is incompatible with the scheduler
for any associated schedulable object or when an associated [AbstractAsync-|
[EventHandlen| is associated with a whose period does not match
period.
IllegalAssignmentError when period cannot be stored in this.

Sets the period.

6.5.4.2.5 setStart(HighResolutionTime)

Signature

public
void setStart(HighResolutionTime start)

Parameters
start The new start time. If null, the default value is a new instance of
RelativeTime(0,0).

Throws
Illegal ArgumentEzception when the given start time is incompatible with the
scheduler for any of the schedulable objects which are presently using this
parameter object.
IllegalAssignmentError when start cannot be stored in this.

Section [5.4.2.2.26
80Section [8.6.2
81Section [10.5.6

142 CHAPTER 6. SCHEDULING

Sets the start time.

The effect of changing the start time for any schedulable objects associated
with this parameter object is determined by the scheduler associated with each
schedulable object.

Note: An instance of PeriodicParameters may be shared by several schedulable
objects. A change to the start time may take effect on a subset of these schedulable
objects. That leaves the start time returned by getStart unreliable as a way to
determine the start time of a schedulable object.

6.5.5 PriorityParameters

Inheritance

java.lang.Object
[javax.realtime.SchedulingParameters|
avax.realtime.Priority Parameters|

Instances of this class should be assigned to schedulable objects that are managed by
schedulers which use a single integer to determine execution order. The base sched-
uler required by this specification and represented by the class|PriorityScheduler|
is such a scheduler.

6.5.5.1 Fields

6.5.5.1.1 serialVersionUID
private static final serialVersionUID

6.5.5.2 Constructors

6.5.5.2.1 PriorityParameters(int)

Signature

82Gection m

6.5. CLASSES 143

public
PriorityParameters(int priority)

Parameters
priority The priority assigned to schedulable objects that use this parameter
instance.

Create an instance of [PriorityParametersP”| with the given priority.

6.5.5.3 Methods

6.5.5.3.1 getPriority

Signature

public

int getPriority()
Returns

The priority.
Gets the priority value.

6.5.5.3.2 setPriority(int)

Signature
public
void setPriority(int priority)
Parameters
priority The value to which priority is set.
Throws
Illegal ArgumentException when the given priority value is incompatible with
the scheduler for any of the schedulable objects which are presently using this
parameter object.
Set the priority value. If this parameter object is associated with any schedulable
object (by being passed through the schedulable object’s constructor or set with a
method such as[RealtimeThread.setSchedul ingParameters(SchedulingParameters)f?)
the base priority of those schedulable objects is altered as specified by each sched-
ulable object’s scheduler.

83Section [6.5.5
84Section [5.4.2.2.29

144 CHAPTER 6. SCHEDULING

6.5.5.3.3 toString

Signature

public
java.lang.String toString()

Returns
A string representing the value of priority.
Converts the priority value to a string.

6.5.6 PriorityScheduler

Inheritance

java.lang.Object
[avax.realtime.Scheduler
[lavax.realtime. PriorityScheduler

Class which represents the required (by the RTSJ) priority-based scheduler. The
default instance is the base scheduler which does fixed priority, preemptive schedul-
ing.

This scheduler, like all schedulers, governs the default values for scheduling-
related parameters in its client schedulable objects. The defaults are as follows:

Attribute \ Default Value

Priority parameters

Priority ‘ norm priority

Note that the system contains one instance of the PriorityScheduler which is
the system’s base scheduler and is returned by PriorityScheduler.instance(). It
may, however, contain instances of subclasses of PriorityScheduler and even ad-
ditional instances of PriorityScheduler itself created through this class’ protected
constructor. The instance returned by the [instance Of°| method is the base sched-
uler and is returned by |[Scheduler.getDefaultScheduler Of° unless the default

scheduler is reset with |Scheduler.setDefaultScheduler (Scheduler)f’|

85Section [6.5.6.3.1
86GSection [6.5.9.2.1
87Section [6.5.9.2.2

6.5. CLASSES 145

6.5.6.1 Fields

6.5.6.1.1 MAX PRIORITY
public static final MAX_PRIORITY
The maximum priority value used by the implementation.

Deprecated since RTSJ version as of RT'SJ 1.0.1 Use the |getMaxPriorityf’|
method instead.

6.5.6.1.2 MIN _PRIORITY
public static final MIN_PRIORITY
The minimum priority value used by the implementation.

Deprecated since RTSJ version as of RT'SJ 1.0.1 Use the [getMinPriorityf’|
method instead.

6.5.6.2 Constructors

6.5.6.2.1 PriorityScheduler

Signature

protected
PriorityScheduler ()

Construct an instance of PriorityScheduler. Applications will likely not need any
instance other than the default instance.

6.5.6.3 Methods

88Section [6.5.6.3.2
89Section [6.5.6.3.4

146 CHAPTER 6. SCHEDULING

6.5.6.3.1 Iinstance

Signature

public static
javax.realtime.PriorityScheduler instance()

Returns

A reference to the distinguished instance PriorityScheduler.
Return a reference to the distinguished instance of PriorityScheduler which is
the system’s base scheduler.

6.5.6.3.2 getMaxPriority

Signature

public
int getMaxPriority()

Returns

The value of the maximum priority.
Gets the maximum priority available for a schedulable object managed by this sched-
uler.

6.5.6.3.3 getMaxPriority(Thread)

Signature

public static
int getMaxPriority(Thread thread)

Parameters
thread An instance of Thread. If null, the maximum priority of this scheduler
is returned.
Throws
Lllegal ArgumentException when thread is a realtime thread that is not sched-
uled by an instance of PriorityScheduler.
Returns
The maximum priority for thread
Gets the maximum priority for the given thread. If the given thread is a realtime
thread that is scheduled by an instance of PriorityScheduler, then the maximum
priority for that scheduler is returned. If the given thread is a Java thread then
the maximum priority of its thread group is returned. Otherwise an exception is
thrown.

6.5. CLASSES 147

6.5.6.3.4 getMinPriority

Signature
public
int getMinPriority()
Returns
The minimum priority used by this scheduler.
Gets the minimum priority available for a schedulable object managed by this sched-
uler.

6.5.6.3.5 getMinPriority(Thread)

Signature

public static
int getMinPriority(Thread thread)

Parameters
thread An instance of Thread. If null, the minimum priority of this scheduler
is returned.
Throws
Illegal ArgumentException when thread is a realtime thread that is not sched-
uled by an instance of PriorityScheduler.
Returns
The minimum priority for thread
Gets the minimum priority for the given thread. If the given thread is a realtime
thread that is scheduled by an instance of PriorityScheduler, then the minimum
priority for that scheduler is returned. If the given thread is a Java thread then
Thread.MIN_PRIORITY is returned. Otherwise an exception is thrown.

6.5.6.3.6 getNormPriority

Signature

public
int getNormPriority()

Returns

The value of the normal priority.
Gets the normal priority available for a schedulable object managed by this sched-
uler.

6.5.6.3.7 getNormPriority(Thread)

Signature

148 CHAPTER 6. SCHEDULING

public static
int getNormPriority(Thread thread)

Parameters
thread An instance of Thread. If null, the norm priority for this scheduler is
returned.
Throws
Lllegal ArgumentException when thread is a realtime thread that is not sched-
uled by an instance3 of PriorityScheduler.
Returns
The norm priority for thread
Gets the "norm” priority for the given thread. If the given thread is a realtime
thread that is scheduled by an instance of PriorityScheduler, then the norm
priority for that scheduler is returned. If the given thread is a Java thread then
Thread.NORM_PRIORITY is returned. Otherwise an exception is thrown.

6.5.6.3.8 fireSchedulable(Schedulable)

Signature

public
void fireSchedulable(Schedulable schedulable)
Parameters
schedulable @QinheritDoc
Throws
Unsupported OperationEzception Thrown in all cases by the PrioritySched-
uler
@inheritDoc

6.5.6.3.9 getPolicyName

Signature
public
java.lang.String getPolicyName ()

Returns
The policy name (Fixed Priority) as a string.
Gets the policy name of this.

6.5.7 ProcessingGroupParameters

Inheritance

6.5. CLASSES 149

java.lang.Object
[avax.realtime.ProcessingGroupParameters|

Interfaces

Cloneable
Serializable

This is associated with one or more schedulable objects for which the system guaran-
tees that the associated objects will not be given more time per period than indicated
by cost. On implementations which do not support processing group parameters,
this class may be used as a hint to the feasibility algorithm. The motivation for this
class is to allow the execution demands of one or more aperiodic schedulable objects
to be bound so that they can be included in feasibility analysis. However, periodic
or sporadic schedulable objects can also be associated with a processing group.

Processing groups have an associated affinity set that must contain only a single
processor. The default affinity set is given by Affinity.getGroupDefaultAffinity().

For all schedulable objects with a reference to an instance of ProcessingGroup-
Parameters p no more than p.cost will be allocated to the execution of these
schedulable objects on the processor associated with its processing group in each in-
terval of time given by p.period after the time indicated by p.start. No execution
of the schedulable objects will be allowed on any processor other than this processor.
If there is no intersection between the a schedulable objects affinity set and its pro-
cessing group’s affinity set, then the schedulable object execution is constrained by
the default processing group’s affinit set. Peter, have I got the above correct.
I still think it is messy. I would prefer only the identify processor usage
to be constrained.

Logically a virtual server is associated with each instance of ProcessingGroup-
Parameters. This server has a start time, a period, a cost (budget) and a deadline.
The server can only logically execute when (a) it has not consumed more execution
time in its current release than the cost (budget) parameter, (b) one of its associated
schedulable objects is executable and is the most eligible of the executable schedul-
able objects. If the server is logically executable, the associated schedulable object
is executed. When the cost has been consumed, any overrunHandler is released,
and the server is not eligible for logical execution until its next period is due. At this
point, its allocated cost (budget) is replenished. If the server is logically executing
when its deadline expires, any associated missHandler is released. The deadline
and cost parameters of all the associated schedulable objects have the same impact
as they would if the objects were not bound to a processing group.

Processing group parameters use [HighResolutionTime"| values for cost, dead-
line, period and start time. Since those times are expressed as a|[HighResolution-—|

| ?’Section [9.5.3] |

150 CHAPT R 6. SCHEDULING

Timd’" the values use accurate timers with nanosecond granularity. The actual
resolution available and even the quantity it measures depends on the clock associ-
ated with each time value.

When a reference to a ProcessingGroupParameters object is given as a pa-
rameter to a schedulable object’s constructor or passed as an argument to one of
the schedulable object’s setter methods, the ProcessingGroupParameters object
becomes the processing group parameters object bound to that schedulable object.
Changes to the values in the ProcessingGroupParameters object affect that sched-
ulable object. If bound to more than one schedulable object then changes to the
values in the ProcessingGroupParameters object affect all of the associated ob-
jects. Note that this is a one-to-many relationship and not a many-to-many.

The implementation must use modified copy semantics for each HighResolu-
parameter value. The value of each time object should be treated as if

it were copied at the time it is passed to the parameter object, but the object refer-
ence must also be retained. Only changes to a ProcessingGroupParameters object
caused by methods on that object are immediately visible to the scheduler. For in-
stance, invoking setPeriod() on a ProcessingGroupParameters object will make
the change, then notify that the scheduler that the parameter object has changed.
At that point the scheduler’s view of the processing group parameters object is up-
dated. Invoking a method on the RelativeTime object that is the period for this
object may change the period but it does not pass the change to the scheduler at
that time. That new value for period must not change the behavior of the SOs that
use the parameter object until a setter method on the ProcessingGroupParameters
object is invoked, or the parameter object is used in setProcessingGroupParame-
ters() or a constructor for an SO.

The implementation may use copy semantics for each HighResolutionTime pa-
rameter value. For instance the value returned by getCost () must be equal to the
value passed in by setCost, but it need not be the same object.

Caution: This class is explicitly unsafe in multithreaded situations when it is
being changed. No synchronization is done. It is assumed that users of this class
who are mutating instances will be doing their own synchronization at a higher level.

Caution: The cost parameter time should be considered to be measured against
the target platform.

91Section [9.5.3
92Section [9.5.3

6.5. CLASSES 151
Attribute Default Value

start new RelativeTime(0,0)
period No default. A value must be supplied
cost No default. A value must be supplied
deadline new RelativeTime(period)
overrunHandler None
missHandler None

6.5.7.1 Fields

6.5.7.1.1 serialVersionUID

private static final serialVersionUID

6.5.7.2 Constructors

6.5.7.2.1 ProcessingGroupParameters(HighResolutionTime, RelativeTime,
RelativeTime, RelativeTime, AsyncEventHandler, AsyncEventHandler)

Signature

public
ProcessingGroupParameters (HighResolutionTime start, RelativeTime period, Rela:

Parameters

start Time at which the first period begins. If a RelativeTime, this time is
relative to the creation of this. If an AbsoluteTime, then the first release of
the logical server is at the start time (or immediately if the absolute time is in
the past). If null, the default value is a new instance of RelativeTime (0,0).
period The period is the interval between successive replenishment of the log-
ical server’s associated cost budget. There is no default value. If period is
null an exception is thrown.

152

CHAPTER 6. SCHEDULING

cost Processing time per period. The budget CPU time that the logical server
can consume each period. If null, an exception is thrown.

deadline The latest permissible completion time measured from the start of
the current period. Changing the deadline might not take effect after the
expiration of the current deadline. Specifying a deadline less than the period
constrains execution of all the members of the group to the beginning of each
period. If null, the default value is new instance of RelativeTime (period) .
overrunHandler This handler is invoked if any schedulable object member
of this processing group attempts to use processor time beyond the group’s
budget. If null, no application async event handler is fired on the overrun
condition.

missHandler This handler is invoked if the logical server is still executing after
the deadline has passed. If null, no application async event handler is fired
on the deadline miss condition.

Throws

Lllegal ArgumentException when the period is null or its time value is not
greater than zero, if cost is null, or if the time value of cost is less than zero,
if start is an instance of RelativeTime and its value is negative, or if the time
value of deadline is not greater than zero and less than or equal to the period.
If the implementation does not support processing group deadline less than
period, deadline less than period will cause I1legalArgumentException to
be thrown.

IllegalAssignmentError when start, period, cost, deadline, overrunHan-
dler or missHandler cannot be stored in this.

Create a ProcessingGroupParameters object.

6.5.7.3 Methods

6.5.7.3.1 clone

Signature

public
java.lang.0bject clone()

Return a clone of this. This method should behave effectively as if it constructed
a new object with clones of the high-resolution time values of this.

e The new object is in the current allocation context.
e clone does not copy any associations from this and it does not implicitly

bind the new object to a SO.

6.5. CLASSES 153

e The new object has clones of all high-resolution time values (deep copy).
e References to event handlers are copied (shallow copy.)

Available since RTSJ version RTSJ 1.0.1

6.5.7.3.2 getCost

Signature

public

javax.realtime.RelativeTime getCost()
Returns

a reference to the value of cost.
Gets the value of cost.

6.5.7.3.3 getCostOverrunHandler

Signature
public
javax.realtime.AsyncEventHandler getCostOverrunHandler ()

Returns
A reference to an instance of [AsyncEventHandler”| that is cost overrun han-
dler of this.

Gets the cost overrun handler.

6.5.7.3.4 getDeadline

Signature
public
javax.realtime.RelativeTime getDeadline()
Returns
A reference to an instance of RelativeTimeP? that is the deadline of this.

Gets the value of deadline.

6.5.7.3.5 getDeadlineMissHandler

Signature
public

93Section [8.6.4
94Gection [9.5.4

154 CHAPTER 6. SCHEDULING

javax.realtime.AsyncEventHandler getDeadlineMissHandler ()

Returns
A reference to an instance of [AsyncEventHandlerf”that is deadline miss han-
dler of this.

Gets the deadline miss handler.

6.5.7.3.6 getPeriod

Signature

public
javax.realtime.RelativeTime getPeriod()

Returns
A reference to an instance of RelativeTime®| that represents the value of
period.

Gets the value of period.

6.5.7.3.7 getStart

Signature

public
javax.realtime.HighResolutionTime getStart()

Returns
A reference to an instance of [HighResolutionTime''| that represents the value
of start.
Gets the value of start. This is the value that was specified in the constructor or
by setStart (), not the actual absolute time the corresponding to the start of the
processing group.

6.5.7.3.8 setCost(RelativeTime)

Signature

public
void setCost(RelativeTime cost)

Parameters
cost The new value for cost. If null, an exception is thrown.
Throws
lllegal ArgumentException when cost is null or its time value is less than zero.

95Section [8.6.4
96Section [9.5.4
97Section [9.5.3

6.5. CLASSES 155

IllegalAssignmentFError when cost cannot be stored in this.
Sets the value of cost.

6.5.7.3.9 setCostOverrunHandler(AsyncEventHandler)

Signature

public
void setCostOverrunHandler (AsyncEventHandler handler)

Parameters
handler This handler is invoked if the run () method of and of the the schedul-
able objects attempt to execute for more than cost time units in any period.
If null, no handler is attached, and any previous handler is removed.
Throws
IllegalAssignmentError when handler cannot be stored in this.
Sets the cost overrun handler.

6.5.7.3.10 setDeadline(RelativeTime)

Signature

public
void setDeadline(RelativeTime deadline)

Parameters
deadline The new value for deadline. If null, the default value is new in-
stance of RelativeTime (period) .

Throws
lllegal ArgumentException when deadline has a value less than zero or greater
than the period. Unless the implementation supports deadline less than period
in processing groups, I1legalArgumentException is also when deadline is
less than the period.
Illegal AssignmentError when deadline cannot be stored in this.

Sets the value of deadline.

6.5.7.3.11 setDeadlineMissHandler(AsyncEventHandler)

Signature

public
void setDeadlineMissHandler (AsyncEventHandler handler)

Parameters
handler This handler is invoked if the run() method of any of the schedulable
objects still expect to execute after the deadline has passed. If null, no
handler is attached, and any previous handler is removed.

156 CHAPTER 6. SCHEDULING

Throws
LllegalAssignmentError when handler cannot be stored in this.
Sets the deadline miss handler.

6.5.7.3.12 setPeriod(RelativeTime)

Signature

public
void setPeriod(RelativeTime period)

Parameters
period The new value for period. There is no default value. If period is null
an exception is thrown.

Throws
Lllegal ArgumentException when period is null, or its time value is not greater
than zero. If the implementation does not support processing group deadline
less than period, and period is not equal to the current value of the processing
group’s deadline, the deadline is set to a clone of period created in the same
memory area as period.
lllegalAssignmentFError when period cannot be stored in this.

Sets the value of period.

6.5.7.3.13 setStart(HighResolutionTime)

Signature

public
void setStart(HighResolutionTime start)

Parameters
start The new value for start. If null, the default value is a new instance of
RelativeTime(0,0).

Throws
lllegalAssignmentError when start cannot be stored in this.
LllegalArgumentException when start is a relative time value and less than
Zero.

Sets the value of start. If the processing group is already started this method alters

the value of this object’s start time property, but has no other effect.

6.5.8 ReleaseParameters

Inheritance

6.5. CLASSES 157

java.lang.Object
avax.realtime.ReleaseParameters|

Interfaces

Cloneable

Serializable

The top-level class for release characteristics of schedulable objects. When a ref-
erence to a ReleaseParameters object is given as a parameter to a constructor of
a schedulable object, the ReleaseParameters object becomes bound to the object
being created. Changes to the values in the ReleaseParameters object affect the
constructed object. If given to more than one constructor, then changes to the val-
ues in the ReleaseParameters object affect all of the associated objects. Note that
this is a one-to-many relationship and not a many-to-many. Only changes to an
ReleaseParameters object caused by methods on that object cause the change to
propagate to all schedulable objects using the object. For instance, invoking set-
Deadline on a ReleaseParameters instance will make the change, and then notify
that the scheduler that the object has been changed. At that point the object is re-
considered for every SO that uses it. Invoking a method on the RelativeTime object
that is the deadline for this object may change the time value but it does not pass the
new time value to the scheduler at that time. Even though the changed time value
is referenced by ReleaseParameters objects, it will not change the behavior of the
SOs that use the parameter object until a setter method on the ReleaseParameters
object is invoked, or the parameter object is used in setReleaseParameters() or
a constructor for a schedulable object.

Release parameters use [HighResolutionTime®| values for blocking time, cost,
and deadline. Since the times are expressed as a HighResolutionTimel’| values,
these values use accurate timers with nanosecond granularity. The actual resolution
available and even the quantity the timers measure depend on the clock associated
with each time value.

The implementation must use modified copy semantics for each
parameter value. The value of each time object should be treated as
if it were copied at the time it is passed to the parameter object, but the object
reference must also be retained. For instance, the value returned by getCost()
must be the same object passed in by setCost(), but any changes made to the time
value of the cost must not take effect in the associated ReleaseParameters instance
unless they are passed to the parameter object again, e.g. with a new invocation of
setCost.

98Section [9.5.3
99Section [9.5.3
100Gection [9.5.3

158 CHAPTER 6. SCHEDULING

Attribute Default Value
blocking new RelativeTime(0,0)
cost new RelativeTime(0,0)
deadline no default
overrunHandler None
missHandler None

Caution: This class is explicitly unsafe in multithreaded situations when it is
being changed. No synchronization is done. It is assumed that users of this class
who are mutating instances will be doing their own synchronization at a higher level.

Caution: The cost parameter time should be considered to be measured against
the target platform.

Note: Cost measurement and enforcement is an optional facility for implemen-
tations of the RTSJ.

6.5.8.1 Fields

6.5.8.1.1 serialVersionUID
private static final serialVersionUID

6.5.8.2 Constructors

6.5.8.2.1 ReleaseParameters

Signature

protected
ReleaseParameters()

Create a new instance of ReleaseParameters. This constructor creates a default
ReleaseParameters object, i.e., it is equivalent to ReleaseParameters(null, null,
null, null).

6.5. CLASSES 159

6.5.8.2.2 ReleaseParameters(RelativeTime, AsyncEventHandler)

Signature

protected
ReleaseParameters(RelativeTime deadline, AsyncEventHandler missHandler)

Create a new instance of ReleaseParameters with the given parameter values.
* This constructor is equivalent to ReleaseParameters(null, deadline, null,
missHandler) .

Available since RTSJ version RTSJ 2.0

6.5.8.2.3 ReleaseParameters(RelativeTime, RelativeTime, AsyncEvent-
Handler, AsyncEventHandler)

Signature

protected
ReleaseParameters(RelativeTime cost, RelativeTime deadline, AsyncEventHandler

Parameters
cost - Processing time units per release. On implementations which can mea-
sure the amount of time a schedulable object is executed, If null, the default
value is a new instance of RelativeTime(0,0).
deadline - The latest permissible completion time measured from the release
time of the associated invocation of the schedulable object. There is no default
for deadline in this class. The default must be determined by the subclasses.
overrunHandler - This handler is invoked if an invocation of the schedulable
object exceeds cost. In the minimum implementation overrunHandler is ig-
nored. If null, no application event handler is executed on cost overrun.
missHandler - This handler is invoked if the run() method of the schedulable
object is still executing after the deadline has passed. Although minimum
implementations do not consider deadlines in feasibility calculations, they must
recognize variable deadlines and invoke the miss handler as appropriate. If null,
no application event handler is executed on the miss deadline condition.

Throws
java.lang.lllegal Argument Exception - when the time value of cost is less than
zero, or the time value of deadline is less than or equal to zero or the clock
associated with the cost parameters is not the real-time clock.

160 CHAPTER 6. SCHEDULING

lllegalAssignmentError - when cost, deadline, overrunHandler, or missHandler
cannot be stored in this.
Create a new instance of ReleaseParameters with the given parameter values.

6.5.8.3 Methods

6.5.8.3.1 clone

Signature

public
java.lang.0bject clone()

Return a clone of this. This method should behave effectively as if it constructed
a new object with clones of the high-resolution time values of this.
e The new object is in the current allocation context.
e clone does not copy any associations from this and it does not implicitly
bind the new object to a SO.
e The new object has clones of all high-resolution time values (deep copy).
e References to event handlers are copied (shallow copy.)

Available since RTSJ version RTSJ 1.0.1

6.5.8.3.2 getCost

Signature

public
javax.realtime.RelativeTime getCost()

Returns
A reference to cost.
Gets a reference to the cost.

6.5.8.3.3 getCostOverrunHandler

Signature

public
javax.realtime.AsyncEventHandler getCostOverrunHandler()

Returns
A reference to the associated cost overrun handler.

6.5. CLASSES 161

Gets a reference to the cost overrun handler.

6.5.8.3.4 getDeadline

Signature

public
javax.realtime.RelativeTime getDeadline()

Returns
A reference to deadline.
Gets a reference to the deadline.

6.5.8.3.5 getDeadlineMissHandler

Signature

public
javax.realtime.AsyncEventHandler getDeadlineMissHandler ()

Returns
A reference to the deadline miss handler.
Gets a reference to the deadline miss handler.

6.5.8.3.6 setCost(RelativeTime)

Signature

public
void setCost(RelativeTime cost)

Parameters
cost Processing time units per release. On implementations which can measure
the amount of time a schedulable object is executed, this value is the maximum
amount of time a schedulable object receives per release. On implementations
which cannot measure execution time, this value is used as a hint to the
feasibility algorithm. On such systems it is not possible to determine when
any particular object exceeds cost. If null, the default value is a new instance
of RelativeTime(0,0).

Throws
Illegal ArgumentException when the time value of cost is less than zero, or the
clock associated with the cost parameters is not the real-time clock.
lllegal AssignmentFError when cost cannot be stored in this.

Sets the cost value.

When this parameter object is associated with any schedulable object (by be-
ing passed through the schedulable object’s constructor or set with a method such

162 CHAPTER 6. SCHEDULING

as RealtimeThread.setReleaseParameters (ReleaseParameters)f' | the cost of
those schedulable objects is altered as specified by each schedulable object’s respec-
tive scheduler.

6.5.8.3.7 setCostOverrunHandler(AsyncEventHandler)

Signature

public
void setCostOverrunHandler (AsyncEventHandler handler)

Parameters
handler This handler is invoked if an invocation of the schedulable object
attempts to exceed cost time units in a release. A null value of handler
signifies that no cost overrun handler should be used.

Throws
lllegalAssignmentError when handler cannot be stored in this.

Sets the cost overrun handler.

If this parameter object is associated with any schedulable object (by being
passed through the schedulable object’s constructor or set with a method such as
|RealtimeThread.setReleaseParameters(ReleaseParameters)M the cost over-
run handler of those schedulable objects is altered as specified by each schedulable
object’s respective scheduler.

6.5.8.3.8 setDeadline(RelativeTime)

Signature

public
void setDeadline(RelativeTime deadline)

Parameters
deadline The latest permissible completion time measured from the release
time of the associated invocation of the schedulable object. The default value
of the deadline must be controlled by the classes that extend ReleaseParam-
eters.

Throws
LllegalArgumentException when deadline is null, the time value of deadline
is less than or equal to zero, or if the new value of this deadline is incompatible
with the scheduler for any associated schedulable object.
lllegalAssignmentFError when deadline cannot be stored in this.

101Gection |5.4.2.2.26
102Gection [5.4.2.2.26

6.5. CLASSES 163

Sets the deadline value.

If this parameter object is associated with any schedulable object (by being
passed through the schedulable object’s constructor or set with a method such as
RealtimeThread.setReleaseParameters(ReleaseParameters)| ") the deadline of
those schedulable objects is altered as specified by each schedulable object’s respec-
tive scheduler.

6.5.8.3.9 setDeadlineMissHandler(AsyncEventHandler)

Signature
public
void setDeadlineMissHandler (AsyncEventHandler handler)

Parameters
handler This handler is invoked if any release of the schedulable object fails to
complete before the deadline passes. Although minimum implementations do
not consider deadlines in feasibility calculations, they must recognize variable
deadlines and invoke the miss handler as appropriate. A null value of handler
signifies that no deadline miss handler should be used.

Throws
lllegal AssignmentError when handler cannot be stored in this.

Sets the deadline miss handler.

If this parameter object is associated with any schedulable object (by being
passed through the schedulable object’s constructor or set with a method such as
RealtimeThread.setReleaseParameters(ReleaseParameters)| ") the deadline miss
handler of those schedulable objects is altered as specified by each schedulable ob-
ject’s respective scheduler.

6.5.9 Scheduler

Inheritance

java.lang.Object
avax.realtime.Scheduler|

An instance of Scheduler manages the execution of schedulable objects.
Subclasses of Scheduler are used for alternative scheduling policies and should

define an instance() class method to return the default instance of the subclass.

The name of the subclass should be descriptive of the policy, allowing applications to

103Gection |5.4.2.2.26
104Gection |5.4.2.2.26

164 CHAPTER 6. SCHEDULING

deduce the policy available for the scheduler obtained via[Scheduler . getDefaultScheduler]"
(e.g., EDFScheduler).

6.5.9.1 Constructors

6.5.9.1.1 Scheduler

Signature

protected
Scheduler ()

Create an instance of Scheduler.

6.5.9.2 Methods

6.5.9.2.1 getDefaultScheduler

Signature

public static
javax.realtime.Scheduler getDefaultScheduler()

Returns
A reference to the default scheduler.
Gets a reference to the default scheduler.

6.5.9.2.2 setDefaultScheduler(Scheduler)

Signature

public static
void setDefaultScheduler(Scheduler scheduler)

Parameters
scheduler The Scheduler that becomes the default scheduler assigned to new
schedulable objects created by Java threads. If null nothing happens.

105Gection

6.5. CLASSES 165

Throws

SecurityFException when the caller is not permitted to set the default scheduler.
Sets the default scheduler. This is the scheduler given to instances of schedulable
objects when they are constructed by a Java thread. The default scheduler is set to
the required [PriorityScheduler] | at startup.

6.5.9.2.3 fireSchedulable(Schedulable)

Signature

public abstract
void fireSchedulable(Schedulable schedulable)

Parameters
schedulable The schedulable object to make active. When null, nothing hap-
pens.

Throws
UnsupportedOperationException when the scheduler cannot release schedul-
able for execution.

Trigger the execution of a schedulable object (like an [AsyncEventHandler]).

6.5.9.2.4 getPolicyName

Signature

public abstract
java.lang.String getPolicyName ()

Returns

A name object which is the name of the scheduling policy used by this.
Gets a string representing the policy of this. The string value need not be in-
terned, but it must be created in a memory area that does not cause an illegal
assignment error if stored in the current allocation context and does not cause a
IMemoryAccessErrorf°| when accessed.

6.5.9.2.5 inSchedulableExecutionContext

Signature

public static
boolean inSchedulableExecutionContext ()

Returns

106Gaction 16.5.6
107Gection 18.6.4]

108Gection [14.4.4

166 CHAPTER 6. SCHEDULING

true when yes and false otherwise.
Determine whether the current calling context is a [Schedulablel "} [Realtime-|
Thread "’| or |AbstractAsyncEventHandler| |

Available since RTSJ version RTSJ 2.0

6.5.9.2.6 getCurrentSchedulable

Signature

public static
javax.realtime.Schedulable getCurrentSchedulable()

Throws
ClassCastException when the caller is not a[Schedulablef !4
Returns
the current [Schedulablel’’|
Get the current execution context when called from a [Schedulabld''?| execution
context.

Available since RTSJ version RTSJ 2.0

6.5.10 SchedulingParameters

Inheritance

java.lang.Object
[avax.realtime.SchedulingParameters|

Interfaces
Cloneable
Serializable
Subclasses of SchedulingParameters (PriorityParameters| | |ImportanceParam-

and any others defined for particular schedulers) provide the parameters

109Gection [6.4.1
110Section [5.4.2
H1Gection [8.6.2
H2Gection [6.4.1
H13Gection [6.4.1
H4Gection [6.4.1
5G8ection [6.5.5
16Gection [6.5.3

6.5. CLASSES 167

to be used by the|Schedulerf''’| Changes to the values in a parameters object affects
the scheduling behavior of all the [Schedulablef | objects to which it is bound.

Caution: Subclasses of this class are explicitly unsafe in multithreaded situa-
tions when they are being changed. No synchronization is done. It is assumed that
users of this class who are mutating instances will be doing their own synchronization
at a higher level.

6.5.10.1 Fields

6.5.10.1.1 serialVersionUID
private static final serialVersionUID

6.5.10.2 Constructors

6.5.10.2.1 SchedulingParameters
Signature

protected
SchedulingParameters ()

Create a new instance of SchedulingParameters.

Available since RTSJ version RTSJ 1.0.1

6.5.10.3 Methods

17Section 16.5.9
118Gection [6.4. 1]

168 CHAPTER 6. SCHEDULING

6.5.10.3.1 clone

Signature
public
java.lang.Object clone()
Return a clone of this. This method should behave effectively as if it constructed
a new object with clones of the high-resolution time values of this.
e The new object is in the current allocation context.
e clone does not copy any associations from this and it does not implicitly
bind the new object to a SO.
e The new object has clones of all high-resolution time values (deep copy).
e References to event handlers are copied (shallow copy.)

Available since RTSJ version RTSJ 1.0.1

6.5.11 SporadicParameters

Inheritance

java.lang.Object
[javax.realtime.ReleaseParameters|
avax.realtime. AperiodicParameters|
avax.realtime.SporadicParameters|

A notice to the scheduler that the associated schedulable object’s run method will
be released aperiodically but with a minimum time between releases.

When a reference to a SporadicParameters object is given as a parameter to
a schedulable object’s constructor or passed as an argument to one of the schedul-
able object’s setter methods, the SporadicParameters object becomes the release
parameters object bound to that schedulable object. Changes to the values in the
SporadicParameters object affect that schedulable object. If bound to more than
one schedulable object then changes to the values in the SporadicParameters ob-
ject affect all of the associated objects. Note that this is a one-to-many relationship
and not a many-to-many.

The implementation must use modified copy semantics for each
parameter value. The value of each time object should be treated as
if it were copied at the time it is passed to the parameter object, but the object
reference must also be retained. Only changes to a SporadicParameters object
caused by methods on that object cause the change to propagate to all schedulable

19Gection m

6.5. CLASSES 169

objects using the parameter object. For instance, calling setCost on a Sporadic-
Parameters object will make the change, then notify that the scheduler that the
parameter object has changed. At that point the object is reconsidered for every SO
that uses it. Invoking a method on the RelativeTime object that is the cost for this
object may change the cost but it does not pass the change to the scheduler at that
time. That change must not change the behavior of the SOs that use the parameter
object until a setter method on the SporadicParameters object is invoked, or the
parameter object is used in setReleaseParameters() or a constructor for an SO.

Caution: This class is explicitly unsafe in multithreaded situations when it is
being changed. No synchronization is done. It is assumed that users of this class
who are mutating instances will be doing their own synchronization at a higher level.

This class allows the application to specify one of four possible behaviors that
indicate what to do if an arrival occurs that is closer in time to the previous arrival
than the value given in this class as minimum interarrival time, what to do if, for
any reason, the queue overflows, and the initial size of the queue.

Attribute Value
minlnterarrival time No default. A value must be supplied
cost new RelativeTime(0,0)
deadline new RelativeTime(mit)
overrunHandler None
missHandler None
MIT violation policy SAVE
Arrival queue overflow policy SAVE
Initial arrival queue length 0

6.5.11.1 Fields

6.5.11.1.1 mitViolationExcept

public static final mitViolationExcept
Represents the “EXCEPT” policy for dealing with minimum interarrival time vi-
olations. Under this policy, if an arrival time for any instance of [Schedulablef~"|

which has this as its instance of ReleaseParameters®!| occurs at a time less then

120Gection 16.4.1
121Gection [6.5.8

170 CHAPTER 6. SCHEDULING

the minimum interarrival time defined here then the fire() method shall throw
IMITViolationExceptionf? Any other associated semantics are governed by the
schedulers for the schedulable objects using these sporadic parameters. If the arrival
time is a result of a happening to which the instance of |[AsyncEventHandler|*’| is
bound then the arrival time is ignored.

6.5.11.1.2 mitViolationlgnore
public static final mitViolationIgnore

Represents the “IGNORE” policy for dealing with minimum interarrival time vi-
olations. Under this policy, if an arrival time for any instance of [Schedulablef |
which has this as its instance of ReleaseParameters=’ occurs at a time less then
the minimum interarrival time defined here then the new arrival time is ignored.
Any other associated semantics are governed by the schedulers for the schedulable
objects using these sporadic parameters.

6.5.11.1.3 mitViolationSave

public static final mitViolationSave
Represents the “SAVE” policy for dealing with minimum interarrival time violations.
Under this policy the arrival time for any instance of|Schedulablef “®| which has this
as its instance of [ReleaseParameters|“'|is not compared to the specified minimum
interarrival time. Any other associated semantics are governed by the schedulers for
the schedulable objects using these sporadic parameters.

6.5.11.1.4 mitViolationReplace
public static final mitViolationReplace

Represents the “REPLACE” policy for dealing with minimum interarrival time vi-
olations. Under this policy if an arrival time for any instance of [Schedulablef*|
which has this as its instance of ReleaseParameters’ occurs at a time less then
the minimum interarrival time defined here then the information for this arrival
replaces a previous arrival. Any other associated semantics are governed by the
schedulers for the schedulable objects using these sporadic parameters.

122Gection 14.3.9|
123Gection |8.6.4
124GQ6ction [6.4.1
125Gection [6.5.8
126GQection [6.4.1
127Gection [6.5.8
128Gection [6.4.1
129Gection [6.5.8

6.5. CLASSES 171

6.5.11.2 Constructors

6.5.11.2.1 SporadicParameters(RelativeTime)

Signature
public

SporadicParameters(RelativeTime minInterarrival)

Create a SporadicParameters object. This constructor is equivalent to:
SporadicParameters(minInterarrival, null, null, null, null, null)

Available since RTSJ version RTSJ 1.0.1

6.5.11.2.2 SporadicParameters(RelativeTime, RelativeTime)

Signature
public

SporadicParameters(RelativeTime minInterarrival, RelativeTime deadline)

Create a SporadicParameters object. This constructor is equivalent to:
SporadicParameters(minInterarrival, null, null, null, null, null)

Available since RTSJ version RTSJ 2.0

6.5.11.2.3 SporadicParameters(RelativeTime, RelativeTime, AsyncEvent-
Handler)

Signature

public
SporadicParameters(RelativeTime minInterarrival, RelativeTime deadline, Asyncl

172 CHAPTER 6. SCHEDULING

Create a SporadicParameters object. This constructor is equivalent to:
SporadicParameters(minInterarrival, null, deadline, null, missHandler)

Available since RTSJ version RTSJ 2.0

6.5.11.2.4 SporadicParameters(RelativeTime, RelativeTime, RelativeTime,
AsyncEventHandler, AsyncEventHandler)

Signature

public
SporadicParameters(RelativeTime minInterarrival, RelativeTime cost, Rel

Parameters
minInterarrival The release times of the schedulable object will occur no closer
than this interval. This time object is treated as if it were copied. Changes
tominInterarrival will not effect the SporadicParameters object. There is
no default value. If minInterarrival is null an illegal argument exception
is thrown.
cost Processing time per release. On implementations which can measure the
amount of time a schedulable object is executed, this value is the maximum
amount of time a schedulable object receives per release. If null, the default
value is a new instance of RelativeTime(0,0).
deadline The latest permissible completion time measured from the release
time of the associated invocation of the schedulable object. For a minimum
implementation for purposes of feasibility analysis, the deadline is equal to the
minimum interarrival interval. Other implementations may use this parameter
to compute execution eligibility. If null, the default value is a new instance
of RelativeTime(mit).
overrunHandler This handler is invoked if an invocation of the schedulable
object exceeds cost. Not required for minimum implementation. If null no
overrun handler will be used.
missHandler This handler is invoked if the run() method of the schedulable
object is still executing after the deadline has passed. Although minimum
implementations do not consider deadlines in feasibility calculations, they must
recognize variable deadlines and invoke the miss handler as appropriate. If
null, no deadline miss handler will be used.

Throws
LllegalArgumentException when minInterarrival is null or its time value is
not greater than zero, or the time value of cost is less than zero, or the time

6.5. CLASSES 173

value of deadline is not greater than zero, or if the clocks associated with
deadline and minInterarrival parameters are not identical.
IllegalAssignmentError when minInterarrival, cost, deadline, overrun-
Handler or missHandler cannot be stored in this.

Create a SporadicParameters object.

Available since RTSJ version RTSJ 2.0

6.5.11.3 Methods

6.5.11.3.1 setMitViolationBehavior(String)

Signature

public
void setMitViolationBehavior(String behavior)

Parameters
behavior A string representing the behavior.
Throws
Illegal ArgumentException when behavior is not one of the final MIT viola-
tion behavior values defined in this class.
Sets the behavior of the arrival time queue in the case where the new arrival time is
closer to the previous arrival time than the minimum interarrival time given in this.
Values of behavior are compared using reference equality (==) not value equal-
ity (equalsQ)).

6.5.11.3.2 getMitViolationBehavior

Signature

public
java.lang.String getMitViolationBehavior()

Returns
The minimum interarrival time violation behavior as a string.

Gets the arrival time queue behavior in the event of a minimum interarrival time
violation.

174 CHAPTER 6. SCHEDULING

6.5.11.3.3 getMinimumlInterarrival

Signature

public

javax.realtime.RelativeTime getMinimumInterarrival()
Returns

The minimum interarrival time.
Gets the minimum interarrival time.

6.5.11.3.4 setMinimumlInterarrival(RelativeTime)

Signature
public
void setMinimumInterarrival (RelativeTime minimum)

Parameters
minimum The release times of the schedulable object will occur no closer than
this interval.

Throws
Lllegal ArgumentException when minimum is null or its time value is not greater
than zero.
LllegalAssignmentError when minimum cannot be stored in this.

Set the minimum interarrival time.

6.6 Rationale

As specified, the required semantics and requirements of this section establish a
scheduling policy that is very similar to the scheduling policies found on the vast
majority of realtime operating systems and kernels in commercial use today. The
semantics and requirements for the base scheduler accommodate existing practice,
which is a stated goal of the effort.

There is an important division between priority schedulers that force periodic
context switching between tasks at the same priority, and those that do not cause
these context switches. By not specifying time slicing[I] behavior this specification
calls for the latter type of priority scheduler. In POSIX terms, SCHED FIFQO meets
the RTSJ requirements for the base scheduler, but SCHED RR does not meet those
requirements.

Although a system may not implement the first release (start) of a schedulable
object as unblocking that schedulable object, under the base scheduler those seman-
tics apply; i.e., the schedulable object is added to the tail of the queue for its active
priority.

6.6. RATIONALE 175

Some research shows that, given a set of reasonable common assumptions, 32 dis-
tinct priority levels are a reasonable choice for close-to-optimal scheduling efficiency
when using the rate-monotonic priority assignment algorithm on a single processor
system (256 priority levels provide better efficiency). This specification requires at
least 28 distinct priority levels as a compromise noting that implementations of this
specification will exist on systems with logic executing outside of the Java Virtual
Machine and may need priorities above, below, or both for system activities.

The default behavior for implementations that support cost monitoring and en-
forcement is that a schedulable object receives no more than cost units of CPU time
during each release. The programmer must explicitly change the cost attribute to
override the scheduler. The RTSJ allows schedulable objects to self suspend during
a release, in addition to that which might be necessary to acquire a lock. These self
suspensions must be time bounded. Any self suspension which is not time bounded
may undermine the cost enforcement model specified in this document, as it may
result in a schedulable object suspending beyond its next release event. This can re-
sult in more time being allocated than any associated schedulability analysis might
assume. See Dos Santos and Wellings for a full discussion on the problem [4].

Cost enforcement may be deferred while the overrun schedulable object holds
locks that are out of application control, such as locks used to protect garbage col-
lection. Applications should include the resulting jitter in any analysis that depends
on cost enforcement.

When a schedulable object is enforced because of cost overrun in a processing
group the enforced priority is used for scheduling instead of the schedulable object’s
base priority. The enforced priority’s application is limited. The enforced priority is
not returned as the schedulable object’s priority from methods such as getPriority(),
and the semantics of the active priority continue to operate when a schedulable
object is enforced.

6.6.1 Multiprocessor Support

The support that the RTSJ provides for multiprocessor systems is primarily con-
strained by the support it can expect from the underlying operating system. The
following have had the most impact on the level of support that has been specified.
e The notion of processor affinity is common across operating systems and has
become the accepted way to specify the constraints on which processor a thread

can execute. In some sense, processor affinities can be viewed as additional
release or scheduling parameters. However, to add them to the parameter
classes requires the support to be distributed throughout the specification

with a proliferation of new constructor methods. To avoid this, support is
grouped together within the Affinity class. The class also provides the addi-

tion of processor affinity support to Java threads without modifying the thread

176 CHAPTER 6. SCHEDULING

object’s visible API.

e The range of processors on which global scheduling is possible is dictated by
the operating system. For SMP architectures, global scheduling across all the
processors in the system is typically supported. However, an application and
an operator can constrain threads and processes to execute only within a sub-
set of the processors. As the number of processors increase, the scalability
of global scheduling is called into question. Hence, for NUMA architectures
some partitioning of the processors is likely to performed by the OS. Hence,
global scheduling across all processors will not be possible in these systems.
For these reasons, the RTSJ supports an array of predefined affinities. These
are implementation-defined. They can be used either to reflect the scheduling
arrangement of the underlying OS or they can be used by the system designer
to impose defaults for, say, Java threads, non-heap realtime schedulable ob-
jects etc. A program is only allowed to dynamically create new affinities with
cardinality of one. This restriction reflects the concern that not all operating
systems will support multiprocessor affinities.

e Many OSs give system operators command-level dynamic control over the set
of processors allocated to a processes. Consequently, the realtime JVM has
no control over whether processors are dynamically added or removed from
its OS process. Predictability is a prime concern of the RTSJ. Clearly, dy-
namic changes to the allocated processors will have a dramatic, and possibly
catastrophic, effect on the ability of the program to meet timing requirements.
Hence, the RTSJ assumes that the processor set allocated to the RTSJ process
does not change during its execution. If a system is capable of such manipu-
lations, it should not exercise in on RTSJ processes

6.6.2 Impact of Clock Granularity

All time-triggered computation can suffer from release jitter. This is defined to be
the variation in the actual time the computation becomes available for execution
from its scheduled release time. The amount of release jitter depends on two fac-
tors. The first is the granularity of the clock/timer used to trigger the release. For
example, a periodic event handler that is due to be released at absolute time T will
actually be release at time T+ §. § is the difference between T' and the first time
the timer clock advances to T'0, where T0 >= T'. The upper bound of ¢ is the value
returned from calling the getResolution method of the associated clock. It is for
this reason that the implementation of release times for periodic activities must use
absolute rather than relative time values, in order to avoid the drift accumulating.

The second contribution to release jitter is also related to the clock/timer. It
is the duration of interval between 70 being signaled by the clock/timer and the
time this event is noticed by the underlying operating system or platform (perhaps

6.6. RATIONALE 177

because interrupts have been disabled). A compliant implementation of SCJ should
document the maximum value of § for the realtime clock.

6.6.3 Deadline Miss Detection

Although RTSJ supports deadline miss detection, it is important to understand the
intrinsic limitations of the facility. The SCJ facility is supported using a time-
triggered event. All time-triggered computation can suffer from release jitter. Hence,
any deadline miss handler may not be released until sometime after the deadline has
expired. The handlers actual execution will depend on its priority relative to other
schedulable objects.

A related limitation is that a deadline can be missed but not detected. This can
occur when the deadline has been set at a smaller granularity than the detecting
timer. Consider an absolute deadline of D. Suppose that the next absolute time that
the timer can recognize is D + ¢. If the associate thread finishes after D but before
D + 9, it will have missed its deadline, but this miss will have been undetected.

A third limitation is due to the inherent race condition that is present when
checking for deadline misses. A deadline miss is defined to occur if an SO has not
completed the computation associated with its release before its deadline. This
completion event is signalled in the application code by the return of the han-
dleAsyncEvent method or a call to waitForNextPeriod etc. When this occurs, the
infrastructure reschedules/cancels the timing event that signals the miss of a dead-
line. This is clearly a race condition. The timer event could fire between the last
statement the completion event and the rescheduling/canceling of the timer event.
Hence a deadline miss could be signalled when arguably the application had per-
formed all of its computation.

178 CHAPTER 6. SCHEDULING

Chapter 7

Synchronization

(Updated by Andy 8 Feb, 2012)

7.1 Overview

This section describes classes that specifically manage synchronization. These classes:

e Allow the setting of a priority inversion control policy either as the default or

for specific objects

e Allow wait-free communication between schedulable objects (especially instances

of NoHeapRealtimeThread) and regular Java threads.
This specification strengthens the semantics of Java synchronized code by mandat-
ing monitor execution eligibility control, commonly referred to as priority inversion
control. The MonitorControl class is defined as the superclass of all such execution
eligibility control algorithms. Its subclasses PriorityInheritance (required) and
PriorityCeilingEmulation (optional) avoid unbounded priority inversions, which
would be unacceptable in realtime systems.

The classes in this section establish a framework for priority inversion manage-
ment that applies to priority-oriented schedulers in general, and a specific set of
requirements for the base priority scheduler.

The wait-free queue classes provide safe, concurrent access to data shared be-
tween instances of NoHeapRealtimeThread and schedulable objects subject to garbage
collection delays.

7.2 Semantics and Requirements

This list establishes the semantics and requirements that are applicable across the
classes of this section. Semantics that apply to particular classes, constructors, meth-

179

180

CHAPTER 7. SYNCHRONIZATION

ods, and fields will be found in the class description and the constructor, method,
and field detail sections.

Terminology: If an object obj has been assigned (either by default or via an
explicit method call) the MonitorControlPolicy mcp, then obj is said to be
governed by mcp.

The initial default monitor control policy shall be PriorityInheritance. The
default policy can be altered by using the setMonitorControl () method.
Notwithstanding the preceding rule, an RTSJ implementation may allow the
program to establish a different initial default monitor control policy at JVM
startup. The program can query the initial default monitor control policy via
the method RealtimeSystem.getInitialMonitorControl.

The PriorityCeilingEmulation monitor control policy is optional, since it
is not widely supported by current RTOSes.

An implementation that provides any additional MonitorControl subclasses
must document their effects, particularly with respect to priority inversion
control. X

An object’s monitor control policy affects any entity that attempts to lock the
object; i.e., regular Java threads as well as schedulable objects.

When a thread or schedulable object enters synchronized code, the target ob-
ject’s monitor control policy must be supported by the thread or schedulable
object’s scheduler; otherwise an IllegalThreadStateException is thrown.
An implementation that defines a new MonitorControl subclass must docu-
ment which (if any) schedulers do not support this policy.

7.2.1 Semantics for the Base Priority Scheduler

The following list defines the main terms and establishes the general semantics and
requirements that apply to threads and schedulable objects managed by the base
priority scheduler when they synchronize on objects governed by monitor control
policies defined in this section.

Each thread or schedulable object has a base priority and an active priority.
A thread or schedulable object that holds a lock on a PCE-governed object
also has a ceiling priority.

The base priority for a thread or schedulable object t is initially the priority
that t has when it is created. The base priority is updated (immediately) as
an effect of invoking any of the following methods:

— pparams.setPriority(prio) if t is a schedulable object with pparams
as its SchedulingParameters, where pparams is an instance of Priori-
tyParameters; the new base priority is prio

— t.setSchedulingParameters(pparams) if t is a schedulable object and
pparams is an instance of PriorityParameters; the new base priority is

7.2. SEMANTICS AND REQUIREMENTS 181

pparams.getPriority()

— t.setPriority(prio) if t is a schedulable object, the new base priority
is prio. If it is a Java thread, the new base priority is the lesser of prio,
and the maximum priority for t’s thread group.

e When t does not hold any locks, its active priority is the same as its base
priority. In such a situation modification of the priority of t through an
invocation of any of the above priority-setting methods for t causes t to be
placed at the tail of its relevant queue (ready, blocked on a particular object,
etc.) at its new priority.

e When t holds one or more locks, then t has a set of priority sources. The
active priority for t at any point in time is the maximum of the priorities
associated with all of these sources. The priority sources resulting from the
monitor control policies defined in this section, and their associated priorities
for a schedulable object t, are as follows:

— Source: t itself Associated priority: The base priority for tNote: This
may have been changed (either synchronously or asynchronously) while
t has been holding its lock(s).

— Source: Fach object locked by t and governed by a PriorityCeilingEm-
ulation policy Associated priority: The maximum value ceil such that
ceil is the ceiling for a PriorityCeilingEmulation policy governing an
object locked by t. This value is also referred to as the ceiling priority
for t.

— Source: Fach thread or schedulable object that is attempting to synchro-
nize on an object locked by t and governed by a PriorityInheritance
policy Associated priority: The maximum active priority over all such
threads and schedulable objects Note: This rule accounts for recursive
priority inheritance.

— Source: Each thread or schedulable object that is attempting to synchro-
nize on an object locked by t and governed by a PriorityCeilingEm-
ulation policy. Associated priority: The maximum active priority over
all such threads and schedulable objects
Note: This rule, which in effect allows a PriorityCeilingEmulation
lock to behave like a PriorityInheritance lock, helps avoid unbounded
priority inversions that could otherwise occur in the presence of nested
synchronizations involving a mix of PriorityCeilingEmulation and Pri-
orityInheritance policies.

e The addition of a priority source for t either leaves t’s active priority un-
changed, or increases it. If t’s active priority is unchanged, then t’s status
in its relevant queue(s) (e.g. blocked waiting for some object) is not affected.
If t’s active priority is increased, then t is placed at the tail of the relevant
queue(s) at its new active priority level.

182 CHAPTER 7. SYNCHRONIZATION

e The removal of a priority source for t either leaves t’s active priority un-
changed, or decreases it. If t’s active priority is unchanged, then t’s status in
its relevant queue(s) (e.g. blocked waiting for some object) is not affected. If
t’s active priority is decreased and t is either ready or running, then t must
be placed at the head of the ready queue(s) at its new active priority level,
if the implementation is supporting PriorityCeilingEmulation. If the im-
plementation is not supporting PriorityCeilingEmulation then t should be
placed at the head of the ready queue(s) at its new active priority (Note the
”should”: this behavior is optional.) If PriorityCeilingEmulation is not
supported, the implementation must document the queue placement effect. If
t’s active priority is decreased and t is blocked, then t is placed in the corre-
sponding queue(s) at its new active priority level. Its position in the queue(s)
is implementation defined, but placement at the tail is recommended.

The above rules have the following consequences:

e A thread or schedulable object t’s priority sources from 4.b are added and
removed synchronously; i.e., they are established based on t’s entering or
leaving synchronized code. However, priority sources from 4.a, 4.c and 4.d
may be added and removed asynchronously, as an effect of actions by other
threads or schedulable objects.

e If a thread or schedulable object holds only one lock then, when it releases
this lock, its active priority is set to its base priority.

e A thread or schedulable object’s active priority is never less than its base
priority.

e When a thread or schedulable object blocks at a call of obj.wait () it releases
the lock on obj and hence relinquishes the priority source(s) based on obj’s
monitor control policy. The thread or schedulable object will be queued at a
new active priority that reflects the loss of these priority sources.

Since base priorities may be shared (i.e., the same PriorityParameters object
may be associated with multiple schedulable objects), a given base priority may be
the active priority for some but not all of its associated schedulable objects. It is
a consequence of other rules that, when a thread or schedulable object t attempts
to synchronize on an object obj governed by a PriorityCeilingEmulation policy
with ceiling ceil, then t’s active priority may exceed ceil but t’s base priority
must not. In contrast, once t has successfully synchronized on obj then t’s base
priority may also exceed obj’s monitor control policy’s ceiling. Note that t’s base
priority and/or obj’s monitor control policy may have been dynamically modified.

7.2.2 Requirements For Additional Schedulers

The following list establishes the semantics and requirements that apply to threads
or schedulable objects managed by a scheduler other than the base priority sched-

7.2. SEMANTICS AND REQUIREMENTS 183

uler when they synchronize on objects with monitor control policies defined in this
section.

e An implementation that defines a new Scheduler subclass must document
which (if any) monitor control policies the new scheduler does not support.

e An implementation must document how, if at all, the semantics of synchro-
nization differ from the rules defined for the default PriorityInheritance
instance. It must supply documentation for the behavior of the new scheduler
with priority inheritance (and, if it is supported, priority ceiling emulation
protocol) equivalent to the semantics for the default priority scheduler found
in the previous section.

184 CHAPTER 7. SYNCHRONIZATION

7.3 Classes

7.3.1 MonitorControl

Inheritance

java.lang.Object
[Javax.realtime.MonitorControll

Abstract superclass for all monitor control policy objects.

7.3.1.1 Constructors

7.3.1.1.1 MonitorControl

Signature

protected
MonitorControl ()

Invoked from subclass constructors.

7.3.1.2 Methods

7.3.1.2.1 getMonitorControl(Object)

Signature

public static
javax.realtime.MonitorControl getMonitorControl(Object obj)

Parameters
obj The object being queried.
Throws
LllegalArgumentFException when obj is null.
Returns
The monitor control policy of the obj parameter.
Gets the monitor control policy of the given instance of Object.

7.3. CLASSES 185
7.3.1.2.2 getMonitorControl

Signature

public static
javax.realtime.MonitorControl getMonitorControl()

Returns
The default monitor control policy object.
Gets the current default monitor control policy.

7.3.1.2.3 setMonitorControl(MonitorControl)

Signature

public static
javax.realtime.MonitorControl setMonitorControl(MonitorControl

policy)
Parameters
policy The new monitor control policy. If null nothing happens.
Throws
SecurityFxception when the caller is not permitted to alter the default monitor
control policy.
Illegal ArgumentFException when policy is not in immortal memory.
UnsupportedOperationEzception when policy is not a supported monitor con-
trol policy.
Returns
The default MonitorControl policy that was replaced.
Sets the default monitor control policy. This policy does not affect the monitor
control policy of any already created object, it will, however, govern any object
subsequently constructed, until either:
1. a new "per-object” policy is set for that object. This will alter the monitor
control policy for a single object without changing the default policy.
2. a new default policy is set.
Like the per-object method (see[setMonitorControl(Object, MonitorControl)f|
the setting of the default monitor control policy occurs immediately.

Available since RT'SJ version RTSJ 1.0.1 The return type is changed from
void to MonitorControl.

ISection

186 CHAPTER 7. SYNCHRONIZATION

7.3.1.2.4 setMonitorControl(Object, MonitorControl)

Signature

public static
javax.realtime.MonitorControl setMonitorControl(Object obj,

MonitorControl policy)
Parameters
obj The object that will be governed by the new policy.
policy The new policy for the object. If null nothing will happen.
Throws
Lllegal ArgumentFException Thrown when obj is null or policy is not in im-
mortal memory.
Unsupported Operation Ezception when policy is not a supported monitor con-
trol policy.
IllegalMonitorState Exception when the caller does not hold a lock on obj.
Returns
The current MonitorControl policy for obj, which will be replaced.
Immediately sets policy as the monitor control policy for obj.

A thread or schedulable object that is queued for the lock associated with obj,
or is in obj’s wait set, is not rechecked (e.g., for a CeilingViolationException)
under policy, either as part of the execution of setMonitorControl or when it is
awakened to (re)acquire the lock.

The thread or schedulable object invoking setMonitorControl must already
hold the lock on obj.

Available since RTSJ version RTSJ 1.0.1 The return type is changed from
void to MonitorControl.

7.3.2 PriorityCeilingEmulation

Inheritance

java.lang.Object
[javax.realtime. MonitorControl|
Javax.realtime.Priority Ceiling kmulation|

Monitor control class specifying the use of the priority ceiling emulation protocol
(also known as the "highest lockers” protocol). Each PriorityCeilingEmulation
instance is immutable; it has an associated ceiling, initialized at construction and
queryable but not updatable thereafter.

7.3. CLASSES 187

If a thread or schedulable object synchronizes on a target object governed by
a PriorityCeilingEmulation policy, then the target object becomes a priority
source for the thread or schedulable object. When the object is unlocked, it ceases
serving as a priority source for the thread or schedulable object. The practical effect
of this rule is that the thread or schedulable object’s active priority is boosted to the
policy’s ceiling when the object is locked, and is reset when the object is unlocked.
The value that it is reset to may or may not be the same as the active priority it
held when the object was locked; this depends on other factors (e.g. whether the
thread or schedulable object’s base priority was changed in the interim).

The implementation must perform the following checks when a thread or sched-
ulable object t attempts to synchronize on a target object governed by a Priori-
tyCeilingEmulation policy with ceiling ceil:

e t’s base priority does not exceed ceil

e t’s ceiling priority (if t is holding any other PriorityCeilingEmulation locks)
does not exceed ceil.

Thus for any object targetObj that will be governed by priority ceiling emulation,
the programmer needs to provide (vialMonitorControl.setMonitorControl(Object,
MonitorControl)f]) a PriorityCeilingEmulation policy whose ceiling is at least
as high as the maximum of the following values:

e the highest base priority of any thread or schedulable object that could syn-
chronize on targetObj

e the maximum ceiling priority value that any thread or schedulable object could
have when it attempts to synchronize on target0bj.

More formally:

e [f a thread or schedulable object t whose base priority is pl attempts to
synchronize on an object governed by a PriorityCeilingEmulation policy
with ceiling p2, where p1>p2, then a CeilingViolationException is thrown
int. A CeilingViolationException is likewise thrown in t if t is holding
a PriorityCeilingEmulation lock and has a ceiling priority exceeding p2.

The values of p1 and p2 are passed to the constructor for the exception and may be
queried by an exception handler.

A consequence of the above rule is that a thread or schedulable object may nest
synchronizations on PriorityCeilingEmulation-governed objects as long as the
ceiling for the inner lock is not less than the ceiling for the outer lock.

The possibility of nested synchronizations on objects governed by a mix of Pri-
orityInheritance and PriorityCeilingEmulation policies requires one other piece
of behavior in order to avoid unbounded priority inversions. If a thread or schedul-
able object holds a PriorityInheritance lock, then any PriorityCeilingEmula-
tion lock that it either holds or attempts to acquire will exhibit priority inheritance

2Section

188 CHAPTER 7. SYNCHRONIZATION

characteristics. This rule is captured above in the definition of priority sources (4.d).

When a thread or schedulable object t attempts to synchronize on a Priority-
CeilingFmulation-governed object with ceiling ceil, then ceil must be within
the priority range allowed by t’s scheduler; otherwise, an I1legalThreadState-
Exception is thrown. Note that this does not prevent a regular Java thread from
synchronizing on an object governed by a PriorityCeilingEmulation policy with
a ceiling higher than 10.

The priority ceiling for an object obj can be modified by invoking MonitorCon-
trol.setMonitorControl(obj, newPCE) where newPCE’s ceiling has the desired
value.

See also MonitorControlf|PriorityInheritancel} and |CeilingViolationEx-|

ceptionf’

7.3.2.1 Constructors

7.3.2.1.1 PriorityCeilingEmulation

Signature

private
PriorityCeilingEmulation()

7.3.2.2 Methods

7.3.2.2.1 instance(int)

Signature

public static
javax.realtime.PriorityCeilingEmulation instance(int ceiling)

Parameters
ceiling Priority ceiling value.

3Section [7.3.1
4Section [7.3.3

5Section [14.3.2

7.3. CLASSES 189

Throws
Illegal ArgumentEzception when ceiling is outside of the range of permitted
priority values (e.g., less than PriorityScheduler. instance() .getMinPriority()
or greater than PriorityScheduler.instance() .getMaxPriority() for the
base scheduler).

Return a PriorityCeilingEmulation object with the specified ceiling. This object
is in ImmortalMemory. All invocations with the same ceiling value return a reference
to the same object.

Available since RTSJ version RTSJ 1.0.1

7.3.2.2.2 getCeiling

Signature

public
int getCeiling()

Returns
The priority ceiling.
Gets the priority ceiling for this PriorityCeilingEmulation object.

Available since RTSJ version RTSJ 1.0.1

7.3.2.2.3 getMaxCeiling

Signature

public static
javax.realtime.PriorityCeilingFmulation getMaxCeiling()

Returns

A PriorityCeilingEmulation object whose ceiling is PriorityScheduler.instance() .getMa

Gets aPriorityCeilingEmulation object whose ceiling is PriorityScheduler.instance() . getMax

This method returns a reference to a PriorityCeilingEmulation object allocated
in immortal memory. All invocations of this method return a reference to the same
object.

Available since RTSJ version RTSJ 1.0.1

190 CHAPTER 7. SYNCHRONIZATION

7.3.3 PriorityInheritance

Inheritance

java.lang.Object
[avax.realtime.MonitorControll
[lavax.realtime.PriorityInheritance

Singleton class specifying use of the priority inheritance protocol. If a thread or
schedulable object t1 attempts to enter code that is synchronized on an object obj
governed by this protocol, and obj is currently locked by a lower-priority thread or
schedulable object t2, then
1. If t1’s active priority does not exceed the maximum priority allowed by t2’s
scheduler, then t1 becomes a priority source for t2; t1 ceases to serve as a
priority source for t2 when either t2 releases the lock on obj, or t1 ceases
attempting to synchronize on obj (e.g., when t1 incurs an ATC).
2. Otherwise (i.e., t1’s active priority exceeds the maximum priority allowed by
t2’s scheduler), an I1legalThreadStateException is thrown in t1.
Note on the 2nd rule: throwing the exception in t1, rather than in t2, ensures
that the exception is synchronous.
See also MonitorControlf’| and [PriorityCeilingEmulation||

7.3.3.1 Constructors

7.3.3.1.1 PriorityInheritance

Signature

private
PriorityInheritance()

7.3.3.2 Methods

6Section [7.3.1
"Section [7.3.2

7.3. CLASSES 191
7.3.3.2.1 instance

Signature

public static
javax.realtime.PriorityInheritance instance()

Return a reference to the singleton PriorityInheritance.
This is the default MonitorControl policy in effect at system startup.
The PriorityInheritance instance shall be allocated in ImmortalMemory.

7.3.4 WaitFreeDequeue

Inheritance

java.lang.Object
avax.realtime. WaitFreeDequeue]

A WaitFreeDequeue encapsulates a WaitFreeWriteQueue and a WaitFreeRead-
Queue. Each method on a WaitFreeDequeue corresponds to an equivalent operation
on the underlying WaitFreeWriteQueue or WaitFreeReadQueue.

Incompatibility with V1.0: Three exceptions previously thrown by the construc-
tor have been deleted from the throws clause. These are:

e java.lang.IllegalAccessException,

e java.lang.ClassNotFoundException, and

e java.lang.InstantiationException.

Including these exceptions on the throws clause was an error. Their deletion
may cause compile-time errors in code using the previous constructor. The repair is
to remove the exceptions from the catch clause around the constructor invocation.

WaitFreeDequeue is one of the classes allowing NoHeapRealtimeThreads and
regular Java threads to synchronize on an object without the risk of a NoHeapReal-
timeThread incurring Garbage Collector latency due to priority inversion avoidance
management.

Deprecated since RTSJ version as of RTSJ 1.0.1

7.3.4.1 Constructors

192 CHAPTER 7. SYNCHRONIZATION

7.3.4.2 Methods

7.3.5 WaitFreeReadQueue

Inheritance

java.lang.Object
[javax.realtime. WaitFreeRead Queue

A queue that can be non-blocking for consumers. The WaitFreeReadQueue class is
intended for single-reader multiple-writer communication, although it may also be
used (with care) for multiple readers. A reader is generally an instance of
IRealtimeThread’, and the writers are generally regular Java threads or heap-using
realtime threads or schedulable objects. Communication is through a bounded buffer
of Objects that is managed first-in-first-out. The principal methods for this class
are write and read
e The write method appends a new element onto the queue. It is synchronized,
and blocks when the queue is full. It may be called by more than one writer,
in which case, the different callers will write to different elements of the queue.
e The read method removes the oldest element from the queue. It is not synchro-
nized and does not block; it will return null when the queue is empty.Multiple
reader threads or schedulable objects are permitted, but if two or more intend
to read from the same WaitFreeWriteQueue they will need to arrange explicit
synchronization.

For convenience, and to avoid requiring a reader to poll until the queue is non-empty,
this class also supports instances that can be accessed by a reader that blocks on
queue empty. To obtain this behavior, the reader needs to invoke the waitForData()
method on a queue that has been constructed with a notify parameter set to true.

WaitFreeReadQueue is one of the classes allowing NoHeapRealtimeThreads and
regular Java threads to synchronize on an object without the risk of a NoHeapReal-
timeThread incurring Garbage Collector latency due to priority inversion avoidance
management. Incompatibility with V1.0: Three exceptions previously thrown by the
constructor have been deleted. These are

e java.lang.IllegalAccessException,

e java.lang.ClassNotFoundException, and

e java.lang.InstantiationException.

8Section m

7.3. CLASSES 193

These exceptions were in error. Their deletion may cause compile-time errors in
code using the previous constructor. The repair is to remove the exceptions from
the catch clause around the constructor invocation.

7.3.5.1 Constructors

7.3.5.1.1 WaitFreeReadQueue(Runnable, Runnable, int, MemoryArea,
boolean)

Signature

public
WaitFreeReadQueue (Runnable writer, Runnable reader, int maximum, MemoryArea me

Parameters
writer An instance of Runnable or null.
reader An instance of Runnable or null.
maximum The maximum number of elements in the queue.
memory The in which internal elements are allocated.
notify A flag that establishes whether a reader is notified when the queue
becomes non-empty.
Throws
lllegal ArgumentException when an argument holds an invalid value. The writer
argument must be null, a reference to a Thread, or a reference to a sched-
ulable object (a RealtimeThread, or an AsyncEventHandler.) The reader
argument must be null, a reference to a Thread, or a reference to a schedulable
object. The maximum argument must be greater than zero.
InaccessibleAreaFrception when memory is a scoped memory that is not on the
caller’s scope stack.
MemoryScopeEzception when either reader or writer is non-null and the
memory argument is not compatible with reader and writer with respect to
the assignment and access rules for memory areas.
Constructs a queue containing up to maximum elements in memory. The queue has an
unsynchronized and nonblocking read() method and a synchronized and blocking
write() method.

9Section

194 CHAPTER 7. SYNCHRONIZATION

The writer and reader parameters, if non-null, are checked to insure that they
are compatible with the MemoryArea specified by memory (if non-null.) If memory
is null and both Runnables are non-null, the constructor will select the nearest
common scoped parent memory area, or if there is no such scope it will use immortal
memory. If all three parameters are null, the queue will be allocated in immortal
memory.

reader and writer are not necessarily the only threads or schedulable objects
that will access the queue; moreover, there is no check that they actually access the
queue at all.

Note: that the wait free queue’s internal queue is allocated in memory, but the
memory area of the wait free queue instance itself is determined by the current
allocation context.

7.3.5.1.2 WaitFreeReadQueue(Runnable, Runnable, int, MemoryArea)

Signature

public
WaitFreeReadQueue (Runnable writer, Runnable reader, int maximum, Memors}

Parameters
writer An instance of Runnable or null.
reader An instance of Runnable or null.
mazimum The maximum number of elements in the queue.
memory The MemoryArea| in which this object and internal elements are
allocated.

Throws
LllegalArgumentException when an argument holds an invalid value. The writer
argument must be null, a reference to a Thread, or a reference to a sched-
ulable object (a RealtimeThread, or an AsyncEventHandler.) The reader
argument must be null, a reference to a Thread, or a reference to a schedulable
object. The maximum argument must be greater than zero.
MemoryScopeFException when either reader or writer is non-null and the
memory argument is not compatible with reader and writer with respect to
the assignment and access rules for memory areas.
Inaccessible AreaFxception when memory is a scoped memory that is not on the
caller’s scope stack.

10Section

7.3. CLASSES 195

Constructs a queue containing up to maximum elements in memory. The queue has an
unsynchronized and nonblocking read() method and a synchronized and blocking
write() method.

The writer and reader parameters, if non-null, are checked to insure that they
are compatible with the MemoryArea specified by memory (if non-null.) If memory
is null and both Runnables are non-null, the constructor will select the nearest
common scoped parent memory area, or if there is no such scope it will use immortal
memory. If all three parameters are null, the queue will be allocated in immortal
memory.

reader and writer are not necessarily the only threads or schedulable objects
that will access the queue; moreover, there is no check that they actually access the
queue at all.

Note: that the wait free queue’s internal queue is allocated in memory, but the
memory area of the wait free queue instance itself is determined by the current
allocation context.

7.3.5.1.3 WaitFreeReadQueue(int, MemoryArea, boolean)
Signature

public
WaitFreeReadQueue (int maximum, MemoryArea memory, boolean notify)

Parameters
mazximum The maximum number of elements in the queue.
memory The MemoryArea|'!| in which this object and internal elements are
allocated.
notify A flag that establishes whether a reader is notified when the queue
becomes non-empty.

Throws
lllegal ArgumentException when the maximum argument is less than or equal to
zero, or memory is null.
InaccessibleAreaFxception when memory is a scoped memory that is not on the
caller’s scope stack.
Constructs a queue containing up to maximum elements in memory. The queue has an
unsynchronized and nonblocking read() method and a synchronized and blocking
write() method.

HMSection

196 CHAPTER 7. SYNCHRONIZATION

Note: that the wait free queue’s internal queue is allocated in memory, but the
memory area of the wait free queue instance itself is determined by the current
allocation context.

Available since RTSJ version RTSJ 1.0.1

7.3.5.1.4 WaitFreeReadQueue(int, boolean)

Signature

public
WaitFreeReadQueue(int maximum, boolean notify)

Parameters
mazimum The maximum number of elements in the queue.
notify A flag that establishes whether a reader is notified when the queue
becomes non-empty.
Throws
Lllegal ArgumentException when the maximum argument is less than or equal to
zZero.
Constructs a queue containing up to maximum elements in immortal memory. The
queue has an unsynchronized and nonblocking read () method and a synchronized
and blocking write () method.

Available since RTSJ version RTSJ 1.0.1

7.3.5.2 Methods

7.3.5.2.1 clear

Signature

public
void clear()

Sets this to empty.
Note: This method needs to be used with care. Invoking clear concurrently
with read or write can lead to unexpected results.

7.3. CLASSES 197

7.3.5.2.2 isEmpty

Signature

public
boolean isEmpty()

Returns
true if this is empty; false if this is not empty.
Queries the queue to determine if this is empty.
Note: This method needs to be used with care since the state of the queue may
change while the method is in progress or after it has returned.

7.3.5.2.3 isFull

Signature

public
boolean isFull()

Returns
true if this is full; false if this is not full.
Queries the system to determine if this is full.
Note: This method needs to be used with care since the state of the queue may
change while the method is in progress or after it has returned.

7.3.5.2.4 read

Signature

public
java.lang.0Object read()

Returns

The java.lang.Object read, or else null if this is empty.
Reads the least recently inserted element from the queue and returns it as the result,
unless the queue is empty. If the queue is empty, null is returned.

7.3.5.2.5 size

Signature

public
int size()

Returns
The number of positions in this occupied by elements that have been written
but not yet read.

198 CHAPTER 7. SYNCHRONIZATION

Queries the queue to determine the number of elements in this.
Note: This method needs to be used with care since the state of the queue may
change while the method is in progress or after it has returned.

7.3.5.2.6 waitForData

Signature
public
void waitForData()
throws InterruptedException

Throws
UnsupportedOperationEzception when this has not been constructed with no-
tify set to true.
Interrupted Exception when the thread is interrupted by interrupt () or
lchronouslyInterruptedException.fire)'“| during the time between call-
ing this method and returning from it.

If this is empty block until a writer inserts an element.

Note: If there is a single reader and no asynchronous invocation of clear, then
it is safe to invoke read after waitForData and know that read will find the queue
non-empty.

Implementation note: To avoid reader and writer synchronizing on the same
object, the reader should not be notified directly by a writer. (This is the issue that
the non-wait queue classes are intended to solve).

Available since RTSJ version RTSJ 1.0.1 InterruptedException was added
to the throws clause.

7.3.5.2.7 write(Object)

Signature

public synchronized
void write(Object object)

throws InterruptedException
Parameters

object The java.lang.0bject that is placed in the queue.
Throws

12Gection

7.3. CLASSES 199

Interrupted Exception when the thread is interrupted by interrupt () or[Asyn-]
lchronouslyInterruptedException.fire O’ during the time between call-
ing this method and returning from it.

MemoryScopeEzception when a memory access error or illegal assignment error
would occur while storing object in the queue.

A synchronized and blocking write. This call blocks on queue full and will wait until
there is space in the queue.

Available since RTSJ version RTSJ 1.0.1 The return type is changed to

void since it always returned true, and InterruptedException was added
to the throws clause.

7.3.6 WaitFreeWriteQueue

Inheritance

java.lang.Object
Javax.realtime. Wait Free WriteQueue]

A queue that can be non-blocking for producers. The WaitFreeWriteQueue class is
intended for single-writer multiple-reader communication, although it may also be
used (with care) for multiple writers. A writer is generally an instance of
RealtimeThread | and the readers are generally regular Java threads or heap-using
realtime threads or schedulable objects. Communication is through a bounded buffer
of Objects that is managed first-in-first-out. The principal methods for this class
are write and read

e The write method appends a new element onto the queue. It is not synchro-
nized, and does not block when the queue is full (it returns false instead).
Multiple writer threads or schedulable objects are permitted, but if two or
more threads intend to write to the same WaitFreeWriteQueue they will need
to arrange explicit synchronization.

e The read method removes the oldest element from the queue. It is synchro-
nized, and will block when the queue is empty. It may be called by more than
one reader, in which case the different callers will read different elements from
the queue.

WaitFreeWriteQueue is one of the classes allowing NoHeapRealtimeThreads and

regular Java threads to synchronize on an object without the risk of a NoHeapReal-

13Section |8.5.1.3.5
MGection |5.4.1]

200 CHAPTER 7. SYNCHRONIZATION

timeThread incurring Garbage Collector latency due to priority inversion avoidance
management.

Incompatibility with V1.0: Three exceptions previously thrown by the construc-
tor have been deleted from the throws clause. These are

e java.lang.IllegalAccessException,

e java.lang.ClassNotFoundException, and

e java.lang.InstantiationException.

Including these exceptions on the throws clause was an error. Their deletion
may cause compile-time errors in code using the previous constructor. The repair is
to remove the exceptions from the catch clause around the constructor invocation.

7.3.6.1 Constructors

7.3.6.1.1 WaitFreeWriteQueue(Runnable, Runnable, int, MemoryArea)

Signature

public
WaitFreeWriteQueue (Runnable writer, Runnable reader, int maximum, Memoz

Parameters
writer An instance of Thread, a schedulable object, or null.
reader An instance of Thread, a schedulable object, or null.
mazimum The maximum number of elements in the queue.
memory The MemoryAred” in which this object and internal elements are
allocated.

Throws
Lllegal ArgumentException when an argument holds an invalid value. The writer
argument must be null, a reference to a Thread, or a reference to a sched-
ulable object (a RealtimeThread, or an AsyncEventHandler.) The reader
argument must be null, a reference to a Thread, or a reference to a schedulable
object. The maximum argument must be greater than zero.
MemoryScopeFException when either reader or writer is non-null and the
memory argument is not compatible with reader and writer with respect to
the assignment and access rules for memory areas.

15Section

7.3. CLASSES 201

InaccessibleAreaFxception when memory is a scoped memory that is not on the
caller’s scope stack.
Constructs a queue in memory with an unsynchronized and nonblocking write()
method and a synchronized and blocking read () method.

The writer and reader parameters, if non-null, are checked to insure that they
are compatible with the MemoryArea specified by memory (if non-null.) If memory
is null and both Runnables are non-null, the constructor will select the nearest
common scoped parent memory area, or if there is no such scope it will use immortal
memory. If all three parameters are null, the queue will be allocated in immortal
memory.

reader and writer are not necessarily the only threads or schedulable objects
that will access the queues; moreover, there is no check that they actually access
the queue at all.

Note: that the wait free queue’s internal queue is allocated in memory, but the
memory area of the wait free queue instance itself is determined by the current
allocation context.

7.3.6.1.2 WaitFreeWriteQueue(int, MemoryArea)

Signature

public
WaitFreeWriteQueue(int maximum, MemoryArea memory)

Parameters
mazimum The maximum number of elements in the queue.
memory The MemoryAreal®| in which this object and internal elements are
allocated.
Throws
lllegal ArgumentException when the maximum argument is less than or equal to
zero, or memory is null.
InaccessibleAreaFxception when memory is a scoped memory that is not on the
caller’s scope stack.
Constructs a queue containing up to maximum elements in memory. The queue has an
unsynchronized and nonblocking write () method and a synchronized and blocking
read () method.
Note: that the wait free queue’s internal queue is allocated in memory, but the
memory area of the wait free queue instance itself is determined by the current
allocation context.

16Section

202 CHAPTER 7. SYNCHRONIZATION

Available since RTSJ version RTSJ 1.0.1

7.3.6.1.3 WaitFreeWriteQueue(int)

Signature

public
WaitFreeWriteQueue(int maximum)

Parameters
maximum The maximum number of elements in the queue.
Throws
Lllegal ArgumentException when the maximum argument is less than or equal to
zZero.
Constructs a queue containing up to maximum elements in immortal memory. The
queue has an unsynchronized and nonblocking write () method and a synchronized
and blocking read () method.

Available since RTSJ version RTSJ 1.0.1

7.3.6.2 Methods

7.3.6.2.1 clear

Signature

public

void clear()
Sets this to empty.

7.3.6.2.2 isEmpty

Signature

public
boolean isEmpty()

Returns

7.3. CLASSES 203

True, if this is empty. False, if this is not empty.
Queries the system to determine if this is empty.
Note: This method needs to be used with care since the state of the queue may
change while the method is in progress or after it has returned.

7.3.6.2.3 isFull

Signature

public
boolean isFull()

Returns
True, if this is full. False, if this is not full.
Queries the system to determine if this is full.
Note: This method needs to be used with care since the state of the queue may
change while the method is in progress or after it has returned.

7.3.6.2.4 read

Signature

public synchronized
java.lang.0Object read()

throws InterruptedException

Throws
InterruptedException when the thread is interrupted by interrupt () or[Asyn-]
lchronouslyInterruptedException.fire O ’| during the time between call-
ing this method and returning from it.

Returns
The Object least recently written to the queue. If this is empty, the calling
thread or schedulable objects blocks until an element is inserted; when it is
resumed, read removes and returns the element.

A synchronized and possibly blocking operation on the queue.

Available since RTSJ version RTSJ 1.0.1 Throws InterruptedException

7.3.6.2.5 size

Signature
public

17Section |8.5.1.3.5

204 CHAPTER 7. SYNCHRONIZATION

int size()
Returns
The number of positions in this occupied by elements that have been written
but not yet read.
Queries the queue to determine the number of elements in this.
Note: This method needs to be used with care since the state of the queue may
change while the method is in progress or after it has returned.

7.3.6.2.6 force(Object)

Signature
public
boolean force(Object object)
Parameters
object A non-null java.lang.0Object to insert.
Throws
MemoryScopeEzxception when a memory access error or illegal assignment error
would occur while storing object in the queue.
Lllegal ArgumentFException when object is null.
Returns
true if object has overwritten an element that was occupied when the func-
tion returns; false otherwise (it has been inserted into a position that was
vacant when the function returns)
Unconditionally insert object into this, either in a vacant position or else over-
writing the most recently inserted element. The boolean result reflects whether,
at the time that force() returns, the position at which object was inserted was
vacant (false) or occupied (true).

7.3.6.2.7 write(Object)

Signature
public
boolean write(Object object)
Parameters
object A non-null java.lang.0Object to insert.
Throws
MemoryScopeFEzception when a memory access error or illegal assignment error
would occur while storing object in the queue.
Lllegal ArgumentFException when object is null.
Returns
true if the queue was non-full; false otherwise.

7.4. RATIONALE 205

Inserts object into this if this is non-full and otherwise has no effect on this; the
boolean result reflects whether object has been inserted. If the queue was empty
and one or more threads or schedulable objects were waiting to read, then one will
be awakened after the write. The choice of which to awaken depends on the involved
scheduler(s).

7.4 Rationale

Java’s rules for synchronized code provide a means for mutual exclusion but do
not prevent unbounded priority inversions and thus are insufficient for realtime ap-
plications. This specification strengthens the semantics for synchronized code by
mandating priority inversion control, in particular by furnishing classes for prior-
ity inheritance and priority ceiling emulation. Priority inheritance is more widely
implemented in realtime operating systems and thus is required and is the initial
default mechanism in this specification.

Since the same object may be accessed from synchronized code by both a No-
HeapRealtimeThread and an arbitrary thread or schedulable object, unwanted de-
pendencies may result. To avoid this problem, this specification provides three
wait-free queue classes as an alternative means for safe, concurrent data accesses
without priority inversion.

206 CHAPTER 7. SYNCHRONIZATION

Chapter 8

Asynchrony

Updated by AJW on 28.10.2013
Updated by JJH on 05.11.2013

8.1 Overview

One of the most important aspects of this specification is the susport for asyn-
chronous control flow. Mechanisms are provided for both starting a task asyn-
chronously and interrupting the execution of a thread or other task. This specifica-
tions provides mechanisms that

e bind the execution of program logic to the occurrence of internal and external

events;

e cnable asynchronous transfer of control; and

e facilitate the asynchronous termination of realtime threads.

This specification provides several facilities for arranging asynchronous control
of execution. These facilities fall into two main categories: asynchronous event
handling and asynchronous transfer of control, which includes realtime thread ter-
mination.

Asynchronous event handling is captured by the classes and subclasses of AbstractAsyncEvent
(AE), Abstract-AsyncEventHandler (AEH) and AbstractBoundAsyncEventHandler.
An AE is an object used to direct event occurrences to asynchronous event handlers.
An event occurrence may be initiated by application logic, by mechanisms internal
to the RTSJ implementation (see the handlers in PeriodicParameters), or by the
triggering of a happening external to the JVM (such as a software signal or a hard-
ware interrupt handler). An event occurrence is initiated in program logic by the
invocation of the fire method of an AE. The triggering of an event due to a hap-
pening is implementation dependent except as specified in POSIXSignalHandler.
See Chapter [12] for a discussion of the interaction between RTSJ programs and their

207

208 CHAPTER 8. ASYNCHRONY

environments.

An AEH is a schedulable object embodying code that is released for execution
in response to the occurrence of an associated event. Each AEH behaves as if
it is executed by a RealtimeThread or NoHeapRealtimeThread except that it is
not permitted to use the waitForNextPeriod(), waitForNextPeriodInterrupt-
ible(), waitForNextRelease(), waitForNextReleaseInterruptible () methods,
and it is treated as having a null thread group in all cases. There is not necessarily a
separate realtime thread for each AEH, but the server realtime thread (returned by
currentRealtimeThread()) remains constant during each execution of the run()
method. The class AbstractBoundAsyncEventHandler extends AbstractAsync-
EventHandler and ensures that a handler has a dedicated server realtime thread
(a server thread is associated with one and only one bound AEH for the lifetime of
that AEH). An event count (called fireCount) is maintained so that a handler can
cope with event bursts - situations where an event occurs more frequently than its
handler can respond.

The interrupt() method in java.lang.Thread provides rudimentary asyn-
chronous communication by setting a pollable/resettable flag in the target thread,
and by throwing a synchronous exception when the target thread is blocked at an
invocation of wait(), sleep(), or join(). This specification extends the effect of
Thread.interrupt () by adding an overridden version in RealtimeThread, offering
a more comprehensive and non-polling asynchronous execution control facility. It
is based on throwing and propagating exceptions that, though asynchronous, are
deferred where necessary in order to avoid data structure corruption. The main
elements of ATC are embodied in the class AsynchronouslyInterruptedExcep-
tion, its subclass Timed, the interface Interruptible, and in the semantics of the
interrupt method in RealtimeThread.

A method indicates its eligibility to be asynchronously interrupted by including
the checked exception AsynchronouslyInterruptedException in its throws clause.
If a schedulable object is asynchronously interrupted while executing such a method,
then an AIE will be delivered as soon as the schedulable object is outside of a section
in which ATC is deferred. Several idioms are available for handling an AIE, giving
the programmer the choice of using catch clauses and a low-level mechanism with
specific control over propagation, or a higher-level facility that allows specifying the
interruptible code, the handler, and the result retrieval as separate methods.

8.2 Definitions

The following terms and abbreviations will be used:
AFE — Asynchronous Event. An instance of one of the subclasses of the javax.realtime. A
class.

8.2. DEFINITIONS 209

AFEH — Asynchronous Event Handler. An instance of one of the subclasses of
the javax.realtime.AbstractAsyncEventHandler class.

Bound AEH — Bound Asynchronous Event Handler. An instance of one of the
subclasses of the javax.realtime.AbstractBoundAsyncEventHandler class.

ATC — Asynchronous Transfer of Control.

AIFE — Asynchronously Interrupted Exception. An instance of the javax.realtime.Asynchronou
class (a subclass of java.lang.InterruptedException).

Al-method - Asynchronously Interruptible method. A method or constructor
that includes AsynchronouslyInterruptedException explicitly (that is not a sub-
class of AsynchronouslyInterruptedException) in its throws clause.

A happening is an event that takes place outside the Java runtime environment.
The triggers for happenings depend on the external environment, but happenings
might include signals and interrupts.

Lexical Scope [of a method, constructor, or statement/]. The textual region within
the constructor, method, or statement, excluding the code within any class decla-
rations, and the code within any class instance creation expressions for anonymous
classes, contained therein. The lexical scope of a construct does not include the
bodies of any methods or constructors that this code invokes.

ATC-deferred section. A synchronized statement, a static initializer or any method
or constructor without AsynchronouslyInterruptedException in its throws clause.
As specified in the introduction to Chapter 8 in Java Language Specification, a syn-
chronized method is equivalent to a non-synchronized method with the body of the
method contained in a synchronized statement. Thus, a synchronized AI method
behaves like an AI method containing only an ATC-deferred statement.

Interruptible blocking methods. The RTSJ and standard Java methods that are
explicitly interruptible by an AIE. The interruptible blocking methods comprise

e HighResolutionTime.waitForObject(),

Object.wait (),

Thread.sleep(),

RealtimeThread.sleep(),

Thread. join(),

ScopedMemory . join(),

ScopedMemory . joinAndEnter (),
RealtimeThread.waitForNextPeriodInterruptible(),
RealtimeThread.waitForNextReleaseInterruptible(),
WaitFreeWriteQueue.read(),
WaitFreeReadQueue.waitForData(),
WaitFreeReadQueue.write(),
WaitFreeDequeue.blockingRead (),
WaitFreeDequeue.blockingWrite()

and their overloaded forms.

210 CHAPTER 8. ASYNCHRONY

8.3 Semantics and Requirements

Asynchronous events and event handlers are required in the base module, whereas
asynchronous transfere of control is optional. Basic event types are passive: they
are not directly associated with a thread of control. They are intended to be fired
programmatically. Handelling external events, such as clocks (see Chapter and
happening (see Chapter, requires execution support. The ActiveEvent interface
is provided to mark these and provide additional execution semantics. Figure [8.1
illustrates the event higherarchy.

javax.realtime::AbstractEvent
«abstract»

Visibility
+ = public

= protected
~ = package

+ ring name): AbstractEven
4

+unname(String name
+unname(AbstractEvent event
+addHandler(AbstractEventHandler) javax.realtime::ActiveEvent
+setHandler(AbstractEventHandler) «interface»
+removeHandler(AbstractEventHandler)
+handledBy(AbstractEventHandler):boolean

i

[| \

+getID() : int
+getName() : String

|
I
javax.realtime::AsyncObjectEve javax.realtime::AsyncEvent javax.realtime::AsyncLongEven :
+fire(Object value) +fire() +fire(long value) :
I
T |
rh ul
fmmmm 4-=-- e Fe———————— S [_l
|
L il | I
javax.realtime::Happening javax.realtime::POSIXSignal javax.realtime::Timer }
+Happening(String name) +get(String name): POSIXSigna +start(boolean disabled) |
+getReference(String name): int +get(int id): POSIXSignal +getDispatcher() : TimeDispatcher }
+get(String name): Happening +trigger(int id)
+trigger(int id) +getID() : int javax.realtime::POSIXRealtimeSignal
+getName() : String + i . i i
+getld(): int +getDispatcher() : POSIXSignalDispatcher +get(int id): POSIXRealtimeSignal
+getName() : String +trigger() +trigger(int id, long value)
+getDispatcher() : HappeningDispatcher
+trigger() +getiD() : int
wart [[+getName() : String
+ y R . . .
+S ;r 0 javax.realtime::OneShotTime javax.realtime::PeriodicTimer| | +9€tDispatcher() : POSIXRealtimeSignalDispatcher
'St “'(1)”'”9() p————————————— | +tigger(long value)
+stop

Figure 8.1: The Event Class Higherarchy

8.3.1 Asynchronous Events and their Handlers

This following list establishes the semantics and requirements that are applicable to
asynchronous events and their handlers. Semantics that apply to particular classes,
constructors, methods, and fields will be found in the class description and the
constructor, method, and field detail sections.

1. When an asynchronous event occurs (by either program logic or by the trig-
gering of a happening), its attached handlers (that is, AEHs that have been
added to the AE by the execution of addHandler()) are released for execu-
tion. Every occurrence of an event increments the fireCount in each attached

8.3. SEMANTICS AND REQUIREMENTS 211

handler. Handlers may elect to execute logic for each occurrence of the event
or not.

2. The release of attached handlers occurs in execution eligibility order (priority
order with the default PriorityScheduler) and at the active priority of the
schedulable object that invoked the fire method. The release of handlers
resulting from a happening or a timer must begin within a bounded time
(ignoring time consumed by unrelated activities in the system). This worst-
case response interval must be documented for some reference architecture.

3. The release of attached handlers is an atomic operation with respect to adding
and removing handlers.

4. The logical release of an attached handler may occur before the previous release
has completed.

5. A deadline may be associated with each logical release of an attached handler.
The deadline is relative to the occurrence of the associated event.

6. AEs and AEHs may be created and used by any program logic within the
constraints of the memory assignment rules.

7. More than one AEH may be added to an AE. However, adding an AEH to an
AE has no effect if the AEH is already attached to the AE.

8. The same AEH may be added to more than one AE.

9. By default all AEHs are considered to be daemons (the daemon status being
set by their constructors). An AEH can be set to have a non daemon status
after it has been created and before it has been attached to an AE.

10. The object returned by currentRealtimeThread() while an AEH is running
shall behave with respect to memory access and assignment rules as if it were
allocated in the same memory area as the AEH.

11. System-related termination activity (such as execution of finalizers for scoped
objects in scopes that become unreferenced) triggered when an AEH becomes
non-fireable is not subject to cost enforcement or deadline miss detection.

12. AEs and AEHs behave effectively as if changes to an AEH’s fireability are
contained in synchronized blocks, and the AEH holds that lock while it is in
the process of becoming non-fireable.

An RTSJ program terminates when and only when

e all non-daemon threads (either regular Java threads or realtime threads) are
terminated,

e the fireCounts of all non-daemon Bound AEHs or non-daemon AEHs are
zero and all releases are completed, and

e there are no non-daemon Bound AEHs or AEHs attached to timers or async
events associated with happenings.

Though dispatchers have a thread, this thread is a daemon thread and does itself
not hinder termination.

212 CHAPTER 8. ASYNCHRONY

8.3.2 Active Events and Dispatching

Active events refine the semantics of [Abstract AsyncEventHandler| with the addition
of execution semantics to support second level interrupt handling. The fire method
of an event runs in the Java execution context of the caller. For events that represent
external signals, whether a certain time is reached or something has occurred, there
may not be a Java execution context, or at least that context is of necessity limited
and often of needs to have a very short duration; dispatching an unlimited number
of handlers is not acceptable. They require an additional execution context for
releasing handlers.

In order to be able to distinguish between events that are caused to be fired by
an outside mechanism from those that are fired from another thread, the former
extend the interface. Since the trigger methods may vary in the
number of their arguments depending on the type of event, each class implementing
ActiveEvent must provide its own trigger method for initiating the handler release
by releasing another execution context. Fach method must act as if it calls the fire
method on its event and then terminates. Hence trigger has the same functional
behavior as fire but runs in this other execution context.

This extra execution context is exposed to the user as an [ActiveEventDis-—|
[patcher] There is a active event dispatcher for each kind of active event. The
programmer does not need to write a dispatcher, but just creates the one of the
corresponding type. The programmer does determine the priority and the affinity
of a dispatcher, as well as determine the mapping between dispatchers and events.

Each event has a single dispatcher, but a dispatcher may serve many events.
As with fire, the dispatcher releases handlers in reverse priority order, i.e., from
highest to lowest. This enables the programmer to control the number of these
execution contexts and still optimize how handlers are released.

8.3.3 Asynchronous Transfer of Control

Asynchronously interrupting a schedulable object consists of the following activities.

e Generation of an asynchronous interrupt exception — this is the event in
the underlying system that makes the AIE available to the program.

e Delivery of the asynchronous interrupt exception to the target schedulable
object — this is the action that invokes the search for and execution of an
appropriate handler.

Between the generation and delivery, the asynchronous interrupt exception is
held pending. After delivery, the AIE remains pending until it is cleared by the
program logic using clear () or doInterruptible().

This following list establishes the semantics and requirements that are applicable
to ATC. Semantics that apply to particular classes, constructors, methods, and fields

8.3. SEMANTICS AND REQUIREMENTS 213

will be found in the class description and the constructor, method, and field detail
sections.

1. An AIE is generated for a given schedulable object, when the fire () method
is called on an AIE for which the schedulable object is executing within the
doInterruptible() method, or the RealtimeThread.interrupt () method
is called; the latter is effectively called when an AIE is generated by internal
virtual machine mechanisms (such as an interrupt I/O protocol) that are asyn-
chronous to the execution of program logic which is the target of the AIE. A
generated AIE becomes pending upon generation and remains pending until
explicitly cleared or replaced by another AIE.

2. The RealtimeThread.interrupt() method throws the generic AIE at the
target realtime thread and has the behaviors defined for Thread. interrupt ().
This is the only interaction between the ATC mechanism and the conventional
interrupt () mechanism.

3. An AIE is delivered to a schedulable object when it is executing in an Al-
method except as indicated below.

4. The generation of an AIE through the fire() mechanism behaves as if it set
an asynchronously-interrupted status in the schedulable object. If the sched-
ulable object is blocked within an interruptible blocking method, or invokes an
interruptible blocking method, when this asynchronously-interrupted status is
set, then the invocation immediately completes by throwing the pending AIE
and clearing the asynchronously-interrupted status. When a pending AIE is
explicitly cleared then the asynchronously-interrupted status is also cleared.

5. Methods which block through mechanisms other than the interruptible block-
ing methods, (for example, blocking methods in java.io.*) must be prevented
from blocking indefinitely when invoked from a method with Asynchronously-
InterruptedException in its throws clause. When an AIE is generated and
the target schedulable object’s control is blocked inside one of these meth-
ods invoked from an Al-method, the implementation may either unblock the
blocked call, raise an InterruptedI0OException on behalf of the call, or allow
the call to complete normally if the implementation determines that the call
would eventually unblock.

6. If an Al-method is attempting to acquire an object lock when an associated
AlE is generated, the attempt to acquire the lock is abandoned.

7. If control is in the lexical scope of an ATC-deferred section when an AIE
(targeted at the executing schedulable object) is generated, the AIE is not
delivered until the first subsequent attempt to transfer control to code that
is not ATC-deferred. At that point, control is transferred to the catch or
finally clause of the nearest dynamically-enclosing a try statement that has
a handler for the generated AIE’s (that is a handler naming the AIE’s class
or any of its superclasses, or a finally clause) and which is in an ATC-

214 CHAPTER 8. ASYNCHRONY

deferred section. Intervening handlers and finally clauses that are not in
ATC-deferred sections are not executed, but object locks are released.

See section 11.3 of The Java Language Specification second edition for an
explanation of the terms, dynamically enclosing and handler. The RTSJ uses
those JLS definitions unaltered. Note, if synchronized code is abandoned as a
result of this control transfer, the associated locks are released.

8. Constructors are allowed to include AsynchronouslyInterruptedException
in their throws clause and if they do will be asynchronously interruptible
under the same conditions as Al methods.

9. Native methods that include AsynchronouslyInterruptedException in their
throws clause have implementation-specific behavior.

10. An implementation must deliver the transfer of control in a schedulable object
that is subject to asynchronous interruption (in an Al-method but not in a
synchronized block) within a bounded execution time of that schedulable ob-
ject. This worst-case response interval must be documented for some reference
architecture.

11. Instances of the Timed class logically have an associated timer. When the
timer fires, the schedulable object executing the instance’s doInterruptible
method must have the AIE generated within a bounded execution time of the
schedulable object. This worst-case response interval must be documented for
some reference architecture.

12. An AIE only has the semantics defined here if it originates with the Asyn-
chronouslyInterruptedException.fire() method, the RealtimeThread.interrupt
method or from within the realtime VM. If an AIE is thrown from program
logic using the Java throw statement, it acts the same as throwing any other
instance of a subclass of Exception, it is processed as a normal exception, and
has no affect on the pending state of any AIE, and no affect on the firing of
the AIE concerned.

8.3.3.1 Summary of ATC Operation

The RTSJ’s approach to ATC is designed to follow the above principles. It is based on
exceptions and is an extension of the current Java language rules for java.lang.Thread. inte:
In summary, ATC works as follows:

If so is an instance of a schedulable object and the interrupt() method is
called on the realtime thread associated with that object (in this context, the asso-
ciated realtime thread of an AEH is the realtime thread returned by a call of the
RealtimeThread.currentRealtimeThread () method by that AEH) then:

e If control is in an ATC-deferred section, then the AIE remains in a pending

state.
e If control is not in an ATC-deferred section, then control is transferred to the

8.3. SEMANTICS AND REQUIREMENTS 215

catch or finally clause of the nearest dynamically-enclosing a try statement
that has a handler for the generated AIE’s (that is a handler naming the
AIE’s class or any of its superclasses, or a finally clause) and which is in
an ATC-deferred section. Intervening handlers and finally clauses that are
not in ATC-deferred sections are not executed, but objects locks are released.
See section 11.3 of The Java Language Specification second edition for an
explanation of the terms, dynamically enclosing and handles. The RTSJ uses
those definitions unaltered.

If control is in an interruptible blocking method the schedulable object is awak-
ened and the generated AIE (which is a subclass of InterruptedException)
is thrown with regular Java semantics (the AIE is still marked as pending).
Then ATC follows option 1, or 2 as appropriate.

If control is in an ATC-deferred section, control continues normally until the
first attempt to return to an Al method or invoke an AI method or exit a
synchronized block within an AI method. Then ATC follows option 1, or 2 as
appropriate.

If control is transferred from an ATC-deferred section to an Al method through
the action of propagating an exception and if an AIE is pending then when
the transition to the Al-method occurs, the thrown exception is discarded and
replaced by the AIE.

An AIE may be generated while another AIE is pending. Because Al code
blocks are nested by method invocation (a stack-based nesting) there is a natural
precedence among active instances of AIE. Let AIFy be the AIE raised when the
RealtimeThread.interrupt() method is invoked and AIE; (i = 1,...,n, for n
unique instances of AIE) be the AIE generated when AIE. fire() is invoked. In
the following, the phrase "a frame deeper on the stack than this frame” refers to a
method nearer to the current stack frame. The phrase ”a frame shallower on the
stack than this frame” refers to a method further from the current stack frame.

If the current AIE is an AIE, and the new AIE is an AIE, associated with
any frame on the stack then the new AIE (AIE,) is discarded.

If the current AIE is an AIE, and the new AIE is an AIEj, then the current
AIE (AIE,) is replaced by the new AIE (AlEj).

If the current AIE is an AIE, and the new AIE is an A/E, from a frame
deeper on the stack, then the new AIE (AIE,) discarded.

If the current AIE is an AIE, and the new AIE is an AIE, from a frame
shallower on the stack, the current AIE (AIE,) is replaced by the new AIE
(AIE,).

If the current AIE is an AIE, and the new AIE is an Al Ey, or if the current
AlIE is an AIFE, and the new AIE is an AIE,, the new AIE is discarded.

When clear() or happened () is called on a pending AIE or that AIE is superseded
by another, the first AIE’s pending state is cleared. If the happened() method is

216 CHAPTER 8. ASYNCHRONY

called on a non-pending AIE the result depends on the value of the propagate
parameter, as indicated in the "No Match” column of the table below. Clearing a
non-pending AIE (with the clear () method) has no effect.

propagate Match No Match
true clear the pending AIE, | the AIE remains pending,
return true propagate

false clear the pending AIE, | the AIE remains pending,
return true return false

8.4. INTERFACES 217

8.4 Interfaces

8.4.1 BoundAbstractAsyncEventHandler

An empty interface. It is required in order to allow references to all bound handlers.

8.4.2 Interruptible

Interruptible is an interface implemented by classes that will be used as argu-
ments on the method doInterruptible() of |AsynchronouslyInterruptedExcep-|
and its subclasses. doInterruptible() invokes the implementation of the
method in this interface.

8.4.2.1 Methods

8.4.2.1.1 run(AsynchronouslyInterruptedException)

Signature

public
void run(AsynchronouslyInterruptedException exception)

throws AsynchronouslylInterruptedException
Parameters
exception The AIE object whose dolnterruptible method is calling the run
method. Used to invoke methods on |[AsynchronouslyInterruptedExcep-|
from within the run() method.
The main piece of code that is executed when an implementation is given to doInt-
erruptible(). When a class is created that implements this interface (for example
through an anonymous inner class) it must include the throws clause to make the
method interruptible. If the throws clause is omitted the run() method will not be
interruptible.

1Section [8.6.9
2Section [8.6.9

218 CHAPTER 8. ASYNCHRONY

8.4.2.1.2 interruptAction(AsynchronouslyInterruptedException)

Signature
public
void interruptAction(AsynchronouslyInterruptedException
exception)
Parameters
exception The currently pending AIE. Used to invoke methods on
louslyInterruptedExceptionf| from within the interruptAction() method.
This method is called by the system if the run() method is interrupted. Using this,
the program logic can determine if the run() method completed normally or had
its control asynchronously transferred to its caller.

3Section W

8.5. EXCEPTIONS 219

8.5 Exceptions

8.5.1 AsynchronouslyInterruptedException

Inheritance

java.lang.Object
java.lang.Throwable
java.lang.Exception
java.lang.Interrupted Exception
[javax.realtime. AsynchronouslyInterrupted Exception|

A special exception that is thrown in response to an attempt to asynchronously
transfer the locus of control of a schedulable object.

A schedulable object that is executing a method or constructor, which is declared
with an|[AsynchronouslyInterruptedExceptionf|in its throws clause, can be asyn-
chronously interrupted except when it is executing in the lexical scope of a synchro-
nized statement within that method/constructor. As soon as the schedulable object
leaves the lexical scope of the method by calling another method/constructor it may
be asynchronously interrupted if the called method/constructor is asynchronously
interruptible. (See this chapter’s introduction section for the detailed semantics).

The asynchronous interrupt is generated for a realtime thread, t, when the t. interrupt ()
method is called or the [firefl method is called of an AIE for which t has a doInt-
erruptible method call in progress.

The interrupt is generated for an AEH (or BAEH), h, if the method is
called of an AIE for which h has a doInterruptible method call in progress.

If an asynchronous interrupt is generated when the target realtime thread/schedulable
object is executing within an ATC-deferred section, the asynchronous interrupt be-
comes pending. A pending asynchronous interrupt is delivered when the target real-
time thread/schedulable object next attempts to enter asynchronously interruptible
code.

Asynchronous transfers of control (ATCs) are intended to allow long-running
computations to be terminated without the overhead or latency of polling with
name.

When[RealtimeThread.interrupt]| or AsynchronouslyInterruptedException.fire()
is called, the AsynchronouslyInterruptedException is compared against any cur-
rently pending AsynchronouslyInterruptedException on the schedulable object.

If there is none, or if the depth of the AsynchronouslyInterruptedException is less

4Section [8.6.9
5Section [8.5.1.3.5
6Section [8.5.1.3.5

"Section [5.4.2.2.21

220 CHAPTER 8. ASYNCHRONY

than the currently pending AsynchronouslyInterruptedException; (i.e., it is tar-
geted at a less deeply nested method call), the new AsynchronouslyInterrupted-
Exception becomes the currently pending AsynchronouslyInterruptedException
and the previously pending AsynchronouslyInterruptedException is discarded.
Otherwise, the new AsynchronouslyInterruptedException is discarded.

When an AsynchronouslyInterruptedException is caught, the catch clause
may invoke the clear() method on the AsynchronouslyInterruptedException
in which it is interested to see if the exception matches the pending Asynchron-
ouslyInterruptedException. If so, the pending AsynchronouslyInterrupted-
Exception is cleared for the schedulable object and clear returns true. Otherwise,
the current AIE remains pending and clear returns false.

RealtimeThread.interrupt () generates a system-wide generic Asynchronously-
InterruptedException which will always propagate outward through interruptible
methods until the generic AsynchronouslyInterruptedException is identified and
handled. The pending state of the generic AIE is per-schedulable object.

Other sources (e.g., AsynchronouslyInterruptedException.fire() and
will generate specific instances of AsynchronouslyInterruptedException which
applications can identify and thus limit propagation.

lAsyncEventHandler| objects should interact with the ATC mechanisms via the
lInterruptiblel’ interface.

8.5.1.1 Fields

8.5.1.1.1 serialVersionUID
private static final serialVersionUID

8.5.1.2 Constructors

8.5.1.2.1 AsynchronouslyInterruptedException

Signature

8Section [8.5.2
9Section [8.6.4
10Gection [8.4.2

8.5. EXCEPTIONS 221

public
AsynchronouslyInterruptedException()

Create an instance of AsynchronouslyInterruptedException.

8.5.1.3 Methods

8.5.1.3.1 getGeneric

Signature

public static
javax.realtime.AsynchronouslyInterruptedException getGeneric()

Throws
lllegalThreadState Exception if the current thread is a Java thread.
Returns
The generic AsynchronouslyInterruptedException.
Gets the singleton system generic AsynchronouslyInterruptedException that is
generated when RealtimeThread.interrupt Of s invoked.

8.5.1.3.2 enable

Signature
public
boolean enable()

Returns
True if this was disabled before the method was called and the call was
invoked whilst the associated doInterruptible() is in progress. False: oth-
erwise.
Enable the throwing of this exception. This method is valid only when the caller
has a call to doInterruptible() in progress. If invoked when no call to doInter-
ruptible() is in progress, enable returns false and does nothing.

8.5.1.3.3 disable

Signature
public synchronized

HMSection

222 CHAPTER 8. ASYNCHRONY

boolean disable()
Returns

True if this was enabled before the method was called and the call was invoked

with the associated doInterruptible() in progress. False: otherwise.
Disable the throwing of this exception. If the method is called on this AIE
whilst it is disabled, the fire is held pending and delivered as soon as the AIE is
enabled and the interruptible code is within an Al-method. If an AIE is pending
when the associated disable method is called, the AIE remains pending, and is
delivered as soon as the AIE is enabled and the interruptible code is within an
Al-method.

This method is valid only when the caller has a call to doInterruptible() in
progress. If invoked when no call to doInterruptible() is in progress, disable
returns false and does nothing.

Note: disabling the genericAIE associated with a realtime thread only affects the
firing of that AIE. If the genericAIE is generated by the[RealtimeThread. interrupt O]
mechanism, the AIE is delivered (unless the Interruptible code is in an Al-deferred
region, in which case it is marked as pending and handled in the usual way).

8.5.1.3.4 isEnabled

Signature

public
boolean isEnabled()

Returns
True if this is enabled and the method call was invoked in the context of the
associated doInterruptible(). False otherwise.
Query the enabled status of this exception.
This method is valid only when the caller has a call to doInterruptible() in
progress. If invoked when no call to doInterruptible() is in progress, enable
returns false and does nothing.

8.5.1.3.5 fire
Signature
public

boolean fire()
Returns

12G6ction 8.5.1.3.5
13Gection |5.4.2.2.21

8.5. EXCEPTIONS 223

True if this is not disabled and it has an invocation of a doInterruptible ()

in progress and there is no outstanding fire request. False otherwise.
Generate this exception if its doInterruptible() has been invoked and not com-
pleted. If this is the only outstanding AIE on the schedulable object that invoked
this AIE’s [doInterruptible(Interruptible)f?| method, this AIE becomes that
schedulable object’s current AIE. Otherwise, it only becomes the current AIE if it
is at a less deep level of nesting compared with the current outstanding AIE.

8.5.1.3.6 dolnterruptible(Interruptible)

Signature

public
boolean doInterruptible(Interruptible logic)

Parameters

logic An instance of an [Interruptible°| whose run() method will be called.
Throws

lllegal ThreadState Exzception when called from a Java thread.

Illegal ArgumentException when logic is null.
Returns

True if the method call completed normally. False if another call to doInter-

ruptible has not completed.
Executes the run() method of the given [Interruptiblef® This method may be on
the stack in exactly one [Schedulablef ‘| object. An attempt to invoke this method
in a schedulable object while it is on the stack of another or the same schedulable
object will cause an immediate return with a value of false.

The run method of given Interruptible is always entered with the exception in
the enabled state, but that state can be