
JTRES 2016 Lugano

The New Realtime Specification for

Java and the Future of IoT

Dr. James J. Hunt
JSR 282 Spec Lead
CEO aicas GmbH

Internet of Things

Performance measurment via Embedded Sensors

Internet of Things

Pre-analysis: Information not Data Collection

Internet of Things

Remote Device Supervision and Control

Internet of Things

Flexibility via Modular Functional Update

Trends for the Intenet of Things

Strong Security and Encryption Support

7Real-TIme Specification for Java 2.0

Java: Once and Future King

TOBIE Worldwide

Java is the most popular language (19.1%) and

C is second (11.3%)

8Real-TIme Specification for Java 2.0

Java: Long Term Favorite

PYPL Worldwide

Java is the most popular language (24.1%)

Python grew the most in the last 5 years (6.9% to 13.2%) and

C lost the most (-4.7%)

9Real-TIme Specification for Java 2.0

Why not Use Java for IoT?

Many Pros

Higher abstraction improve productivity

Strong typing improve safety

Exact garbage collection improves safety

Support for dynamically loaded code (OSGi)

Well defined security model

Strong cryptography support

Most popular language for new development

10Real-TIme Specification for Java 2.0

What is the Problem?

Poor Support for Realtime

Scheduling not defined for JVM
(assumes fair scheduling)

Priorities are ill defined

Synchronization is not aware of thread priorities

Single tasking model: Threads

Throughput optimized garbage collection

A Realtime Specification for Java is necessary

11Real-TIme Specification for Java 2.0

Why Realtime?

Realtime is not real fast!

controlling physical objects requires predicable
and timely response

Realtime tasks must always complete within their
deadline

Often minimum response time are also necessary

Example: steering
understeering risks collision and instability

oversteering risks efficiency lose and instability

Nonexamples: video and audio playback

12Real-TIme Specification for Java 2.0

What is the RTSJ?

Support for realtime programming in Java

importance vs fair scheduling

determinism vs responsiveness

timeliness vs throughput

priority inversion avoidance vs antistarvation

Support for embedded programming in Java

device access

interact with environment

A standard refinement of JVM semantics

13Real-TIme Specification for Java 2.0

Constraints

No changes to the language

same bytecode

no new language keywords

Fully compatible with convention Java
implementations such as OpenJDK

Java programs must run correctly on RTSJ
implementations that supports the required profile

Maximize code reuse under time complexity
constraints

14Real-TIme Specification for Java 2.0

Why Update the RTSJ?

Language and technology evolution

better realtime garbage collection

Java 1.4 Java 1.8→

Marketing

support different levels of realtime

reduce need for JNI

de-emphisize memory areas

differential to Android

better documentation

15Real-TIme Specification for Java 2.0

Core Features

Ada realtime semantics in Java

realtime threads

priority preemptive scheduling

priority inversion avoidance

Event handling

periodic tasks (Timers)

aperiodic tasks

Direct device access in Java

16Real-TIme Specification for Java 2.0

Major RTSJ 2.0 Improvements

Core

CPU affinity

Task control groups

Unify Events: Timer,
Happening, & Signal

Stateful events

User defined clocks

POSIX

Realtime Signals

Device Access

Typed device access

Factory based

DMA & ISR support

Alternate Memory

PinnableMemory

StackedMemory

Physical memory
factory

17Real-TIme Specification for Java 2.0

Schedulables

RealtimeThread

Modeled on java
thread (subclass)

Realtime scheduled

explicit looping using
waitForNextRelease.

triggering
by call to release()

implicit for Clocks

AsyncEventHandler

Event model

May have payload

Realtime scheduled

implicit looping; code
in handleAsyncEvent

triggering
implicit by events

Timer is an event

18Real-TIme Specification for Java 2.0

Periodic RealtimeThread

Blocked for Missed Release

missCount > 0
pendingReleases > 0
in wFNR()
* release
 increments pendingReleases
* deschedule()
 sets descheduled

Handle Miss

* release
 increments pendingReleases
* deadline miss
 increments missCount
* deschedule()
 sets descheduled
* reschedule()
 clears descheduled

Missed Release

* release
 increments pendingReleases
* deadline miss
 increments missCount
* deschedule()
 sets descheduled
* reschedule()
 clears descheduled

Blocked for Normal Release

missCount == 0
* release
 increments pendingReleases
* deschedule()
 sets descheduled

Normal Release

* release
 increments pendingReleases
* deadline miss
 increments missCount
* deschedule()
 sets descheduled
* reschedule()
 clears descheduled

Descheduled

descheduled == true
in wFNR()
* reschedule()
 clears descheduled

Initial

pendingReleases == 0
missCount == 0
descheduled == false

[missCount > 0]
decrement pendingReleases

decrement missCount
wFNR() returns false

[descheduled == true]

wFNR() called
[missCount > 0]

wFNR() called
[missCount > 0]

wFNR() called
[missCount > 0]
decrement missCount
returns false

[pendingReleases > 0]
decrement pendingReleases
wFNR() returns true

wFNR() called
[missCount == 0]

[descheduled == true]

[descheduled == false]
pendingReleases = 0

missCount = 0

start()

initial

19Real-TIme Specification for Java 2.0

Scheduling

Realtime Schedulers

FirstInFirstOutScheduler

RoundRobinScheduler

Both types of PriorityScheduler

Java Thread Control

enable java threads to use a realtime scheduler

Synchronization (Priority Inversion Avoidance)

Priority inheritance

Priority ceiling emulation

20Real-TIme Specification for Java 2.0

Affinity

Multicore control

Enable pinning Threads and AsyncEventHandlers
to a subset of processors.

support collective pinning w/
ProcessingGroupParameters

Find out what processors and processor subsets
are available for pinning

Pinning to single processors is always supported.

Orthogonal to all other RTSJ classes

21Real-TIme Specification for Java 2.0

Task Groups

Extended through Subclasses of ThreadGroup

SchedulingGroup — realtime scheduling

ProcessingGroup — deadlines, overrun, underrun

MemoryGroup — memory limits

New Rules

Schedulables must be in a SchedulingGroup
(Primordial and initial TG must be SG too!)

Threads in a base ThreadGroup may not have
realtime characteristics

22Real-TIme Specification for Java 2.0

Event Architecture

AsyncBaseEvent

AsyncEvent

POSIXSignalPOSIXRealtimeSignal

ActiveEventAsyncLongEvent

AsyncObjectEvent

Happening

ISR

Timer

PeriodicTimer OneShotTimer

23Real-TIme Specification for Java 2.0

Event Handler Architecture

AsyncBaseEventHandler

AsyncEventHandler

BoundAsyncLongEventHandler

AsyncLongEventHandler

AsyncObjectEventHandler

BoundAsyncEventHandler

AbstractBound
AsyncEventHandler

BoundObjectLongEventHandler

24Real-TIme Specification for Java 2.0

Mix and Match

Types AsyncEvent AsyncLongEvent AsyncObjectEvent

AsyncEventHandler Nothing Nothing Nothing

AsyncLongEventHandler Event ID Payload Event ID

AsyncObjectEventHandler Event Object Event Object Payload

25Real-TIme Specification for Java 2.0

AsyncBaseEvent States

new AbstractAsyncEvent(..)

isRunning isRunning
­> FALSE­> TRUE

enable disable

enabled disablednonexistant

26Real-TIme Specification for Java 2.0

ActiveEvent State Machine

Active
Inactive
Disabled

Active
Disabled

Active
Enabled

stop
-> true

stop
-> false

stop -> false

startDisabled
-> IllegalStateException

start
-> IllegalStateException

start

startDisabled

enable

disable

new

27Real-TIme Specification for Java 2.0

Timer UML State Machine

Inactive
Disabled Enabled DisabledActive

Absolute Time

RelativeTime

Active
Enabled
Absolute

Active
Disabled
Absolute

Inactive
Disabled
Absolute

Inactive
Disabled
Relative

Active
Disabled
Relative

Active
Enabled
Relative

reschedule
(relative time)

reschedule
(absolute time)

reschedule
(relative time)

reschedule
(absolute time)

new(absolute time)

stop
-> true

stop
-> false

stop -> false

startDisabled
-> IllegalStateException

start
-> IllegalStateException

start

startDisabled

enable

disable

new(relative time)

28Real-TIme Specification for Java 2.0

Happening: Kind of AsyncEvent

AsyncEvent

Passive (fire mechanism)

Runs all associated event handlers

User definable

Happenings

supports active behavior too (trigger mechanism)

Can have (needs) dispatcher to manage activity

Can be triggered from outside the VM

29Real-TIme Specification for Java 2.0

User Defined Clocks

Similar to an ISR

no active thread

just triggers associated Timers

Manages Trigger Queue

next set of Timers (in priority order) to trigger

time ordered set of Timer sets

constant trigger time for top next Timer

bound adding and deleting

30Real-TIme Specification for Java 2.0

Clock Sequence Diagram

31Real-TIme Specification for Java 2.0

Sleep with Application Clock

32Real-TIme Specification for Java 2.0

Happening Sequence

33Real-TIme Specification for Java 2.0

New Raw Memory Architecture

FactoryBased

RawMemory class for registration

RawMemoryFactory for implementation

Interfaces for each access type:
RawInt, RawShort, RawByte, RawFloat, etc.

Concrete classes for

Memory mapped devices,

I/O mapped devices, and

Generic mapped devices.

34Real-TIme Specification for Java 2.0

RawMemory Interfaces

javax.realtime::RawFloatWriter
«interface»

+setFloat(float v)
+setFloat(int offset, float data)
+set(int offset, float[] v): int
+set(int offset, float[] v,
 int start, int count): int
+address():long

javax.realtime::RawFloat
«interface»

javax.realtime::RawFloatReader
«interface»

+getFloat():float
+getFloat(int offset):float
+get(int offset, float[] v): int
+get(int offset, float[] v,
 int start, int count): int
+address():long

javax.realtime::RawDoubleWriter
«interface»

+setDouble(double v)
+setDouble(int offset, double data)
+set(int offset, double[] v): int
+set(int offset, double[] v,
 int start, int count): int
+address():long

javax.realtime::RawDoubleReader
«interface»

+get():double
+getDouble(int offset):double
+get(int offset, double[] v): int
+get(int offset, double[] v,
 int start, int count): int
+address():long

javax.realtime::RawDouble
«interface»

javax.realtime::RawByteWriter
«interface»

+setByte(byte v)
+setByte(int offset, byte v)
+set(int offset, byte[] v):int
+set(int offset, byte[] v,
 int start, int count):int
+address():long

javax.realtime::RawByte
«interface»

javax.realtime::RawByteReader
«interface»

+getByte():byte
+getByte(int offset):byte
+get(int offset, byte[] v):int
+get(int offset, byte[] v,
 int start, int count):int
+address():long

javax.realtime::RawShortWriter
«interface»

+setShort(short v)
+setShort(int offset, short v)
+set(int offset, short[] v):int
+set(int offset, short[] v,
 int start, int count):int
+address():long

javax.realtime::RawShortReader
«interface»

+getShort():short
+getShort(int offset):short
+get(int offset, short[] v):int
+get(int offset, short[] v,
 int start, int count):int
+address():long

javax.realtime::RawShort
«interface»

javax.realtime::RawIntWriter
«interface»

+setInt(int v)
+setInt(int offset, int v)
+set(int offset, int[] v):int
+set(int offset, int[] v,
 int start, int count):int
+address():long

javax.realtime::RawIntReader
«interface»

+getInt():int
+getInt(int offset):int
+get(int offset, int[] v):int
+get(int offset, int[] v,
 int start, int count):int
+address():long

javax.realtime::RawInt
«interface»

javax.realtime::RawLongWriter
«interface»

+setLong(long v)
+setLong(int offset, long v)
+set(int offset, long[] v):int
+set(int offset, long[] v,
 int start, int count):int
+address():long

javax.realtime::RawLongReader
«interface»

+getLong():long
+getLong(int offset):long
+get(int offset, long[] v):int
+get(int offset, long[] v,
 int start, int count):int
+address():long

javax.realtime::RawLong
«interface»

javax.realtime::RawMemory
«interface»

java.io::Closable
«interface»

+close()

Visibility
+ = public
= protected
~ = package

35Real-TIme Specification for Java 2.0

Example

Public class IOBusController implements RawShort
{
 private MemoryRawByte command;
 private MemoryRawByte flag;
 private MemoryRawShort address;
 private MemoryRawInt data;

 public int get(short address)
 {
 address.put(address);
 command.put(READ);
 while (flag.get() != DONE);
 return data.get();
 }
...

36Real-TIme Specification for Java 2.0

DMA Support

Special factory for direct byte buffer

Get byte buffer that is visible DMA controller

Means to get address to pass to DMA controller

Could be use to implement I/O Channels

Additional barrier types

provide write visibility across JNI boundary

for supporting DMA with direct byte buffers

Coordinating with Doug Lea
(JEP 188: Java Memory Model Update)

37Real-TIme Specification for Java 2.0

Entering MemoryAreas

Provide for passing arguments

use lambda and closure

can be optimized to prevent allocation

Provide a return value

Use Supplier API

adds many methods
five types: Object<T>, int, long, double, and boolean

enter, executeInArea, joinAndEnter, and joinAndEnter
with timeout

10–20 new methods!

38Real-TIme Specification for Java 2.0

New ScopedMemory Areas

PinnedMemory

subclass of ScopedMemory

similar to LT Memory except supports pinning

StackedMemory

subclass of ScopedMemory (supports SCJ Model)

similar to LT Memory but reserves backing store

backing store from parent when StackedMemory

enterable only from MemoryArea where created

resize to max reserved (when no sub area)

39Real-TIme Specification for Java 2.0

StackedMemory Example

Nesting 0

Nesting 0

Split A Nesting 2

Nesting 1

Split B Nesting 1

Split A Nesting 1

Nesting 2

Split C Nesting 3

40Real-TIme Specification for Java 2.0

New Physical Memory Model

Factory based

completely separate from raw memory

virtual memory address agnostic

Type compatible with other memory areas

Immortal

Pinned

Stacked

41Real-TIme Specification for Java 2.0

Exception Handling

Preallocated Throwables

Uses thread local storage for thowable data:
StaticThrowableStorage

Different throw pattern
throw RegistrationException.get().initMessage(..);

All RTSJ exceptions, e.g., ThrowBoundryException

StaticOutOfMemoryException

Base types for simple user extension: StaticError
StaticCheckedException, StaticRuntimeException

42Real-TIme Specification for Java 2.0

Modularization Goals

Provide useful subsets of the RTSJ

with and without a realtime GC

with and without device support

Encourage more implementations

Hard realtime, e.g., for control systems

Soft realtime, e.g. for system monitoring

No realtime, e.g., for development

43Real-TIme Specification for Java 2.0

Modules

Base Module

Schedulables

Events & Handlers

Priority Inheritance

Clock

MemoryArea
HeapMemory

ImmortalMemory

...

Device

Happenings

RawMemory

ISR (Option)

Alternate Memory

physical

scoped

POSIX

POSIX signals

44Real-TIme Specification for Java 2.0

RTSJ Status

Specification mostly finished

Last Open Issue: Security Management

Methods needing security checks defined

Some security classes defined

How can allocation for security checks be
minimized?

 Future Work

Finish reference implementation

Update TCK

45Real-TIme Specification for Java 2.0

Supporting to IoT

Realtime
OSGi

OSGi

RTSJ

Realtime Response
Resource Mangement

SoA based Isolation
Lifecycle Management
Modular Update

46Real-TIme Specification for Java 2.0

Conclusion

RTSJ is a common API for realtime Java

Provides for realtime sceduling and control

Support interaction with environment

Reduce need for external code

Strong Basis for Dynamic IoT Platforms

Robust basis: work w/ OSGi

Resource control

Accommodates realtime requirement

Provides direct device access (no JNI)

47aicas GmbH

Contact Information

Dr. James J. Hunt

 aicas GmbH
Haid-und-Neu-Str. 18
D-76139 Karlsruhe
Germany
jjh@aicas.com

 JSR 282

Current specification:
https://www.aicas.com/cms/en/rtsj

Java Project Page:
http://java.net/projects/rtsj-2

Mailing List:
jsr282-feedback@aicas.com

Discussion:
http://www.linkedin.com/groups/
RTSJ-8147216

Twitter:
@realtimejava #RTSJ

mailto:jjh@aicas.com
https://www.aicas.com/cms/en/rtsj
mailto:jsr282-feedback@aicas.com
http://www.linkedin.com/groups/

48The aicas Group

aicas GmbH is Hiring!

