
JamaicaVM 8.3 — User Manual

Java Technology for Critical Embedded Systems

aicas GmbH

2

JamaicaVM 8.3 — User Manual: Java Technology for Critical Embedded
Systems

JamaicaVM 8.3, Release 1. Published August 14, 2019.

c©2001–2019 aicas GmbH, Karlsruhe. All rights reserved.

No licenses, expressed or implied, are granted with respect to any of the technology described in

this publication. aicas GmbH retains all intellectual property rights associated with the

technology described in this publication. This publication is intended to assist application

developers to develop applications only for the Jamaica Virtual Machine.

Every effort has been made to ensure that the information in this publication is accurate. aicas

GmbH is not responsible for printing or clerical errors. Although the information herein is

provided with good faith, the supplier gives neither warranty nor guarantee that the information is

correct or that the results described are obtainable under end-user conditions.

aicas GmbH phone +49 721 663 968-0
Emmy-Noether-Straße 9 fax +49 721 663 968-99
76131 Karlsruhe email info@aicas.com
Germany web http://www.aicas.com

aicas America Limited phone +1 203 359 5705
4023 Kennett Pike, Suite 810
Wilmington, DE 19807 email info@aicas.com
USA web http://www.aicas.com

This product includes software developed by IAIK of Graz University of Technology. This

software is based in part on the work of the Independent JPEG Group. This product includes

software that is derivative of the work by Markus Kuhn licensed under CC BY 4.0. This product

includes the Elliptic Curve Cryptography library, copyright Oracle America, Inc. It is licensed

under LGPL v2.1 and GPL v2 with the classpath exception. This product is based in part on the

work of the FreeType Project.

Java and all Java-based trademarks are registered trademarks of Oracle America, Inc. All other

brands or product names are trademarks or registered trademarks of their respective holders.

ALL IMPLIED WARRANTIES ON THIS PUBLICATION, INCLUDING IMPLIED

WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE,

ARE LIMITED IN DURATION TO NINETY (90) DAYS FROM THE DATE OF THE

ORIGINAL RETAIL PURCHASE OF THIS PRODUCT.

Although aicas GmbH has reviewed this publication, aicas GmbH MAKES NO WARRANTY

OR REPRESENTATION, EITHER EXPRESSED OR IMPLIED, WITH RESPECT TO THIS

PUBLICATION, ITS QUALITY, ACCURACY, MERCHANTABILITY OR FITNESS FOR A

PARTICULAR PURPOSE. AS A RESULT, THIS PUBLICATION IS PROVIDED AS IS, AND

YOU, THE PURCHASER, ARE ASSUMING THE ENTIRE RISK AS TO ITS QUALITY AND

ACCURACY.

IN NO EVENT WILL aicas GmbH BE LIABLE FOR DIRECT, INDIRECT, SPECIAL,

INCIDENTAL, OR CONSEQUENTIAL DAMAGES RESULTING FROM ANY DEFECT OR

INACCURACY IN THIS PUBLICATION, even if advised of the possibility of such damages.

THE WARRANTIES SET FORTH ABOVE ARE EXCLUSIVE AND IN LIEU OF ALL

OTHERS, ORAL OR WRITTEN, EXPRESSED OR IMPLIED.

Contents

Preface 13
Intended Audience of This Book . 13

Contacting aicas . 14

What is New in JamaicaVM 8.3 . 14

What is New in JamaicaVM 8.2 . 14

What is New in JamaicaVM 8.1 . 15

What is New in JamaicaVM 8.0 . 16

I Introduction 17

1 Key Features of JamaicaVM 19
1.1 Hard Realtime Execution Guarantees 19

1.2 Real-Time Specification for Java support 20

1.3 Minimal footprint . 20

1.4 ROMable code . 21

1.5 Native code support . 21

1.6 Dynamic Linking . 21

1.7 Supported Platforms . 21

1.7.1 Development platforms 21

1.7.2 Target platforms . 22

1.8 Fast Execution . 23

1.9 Tools for Realtime and Embedded System Development 23

2 Getting Started 25
2.1 Installation of JamaicaVM . 25

2.1.1 Linux . 26

2.1.2 Windows . 28

2.2 Installation of License Keys . 28

2.3 JamaicaVM Directory Structure 29

2.3.1 API Specification . 29

3

4 CONTENTS

2.3.2 Target Platforms . 29

2.4 Building and Running a Java Program 31

2.4.1 Host Platform . 31

2.4.2 Target Platform . 32

2.4.3 Improving Size and Performance 33

2.4.4 Overview of Further Examples 34

2.5 Notations and Conventions . 35

2.5.1 Typographic Conventions 35

2.5.2 Argument Syntax . 35

2.5.3 Jamaica Home and User Home 36

3 Tools Overview 37
3.1 Jamaica Java Compiler . 37

3.2 Jamaica Virtual Machine . 37

3.3 Creating Target Executables . 38

3.4 Accelerating JAR Files . 39

3.5 Monitoring Realtime Behavior 39

4 Support for the Eclipse IDE 41
4.1 Plug-in installation . 41

4.1.1 Installation on Eclipse 41

4.1.2 Installation on Other IDEs 42

4.2 Setting up JamaicaVM Distributions 43

4.3 Using JamaicaVM in Java Projects 43

4.4 Setting Virtual Machine Parameters 43

4.5 Building applications with Jamaica Builder 44

4.5.1 Getting started . 44

4.5.2 Jamaica Buildfiles . 44

II Tools Usage and Guidelines 47

5 Performance Optimization 49
5.1 Creating a profile . 49

5.1.1 Using the profiling VM 50

5.1.2 Creating a profiling application 50

5.1.3 Dumping a profile via network 51

5.1.4 Creating a micro profile 52

5.2 Using a profile with the Builder 52

5.2.1 Building with a profile 52

5.2.2 Building with multiple profiles 53

CONTENTS 5

5.3 Interpreting the profiling output 53

5.3.1 Format of the profile file 54

5.3.2 Example . 58

6 Reducing Footprint and Memory Usage 61
6.1 Compilation . 61

6.1.1 Suppressing Compilation 61

6.1.2 Using Default Compilation 63

6.1.3 Using a Custom Profile 64

6.1.4 Code Optimization by the C Compiler 66

6.1.5 Full Compilation . 67

6.2 Smart Linking . 68

6.3 API Library Classes and Resources 70

6.4 RAM Usage . 71

6.4.1 Measuring RAM Demand 71

6.4.2 Memory Required for Threads 73

6.4.3 Memory Required for Line Numbers 77

7 Memory Management Configuration 81
7.1 Configuration for soft-realtime applications 81

7.1.1 Initial heap size . 81

7.1.2 Maximum heap size . 82

7.1.3 Finalizer thread priority 82

7.1.4 Reference Handler thread priority 83

7.1.5 Reserved memory . 83

7.1.6 Stop-the-world Garbage Collection 85

7.1.7 Recommendations . 85

7.2 Configuration for hard-realtime applications 86

7.2.1 Usage of the Memory Analyzer tool 86

7.2.2 Measuring an application’s memory requirements 86

7.2.3 Fine tuning the final executable application 88

7.2.4 Constant Garbage Collection Work 90

7.2.5 Comparing dynamic mode and constant GC work mode . 91

7.2.6 Determination of the worst case execution time of an al-

location . 92

7.2.7 Examples . 92

8 Debugging Support 95
8.1 Enabling the Debugger Agent 95

8.2 Connecting to Jamaica from the Command Line 96

8.2.1 Using sockets as transport layer 96

6 CONTENTS

8.2.2 Using shared memory as transport layer 97

8.3 Configuring the IDE to connect to Jamaica 97

8.4 Reference Information . 99

9 The Real-Time Specification for Java 101
9.1 Realtime programming with the RTSJ 101

9.1.1 Thread Scheduling . 102

9.1.2 Memory Management 102

9.1.3 Synchronization . 102

9.1.4 Example . 103

9.2 Realtime Garbage Collection . 104

9.3 Relaxations in JamaicaVM . 104

9.3.1 Use of Memory Areas 105

9.3.2 Thread Priorities . 105

9.3.3 Runtime checks for NoHeapRealtimeThread 105

9.3.4 Static Initializers . 105

9.3.5 Class PhysicalMemoryManager 106

9.4 Limitations of RTSJ Implementation 106

9.5 Computational Transparency . 107

9.5.1 Efficient Java Statements 108

9.5.2 Non-Obvious Slightly Inefficient Constructs 110

9.5.3 Statements Causing Implicit Memory Allocation 110

9.5.4 Operations Causing Class Initialization 113

9.5.5 Operations Causing Class Loading 114

9.6 Supported Standards . 115

9.6.1 Real-Time Specification for Java 115

9.6.2 Java Native Interface . 117

9.7 Memory Management . 118

9.7.1 Memory Management of RTSJ 119

9.7.2 Finalizers . 120

9.7.3 Configuring a Realtime Garbage Collector 121

9.7.4 Programming with the RTSJ and Realtime Garbage Col-

lection . 122

9.7.5 Memory Management Guidelines 123

9.8 Scheduling and Synchronization 124

9.8.1 Schedulable Entities . 124

9.8.2 Synchronization . 126

9.8.3 Scheduling Policy and Priorities 129

9.9 Libraries . 132

9.10 Summary . 132

9.10.1 Efficiency . 133

CONTENTS 7

9.10.2 Memory Allocation . 133

9.10.3 EventHandlers . 133

9.10.4 Monitors . 134

10 Multicore Guidelines 135
10.1 Tool Usage . 135

10.2 Setting Thread Affinities . 136

10.2.1 Communication through Shared Memory 136

10.2.2 Performance Degradation on Locking 137

10.2.3 Periodic Threads . 137

10.2.4 Rate-Monotonic Analysis 138

10.2.5 The Operating System’s Interrupt Handler 138

III Tools Reference 139

11 The Jamaica Java Compiler 141
11.1 Usage of jamaicac . 141

11.1.1 Classpath options . 141

11.1.2 Compliance options . 143

11.1.3 Compilation options . 143

11.1.4 Warning options . 143

11.1.5 Debug options . 144

11.1.6 Annotation processing options 144

11.1.7 Other options . 144

11.2 Environment Variables . 145

12 The Jamaica Virtual Machine Commands 147
12.1 jamaicavm — the Standard Virtual Machine 147

12.1.1 Command Line Options 148

12.1.2 Extended Command Line Options 150

12.2 Running a VM on a Target Device 153

12.3 Variants of jamaicavm . 154

12.3.1 jamaicavm slim . 154

12.3.2 jamaicavmm . 155

12.3.3 jamaicavmp . 155

12.3.4 jamaicavmdi . 156

12.4 Environment Variables . 157

12.5 Java Properties . 158

12.5.1 User-Definable Properties 158

12.5.2 Predefined Properties . 164

8 CONTENTS

12.6 Exitcodes . 165

13 The Jamaica Builder 169
13.1 How the Builder tool works . 169

13.2 Builder Usage . 169

13.2.1 General . 172

13.2.2 Classes, files and paths 173

13.2.3 Profiling and compilation 178

13.2.4 Smart linking . 181

13.2.5 Heap and stack configuration 183

13.2.6 Threads, priorities and scheduling 186

13.2.7 Parallel Execution . 190

13.2.8 GC configuration . 190

13.2.9 RTSJ settings . 194

13.2.10 Native code . 195

13.3 Builder Extended Usage . 196

13.3.1 General . 196

13.3.2 Classes, files and paths 196

13.3.3 Profiling and compilation 198

13.3.4 Heap and stack configuration 201

13.3.5 Parallel Execution . 201

13.3.6 RTSJ settings . 202

13.3.7 Native code . 202

13.4 Environment Variables . 203

13.5 Exitcodes . 204

14 The Jamaica JAR Accelerator 205
14.1 JAR Accelerator Usage . 206

14.1.1 General . 206

14.1.2 Classes, files and paths 208

14.1.3 Profiling and compilation 209

14.1.4 Threads, priorities and scheduling 211

14.1.5 Parallel Execution . 211

14.2 JAR Accelerator Extended Usage 212

14.2.1 General . 212

14.2.2 Classes, files and paths 212

14.2.3 Profiling and compilation 212

14.2.4 Native code . 215

14.3 Special Considerations . 215

14.3.1 Which Methods are Compiled 216

14.3.2 Compilation and Sealing 216

CONTENTS 9

14.3.3 At Runtime . 217

14.4 Environment Variables . 218

14.5 Exitcodes . 218

15 Jamaica JRE Tools and Utilities 219

16 JamaicaTrace 221
16.1 Runtime system configuration 221

16.2 Control Window . 222

16.2.1 Control Window Menu 223

16.3 Data Window . 225

16.3.1 Data Window Navigation 226

16.3.2 Data Window Menu . 227

16.3.3 Data Window Context Window 228

16.3.4 Data Window Tool Tips 229

16.3.5 Worst-Case Execution Time Window 229

16.4 Event Recorder . 231

16.4.1 Location . 231

16.4.2 Usage . 231

17 Jamaica and the Java Native Interface (JNI) 233
17.1 Using JNI . 233

17.2 The Jamaicah Command . 236

17.2.1 General . 236

17.2.2 Classes, files, and paths 237

17.2.3 Environment Variables 237

17.3 Finding Problems in JNI Code 238

17.4 FPU Flags in JNI Code . 238

18 Building with Apache Ant 239
18.1 Task Declaration . 239

18.2 Task Usage . 240

18.2.1 Jamaica Builder, JAR Accelerator, and Jamaicah 240

18.2.2 C Compiler . 241

18.2.3 Native Linker . 242

18.3 Setting Environment Variables 244

IV Additional Information 245

A FAQ — Frequently Asked Questions 247
A.1 Software Development Environments 247

10 CONTENTS

A.2 JamaicaVM and Its Tools . 248

A.2.1 JamaicaVM . 248

A.2.2 JamaicaVM Builder . 249

A.2.3 Third Party Tools . 252

A.3 Supported Technologies . 252

A.3.1 Compact Profiles . 252

A.3.2 Cryptography . 253

A.3.3 Graphics . 255

A.3.4 Fonts . 255

A.3.5 Serial Port . 256

A.3.6 Realtime Support and the RTSJ 256

A.3.7 Remote Method Invocation (RMI) 257

A.3.8 OSGi . 259

A.4 Target-Specific Issues . 260

A.4.1 Targets using the GNU Compiler Collection (GCC) 260

A.4.2 Linux . 260

A.4.3 QNX . 261

A.4.4 VxWorks . 261

A.4.5 Windows . 263

B Operating Systems 265
B.1 Linux . 265

B.1.1 Secure Random . 265

B.1.2 Thread Priorities . 265

B.1.3 System Time Overflow 265

B.1.4 Limitations . 266

B.2 PikeOS . 267

B.2.1 Inter-Partition Communication 267

B.2.2 Using a Customized lwIP Library 268

B.2.3 Environment Variables 268

B.2.4 Secure Random . 269

B.2.5 Thread Priorities . 269

B.2.6 Limitations . 269

B.3 QNX . 270

B.3.1 Configuration of QNX 270

B.3.2 Installation . 271

B.3.3 Secure Random . 272

B.3.4 Thread Priorities . 272

B.3.5 System Time Overflow 272

B.3.6 Handling of Floating Point Arithmetics on ARMv7 273

B.3.7 Limitations . 273

CONTENTS 11

B.4 VxWorks . 275

B.4.1 Configuration of VxWorks 275

B.4.2 Installation . 278

B.4.3 Secure Random . 279

B.4.4 Starting an application 280

B.4.5 Secure Random . 283

B.4.6 Thread Priorities . 283

B.4.7 Limitations . 284

B.4.8 Additional notes . 288

B.5 Windows . 288

B.5.1 Secure Random . 288

B.5.2 Limitations . 288

B.6 Windows CE . 289

B.6.1 Secure Random . 289

B.6.2 Limitations . 289

C Processor Architectures 293

D Heap Usage for Java Datatypes 295

E Limitations 297
E.1 VM Limitations . 297

E.2 Builder Limitations . 299

E.3 Multicore Limitations . 300

E.4 Security Limitations . 301

E.5 Temporary Files . 302

F Internal Environment Variables 303

G Licenses 305

12 CONTENTS

Preface

The Java programming language, with its clear syntax and semantics, is used

widely for the creation of complex and reliable systems. Development and main-

tenance of these systems benefit greatly from object-oriented programming con-

structs such as dynamic binding and automatic memory management. Anyone

who has experienced the benefits of these mechanisms on software development

productivity and improved quality of resulting applications will find them essen-

tial when developing software for embedded and time-critical applications.

This manual describes JamaicaVM, a Java implementation that brings tech-

nologies that are required for embedded and time critical applications and that are

not available in classic Java implementations. This enables this new application

domain to profit from the advantages that have provided an enormous boost to

most other software development areas.

Intended Audience of This Book
Most developers familiar with Java environments will quickly be able to use the

tools provided with JamaicaVM to produce immediate results. It is therefore

tempting to go ahead and develop your code without studying this manual fur-

ther.

Even though immediate success can be achieved easily, we recommend that

you have a closer look at this manual, since it provides a deeper understanding of

how the different tools work and how to achieve the best results when optimizing

for runtime performance, memory demand or development time.

The JamaicaVM tools provide a myriad of options and settings that have been

collected in this manual. Developing a basic knowledge of what possibilities are

available may help you to find the right option or setting when you need it. Our

experience is that significant amounts of development time can be avoided by a

good understanding of the tools. Learning about the correct use of the JamaicaVM

tools is an investment that will quickly pay-off during daily use of these tools!

This manual has been written for the developer of software for embedded and

time-critical applications using the Java programming language. A good under-

13

14 CONTENTS

standing of the Java language is expected from the reader, while a certain fa-

miliarity with the specific problems that arise in embedded and realtime system

development is also helpful.

This manual explains the use of the JamaicaVM tools and the specific fea-

tures of the Jamaica realtime virtual machine. It is not a programming guidebook

that explains the use of the standard libraries or extensions such as the Real-Time

Specification for Java. Please refer to the JavaDoc documentation of these li-

braries provided with JamaicaVM (see Section 2.3).

Contacting aicas
Please contact aicas or one of its sales partners to obtain a copy of JamaicaVM for

your specific hardware and RTOS requirements, or to discuss licensing questions

for the Jamaica binaries or source code. The full contact information for the aicas

main offices is reproduced in the front matter of this manual (page 2). The current

list of sales partners is available online at https://www.aicas.com/cms/
resellers.

An evaluation version of JamaicaVM may be downloaded from the aicas web

site at https://www.aicas.com/cms/downloads.

Please help us improve this manual and future versions of JamaicaVM. E-mail

your bug reports and comments to bugs@aicas.com. Please include the exact

version of JamaicaVM you use, the host and target systems you are developing for

and all the information required to reproduce the problem you have encountered.

What is New in JamaicaVM 8.3
Version 8.3 of JamaicaVM adds support for further important APIs. This includes

platform-independent headless graphics, the Java Architecture for XML Binding

(JAXB) and CORBA. The API coverage is now comparable to that of headless

versions of JamaicaVM 6. For more details on headless graphics support, see

Appendix A.3.3. For a full overview of the unsupported features, please refer

to the UNSUPPORTED file provided with the user documentation (Section 2.3).

Platform-specific limitations are further discussed in detail in Appendix B.

What is New in JamaicaVM 8.2
Version 8.2 of JamaicaVM adds support for important APIs of the compact3
profile. This includes the Java Naming and Directory Interface (JNDI) and parts

CONTENTS 15

of the Management API and Extension that are compatible with the supported

platforms and JamaicaVM itself.

The compiler optimizes invocations of the lambda metafactory java.lang.
invoke.LambdaMetafactory. This makes the runtime of lambda expres-

sions in Java code more deterministic and can improve the performance.

Notable are also the following new features:

• Elliptic Curve Cryptography is now supported on Linux, QNX and Win-

dows. Previously it was only supported on Linux for the x86_64 architec-

ture.

• The profiling VM is now precompiled. This improves the performance of

profile generation and yields better profiles in situations where the uncom-

piled profiling VM runs into timeouts.

• JamaicaVM now prints the stack of the corresponding native thread and

all Java threads when a SIGSEGV or SIGABRT signal is encountered (if

supported by the platform).

What is New in JamaicaVM 8.1
Version 8.1 of JamaicaVM extends the range of platforms supported by Jamaica 8

by Windows as host and VxWorks 7 as target.

The compiler underlying the Builder and JAR Accelerator was redesigned. Its

intermediate representation is now based on static single assignment form. This

enables additional code optimizations and improves runtime performance.

Notable are also the following improvements:

• Several revisions to scheduling avoid potential situtations of priority inver-

sion and can lead to improved multicore performance.

• The RTSJ priority ceiling emulation monitor control policy is now also sup-

ported by the multicore VM.

• Support for locking application memory into RAM preventing jitter caused

by memory being swapped.

• Maximum supported heap size increased to 127GB (on 64-bit systems).

• More graceful handling of 32-bit system timer overflows (year 2038 prob-
lem).

16 CONTENTS

• If the target platform has no configured entropy source, JamaicaVM no

longer falls back to software emulation. (An entropy source is required

by java.security.SecureRandom and APIs that depend on it.)

What is New in JamaicaVM 8.0
With this version of JamaicaVM, aicas opens OpenJDK 8 to the realtime domain.

There are numerous improvements and API extensions, perhaps the most impor-

tant one being lambdas and the stream processing API. Notable is also an en-

hanced API for file handling. JamaicaVM will be available in a number of com-
pact profiles, so users who need fewer APIs can benefit from smaller library sizes.

JamaicaVM 8.0 provides solid support for IPv6.

For a full list of user-relevant changes including changes between minor re-

leases of JamaicaVM, see the release notes, which are provided in the Jamaica

installation, folder doc, file RELEASE_NOTES.

Part I

Introduction

17

Chapter 1

Key Features of JamaicaVM

The Jamaica Virtual Machine (JamaicaVM) is an implementation of the Java Vir-

tual Machine Specification. It is a runtime system for the execution of applications

written for Java Standard Edition (Java SE). It has been designed for realtime and

embedded systems and offers unparalleled support for this target domain. Among

the notable features of JamaicaVM are:

• Hard realtime execution guarantees

• Support for the Real-Time Specification for Java, Version 1.0.2

• Minimal footprint

• ROMable code

• Native code support

• Dynamic linking

• A variety of supported platforms

• Fast execution

• Powerful tools for timing and performance analysis

1.1 Hard Realtime Execution Guarantees
JamaicaVM is the only implementation that provides hard realtime guarantees

for all features of the languages together with high performance runtime effi-

ciency. This includes dynamic memory management, which is performed by the

JamaicaVM garbage collector.

19

20 CHAPTER 1. KEY FEATURES OF JAMAICAVM

All threads executed by the JamaicaVM are realtime threads, so there is no

need to distinguish realtime from non-realtime threads. Any higher priority thread

is guaranteed to be able to preempt lower priority threads within a fixed worst-case

delay. There are no restrictions on the use of the Java language to program real-

time code; since the JamaicaVM executes all Java code with hard realtime guar-

antees, even realtime tasks can use the full Java language, i.e., allocate objects,

call library functions, etc. No special care is needed. Short worst-case execution

delays can be determined for any code.

1.2 Real-Time Specification for Java support
JamaicaVM is an industrial-strength implementation of the Real-Time Specifica-

tion for Java (RTSJ) V1.0.2 [2] for a wide range of real-time operating systems

available on the market. It combines the additional APIs provided by the RTSJ

with the predictable execution obtained through realtime garbage collection and a

realtime implementation of the virtual machine.

1.3 Minimal footprint
JamaicaVM itself occupies less than 1 MB of memory (depending on the target

platform), so that small applications that make limited use of the standard libraries

typically fit into a few MB of memory. The largest part of the memory required

to store a Java application is typically the space needed for the application’s class

files and related resources such as character encodings. Several measures are taken

by JamaicaVM to minimize the memory needed for Java classes:

• Compaction: Classes are represented in an efficient and compact format to

reduce the overall size of the application.

• Smart Linking: JamaicaVM analyzes the Java applications to detect and

remove any code and data that cannot be accessed at runtime.

• Fine-grained control over included resources such as character encodings,

locales, supported protocols, etc.

Compaction typically reduces the size of class file data by over 50%, while smart

linking allows for much higher gains even for non-trivial applications.

This footprint reduction mechanism allows the usage of complex Java library

code, without worrying about the additional memory overhead: Only code that is

really needed by the application is included and is represented in a very compact

format.

1.4. ROMABLE CODE 21

1.4 ROMable code
The JamaicaVM allows class files to be linked with the virtual machine code into

a standalone executable. The resulting executable can be stored in ROM or flash-

memory since all files required by a Java application are packed into the stan-

dalone executable. There is no need for file-system support on the target platform,

as all data required for execution is contained in the executable application.

1.5 Native code support
The JamaicaVM implements the Java Native Interface V1.2 (JNI). This allows

for direct embedding of existing native code into Java applications, or to encode

hardware-accesses and performance-critical code sections in C or machine code

routines. The usage of the Java Native Interface provides execution security even

in the presence of native code, while binary compatibility with other Java imple-

mentations is ensured. Unlike other Java implementations, JamaicaVM provides

exact garbage collection even in the presence of native code. Realtime guarantees

for the Java code are not affected by the presence of native code.

1.6 Dynamic Linking
One of the most important features of Java is the ability to dynamically load code

in the form of class files during execution, e.g., from a local file system or from a

remote server. The JamaicaVM supports this dynamic class loading, enabling the

full power of dynamically loaded software components. This allows, for exam-

ple, on-the-fly reconfiguration, hot swapping of code, dynamic additions of new

features, or applet execution.

1.7 Supported Platforms
During development special care has been taken to reduce porting effort of the

JamaicaVM to a minimum. JamaicaVM is implemented in C using the GNU C

compiler. Threads are based on native threads of the operating system.1

1.7.1 Development platforms
Jamaica is available for the following development platforms (host systems):

1POSIX threads under many Unix systems.

22 CHAPTER 1. KEY FEATURES OF JAMAICAVM

• Linux

• Windows

1.7.2 Target platforms
With JamaicaVM, application programs for a large number of platforms (target

systems) can be built. The operating systems listed in this section are supported

as target systems only. You may choose any other supported platform as a devel-

opment environment on which the Jamaica Builder runs to generate code for the

target system.

1.7.2.1 Realtime Operating Systems

• Linux/RT

• PikeOS

• QNX

• WinCE

• VxWorks

1.7.2.2 Non-Realtime Operating Systems

Applications built with Jamaica on non-realtime operating systems may be inter-

rupted non-deterministically by other threads of the operating systems. However,

Jamaica applications are still deterministic and there are still no unexpected inter-

rupts within Jamaica applications themselves, unlike with standard Java Virtual

Machines.

• Linux

• Windows

1.7.2.3 Processor Architectures

JamaicaVM is highly processor architecture independent. New architectures can

be supported in a straightforward manner. Currently, Jamaica runs on the follow-

ing processor architectures:

• ARMv7-A

1.8. FAST EXECUTION 23

• ARMv8-A

• PowerPC

• 32-bit x86

• 64-bit x86

Ports to any required combination of target OS and target processor can be sup-

ported. Clear separation of platform-dependent from platform-independent code

reduces the required porting effort for new target OS and target processors. If

you are interested in using Jamaica on a specific target OS and target processor

combination or on any operating system or processor that is not listed here, please

contact aicas.

1.8 Fast Execution
The JamaicaVM interpreter performs several selected optimizations to ensure op-

timal performance of the executed Java code. Nevertheless, realtime and embed-

ded systems are often very performance-critical as well, so a purely interpreted

solution may be unacceptable. Current implementations of Java runtime systems

use just-in-time compilation technologies that are not applicable in realtime sys-

tems as the initial compilation delay breaks all realtime constraints.

The Jamaica compilation technology attacks the performance issue in a new

way: methods and classes can selectively be compiled as a part of the build pro-

cess (static compilation). C-code is used as an intermediary target code, allowing

easy porting to different target platforms. The Jamaica compiler is tightly inte-

grated into the memory management system, allowing highest performance and

reliable realtime behavior. No conservative reference detection code is required,

enabling fully exact and predictable garbage collection.

1.9 Tools for Realtime and Embedded System De-
velopment

JamaicaVM comes with a set of tools that support the development of applications

for realtime and embedded systems.

• Jamaica Builder: a tool for creating a single executable image out of the

Jamaica Virtual Machine and a set of Java classes. This image can be loaded

into flash-memory or ROM, avoiding the need for a file-system in the target

platform.

24 CHAPTER 1. KEY FEATURES OF JAMAICAVM

For most effective memory usage, the Jamaica Builder determines the amount

of memory that is actually used by an application. This allows both system

memory and heap size to be precisely chosen for optimal runtime perfor-

mance. In addition, the Builder enables the detection of performance critical

code to control the static compiler for optimal results.

• JamaicaTrace: provides the means to analyze and fine-tune the behavior of

threaded Java applications.2

• VeriFlux: a static analysis tool for the object-oriented domain that enables

to prove the absence of potential faults such as null pointer exceptions or

deadlocks in Java programs.2

2JamaicaTrace and VeriFlux are not part of the standard Jamaica license.

Chapter 2

Getting Started

2.1 Installation of JamaicaVM
A release of the JamaicaVM tools consists of a .info file with detailed infor-

mation about the host and target platform and optional features such as graphics

support, and a package for the Jamaica binaries, library and documentation files.

The Jamaica version, build number, host and target platform and other properties

of a release is encoded as a release identification string incorporating the names

of the .info and package files according to the following scheme:

Jamaica-version-build[-features]-host[-target].info
Jamaica-version-build[-features]-host[-target].suffix

Package files with the following package suffixes are released.

Host Platform Suffix Package Kind
Linux rpm Package for the rpm package manager

tar.gz Compressed tape archive file

Windows exe Interactive installer

zip Windows zip file

In order to install the JamaicaVM tools, the following steps are required:

• Unpack and install the Jamaica binaries, library and documentation files on

the host platform,

• Configure the tools for host and target platform (C compiler and native li-

braries),

• Set environment variables.

• Install license keys.

25

26 CHAPTER 2. GETTING STARTED

The actual installation procedure varies from host platform to host platform; see

the sections below. Cross-compilation tool chains for certain target platforms re-

quire additional setup. Please check Appendix B.

2.1.1 Linux

2.1.1.1 Unpack and Install Files

The default is a system-wide installation of Jamaica. Super user privileges are

required. On Redhat-based systems (CentOS and Fedora), if the rpm package

manager is available, the recommended method is:

> rpm -i Jamaica-release-identification-string.rpm

Otherwise, unpack the compressed .tar file and run the installation script as

follows:

> tar xfz Jamaica-release-identification-string.tar.gz
> ./Jamaica.install

Both methods will install the Jamaica tools in the following directory, which is

referred to as jamaica-home:

/usr/local/jamaica-version-build

In addition, the symbolic link /usr/local/jamaica is created, which points

to jamaica-home, and symbolic links to the Jamaica executables are created in

/usr/bin, so it is not necessary to extend the PATH environment variable.

In order to uninstall the Jamaica tools, depending on the installation method

used, either use the erase option of rpm or the provided uninstall script Jamaica.
remove.

If super user privileges are not available, the tools may alternatively be in-

stalled locally in a user’s home directory:

> tar xfz Jamaica-release-identification-string.tar.gz
> tar xf Jamaica.ss

This will install the Jamaica tools in usr/local/jamaica-version-build rel-

ative to the current working directory. Symbolic links to the executables are cre-

ated in usr/bin, so they will not be on the default path for executables.

2.1. INSTALLATION OF JAMAICAVM 27

2.1.1.2 Package Dependencies

If the Linux system is CentOS or Fedora, and Jamaica is installed via rpm, pack-

age dependencies are resolved automatically.1 Otherwise, dependencies must be

installed manually via the platform’s package manager. For details, please see the

platform-specific documentation: jamaica-home/doc/README-Linux.txt

2.1.1.3 Configure Platform-Specific Tools

In order for the Jamaica Builder and JAR Accelerator to work, platform-specific

tools such as the C compiler and linker and the locations of the libraries (SDK)

need to be specified. This is done by editing the appropriate configuration files,

jamaica.conf for the Builder and jaraccelerator.conf for the JAR

Accelerator, for the target (and possibly also the host).

The precise location of the configuration files depends on the platform:

jamaica-home/target/platform/etc/jamaica.conf
jamaica-home/target/platform/etc/jaraccelerator.conf

For the full Jamaica directory structure, please refer to Section 2.3. Note that the

configuration for the host platform is also located in a target directory.

The following properties need to be set appropriately in the configuration files:

Property Value
Xcc C compiler executable

Xld Linker executable

Xstrip Strip utility executable

Xinclude Include path

XlibraryPaths Library path

Environment variables may be accessed in the configuration files through the no-

tation ${VARIABLE}. For executables that are on the standard search path (envi-

ronment variable PATH), it is sufficient to give the name of the executable.

2.1.1.4 Set Environment Variables

The environment variable JAMAICA must be set to jamaica-home. It is recom-

mended to also add jamaica-home/bin to the system path. Using bash:

> export JAMAICA=jamaica-home
> export PATH=jamaica-home/bin:$PATH

1Jamaica supports rpm only on Redhat-based systems, not on other variants of Linux even if

they use rpm for dependency resolution.

28 CHAPTER 2. GETTING STARTED

On csh:

> setenv JAMAICA jamaica-home
> setenv PATH jamaica-home/bin:$PATH

2.1.2 Windows
On Windows the recommended method of installation is using the interactive in-

staller, which may be launched by double-clicking the file

Jamaica-release-identification-string.exe

in the Explorer, or by executing it in the CMD shell. You will be asked to pro-

vide a destination directory for the installation and the locations of tools and SDK

for host and target platforms. The destination directory is referred to as jamaica-
home. It defaults to the subdirectory jamaica in Window’s default program

directory—for example, C:\Programs\jamaica, if an English language lo-

cale is used. Defaults for tools and SDKs are obtained from the registry. The

installer will set the environment variable JAMAICA to jamaica-home.

An alternative installation method is to unpack the Windows zip file into a suit-

able installation destination directory. For configuration of platform-specific tools,

follow the instructions provided in Section 2.1.1. In order to set the JAMAICA
environment variable to jamaica-home, open the Control Panel, choose System,

select Advanced System Settings,2 choose the tab Advanced and press Environ-

ment Variables. It is also recommended to add jamaica-home\bin to the PATH
environment variable in order to be able to run the Jamaica executables conve-

niently.

2.2 Installation of License Keys
In order to use JamaicaVM tools, valid licenses are required. License keys are

provided with support contracts while evaluation keys are available with evalua-

tion versions of JamaicaVM.

License keys are provided in key ring files, which have the suffix .aicas_
key. Prior to use, these keys need to be installed. This is done with the aicas key

installer utility aicasKeyInstaller, which is located in jamaica-home/bin.

Simply execute the utility providing the key ring as command line argument:

> cd jamaica-home/bin
> ./aicasKeyInstaller jamaica.aicas_key

2Some Windows versions only.

2.3. JAMAICAVM DIRECTORY STRUCTURE 29

This will extract the keys contained in jamaica.aicas_key and add the in-

dividual key files to user-home/.jamaica. Keys that are already installed will

not be overwritten. The utility reports which keys get installed and which tools

they enable.

Installed keys are for individual tools. Of the tools documented in this manual,

the Builder (see Chapter 13) and JamaicaTrace (see Chapter 16) require keys.3

2.3 JamaicaVM Directory Structure

The Jamaica installation directory is called jamaica-home. The environment vari-

able JAMAICA should be set to this path (see the installation instructions above).

After successful installation, the following directory structure as shown in Tab. 2.1

is created (in this example for a Linux x86 system).

2.3.1 API Specification

The Jamaica API specification (JavaDoc) is available in doc/jamaica_api.

It may be browsed with an ordinary web browser. Its format is compatible with

common IDEs such as Eclipse and Netbeans. If the Jamaica Eclipse plug-in is

used (see Chapter 4), Eclipse will automatically use the API specification of the

selected Jamaica runtime environment.

The specification will always contain all available classes, even if the runtime

environment only supports a compact profile. When developing for a particular

profile, only classes where the specification mentions that profile at the top of the

document should be used.

The Real-Time Specification for Java (RTSJ) is part of the Jamaica API for all

profiles.

2.3.2 Target Platforms

The number of target systems supported by a distribution varies. The target di-

rectory contains an entry for each supported target platform. Typically, a Jamaica

distribution provides support for the target platform that hosts the tool chain, as

well as for an embedded or real-time operating system.

3For old versions of JamaicaVM (before Version 6.0, Release 3), the key installer is provided

separately from the distribution package. For old versions of the installer, the key installer and the

key ring must be placed into the same directory.

30 CHAPTER 2. GETTING STARTED

jamaica-home
+- bin Host tool chain executables

+- doc
+- build.info Comprehensive Jamaica distribution information

+- jamaicavm_manual.pdf
| Jamaica tool chain user manual (this manual)

+- jamaica_api Jamaica API specification (Javadoc)

+- README-*.txt Host platform specific documentation starting points

+- KNOWN_ISSUES Known issues of the present release

+- RELEASE_NOTES User-relevant changes in the present release

+- UNSUPPORTED Unsupported features list

+- *.1 Tool documentation in Unix man page format

+- etc Host platform configuration files

+- lib Libraries for the development tools

+- license aicas evaluation license, third party licenses

+- target
+- linux-x86_64 Target specific files for the target linux-x86_64
+- bin Virtual machine executables (some platforms only)

+- etc Default target platform configuration files

+- examples Example applications

+- include System JNI header files

+- lib Development and runtime libraries, resources

+- prof Default profiles

+- src Source code provided for legal reasons

Table 2.1: JamaicaVM Directory Structure

2.4. BUILDING AND RUNNING A JAVA PROGRAM 31

2.4 Building and Running a Java Program
A number of sample applications are provided. These are located in the directory

jamaica-home/target/platform/examples. In the following instructions it

is assumed that a Unix host system is used. For Windows, please note that the

Unix path separator character “/” should be replaced by “\”.

Before using the examples, it is recommended they be copied from the in-

stallation directory to a working location—that is, copy each of the directories

jamaica-home/platform/examples to user-home/examples/platform.

The HelloWorld example is an excellent starting point for getting acquainted

with the JamaicaVM tools. In this section, the main tools are used to build an

application executable for a simple HelloWorld both for the host and target plat-

forms. First, the command-line tools are used. Later we switch to using ant build

files.

Below, it is assumed that the example directories have been copied to user-
home/examples/host and user-home/examples/target for host and target

platforms respectively.

2.4.1 Host Platform
In order to build and run the HelloWorld example on the host platform, go to

the corresponding examples directory:

> cd user-home/examples/host

Depending on your host platform, host will be linux-x86_64 (in rare cases

linux-x86) or windows-x86.

First, the Java source code needs to be compiled to bytecode. This is done

with jamaicac, Jamaica’s version of javac. The source code resides in the

src folder, and we wish to generate bytecode in a classes folder, which must

be created if not already present:

> mkdir classes
> jamaicac -d classes src/HelloWorld.java

Before generating an executable, we test the bytecode with the Jamaica virtual

machine:

> jamaicavm -cp classes HelloWorld
Hello World!

Hello World!
Hello World!

Hello World!
Hello World!

32 CHAPTER 2. GETTING STARTED

Hello World!
[...]

Having convinced ourselves that the program exhibits the desired behavior, we

now generate an executable with the Jamaica Builder. In the context of the Ja-

maicaVM Tools, one refers to building an application.

> jamaicabuilder -cp classes -interpret HelloWorld
Reading configuration from
’usr/local/jamaica-8.3/target/linux-x86_64/etc/jamaica.conf’...
Jamaica Builder Tool 8.3 Release 0 (build 12543)
(User: EVALUATION USER, Expires: 2019.09.29)
Generating code for target ’linux-x86_64’, optimization ’speed’
+ tmp/HelloWorld__.c
+ tmp/HelloWorld__.h

* C compiling ’tmp/HelloWorld__.c’
+ tmp/HelloWorld__DATA.o

* linking

* stripping
Application memory demand will be as follows:

initial max
Thread C stacks: 1152KB (= 9* 128KB) 63MB (= 511* 128KB)
Thread Java stacks: 144KB (= 9* 16KB) 8176KB (= 511* 16KB)
Heap Size: 2048KB 768MB
GC data: 128KB 48MB
TOTAL: 3472KB 887MB

The Builder has now generated the executable HelloWorld.

> ./HelloWorld
Hello World!

Hello World!
Hello World!

Hello World!
Hello World!

Hello World!
[...]

2.4.2 Target Platform
With the JamaicaVM Tools, building an application for the target platform is as

simple as for the host platform. First go to the corresponding examples directory:

> cd user-home/examples/platform

Then compile and build the application specifying the target platform.

2.4. BUILDING AND RUNNING A JAVA PROGRAM 33

> mkdir classes
> jamaicac -useTarget platform -d classes src/HelloWorld.java
> jamaicabuilder -target=platform -cp=classes -interpret HelloWorld

The target specific binary HelloWorld is generated, which can then be deployed

to the target system. For instructions on launching this on the target operating

system, please consult the documentation of the operating system. Additional OS-

specific hints are provided in Appendix B. If an application runs out of memory on

a target device, please refer to Section 6.4 for instructions on reducing its memory

footprint.

! When transferring files to a device via the file transfer protocol (FTP), it should

be kept in mind that this protocol distinguishes ASCII and binary transfer

modes. For executable and JAR files, binary mode must be used. ASCII mode is

the default, and binary mode is usually activated by issuing binary in the FTP

session. If in doubt, file sizes on the host and target system should be compared.

JamaicaVM provides pre-built virtual machine binaries, which enable execut-

ing Java bytecode on the target system. While these VMs are neither optimized

for speed nor for size, they offer convenient means for rapid prototyping. In order

to use these, JamaicaVM’s runtime environment must be deployed to the target

system. For instructions, please see Section 12.2.

Applications that use advanced Java features such as loading classes dynam-

ically at runtime or reflection usually also require the runtime environment to be

available on the target device.

2.4.3 Improving Size and Performance
The application binaries in the previous two sections provide decent size opti-

mization but no performance optimization at all. The JamaicaVM Tools offer a

wide range of controls to fine tune the size and performance of a built application.

These optimizations are mostly controlled through command line options of the

Jamaica Builder.

Sets of optimizations for both speed and application size are provided with

the HelloWorld example in an ant buildfile (build.xml). In order to use the

buildfile, type ant build-target where build-target is one of the build targets of

the example. For example,

> ant HelloWorld

will build the unoptimized HelloWorld example. In order to optimize for speed,

use the build target HelloWorld_profiled. In order to optimize for applica-

tion size, use HelloWorld_micro. The following is the list of all build targets

available for the HelloWorld example:

34 CHAPTER 2. GETTING STARTED

Example Demonstrates Platforms
HelloWorld Basic Java all

RTHelloWorld Real-time threads (RTSJ) all

SwingHelloWorld Swing graphics with graphics

caffeine CaffeineMark (tm) benchmark all

test jni Java Native Interface all

net Network and internet with network

rmi Remote method invocation with network

DynamicLibraries Loading native code at runtime where supported

Queens Parallel execution multicore systems

Acceleration Speeding up JAR libraries where supported

Table 2.2: Example applications provided in the target directories

HelloWorld Build an application in interpreted mode. The generated binary is

HelloWorld.

HelloWorld_profiled Build a statically compiled application based on a

profile run. The generated binary is HelloWorld_profiled.

HelloWorld_micro Build an application with optimized memory demand.

The generated binary is HelloWorld_micro.

classes Convert Java source code to bytecode.

all Build all three applications.

run Run all three applications—only useful on the host platform.

clean Remove all generated files.

2.4.4 Overview of Further Examples

For an overview of the available examples, see Tab. 2.2. Examples that require

graphics or network support are only provided for platforms that support graphics

or network, respectively. Each example comes with a README file that provides

further information and lists the available build targets.

2.5. NOTATIONS AND CONVENTIONS 35

2.5 Notations and Conventions
Notations and typographic conventions used in this manual and by the JamaicaVM

Tools in general are explained in the following sections.

2.5.1 Typographic Conventions
Throughout this manual, names of commands, options, classes, files etc. are set in

this monospaced font. Output in terminal sessions is reproduced in slanted
monospaced in order to distinguish it from user input. Entities in command lines

and other user inputs that have to be replaced by suitable user input are shown in

italics.

As a brief example, here is the description of the Unix command-line tool

cat, which outputs the content of a file on the terminal:

Use cat file to print the content of file on the terminal. For example,

the content of the file song.txt may be shown as:

> cat song.txt
Mary had a little lamb,
Little lamb, little lamb,
Mary had a little lamb,
Its fleece was white as snow.

In situations where suitable fonts are not available—say, in terminal output—

entities to be replaced by the user are displayed in angular brackets. For example,

cat <file> instead of cat file.

2.5.2 Argument Syntax
In the specification of command line arguments and options, the following nota-

tions are used.

Alternative: the pipe symbol “|” denotes alternatives. For example:

-Xcpus=n1{,n2} | n1..n2 | all

means that the Xcpus option must be set using exactly one of the specified

values/formats, a set, a range, or all.

Option: optional arguments that may appear at most once are enclosed in brack-

ets. For example:

36 CHAPTER 2. GETTING STARTED

-heapSize=n[K|M]

means that the heapSize option must be set to a (numeric) value n, which

may be followed by either K or M.

Repetition: optional arguments that may be repeated are enclosed in braces. For

example:

-priMap=jp=sp{,jp=sp}

means that the priMap accepts one or several comma-separated arguments

of the form jp=sp. These are assignments of Java priorities to system prior-

ities.

Alternative option names (aliases) are indicated in parentheses. For example:

-help(-h, -?)

means that the option help may be invoked by any one of -help, -h and -?.

2.5.3 Jamaica Home and User Home
The file system location where the JamaicaVM Tools are installed is referred to as

jamaica-home. In order for the tools to work correctly, the environment variable

JAMAICA must be set to jamaica-home (see Section 2.1).

The JamaicaVM Tools store user-related information such as license keys in

the folder .jamaica inside the user’s home directory. The user’s home direc-

tory is referred to as user-home. On Unix systems it is usually /home/user, on

Windows C:\Users\user.

Chapter 3

Tools Overview

The JamaicaVM tool chain provides all the tools required to process Java source

code into an executable format on the target system. Fig. 3.1 provides an overview

of this tool chain.

3.1 Jamaica Java Compiler
JamaicaVM uses Java source code files (see the Java Language Specification [4])

as input to first create platform independent Java class files (see the Java Vir-

tual Machine Specification [9]) in the same way classical Java implementations

do. JamaicaVM provides its own Java bytecode compiler, jamaicac, to do this

translation. However, any other bytecode compiler such as JDK’s javac may be

used. For a more detailed description of jamaicac see Chapter 11.

When using a compiler other than jamaicac it is important to set the boot-

classpath to the Jamaica system classes located in the JAR files in the following

folder:

jamaica-home/target/platform/lib/

In addition, please note that bytecode must be generated for the correct target

level. JamaicaVM is capable of processing bytecode up to the target level indi-

cated by its major version.

3.2 Jamaica Virtual Machine
The command jamaicavm provides a version of the Jamaica virtual machine.

It can be used directly to quickly execute a Java application. It is the equivalent

to the java command that is used to run Java applications with Oracle’s JDK. A

37

38 CHAPTER 3. TOOLS OVERVIEW

Figure 3.1: The Jamaica Toolchain

more detailed description of jamaicavm and similar commands that are part of

Jamaica can be found in Chapter 12.

JamaicaVM loads all class files that are required to start the application. It con-

tains the Jamaica Java interpreter, which then executes the bytecode commands

found in these class files. Any new class that is referenced by a bytecode instruc-

tion that is executed will be loaded on demand to execute the full application.

Applications running using the jamaicavm command are not well optimized.

There is no just-in-time compiler to speed up execution and no specific measures

are taken to reduce the footprint. We therefore recommend using the Jamaica

Builder presented in the next section and discussed in detail in Chapter 13 to run

Java applications with JamaicaVM on an embedded system.

3.3 Creating Target Executables
In contrast to jamaicavm, the jamaicabuilder command does not execute

the Java application directly. Instead, the Builder loads all the classes that are

part of a Java application and packages them together with the Jamaica runtime

system (Java interpreter, class loader, realtime garbage collector, native interface

code, etc.) into a stand-alone executable. This executable can then be executed

on the target system without needing to load classes from a file system as is done

by the jamaicavm command, but can instead immediately begin executing the

bytecode of the application’s classes built into the executable.

3.4. ACCELERATING JAR FILES 39

The Builder has the opportunity to perform optimizations on the Java appli-

cation before it is built into a stand-alone executable. These optimizations reduce

the memory demand (smart linking, bytecode compaction, etc.) and increase its

runtime performance (bytecode optimizations, profile-guided static compilation,

etc.). Additionally, the Builder permits fine-grained control over the resources

available to the application such as number of threads, heap size, stack sizes and

enables the user to deactivate expensive functions such as dynamic heap enlarge-

ment or thread creation at runtime. A more detailed description of the Builder is

given in Chapter 13.

3.4 Accelerating JAR Files
Many Java-based applications require loading additional bytecode at runtime.

This holds true especially for application frameworks, of which OSGi is a well-

known example. Such code is typically bundled in JAR files. While jamaicavm
and executables created with the Builder can load bytecode at runtime and execute

it with Jamaica’s interpreter, this code cannot benefit from the performance gain

of static compilation provided by jamaicabuilder.

The Jamaica JAR Accelerator addresses this problem. It works like the Builder

but instead of converting bytecode to a standalone executable, it creates a native

library that is added to the JAR file and loaded and linked at runtime. For more

information on the JAR Accelerator, please refer to Chapter 14.

3.5 Monitoring Realtime Behavior
JamaicaTrace enables the monitoring of the realtime behavior of applications and

helps developers to fine-tune the threaded Java applications running on Jamaica

runtime systems. These runtime systems can be either the Jamaica VM or any

application that was created using the Jamaica Builder. An overview of Jamaica-

Trace is given in Chapter 16.

40 CHAPTER 3. TOOLS OVERVIEW

Chapter 4

Support for the Eclipse IDE

Integrated development environments (IDEs) make a software engineer’s life eas-

ier by aggregating all important tools under one user interface. aicas provides a

plug-in to integrate the JamaicaVM Virtual Machine and the JamaicaVM Builder

into the Eclipse IDE, which is a popular IDE for Java. The following instructions

refer to versions 1.3.1 and later of the Eclipse plug-in.

4.1 Plug-in installation
The JamaicaVM plug-in can be installed and updated through the Eclipse plug-in

manager.

4.1.1 Installation on Eclipse
For use with Jamaica 8, Eclipse 4.4 or later, a Java 1.7 compatible Java runtime

environment (JRE) and version 1.3.1 of the Eclipse plug-in are required.1 Using

the latest available Eclipse version and an up-to-date JRE is recommended. The

following instructions refer to Eclipse 3.5. The menu structure of other Eclipse

versions may differ slightly.

The plug-in may be installed from the update site provided on the aicas web

servers, or, if web access is not available, from a local update site, which may be

set up from a ZIP file. To install the plug-in from the aicas web servers, select the

menu item

Help > Install New Software...,

add the update site

1The plug-in itself requires Eclipse 3.5 or later and a Java 1.5 compatible Java runtime envi-

ronment (JRE), but then Java 8 language features are not available.

41

42 CHAPTER 4. SUPPORT FOR THE ECLIPSE IDE

https://www.aicas.com/download/eclipse-plugin

and install JamaicaVM Tools.2 The plug-in is available after a restart of

Eclipse. To perform an update, select Help > Check for updates....

You will be notified of updates.

For users working in development environments without internet access, the

JamaicaVM Eclipse plug-in can be provided as a ZIP file. This will be named

jamaicavm-eclipse-plugin-version-update-site.zip

and should be unpacked to a temporary location in the file space. To install, follow

the instructions above where the web address should be replaced by the temporary

location. “Contact all update sites during install to find required software” should

not be selected in this case.

4.1.2 Installation on Other IDEs

The plug-in may also be used on development environments that are based on

Eclipse such as WindRiver’s WorkBench or QNX Momentics. These environ-

ments are normally not set up for Java development and may lack the Java Devel-

opment Tools (JDT). In order to install these

• Identify the Eclipse version the development environment is derived from.

This information is usually available in the Help > About dialog — for

example, Eclipse 3.5.

• Some IDEs have the menu item for installing new software disabled by

default. To enable it, switch to the Resource Perspective. Select Window
> Open Perspective > Other... and choose Resource.

• Add the corresponding Eclipse Update Site, which is http://download.
eclipse.org/eclipse/updates/3.5 in this example, and install

the JDT: select Help > Install New Software... and add the

update site. Then uncheck “Group items by category” and select the pack-

age “Eclipse Java Development Tools”. Installation may require the IDE to

be run in admin mode.

Restart the development environment before installing the JamaicaVM plug-in.

2Some web browsers may be unable to display the update site.

4.2. SETTING UP JAMAICAVM DISTRIBUTIONS 43

4.2 Setting up JamaicaVM Distributions

A Jamaica distribution must be made known to Eclipse and the Jamaica plug-in

before it can be used. This is done by installing it as a Java Runtime Environment

(JRE). In the global preferences dialog (usually Window > Preferences),

open Section Java > Installed JREs, click Add..., select JamaicaVM
and choose the Jamaica installation directory as the JRE home. The wizard will

automatically provide defaults for the remaining fields.

4.3 Using JamaicaVM in Java Projects

After setting up a Jamaica distribution as a JRE, it can be used like any other JRE

in Eclipse. For example, it is possible to choose Jamaica as a project specific

environment for a Java project, either in the Create Java Project wizard,

or by changing JRE System Library in the properties of an existing project.

It is also possible to choose Jamaica as the default JRE for the workspace.

In many cases, referring to a particular Java runtime environment is incon-

venient, and Eclipse provides execution environments as an abstraction of JREs

with particular features — for example, JavaSE-1.8. For projects relying on

features that are specific to JamaicaVM, such as the RTSJ, the execution environ-

ments JamaicaVM-6 and JamaicaVM-8 are provided. They may be used as

drop-in replacements for JavaSE-1.6 and JavaSE-1.8, respectively.

If you added a new Jamaica distribution and its associated JRE installation is

not visible afterwards, please restart Eclipse.

4.4 Setting Virtual Machine Parameters

The JamaicaVM Virtual Machine is configured through environment variables

that control runtime parameters such as the heap size or the size of memory areas

such as scoped memory. To set these in Eclipse, create or open a run config-

uration of type Java Application or of type Jamaica Application.

Environment variables can be defined on the tab named Environment. The

configuration type Jamaica Application provides an additional tab with

predefined controls for the environment variables understood by the JamaicaVM

Virtual Machine (see Section 12.4).

44 CHAPTER 4. SUPPORT FOR THE ECLIPSE IDE

4.5 Building applications with Jamaica Builder
The plug-in extends Eclipse with support for the Jamaica Builder tool. In the

context of this tool, the term “build” is used to describe the process of translating

compiled Java class files into an executable file. Please note that in Eclipse’s

terminology, “build” means compiling Java source files into class files.

4.5.1 Getting started
In order to build your application with Jamaica Builder, you must create a Jamaica

Buildfile. A wizard is available for creating a build file for an existing project with

sources (the wizard needs to know the main class).

To use the wizard, invoke Eclipse’s New dialog by choosing File > New
> Other..., navigate to Jamaica > Jamaica Buildfile. Choose a

project in the workspace whose JRE is Jamaica, select a target platform and spec-

ify the application’s main class.

After finishing the wizard, the newly created buildfile is opened in a graphical

editor containing an overview page, a configuration page and a source page. It

shows a build target and, if generated by the wizard, a launch target. You can

review and modify the Jamaica Builder configuration by clicking Edit in the

build target on the Overview page, or in order to start the build process, click

Build.

4.5.2 Jamaica Buildfiles
This section gives a more detailed introduction to Jamaica Buildfiles and the

graphical editor to edit them easily.

4.5.2.1 Concepts

Jamaica Buildfiles are build files understood by Apache Ant. (See http://
ant.apache.org.) These build files mainly consist of targets containing a

sequence of tasks which can achieve an objective like compiling a set of Java

classes. Many tasks are already included with Ant, but tasks may also be provided

by a third party.

Third party tasks must be defined within the buildfile by a task definition

(taskdef). Ant tasks that invoke the Jamaica Builder and other tools are part of

the JamaicaVM tools. See Chapter 18 for available Ant tasks and further details

on the structure of the Jamaica Buildfiles.

The Jamaica-specific tasks can be parameterized in a similar manner as the

tools they represent. We define the usage of such a task along with a set of options

4.5. BUILDING APPLICATIONS WITH JAMAICA BUILDER 45

as a configuration. We use the term Jamaica Buildfile to describe an Ant buildfile

that defines at least one of the Jamaica-specific Ant tasks and contains one or

many configurations.

The benefit of this approach is that configurations can easily be used outside of

Eclipse, integrated in a build process and exchanged or stored in a version control

system.

4.5.2.2 Using the editor

The editor for Jamaica Buildfiles consists of three or more pages. The first page

is the Overview page. On this page, you can manage your configurations, task

definitions and Ant properties. More information on this can be found in the

following paragraphs. The pages after the Overview page represent a configu-

ration. The last page displays the XML source code of the buildfile. Normally,

you should not need to edit the source directly.

4.5.2.3 Configure Builder options

A configuration page consists of a header section and a body part. Using the

controls in the header, you can request a build of the current configuration, change

the task definition used by the configuration or add options to the body part. Each

option in the configuration is displayed by an input mask, allowing you to perform

various actions:

• Modify options. The input masks reflect the characteristics of their asso-

ciated option, e.g., an option that expects a list will be displayed as a list

control. Input masks that consists only of a text field show a diskette sym-

bol in front of the option name when modified. Please press [Enter] or

click the symbol to accept the new value.

• Remove options. Each input mask has an x control that will remove the

option from the configuration.

• Disable options. Options can also be disabled instead of being removed,

e.g., in order to test the configuration without a specific option. Click the

arrow in front of an option to disable it.

• Load default values. The default control resets the option’s value to the

default (not available for all options).

• Show help. The question mark control displays the option’s help text.

46 CHAPTER 4. SUPPORT FOR THE ECLIPSE IDE

The values of all options are immediately validated. If a value is not valid for a

specific option, that option will be annotated with a red error marker. An error

message is shown when hovering over the error marker.

4.5.2.4 Multiple build targets

It is possible to store more than one build target in a buildfile. Click New Build
Target to create a new Builder configuration. The new configuration will be

displayed in a new page in the editor. A configuration can be removed on the

Overview page by clicking Remove.

4.5.2.5 Ant properties

Ant properties provide a text-replacement mechanism within Ant buildfiles. The

editor supports Ant properties in option values. This is especially useful in con-

junction with multiple configurations in one buildfile, when you create Ant prop-

erties for option values that are common to all configurations. Additionally you

can also specify environment properties. They allow you to set a prefix string for

access to the environment variables of your system. To create an environment

property, just click + in the properties section of the Overview page and enter

<environment> as property name. If you set env as the value, environment

variables are made available as properties. For example, VARIABLE can be ac-

cessed as property env.VARIABLE.

4.5.2.6 Launch built application

The editor provides a simple way to launch the built application when it has been

built for the host platform. If the wizard did not already generate a target of the

form launch_name, click New Launch Target to add a target that executes

the binary that resulted from the specific Builder configuration. Add command

line arguments if needed. Then click Launch to start the application.

Part II

Tools Usage and Guidelines

47

Chapter 5

Performance Optimization

The most fundamental technique employed by the Jamaica Builder to improve the

performance of an application is to statically compile those parts that contribute

most to the overall runtime. These parts are identified in a profile run of the

application. Identifying these parts is called profiling. Profiling information is

used by the Builder to decide which parts of an application need to be compiled

and whether further optimizations such as inlining the code are necessary.

5.1 Creating a profile

The profiling VM and the Builder’s -profile option provide simple means of

profiling an application. Setting the -profile option enables profiling. The

Builder will then link the application with the profiling version of the JamaicaVM

libraries.

During profiling the Jamaica Virtual Machine counts, among other things, the

number of bytecode instructions executed within each method of the application.

The number of instructions can be used as a metric for the time spent in each

method. At the end of execution, the total number of bytecode instructions exe-

cuted by each method is written to a file with the simple name of the main class

of the Java application and the suffix .prof, so that it can be used for further

processing. If this file already exists, any new information will be appended.

! Collection of profile information is cumulative. When changing the applica-

tion code and in continuous integration setups, be sure to delete the old profile

before creating a new one.

“Hot spots” (the most likely sources for further performance enhancements by

optimization) in the application can be determined using the profile.

49

50 CHAPTER 5. PERFORMANCE OPTIMIZATION

5.1.1 Using the profiling VM
In simple cases, the profile can be created using the jamaicavmp command on

the host without first building a stand-alone executable. The profile is created

by running the application with jamaicavmp. Here is an example using the

HelloWorld example presented in Section 2.4. We use the command line argument

10000 so that startup code does not dominate. The output looks like this:

> jamaicavmp HelloWorld 10000
Hello World!

Hello World!
Hello World!

Hello World!
Hello World!

Hello World!
[...]

Hello World!
Hello World!

Hello World!
Hello World!

Hello World!
Hello World!
[...]
Start writing profile data into file ’HelloWorld.prof’
Write threads data...
Write invocation data...
Done writing profile data

The use of jamaicavmp is subject to the following restrictions:

• It can generate a profile for the host only.

• Setting Builder options for the application to be profiled is not possible.

If the profile must be created on the target system, profiling with a target-specific

VM such as jamaicavmp_bin should be considered. For more information see

Section 12.2.

5.1.2 Creating a profiling application
If the profile cannot be obtained with a VM, a profiling application can be built

using the Builder option -profile:

> jamaicabuilder -cp classes -profile -interpret HelloWorld
Reading configuration from
’usr/local/jamaica-8.3/target/linux-x86_64/etc/jamaica.conf’...

5.1. CREATING A PROFILE 51

Jamaica Builder Tool 8.3 Release 0 (build 12543)
(User: EVALUATION USER, Expires: 2019.09.29)
Generating code for target ’linux-x86_64’, optimization ’speed’
+ tmp/HelloWorld__.c
+ tmp/HelloWorld__.h

* C compiling ’tmp/HelloWorld__.c’
+ tmp/HelloWorld__DATA.o

* linking

* stripping
Application memory demand will be as follows:

initial max
Thread C stacks: 1152KB (= 9* 128KB) 63MB (= 511* 128KB)
Thread Java stacks: 144KB (= 9* 16KB) 8176KB (= 511* 16KB)
Heap Size: 2048KB 768MB
GC data: 128KB 48MB
TOTAL: 3472KB 887MB

The generated executable HelloWorld, when run, will create a profile like the

profiling VM in the previous section.

Profiling VMs can be configured through environment variables. See Sec-

tion 12.4 for a list available variables. If that is not sufficient, Builder options

offer maximum configurability.

5.1.3 Dumping a profile via network

If the application does not exit or writing a profile is very slow on the target, you

can request a profile dump with the jamaicaremoteprofile command. You

need to set the jamaica.profile_request_port property when building

the application with the -profile option or using the profiling VM. Set the

property to an available TCP port and then request a dump remotely:

> jamaicaremoteprofile target port
DUMPING...
DONE.

In the above command, target denotes the IP address or host name of the target

system. By default, the profile is written on the target to a file with the name

of the main class and the suffix .prof. You can change the file name with the

-file option or you can send the profile over the network and write it to the file

system (with an absolute path or relative to the current directory) of the host with

the -net option:

> jamaicaremoteprofile -net=filename target port

52 CHAPTER 5. PERFORMANCE OPTIMIZATION

5.1.4 Creating a micro profile
To speed up the performance of critical sections in the application, you can use

micro profiles that only contain profiling information for a given section (see Sec-

tion 5.2.2). You need to reset the profile just before the critical part is executed

and dump a profile directly after. To reset a profile, you can use the command

jamaicaremoteprofile with the -reset option:

> jamaicaremoteprofile -reset target port

5.2 Using a profile with the Builder
Having collected the profiling data, the Jamaica Compiler can create a compiled

version of the application using the profile information. This compiled version

benefits from profiling information in several ways:

• Compilation is limited to the most time critical methods, keeping non-

critical methods in smaller interpreted byte-code format.

• Method inlining concentrates on the inlining of calls that were executed

most frequently during the profiling run.

• Profiling information also collects information on the use of reflection, so

an application that cannot use smart linking due to reflection can benefit

from smart linking even without manually listing all classes referenced via

reflection.

5.2.1 Building with a profile
The Builder option -useProfile is used to select the generated profiling data:

> jamaicabuilder -cp classes -useProfile HelloWorld.prof HelloWorld
Reading configuration from
’usr/local/jamaica-8.3/target/linux-x86_64/etc/jamaica.conf’...
Jamaica Builder Tool 8.3 Release 0 (build 12543)
(User: EVALUATION USER, Expires: 2019.09.29)
Generating code for target ’linux-x86_64’, optimization ’speed’
+ tmp/PKG__V79e207a5ff3f9db5__.c
[...]
+ tmp/HelloWorld__.c
+ tmp/HelloWorld__.h

* C compiling ’tmp/HelloWorld__.c’
[...]
+ tmp/HelloWorld__DATA.o

* linking

5.3. INTERPRETING THE PROFILING OUTPUT 53

* stripping
Application memory demand will be as follows:

initial max
Thread C stacks: 1152KB (= 9* 128KB) 63MB (= 511* 128KB)
Thread Java stacks: 144KB (= 9* 16KB) 8176KB (= 511* 16KB)
Heap Size: 2048KB 768MB
GC data: 128KB 48MB
TOTAL: 3472KB 887MB

Due to the profile-guided optimizations performed by the compiler, the runtime

performance of an application built using a profile typically exceeds the perfor-

mance of a fully compiled application. Furthermore, the memory footprint is sig-

nificantly smaller and the modify-compile-run cycle time is usually significantly

shorter as well since only a small fraction of the application needs to be compiled.

It is not necessary to re-generate profile data after each modification.

5.2.2 Building with multiple profiles
You can use several profiles to improve the performance of your application.

There are two possibilities to specify profiles that behave in different ways.

First, you can concatenate multiple profile files or dump a profile several times

into the same file—which will then behave as if the profiles were recorded sequen-

tially. This can be used to add a new feature.

Second, if you want to a profile more weight instead, e.g., a micro profile for

startup or a performance critical section as described in Section 5.1.4, you can

specify the profile with another -useProfile option. In this case, all profiles

are normalized before they are concatenated, so methods in a short-run micro

profile are more likely to be compiled.

5.3 Interpreting the profiling output
When running in profiling mode, the VM collects data to create an optimized ap-

plication but can also be interpreted manually to find memory leaks or time con-

suming methods. Jamaica can be used to collect information about performance,

memory requirements, etc.

! Measuring the performance on virtual OS images can be time-consuming and

may lead to incorrect results.

To collect additional information, the property jamaica.profile_groups
should be set in order to select one or more profiling groups. The default value

is builder to collect data used by the Builder. This property can be set to the

54 CHAPTER 5. PERFORMANCE OPTIMIZATION

values builder, memory, speed, all or a comma separated combination.

Example:

> jamaicavmp -cp classes \
> -Djamaica.profile_groups=builder,speed \
> HelloWorld 10000

! The format of the profile file is likely to change in future versions of Jamaica

Builder.

5.3.1 Format of the profile file
Every line in the profiling output starts with a keyword followed by space sepa-

rated values. The meaning of these values depends on the keyword. For improved

readability, the corresponding values in different lines are aligned as far as possi-

ble and words and signs to improve readability are added. Here for every keyword

the additional words and signs are omitted and the values are listed in the same

order as they appear in the text file.

Keyword: BEGIN_PROFILE_DUMP Groups: all

Values

1. unique dump ID

Keyword: END_PROFILE_DUMP Groups: all

Values

1. unique dump ID

Keyword: HEAP_REFS Groups: memory

Values

1. total number of references in object attributes

2. total number of words in object attributes

3. relative number of references in object attributes

Keyword: HEAP_USE Groups: memory

Values

5.3. INTERPRETING THE PROFILING OUTPUT 55

1. total number of currently allocated objects of this class

2. number of blocks needed for one object of this class

3. block size in bytes

4. number of bytes needed for all objects of this class

5. relative heap usage of objects of this class

6. total number of objects of this class organized in a tree structure

7. relative number of objects of this class organized in a tree structure

8. name of the class

Keyword: INSTANTIATION_COUNT Groups: memory

Values

1. total number of instantiated objects of this class

2. number of blocks needed for one object of this class

3. number of blocks needed for all objects of this class

4. number of bytes needed for all objects of this class

5. total number of objects of this class organized in a tree structure

6. relative number of objects of this class organized in a tree structure

7. class loader that loaded the class

8. name of the class

Keyword: PROFILE Groups: builder

Values

1. total number of bytecodes executed in this method

2. relative number of bytecodes executed in this method

3. signature of the method

4. class loader that loaded the class of the method

56 CHAPTER 5. PERFORMANCE OPTIMIZATION

Keyword: PROFILE_CLASS_USED_VIA_REFLECTION Groups: builder

Values

1. name of the class used via reflection

Keyword: PROFILE_CYCLES Groups: speed

Values

1. total number of processor cycles spent in this method (if available on the

target)

2. signature of the method

Keyword: PROFILE_INVOKE Groups: builder

Values

1. number of calls from the calling method to the called method

2. bytecode position of the call within the method

3. signature of the calling method

4. signature of the called method

Keyword: PROFILE_INVOKE_CYCLES Groups: speed

Values

1. number of processor cycles spent in the called method

2. bytecode position of the call within the method

3. signature of the calling method

4. signature of the called method

Keyword: PROFILE_NATIVE Groups: all

Values

1. total number of calls to the native method

5.3. INTERPRETING THE PROFILING OUTPUT 57

2. relative number of calls to the native method

3. signature of the called native method

Keyword: PROFILE_NEWARRAY Groups: memory

Values
1. number of calls to array creation within a method

2. bytecode position of the call within the method

3. signature of the method

Keyword: PROFILE_THREAD Groups: memory, speed

Values
1. current Java priority of the thread

2. total amount of CPU cycles in this thread

3. relative time in interpreted code

4. relative time in compiled code

5. relative time in JNI code

6. relative time in garbage collector code

7. required C stack size

8. required Java stack size

Keyword: PROFILE_THREADS Groups: builder

Values
1. maximum number of concurrently used threads

Keyword: PROFILE_THREADS_JNI Groups: builder

Values
1. maximum number of threads attached via JNI

Keyword: PROFILE_VERSION Groups: all

Values
1. version of Jamaica with which the profile was created

58 CHAPTER 5. PERFORMANCE OPTIMIZATION

5.3.2 Example
We can sort the profiling output to find the application methods where most of the

execution time is spent. Under Unix, the 25 methods which use the most execu-

tion time (in number of bytecode instructions) can be found with the following

command:

> grep PROFILE: HelloWorld.prof | sort -rn -k2 | head -n25
PROFILE: 7178736 (20%) sun/nio/cs/UTF_8$Encoder.encodeArrayLo...
PROFILE: 3537130 (10%) java/lang/String.indexOf(II)I [boot]
PROFILE: 1810470 (5%) java/lang/String.getChars(II[CI)V [boot]
PROFILE: 1219361 (3%) java/lang/AbstractStringBuilder.value(...
PROFILE: 1200240 (3%) java/io/BufferedWriter.write(Ljava/lan...
PROFILE: 1089315 (3%) java/lang/AbstractStringBuilder.append...
PROFILE: 960432 (2%) java/nio/Buffer.position(I)Ljava/nio/B...
PROFILE: 880176 (2%) sun/nio/cs/StreamEncoder.writeBytes()V...
PROFILE: 720144 (2%) sun/nio/cs/StreamEncoder.write([CII)V ...
PROFILE: 720144 (2%) java/nio/ByteBuffer.arrayOffset()I [boot]
PROFILE: 617104 (1%) java/lang/String.substring(II)Ljava/la...
PROFILE: 600112 (1%) java/nio/charset/CharsetEncoder.encode...
PROFILE: 580116 (1%) sun/nio/cs/StreamEncoder.implWrite([CI...
PROFILE: 560000 (1%) java/io/BufferedOutputStream.write([BI...
PROFILE: 540108 (1%) java/nio/CharBuffer.arrayOffset()I [boot]
PROFILE: 500100 (1%) java/io/BufferedWriter.flushBuffer()V ...
PROFILE: 480456 (1%) java/nio/Buffer.<init>(IIII)V [boot]
PROFILE: 460080 (1%) java/io/PrintStream.write([BII)V [boot]
PROFILE: 450019 (1%) HelloWorld.main([Ljava/lang/String;)V ...
PROFILE: 420399 (1%) java/nio/Buffer.limit(I)Ljava/nio/Buff...
PROFILE: 385932 (1%) java/lang/AbstractStringBuilder.ensure...
PROFILE: 360072 (1%) java/nio/ByteBuffer.array()[B [boot]
PROFILE: 340000 (0%) java/io/BufferedOutputStream.flushBuff...
PROFILE: 311898 (0%) java/lang/Thread.getId()J [boot]
PROFILE: 300060 (0%) sun/nio/cs/UTF_8.updatePositions(Ljava...

In this small example program, it is not a surprise that nearly all execution time

is spent in methods that are required for writing the output to the screen. The

dominant function is UTF_8$Encoder.encodeArrayLoop from the Open-

JDK classes included in Jamaica, which is used while converting Java’s unicode

characters to the platform’s UTF-8 encoding. Also important is the time spent

in AbstractStringBuilder. Calls to the methods of this class have been

generated automatically by the jamaicac compiler for string concatenation ex-

pressions using the ‘+’-operator.

On systems that support a CPU cycle counter, the profiling data also contains

a cumulative count of the number of processor cycles spent in each method. This

information is useful to obtain a more high-level view on where runtime activity

occurred.

5.3. INTERPRETING THE PROFILING OUTPUT 59

The CPU cycle profiling information is contained in lines starting with the tag

PROFILE_CYCLES:. A similar command line can be used to find the methods

that cumulatively require the majority of execution time:

> grep PROFILE_CYCLES: HelloWorld.prof | sort -rn -k2 | head -n25
PROFILE_CYCLES: 740084940 java/io/PrintStream.println(Lj...
PROFILE_CYCLES: 388810184 java/io/PrintStream.print(Ljav...
PROFILE_CYCLES: 383044212 java/io/PrintStream.write(Ljav...
PROFILE_CYCLES: 358977296 java/io/OutputStreamWriter.flu...
PROFILE_CYCLES: 347792178 sun/nio/cs/StreamEncoder.flush...
PROFILE_CYCLES: 338280012 java/io/PrintStream.newLine()V...
PROFILE_CYCLES: 314637002 com/aicas/jamaica/lang/Profile...
PROFILE_CYCLES: 314033054 sun/nio/cs/StreamEncoder.implF...
PROFILE_CYCLES: 305132864 sun/nio/cs/StreamEncoder.write...
PROFILE_CYCLES: 273642032 java/io/PrintStream.write([BII...
PROFILE_CYCLES: 239994744 java/io/BufferedWriter.flushBu...
PROFILE_CYCLES: 227400774 java/io/OutputStreamWriter.wri...
PROFILE_CYCLES: 223535652 sun/nio/cs/StreamEncoder.write...
PROFILE_CYCLES: 222467256 java/io/BufferedOutputStream.f...
PROFILE_CYCLES: 210650048 sun/nio/cs/StreamEncoder.implW...
PROFILE_CYCLES: 189397176 java/io/BufferedOutputStream.f...
PROFILE_CYCLES: 184270548 java/io/FileOutputStream.write...
PROFILE_CYCLES: 180783010 java/io/FileOutputStream.write...
PROFILE_CYCLES: 152580246 java/nio/charset/CharsetEncode...
PROFILE_CYCLES: 131082924 sun/nio/cs/UTF_8$Encoder.encod...
PROFILE_CYCLES: 116782984 sun/nio/cs/UTF_8$Encoder.encod...
PROFILE_CYCLES: 109052822 java/lang/StringBuilder.append...
PROFILE_CYCLES: 101455818 java/lang/AbstractStringBuilde...
PROFILE_CYCLES: 59249682 java/lang/AbstractStringBuilde...
PROFILE_CYCLES: 39794704 java/nio/CharBuffer.wrap([CII)...

The report is cumulative. It shows more clearly how much time is spent in each

of the named methods. These results show that the method println(String)
of class java.io.PrintStream dominates the program. Note that the main

method of a program is not included in the PROFILE_CYCLES data. The cu-

mulative cycle counts can be used as a basis for a top-down optimization of the

application execution time.

60 CHAPTER 5. PERFORMANCE OPTIMIZATION

Chapter 6

Reducing Footprint and Memory
Usage

This chapter is a hands-on tutorial that shows how to reduce an application’s foot-

print and RAM demand, while also optimizing runtime performance. As example

application we use Pendragon Software’s embedded CaffeineMarkTM 3.0. The

class files for this benchmark are part of the JamaicaVM Tools installation. See

Section 2.4.

6.1 Compilation
JamaicaVM Builder compiles bytecode to machine code, which is typically about

20 to 30 times faster than interpreted code. (This is called static or ahead-of-
time compilation.) However, due to the fact that Java bytecode is very compact

compared to machine code on CISC or RISC machines, compiled code tends to

take up more memory than the equivalent bytecode.

Therefore, in order to improve the performance of an application, only those

sections of bytecode that contribute most to the overall runtime should be com-

piled to machine code in order to achieve improved runtime performance. This

is done using a profile as discussed in the previous chapter (Chapter 5). While

using a profile usually offers the best compromise between footprint and perfor-

mance, JamaicaVM Builder also provides other modes of compilation. These are

discussed in the following sections.

6.1.1 Suppressing Compilation
The Builder option -interpret turns compilation of bytecode off. The created

executable will be a standalone program containing both bytecode of the applica-

61

62 CHAPTER 6. REDUCING FOOTPRINT AND MEMORY USAGE

tion and the virtual machine executing the bytecode.

> jamaicabuilder -cp classes CaffeineMarkEmbeddedApp -interpret \
> -destination=caffeine_interpret
Reading configuration from
’usr/local/jamaica-8.3/target/linux-x86_64/etc/jamaica.conf’...
Jamaica Builder Tool 8.3 Release 0 (build 12543)
(User: EVALUATION USER, Expires: 2019.09.29)
Generating code for target ’linux-x86_64’, optimization ’speed’
+ tmp/caffeine_interpret__.c
+ tmp/caffeine_interpret__.h

* C compiling ’tmp/caffeine_interpret__.c’
+ tmp/caffeine_interpret__DATA.o

* linking

* stripping
Application memory demand will be as follows:

initial max
Thread C stacks: 1152KB (= 9* 128KB) 63MB (= 511* 128KB)
Thread Java stacks: 144KB (= 9* 16KB) 8176KB (= 511* 16KB)
Heap Size: 2048KB 768MB
GC data: 128KB 48MB
TOTAL: 3472KB 887MB

The size of the created binary may be inspected, for example, with a shell com-

mand to list directories. We use ls -sk file, which displays the file size in

1024 Byte units. It is available on Unix systems. On Windows, dir may be used

instead.

> ls -sk caffeine_interpret
17164 caffeine_interpret

The runtime performance for the built application is slightly better compared to

using jamaicavm_slim, a variant of the jamaicavm command that has no built-

in standard library classes (see Section 12.3).

> ./caffeine_interpret
Sieve score = 8025 (98)
Loop score = 7960 (2017)
Logic score = 6242 (0)
String score = 9694 (708)
Float score = 6428 (185)
Method score = 5679 (166650)
Overall score = 7215

> jamaicavm_slim -cp classes CaffeineMarkEmbeddedApp
Sieve score = 6330 (98)
Loop score = 5153 (2017)

6.1. COMPILATION 63

Logic score = 6154 (0)
String score = 8029 (708)
Float score = 5205 (185)
Method score = 5351 (166650)
Overall score = 5961

Better performance will be achieved by compilation as shown in the following

sections.

6.1.2 Using Default Compilation
If none of the options interpret, compile, or useProfile is specified,

default compilation is used. The default means that a pre-generated profile will

be used for the system classes, and all application classes will be fully compiled.

This usually results in good performance for small applications, but it causes sub-

stantial code size increase for larger applications and it results in slow execution

of applications that use the system classes in a way different than as recorded in

the system profile.

> jamaicabuilder -cp classes CaffeineMarkEmbeddedApp \
> -destination=caffeine
Reading configuration from
’usr/local/jamaica-8.3/target/linux-x86_64/etc/jamaica.conf’...
Jamaica Builder Tool 8.3 Release 0 (build 12543)
(User: EVALUATION USER, Expires: 2019.09.29)
Generating code for target ’linux-x86_64’, optimization ’speed’
+ tmp/PKG__Vf20a2ea4a7f057b3__.c
[...]
+ tmp/caffeine__.c
+ tmp/caffeine__.h

* C compiling ’tmp/caffeine__.c’
[...]
+ tmp/caffeine__DATA.o

* linking

* stripping
Application memory demand will be as follows:

initial max
Thread C stacks: 1152KB (= 9* 128KB) 63MB (= 511* 128KB)
Thread Java stacks: 144KB (= 9* 16KB) 8176KB (= 511* 16KB)
Heap Size: 2048KB 768MB
GC data: 128KB 48MB
TOTAL: 3472KB 887MB

> ls -sk caffeine
19256 caffeine

64 CHAPTER 6. REDUCING FOOTPRINT AND MEMORY USAGE

The performance of this example is dramatically better than the performance of

the interpreted version.

> ./caffeine
Sieve score = 200982 (98)
Loop score = 349796 (2017)
Logic score = 3530786 (0)
String score = 15044 (708)
Float score = 161748 (185)
Method score = 78457 (166650)
Overall score = 190230

6.1.3 Using a Custom Profile
Generation of a profile for compilation is a powerful tool for creating small ap-

plications with fast turn-around times. The profile collects information on the

runtime behavior of an application, guiding the compiler in its optimization pro-

cess and in the selection of which methods to compile and which methods to leave

as more compact bytecode.

To generate the profile, we first have to create a profiling version of the appli-

cations using the Builder option profile (see Chapter 5) or using the command

jamaicavmp:

> jamaicavmp -cp classes CaffeineMarkEmbeddedApp
Sieve score = 3443 (98)
Loop score = 3258 (2017)
Logic score = 3786 (0)
String score = 8399 (708)
Float score = 2747 (185)
Method score = 2670 (166650)
Overall score = 3712
Start writing profile data into file ’CaffeineMarkEmbeddedApp.prof’
Write threads data...
Write invocation data...
Done writing profile data

This profiling run also illustrates the runtime overhead of the profiling data col-

lection: the profiling run is significantly slower than the interpreted version.

Now, an application can be compiled using the profiling data that was stored

in file CaffeineMarkEmbeddedApp.prof:

> jamaicabuilder -cp classes \
> -useProfile=CaffeineMarkEmbeddedApp.prof \
> CaffeineMarkEmbeddedApp -destination=caffeine_useProfile10
Reading configuration from

6.1. COMPILATION 65

’usr/local/jamaica-8.3/target/linux-x86_64/etc/jamaica.conf’...
Jamaica Builder Tool 8.3 Release 0 (build 12543)
(User: EVALUATION USER, Expires: 2019.09.29)
Generating code for target ’linux-x86_64’, optimization ’speed’
+ tmp/PKG__Vfe9eb7ee726d744d__.c
[...]
+ tmp/caffeine_useProfile10__.c
+ tmp/caffeine_useProfile10__.h

* C compiling ’tmp/caffeine_useProfile10__.c’
[...]
+ tmp/caffeine_useProfile10__DATA.o

* linking

* stripping
Application memory demand will be as follows:

initial max
Thread C stacks: 1152KB (= 9* 128KB) 63MB (= 511* 128KB)
Thread Java stacks: 144KB (= 9* 16KB) 8176KB (= 511* 16KB)
Heap Size: 2048KB 768MB
GC data: 128KB 48MB
TOTAL: 3472KB 887MB

The resulting application is only slightly larger than the interpreted version but,

simliar to that found with default compilation, the runtime score is significantly

better:

> ls -sk caffeine_useProfile10
17588 caffeine_useProfile10

> ./caffeine_useProfile10
Sieve score = 207112 (98)
Loop score = 304168 (2017)
Logic score = 3781342 (0)
String score = 13174 (708)
Float score = 155794 (185)
Method score = 78149 (166650)
Overall score = 183523

For this small example, the runtime score achieved with default compilation hap-

pens to be higher than for the application built with a custom profile. Nonetheless,

for a large real-world application, using a custom profile usually leads to better

performance.

When a profile is used to guide the compiler, by default 10% of the methods

executed during the profile run are compiled. This results in a moderate code

size increase compared with fully interpreted code and results in a runtime perfor-

mance very close to or typically even better than fully compiled code. Using the

66 CHAPTER 6. REDUCING FOOTPRINT AND MEMORY USAGE

Builder option percentageCompiled, this default setting can be adjusted to

any value from 0% to 100%. Best results are usually achieved with a value from

10% to 30%, where a higher value leads to a larger footprint. Note that setting the

value to 100% is not the same as setting the option compile (see Section 6.1.5),

since using a profile only compiles those methods that are executed during the

profiling run. Methods not executed during the profiling run will not be compiled

when useProfile is used.

Entries in the profile can be edited manually—for example, to insure the com-

pilation of a method that is performance critical. For example, the profile gen-

erated for this example contains the following entry for the method size() of

class java.util.Vector:

PROFILE: 64 (0%) java/util/Vector.size()I

To insure the compilation of this method even when percentageCompiled is

not set to 100%, the profiling data can be changed to a higher value, e.g.:

PROFILE: 1000000 (0%) java/util/Vector.size()I

6.1.4 Code Optimization by the C Compiler
Enabling C compiler optimizations for code size or execution speed can have

an important effect on the size and speed of the application. These optimiza-

tions are enabled via setting the command line options -optimize=size or

-optimize=speed, respectively. Note that speed is normally the default.1

For comparison, we build the caffeine example optimizing for size:

> jamaicabuilder -cp classes \
> -useProfile=CaffeineMarkEmbeddedApp.prof \
> -optimize=size CaffeineMarkEmbeddedApp \
> -destination=caffeine_useProfile10_size
Reading configuration from
’usr/local/jamaica-8.3/target/linux-x86_64/etc/jamaica.conf’...
Jamaica Builder Tool 8.3 Release 0 (build 12543)
(User: EVALUATION USER, Expires: 2019.09.29)
Generating code for target ’linux-x86_64’, optimization ’size’
+ tmp/PKG__V21126bc1a391f16b__.c
[...]
+ tmp/caffeine_useProfile10_size__.c
+ tmp/caffeine_useProfile10_size__.h

* C compiling ’tmp/caffeine_useProfile10_size__.c’
[...]
+ tmp/caffeine_useProfile10_size__DATA.o

1To check the default, invoke jamaicabuilder -help or inspect the Builder status mes-

sages.

6.1. COMPILATION 67

* linking

* stripping
Application memory demand will be as follows:

initial max
Thread C stacks: 1152KB (= 9* 128KB) 63MB (= 511* 128KB)
Thread Java stacks: 144KB (= 9* 16KB) 8176KB (= 511* 16KB)
Heap Size: 2048KB 768MB
GC data: 128KB 48MB
TOTAL: 3472KB 887MB

Code size and performance depend strongly on the C compiler that is employed

and may even show anomalies such as better runtime performance for the version

optimized for smaller code size. We get these results:

> ls -sk caffeine_useProfile10_size
17436 caffeine_useProfile10_size

> ./caffeine_useProfile10_size
Sieve score = 136406 (98)
Loop score = 127455 (2017)
Logic score = 2485603 (0)
String score = 13149 (708)
Float score = 85054 (185)
Method score = 57037 (166650)
Overall score = 118411

6.1.5 Full Compilation
Full compilation can be used when no profiling information is available and code

size and build time are not important issues.

! Fully compiling an application leads to very poor turn-around times and may

require significant amounts of memory during the C compilation phase. We

recommend compilation be used only through profiling as described above.

To compile the complete application, the option compile is set:

> jamaicabuilder -cp classes -compile CaffeineMarkEmbeddedApp \
> -destination=caffeine_compiled
Reading configuration from
’usr/local/jamaica-8.3/target/linux-x86_64/etc/jamaica.conf’...
Jamaica Builder Tool 8.3 Release 0 (build 12543)
(User: EVALUATION USER, Expires: 2019.09.29)
Generating code for target ’linux-x86_64’, optimization ’speed’
+ tmp/PKG__Vafdff32ca82bdc5f__.c
[...]

68 CHAPTER 6. REDUCING FOOTPRINT AND MEMORY USAGE

+ tmp/caffeine_compiled__.c
+ tmp/caffeine_compiled__.h

* C compiling ’tmp/caffeine_compiled__.c’
[...]
+ tmp/caffeine_compiled__DATA.o

* linking

* stripping
Application memory demand will be as follows:

initial max
Thread C stacks: 1152KB (= 9* 128KB) 63MB (= 511* 128KB)
Thread Java stacks: 144KB (= 9* 16KB) 8176KB (= 511* 16KB)
Heap Size: 2048KB 768MB
GC data: 128KB 48MB
TOTAL: 3472KB 887MB

Although the resulting binary is quite large, the performance of the compiled ver-

sion is significantly better than the interpreted version. However, even though all

code was compiled, the performance of the versions created using profiles was

not matched. Typically, this is due to poor cache behavior caused by the large

footprint.

> ls -sk caffeine_compiled
112652 caffeine_compiled

> ./caffeine_compiled
Sieve score = 198287 (98)
Loop score = 354249 (2017)
Logic score = 4447006 (0)
String score = 9439 (708)
Float score = 159125 (185)
Method score = 78710 (166650)
Overall score = 182485

Full compilation is only feasible in combination with the code size optimizations

discussed in the sequel. Experience shows that using a custom profile is superior

in almost all situations.

6.2 Smart Linking
The JamaicaVM Builder can remove unused bytecode from an application. This

is called smart linking and reduces the footprint of both interpreted and statically

compiled code. By default, only a modest degree of smart linking is used. Unused

classes and methods of classes are removed, unless that code is explicitly included

6.2. SMART LINKING 69

with either of the options -includeClasses or -includeJAR. For more

information, see the Builder option -smart.

Additional optimizations are possible if the Builder knows for sure that the

application that is compiled is closed, i.e., all classes of the application are built-

in and the application does not use dynamic class loading to add any additional

code. These additional optimizations include static binding and inlining for vir-

tual method calls if the called method is not redefined by any built-in class. The

Builder can be instructed to perform these optimizations by setting the option

-closed.

In the Caffeine benchmark application, dynamic class loading is not used, so

we can enable closed application optimizations by setting -closed:

> jamaica -cp classes -closed \
> -useProfile=CaffeineMarkEmbeddedApp.prof \
> CaffeineMarkEmbeddedApp \
> -destination=caffeine_useProfile10_closed
Reading configuration from
’usr/local/jamaica-8.3/target/linux-x86_64/etc/jamaica.conf’...
Jamaica Builder Tool 8.3 Release 0 (build 12543)
(User: EVALUATION USER, Expires: 2019.09.29)
Generating code for target ’linux-x86_64’, optimization ’speed’
+ tmp/PKG__Vb08d20f02dacaff4__.c
[...]
+ tmp/caffeine_useProfile10_closed__.c
+ tmp/caffeine_useProfile10_closed__.h

* C compiling ’tmp/caffeine_useProfile10_closed__.c’
[...]
+ tmp/caffeine_useProfile10_closed__DATA.o

* linking

* stripping
Application memory demand will be as follows:

initial max
Thread C stacks: 1152KB (= 9* 128KB) 63MB (= 511* 128KB)
Thread Java stacks: 144KB (= 9* 16KB) 8176KB (= 511* 16KB)
Heap Size: 2048KB 768MB
GC data: 128KB 48MB
TOTAL: 3472KB 887MB

> ls -sk caffeine_useProfile10_closed
17452 caffeine_useProfile10_closed

The effect on the code size is favorable. Additionally, the resulting runtime perfor-

mance is significantly better for code that requires frequent virtual method calls.

Consequently, the results of the Method test in the Caffeine benchmark are im-

proved when closed application optimizations are enabled:

70 CHAPTER 6. REDUCING FOOTPRINT AND MEMORY USAGE

> ./caffeine_useProfile10_closed
Sieve score = 211259 (98)
Loop score = 299349 (2017)
Logic score = 3801943 (0)
String score = 13419 (708)
Float score = 158837 (185)
Method score = 323148 (166650)
Overall score = 234339

6.3 API Library Classes and Resources
The footprint of an application can be further reduced by excluding resources such

as language locales and network protocols, which contain a fair amount of data,

and their associated library classes.

For our example application, there is no need for supporting network protocols

or language locales. Furthermore, neither graphics nor fonts are needed. Conse-

quently, we can set all of protocols, locales, graphics and fonts to

the empty set. The resulting call to build the application is as follows:

> jamaicabuilder -cp classes -closed \
> -useProfile=CaffeineMarkEmbeddedApp.prof \
> -setProtocols=none -setLocales=none \
> -setGraphics=none -setFonts=none \
> CaffeineMarkEmbeddedApp -destination=caffeine_nolibs
Reading configuration from
’usr/local/jamaica-8.3/target/linux-x86_64/etc/jamaica.conf’...
Jamaica Builder Tool 8.3 Release 0 (build 12543)
(User: EVALUATION USER, Expires: 2019.09.29)
Generating code for target ’linux-x86_64’, optimization ’speed’
+ tmp/PKG__Vc942e564357a7481__.c
[...]
+ tmp/caffeine_nolibs__.c
+ tmp/caffeine_nolibs__.h

* C compiling ’tmp/caffeine_nolibs__.c’
[...]
+ tmp/caffeine_nolibs__DATA.o

* linking

* stripping
Application memory demand will be as follows:

initial max
Thread C stacks: 1152KB (= 9* 128KB) 63MB (= 511* 128KB)
Thread Java stacks: 144KB (= 9* 16KB) 8176KB (= 511* 16KB)
Heap Size: 2048KB 768MB
GC data: 128KB 48MB
TOTAL: 3472KB 887MB

6.4. RAM USAGE 71

> ls -sk caffeine_nolibs
7488 caffeine_nolibs

A huge part of the class library code could be removed by the Jamaica Builder so

that the resulting application is significantly smaller than in the previous examples.

6.4 RAM Usage
In many embedded applications, the amount of random access memory (RAM)

required is even more important than the application performance and its code

size. Therefore, a number of means to control the application RAM demand are

available in Jamaica. RAM is required for three main purposes:

1. Memory for application data structures, such as objects or arrays allocated

at runtime.

2. Memory required to store internal data of the VM, such as representations

of classes, methods, method tables, etc.

3. Memory required for each thread, such as Java and C stacks.

Needless to say that Item 1 is predominant for an application’s use of RAM space.

This includes choosing appropriate classes from the standard library. For mem-

ory critical applications, the used data structures should be chosen with care. The

memory overhead of a single object allocated on the Jamaica heap is relatively

small—typically three machine words are required for internal data such as the

garbage collection state, the object’s type information, a monitor for synchroniza-

tion and memory area information. See Chapter 9 for details on memory areas.

Item 2 means that an application that uses fewer classes will also have a lower

memory demand. Consequently, the optimizations discussed in the previous sec-

tions (Section 6.2 and Section 6.3) have a knock-on effect on RAM demand!

Memory needed for threads (Item 3) can be controlled by configuring the number

of threads available to the application and the stack sizes.

6.4.1 Measuring RAM Demand
The amount of RAM actually needed by an application can be determined by set-

ting the Builder option analyze. Apart from setting this option, it is important

that exactly the same arguments are used as in the final version. Here analyze
is set to ‘1’, which indicates a tolerance of 1%:

72 CHAPTER 6. REDUCING FOOTPRINT AND MEMORY USAGE

> jamaicabuilder -cp classes -analyze=1 -closed \
> -useProfile=CaffeineMarkEmbeddedApp.prof \
> CaffeineMarkEmbeddedApp -destination=caffeine_analyze
Reading configuration from
’usr/local/jamaica-8.3/target/linux-x86_64/etc/jamaica.conf’...
Jamaica Builder Tool 8.3 Release 0 (build 12543)
(User: EVALUATION USER, Expires: 2019.09.29)
Generating code for target ’linux-x86_64’, optimization ’speed’
+ tmp/PKG__Vb08d20f02dacaff4__.c
[...]
+ tmp/caffeine_analyze__.c
+ tmp/caffeine_analyze__.h

* C compiling ’tmp/caffeine_analyze__.c’
[...]
+ tmp/caffeine_analyze__DATA.o

* linking

* stripping
Application memory demand will be as follows:

initial max
Thread C stacks: 1152KB (= 9* 128KB) 63MB (= 511* 128KB)
Thread Java stacks: 144KB (= 9* 16KB) 8176KB (= 511* 16KB)
Heap Size: 2048KB 768MB
GC data: 128KB 48MB
TOTAL: 3472KB 887MB

Running the resulting application will print the amount of RAM memory that was

required during the execution:

> ./caffeine_analyze
Sieve score = 64700 (98)
Loop score = 50775 (2017)
Logic score = 3802580 (0)
String score = 288 (708)
Float score = 34434 (185)
Method score = 348794 (166650)
Overall score = 59237

Recommended heap size: 5937K (contiguous memory).
Application used at most 3592608 bytes for reachable objects
on the Java heap
(accuracy 1%).
###
Reserved memory is set to 10%. To obtain lower memory bounds
or worst-case GC overhead, set reserved memory to 0.
###
Worst case allocation overhead:
heapSize dynamic GC const GC work
18563K 6 3

6.4. RAM USAGE 73

14262K 7 4
11853K 8 4
10350K 9 4
9307K 10 4
7974K 12 5
7175K 14 5
6620K 16 6
6232K 18 6
5937K 20 7
5526K 24 8
5253K 28 9
5063K 32 10
4914K 36 11
4800K 40 12
4635K 48 14
4522K 56 17
4441K 64 19
4253K 96 27
4162K 128 36
4071K 192 53
4028K 256 69
3987K 384 100

The memory analysis report begins with a recommended heap size and the actual

memory demand. The latter is the maximum needed by simultaneously reachable

objects during the entire program run.

The JamaicaVM garbage collector needs more memory than the actual mem-

ory demand to do its work. The overhead depends on the GC mode and the amount

of collection work done per allocation. In dynamic mode, which is the default, 20

units of collection work per allocation are recommended, which leads to a mem-

ory overhead. Overheads for various garbage collection work settings are shown

in the table printed by the analyze mode. For more information on heap size anal-

ysis and the Builder option -analyze, see Section 7.2.

6.4.2 Memory Required for Threads
To reduce memory other than the Java heap, one must reduce the stack sizes and

the number of threads that will be created for the application. This can be done as

follows.

6.4.2.1 Reducing Stack Sizes

The Java stack size can be reduced via option javaStackSize to a lower value

than the default (typically 20K). To reduce the size to 4K, javaStackSize=4K

74 CHAPTER 6. REDUCING FOOTPRINT AND MEMORY USAGE

can be used. The C stack size can be set accordingly with nativeStackSize.

6.4.2.2 Disabling the Finalizer Thread

A Java application typically uses one thread that is dedicated to running the fi-

nalization methods (finalize()) of objects that were found to be unreach-

able by the garbage collector. An application that does not allocate any such ob-

jects may not need the finalizer thread. The priority of the finalizer thread can be

adjusted through the option -XdefineProperty=jamaica.finalizer.
pri=value. Setting the priority to -1 deactivates the finalizer thread completely.

Note that deactivating the finalizer thread may cause a memory leak since any

objects that have a finalize() method can no longer be reclaimed. If the

resources available on the target system do not permit the use of a finalizer thread,

the application may execute the finalize() method explicitly by regularly

calling Runtime.runFinalization().

6.4.2.3 Disabling the Reference Handler Thread

In contrast to OpenJDK, the Reference Handler thread in Jamaica does not clear

and enqueue instances of java.lang.ref.Reference. Instead, this is done

directly by the garbage collector. However, the Reference Handler is still used

in JamaicaVM since it executes cleaners (sun.misc.Cleaner), which serve

as internal finalizers for the implementation of some standard classes. The pri-

ority of the Reference Handler can be adjusted through -XdefineProperty=
jamaica.reference_handler.pri=value. Setting its priority to -1 deac-

tivates the reference handler thread completely.

Note that the reference handler should only be deactivated for applications that

do not require the execution of cleaners, which are typically used by network and

other I/O code to free internal resources they allocate.

6.4.2.4 Disabling Time Slicing

On non-realtime systems that do not strictly respect thread priorities, Jamaica uses

one additional thread to allow time slicing between threads. On realtime systems

this thread can be used to enforce round-robin scheduling of threads of equal

priorities.

On systems with tight memory demand, the thread required for time-slicing

can be deactivated by setting the size of the time slice to zero using the op-

tion -timeSlice=0ns. In an application that uses threads of equal priorities,

explicit calls to the method Thread.yield() are required to permit thread

6.4. RAM USAGE 75

switches to another thread of the same priority if the time slicing thread is dis-

abled.

The number of threads set by the option -numThreads does not include the

time slicing thread. Unlike when disabling the finalizer thread, which is a Java

thread, when the time slicing thread is disabled the argument to -numThreads
should not be changed.

6.4.2.5 Disabling the Memory Reservation Thread

The memory reservation thread is a low priority thread that continuously tries to

reserve memory up to a specified threshold. This reserved memory is used by all

other threads. As long as reserved memory is available no garbage collector work

needs to be done. This is especially effective for applications that have long pause

times with little or no activity that are preempted by sudden activities that require

a burst of memory allocation.

On systems with tight memory demand, the thread required for memory reser-

vation can be deactivated by setting -reservedMemory=0.

6.4.2.6 Disabling Signal Handlers

The default handlers for the POSIX signals can be turned off by setting prop-

erties with the option XdefineProperty. The POSIX signals are SIGINT,

SIGQUIT and SIGTERM. The properties are described in Section 12.5. To turn

off these signal handlers, their corresponding properties should be set to true:

jamaica.no_sig_int_handler, jamaica.no_sig_quit_handler
and jamaica.no_sig_term_handler.

6.4.2.7 Setting the Number of Threads

The number of threads available for the application can be set using the option

numThreads. The default setting for this option is high enough to accommodate

the background tasks discussed above. Since these tasks have been deactivated,

and no new threads are started by the application, the number of threads can be

reduced to one by using the setting -numThreads=1.

If profiling information was collected and is provided via the useProfile
option, the number of threads provided to the numThreads option is checked to

ensure it is at least the number of threads that was required during the profiling run.

If not, a warning with the minimum number of threads during the profiling run will

be displayed. This information can be used to adjust the number of threads to the

minimum required by the application.

76 CHAPTER 6. REDUCING FOOTPRINT AND MEMORY USAGE

6.4.2.8 The Example Continued

Applying this to our example application, we can reduce the Java stack to 4K,

deactivate the finalizer thread and the reference handler, set the number of threads

to 1, disable the time slicing thread and the memory reservation thread and turn

off the signal handlers:

> jamaicabuilder -cp classes -closed \
> -useProfile=CaffeineMarkEmbeddedApp.prof \
> -setLocales=none -setProtocols=none \
> -setGraphics=none -setFonts=none \
> -javaStackSize=4K \
> -XdefineProperty=jamaica.finalizer.pri=-1 \
> -XdefineProperty=jamaica.reference_handler.pri=-1 \
> -numThreads=1 \
> -timeSlice=0ns -reservedMemory=0 \
> -XdefineProperty=jamaica.no_sig_int_handler=true \
> -XdefineProperty=jamaica.no_sig_quit_handler=true \
> -XdefineProperty=jamaica.no_sig_term_handler=true \
> CaffeineMarkEmbeddedApp -destination=caffeine_nolibs_js_fP_tS
Reading configuration from
’usr/local/jamaica-8.3/target/linux-x86_64/etc/jamaica.conf’...
Jamaica Builder Tool 8.3 Release 0 (build 12543)
(User: EVALUATION USER, Expires: 2019.09.29)
Generating code for target ’linux-x86_64’, optimization ’speed’
+ tmp/PKG__Vc942e564357a7481__.c
[...]
+ tmp/caffeine_nolibs_js_fP_tS__.c
+ tmp/caffeine_nolibs_js_fP_tS__.h

* C compiling ’tmp/caffeine_nolibs_js_fP_tS__.c’
[...]
+ tmp/caffeine_nolibs_js_fP_tS__DATA.o

* linking

* stripping
Application memory demand will be as follows:

initial max
Thread C stacks: 128KB (= 1* 128KB) 63MB (= 511* 128KB)
Thread Java stacks: 4096B (= 1*4096B) 2044KB (= 511*4096B)
Heap Size: 2048KB 768MB
GC data: 128KB 48MB
TOTAL: 2308KB 881MB

> ls -sk caffeine_nolibs_js_fP_tS
7488 caffeine_nolibs_js_fP_tS

The additional options have little effect on the application size itself compared to

the earlier version. However, the RAM allocated by the application was reduced

significantly.

6.4. RAM USAGE 77

6.4.3 Memory Required for Line Numbers
An important advantage of programming in the Java language are the accurate er-

ror messages. Runtime exceptions contain a complete stack trace with line number

information on where the problem occurred. This information, however, needs to

be stored in the application and be available at runtime.

After the debugging of an application is finished, the memory demand of an

application may be further reduced by removing this information. The Builder

option XignoreLineNumbers can be set to suppress it. Continuing the exam-

ple from the previous section, we can further reduce the RAM demand by setting

this option:

> jamaicabuilder -cp classes -closed \
> -useProfile=CaffeineMarkEmbeddedApp.prof \
> -setLocales=none -setProtocols=none \
> -setGraphics=none -setFonts=none \
> -javaStackSize=4K \
> -XdefineProperty=jamaica.finalizer.pri=-1 \
> -XdefineProperty=jamaica.reference_handler.pri=-1 \
> -numThreads=1 \
> -timeSlice=0ns -reservedMemory=0 \
> -XdefineProperty=jamaica.no_sig_int_handler=true \
> -XdefineProperty=jamaica.no_sig_quit_handler=true \
> -XdefineProperty=jamaica.no_sig_term_handler=true \
> CaffeineMarkEmbeddedApp -XignoreLineNumbers \
> -destination=caffeine_nolibs_js_fP_tS_nL
Reading configuration from
’usr/local/jamaica-8.3/target/linux-x86_64/etc/jamaica.conf’...
Jamaica Builder Tool 8.3 Release 0 (build 12543)
(User: EVALUATION USER, Expires: 2019.09.29)
Generating code for target ’linux-x86_64’, optimization ’speed’
+ tmp/PKG__Vc942e564357a7481__.c
[...]
+ tmp/caffeine_nolibs_js_fP_tS_nL__.c
+ tmp/caffeine_nolibs_js_fP_tS_nL__.h

* C compiling ’tmp/caffeine_nolibs_js_fP_tS_nL__.c’
[...]
+ tmp/caffeine_nolibs_js_fP_tS_nL__DATA.o

* linking

* stripping
Application memory demand will be as follows:

initial max
Thread C stacks: 128KB (= 1* 128KB) 63MB (= 511* 128KB)
Thread Java stacks: 4096B (= 1*4096B) 2044KB (= 511*4096B)
Heap Size: 2048KB 768MB
GC data: 128KB 48MB
TOTAL: 2308KB 881MB

78 CHAPTER 6. REDUCING FOOTPRINT AND MEMORY USAGE

The size of the executable has shrunk since line number information is no longer

present:

> ls -sk caffeine_nolibs_js_fP_tS_nL
6700 caffeine_nolibs_js_fP_tS_nL

By inspecting the Builder output, we see that the initial memory demand reported

by the Builder was not reduced. The actual memory demand may be checked

by repeating the build with the additional option -analyze=1 and running the

obtained executable:

> ./caffeine_analyze_nolibs_js_fP_tS_nL
Sieve score = 64564 (98)
Loop score = 50710 (2017)
Logic score = 3528346 (0)
String score = 266 (708)
Float score = 34888 (185)
Method score = 322717 (166650)
Overall score = 57082

Recommended heap size: 2489K (contiguous memory).
Application used at most 1760672 bytes for reachable objects
on the Java heap
(accuracy 1%).
###
Worst case allocation overhead:
heapSize dynamic GC const GC work
5950K 6 3
4970K 7 4
4342K 8 4
3917K 9 4
3605K 10 4
3185K 12 5
2920K 14 5
2730K 16 6
2594K 18 6
2489K 20 7
2340K 24 8
2239K 28 9
2169K 32 10
2113K 36 11
2070K 40 12
2007K 48 14
1963K 56 17
1932K 64 19
1859K 96 27
1824K 128 36
1788K 192 53

6.4. RAM USAGE 79

1771K 256 69
1755K 384 100

The actual memory demand was reduced to about one third compared to Sec-

tion 6.4.1. The score in analyze mode is significantly lower than that found in the

production version. To conclude the example we verify that the score of the latter

has not gone down as a result of the memory optimizations:

> ./caffeine_nolibs_js_fP_tS_nL
Sieve score = 206157 (98)
Loop score = 305711 (2017)
Logic score = 4465627 (0)
String score = 21129 (708)
Float score = 159725 (185)
Method score = 321483 (166650)
Overall score = 259497

80 CHAPTER 6. REDUCING FOOTPRINT AND MEMORY USAGE

Chapter 7

Memory Management
Configuration

JamaicaVM provides the only efficient hard-realtime garbage collector available

for Java implementations on the market today. This chapter will first explain how

this garbage collection technology can be used to obtain the best results for ap-

plications that have soft-realtime requirements before explaining the more fine-

grained tuning required for realtime applications.

7.1 Configuration for soft-realtime applications
For most non-realtime applications, the default memory management settings of

JamaicaVM perform well: The heap size is set to a small starting size and is

extended up to a maximum size automatically whenever the heap is not sufficient

or the garbage collection work becomes too high. However, in some situations,

some specific settings may help to improve the performance of a soft-realtime

application.

7.1.1 Initial heap size
The default initial heap size is a small value. The heap size is increased on demand

when the application exceeds the available memory or the garbage collection work

required to collect memory in this small heap becomes too high. This means that

an application that on startup requires significantly more memory than the initial

heap size will see its startup time increased by repeated incremental heap size

expansion.

The obvious solution here is to set the initial heap size to a value large enough

for the application to start. The Jamaica Builder option heapSize (see Chap-

81

82 CHAPTER 7. MEMORY MANAGEMENT CONFIGURATION

ter 13) and the virtual machine option Xmssize can be employed to set a higher

size.

Starting off with a larger initial heap not only prevents the overhead of in-

cremental heap expansion, but it also reduces the garbage collection work during

startup. This is because the garbage collector determines the amount of garbage

collection work from the amount of free memory, and with a larger initial heap,

the initial amount of free memory is larger.

7.1.2 Maximum heap size
The maximum heap size specified via Builder option maxHeapSize (see Chap-

ter 13) and the virtual machine option Xmx should be set to the maximum amount

of memory on the target system that should be available to the Java application.

Setting this option has no direct impact on the performance of the application as

long as the application’s memory demand does not come close to this limit. If

the maximum heap size is not sufficient, the application will receive an OutOf-
MemoryError at runtime.

However, it may make sense to set the initial heap size to the same value as

the maximum heap size whenever the initial heap demand of the application is of

no importance for the remaining system. Setting initial heap size and maximum

heap size to the same value has two main consequences. First, as has been seen

in Section 7.1.1 above, setting the initial heap size to a higher value avoids the

overhead of dynamically expanding the heap and reduces the amount of garbage

collection work during startup. Second, JamaicaVM’s memory management code

contains some optimizations that are only applicable to a non-increasing heap

memory space, so overall memory management overhead will be reduced if the

same value is chosen for the initial and the maximum heap size.

7.1.3 Finalizer thread priority
Before the memory used by an object that has a finalize method can be re-

claimed, this finalize method needs to be executed. A dedicated thread, the

FinalizerThread executes these finalize methods and otherwise sleeps

waiting for the garbage collector to find objects to be finalized.

In order to prevent the system from running out of memory, the Finalizer-
Thread must receive sufficient CPU time. Its default priority is therefore set to

8. Consequently, any thread with a lower priority will be preempted whenever an

object is found to require finalization.

Selecting a lower finalizer thread priority may cause the finalizer thread to

starve if a higher priority thread does not yield the CPU for a longer period of

time. However, if it can be guaranteed that the finalizer thread will not starve,

7.1. CONFIGURATION FOR SOFT-REALTIME APPLICATIONS 83

system performance may be improved by running the finalizer thread at a lower

priority. Then, a higher priority thread that performs memory allocation will not

be preempted by finalizer thread execution.

This priority can be set to a different value using the Java property jamaica.
finalizer.pri. In an application that has sufficient idle CPU time in between

activities of higher priority threads, a finalizer priority lower than the priority of

these threads is sufficient.

7.1.4 Reference Handler thread priority
The Reference Handler thread is used to free memory allocated outside the gar-

bage collected heap. Such memory is allocated when direct buffers are created.

Unlike OpenJDK, Jamaica’s Reference Handler thread does not clear or enqueue

instances of java.lang.ref.Reference; this task is performed by the gar-

bage collector directly.

Direct buffers are used by Java for efficient native I/O. They are allocated

by the allocateDirect() factory methods of ByteBuffer and the other

subclasses of java.nio.Buffer. They are also used be the various channel

implementations provided by New I/O, such as socket and file channels.

To free such native resources, the Reference Handler thread must receive suf-

ficient CPU time. Its default priority is therefore set to 10. Consequently, any

thread with a lower priority will be preempted whenever a native resource needs

to be released.

Selecting a lower Reference Handler thread priority may cause this thread to

starve if a higher priority thread does not yield the CPU for a longer period of time.

Selecting a lower priority, however, may reduce jitter in higher priority threads

since the Reference Handler will no longer preempt those threads to release native

resources.

This priority can be set to a different value using the property jamaica.
reference_handler.pri. In an application that has sufficient idle CPU

time in between activities of higher priority threads, a Reference Handler priority

lower than the priority of these threads is sufficient.

7.1.5 Reserved memory
JamaicaVM’s default behavior is to perform garbage collection work at memory

allocation time. This ensures a fair accounting of the garbage collection work:

Those threads with the highest allocation rate will perform correspondingly more

garbage collection work.

However, this approach may slow down threads that run only occasionally and

perform some allocation bursts, e.g., changing the input mask or opening a new

84 CHAPTER 7. MEMORY MANAGEMENT CONFIGURATION

window in a graphical user interface.

To avoid penalizing these time-critical tasks by allocation work, JamaicaVM

uses a low priority memory reservation thread that runs to pre-allocate a given

percentage of the heap memory. This reserved memory can then be allocated

by any allocation bursts without the need to perform garbage collection work.

Consequently, an application with bursts of allocation activity with sufficient idle

time between these bursts will see an improved performance.

The maximum amount of memory that will be reserved by the memory reser-

vation thread is given as a percentage of the total memory. The default value for

this percentage is 10%. It can be set via the Builder options -reservedMemory
and -reservedMemoryFromEnv, or for the virtual machine via the environ-

ment variable JAMAICAVM_RESERVEDMEMORY.

An allocation burst that exceeds the amount of reserved memory will have to

fall back to perform garbage collection work as soon as the amount of reserved

memory is exceeded. This may occur if the maximum amount of reserved memory

is less than the memory allocated during the burst or if there is too little idle time

in between consecutive bursts such as when the reservation thread cannot catch

up and reserve the maximum amount of memory.

For an application that cannot guarantee sufficient idle time for the memory

reservation thread, the amount of reserved memory should not be set to a high per-

centage. Higher values will increase the worst case garbage collection work that

will have to be performed on an allocation, since after the reserved memory was

allocated, there is less memory remaining to perform sufficient garbage collection

work to reclaim memory before the free memory is exhausted.

A realtime application without allocation bursts and sufficient idle time should

therefore run with the maximum amount of reserved memory set to 0%.

The priority default of the memory reservation thread is the Java priority 1
with the scheduler instructed to give preference to other Java threads that run

at priority 1 (i.e., with a priority micro adjustment of -1). The priority can

be changed by setting the Java property jamaica.reservation_thread_
priority to an integer value larger than or equal to 0. If set, the memory reser-

vation thread will run at the given Java priority. A value of 0 will result at a Java

priority 1 with micro adjustment -1, i.e., the scheduler will give preference to

other threads running at priority 1.

The reserved memory mechanism works only in combination with the default

dynamic work based allocation mode, it cannot be combined with stop-the-world

or atomic garbage collection (see Section 7.1.6), nor with constant garbage col-

lection work (see Section 7.2.4).

7.1. CONFIGURATION FOR SOFT-REALTIME APPLICATIONS 85

7.1.6 Stop-the-world Garbage Collection
For applications that do not have any realtime constraints, but that require the

best average time performance, JamaicaVM’s Builder provides options to disable

realtime garbage collection, and to use a stop-the-world garbage collector instead.

In stop-the-world mode, no garbage collection work will be performed un-

til the system runs out of free memory. Then, all threads that perform memory

allocation will be stopped to perform garbage collection work until a complete

garbage collection cycle is finished and memory was reclaimed. Any thread that

does not perform memory allocation may, however, continue execution even while

the stop-the-world garbage collector is running.

The Builder option -stopTheWorldGC enables the stop-the-world garbage

collector. Alternatively, the Builder option -constGCwork=-1 may be used,

or -constGCworkFromEnv=var with the environment variable var set to -1.

JamaicaVM additionally provides an atomic garbage collector that requires

stopping of all threads of the Java application during a stop-the-world garbage

collection cycle. This has the disadvantage that even threads that do not allocate

heap memory will have to be stopped during the GC cycle. However, it avoids

the need to track heap modifications performed by threads running parallel to the

garbage collector (so called write-barrier code). The result is a slightly increased

performance of compiled code.

Specifying the Builder option -atomicGC enables the atomic garbage col-

lector. Alternatively, the Builder option -constGCwork=-2 may be used, or

specify -constGCworkFromEnv=var with the environment variable var set to

-2.

Please note that memory reservation (see Section 7.1.5) should be disabled

when stop-the-world or atomic GC is used.

7.1.7 Recommendations
In summary, to obtain the best performance in your soft-realtime application, fol-

low the following recommendations.

• Set initial heap size as large as possible.

• Set initial heap size and maximum heap size to the same value if possible.

• Set the finalizer thread priority to a low value if your system has enough

idle time.

• If your application uses allocation bursts with sufficient CPU idle time in

between two allocation bursts set the amount of reserved memory to fit with

the largest allocation burst.

86 CHAPTER 7. MEMORY MANAGEMENT CONFIGURATION

• If your application does not have idle time with intermittent allocation bursts

set the amount of reserved memory to 0%.

• Enable memory reservation if your system has idle time that can be used for

garbage collection.

7.2 Configuration for hard-realtime applications
For predictable execution of memory allocation, more care is needed when select-

ing memory related options. No dynamic heap size increments should be used

since the pause introduced by the heap size expansion can harm the realtime guar-

antees required by the application. Dynamic heap expansion requires an atomic

operation, i.e., all Java threads in the VM will be stopped from running when

this happens, adding a possibly unlimited delay to the execution time of the tasks

performed by these threads.

Also, the heap size must be set large enough such that the implied garbage

collection work is tolerable.

The memory analyzer tool is used to determine the garbage collector settings

during a runtime measurement. Together with the -showNumberOfBlocks
command line option of the Builder tool, they permit an accurate prediction of

the time required for each memory allocation. The following sections explain the

required configuration of the system.

7.2.1 Usage of the Memory Analyzer tool
The Memory Analyzer is a tool for fine tuning an application’s memory require-

ments and the realtime guarantees that can be given when allocating objects within

Java code running on the Jamaica Virtual Machine.

The Memory Analyzer is integrated into the Builder tool. It can be activated

by setting the command line option -analyze=accuracy.

Using the Memory Analyzer Tool is a three-step process: First, an application

is built using the Memory Analyzer. The resulting executable file can then be ex-

ecuted to determine its memory requirements. Finally, the result of the execution

can be used to fine tune the final version of the application.

7.2.2 Measuring an application’s memory requirements
As an example, we will build the HelloWorld example application that was pre-

sented in Section 2.4. By providing the option -analyze to the Builder and

giving the required accuracy of the analysis in percent, the built application will

7.2. CONFIGURATION FOR HARD-REALTIME APPLICATIONS 87

run in analysis mode to the specified accuracy. In this example, we use an accu-

racy of 5%:

> jamaicabuilder -cp classes -interpret -analyze=5 HelloWorld
Reading configuration from
’usr/local/jamaica-8.3/target/linux-x86_64/etc/jamaica.conf’...
Jamaica Builder Tool 8.3 Release 0 (build 12543)
(User: EVALUATION USER, Expires: 2019.09.29)
Generating code for target ’linux-x86_64’, optimization ’speed’
+ tmp/HelloWorld__.c
+ tmp/HelloWorld__.h

* C compiling ’tmp/HelloWorld__.c’
+ tmp/HelloWorld__DATA.o

* linking

* stripping
Application memory demand will be as follows:

initial max
Thread C stacks: 1152KB (= 9* 128KB) 63MB (= 511* 128KB)
Thread Java stacks: 144KB (= 9* 16KB) 8176KB (= 511* 16KB)
Heap Size: 2048KB 768MB
GC data: 128KB 48MB
TOTAL: 3472KB 887MB

The build process is performed exactly as it would be without the -analyze
option, except that the garbage collector is told to measure the application’s mem-

ory usage with the given accuracy. The result of this measurement is printed to

the console after execution of the application:

> ./HelloWorld
Hello World!

Hello World!
Hello World!

Hello World!
Hello World!

Hello World!
[...]

Recommended heap size: 5728K (contiguous memory).
Application used at most 3466048 bytes for reachable objects
on the Java heap
(accuracy 5%).
###
Reserved memory is set to 10%. To obtain lower memory bounds
or worst-case GC overhead, set reserved memory to 0.
###
Worst case allocation overhead:
heapSize dynamic GC const GC work
17910K 6 3

88 CHAPTER 7. MEMORY MANAGEMENT CONFIGURATION

13760K 7 4
11436K 8 4
9985K 9 4
8979K 10 4
7693K 12 5
6922K 14 5
6387K 16 6
6013K 18 6
5728K 20 7
5331K 24 8
5068K 28 9
4885K 32 10
4741K 36 11
4631K 40 12
4472K 48 14
4362K 56 17
4285K 64 19
4103K 96 27
4016K 128 36
3927K 192 53
3887K 256 69
3847K 384 100

The output consists of the maximum heap memory demand plus a table of possible

heap sizes and their allocation overheads for both dynamic and constant garbage

collection work. We first consider dynamic garbage collection work, since this is

the default.

In this example, the application uses a maximum of 3466048 bytes of memory

for the Java heap. The specified accuracy of 5% means that the actual memory

usage of the application will be up to 5% less than the measured value, but not

higher. JamaicaVM uses the Java heap to store all dynamic data structures internal

to the virtual machine (as Java stacks, classes, etc.), which explains the relatively

high memory demand for this small application.

7.2.3 Fine tuning the final executable application

In addition to printing the measured memory requirements of the application, in

analyze mode Jamaica also prints a table of possible heap sizes and corresponding

worst case allocation overheads. The worst case allocation overhead is given in

units of garbage collection work that are needed to allocate one block of memory

(typically 32 bytes). The amount of time in which these units of garbage collection

work can be done is platform dependent. For example, on the PowerPC processor,

a unit corresponds to the execution of about 160 machine instructions.

7.2. CONFIGURATION FOR HARD-REALTIME APPLICATIONS 89

From this table, we can choose the minimum heap size that corresponds to

the desired worst case execution time for the allocation of one block of memory.

A heap size of 5728K corresponds to a worst case of 20 units of garbage col-

lection work (3200 machine instructions on the PowerPC) per block allocation,

while a smaller heap size of, for example, 4631K can only guarantee a worst case

execution time of 40 units of garbage collection work (that is, 6400 PowerPC-

instructions) per block allocation.

If we find that for our application 14 units of garbage collection work per

allocation is sufficient to satisfy all realtime requirements, we can build the final

application using a heap of 6922K:

> jamaicabuilder -cp classes -interpret \
> -heapSize=6922K -maxHeapSize=6922K HelloWorld
Reading configuration from
’usr/local/jamaica-8.3/target/linux-x86_64/etc/jamaica.conf’...
Jamaica Builder Tool 8.3 Release 0 (build 12543)
(User: EVALUATION USER, Expires: 2019.09.29)
Generating code for target ’linux-x86_64’, optimization ’speed’
+ tmp/HelloWorld__.c
+ tmp/HelloWorld__.h

* C compiling ’tmp/HelloWorld__.c’
+ tmp/HelloWorld__DATA.o

* linking

* stripping
Application memory demand will be as follows:

initial max
Thread C stacks: 1152KB (= 9* 128KB) 63MB (= 511* 128KB)
Thread Java stacks: 144KB (= 9* 16KB) 8176KB (= 511* 16KB)
Heap Size: 6922KB 6922KB
GC data: 432KB 432KB
TOTAL: 8650KB 79MB

Note that both options, heapSize and maxHeapSize, are set to the same

value. This creates an application that has the same initial heap size and maxi-

mum heap size, i.e., the heap size is not increased dynamically. This is required

to ensure that the maximum of 14 units of garbage collection work per unit of

allocation is respected during the whole execution of the application. With a dy-

namically growing heap size, an allocation that happens to require increasing the

heap size will otherwise be blocked until the heap size is increased sufficiently.

The resulting application will now run with the minimum amount of memory

that guarantees the selected worst case execution time for memory allocation. The

actual amount of garbage collection work that is performed is determined dynam-

ically depending on the current state of the application (including, for example,

its memory usage) and will in most cases be significantly lower than the described

90 CHAPTER 7. MEMORY MANAGEMENT CONFIGURATION

worst case behavior, so that on average an allocation is significantly cheaper than

the worst case allocation cost.

7.2.4 Constant Garbage Collection Work
For applications that require best worst case execution times, where average case

execution time is less important, Jamaica also provides the option to statically

select the amount of garbage collection work. This forces the given amount of

garbage collection work to be performed at any allocation, without regard to the

current state of the application. The advantage of this static mode is that worst case

execution times are lower than using dynamic determination of garbage collection

work. The disadvantage is that any allocation requires this worst case amount of

garbage collection work.

The output generated using the option -analyze also shows possible values

for the constant garbage collection option. A unit of garbage collection work is

the same as in the dynamic case—about 160 machine instructions on the PowerPC

processor.

Similarly, if we want to give the same guarantee of 14 units of work for

the worst case execution time of the allocation of a block of memory with con-

stant garbage collection work, a heap size of 4472K bytes is sufficient. To in-

form the Builder that constant garbage collection work should be used, the op-

tion -constGCwork and the number of units of work should be specified when

building the application:

> jamaicabuilder -cp classes -interpret -heapSize=4472K \
> -maxHeapSize=4472K -constGCwork=14 HelloWorld
Reading configuration from
’usr/local/jamaica-8.3/target/linux-x86_64/etc/jamaica.conf’...
Jamaica Builder Tool 8.3 Release 0 (build 12543)
(User: EVALUATION USER, Expires: 2019.09.29)
Generating code for target ’linux-x86_64’, optimization ’speed’
+ tmp/HelloWorld__.c
+ tmp/HelloWorld__.h

* C compiling ’tmp/HelloWorld__.c’
+ tmp/HelloWorld__DATA.o

* linking

* stripping
Application memory demand will be as follows:

initial max
Thread C stacks: 1152KB (= 9* 128KB) 63MB (= 511* 128KB)
Thread Java stacks: 144KB (= 9* 16KB) 8176KB (= 511* 16KB)
Heap Size: 4472KB 4472KB
GC data: 279KB 279KB
TOTAL: 6047KB 76MB

7.2. CONFIGURATION FOR HARD-REALTIME APPLICATIONS 91

Please note that memory reservation (see Section 7.1.5) should be disabled

when constant garbage collection work is used.

7.2.5 Comparing dynamic mode and constant GC work mode
Which option you should choose (dynamic mode or constant garbage collection)

depends strongly on the kind of application. If worst case execution time and low

jitter are the most important criteria, constant garbage collection work will usu-

ally provide the better performance with smaller heap sizes. But if average case

execution time is also an issue, dynamic mode will typically give better overall

throughput, even though for equal heap sizes the guaranteed worst case execution

time is longer with dynamic mode than with constant garbage collection work.

Gradual degradation may also be important. Dynamic mode and constant gar-

bage collection work differ significantly when the application does not stay within

the memory bounds that were fixed when the application was built.

There are a number of reasons an application might be using more memory:

• The application input data might be bigger than originally anticipated.

• The application was built with an incorrect or outdated -heapSize argu-

ment.

• A bug in the application may be causing a memory leak and gradual use of

more memory than expected.

Whatever the reason, it may be important in some environments to understand

the behavior of memory management in the case the application exceeds the as-

sumed heap usage.

In dynamic mode, the worst-case execution time for an allocation can no

longer be guaranteed as soon as the application uses more memory. But as long

as the excess heap used stays small, the worst-case execution time will increase

only slightly. This means that the original worst-case execution time may not be

exceeded at all or only by a small amount. However, the garbage collector will

still work properly and recycle enough memory to keep the application running.

If the constant garbage collection work option is chosen, the amount of gar-

bage collection work will not increase even if the application uses more memory

than originally anticipated. Allocations will still be made within the same worst-

case execution time. Instead, the collector cannot give a guarantee that it will

recycle memory fast enough. This means that the application may fail abruptly

with an out-of-memory error. Static mode does not provide graceful degradation

of performance in this case, but may cause abrupt failure even if the application

exceeds the expected memory requirements only slightly.

92 CHAPTER 7. MEMORY MANAGEMENT CONFIGURATION

7.2.6 Determination of the worst case execution time of an al-
location

As we have just seen, the worst case execution time of an allocation depends on the

amount of garbage collection work that has to be performed for the allocation. The

configuration of the heap as shown above gives a worst case number of garbage

collection work units that need to be performed for the allocation of one block of

memory. In order to determine the actual time an allocation might take in the worst

case, it is also necessary to know the number of blocks that will be allocated and

the platform dependent worst case execution time of one unit of garbage collection

work.

For an allocation statement S we get the following equation to calculate the

worst case-execution time:

wcet(S) = numblocks(S) · max-gc-units · wcet-of-gc-unit

Where

• wcet(S) is the worst case execution time of the allocation

• numblocks(S) gives the number of blocks that need to be allocated

• max-gc-units is the maximum number of garbage collection units that need

to be performed for the allocation of one block

• wcet-of-gc-unit is the platform dependent worst case execution time of a

single unit of garbage collection work.

7.2.7 Examples
Imagine that we want to determine the worst-case execution time (wcet) of an

allocation of a StringBuffer object, as was done in the HelloWorld.java exam-

ple shown above. If this example was built with the dynamic garbage collection

option and a heap size of 443K bytes, we get

max-gc-units = 14

as has been shown above. If our target platform gives a worst case execution time

for one unit of garbage collection work of 1.6μs, we have

wcet-of-gc-unit = 1.6μs

We use the -showNumberOfBlocks command line option to find the number

of blocks required for the allocation of a java.lang.StringBuffer object. Actually

this option shows the number of blocks for all classes used by the application even

when for this example we are only interested in the mentioned class.

7.2. CONFIGURATION FOR HARD-REALTIME APPLICATIONS 93

> jamaicabuilder -cp classes -showNumberOfBlocks HelloWorld

[...]
java/lang/String$CIO 1
java/lang/String$GetBytesCacheEntry 1
java/lang/String$WeakSet 1
java/lang/StringBuffer 2
java/lang/StringBuilder 2
java/lang/StringCoding 1
java/lang/StringCoding$1 1
java/lang/StringCoding$StringDecoder 1
[...]

A StringBuffer object requires two blocks of memory, so that

numblocks(new StringBuffer()) = 2

and the total worst case-execution time of the allocation becomes

wcet(new StringBuffer()) = 2 · 14 · 1.6μs = 44.8μs

Had we used the constant garbage collection option with the same heap size, the

amount of garbage collection work on an allocation of one block could have been

fixed at 6 units. In that case the worst case execution time of the allocation be-

comes

wcetconstGCwork(new StringBuffer()) = 2 · 6 · 1.6μs = 19.2μs

94 CHAPTER 7. MEMORY MANAGEMENT CONFIGURATION

Chapter 8

Debugging Support

Jamaica supports the debugging facilities of integrated development environments

(IDEs) such as Eclipse or Netbeans. These are popular IDEs for the Java platform.

Debugging is possible on instances of the JamaicaVM itself, running on the host

or target platform, as well as for applications built with Jamaica Builder, which

run on an embedded device. The latter requires that the device provides network

access.

In this chapter, it is shown how to set up and use Java debugging via both fa-

cilities: a command line tool and the IDE debugging. A reference section towards

the end briefly explains the underlying technology (JPDA) and the supported op-

tions.

8.1 Enabling the Debugger Agent
While debugging the debugger needs to connect to the virtual machine (or the run-

ning application built with Jamaica Builder) in order to inspect the VM’s state, set

breakpoints, start and stop execution and so forth. Jamaica contains a communica-

tion agent (JDWP), which must be either enabled (for the VM as jamaicavmdi
variant of the executable) or built into the application. In both cases, this is done

through the agentlib option though with a bit different syntax. For example,

> jamaicavm -agentlib:BuiltInAgent=transport=dt_socket,\
> server=y,address=8000 HelloWorld

launches JamaicaVM with debug agent enabled and HelloWorld as the main

class. The VM acts as a server and listens on port 8000 at localhost by default

if the host name is omitted. The VM is suspended (default behavior) and waits

for the debugger (acts as a client) to connect. It then executes normally until a

breakpoint is reached.

95

96 CHAPTER 8. DEBUGGING SUPPORT

In order to build debugging support into an application, the Jamaica Builder

option -agentlib=BuiltInAgent. . . should be used, for example,

> jamaicabuilder -agentlib=BuiltInAgent=transport=dt_socket,\
> server=y,address=localhost:8000 HelloWorld

creates an executable application HelloWorld with built in debug agent. Be

aware that the given network address must be both valid and reachable (resolvable

host name) especially when the debug agent is run in client mode (that is, without

server=y option).

8.2 Connecting to Jamaica from the Command Line
The typical command line tool used for Java debugging is jdb. It can act as both

server and client. Also, the debug agent of the VM (or built application) can be

set up to run in server or client mode. The JDWP transport layer could be either

sockets or shared memory (currently supported only on Windows). Therefore

couple of scenarios and use cases can occur.

8.2.1 Using sockets as transport layer
Commonly the debug agent is run in server mode and jdb in client mode. First

start the debug agent:

> jamaicavm \
> -agentlib:jdwp=transport=dt_socket,server=y,address=8000
Listening for transport dt_socket at address: 8000

Then attach via jdb:

> jdb -attach [hostname:]8000

Note that the server must be started first! Specifying a hostname in the address is

optional, but the port number must be given.

On Windows the default transport layer is shared memory and therefore dif-

ferent syntax is required. To attach via jdb in client mode use the following

syntax:

> jdb -connect com.sun.jdi.SocketAttach:port=8000

Running the debug agent in client and jdb in server mode is done as follows.

First start jdb:

> jdb -connect com.sun.jdi.SocketListen:port=8000
Listening at address: miami:8000

Then attach from the debug agent:

> jamaicavm \
> -agentlib:jdwp=transport=dt_socket,address=[hostname:]8000

8.3. CONFIGURING THE IDE TO CONNECT TO JAMAICA 97

8.2.2 Using shared memory as transport layer
The main difference in using shared memory is the notation of address. It actually

is just a name identifier. It can even be omitted while a default value would be

used then.

Running the debug agent in server mode:

> jamaicavm \
> -agentlib:jdwp=transport=dt_shmem,server=y,address=somename
Listening for transport dt_shmem at address: somename

and attaching via jdb in client mode:

> jdb -attach somename

! Note that if the address is omitted, Jamaica uses ‘javadebug[.number]’ as a

default name identifier for the debugging session.

The other case, running jdb in server mode could be done either as:

> jdb -listen somename
Listening at address: somename

or

> jdb -listenany
Listening at address: javadebug

while attaching from the debug agent as:

> jamaicavm \
> -agentlib:jdwp=transport=dt_shmem,address=somename

8.3 Configuring the IDE to connect to Jamaica
Before being able to debug a project, the code needs to compile and basically run.

Before starting a debugging session, the debugger must be configured to connect

to the VM by specifying the VM’s host address and port. Normally, this is done

by setting up a debug configuration.

In Eclipse 3.5, for example, select the menu item

Run > Debug Configurations....

In the list of available items presented on the left side of the dialog window (see

Fig. 8.1), choose a new configuration for a remote Java application, then

98 CHAPTER 8. DEBUGGING SUPPORT

Figure 8.1: Setting up a remote debugging connection in Eclipse 3.5

• configure the debugger to connect to the VM by choosing connection type

socket attach and

• enter the VM’s network address and port as the connection properties host
and port.

Clicking on Debug attaches the debugger to the VM and starts the debugging ses-

sion. If the VM’s communication agent is set to suspending the VM before loading

the main class, the application will only run after instructed to do so through the

debugger via commands from the Run menu. In Eclipse, breakpoints may be set

conveniently by double-clicking in the left margin of the source code.

For instructions on debugging, the documentation of the used debugger should

be consulted—in Eclipse, for example, though the Help menu.

The Jamaica Eclipse Plug-In (see Chapter 4) provides the required setup for

debugging with the JamaicaVM on the host system automatically. It is sufficient

to select Jamaica as the Java Runtime Environment of the project.

8.4. REFERENCE INFORMATION 99

Syntax Description
transport=dt_socket|dt_shmem dt_socket is a generally supported

transport protocol while dt_shmem is

supported only on Windows.

address=[host:]port|name Transport address (or a name of shared

memory area) for the connection.

server=y|n If y, listen for a debugger application to

attach; otherwise, attach to the debugger

application at the specified address.

suspend=y|n If y, suspend this VM until connected to

the debugger.

help List all accepted options, their descrip-

tion and default values.

Table 8.1: Arguments of Jamaica’s communication agent

8.4 Reference Information
Jamaica supports the Java Platform Debugger Architecture (JPDA). Debugging

is possible with IDEs that support the JPDA. Tab. 8.1 shows the main debugging

options accepted by Jamaica’s communication agent. For a complete list of all

accepted options use the help command as:

> jamaicavm -agentlib:jdwp=help

The Jamaica Debugging Interface has the following limitations:

• Local variables of compiled methods cannot be examined

• Stepping through a compiled method is not supported

• Setting a breakpoint in a compiled method will silently be ignored

• Notification on field access/modification is not available

• Information about java monitors cannot be retrieved

The Java Platform Debugger Architecture (JPDA) consists of three interfaces

designed for use by debuggers in development environments for desktop systems.

The Java Virtual Machine Tools Interface (JVMTI) defines the services a VM must

provide for debugging.1 The Java Debug Wire Protocol (JDWP) defines the format

1The JVMTI is a replacement for the Java Virtual Machine Debug Interface (JVMDI) which

has been deprecated.

100 CHAPTER 8. DEBUGGING SUPPORT

of information and requests transferred between the process being debugged and

the debugger front end, which implements the Java Debug Interface (JDI). The

Java Debug Interface defines information and requests at the user code level.

A JPDA Transport is a method of communication between a debugger and

the virtual machine that is being debugged. The communication is connection

oriented—one side acts as a server, listening for a connection. The other side acts

as a client and connects to the server. JPDA allows either the debugger application

or the target VM to act as the server. The transport implementations of Jamaica

allows communications between processes running on different machines.

Chapter 9

The Real-Time Specification for
Java

JamaicaVM supports the Real-Time Specification for Java V1.0.2 (RTSJ), see

[2]. The specification is available at http://www.rtsj.org. The API doc-

umentation of the JamaicaVM implementation is available online at https:
//www.aicas.com/cms/reference-material and is included in the

API documentation of the Jamaica class library:

jamaica-home/doc/jamaica_api/index.html.

The RTSJ resides in package javax.realtime. It is generally recommended

that you refer to the RTSJ documentation provided by aicas since it contains a

detailed description of the behavior of the RTSJ functions and includes specific

comments on the behavior of JamaicaVM at places left open by the specification.

9.1 Realtime programming with the RTSJ
The aim of the Real-Time Specification for Java (RTSJ) is to extend the Java

language definition and the Java standard libraries to support realtime threads, i.e.,

threads whose execution conforms to certain timing constraints. Nevertheless,

the specification is compatible with different Java environments and backwards

compatible with existing non-realtime Java applications.

The most important improvements of the RTSJ affect the following seven ar-

eas:

• thread scheduling,

• memory management,

101

102 CHAPTER 9. THE REAL-TIME SPECIFICATION FOR JAVA

• synchronization,

• asynchronous events,

• asynchronous flow of control,

• thread termination, and

• physical memory access.

With this, the RTSJ also covers areas that are not directly related to realtime appli-

cations. However, these areas are of great importance to many embedded realtime

applications such as direct access to physical memory (e.g., memory mapped I/O)

or asynchronous mechanisms.

9.1.1 Thread Scheduling

To enable the development of realtime software in an environment with a gar-

bage collector that stops the execution of application threads in an unpredictable

way, new thread classes RealtimeThread and NoHeapRealtimeThread
are defined. These thread types are unaffected or at least less heavily affected by

garbage collection activity. Also, at least 28 new priority levels, logically higher

than the priority of the garbage collector, are available for these threads.

9.1.2 Memory Management

In order for realtime threads not to be affected by garbage collector activity, they

need to use memory areas that are not under the control of the garbage collector.

New memory classes, ImmortalMemory and ScopedMemory, provide these

memory areas. One important consequence of the use of special memory areas

is, of course, that the advantages of dynamic memory management are not fully

available to realtime threads.

9.1.3 Synchronization

In realtime systems with threads of different priority levels, priority inversion sit-

uations must be avoided. Priority inversion occurs when a thread of high priority

is blocked by waiting for a monitor that is owned by a thread of a lower priority.

The RTSJ provides the alternatives priority inheritance and the priority ceiling

protocol to avoid priority inversion.

9.1. REALTIME PROGRAMMING WITH THE RTSJ 103

9.1.4 Example
The RTSJ offers powerful features that enable the development of realtime appli-
cations. The following program shows how the RTSJ can be used in practice.

import javax.realtime.*;

/**
* Demo of a periodic thread in Java

*/
public class HelloRT
{

public static void main(String[] args)
{

/* priority for new thread: min+10 */
int pri =

PriorityScheduler.instance().getMinPriority() + 10;
PriorityParameters prip = new PriorityParameters(pri);

/* period: 20ms */
RelativeTime period =

new RelativeTime(20 /* ms */, 0 /* ns */);

/* release parameters for periodic thread */
PeriodicParameters perp =
new PeriodicParameters(null, period, null, null, null, null);

/* create periodic thread */
RealtimeThread rt = new RealtimeThread(prip, perp)

{
public void run()
{

int n = 1;
while (waitForNextPeriod() && (n < 100))

{
System.out.println("Hello " + n);
n++;

}
}

};

/* start periodic thread */
rt.start();

}
}

In this example, a periodic thread is created. This thread becomes active every

20ms and writes output onto the standard console. A RealtimeThread is used

to implement this task. The priority and the length of the period of this peri-

odic thread need to be provided. A call to waitForNextPeriod() causes the

104 CHAPTER 9. THE REAL-TIME SPECIFICATION FOR JAVA

thread to wait after the completion of one activation for the start of the next period.

An introduction to the RTSJ with numerous further examples is given in the book

by Peter Dibble [3].

The RTSJ provides a solution for realtime programming, but it also brings new

difficulties to the developer. The most important consequence is that applications

have to be split strictly into two parts: a realtime and a non-realtime part. The

communication between these parts is heavily restricted: realtime threads cannot

perform memory operations such as the allocation of objects on the normal heap

which is under the control of the garbage collector. Synchronization between

realtime and non-realtime threads is heavily restricted since it can cause realtime

threads to be blocked by the garbage collector.

9.2 Realtime Garbage Collection
In JamaicaVM, a system that supports realtime garbage collection, this strict sep-

aration into realtime and non-realtime threads is not necessary. The strict splitting

of an application is consequently not required. Threads are activated depending

only on their priorities.

The realtime garbage collector performs its work predictably within the appli-

cation threads. It is activated when memory is allocated. The work done on an

allocation must be preemptible, so that more urgent threads can become active.

The implementation of a realtime garbage collector must solve a number of

technical challenges. Garbage collector activity must be performed in very small

single increments of work. In JamaicaVM, one increment consists of garbage

collecting only 32 bytes of memory. On every allocation, the allocating thread

“pays” for the memory by performing a small number of these increments. The

number of increments can be analyzed, such that this is possible even in realtime

code.

The RTSJ provides a powerful extension to the Java specification. Its full

power, however, is achieved only by the combination with a realtime garbage

collector that helps to overcome its restrictions.

9.3 Relaxations in JamaicaVM
Because JamaicaVM uses a realtime garbage collector, the limitations that the

Real-Time Specification for Java imposes on realtime programming are not im-

posed on realtime applications developed for JamaicaVM. The limitations that are

relaxed in JamaicaVM affect the use of memory areas, thread priorities, runtime

checks and static initializers.

9.3. RELAXATIONS IN JAMAICAVM 105

9.3.1 Use of Memory Areas

Because JamaicaVM’s realtime garbage collector does not interrupt application

threads, it is unnecessary for objects of class RealtimeThread or even of

NoHeapRealtimeThread to run in their own memory area not under the con-

trol of the garbage collector. Instead, any thread can use and access the normal

garbage collected heap.

Nevertheless, any thread can make use of the new memory areas such as

LTMemory or ImmortalMemory if the application developer wishes to do so.

Since these memory classes are not controlled by the garbage collector, alloca-

tions do not require garbage collector activity and may be faster or more pre-

dictable than allocations on the normal heap. However, great care is required in

these memory areas to avoid memory leaks, since temporary objects allocated in

scoped or immortal memory will not be reclaimed automatically.

9.3.2 Thread Priorities

In JamaicaVM, RealtimeThread, NoHeapRealtimeThread and normal

Thread objects all share the same priority range. The lowest possible thread

priority for all of these threads is MIN_PRIORITY which is defined in package

java.lang, class Thread. The highest possible priority may be obtained by

querying instance().getMaxPriority() in package javax.realtime,

class PriorityScheduler.

9.3.3 Runtime checks for NoHeapRealtimeThread

Even NoHeapRealtimeThread objects will be exempt from interruption by

garbage collector activities. JamaicaVM does not, therefore, prevent these threads

from accessing objects allocated on the normal heap. Runtime checks that typi-

cally ensure that these threads do not access objects allocated on the heap are not

performed by JamaicaVM.

9.3.4 Static Initializers

To permit the initialization of classes even if their first reference is performed

within ScopedMemory or ImmortalMemory within a RealtimeThread
or NoHeapRealtimeThread, and to permit the access of static fields such as

System.out from within these threads, static initializers are typically executed

within ImmortalMemory that is accessible by all threads. However, this pre-

vents these objects from being reclaimed when they are no longer used. Also,

106 CHAPTER 9. THE REAL-TIME SPECIFICATION FOR JAVA

it can cause a serious memory leak if dynamic class loading is used since mem-

ory allocated by the static initializers of dynamically loaded classes will never be

reclaimed.

Since JamaicaVM does not limit access to heap objects within any threads,

there is no need to execute static initializers within ImmortalMemory. However,

objects allocated in static initializers typically must be accessible by all threads, so

they cannot be allocated in a scoped memory area if this happens to be the current

thread’s allocation environment when the static initializer is executed.

JamaicaVM therefore executes all static initializers within heap memory. Ob-

jects allocated by static initializers may be accessed by all threads, and they may

be reclaimed by the garbage collector. There is no memory leak if classes are

loaded dynamically by a user class loader.

9.3.5 Class PhysicalMemoryManager
According to the RTSJ, names and instances of class PhysicalMemoryType-
Filter in package javax.realtime that are passed to method register-
Filter of class PhysicalMemoryManager in the same package must be

allocated in immortal memory. This requirement does not exist in JamaicaVM.

9.4 Limitations of RTSJ Implementation
The following methods or classes of the RTSJ are not fully supported in Ja-

maicaVM 8.3:

• Class VTPhysicalMemory

• Class LTPhysicalMemory

• Class ImmortalPhysicalMemory

• In class AsynchronouslyInterruptedException the deprecated

method propagate() is not supported.

• The class Affinity is currently supported for Threads and Bound-
AsyncEventHandlers only, not for the class ProcessingGroup-
Parameters. The default sets supported by Jamaica are sets with either

exactly one single element or the set of all CPUs. The CPU ids used on

the Java side are 0 though n − 1 when n CPUs are used, while the val-

ues provided to the -Xcpus Builder argument are the CPU ids used by the

underlying OS.

9.5. COMPUTATIONAL TRANSPARENCY 107

Cost monitoring is supported and cost overrun handlers will be fired on a cost

overrun. However, cost enforcement is currently not supported. The reason is that

stopping a thread or handler that holds a lock is dangerous since it might cause

a deadlock. RTSJ cost enforcement is based on the CPU cycle counter. This is

available on x86 and PPC systems only, so cost enforcement will not work on

other systems.

Since the timeliness of realtime systems is just as important as their functional

correctness, realtime Java programmers must take more care using Java than other

Java users. In fact, realtime Java implementations in general and the JamaicaVM

in particular offer a host of features not present in standard Java implementations.

The JamaicaVM offers a myriad of sometimes overlapping features for real-

time Java development. The realtime Java developer needs to understand these

features and when to apply them. Particularly, with realtime specific features per-

taining to memory management and task interaction, the programmer needs to

understand the trade-offs involved. This chapter does not offer cut and dried so-

lutions to specific application problems, but instead offers guidelines for helping

the developer make the correct choice.

9.5 Computational Transparency
In contrast to normal software development, the development of realtime code re-

quires not only the correctness of the code, but also the timely execution of the

code. For the developer, this means that not only the result of each statement is im-

portant, but also the approximate time required to perform the statement must be

obvious. One need not know the exact execution time of each statement when this

statement is written, as the exact determination of the worst case execution time

can be performed by a later step; however, one should have a good understanding

of the order of magnitude in time a given code section needs for execution early on

in the coding process. For this, the computational complexity can be described in

categories such as a few machine cycles, a few hundred machine cycles, thousands

of machine cycles or millions of machine cycles. Side effects such as blocking for

I/O operations or memory allocation should be understood as well.

The term computational transparency refers to the degree to which the compu-

tational effort of a code sequence written in a programming language is obvious to

the developer. The closer a sequence of commands is to the underlying machine,

the more transparent that sequence is. Modern software development tries to raise

the abstraction level at which programmers ply their craft. This tends to reduce the

cost of software development and increase its robustness. Often however, it masks

the real work the underlying machine has to do, thus reducing the computational

transparency of code.

108 CHAPTER 9. THE REAL-TIME SPECIFICATION FOR JAVA

Languages like Assembler are typically completely computationally transpar-

ent. The computational effort for each instruction can be derived in a straightfor-

ward way (e.g., by consulting a table of instruction latency rules). The range of

possible execution times of different instructions is usually limited as well. Only

very few instructions in advanced processor architectures have an execution time

of more than O(1).

Compiled languages vary widely in their computational complexity. Program-

ming languages such as C come very close to full computational transparency. All

basic statements are translated into short sequences of machine code instructions.

More abstract languages can be very different in this respect. Some simple con-

structs may operate on large data structures, e.g., sets, thus take an unbounded

amount of time.

Originally, Java was a language that was very close to C in its syntax with

comparable computational complexity of its statements. Only a few exceptions

were made. Java has evolved, particularly in the area of class libraries, to ease the

job of programming complex systems, at the cost of diminished computational

transparency. Therefore a short tour of the different Java statements and expres-

sions, noting where a non-obvious amount of computational effort is required to

perform these statements with the Java implementation JamaicaVM, is provided

here.

9.5.1 Efficient Java Statements
First the good news. Most Java statements and expressions can be implemented

in a very short sequence of machine instructions. Only statements or constructs

for which this is not so obvious are considered further.

9.5.1.1 Dynamic Binding for Virtual Method Calls

Since Java is an object-oriented language, dynamic binding is quite common.

In the JamaicaVM dynamic binding of Java methods is performed by a simple

lookup in the method table of the class of the target object. This lookup can

be performed with a small and constant number of memory accesses. The total

overhead of a dynamically bound method invocation is consequently only slightly

higher than that of a procedure call in a language like C.

9.5.1.2 Dynamic Binding for Interface Method Calls

Whereas single inheritance makes normal method calls easy to implement effi-

ciently, calling methods via an interface is more challenging. The multiple inher-

itance implicit in Java interfaces means that a simple dispatch table as used by

9.5. COMPUTATIONAL TRANSPARENCY 109

normal methods can not be used. In the JamaicaVM the time needed to find the

called method is linear with the number of interfaces implemented by the class.

9.5.1.3 Type Casts and Checks

The use of type casts and type checks is very frequent in Java. One example is the
following code sequence that uses an instanceof check and a type cast:

...
Object o = vector.elementAt(index);

if (o instanceof Integer)
sum = sum + ((Integer)o).intValue();

...

These type checks also occur implicitly whenever a reference is stored in an array

of references to make sure that the stored reference is compatible with the actual

type of the array. Type casts and type checks within the JamaicaVM are per-

formed in constant time with a small and constant number of memory accesses.

In particular, instanceof is more efficient than method invocation.

9.5.1.4 Generics (JDK 1.5)

The generic types (generics) introduced in JDK 1.5 avoid explicit type cases that
are required using abstract data types with older versions of Java. Using generics,
the type cast in this code sequence

ArrayList list = new ArrayList();
list.add(0, "some string");
String str = (String) list.get(0);

is no longer needed. The code can be written using a generic instance of Array-
List that can only hold strings as follows.

ArrayList<String> list = new ArrayList<String>();
list.add(0, "some string");
String str = list.get(0);

Generics still require type casts, but these casts are hidden from the developer.

This means that access to list using list.get(0) in this example in fact

performs the type cast to String implicitly causing additional runtime over-

head. However, since type casts are performed efficiently and in constant time in

JamaicaVM, the use of generics can be recommended even in time-critical code

wherever this appears reasonable for a good system design.

110 CHAPTER 9. THE REAL-TIME SPECIFICATION FOR JAVA

9.5.2 Non-Obvious Slightly Inefficient Constructs
A few constructs have some hidden inefficiencies, but can still be executed within

a short sequence of machine instructions.

9.5.2.1 final Local Variables

The use of final local variables is very tempting in conjunction with anonymous
inner classes since only variables that are declared final can be accessed from
code in an anonymous inner class. An example for such an access is shown in the
following code snippet:

final int data = getData();

new RealtimeThread(new PriorityParameters(pri))
{

public void run()
{

for (...)
{

...
x = data;
...

}
}

}

All uses of the local variable within the inner class are replaced by accesses to a

hidden field. In contrast to normal local variables, each access requires a memory

access.

9.5.2.2 Accessing private Fields from Inner Classes

As with the use of final local variables, any private fields that are accessed

from within an inner class require the call to a hidden access method since these

accesses would otherwise not be permitted by the virtual machine.

9.5.3 Statements Causing Implicit Memory Allocation
Thus far, only execution time has been considered, but memory allocation is also

a concern for safety-critical systems. In most cases, memory allocation in Java

is performed explicitly by the keyword new. However, some statements per-

form memory allocations implicitly. These memory allocations do not only re-

quire additional execution time, but they also require memory. This can be fa-

tal within execution contexts that have limited memory, e.g., code running in a

9.5. COMPUTATIONAL TRANSPARENCY 111

ScopedMemory or ImmortalMemory as it is required by the Real-Time Spec-

ification for Java for NoHeapRealtimeThreads. A realtime Java programmer

should be familiar with all statements and expressions which cause implicit mem-

ory allocation.

9.5.3.1 String Concatenation

Java permits the composition of strings using the plus operator. Unlike adding

scalars such as int or float values, string concatenation requires the allocation

of temporary objects and is potentially very expensive.
As an example, the instruction

int x = ...;
Object thing = ...;

String msg = "x is " + x + " thing is " + thing;

will be translated into the following statement sequence:

int x = ...;
Object thing = ...;

StringBuffer tmp_sb = new StringBuffer();
tmp_sb.append("x is ");
tmp_sb.append(x);
tmp_sb.append(" thing is ");
tmp_sb.append(thing.toString());
String msg = tmp_sb.toString();

The code contains hidden allocations of a StringBuffer object, of an internal

character buffer that will be used within this StringBuffer, a temporary string

allocated for thing.toString(), and the final string returned by tmp_sb.
toString().

Apart from these allocations, the hidden call to thing.toString() can

have an even higher impact on the execution time, since method toString can

be redefined by the actual class of the instance referred to by thing and can

cause arbitrarily complex computations.

9.5.3.2 Array Initialization

Java also provides a handy notation for array initialization. For example, an array
with the first 8 Fibonacci numbers can be declared as

int[] fib = { 1, 1, 2, 3, 5, 8, 13, 21 };

Unlike C, where such a declaration is converted into preinitialized data, the Java
code performs a dynamic allocation and is equivalent to the following code se-
quence:

112 CHAPTER 9. THE REAL-TIME SPECIFICATION FOR JAVA

int[] fib = new int[8];
fib[0] = 1;
fib[1] = 1;
fib[2] = 2;
fib[3] = 3;
fib[4] = 5;
fib[5] = 8;
fib[6] = 13;
fib[7] = 21;

Initializing arrays in this way should be avoided in time critical code. When pos-

sible, constant array data should be initialized within the static initializer of the

class that uses the data and assigned to a static variable that is marked final.

Due to the significant code overhead, large arrays should instead be loaded as a

resource, using the Java standard API (via method getResourceAsStream
from class java.lang.Class).

9.5.3.3 Autoboxing (JDK 1.5)

Unlike some Scheme implementations, primitive types in Java are not internally
distinguishable from pointers. This means that in order to use a primitive data type
where an object is needed, the primitive needs to be boxed in its corresponding
object. JDK 1.5 introduces autoboxing which automatically creates objects for
values of primitive types such as int, long, or floatwhenever these values are
assigned to a compatible reference. This feature is purely syntactic. An expression
such as

o = new Integer(i);

can be written as

o = i;

Due to the hidden runtime overhead for the memory allocation, autoboxing should

be avoided in performance critical code. Within code sequences that have heavy

restrictions on memory demand, such as realtime tasks that run in Immortal-
Memory or ScopedMemory, autoboxing should be avoided completely since it

may result in hidden memory leaks.

9.5.3.4 For Loop Over Collections (JDK 1.5)

JDK 1.5 also introduces an extended for loop. The extension permits the itera-
tion of a Collection using a simple for loop. This feature is purely syntactic.
A loop such as

ArrayList list = new ArrayList();
for (Iterator i = list.iterator(); i.hasNext();)

9.5. COMPUTATIONAL TRANSPARENCY 113

{
Object value = i.next();
...

}

can be written as

ArrayList list = new ArrayList();
for (Object value : list)

{
...

}

The allocation of a temporary Iterator that is performed by the call to list.
iterator() is hidden in this new syntax.

9.5.3.5 Variable Argument Lists (JDK 1.5)

There is still another feature of JDK 1.5 that requires implicit memory allocation.

The new variable argument lists for methods is implemented by an implicit ar-

ray allocation and initialization. Variable argument lists should consequently be

avoided.

9.5.4 Operations Causing Class Initialization
Another area of concern for computational transparency is class initialization.

Java uses static initializers for the initialization of classes on their first use.

The first use is defined as the first access to a static method or static field of the

class in question, its first instantiation, or the initialization of any of its subclasses.

The code executed during initialization can perform arbitrarily complex oper-

ations. Consequently, any operation that can cause the initialization of a class may

take arbitrarily long for its first execution. This is not acceptable for time critical

code.

Consequently, the execution of static initializers has to be avoided in time

critical code. There are two ways to achieve this: either time critical code must

not perform any statements or expressions that may cause the initialization of a

class, or the initialization has to be made explicit.

The statements and expressions that cause the initialization of a class are

• reading a static field of another class,

• writing a static field of another class,

• calling a static method of another class, and

114 CHAPTER 9. THE REAL-TIME SPECIFICATION FOR JAVA

• creating an instance of another class using new.

An explicit initialization of a class C is best performed in the static initializer of
the class D that refers to C. One way to do this is to add the following code to class
D:

/* initialize class C: */
static { C.class.initialize(); }

The notation C.class itself has its own disadvantages (see Section 9.5.5). So, if
possible, it may be better to access a static field of the class causing initialization
as a side effect instead.

/* initialize class C: */
static { int ignore = C.static_field; }

9.5.5 Operations Causing Class Loading
Class loading can also occur unexpectedly. A reference to the class object of a
given class C can be obtained using classname.class as in the following code:

Class class_C = C.class;

This seemingly harmless operation is, however, transformed into a code sequence
similar to the following code:

static Class class$(String name)
{

try { return Class.forName(name); }
catch (ClassNotFoundException e)

{
throw new NoClassDefFoundError(e.getMessage());

}
}

static Class class$C;

...

Class tmp;
if (class$C == null)

{
tmp = class$("C");
class$C = tmp;

}
else

{
tmp = class$C;

}
Class class_C = tmp;

9.6. SUPPORTED STANDARDS 115

This code sequence causes loading of new classes from the current class loading

context. I.e., it may involve memory allocation and loading of new class files.

If the new classes are provided by a user class loader, this might even involve

network activity, etc.

Starting with JDK 1.5, the classname.class notation will be supported by

the JVM directly. The complex code above will be replaced by a simple bytecode

instruction that references the desired class directly. Consequently, the referenced

class can be loaded by the JamaicaVM at the same time the referencing class

is loaded and the statement will be replaced by a constant number of memory

accesses.

9.6 Supported Standards

Thus far, only standard Java constructs have been discussed. However libraries

and other APIs are also an issue. Timely Java development needs support for

timely execution and device access. There are also issues of certifiability to con-

sider. The JamaicaVM has at least some support for all of the following APIs.

9.6.1 Real-Time Specification for Java

The Real-Time Specification for Java (RTSJ) provides functionality needed for

time-critical Java applications. RTSJ introduces an additional API of Java classes,

mainly with the goal of providing a standardized mechanism for realtime ex-

tensions of Java Virtual Machines. RTSJ extensions also cover other areas of

great importance to many embedded realtime applications, such as direct access

to physical memory (e.g., memory mapped I/O) or asynchronous mechanisms.

RTSJ is implemented by JamaicaVM and other virtual machines like Oracle’s

Java RTS and IBM WebSphere Realtime.

9.6.1.1 Thread Scheduling in the RTSJ

Ensuring that Java programs can execute in a timely fashion was a main goal

of the RTSJ. To enable the development of realtime software in an environment

with a garbage collector that stops the execution of application threads in an un-

predictable way (see Fig. 9.1), the new thread classes RealtimeThread and

NoHeapRealtimeThread were defined. These thread types are unaffected,

or at least less severely affected, by garbage collection activity. Also, at least 28

new priority levels, logically higher than the priority of the garbage collector, are

available for these threads, as illustrated in Fig. 9.2.

116 CHAPTER 9. THE REAL-TIME SPECIFICATION FOR JAVA

Thread time

GC
User 1
User 2

Figure 9.1: Java Threads in a classic JVM are interrupted by the garbage collector

thread

Thread time

rt1
rt2

User 1
User 2

GC

Figure 9.2: RealtimeThreads can interrupt garbage collector activity

9.6. SUPPORTED STANDARDS 117

9.6.1.2 Memory Management

For realtime threads not to be affected by garbage collector activity, these threads

need to use memory areas that are not under the control of the garbage collector.

New memory classes, ImmortalMemory and ScopedMemory, provide these

memory areas. One important consequence of using special memory areas is, of

course, that the advantages of dynamic memory management is not fully available

to realtime threads.

9.6.1.3 Synchronization

In realtime systems with threads of different priority levels, priority inversion situ-

ations must be avoided. Priority inversion occurs when a thread of high priority is

blocked by waiting for a monitor that is owned by a thread of a lower priority that

is preempted by some thread with intermediate priority. The RTSJ provides two

alternatives, priority inheritance and the priority ceiling protocol, to avoid priority

inversion.

9.6.1.4 Limitations of the RTSJ and their solution

The RTSJ provides a solution for realtime programming, but it also brings new

difficulties to the developer. The most important consequence is that applications

have to be split strictly into two parts: a realtime and a non realtime part. Commu-

nication between these parts is heavily restricted: realtime threads cannot perform

memory operations such as the allocation of objects on the normal heap which is

under the control of the garbage collector. Synchronization between realtime and

non realtime threads is also severely restricted to prevent realtime threads from

being blocked by the garbage collector due to priority inversion.

The JamaicaVM removes these restrictions by using its realtime garbage col-

lection technology. Realtime garbage collection obviates the need to make a strict

separation of realtime and non realtime code. Using RTSJ with realtime garbage

collection provides necessary realtime facilities without the cumbersomeness of

having to segregate a realtime application.

9.6.2 Java Native Interface

Both the need to use legacy code and the desire to access exotic hardware may

make it advantageous to call foreign code out of a JVM. The Java Native Inter-

face (JNI) provides this access. JNI can be used to embed code written in other

languages than Java, (usually C), into Java programs.

118 CHAPTER 9. THE REAL-TIME SPECIFICATION FOR JAVA

Thread time

rt1
rt2
rt3
rt4

Figure 9.3: JamaicaVM provides realtime behavior for all threads.

While calling foreign code through JNI is flexible, the resulting code has sev-

eral disadvantages. It is usually harder to port to other operating systems or hard-

ware architectures than Java code. Another drawback is that JNI is not very high-

performing on any Java Virtual Machine. The main reason for the inefficiency is

that the JNI specification is independent of the Java Virtual Machine. Significant

additional bookkeeping is required to insure that Java references that are handed

over to the native code will remain protected from being recycled by the garbage

collector while they are in use by the native code. The result is that calling JNI

methods is usually expensive.

An additional disadvantage of the use of native code is that the application of

any sort of formal program verification of this code becomes virtually intractable.

Nevertheless, because of its availability for many JVMs, JNI is the most popu-

lar Java interface for accessing hardware. It can be used whenever Java programs

need to embed C routines that are not called too often or are not overly time-

critical. If portability to other JVMs is a major issue, there is no current alternative

to JNI. When portability to other operating systems or hardware architectures is

more important, RTSJ is a better choice for device access.

9.7 Memory Management
In a system that supports realtime garbage collection, RTSJ’s strict separation

into realtime and non realtime threads is not necessary. The strict splitting of an

application is consequently not required. Threads are activated only depending on

their priorities, as depicted in Fig. 9.3.

The realtime garbage collector performs its work predictably within the appli-

cation threads. It is activated when memory is allocated. The work done on an

allocation must be preemptible, so that more urgent threads can become active.

The implementation of a realtime garbage collector must solve a number of

technical challenges. Garbage collector activity must be performed in very small

single increments of work. In the JamaicaVM, one increment consists of process-

9.7. MEMORY MANAGEMENT 119

ing and possibly reclaiming only 32 bytes of memory. On every allocation, the

allocating thread “pays” for the memory by performing a small number of these

increments. The number of increments can be analyzed to determine worst-case

behavior for realtime code.

9.7.1 Memory Management of RTSJ

The RTSJ provides a powerful extension to the Java specification. Its full power,

however, is achieved only by the combination with a realtime garbage collector

that helps to overcome its restrictions. Since JamaicaVM uses a realtime garbage

collector, it does not need to impose the limitation that the Real-Time Specifica-

tion for Java puts onto realtime programming onto realtime applications developed

with the JamaicaVM. The limitations that are relaxed in JamaicaVM affect the use

of memory areas, thread priorities, runtime checks, and static initializers.

9.7.1.1 Use of Memory Areas

Since Jamaica’s realtime garbage collector does not interrupt application threads,

RealtimeThreads and even NoHeapRealtimeThreads are not required

to run in their own memory area outside the control of the garbage collector. In-

stead, any thread can use and access the normal garbage collected heap.

9.7.1.2 Thread priorities

In Jamaica, RealtimeThreads, NoHeapRealtimeThreads and normal

Java Thread objects all share the same priority range. The lowest possible

thread priority for all of these threads is defined in package java.lang, class

Thread by field MIN_PRIORITY. The highest possible priority is can be ob-

tained by querying instance().getMaxPriority(), class Priority-
Scheduler, package javax.realtime.

9.7.1.3 Runtime checks for NoHeapRealtimeThread

Since even NoHeapRealtimeThreads are immune to interruption by garbage

collector activities, JamaicaVM does not restrict these threads from accessing ob-

jects allocated on the normal heap. Runtime checks that typically ensure that

these threads do not access objects allocated on the heap can be disabled in the

JamaicaVM. The result is better overall system performance.

120 CHAPTER 9. THE REAL-TIME SPECIFICATION FOR JAVA

9.7.1.4 Static Initializers

In order to permit the initialization of classes even when their first reference is per-

formed within ScopedMemory or ImmortalMemory within a Realtime-
Thread or NoHeapRealtimeThread, and to permit the access of static fields

such as System.out from within these threads, static initializers are typically

executed within ImmortalMemory that is accessible by all threads. However,

this prevents these objects from being reclaimed when they are no longer in use.

This can result in a serious memory leak when dynamic class loading is used

since memory allocated by the static initializers of dynamically loaded classes

will never be reclaimed.

Since the RTSJ implementation in the JamaicaVM does not limit access to

heap objects within any threads, there is no need to execute static initializers

within ImmortalMemory. However, objects allocated in static initializers typ-

ically must be accessible by all threads. Therefore they cannot be allocated in

a scoped memory area when this happens to be the current thread’s allocation

environment when the static initializer is executed.

The JamaicaVM executes all static initializers within heap memory. Objects

allocated by static initializers may be accessed by all threads, and they may be

reclaimed by the garbage collector. There is no memory leak if classes are loaded

dynamically by a user class loader.

9.7.1.5 Class PhysicalMemoryManager

Names and instances of class javax.realtime.PhysicalMemoryType-
Filter that are passed to method registerFilter of the class javax.
realtime.PhysicalMemoryManager are, by the RTSJ, required to be al-

located in immortal memory. Realtime garbage collection obviates this require-

ment. The JamaicaVM does not enforce it either.

9.7.2 Finalizers

Care needs to be taken when using Java’s finalizers. A finalizer is a method that

can be redefined by any Java class to perform actions after the garbage collector

has determined that an object has become unreachable. Improper use of finalizers

can cause unpredictable results.

The Java specification does not give any guarantees that an object will ever

be recycled by the system and that a finalizer will ever be called. Furthermore, if

several unreachable objects have a finalizer, the execution order of these finalizers

is undefined. For these reasons, it is generally unwise to use finalizers in Java at

all. The developer cannot rely on the finalizer ever being executed. Moreover,

9.7. MEMORY MANAGEMENT 121

during the execution of a finalizer, the developer cannot rely on the availability of

any other resources since their finalizers may have been executed already.

In addition to these unpredictabilities, the use of finalizers has an important

impact on the memory demand of an application. The garbage collector cannot

reclaim the memory of any object that has been found to be unreachable before its

finalizer has been executed. Consequently, the memory occupied by such objects

remains allocated.

The finalizer methods are executed by a finalizer thread, which the JamaicaVM

by default runs at the highest priority available to Java threads. If this finalizer

thread does not obtain sufficient execution time, or it is stopped by a finalizer

that is blocked, the system may run out of memory. In this case, explicit calls

to Runtime.runFinalization() may be required by some higher priority

task to empty the queue of finalizable objects.

The use of finalizers is more predictable for objects allocated in Scoped-
Memory or ImmortalMemory. For ScopedMemory, all finalizers will be

executed when the last thread exits a scope. This may cause a potentially high

overhead for exiting this scope. The finalizers of objects that are allocated in

ImmortalMemory will never be executed.

Using finalizers may be helpful during debugging to find programming bugs

like leakage of resources or to visualize when an object’s memory is recycled. In

a production release, any finalizers (even empty ones) should be removed due to

the impact they have on the runtime and the potential for memory leaks caused by

their presence.

As an alternative to finalizers, the systematic use of finally clauses in Java

code to free unused resources is recommended. Should this not be possible, phan-

tom references (java.lang.ref.PhantomReference) can be used, which

offer a more flexible way of doing cleanup before objects get garbage collected.

More information is available from a web post by Muhammad Khojaye [6].

9.7.3 Configuring a Realtime Garbage Collector

To be able to determine worst-case execution times for memory allocation oper-

ations in a realtime garbage collector, one needs to know the memory required

by the realtime application. With this information, a worst-case number of gar-

bage collector increments that are required on an allocation can be determined

(see Chapter 7). Automatic tools can help to determine this value. The heap size

can then be selected to give sufficient headroom for the garbage collector, while

a larger heap size ensures a shorter execution time for allocation. Tools like the

analyzer in the JamaicaVM help to configure a system and find suitable heap size

and allocation times.

122 CHAPTER 9. THE REAL-TIME SPECIFICATION FOR JAVA

9.7.4 Programming with the RTSJ and Realtime Garbage Col-
lection

Once the unpredictability of the garbage collector has been solved, realtime pro-

gramming is possible even without the need for special thread classes or the use

of specific memory areas for realtime code.

9.7.4.1 Realtime Tasks

In Jamaica, garbage collection activity is performed within application threads

and only when memory is allocated by a thread. A direct consequence of this

is that any realtime task that performs no dynamic memory allocation will be

entirely unaffected by garbage collection activity. These realtime tasks can access

objects on the normal heap just like all other tasks. As long as realtime tasks use a

priority that is higher than other threads, they will be guaranteed to run when they

are ready. Furthermore, even realtime tasks may allocate memory dynamically.

Just like any other task, garbage collection work needs to be performed to pay

for this allocation. Since a worst-case execution time can be determined for the

allocation, the worst-case execution time of the task that performs the allocation

can be determined as well.

9.7.4.2 Communication

The communication mechanisms that can be used between threads with differ-

ent priority levels and timing requirements are basically the same mechanisms as

those used for normal Java threads: shared memory and Java monitors.

Shared Memory Since all threads can access the normal, garbage-collected

heap without suffering from unpredictable pauses due to garbage collector ac-

tivity, this normal heap can be used for shared memory communication between

all threads. Any high priority task can access objects on the heap even while

a lower priority thread accesses the same objects or even while a lower priority

thread allocates memory and performs garbage collection work. In the latter case,

the small worst-case execution time of an increment of garbage collection work

ensures a bounded and small thread preemption time, typically in the order of a

few microseconds.

Synchronization The use of Java monitors in synchronized methods and

explicit synchronized statements enables atomic accesses to data structures.

These mechanisms can be used equally well to protect accesses that are performed

in high priority realtime tasks and normal non-realtime tasks. Unfortunately, the

9.7. MEMORY MANAGEMENT 123

standard Java semantics for monitors does not prevent priority inversion that may

result from a high priority task trying to enter a monitor that is held by another task

of lower priority. The stricter monitor semantics of the RTSJ avoid this priority

inversion. All monitors are required to use priority inheritance or the priority

ceiling protocol, such that no priority inversion can occur when a thread tries to

enter a monitor. As in any realtime system, the developer has to ensure that the

time that a monitor is held by any thread must be bounded when this monitor

needs to be entered by a realtime task that requires an upper bound for the time

required to obtain this monitor.

9.7.4.3 Standard Data Structures

The strict separation of an application into a realtime and non-realtime part that

is required when the Real-Time Specification for Java is used in conjunction with

a non-realtime garbage collector makes it very difficult to have global data struc-

tures that are shared between several tasks. The Real-Time Specification for Java

even provides special data structures such as WaitFreeWriteQueue that en-

able communication between tasks. These queues do not need to synchronize and

hence avoid running the risk of introducing priority inversion. In a system that

uses realtime garbage collection, such specific structures are not required. High

priority tasks can share standard data structures such as java.util.Vector
with low priority threads.

9.7.5 Memory Management Guidelines

The JamaicaVM provides three options for memory management: Immortal-
Memory, ScopedMemory, and realtime dynamic garbage collection on the nor-

mal heap. They may all be used freely. The choice of which to use is determined

by what the best trade off between external requirements, compatibility, and effi-

ciency for a given application.

ImmortalMemory is in fact quite dangerous. Memory leaks can result from

improper use. Its use should be avoided unless compatibility with other RTSJ

JVMs is paramount or heap memory is not allowed by the certification regime

required for the project.

ScopedMemory is safer, but it is generally inefficient due to the runtime

checks required by its use. When a memory check fails, the result is a runtime

exception, which is also undesirable in safety-critical code.

One important property of the JamaicaVM is that any realtime code that runs

at high priority and that does not perform memory allocation is guaranteed not to

be delayed by garbage collection work. This important feature holds for standard

124 CHAPTER 9. THE REAL-TIME SPECIFICATION FOR JAVA

RTSJ applications only under the heavy restrictions that apply to NoHeapReal-
timeThreads.

9.8 Scheduling and Synchronization
As the reader may have already noticed in the previous sections, scheduling and

synchronization are closely related. Scheduling threads that do not interact is

quite simple; however, interaction is necessary for sharing data among cooperat-

ing tasks. This interaction requires synchronization to ensure data integrity. There

are implications on scheduling of threads and synchronization beyond memory

access issues.

9.8.1 Schedulable Entities
The RTSJ introduces new scheduling entities to Java. RealtimeThread and

NoHeapRealtimeThread are thread types with clearer semantics than nor-

mal Java threads of class Thread and additional scheduling possibilities. Events

are the other new thread-like construct used for transient computations. To save

resources (mainly operating system threads, and thus memory and performance),

AsyncEvents can be used for short code sequences instead. They are easy to

use because they can easily be triggered programmatically, but they must not be

used for blocking. Also, there are BoundAsyncEvents which each require

their own thread and thus can be used for blocking. They are as easy to use

as normal AsyncEvents, but do not use fewer resources than normal threads.

AsyncEventHandlers are triggered by an asynchronous event. All three exe-

cution environments, RealtimeThreads, NoHeapRealtimeThreads and

AsyncEventHandlers, are schedulable entities, i.e., they all have release pa-

rameters and scheduling parameters that are considered by the scheduler.

9.8.1.1 RealtimeThreads and NoHeapRealtimeThreads

The RTSJ includes the thread classes RealtimeThreads and NoHeapReal-
timeThreads to improve the semantics of threads for realtime systems. These

threads can use a priority range higher than that of all normal Java Threads with

at least 28 unique priority levels. The default scheduler uses these priorities for

fixed priority, preemptive scheduling. In addition to this, the new thread classes

can use the new memory areas ScopedMemory and ImmortalMemory that

are not under the control of the garbage collector.

As previously mentioned, threads of class NoHeapRealtimeThreads are

not permitted to access any object that was allocated on the garbage collected

9.8. SCHEDULING AND SYNCHRONIZATION 125

heap. Consequently, these threads do not suffer from garbage collector activity as

long as they run at a priority that is higher than that of any other schedulable object

that accesses the garbage collected heap. In the JamaicaVM Java environment,

the memory access restrictions present in NoHeapRealtimeThreads are not

required to achieve realtime guarantees. Consequently, the use of NoHeapReal-
timeThreads is neither required nor recommended.

Apart from the extended priority range, RealtimeThreads provide fea-

tures that are required in many realtime applications. Scheduling parameters for

periodic tasks, deadlines, and resource constraints can be given for Realtime-
Threads, and used to implement more complex scheduling algorithms. For

instance, periodic threads in the JamaicaVM use these parameters. In the Ja-

maicaVM Java environment, normal Java threads also profit from strict fixed pri-

ority, preemptive scheduling. For realtime code, the use of RealtimeThread
is still recommended.

9.8.1.2 AsyncEventHandlers vs. BoundAsyncEventHandlers

An alternative execution environment is provided through classes AsyncEvent-
Handler and BoundAsyncEventHandler. Code in an event handler is ex-

ecuted to react to an event. Events are bound to some external happening (e.g, a

processor interrupt), which triggers the event.

AsyncEventHandler and BoundAsyncEventHandler are schedula-

ble entities that are equipped with release and scheduling parameters exactly as

RealtimeThread and NoHeapRealtimeThread. The priority scheduler

schedules both threads and event handlers, according to their priority. Also, ad-

mission checking may take the release parameters of threads and asynchronous

event handlers in account. The release parameters include values such as execu-

tion time, period, and minimum interarrival time.

One important difference from threads is that an AsyncEventHandler is

not bound to one single thread. This means, that several invocations of the same

handler may be performed in different thread environments. A pool of preallo-

cated RealtimeThreads is used for the execution of these handlers. Event

handlers that may execute for a long time or that may block during their execution

may block a thread from this pool for a long time. This may make the timely

execution of other event handlers impossible.

Any event handler that may block should therefore have one Realtime-
Thread that is assigned to it alone for the execution of its event handler. Handlers

for class BoundAsyncEventHandler provide this feature. They do not share

their thread with any other event handler and they may consequently block without

disturbing the execution of other event handlers. Due to the additional resources

required for instances of BoundAsyncEventHandler, their use should be re-

126 CHAPTER 9. THE REAL-TIME SPECIFICATION FOR JAVA

Task A

Task B

Task C

Lock(x) Unlock(x)

Lock(x)

Figure 9.4: Priority Inversion

stricted to blocking or long running events only. The sharing of threads used

for normal AsyncEventHandlers permits the use of a large number of event

handlers with minimal resource usage.

9.8.2 Synchronization

Synchronization is essential to data sharing, especially between cooperating real-

time tasks. Passing data between threads at different priorities without impairing

the realtime behavior of the system is the most important concern. It is essential

to ensure that a lower priority task cannot preempt a higher priority task.

The situation in Fig. 9.4 depicts a case of priority inversion when using mon-

itors, the most common priority problem. The software problems during the

Pathfinder mission on Mars is the most popular example of a classic priority in-

version error (see Michael Jones’ web page [5]).

In this situation, a higher priority thread A has to wait for a lower priority

thread B because another thread C with even lower priority is holding a monitor

for which A is waiting. In this situation, B will prevent A and C from running,

because A is blocked and C has lower priority. In fact, this is a programming error.

If a thread might enter a monitor which a higher priority thread might require, then

no other thread should have a priority in between the two.

Since errors of this nature are very hard to locate, the programming environ-

ment should provide a means for avoiding priority inversion. The RTSJ defines

two possible mechanisms for avoiding priority inversion: Priority Inheritance and

Priority Ceiling Emulation. The JamaicaVM implements both mechanisms.

9.8. SCHEDULING AND SYNCHRONIZATION 127

Task A

Task B

Task C

Lock(x) Unlock(x)

Lock(x)

Pr
io

ri
ty

In
he

ri
ta

nc
e

Figure 9.5: Priority Inheritance

9.8.2.1 Priority Inheritance

Priority Inheritance is a protocol which is easy to understand and to use, but that

poses the risk of causing deadlocks. If priority inheritance is used, whenever a

higher priority thread waits for a monitor that is held by a lower priority thread,

the lower priority thread’s priority is boosted to the priority of the blocking thread.

Fig. 9.5 illustrates this.

9.8.2.2 Priority Ceiling Emulation

Priority Ceiling Emulation is widely used in safety-critical system. The priority of

any thread entering a monitor is raised to the highest priority of any thread which

could ever enter the monitor. Fig. 9.6 illustrates the Priority Ceiling Emulation

protocol.

As long as no thread that holds a priority ceiling emulation monitor blocks,

any thread that tries to enter such a monitor can be sure not to block.1 Conse-

quently, the use of priority ceiling emulation automatically ensures that a system

is deadlock-free.

9.8.2.3 Priority Inheritance vs. Priority Ceiling Emulation

Priority Inheritance should be used with care, because it can cause deadlocks when

two threads try to enter the same two monitors in different order. This is shown

in Fig. 9.7. Thus it is safer to use Priority Ceiling Emulation, since when used

correctly, deadlocks cannot occur there. Priority Inheritance deadlocks can be

avoided, if all programmers make sure to always enter monitors in the same order.

1If any other thread owns the monitor, its priority will have been boosted to the ceiling priority.

Consequently, the current thread cannot run and try to enter this monitor.

128 CHAPTER 9. THE REAL-TIME SPECIFICATION FOR JAVA

Task A

Task B

Task C
Priority Ceiling

Lock(x) Unlock(x)

Lock(x)

Figure 9.6: Priority Ceiling Emulation Protocol

Task A

Task B

Lock(x) Lock(y)

Lock(x)Lock(y)

Pr
io

ri
ty

In
he

ri
ta

nc
e

Figure 9.7: Deadlocks are possible with Priority Inheritance

9.8. SCHEDULING AND SYNCHRONIZATION 129

Unlike classic priority ceiling emulation, the RTSJ permits blocking while

holding a priority ceiling emulation monitor. Other threads that may want to enter

the same monitor will be stopped exactly as they would be for a normal monitor.

This fall back to standard monitor behavior permits the use of priority ceiling

emulation even for monitors that are used by legacy code.

The advantage of a limited and short execution time for entering a priority ceil-

ing monitor, working on a shared resource, then leaving this monitor are, however,

lost when a thread that has entered this monitor may block. Therefore the system

designer should restrict the use of priority ceiling monitors to short code sequences

that only access a shared resource and that do not block. Entering and exiting the

monitor can then be performed in constant time, and the system ensures that no

thread may try to enter a priority ceiling monitor that is held by some other thread.

Since priority ceiling emulation requires adjusting a thread’s priority every

time a monitor is entered or exited, there is an additional runtime overhead for this

priority change when using this kind of monitors. This overhead can be significant

compared to the low runtime overhead that is incurred to enter or leave a normal,

priority inheritance monitor. In this case, there is a priority change penalty only

when a monitor has already been taken by another thread.

Future versions of the Jamaica Java implementation may optimize priority

ceiling and avoid unnecessary priority changes. The JamaicaVM uses atomic code

sequences and restricts thread switches to certain points in the code. A synchro-

nized code sequence that is protected by a priority ceiling monitor and that does

not contain a synchronization point may not require entering and leaving of the

monitor at all since the code sequence is guaranteed to be executed atomically due

to the fact that it does not contain a synchronization point.

9.8.3 Scheduling Policy and Priorities

Although JamaicaVM uses its own scheduler, the realtime behavior depends heav-

ily on the scheduling policy of the underlying operating system. Best results can

be achieved by using priority based scheduling using a first-in-first-out schedul-

ing policy since this corresponds to the scheduling policy implemented by Ja-

maicaVM’s own scheduler.

9.8.3.1 Native Priorities

In JamaicaVM, a priority map defines which native (OS) priorities are used for the

different Java thread priorities. This priority map can be set via the environment

variable JAMAICAVM_PRIMAP (see Section 12.4), or using the Jamaica Builder

via the -priMap option (see Chapter 13).

130 CHAPTER 9. THE REAL-TIME SPECIFICATION FOR JAVA

Normal (non-realtime) Java thread priorities should usually be mapped to a

single OS priority since otherwise lower priority Java threads may receive no CPU

time if a higher priority thread is running constantly. The reason for this is that

legacy Java code that expects lower priority threads to run even if higher priority

threads are ready may not work otherwise. A fairness mechanism in JamaicaVM

is used only for the lowest Java thread priorities that map to the same OS prior-

ity. For applications written to work with first-in-first-out scheduling, mapping

different Java priorities to different OS priorities, however, can result in better

performance.

Higher Java priorities used for instances of RealtimeThread and Async-
EventHandler, usually the Java priorities 11 through 38, should be mapped to

distinct priorities of the underlying OS. If there are not sufficiently many OS pri-

ority levels available, different Java priorities may be mapped to the same native

priority. The Jamaica scheduler will still run the thread with higher Java priority

before running the lower priority threads. However, having the same native pri-

ority may result in higher thread-switch overhead since the underlying OS does

not know about the difference in Java priorities and may attempt to run the wrong

thread.

The special keyword sync is used to specify the native priority of the syn-

chronization thread. This thread manages time slicing between the normal Java

threads, so this should usually be mapped to a value that is higher or equal to the

native priority used for Java priority 10, the maximum priority for normal, non-

realtime Java threads. Using a higher priority for the synchronization thread may

introduce jitter to the realtime threads, while using a lower value will disable time

slicing and fairness for this and higher priorities.

9.8.3.2 Priority Boosting

Thread switches between two Java threads running in the same instance of Ja-

maicaVM are restricted to specific points in the VM.2 In case a thread is pre-

empted by a more eligible thread in the same VM, it has to be ensured that the

preempted thread reaches the next point that allows a thread switch. Therefore, the

preempting thread will signal the need to stop at this point to the preempted thread

and yield the CPU back to it. Unfortunately, on most operating systems, there is

no mechanism to yield back to a specific thread. Yielding the current CPU, e.g.,

by a call to POSIX’ pthread_yield function, may yield the CPU to another,

fully unrelated thread of a different process, resulting in unfair scheduling.

Depending on the target operating system, JamaicaVM implements a priority

boosting mechanism that temporarily sets the preempted thread’s native priority

2These are called synchronization points. They are part of the interpreter loop and they are

added automatically by the compiler controlled by the Builder option -threadPreemption.

9.8. SCHEDULING AND SYNCHRONIZATION 131

(as set via the Builder option -priMap) to the next higher priority to ensure the

OS will not yield the CPU to a thread of another process that has the same priority

as the preempted one. Please check the Thread Priorities subsection of the target

OS in Appendix B for details on a specific target.

On targets that use priority boosting to the next native priority, you may en-

counter that Jamaica threads are running temporarily at higher priorities than the

priorities specified in the priority map for the corresponding Java thread priority.

To avoid any interference between JamaicaVM’s threads and other processes with

threads at higher priorities, the priorities of JamaicaVM’s threads should be set

such that there is one unused priority level between JamaicaVM’s threads and the

higher priority process’ threads.

9.8.3.3 POSIX Scheduling Policies

On POSIX systems, the scheduling policy can be set via the environment variable

JAMAICAVM_SCHEDULING_POLICY (see Section 12.4). Using the Jamaica

Builder, the scheduling policy can be set with the -schedulingPolicy option

(see Chapter 13). These are the supported POSIX scheduling policies:

• OTHER — default scheduling

• FIFO — first in first out

• RR — round robin

The default is OTHER, which may not be a realtime policy depending on the target

OS. To obtain realtime performance, the use of FIFO is required. Using RR is

an alternative to FIFO, but it does make sense only in case Jamaica threads are

supposed to share the CPU with other processes running at the same priority.

Using FIFO or RR requires superuser privileges (root access) on some systems,

e.g., Linux.

Scheduling policies FIFO and RR require native thread priorities that are 1
or larger, while the default priority map used by JamaicaVM may map all Java

thread priorities to native priority 0 if this is a legal priority for the OTHER policy

(e.g., on Linux). Hence, it is required to define a different priority map if these

scheduling policies are used.

Native priorities that are lower than the minimum priority of the selected

scheduling policy (e.g., priority 0 is lower than the minimum FIFO priority which

is 1) are implemented by falling back to the OTHER scheduling policy for the af-

fected threads.

On Linux, FIFO scheduling is recommended for RealtimeThreads and

AsyncEventHandlers and OTHER for normal Java threads. These are the

corresponding settings:

132 CHAPTER 9. THE REAL-TIME SPECIFICATION FOR JAVA

JAMAICAVM_SCHEDULING_POLICY=FIFO
JAMAICAVM_PRIMAP=1..10=0,sync=1,11..38=2..29

Since the scheduling policy can be embedded directly into the priority map,

an alternative way of setting the scheduling policy could be done as follows:

JAMAICAVM_PRIMAP=1..10=0/OTHER,sync=1/FIFO,11..38=2..29/FIFO

This would schedule Java priorities 11 to 38 using the FIFO scheduler, and

the rest using the OTHER scheduler.

The result is that a Java application that uses only normal Java threads will use

OTHER scheduling and run in user mode, while any threads and event handlers

that use RTSJ’s realtime priorities (11 through 38) will use the corresponding

FIFO priorities. The priority specified with the keyword sync is used for the

synchronization thread. This thread manages time slicing between the normal

Java threads, so this can use the OTHER scheduling policy as well, while FIFO
ensures that time slicing will have precedence even if there is a high load of threads

using the scheduling policy OTHER.

9.9 Libraries
The use of a standard Java libraries within realtime code poses severe difficulties,

since standard libraries typically are not developed with the strict requirements

on execution time predictability that come with the use in realtime code. For

use within realtime applications, any libraries that are not specifically written and

documented for realtime system use cannot be used without inspection of the

library code.

The availability of source code for standard libraries is an important prerequi-

site for their use in realtime system development. Within the JamaicaVM, large

parts of the standard Java APIs are taken from OpenJDK, which is an open source

project. The source code is freely available, so that the applicability of certain

methods within realtime code can be checked easily.

9.10 Summary
As one might expect, programming realtime systems in Java is more complicated

than standard Java programming. A realtime Java developer must take care with

many Java constructs. With timely Java development using JamaicaVM, there are

instances where a developer has more than one possible implementation construct

to choose from. Here, the most important of these points are recapitulated.

9.10. SUMMARY 133

9.10.1 Efficiency
All method calls and interface calls are performed in constant time. They are

almost as efficient as C function calls, so do not avoid them except in places

where one would avoid a C function call as well.

When accessing final local variables or private fields from within inner

classes in a loop, one should generally cache the result in a local variable for

performance reasons. The access is in constant time, but slower than normal local

variables.

Using the String operator + causes memory allocation with an execution time

that is linear with regard to the size of the resulting String. Using array initializa-

tion causes dynamic allocations as well.

For realtime critical applications, avoid static initializers or explicitly call the

static initializer at startup. When using a java compiler earlier than version 1.5, the

use of classname.class causes dynamic class loading. In realtime applications,

this should be avoided or called only during application startup. Subsequent usage

of the same class will then be cached by the JVM.

9.10.2 Memory Allocation
The RTSJ introduces new memory areas such as ImmortalMemoryArea and

ScopedMemory, which are inconvenient for the programmer, and at the same

time make it possible to write realtime applications that can be executed even on

virtual machines without realtime garbage collection.

In JamaicaVM, it is safe, reliable, and convenient to just ignore those restric-

tions and rely on the realtime garbage collection instead. Be aware that if exten-

sions of the RTSJ without sticking to restrictions imposed by the RTSJ, the code

will not run unmodified on other JVMs.

9.10.3 EventHandlers
AsyncEventHandlers should be used for tasks that are triggered by some

external event. Many event handlers can be used simultaneously; however, they

should not block or run for a long time. Otherwise the execution of other event

handlers may be blocked.

For longer code sequences, or code that might block, event handlers of class

BoundAsyncEventHandler provide an alternative that does not prevent the

execution of other handlers at the cost of an additional thread.

The scheduling and release parameters of event handlers should be set accord-

ing to the scheduling needs for the handler. Particularly, when rate monotonic

analysis [10] is used, an event handler with a certain minimal interarrival time

134 CHAPTER 9. THE REAL-TIME SPECIFICATION FOR JAVA

should be assigned a priority relative to any other events or (periodic) threads

using this minimal interarrival time as the period of this schedulable entity.

9.10.4 Monitors
Priority Inheritance is the default protocol in the RTSJ. It is safe and easy to use,

but one should take care to nest monitor requests properly and in the same order

in all threads. Otherwise, it can cause deadlocks. When used properly, Priority

Ceiling Emulation (PCE) can never cause deadlocks, but care has to be taken

that a monitor is never used in a thread of higher priority than the monitor. Both

protocols are efficiently implemented in the JamaicaVM.

Chapter 10

Multicore Guidelines

While on single-core systems multithreaded computation eventually boils down to

the sequential execution of instructions on a single CPU, multicore systems pose

new challenges to programmers. This is especially true for languages that expose

features of the target hardware relatively directly, such as C. For example, shared

memory communication requires judiciously placed memory fences to prevent

compiler optimizations that can lead to values being created “out of thin air”.

High-level languages such as Java, which has a well-defined and machine-

independent memory model [4, Chapter 17], shield programmers from such sur-

prises. In addition, high-level languages provide automatic memory management.

The Jamaica multicore VM provides concurrent, parallel, real-time garbage col-

lection:

Concurrent Garbage collection can take place on some CPUs while other CPUs

execute application code.

Parallel Several CPUs can perform garbage collection at the same time.

Real-time There is a guaranteed upper bound on the amount of time any part

of application code may be suspended for garbage collection work. At the

same time, it is guaranteed that garbage collection work will be sufficient to

reclaim enough memory so all allocation requests by the application can be

satisfied.

JamaicaVM’s garbage collector achieves hard real-time guarantees by carefully

distributing the garbage collection to all available CPUs [11].

10.1 Tool Usage
For versions of JamaicaVM with multicore support the Builder can build applica-

tions with and without multicore support. This is controlled via the Builder option

135

136 CHAPTER 10. MULTICORE GUIDELINES

-parallel. On systems with only one CPU or for applications that cannot ben-

efit from parallel execution, multicore support should be disabled. The multicore

version has a higher overhead of heap memory than the single-core version (see

Appendix D).

In order to limit the CPUs used by Jamaica, a set of CPU affinities may be

given to the Builder or VM via the option -Xcpus. See Section 12.1.2 and Sec-

tion 13.3 for details. While Jamaica supports all possible subsets of the existing

CPUs, operating systems may not support these. The set of all CPUs and all sin-

gleton sets of CPUs are usually supported, though. For more information, please

consult the documentation of the operating system you use.

To find out whether a particular Jamaica virtual machine provides multicore

support, use the -version option. A VM with multicore support will identify

itself as parallel.

10.2 Setting Thread Affinities

On a multicore system, by default the scheduler can assign any thread to any

CPU as long as priorities are respected. In many cases this flexibility leads to

reduced throughput or increased jitter. The main reason is that migrating a thread

form one CPU to another is expensive: it renders the code and data stored in

the cache useless, which delays execution. Reducing the scheduler’s choice by

“pinning” a thread to a specific CPU can help. In JamaicaVM the RTSJ class

javax.realtime.Affinity enables restricting on which CPUs a thread can

run. The following sections present rules of thumb for choosing thread affinities in

common situations. In practice, usually experimentation is required to see which

affinities work best for a particular application.

10.2.1 Communication through Shared Memory

Communication of threads through shared memory is usually more efficient if

both threads run on the same CPU. This is because threads on the same CPU can

communicate via the CPU’s cache, while in order for data to pass from one CPU to

another, it has to go via main memory, which is slower. The decision on whether

pinning two communicating threads to the same or to different CPUs should be

based on the tradeoff between computation and communication: if computation

dominates, it will usually be better to use different CPUs; if communication dom-

inates, using the same CPU will be better.

Interestingly, the same effect can also occur for threads that do not communi-

cate, but that write data in the same cache line. This is known as false sharing.

10.2. SETTING THREAD AFFINITIES 137

In JamaicaVM this can occur if two threads modify data in the same object (more

precisely, the same block).

10.2.2 Performance Degradation on Locking
If two contenders for the same monitor can only run on the same CPU, the runtime

system may be able to decide more efficiently whether the monitor is free and may

be acquired (i.e., locked). Consider the following scenario:

• A high-priority thread A repeatedly acquires and releases a monitor.

• A low-priority thread B repeatedly acquires and releases the same monitor.

This happens, for example, if A and B concurrently read fields of a synchronized

data-structure.

Assume that thread B is started and later also thread A. At some point, A may

have to wait until B releases the monitor. Then A resumes. Since A is of higher

priority than B, A will not be preempted by B. If A and B are tied to the same

CPU this means that B cannot run while A is running. If A releases the monitor

and tries to re-acquire it later, it is clear that it cannot have been taken by B in the

meantime. Since the monitor is free, it can be taken immediately, which is very

efficient.

If, on the other hand, A and B can run on different CPUs, B can be running

while A is running, and it may acquire the monitor when A releases it. In this

case, A has to re-obtain the monitor from B before it can continue. The additional

overhead for blocking A and for waking up A after B has released the monitor

can be significant.

10.2.3 Periodic Threads
Some applications have periodic events that need to happen with high accuracy.

If this is the case, cache latencies can get into the way. Consider the following

scenario:

• A high-priority thread A runs every 2ms for 1ms and

• A low-priority thread B runs every 10ms for 2ms.

If both threads run on the same CPU, B will fill some of the gaps left by A. For

the gaps filled by B, when A resumes, it first needs to fill the cache with its own

code and data. This can lead to CPU stalls. These stalls only occur when B did

run immediately before A. They do not occur after the gaps during which the CPU

was idle. The fact that stalls occur sometimes but sometimes not will be observed

138 CHAPTER 10. MULTICORE GUIDELINES

as jitter in thread A. The problem can be alleviated by tying A and B to different

CPUs.

10.2.4 Rate-Monotonic Analysis
Rate-monotonic analysis is a technique for determining whether a scheduling

problem is feasible on a system with thread preemption such that deterministic

response times can be guaranteed with simple (rate-monotonic) scheduling algo-

rithms. Rate-monotonic analysis only works for single-core systems. However,

if a subset of application threads can be identified that have little dependency on

the other application threads it may be possible to schedule these based on rate-

monotonic analysis.

A possible scenario where this can be a useful approach is an application

where some threads guarantee deterministic responses of the system, while other

threads perform data processing in the background. The subset of threads in

charge of deterministic responses could be isolated to a single CPU and rate-

monotonic scheduling could be used for them.

10.2.5 The Operating System’s Interrupt Handler
Operating systems usually tie interrupt handling to one particular CPU. Cache

effects described in Section 10.2.3 above can also occur between the interrupt

handling code and application threads. Therefore, jitter may be reduced by run-

ning application threads on CPUs other than the one in charge of the operating

system’s interrupt handling.

Part III

Tools Reference

139

Chapter 11

The Jamaica Java Compiler

The command jamaicac is a compiler for the Java programming language and

is based on OpenJDK’s Java Compiler. It uses the system classes of the Jamaica

distribution, which are located in

jamaica-home/target/platform/lib/

as default bootclasspath. JamaicaVM may be used with other compilers such as

JDK’s javac provided the bootclasspath is set to Jamaica’s system classes of the

used platform.1

11.1 Usage of jamaicac
The command line syntax for the jamaicac is as follows:

jamaicac [options] [source files and directories]

If directories are specified their source contents are compiled. The command line

options of jamaicac are those of javac. As notable difference, the additional

useTarget option enables specifying a particular target platform.

11.1.1 Classpath options
Option -useTarget platform

The useTarget option specifies the target platform to compile for. It is used to

compute the bootclasspath in case bootclasspath is omitted. By default, the

host platform is used.

1The bootclasspath is bound to the VM system property sun.boot.class.path.

141

142 CHAPTER 11. THE JAMAICA JAVA COMPILER

Setting this option ensures that the Java sources that are compiled do not

make use of any APIs that are not present in the boot classes of the given tar-

get. E.g., a Jamaica distribution may contain support for the full Java runtime

environment for the host platform, but only the compact2 profile for an embed-

ded target. Setting this option will ensure that code that references classes that

are not present in the target profile, such as classes requiring graphics support,

will fail to compile. Due to the lazy class loading used by the Java virtual ma-

chine and maintained by the Jamaica Builder, this error would otherwise not be

detected before the affected classes are referenced at runtime. Similar problems

occur with Java code that references platform-specific non-public APIs such as

sun.nio.fs.LinuxFileSystemProvider.

Option -cp (-classpath) path

The classpath option specifies the location for application classes and sources.

The path is a list of directories, zip files or jar files separated by the platform

specific separator (usually colon, ‘:’). Each directory or file can specify access

rules for types between ‘[’ and ‘]’ (e.g. “[-X.java]” to deny access to type X).

Option -bootclasspath path

This option is similar to the option classpath, but specifies locations for sys-

tem classes.

Option -sourcepath path

The sourcepath option specifies locations for application sources. The path is

a list of directories. For further details, see option classpath above.

Option -extdirs dirs

The extdirs option specifies location for extension zip/jar files, where dirs is a

list of directories.

Option -endorseddirs dirs

The endorseddirs options can be used to provide newer versions of standard

API packages than those provided by Jamaica.

Option -d directory

The d option sets the destination directory to write the generated class files to.

11.1. USAGE OF JAMAICAC 143

Option -h directory

The h option sets the destination directory to write the generated header files to.

Option -s directory

The s option sets the destination directory to write the generated source files to.

Option -profile profile

This option is not supported by jamaicac.

11.1.2 Compliance options
Option -source version

Provide source compatibility for specified version, e.g. 1.8 (or 8 or 8.0).

Option -target version

Generated class files for a specific VM version, e.g. 1.8 (or 8 or 8.0).

11.1.3 Compilation options
Option -implicit:none,class

The implicit option controls whether class files should be generated for im-

plicitly loaded source files (class, the default) or not (none).

Option -parameters

The parameters option enables generation of reflection data for method pa-

rameters.

11.1.4 Warning options
Option -deprecation

The deprecation option checks for deprecation outside deprecated code.

Option -nowarn

The nowarn option disables all warnings.

144 CHAPTER 11. THE JAMAICA JAVA COMPILER

Option -Werror

The Werror option terminate jamaicac in case of a warning.

11.1.5 Debug options
Option -g

The g option without parameter activates all debug info.

Option -g:none

The g option with none disables debug info.

Option -g:{lines,vars,source}
The g option is used to customize debug info.

11.1.6 Annotation processing options
Option -proc:none,only

The proc option controls whether compilation without annotation processing

(none) or annotation processing without compilation (only) should be done.

Option -processor class,...

The processor option lists the annotation processor classes to use.

Option -processorpath path

The processorpath option specifies the path to search for annotation proces-

sor classes.

Option -Akey[=value]

The A option specifies arguments to pass to annotation processors.

11.1.7 Other options
Option -encoding encoding

The encoding option specifies custom encoding for all sources. May be overrid-

den for each file or directory by suffixing with ‘[’encoding‘]’ (e.g. “X.java[utf8]”).

11.2. ENVIRONMENT VARIABLES 145

Option -Joption

This option is ignored.

Option -verbose

The verbose option enables output of messages about what the compiler is do-

ing.

Option -version

The version option causes printing of jamaicac version information.

Option -help

The help option causes printing of jamaicac command line help information.

Option -X

The X option prints non-standard options and exits.

Option @filename

The @ option provides a file name to read options from. This does not support the

useTarget option.

11.2 Environment Variables
The following environment variables control jamaicac.

JAMAICAC_HEAPSIZE Initial heap size of the jamaicac command itself in

bytes. Setting this to a larger value will improve the jamaicac perfor-

mance.

JAMAICAC_MAXHEAPSIZE Maximum heap size of the jamaicac command

itself in bytes. If the initial heap size is not sufficient, it will increase its

heap dynamically up to this value. To compile large applications, you may

have to set this maximum heap size to a larger value.

JAMAICAC_JAVA_STACKSIZE Java stack size of the jamaicac command

itself in bytes.

146 CHAPTER 11. THE JAMAICA JAVA COMPILER

JAMAICAC_NATIVE_STACKSIZE Native stack size of the jamaicac com-

mand itself in bytes.

Chapter 12

The Jamaica Virtual Machine
Commands

The Jamaica virtual machine provides a set of commands that permit the execu-

tion of Java applications by loading a set of class files and executing the code.

The command jamaicavm launches the standard Jamaica virtual machine. Its

variants jamaicavm_slim, jamaicavmp and jamaicavmdi provide spe-

cial features like e.g. Java debugging support.

12.1 jamaicavm — the Standard Virtual Machine
The jamaicavm is the standard command to execute non-optimized Java ap-

plications in interpreted mode. Its input syntax follows the conventions of Java

virtual machines.

jamaicavm [options] class [args...]
jamaicavm [options] -jar jarfile [args...]

The program’s main class is either given directly on the command line, or obtained

from the manifest of a Java archive file if option -jar is present.

The main class must be given as a qualified class name that includes the com-

plete package path. For example, if the main class MyClass is in package com.
mycompany, the fully qualified class name is com.mycompany.MyClass.

In Java, the package structure is reflected by nested folders in the file system.

The class file MyClass.class, which contains the main class’s bytecode, is

expected in the folder com/mycompany (or com\mycompany on Windows

systems). The command line for this example is

jamaicavm com.mycompany.MyClass

147

148 CHAPTER 12. THE JAMAICA VIRTUAL MACHINE COMMANDS

on Unix and Windows systems alike.

The available command line options of jamaicavm, are explained in the

following sections. In addition to command line options, there are environment

variables and Java properties that control the VM. For details on the environment

variables, see Section 12.4, for the Java properties, see Section 12.5.

12.1.1 Command Line Options

Option -classpath (-cp) path

The classpath option sets the search path for class files. The argument must

be a list of directories or JAR/ZIP files separated by the platform dependent path

separator char (‘:’ on Unix-Systems, ‘;’ on Windows). If this option is not used,

the search path for class files defaults to the current working directory.

Note that for running the VM on a target device (see Section 12.2) a platform-

specific path separator char must be used and correctly escaped as required by the

corresponding command-line shell. For example, on VxWorks ‘;’ is the path sep-

arator and on the kernel shell command-interpreter it is escaped either by \ or by

enclosing the whole list in double quotes as such: "path1;path2;...;pathN".

Option -Dname=value

The D option sets a system property with a given name to a given value. The

value of this property will be available to the Java application via functions such

as System.getProperty().

Option -javaagent:jarpath[=options]

The javaagent option creates a set of Java agents which will be started before

the main application method. jarpath is the path to the JAR containing the agent.

options is the argument that will be passed to the agent’s premain method. Mul-

tiple javaagent options may be specified on the command line, and they will

be called in the order they were specified. For further information, please refer to

the Jamaica API documentation, package java.lang.instrument.

! JamaicaVM currently does not fully support instrumentation and cannot pass

an instrumentation object to the agent’s premainmethod. Agents that imple-

ment premain(String,Instrumentation) will therefore receive null
for the second argument.

12.1. JAMAICAVM — THE STANDARD VIRTUAL MACHINE 149

Option -version

The version option prints the version of JamaicaVM and then exits.

Option -showversion

The showversion option prints the version of JamaicaVM before starting the

execution of the main method.

Option -help (-?)

The help option prints a short help summary on the usage of JamaicaVM and

lists the default values is uses. These default values are target specific. The de-

fault values may be overridden by command line options or environment variable

settings. Where command line options (set through -Xoption) and environment

variables are possible, the command line settings have precedence. For the avail-

able command line options, see Section 12.1.2 or invoke the VM with -xhelp.

Option -ea (-enableassertions)

The ea and enableassertions options enable Java assertions introduced in

Java code using the assert keyword for application classes. The default setting

for these assertions is disabled.

Option -da (-disableassertions)

The da and disableassertions options disable Java assertions introduced

in Java code using the assert keyword for application classes. The default

setting for these assertions is disabled.

Option -esa (-enablesystemassertions)

The esa and enablesystemassertions options enable Java assertions in-

troduced in Java code using the assert keyword for system classes, i.e., classes

loaded via the bootclasspath. The default setting for these assertions is disabled.

Option -dsa (-disablesystemassertions)

The dsa and enablesystemassertions options disable Java assertions in-

troduced in Java code using the assert keyword for system classes, i.e., classes

loaded via the bootclasspath. The default setting for these assertions is disabled.

150 CHAPTER 12. THE JAMAICA VIRTUAL MACHINE COMMANDS

Option -verbose[:class]

The verbose option enables verbose output. Currently only verbose:class
option for tracing of class loading is supported.

12.1.2 Extended Command Line Options

JamaicaVM supports a number of extended options. Some of them are supported

for compatibility with other virtual machines, while some provide functionality

that is only available in Jamaica . Please note that the extended options may

change without notice. Use them with care.

Option -xhelp (-X)

The xhelp option prints a short help summary on the extended options of Ja-

maicaVM.

Option -Xbootclasspath:path

The Xbootclasspath option sets bootstrap search paths for class files. The

argument must be a list of directories or JAR/ZIP files separated by the platform

dependent path separator char (‘:’ on Unix-Systems, ‘;’ on Windows). Note that

the jamaicavm command has all boot and standard API classes built in. The

boot-classpath has the built-in classes as an implicit first entry in the path list,

so it is not possible to replace the built-in boot classes by other classes which

are not built-in. However, the boot class path may still be set to add additional

boot classes. For commands jamaicavm_slim, jamaicavmp, etc. that do

not have any built-in classes, setting the boot-classpath will force loading of the

system classes from the directories provided in this path. However, extreme care is

required: The virtual machine relies on some internal features in the boot-classes.

Thus it is in general not possible to replace the boot classes by those of a different

virtual machine or even by those of another version of the Jamaica virtual machine

or even by those of a different Java virtual machine. In most cases, it is better to

use -Xbootclasspath/a, which appends to the bootstrap class path.

Option -Xbootclasspath/a:path

The Xbootclasspath/a option appends to the bootstrap class path. The ar-

gument must be a list of directories or JAR/ZIP files separated by the platform

dependent path separator char (‘:’ on Unix Systems, ‘;’ on Windows). For further

information, see the Xbootclasspath option above.

12.1. JAMAICAVM — THE STANDARD VIRTUAL MACHINE 151

Option -Xbootclasspath/p:path

The Xbootclasspath/p option prepends to the bootstrap class path. The ar-

gument must be a list of directories or JAR/ZIP files separated by the platform

dependent path separator char (‘:’ on Unix Systems, ‘;’ on Windows). For further

information, see the Xbootclasspath option above.

Option -Xcpuscpus

Specifies the set of CPUs to use. The argument is an enumeration n1,n2,. . . , a

range n1..n2 or the token all. For example, 0,1,3 will use the CPUs with ids

0, 1, and 3. -Xcpusall will use all available CPUs. This option is only avail-

able on configurations with multicore support. Be aware that multicore support

requires an extra license.

Option -Xms(-ms)size

The Xms option sets initial Java heap size, the default setting is 2M. This option

takes precedence over a heap size set via an environment variable.

Option -Xmx(-mx)size

The Xmx option sets maximum Java heap size, the default setting is 768M. This

option takes precedence over a maximum heap size set via an environment vari-

able.

Option -Xmi(-mi)size

The Xmi option sets heap size increment, the default setting is 4M. This option

takes precedence over a heap size increment set via an environment variable.

Option -Xss(-ss)size

The Xss option sets stack size (native and interpreter). This option takes prece-

dence over a stack size set via an environment variable.

Option -Xjs(-js)size

The Xjs option sets interpreter stack size, the default setting is 64K. This option

takes precedence over a java stack size set via an environment variable.

152 CHAPTER 12. THE JAMAICA VIRTUAL MACHINE COMMANDS

Option -Xns(-ns)size

The Xns option sets native stack size, set default setting is 64K. This option takes

precedence over a native stack size set via an environment variable.

Option -Xprof

Collect simple profiling information using periodic sampling. This profile is used

to provide an estimate of the methods which use the most CPU time during the

execution of an application. During each sample, the currently executing method

is determined and its sample count is incremented, independent of whether the

method is currently executing or is blocked waiting for some other event. The

total number of samples found for each method are printed when the application

terminates. Note that compiled methods may be sampled incorrectly since they

do not necessarily have a stack frame. We therefore recommend to use Xprof
only for interpreted applications.

This option should not be confused with the profiling facilities provided by

jamaicavmp (see Section 12.3.3).

Option -Xcheck:jni

Enable argument checking in the Java Native Interface (JNI). With this option en-

abled the JamaicaVM will be halted if a problem is detected. Enabling this option

will cause a performance impact for the JNI. Using this option is recommended

while developing applications that use native code.

Option -Xmixed

This option is ignored by JamaicaVM and provided only for compatibility.

Option -Xint

This option is ignored by JamaicaVM and provided only for compatibility.

Option -Xbatch

This option is ignored by JamaicaVM and provided only for compatibility.

Option -Xcomp

This option is ignored by JamaicaVM and provided only for compatibility.

12.2. RUNNING A VM ON A TARGET DEVICE 153

Option -XX:+DisplayVMOutputToStderr

When using the -XX:+DisplayVMOutputToStderr option in combination

with the -verbose[:class] option, the additional output will be redirected

to the error console.

Option -XX:+DisplayVMOutputToStdout

When using the -XX:+DisplayVMOutputToStdout option in combination

with the -verbose[:class] option, the additional output will be redirected

to the standard console. This is the default setting.

Option -XX:MaxDirectMemorySize=size

The -XX:MaxDirectMemorySize option specifies the maximum total size of

java.nio (New I/O) direct buffer allocations.

Option -XX:OnOutOfMemoryError=cmd

The command specified with the -XX:OnOutOfMemoryError option will be

executed when the first OutOfMemoryError is thrown.

12.2 Running a VM on a Target Device
In order to run jamaicavm on a target device, the Java runtime system must

be deployed. In Jamaica, the runtime system is platform-specific and located in

the installation’s target folder: jamaica-home/target/platform/. It has the

following directory structure:

runtime
+- bin
+- lib
+- src

The directory bin contains the VM and other runtime executables, and lib
contains the system classes and other resources such as time zone information

and security settings. The VM executable is jamaicavm_bin (on Windows,

jamaicavm_bin.exe).1 To run jamaicavm on a device most of the folder

structure of the runtime system must be replicated there:

1jamaicavm is merely a script that calls the host platform’s VM executable.

154 CHAPTER 12. THE JAMAICA VIRTUAL MACHINE COMMANDS

• The bin directory and jamaicavm_bin[.exe]. If any of the other

runtime tools are required, these need to be deployed as well. Note that

these tools require jamaicavm_bin[.exe] to be present as well.

• The lib directory including all subdirectories and files except the static

libraries libjamaica_*.a, which are only required by the JamaicaVM

development tools.

• The src directory containing source files legally required to be provided,

for example the sources for the Elliptic curve cryptography.

For instructions on invoking the VM executable and supplying arguments, please

refer to the documentation provided by the supplier of the target platform and

Appendix B of this manual. There, JamaicaVM’s requirements on target platforms

(if applicable) and platform-specific limitations are documented as well.

The same folder structure is required by all variants of jamaicavm (see Sec-

tion 12.3 below) and by applications built with the Builder option -XnoMain.

12.3 Variants of jamaicavm

A number of variants of the standard virtual machines are provided for special

purposes. Their features and uses are described in the following sections. All

variants accept the command line options, properties and environment variables

of the standard VM. Some variants accept additional command line options as

specified below.

12.3.1 jamaicavm slim

jamaicavm_slim is a variant of the jamaicavm command that has no built-

in standard library classes. Instead, it has to load all standard library classes that

are required by the application from the target-specific rt.jar provided in the

JamaicaVM installation.

Compared to jamaicavm, jamaicavm_slim is significantly smaller in

size. jamaicavm_slim may start up more quickly for small applications, but it

will require more time for larger applications. Also, since for jamaicavm com-

monly required standard library classes were pre-compiled and optimized by the

Jamaica Builder tool (see Chapter 13), jamaicavm_slimwill perform standard

library code more slowly.

12.3. VARIANTS OF JAMAICAVM 155

12.3.2 jamaicavmm

jamaicavmm is the multicore variant of the jamaicavm_slim. By using

jamaicavmm, you will automatically benefit from the available cores in your

machine. Be aware that you need to have an extra license to use this.

jamaicavmm accepts the additional command line option -Xcpus. See

Section 12.1.2.

12.3.3 jamaicavmp

jamaicavmp is a variant of jamaicavm_bin that collects profiling informa-

tion. This profiling information can be used when creating an optimized version

of the application using option -useProfile file of the Jamaica Builder com-

mand (see Chapter 13).

The profiling information is written to a file whose name is the name of the

main class of the executed Java application with the suffix .prof. The follow-

ing run of the HelloWorld application available in the examples (see Section 2.4)

shows how the profiling information is written after the execution of the applica-

tion.

> jamaicavmp -cp classes HelloWorld
Hello World!

Hello World!
Hello World!

Hello World!
Hello World!

Hello World!
[...]
Start writing profile data into file ’HelloWorld.prof’
Write threads data...
Write invocation data...
Done writing profile data

Profiling information is written when the applications terminates normally and

returns exitcode 0. Alternatively, profiling information is written when the appli-

cation receives SIGINT (Ctrl-C is pressed).

For explicit termination, the application needs to be rewritten to terminate at a

certain point, e.g., after a timeout or on a certain user input. The easiest means to

terminate an application is via a call to System.exit(). Otherwise, all threads

that are not daemon threads need to be terminated.

Requesting profile dumps remotely via a network connection is possible with

the jamaicaremoteprofile command. To enable remote profile dumps,

156 CHAPTER 12. THE JAMAICA VIRTUAL MACHINE COMMANDS

the property jamaica.profile_request_port needs to be set to a port

number. For more information, see Section 5.1.3.

Profiling information is always appended to the profiling file. This means

that profiling information from several profiling runs of the same application, e.g.

using different input data, will automatically be written into a single profiling

file. To fully overwrite the profiling information, e.g., after a major change in the

application, the profiling file must be deleted manually.

Collecting profiling information requires additional CPU time and memory to

store this information. It may therefore be necessary to increase the memory size.

Also expect poorer runtime performance during a profiling run.

jamaicavmp accepts the following additional command line option.

Option -XprofileFilename:filename

This option selects the name of the file to which the profile data is to be written.

If this option is not provided, the default file name is used, consisting of the main

class name and the suffix .prof.

12.3.4 jamaicavmdi

The jamaicavmdi command is a variant of jamaicavm_slim that includes

support for the JVMTI debugging interface. It includes a debugging agent that

can communicate with remote source-level debuggers such as Eclipse.

jamaicavmdi accepts the following additional command line option.

Option -agentlib:libname[=options]

The agentlib option loads and runs the dynamic JVMTI agent library libname
with the given options. Be aware that JVMTI is not yet fully implemented, so not

every agent will work. Jamaica comes with a statically built in debugging agent

that can be selected by setting BuiltInAgent as name. A typical example of

using this option is

-agentlib:BuiltInAgent=transport=dt_socket,server=y,
address=8000

(To be typed in a single line.) This starts the application and waits for an incoming

connection of a debugger on port 8000. See Section 8.1 for further information

on the options that can be provided to the built-in agent for remote debugging.

12.4. ENVIRONMENT VARIABLES 157

12.4 Environment Variables
The following environment variables control jamaicavm and its variants. The

defaults may vary for host and target platforms. The values given here are for

guidance only. In order to find out the defaults used by a particular VM, invoke it

with command line option -help.

CLASSPATH Path list to search for class files.

JAMAICAVM_SCHEDULING_POLICY The native thread scheduling policy on

POSIX systems. Setting the scheduling policy may require root access.

These are the available values:

• OTHER — default scheduling

• FIFO — first in first out

• RR — round robin

The default is OTHER for all platforms except QNX where the default is RR.

For obtaining real-time performance, FIFO is required. See Section 9.8.3

for details.

JAMAICAVM_HEAPSIZE Heap size in bytes, default 2M

JAMAICAVM_MAXHEAPSIZE Max heap size in bytes, default 768M

JAMAICAVM_HEAPSIZEINCREMENT Heap size increment in bytes, default

4M

JAMAICAVM_JAVA_STACKSIZE Java stack size in bytes, default 64K

JAMAICAVM_NATIVE_STACKSIZE Native stack size in bytes, default 150K

JAMAICAVM_NUMTHREADS Initial number of Java threads, default: 10

JAMAICAVM_MAXNUMTHREADS Maximum number of Java threads, default:

511

JAMAICAVM_NUMJNITHREADS Initial number of threads for the JNI function

JNI_AttachCurrentThread, default: 0

JAMAICAVM_PRIMAP Priority mapping of Java threads to native threads

JAMAICAVM_TIMESLICE Time slicing applied to instances of java.lang.
Thread. See Builder option timeSlice.

158 CHAPTER 12. THE JAMAICA VIRTUAL MACHINE COMMANDS

JAMAICAVM_CONSTGCWORK Amount of garbage collection per block if set to

value >0. Amount of garbage collection depending on amount of free mem-

ory if set to 0. Stop the world GC if set to -1. Default: 0.

JAMAICAVM_LOCK_MEMORY If set to true, the VM locks application mem-

ory into RAM to prevent jitter caused by swapping (see Builder option

lockMemory), default: false.

JAMAICAVM_ANALYZE Enable memory analysis mode with a tolerance given

in percent (see Builder option analyze), default: 0 (disabled).

JAMAICAVM_RESERVEDMEMORY Set the percentage of memory that should be

reserved by a low priority thread for fast burst allocation (see Builder option

reservedMemory), default: 10.

JAMAICAVM_SCOPEDSIZE Size of scoped memory, default: 0

JAMAICAVM_IMMORTALSIZE Size of immortal memory, default: 0

JAMAICAVM_PROFILEFILENAME File name for profile, default: C.prof,

where C is the name of the application main class. This variable is only

recognized by VMs with profiling support.

JAMAICAVM_CPUS CPUs to use. This is either an enumeration n1,n2,. . . , a

range n1..n2, or the token all (default). This variable is only recognized

by VMs with multicore support.

12.5 Java Properties
A Java property is a string name that has an assigned string value. This sec-

tion lists Java properties that Jamaica uses in addition to those used by a stan-

dard Java implementation. These properties are available with the pre-built VM

commands described in this chapter as well as for applications created with the

Jamaica Builder.

12.5.1 User-Definable Properties
The standard libraries that are delivered with JamaicaVM can be configured by

setting specific Java properties. A property is passed to the Java code via the

JamaicaVM option

-Dname=value

12.5. JAVA PROPERTIES 159

or, when building an application with the Builder, via option

-XdefineProperty+=name=value

jamaica.awt.dispatchthread.priority = num
This integer option specifies the priority of EventDispatchThread. If

not set, the default java.lang.Thread.NORM_PRIORITY+1 is used.

jamaica.cost_monitoring_accuracy = num
This integer property specifies the resolution of the cost monitoring that is

used for RTSJ’s cost overrun handlers. The accuracy is given in nanosec-

onds, the default value is 5000000, i.e., an accuracy of 5ms. The accuracy

specifies the maximum value the actual cost may exceed the given cost bud-

get before a cost overrun handler is fired. A high accuracy (a lower value)

causes a higher runtime overhead since more frequent cost budget checking

is required. See also Section 9.4, Limitations of the RTSJ implementation.

jamaica.cpu_mhz = num
This integer option specifies the CPU speed of the system JamaicaVM ex-

ecutes on. This number is used on systems that have a CPU cycle counter

to measure execution time for the RTSJ’s cost monitoring functions. If the

CPU speed is not set and it could not be determined from the system (e.g.,

on Linux via reading file /proc/cpuinfo), the CPU speed will be mea-

sured on VM startup and a warning will be printed. An example setting for

a system running at 1.8GHz would be -Djamaica.cpu_mhz=1800.0.

jamaica.monotonic_currentTimeMillis
Enable an additional check that enforces that the method java.lang.
System.currentTimeMillis() always returns a non-negative and

monotonically increasing value.

jamaica.err_to_file
If a file name is given, all output sent to System.err will be redirected to this

file.

jamaica.err_to_null
If set to true, all output sent to System.err will be ignored. This is useful for

graphical applications if textual output is very slow. The default value for

this property is false.

jamaica.finalizer.pri = n
This property specifies the Java priority to be used for the Finalizer thread.

This thread is responsible for the exeuction of finalizemethods after the

garbage collector has discovered that an object is eligible for finalization. If

not set, the default java.lang.Thread.MAX_PRIORITY−2 (= 8) is

used. Setting the priority to −1 deactivates the finalizer thread.

160 CHAPTER 12. THE JAMAICA VIRTUAL MACHINE COMMANDS

jamaica.fontproperties = resource
This property specifies the name of a resource that instructs JamaicaVM

which fonts to load. The default value is com/aicas/jamaica/awt/
fonts.properties. The property may be set to a user defined resource

file to change the set of supported fonts. The specified file itself is a property

file that maps font names to resource file names. For more details and an

example see Appendix A.3.4.

jamaica.full_stack_trace_on_sig_quit
If this boolean property is set, then the default handler for POSIX signal

SIGQUIT (Ctrl-\ on Unix-based platforms) is changed to print full stack

trace information in addition to information on thread states, which is the

default. Without this option, this more detailed output is shown only for

repeated SIGQUIT signals that occur within 500ms after handling of the

previous signal. See also jamaica.no_sig_quit_handler.

jamaica.jaraccelerator.check.class
This property specifies whether classes loaded from a JAR file containing

compiled code should be checked for load-time bytecode modifications.

If this property is set to true, any attempt to define such a class from

different bytecode than the reference version, provided by the same class

loader when accessing the class file as a resource, will immediately raise an

IncompatibleClassChangeError. This property is set to false
by default.

jamaica.jaraccelerator.debug.class
Boolean property used for enabling or disabling displaying debug output

concerning the classes loaded while loading compiled code of an Acceler-

ated JAR is enabled. This property is set to false by default.

jamaica.jaraccelerator.extraction.dir
This property specifies where the shared library containing compiled code

should be extracted from a JAR file. The value may be an absolute or rel-

ative path, ending in the system-specific separator (‘/’ on Unix-Systems,

‘\’ on Windows). The empty path and the symbolic values JAR and TMP
(case insensitive) are also accepted. If the path is relative or empty, it is re-

solved in the context of the directory containing the JAR file. The value JAR
is equivalent to the empty path. The value TMP denotes a system-dependent

default temporary file directory. The default value is JAR. If the speci-

fied extraction directory is not writable, the default temporary file directory

is used instead. If the default temporary file directory is the extraction di-

rectory and it does not exist or it is not writable, then the library can not

be extracted and the accelerated code is not loaded. Libraries extracted to

12.5. JAVA PROPERTIES 161

a specified directory keep their original name and are never deleted, rather

they are reused in later executions2. Libraries extracted to the default tempo-

rary file directory receive a unique name in each extraction and are deleted

when the VM terminates.

jamaica.jaraccelerator.load
Boolean property used for enabling or disabling loading the compiled code

of an Accelerated JAR. This property is set to false by default.

jamaica.jaraccelerator.verbose
Boolean property used for enabling or disabling displaying the steps per-

formed for loading the compiled code of an Accelerated JAR. This property

is set to false by default.

jamaica.loadLibrary_ignore_error
This property specifies whether every unsuccessful attempt to load a native

library dynamically via System.loadLibrary() should be ignored by the VM

at runtime. If set to true and System.loadLibrary() fails, no UnsatifiedLink-

Error will be thrown at runtime. The default value for this property is false.

jamaica.no_sig_int_handler
If this boolean property is set, then no default handler for POSIX signal

SIGINT (Ctrl-C on most platforms) will be created. The default han-

dler that is used when this property is not set prints “*** break.” to

System.err and calls System.exit(130).

jamaica.no_sig_quit_handler
If this boolean property is set, then no default handler for POSIX sig-

nal SIGQUIT (Ctrl-\ on Unix-based platforms) will be created. The

default handler that is used when this property is not set prints the cur-

rent thread states via a call to com.aicas.jamaica.lang.Debug.
dump.ThreadStates(). If a second SIGQUIT arrives withing 500ms

after this, the full stack trace of all Java threads will be printed. See also

jamaica.full_stack_trace_on_sig_quit.

jamaica.no_sig_term_handler
If this boolean property is set, then no default handler for POSIX signal

SIGTERM (default signal sent by kill) will be created. The default han-

dler that is used when this property is not set calls System.exit(143).

2An extracted library is reused only if it has the same name as the library in the JAR and, if the

library entry in the JAR is signed, if their contents are the same. If the extracted library can not be

reused, it is overwritten by the library in the JAR.

162 CHAPTER 12. THE JAMAICA VIRTUAL MACHINE COMMANDS

jamaica.out_to_file
If a file name is given, all output sent to System.out will be redirected to this

file.

jamaica.out_to_null
If set to true, all output sent to System.out will be ignored. This is useful

for graphical applications if textual output is very slow. The default value

for this property is false.

jamaica.profile_force_dump
If set to true, force a profile dump even if the application or VM did

not terminate normally. Note that this property only overrides the exitcode

check of the VM upon termination. It does not activate profiling by itself.

jamaica.profile_quiet_dump
If set to true, all messages related to profile generation except errors are

suppressed.

jamaica.profile_groups = groups
To analyze the application, additional information can be written to the pro-

file file. This can be done by specifying one or more (comma separated)

groups with that property. The following groups are currently supported:

builder (default), memory, speed, all. See Chapter 5 for more de-

tails.

jamaica.profile_request_port = port
When using the profiling version of JamaicaVM (jamaicavmp or an ap-

plication built with “-profile=true”), then this property may be set

to an integer value larger than 0 to permit an external request to dump the

profile information at any point in time. Setting this property to a value

larger than 0 also supresses dumping the profile to a file when exiting the

application. See Section 5.1.3 for more details.

jamaica.reference_handler.pri = n
This property specifies the Java priority to be used for the Reference Han-

dler thread. This thread executes cleaners (sun.misc.Cleaner), which

serve as internal finalizers to free resources allocated by certain system

classes. If not set the default java.lang.Thread.MAX_PRIORITY
(= 10) is used.

Jamaica gives this thread a higher eligibility than all other threads with the

same or a lower Java priority. Its priority micro-adjustment is +1. For more

information on eligibility, see the methods microAdjustPriority of

com.aicas.jamaica.lang.Scheduler.

12.5. JAVA PROPERTIES 163

jamaica.reservation_thread_affinity
Affinity to be used for memory reservation threads. The cardinality of the

given set defines the number of memory reservation threads to be used. E.g.,

12,13 to use two memory reservation threads running on CPUs 12 and 13.

If this property is not set or has the value default or 0, one reservation

thread will be created for each CPU available to normal Java threads.

jamaica.reservation_thread_priority = n
If set to an integer value larger than or equal to 0, this property instructs

the virtual machine to run the memory reservation thread at the given Java

priority. A value of 0 will result at a Java priority 1 with micro adjustment

-1, i.e., the scheduler will give preference to other threads running at prior-

ity 1. By default, the priority of the reservation thread is set to 0 (i.e., Java

priority 1 with micro adjustment -1). The priority may be followed by a +
or - character to select priority micro-adjustment +1 or -1, respectively.

Setting this property, e.g., to 10+ will run the memory reservation thread

at a priority higher than all normal Java threads, but lower than all RTSJ

threads. See Section 7.1.5 for more details.

jamaica.scheduler_events_port
This property defines the port where JamaicaTrace can connect to receive

scheduler event notifications.

jamaica.scheduler_events_port_blocking
This property defines the port where JamaicaTrace can connect to receive

scheduler event notifications. The Jamaica runtime system stops before en-

tering the main method and waits for JamaicaTrace to connect.

jamaica.scheduler_events_recorder_affinity
Affinity of the VM thread that records scheduler events for JamaicaTrace.

Use this property to restrict on which CPUs this thread may run. For exam-

ple, 12,13 will allow the recorder to run on CPUs 12 and 13. By default,

or if the value is 0, the thread may run on any of the CPUs available to the

VM. See also Chapter 16.

jamaica.softref.minfree
Minimum percentage of free memory for soft references to survive a GC

cycle. If the amount of free memory drops below this threshold, soft refer-

ences may be cleared. In JamaicaVM, the finalizer thread is responsible for

clearing soft references. The default value for this property is 10%.

jamaica.x11.display
This property defines the X11 display to use for X11 graphics. This property

takes precedence over a display set via the environment variable DISPLAY.

164 CHAPTER 12. THE JAMAICA VIRTUAL MACHINE COMMANDS

jamaica.xprof = n
If set to an integer value larger than 0 and less or equal to 1000, this

property enables the jamaicavm’s option -Xprof. If set, the property’s

value specifies the number of profiling samples to be taken per second, e.g.,

-Djamaica.xprof=100 causes the profiling to make 100 samples per

second. See Section 12.1.2 for more details.

java.class.path = path
The class path used by JamaicaVM. For the jamaicavm command (see

Section 12.1) or for an application that has been built using the Builder

(see Chapter 13) tool with option -XnoMain=true, this is set via the

-classpath option or the CLASSPATH environment variable. For an

application that has been built without setting -XnoMain, this property

will be set to the empty string unless it was set explicitly at build time

via -XdefineProperty=java.class.path=path or -Xdefine-

PropertyFromEnv=java.class.path=envvar.

java.home = dir
The home of the Java runtime environment. When Java standard classes

need to locate resources—for example, time zone information—the folder

dir/lib is searched. If the directory exists and the resource is found, it is

taken from there, otherwise the resource built into the executable is used.

The main use of this property is to override resources built into a VM ex-

ecutable. If the property is not set, it is computed based on the location

of the VM or application executable. If the executable’s parent folder is

bin the property is set to the parent of the bin folder. Otherwise, or if the

parent directory of the executable cannot be determined (lacking operating

system functionality) the value of this property and derived properties such

as the bootclasspath may be undefined. It might then be necessary to set this

property and the bootclasspath explicitly on the command line through the

VM options -D and -Xbootclasspath. Note that setting this property

on the command line does not affect the bootclasspath, so it must be set as

well.

12.5.2 Predefined Properties
The JamaicaVM defines a set of additional properties that contain information

specific to Jamaica:

jamaica.boot.class.path
The boot class path used by JamaicaVM. This is not set when a stand-alone

application has been built using the Builder (see Chapter 13).

12.6. EXITCODES 165

jamaica.buildnumber
The build number of the JamaicaVM.

jamaica.byte_order
One of BIG_ENDIAN or LITTLE_ENDIAN depending on the endianness

of the target system.

jamaica.heapSizeFromEnv
If the initial heap size may be set via an environment variable, this is set to

the name of this environment variable.

jamaica.immortalMemorySize
The size of the memory available for immortal memory.

jamaica.maxNumThreadsFromEnv
If the maximum number of threads may be set via an environment variable,

this is set to the name of this environment variable.

jamaica.numThreadsFromEnv
If the initial number of threads may be set via an environment variable, this

is set to the name of this environment variable.

jamaica.release
The release number of the JamaicaVM.

jamaica.scopedMemorySize
The size of the memory available for scoped memory.

jamaica.version
The version number of the JamaicaVM.

jamaica.word_size
One of 32 or 64 depending on the word size of the target system.

javax.realtime.version
The version number of the RTSJ API supported by JamaicaVM.

sun.arch.data.model
One of 32 or 64 depending on the word size of the target system.

12.6 Exitcodes
Tab. 12.1 lists the exit codes of the Jamaica VMs. Standard exit codes are exit

codes of the application program. Error exit codes indicate an error such as insuf-

ficient memory. If you get an exit code of an internal error please contact aicas

support with a full description of the runtime condition or, if available, an example

program for which the error occurred.

166 CHAPTER 12. THE JAMAICA VIRTUAL MACHINE COMMANDS

Standard exit codes
0 Normal termination

1 Exception or error in Java program

2..63 Application specific exit code from System.exit()

Error codes
66 Insufficient memory

68 Initialization error

69 Setup failure

70 Clean-up failure

71 Invalid command line arguments

72 No main class

74 Lock memory failed

Internal errors
101 Internal error

104 Exit by signal

POSIX signals
130 SIGINT received

134 SIGABRT received (Error in VM native or JNI code)

139 SIGSEGV received

143 SIGTERM received

Table 12.1: Exitcodes of the Jamaica VMs

12.6. EXITCODES 167

The VM may also terminate with a POSIX signal exit code. Since the threads

of Jamaica VM install a default SIGSEGV handler, which prints out a thread-info

message to the standard error stream and aborts the VM, the exit code of such

a reported SIGSEGV happening is actually a SIGABRT instead of SIGSEGV.

Jamaica VM terminates with SIGSEGV exit code only if the default SIGSEGV

handler is not yet activated or in case it cannot run—typically due to an unrecover-

able native stack overflow. In such a case, there is no thread-info message printed

out and the VM terminates abruptly.

168 CHAPTER 12. THE JAMAICA VIRTUAL MACHINE COMMANDS

Chapter 13

The Jamaica Builder

Traditionally, Java applications are stored in a set of Java class files. To run an

application, these files are loaded by a virtual machine prior to their execution.

This method of execution emphasizes the dynamic nature of Java applications

and allows easy replacement or addition of classes to an existing system.

However, in the context of embedded systems, this approach has several dis-

advantages. An embedded system might not provide the necessary file system

device and file system services. Instead, it is preferable to have all files relevant

for an application in a single executable file, which may be stored in read only

memory (ROM) within an embedded system.

The Builder provides a way to create a single application out of a set of class

files and the Jamaica virtual machine.

13.1 How the Builder tool works

Fig. 13.1 illustrates the process of building a Java application and the JamaicaVM

into a single executable file. The Builder takes a set of Java class files as input

and by default produces a portable C source file which is compiled with a native

C compiler to create an object file for the target architecture. The build object file

is then linked with the files of the JamaicaVM to create a single executable file

that contains all the methods and data necessary to execute the Java program.

13.2 Builder Usage

The Builder is a command-line tool. It is named jamaicabuilder. A variety

of arguments control the work of the Builder tool. The command line syntax is as

follows:

169

170 CHAPTER 13. THE JAMAICA BUILDER

object file

jamaicabuilder C compiler

*.class

object file
object file

linkerexecutable

profiling data

C source file

Figure 13.1: The Builder tool

jamaicabuilder [options] [class]

The Builder accepts numerous options for configuring and fine-tuning the created

executable. The class argument identifies the main class. It is required unless the

main class can be inferred otherwise—for example, from the manifest of a jar file.

The options may be given directly to the Builder via the command line, or

by using configuration files.1 Options given at the command line take priority.

Options not specified at the command line are read from configuration files in the

following manner:

• The host target is read from jamaica-home/etc/global.conf and is

used as the default target. This file should not contain any other information.

• If the Builder option -configuration is used, the remaining options

are read from the file specified with this option.

• Else jamaica-home/target/platform/etc/jamaica.conf, the tar-

get default configuration, is used.

The general format for an option is either -option for an option without argument

or -option=value for an option with argument. The following special syntax is

accepted:

1Aliases are not allowed as keys in configuration files.

13.2. BUILDER USAGE 171

• For an option that accepts a list of values, e.g., -Xinclude, the list from

the configuration may be extended on the command line using the fol-

lowing syntax: -Xinclude+=path. The value from the configuration is

prepended with the value provided on the command line. This is the case

if the += syntax is used in at least one occurrence of that option on the

command line.

• To read values for an option that accepts a list of values, e.g., -Xinclude,

from a file instead from the command line or configuration file, use this

syntax: -Xinclude=@file or -Xinclude+=@file. This reads the values

from file line by line. Empty lines and lines starting with the character “#”

(comment) are ignored.

Options that permit lists of arguments can be set by either providing a single list,

or by providing an instance of the option for each element of the list. For example,

the following are equivalent:

-classpath=system_classes:user_classes
-classpath=system_classes -classpath=user_classes

The separator for list elements depends on the argument type and is documented

for the individual options. As a general rule, paths and file names are separated

by the system-specific separator character (colon on Unix systems, semicolon on

Windows), for identifiers such as class names and package names the separator is

space, and for maps the separator is comma.

If an option’s argument contains spaces (for example, a file names with spaces

or an argument list) that option must be enclosed in double quotes (“"”). The

following are well-formed options:

"-includeClasses=java.lang... java.util.*"
"-classpath=system_classes:installation directory"

Options that permit a list of mappings as their arguments require one equals sign

to start the arguments list and another equals for each mapping in the list.

-priMap=1=5,2=7,3=9

Default values for many options are target specific. The actual settings may

be obtained by invoking the Builder with -help. In order to find out the settings

for a target other than the host platform, include -target=platform.

The Builder stores intermediate files, in particular generated C and object files,

in a temporary folder in the current working directory. For concurrent runs of the

Builder, in order to avoid conflicts, the Builder must be instructed to use distinct

temporary directories. In this case, please use the Builder option -tmpdir to set

specifc directories.

172 CHAPTER 13. THE JAMAICA BUILDER

13.2.1 General

The following are general options which provide information about the Builder

itself or enable the use of script files that specify further options.

Option -help (-h, -?)

The help option displays the Builder usage and a short description of all possible

standard command line options.

Option -Xhelp

The Xhelp option displays the Builder usage and a short description of all pos-

sible extended command line options. Extended command line options are not

needed for normal control of the Builder command. They are used to configure

tools and options, and to provide tools required internally for Jamaica VM devel-

opment.

Option -agentlib=lib=option=val{,option=val}
The agentlib option loads and runs the dynamic JVMTI agent library lib with

the given options.

Jamaica comes with a statically built in debugging agent that can be activated

by selecting BuiltInAgent. For example, -agentlib=BuiltInAgent=
transport=dt_socket,server=y,address=8000 starts the applica-

tion and waits for an incoming connection of a debugger on port 8000. The

BuiltInAgent is currently the only agent supported by JamaicaVM.

Option -version

Print the version of Jamaica Builder and exit.

Option -verbose=n

The verbose option sets the verbosity level for the Builder. At level 1, which

is the default, warnings are printed. At level 2 additional information on the build

process that might be relevant to users is shown. At level 0 all warnings are

suppressed. Levels above 2 are reserved.

13.2. BUILDER USAGE 173

Option -jobs=n

The jobs option sets the number of parallel jobs for the Builder. Parts of the

Builder work will be performed in parallel if this option is set to a value larger

than one. Parallel execution may speed up the Builder.

Option -showSettings

Print the Builder settings. To make these settings the default, replace the file

jamaica-home/target/platform/etc/jamaica.conf by the output.

Option -saveSettings=file

If the saveSettings option is used, the Builder options currently in effect are

written to the provided file. To make these settings the default, replace the file

jamaica-home/target/platform/etc/jamaica.conf by the output.

! The saved settings will only work for the target platform they were generated

for. Copying configurations across target platforms will cause misconfigura-

tion of the platform-specific tools and will lead to severe errors.

Option -configuration=file

The configuration option specifies a file to read the set of options used by

the Builder. The format must be identical to the one in the default configuration

file (jamaica-home/target/platform/etc/jamaica.conf). When set the

default configuration file is ignored.

13.2.2 Classes, files and paths
These options allow to specify classes and paths to be used by the Builder.

Option -classpath (-cp)[+]=classpath

The classpath option specifies the paths that are used to search for class files.

A list of paths separated by the path separator char (‘:’ on Unix systems, ‘;’ on

Windows) can be specified. This list will be traversed from left to right when the

Builder tries to load a class.

Additionally, the classpath provided at build time will be added in the form of

URLs with the protocol jamaicabuiltin to the runtime classpath of the built

application.

174 CHAPTER 13. THE JAMAICA BUILDER

Option -enableassertions (-ea)

The enableassertions option enables assertions for all classes in the appli-

cation that is to be built. Assertions are disabled by default.

Option -main=class

The main option specifies the main class of the application that is to be built.

This class must contain a static method void main(String[] args). This

method is the main entry point of the Java application.

If the main option is not specified, the first class of the classes list that is

provided to the Builder is used as the main class.

Option -jar=file

The jar option specifies a JAR file with an application that is to be built. This

JAR file must contain a MANIFEST with a Main-Class entry.

Option -includeClasses[+]="class|package{ class| package}"
The includeClasses option forces the inclusion of the listed classes and

packages into the created application. The listed classes with all their methods,

fields and, recursively, inner classes will be included. This is useful or even nec-

essary if you use reflection with these classes.

Arguments for this option can be: a class name to include the class with all

methods and fields, a package name followed by an asterisk to include all classes

in the package or a package name followed by “...” to include all classes in the

package and in all sub-packages of this package.

Example:

-includeClasses="java.beans.Beans java.io.*
java.lang..."

includes the class java.beans.Beans, all classes in java.io and all classes

in the package java.lang and in all sub-packages of java.lang such as

java.lang.ref.

! The includeClasses option affects only the listed classes themselves.

Subclasses of these classes remain subject to smart linking.

! From a Unix shell, when specifying an inner class, the dollar sign must be

preceded by backslash. Otherwise the shell interprets the class name as an

environment variable.

13.2. BUILDER USAGE 175

Option -excludeClasses[+]="class|package{ class| package}"
The excludeClasses option forces exclusion of the listed classes and pack-

ages from the created application. The listed classes with all their methods and

fields will be excluded, even if previously included using the Builder options

includeJAR or includeClasses. This is useful if you want to load classes

at runtime.

Arguments for this option can be: a class name to exclude the class with all

methods and fields, a package name followed by an asterisk to exclude all classes

in the package or a package name followed by “...” to exclude all classes in the

package and in all sub-packages of this package.

Example:

-excludeClasses="com.my.Unwanted com.my2.* com.my3..."

excludes the class com.my.Unwanted, all classes in com.my2 and all classes

in the package com.my3 and in all sub-packages of com.my3 such as com.
my3.subpackage.

! The excludeClasses option affects only the listed classes themselves.

! From a Unix shell, when specifying an inner class, the dollar sign must be

preceded by backslash. Otherwise the shell interprets the class name as an

environment variable.

Option -includeJAR[+]=file{:file}
The includeJAR option forces the inclusion of all classes and all resources

contained in the specified files. Any archive listed here must be in the classpath

or in the bootclasspath. If a class needs to be included, the implementation in

the includeJAR file will not necessarily be used. Instead, the first implemen-

tation of this class which is found in the classpath will be used. This is to ensure

the application behaves in the same way as it would if it were called with the

jamaicavm or java command.

Despite its name, the option accepts directories as well. Multiple archives (or

directories) should be separated by the system specific path separator: colon “:”

on Unix systems and semicolon “;” on Windows.

Option -excludeJAR[+]=file{:file}
The excludeJAR option forces the exclusion of all classes and resources con-

tained in the specified files. Any class and resource found will be excluded from

the created application. Use this option to load an entire archive at runtime.

176 CHAPTER 13. THE JAMAICA BUILDER

Despite its name, the option accepts directories as well. Multiple archives (or

directories) should be separated by the system specific path separator: colon “:”

on Unix systems and semicolon “;” on Windows.

Option -destination (-o)=name

The destination option specifies the name of the destination executable to be

generated by the Builder. If this option is not present, the name of the destination

executable is the simple name of the main class.

The destination name can be a path into a different directory. E.g.,

-destination=myproject/bin/xyz

may be used to save the created executable xyz in myproject/bin.

Option -tmpdir=name

The tmpdir option may be used to specify the name of the directory used for

temporary files generated by the Builder (such as C source and object files for

compiled methods).

Option -resource[+]=name{:name}
Includes the given resources in the created application. Resources are data files

(such as image files, sound files) that can be accessed by the Java application. A

resource name includes a ‘/’-separated package path. The Builder reads resources

from the class path. That is, JAR files and directories containing resources must

be given via the classpath option. The Builder also includes all resources

contained in JAR files and directories given via the includeJAR option. For

information on accessing resources from Java, please refer to the java.lang.
Class API.

The Builder supports building multiple resources with the same name (but

from different class path elements) into an application — for example, the man-

ifest entries (META-INF/MANIFEST.MF) from all JAR files on the class path.

Such resources can be distinguished by their URLs. For a resource included by

the Builder, the URL specifies the protocol jamaicabuiltin: and includes

the class path entry in addition to the resource name. Here are examples:

• jamaicabuiltin:/lib/a.jar!/META-INF/MANIFEST.MF

• jamaicabuiltin:/lib/b.jar!/META-INF/MANIFEST.MF

• jamaicabuiltin:/home/joe/classes/com/my/info.txt

13.2. BUILDER USAGE 177

The manifests originated from the JAR files /lib/a.jar and /lib/b.jar.

The third example is ambiguous. It may identify the resource com/my/info.
txt originally located in directory /home/joe/classes; it may also iden-

tify the resource my/info.txt located in /home/joe/classes/com. The

ambiguity can, of course, be resolved with the resource name.

The class files for classes that are built into an application cannot be loaded as

resources since the format used by the Builder differs from the normal class file

format. To make sure that a class file can be accessed at runtime as a Java resource,

it has to be added explicitly using the resource option, e.g., -resource+
=pkg/A.class.

However, obtaining the URL of built-in classes via ClassLoader method

getResource("pkg/A.class") is possible even if the original class data

was not added as a resource as long as no attempt is made to read the data (via

URL.openConnection().getInputStream()).

! Absolute file paths are built into the application.

Option -setFonts="font{ font}"
The setFonts option can be used to choose the set of TrueType fonts to be

included in the target application. The font families sans, serif, mono are

supported. The arguments all and none cause inclusion of all or no fonts,

respectively. The default is platform dependent and may be obtained by invoking

the Builder with -help. To use TrueType fonts, a graphics system must be set.

Option -setGraphics=system

The setGraphics option can be used to set the graphics system used by the

target application. If no graphics is required, it can be set to none.

To get a list of all possible values, invoke the Builder with -help.

Option -setLocales="locale{ locale}"
The setLocales option can be used to choose the set of locales to be included

in the target application. This involves date, currency and number formats. Lo-

cales are specified by a lower-case, two-letter code as defined by ISO-639.

Example: -setLocales="de en" will include German and English lan-

guage resources. All country information of those locales, e.g. Swiss currency,

will also be included.

To get a list of all possible values, invoke the Builder with -help.

178 CHAPTER 13. THE JAMAICA BUILDER

Option -setProtocols="protocol{ protocol}"

The setProtocols option can be used to choose the set of protocols to be

included in the target application.

Example: -setProtocols="http https"will include handlers for the

HTTP and HTTPS protocols.

To get a list of all possible values, invoke the Builder with -help.

13.2.3 Profiling and compilation

By default, the Builder compiles all application classes and a predefined set of the

system classes. Profiling and compilation options enable to fine tune the compila-

tion process for optimal runtime performance of applications generated with the

Builder.

Option -interpret (-Xint)

The interpret option disables compilation of the application. This results in a

smaller application and in faster build times, but it causes a significant slow down

of the runtime performance.

If none of the options interpret, compile, or useProfile is spec-

ified, then the default compilation will be used. The default means that a pre-

generated profile will be used for the system classes, and all application classes

will be compiled fully. This default usually results in good performance for small

applications, but it causes extreme code size increase for larger applications and

it results in slow execution of applications that use the system classes in a way

different than recorded in the system profile.

Option -compile

The compile option enables static compilation for the created application. All

methods of the application are compiled into native code causing a significant

speedup at runtime compared to the interpreted code that is executed by the virtual

machine. Use compilation whenever execution time is important. However, it

is often sufficient to compile about 10 percent of the classes, which results in

much smaller executables of comparable speed. You can achieve this by using

the options profile and useProfile instead of compile. For a tutorial on

profiling see Section Performance Optimization in the user manual.

13.2. BUILDER USAGE 179

Option -profile

The profile instructs the Builder to include code in the built application that

collects information on the amount of run time spent for the execution of different

methods. This information is dumped to a file after a test run of the application

has been performed. Collection of profile information is cumulative. That is,

when this file exists, profiling information is appended. The name of the file is

derived from the name of the executable given via the destination option.

Alternatively, it may be given with the option XprofileFilename.

The information collected in a profiling run can then be used as an input for the

option useProfile to guide the compilation process. For a tutorial on profiling

see Section Performance Optimization in the user manual.

Option -useProfile[+]=file{:file}
The useProfile option instructs the Builder to use profiling information col-

lected using the Builder option profile to restrict compilation to those methods

that were most frequently executed during the profiling run. The percentage of

methods to be compiled is 10 by default, unless percentageCompiled is set

to a different value. For a tutorial on profiling see Section Performance Optimiza-

tion in the user manual.

This option accepts plain text profile files, GZIP compressed profile files and

ZIP archives consisting of plain text profile entries. All archive entries are required

to be profiles.

It is possible to use this option in combination with the option profile.

This may be useful when the fully interpreted application is too slow to obtain a

meaningful profile. In such a case one may achieve sufficient speed up through an

initial profile, and use the profiled application to obtain a more precise profile for

the final build.

Multiple profiles should be separated by the system specific path separator:

colon “:” on Unix systems and semicolon “;” on Windows.

Option -percentageCompiled=n

Use profiling information collected using profile to restrict compilation to

those methods that were most frequently executed during the profiling run. The

percentage of methods that are to be compiled is given as an argument to the op-

tion percentageCompiled. It must be between 0 and 100. Selecting 100

causes compilation of all methods executed during the profiling run, i.e., methods

that were not called during profiling will not be compiled.

180 CHAPTER 13. THE JAMAICA BUILDER

Option -includeInCompile[+]="class|method{ class| method}"
The includeInCompile option forces the compilation of the listed methods

(when not excluded from the application by the smart linker or by any other

means). Either a single method, all methods with the same name or all methods

of classes or even packages can be specified.

Examples: com.user.Sample.toString()Ljava/lang/String;
refers to the single method, com.user.Sample.toString to all methods

with this name, independent of the signature, com.user.Sample refers to all

methods in this class, com.user.* to all classes in this package and com.
user... to all classes in this package and all subpackages.

Option -excludeFromCompile[+]="class|method{ class| method}"
The excludeFromCompile option disables the compilation of the listed meth-

ods. Either a single method, all methods with the same name or all methods of

classes or even packages can be specified.

Examples: com.user.Sample.toString()Ljava/lang/String;
refers to the single method, com.user.Sample.toString to all methods

with this name, independent of the signature, com.user.Sample refers to all

methods in this class, com.user.* to all classes in this package and com.
user... to all classes in this package and all subpackages.

Option -inline=n

This option can be used to set the level of inlining used by the compiler when com-

piling a method. Inlining typically causes a significant speedup at runtime since

the overhead of performing method calls is avoided. Nevertheless, inlining causes

duplication of code and hence might increase the binary size of the application. In

systems with tight memory resources, inlining may therefore not be acceptable.

Eleven levels of inlining are supported by the Jamaica compiler ranging from

0 (no inlining) to 10 (aggressive inlining).

Option -optimize (-optimise)=type

The optimize option enables to specify optimizations for the compilation of

intermediate C code to native code in a platform independent manner, where type
is one of none, size, speed, and all. The optimization flags only affect the

C compiler, and they are only given to it if the application is compiled without the

debug option.

13.2. BUILDER USAGE 181

Option -target=platform

The target option specifies a target platform. For a list of all available platforms

of your Jamaica VM Distribution, use XavailableTargets.

13.2.4 Smart linking
Smart linking and compaction are techniques to reduce the code size and heap

memory required by the generated application. These techniques are controlled

by the following options.

Option -smart

If the smart option is set, which is the default, smart linking takes place at the

level of fields and methods. That is, unused fields and methods are removed from

the generated code. Otherwise smart linking may only exclude unused classes as

a whole. Setting smart can result in smaller binary files, smaller memory usage

and faster code execution.

Smart linking at the level of fields and methods may not be used for appli-

cations that use Java’s reflection API (including reflection via the Java Native

Interface JNI) to load classes that are unknown at buildtime and therefore cannot

be included into the application. This is, for example, the case for classes, which

are loaded from a web server at runtime. In such situations, use -smart=false
to disable smart linking.

Classes loaded via reflection that are known at buildtime should be included

via Builder options includeClasses or includeJAR. These options selec-

tively disable smart linking for the included classes.

! Failures in code execution due to smart linking at the level of fields and meth-

ods can be hard to detect. Consider a scenario where a method m() of a class

A is overridden in a subclass B. If smart linking detects that A.m() is used but

B.m() is not, then the executable will contain A.m() but not B.m(). If m()
is called on B via reflection the method A.m() will, erroneously, be executed

instead.

Option -closed

For an application that is closed, i.e., that does not load any classes dynamically

that are not built into the application by the Builder, additional optimization may

be performed by the Builder and the static compiler. These optimizations cause

incorrect execution semantics when additional classes will be added dynamically.

182 CHAPTER 13. THE JAMAICA BUILDER

Setting option closed to true enables such optimizations, a significant enhance-

ment of the performance of compiled code is usually the result.

The additional optimization performed when closed is set include static

binding of virtual method calls for methods that are not redefined by any of the

classes built into the application. The overhead of dynamic binding is removed

and even inlining of a virtual method call becomes possible, which often results

in even further possibilities for optimizations.

Note that care is needed for an open application that uses dynamic loading

even when closed is not set. For an open application, it has to be ensured that all

classes that should be available for dynamically loaded code need to be included

fully using option includeClasses or includeJAR. Otherwise, the Builder

may omit these classes (if they are not referenced by the built-in application), or

it may omit parts of these classes (certain methods or fields) that happen not to be

used by the built-in application.

Option -showIncludedFeatures

The showIncludedFeatures option causes the Builder to display the list of

classes, methods, fields and resources that were included in the target applica-

tion. This option can help identify the features that were removed from the target

application through mechanisms such as smart linking.

Additionally generated output starts with INCLUDED CLASS, INCLUDED
METHOD, INCLUDED FIELD or INCLUDED RESOURCE and is followed by

the name of the class, method, field or resource. For methods, the signature is

shown as well.

Option -showExcludedFeatures

The showExcludedFeatures option causes the Builder to list the methods

and fields that were removed from the target application through mechanisms

such as smart linking. Only methods and fields from classes present in the built

application will be displayed. Used in conjunction with includeClasses,

excludeClasses, includeJAR and excludeJAR this can help identify

which classes were included only partially.

The output of this option consists of lines starting with the string EXCLUDED
METHOD or EXCLUDED FIELD followed by the name and signature of a method

or field, respectively.

13.2. BUILDER USAGE 183

Option -showNumberOfBlocks

The showNumberOfBlocks option causes the Builder to display a table with

the number of blocks needed by all the classes included in the target application.

This option can help to calculate the worst case allocation time.

The output of this option consists of a two columns table. The first column is

named Class: and the second is named Blocks:. Next lines contain the name

of each class and the corresponding number of blocks.

13.2.5 Heap and stack configuration

Configuring heap and stack memory has an important impact not only on the

amount of memory required by the application but on the runtime performance

and the realtime characteristics of the code as well. The Jamaica Builder therefore

provides a number of options to configure heap memory and stack available to

threads.

Option -heapSize=n[K|M|G]

The heapSize option sets the heap size to the specified size given in bytes.

The heap is allocated at startup of the application. It is used for static global

information (such as the internal state of the Jamaica Virtual Machine) and for the

garbage collected Java heap.

The heap size may be succeeded by the letter ‘K’, ‘M’ or ‘G’ to specify a size

in KBytes (1024 bytes), MBytes (1048576 bytes) or GBytes (1073741824 bytes).

The minimum required heap size for a given application can be determined using

option analyze.

Option -maxHeapSize=n[K|M|G]

The maxHeapSize option sets the maximum heap size to the specified size

given in bytes. If the maximum heap size is larger than the heap size, the heap

size will be increased dynamically on demand.

The maximum heap size may be succeeded by the letter ‘K’, ‘M’ or ‘G’

to specify a size in KBytes (1024 bytes), MBytes (1048576 bytes) or GBytes

(1073741824 bytes). The minimum value is 0 (for no dynamic heap size increase).

Option -heapSizeIncrement=n[K|M]

The heapSizeIncrement option specifies the steps by which the heap size

can be increased when the maximum heap size is larger than the heap size.

184 CHAPTER 13. THE JAMAICA BUILDER

The maximum heap size may be succeeded by the letter ‘K’ or ‘M’ to specify

a size in KBytes (1024 bytes) or MBytes (1048576 bytes). The minimum value is

64k.

Option -javaStackSize=n[K|M]

The javaStackSize option sets the stack size to be used for the Java runtime

stacks of all Java threads in the built application. Each Java thread has its own

stack which is allocated from the global Java heap. The stack size consequently

has an important impact on the heap memory required by an application. A small

stack size is recommended for systems with tight memory constraints. If the stack

size is too small for the application to run, a stack overflow will occur and a

corresponding error reported.

The stack size may be followed by the letter ‘K’ or ‘M’ to specify a size in

KBytes (1024 bytes) or MBytes (1048576 bytes). The minimum stack size is 1k.

Option -nativeStackSize=n[K|M]

The nativeStackSize option sets the stack size to be used for the native

runtime stacks of all Java threads in the built application. Each Java thread has

its own native stack. Depending on the target system, the stack is either allocated

and managed by the underlying operating system, as in many Unix systems, or

allocated from the global heap, as in some small embedded systems. When native

stacks are allocated from the global heap, stack size consequently has an important

impact on the heap memory required by an application. A small stack size is

recommended for systems with tight memory constraints. If the selected native

stack size is too small, an error may not be reported because the stack-usage of

native code may cause a critical failure.

The nativeStackSize option can be set to 0 to leave the allocation and

management of the native stack on the underlying operating system. The size of

the native stack would be, then, OS-dependent. On Unix systems this could be

managed by the ulimit -s command and an unlimited value could be set.

In that case the stack size is increased dynamically as needed.

The stack size may be followed by the letter ‘K’ or ‘M’ to specify a size in

KBytes (1024 bytes) or MBytes (1048576 bytes). The minimum native stack size

is platform dependent.

Option -heapSizeFromEnv=var

The heapSizeFromEnv option enables the application to read its heap size

from the specified environment variable. If this variable is not set, the heap size

13.2. BUILDER USAGE 185

specified using -heapSize=n will be used.

Option -maxHeapSizeFromEnv=var

The maxHeapSizeFromEnv option enables the application to read its maxi-

mum heap size from the specified environment variable. If this variable is not set,

the maximum heap size specified using -maxHeapSize=n will be used.

Option -heapSizeIncrementFromEnv=var

The heapSizeIncrementFromEnv option enables the application to read its

heap size increment from the specified environment variable. If this variable is

not set, the heap size increment specified using -heapSizeIncrement=n will

be used.

Option -javaStackSizeFromEnv=var

The javaStackSizeFromEnv option enables the application to read its Java

stack size from the specified environment variable. If this variable is not set, the

stack size specified using -javaStackSize=n will be used.

Option -nativeStackSizeFromEnv=var

The nativeStackSizeFromEnv option enables the application to read its

native stack size from the specified environment variable. If this variable is not

set, the stack size specified using -nativeStackSize=n will be used.

Option -lockMemory

If the lockMemory option is set, the built application instructs the OS to at-

tempt lock all of its memory into RAM using the POSIX mlockall function

on systems that support it. This avoids indeterministic timing due to swapping of

memory to disk in virtual memory environments.

Locking memory to RAM may require specific user rights or setting of re-

source limits such (e.g., RLIMIT_MEMLOCK on Linux). In case locking of the

memory fails, the built application will fail with error code 74.

Option -XX:MaxDirectMemorySize=n[K|M|G]

The XX:MaxDirectMemorySize option specifies the maximum total size of

java.nio (New I/O) direct buffer allocations in the built application.

186 CHAPTER 13. THE JAMAICA BUILDER

The maximum direct memory size may be succeeded by the letter ‘K’, ‘M’ or

‘G’ to specify a size in KBytes (1024 bytes), MBytes (1048576 bytes) or GBytes

(1073741824 bytes). The minimum value is 0 (for no direct buffer allocations). If

this option is not set, the java.nio library chooses a default size automatically

at startup time of the built application.

13.2.6 Threads, priorities and scheduling

Configuring threads has an important impact not only on the runtime performance

and realtime characteristics of the code but also on the memory required by the

application. The Jamaica Builder provides a range of options for configuring the

number of threads available to an application, priorities and scheduling policies.

Option -numThreads=n

The numThreads option specifies the initial number of Java threads supported

by the destination application. These threads and their runtime stacks are gener-

ated at startup of the application. A large number of threads consequently may

require a significant amount of memory.

The minimum number of threads is two, one thread for the main Java thread

and one thread for the finalizer thread.

Option -maxNumThreads=n

The maxNumThreads option specifies the maximum number of Java threads

supported by the application. This also includes Java threads used to attach native

threads to the VM. If this maximum number of threads is larger than the sum

of the values specified for numThreads and numJniAttachableThreads,

threads will be added dynamically if needed. If the maximum is lower than the

sum of numThreads and numJniAttachableThreads, the maximum is

raised to this sum.

Adding new threads requires unfragmented heap memory. It is strongly rec-

ommended to use maxNumThreads only in conjunction with maxHeapSize
set to a value larger than heapSize. This will permit the VM to increase the

heap when memory is fragmented.

The absolute maximum number of threads for the Jamaica VM is 511.

! If the number of Java threads plus the number of attached native threads has

reached maxNumThreads, both starting further Java threads and attaching

additional native threads will fail.

13.2. BUILDER USAGE 187

Option -numJniAttachableThreads=n

The numJniAttachableThreads specifies the initial number of Java thread

structures that will be allocated and reserved for calls to the JNI Invocation API

functions. These are the functions JNI_AttachCurrentThread and JNI_
AttachCurrentThreadAsDaemon. These threads will be allocated on VM

startup, such that no additional allocation is required on a later call to JNI_
AttachCurrentThread or JNI_AttachCurrentThreadAsDaemon.

Even if this option is set to zero, it still will be possible to use these functions.

However, then these threads will be allocated dynamically when needed.

Since non-fragmented memory is required for the allocation of these threads,

a later allocation may require heap expansion or may fail due to fragmented mem-

ory. It is therefore recommended to pre-allocate these threads.

The number of JNI attachable threads that will be required is the number of

threads that will be attached simultaneously. Any thread structure that will be

detached via JNI_DetachCurrentThread will become available again and

can be used by a different thread that calls JNI_AttachCurrentThread or

JNI_AttachCurrentThreadAsDaemon.

Option -threadPreemption=n

Compiled code contains special instructions that permit thread preemption. These

instructions have to be executed often enough to allow a thread preemption time

that is sufficient for the destination application. As the instructions cause an over-

head in code size and runtime performance, one would want to generate this code

as rarely as possible.

The threadPreemption option enables setting of the maximum number

of intermediate instructions that are permitted between the execution of thread

preemption code. This directly affects the maximum thread preemption time of

the application. One intermediate instruction typically corresponds to 1-2 machine

instructions. There are some intermediate instructions (calls, array accesses) that

can be more expensive (20-50 machine instructions).

The thread preemption must be at least 10 intermediate instructions.

Option -timeSlice=n[ns|us|ms|s]

For thread instances of java.lang.Thread of equal priority, round robin

scheduling is used when several threads are running simultaneously. Using the

timeSlice option, the maximum size of such a time slice can be specified. A

special synchronization thread is used that waits for the length of a time slice and

permits thread switching after every slice. Time slicing does not affect real-time

threads.

188 CHAPTER 13. THE JAMAICA BUILDER

The value may be specified using the time units ’ns’, ’us’, ’ms’, or ’s’ to

specify a value in nanoseconds, microseconds, milliseconds, or seconds. If no

unit is given, the value is interpreted as nanoseconds.

If no round robin scheduling is needed for threads of equal priority, the size

of the time slice may be set to zero. In this case, the synchronization thread is not

required, so fewer system resources are needed.

Option -timeSliceFromEnv=var

The timeSliceFromEnv option creates an application that reads the time slice

settings for instances of java.lang.Thread from the environment variable

var. If this variable is not set, the mapping specified using -timeSlice=n will

be used.

Option -numThreadsFromEnv=var

The numThreadsFromEnv option enables the application to read the number

of threads from the specified environment variable. If this variable is not set, the

number specified using -numThreads=n will be used.

Option -maxNumThreadsFromEnv=var

The maxNumThreadsFromEnv option enables the application to read the max-

imum number of threads from the environment variable specified within. If this

variable is not set, the number specified using -maxNumThreads=n will be

used.

Option -numJniAttachableThreadsFromEnv=var

The numJniAttachableThreadsFromEnv option enables the application

to read its initial number of JNI attachable threads from the environment variable

specified within. If this variable is not set, the value specified using the option

-numJniAttachableThreads=n will be used.

Option -priMap[+]=jp=sp[/policy]{,jp=sp[/policy]}
The priMap option defines the mapping of priority levels of Java threads to native

priorities of system threads and their scheduling policy. This map is required since

JamaicaVM implements Java threads as operating system threads.

The Java thread priorities are integer values in the range 0 through 127, where

0 corresponds to the lowest priority and 127 to the highest priority. Not all Java

thread priorities up to this maximum must be mapped to system priorities, but the

13.2. BUILDER USAGE 189

range must be contiguous from 1 to the highest priority in the mapping. Map-

pings for the priority levels of java.lang.Thread (ranging from 1 through

10) and the priority levels of javax.realtime.RealtimeThread (ranging

from 11 through 38) must be provided. Unless time slicing is disabled, the prior-

ity of the synchronization thread must also be provided with the keyword ’sync’.

Its purpose is to provide round robin scheduling and to prevent starvation of low

priority thread for instances of java.lang.Thread. The Java priority level

0 is optional, it may be used to provide a specific native priority for Java prior-

ity level 1 with micro-adjustment -1 (see class com.aicas.jamaica.lang.
Scheduler). This is also the default priority of the memory reservation thread.

Each Java priority level starting from 1 up to the maximal used priority must

be mapped to a system priority, and the mapping must be monotonic. That is, a

higher Java priority level may not be mapped to a lower system priority. The only

exception is the priority of the synchronization thread, which may be mapped to

any system priority. To simplify the notation, a range of priority levels or system

priorities can be described using the notation from..to.

In addition to mapping to native priorities, scheduling policies may also be

chosen. For example, 1..10=5/OTHER,11..38=7..34/FIFO,sync=6
would schedule Java priorities 1 to 10 using the OTHER scheduler, while prior-

ities 11 to 38 would be scheduled using the FIFO scheduler. If no scheduling

policy is chosen, then OTHER would be used by default. The availability of par-

ticular scheduling policies is system dependent. Running JamaicaVM with the

-help option will list available scheduling policies.

Example 1: -priMap=1..10=5,sync=6,11..38=7..34 will cause

all normal threads to use system priority 5, while the real-time threads will be

mapped to priorities 7 through 34. The synchronization thread will use priority 6.

There will be 28 priority levels for instances of RealtimeThread, and the syn-

chronization thread will run at a system priority lower than the real-time threads.

Example 2: on a system where higher priorities are denoted by smaller num-

bers, -priMap=1..50=100..2,sync=1 will cause the use of system prior-

ities 100, 98, 96 through 2 for priority levels 1 through 50. The synchronization

thread will use priority 1. There will be 40 priority levels available for instances

of RealtimeThread.

Example 3: different schedulers may be needed for plain threads and realtime

threads. -priMap=1..10=5/RR,11..38=6/FIFO,sync=6/OTHER will

schedule Java priorities 1 to 10 using the RR scheduler, 11 to 38 using the FIFO
scheduler and the syncronization thread using OTHER.

The default of this option is platform specific. It maps at least the Java priority

levels required for java.lang.Thread and RealtimeThread, and for the

synchronization thread to suitable system priorities.

Note: If round robin scheduling is not needed for instances of java.lang.

190 CHAPTER 13. THE JAMAICA BUILDER

Thread and the timeslice is set to zero (-timeSlice=0), the synchronization

thread is not required and no system priority needs to be given for it.

Option -priMapFromEnv=var

The priMapFromEnv option creates an application that reads the priority map-

ping of Java threads to native threads from the environment variable var. If this

variable is not set, the mapping specified using -priMap=jp=sp{,jp=sp} will

be used.

Option -schedulingPolicy=policy

The schedulingPolicy option sets the thread scheduling policy. Examples

include OTHER, FIFO, or RR. If a scheduling policy is not explicitly specified in

the priority map, this option defines the default one.

Option -schedulingPolicyFromEnv=var

The schedulingPolicy option enables the application to read its scheduling

policy from the specified environment variable. If this variable is not set, the

scheduling policy specified using -schedulingPolicy=policy will be used.

13.2.7 Parallel Execution

The parallel version of JamaicaVM can execute several threads, including the

garbage collection, in parallel and therefore improves the runtime performance

when using multicore systems. Notice that you need to have an extra license to

use the parallel version of JamaicaVM.

Option -parallel

The parallel option instructs the Builder to create an application that can make

use of several processors executing Java code in parallel.

13.2.8 GC configuration

The following options provide ways to analyze the application’s memory demand

and to use this information to configure the garbage collector for the desired real-

time behavior.

13.2. BUILDER USAGE 191

Option -analyze (-analyse)=tolerance

The analyze option enables memory analyze mode with tolerance given in per-

cent. In memory analyze mode, the memory required by the application during

execution is determined. The result is an upper bound for the actual memory re-

quired during a test run of the application. This bound is at most the specified

tolerance larger than the actual amount of memory used during runtime.

The result of a test run of an application built using analyze can then be

used to estimate and configure the heap size of an application such that the gar-

bage collection work that is performed on an allocation never exceeds the amount

allowed to ensure timely execution of the application’s realtime code.

Using analyze can cause a significant slowdown of the application. The ap-

plication slows down as the tolerance is reduced, i.e., the lower the value specified

as an argument to analyze, the slower the application will run.

In order to configure the application heap, a version of the application must

be built using the option analyze and, in addition, the exact list of arguments

used for the final version. The heap size determined in a test run can then be

used to build a final version using the preferred heap size with desired garbage

collection overhead. To reiterate, the argument list provided to the Builder for this

final version must be the same as the argument list for the version used to analyze

the memory requirements. Only the heapSize option of the final version must

be set accordingly and the final version must be built without setting analyze.

Option -analyzeFromEnv (-analyseFromEnv)=var

The analyzeFromEnv option enables the application to read the amount of

analyze accuracy of the garbage collector from the environment variable specified

within. If this variable is not set, the value specified using -analyze=n will be

used. Setting the environment variable to ‘0’ will disable the analysis and cause

the garbage collector to use dynamic garbage collection mode.

Option -constGCwork=n

The constGCwork option runs the garbage collector in static mode. In static

mode, for every unit of allocation, a constant number of units of garbage collection

work is performed. This results in a lower worst case execution time for the

garbage collection work and allocation and more predictable behavior, compared

with dynamic mode, because the amount of garbage collection work is the same

for any allocation. However, static mode causes higher average garbage collection

overhead compared to dynamic mode.

The value specified is the number for units of garbage collection work to be

192 CHAPTER 13. THE JAMAICA BUILDER

performed for a unit of memory that is allocated. This value can be determined

using a test run built with -analyze set.

A value of ‘0’ for this option chooses the dynamic GC work determination

that is the default for Jamaica VM.

A value of ‘-1’ enables a stop-the-world GC, see option stopTheWorldGC
for more information.

A value of ‘-2’ enables an atomic GC, see option atomicGC for more infor-

mation.

The default setting chooses dynamic GC: the amount of garbage collection

work on an allocation is then determined dynamically depending on the amount

of free memory.

Option -constGCworkFromEnv=var

The constGCworkFromEnv option enables the application to read the amount

of static garbage collection work on an allocation from the environment variable

specified within. If this variable is not set, the value specified with the option

-constGCwork will be used.

Option -stopTheWorldGC

The stopTheWorlsGC option enables blocking GC, i.e., no GC activity is per-

formed until the heap is fully filled. Only then, a complete GC cycle is performed

at once, causing a potentially long pause for the application. During this GC cy-

cle, any thread that performs heap memory allocation will be blocked, but threads

that do not perform heap allocation may continue to run.

If stop-the-world GC is enabled via this option, even RealtimeThreads
and NoHeapRealtimeThreads may be blocked by GC activity if they al-

locate heap memory. RealtimeThreads and NoHeapRealtimeThreads
that run in ScopedMemory or ImmortalMemory will not be stopped by the

GC

A stop-the-world GC enables a higher average throughput compared to incre-

mental GC, but at the cost of losing realtime behaviour for all threads that perform

heap allocation.

Option -atomicGC

The atomicGC option enables atomic GC, i.e., no GC activity is performed until

the heap is fully filled. Only then, a complete GC cycle is performed at once,

causing a potentially long pause for the application. During this GC cycle, all

Java threads will be blocked.

13.2. BUILDER USAGE 193

This mode permits even more efficient code than stopTheWorldGC since it

disables certain tracking code (write barriers) that is required for the incremental

GC.

When this option is set, even NoHeapRealtimeThreads will be stopped

by GC work, so all realtime guarantees are lost!

Option -reservedMemory=percentage

Jamaica VM’s realtime garbage collector performs GC work at allocation time.

This may reduce the responsiveness of applications that have long pause times

with little or no activity and are preempted by sudden activities that require a

burst of memory allocation. The responsiveness of such burst allocations can be

improved significantly via reserved memory.

If the reservedMemory option is set to a value larger than 0, then a low

priority thread will be created that continuously tries to reserve memory up to

the percentage of the total heap size that is selected via this option. Any thread

that performs memory allocation will then use this reserved memory to satisfy its

allocations whenever there is reserved memory available. For these allocations

of reserved memory, no GC work needs to be performed since the low priority

reservation thread has done this work already. Only when the reserved memory is

exhausted will GC work to allow further allocations be performed.

The overall effect is that a burst of allocations up to the amount of reserved

memory followed by a pause in activity that was long enough during this alloca-

tion will require no GC work to perform the allocation. However, any thread that

performs more allocation than the amount of memory that is currently reserved

will fall back to the performing GC work at allocation time.

The disadvantage of using reserved memory is that the worst-case GC work

that is required per unit of allocation increases as the size of reserved memory is

increased. For a detailed output of the effect of using reserved memory, run the

application with option -analyze set together with the desired value of reserved

memory.

Option -reservedMemoryFromEnv=var

The reservedMemoryFromEnv option enables the application to read the per-

centage of reserved memory from the environment variable specified within. If

this variable is not set, the value specified using -reservedMemory=n will be

used. See option reservedMemory for more information on the effect of this

option.

194 CHAPTER 13. THE JAMAICA BUILDER

13.2.9 RTSJ settings
The following options set values that are relevant for the Real-Time Specifica-

tion for Java extensions through classes javax.realtime.* that are provided by Ja-

maicaVM.

Option -immortalMemorySize=n[K|M]

The immortalMemorySize option sets the size of the immortal memory area,

in bytes. The immortal memory can be accessed through the class javax.
realtime.ImmortalMemory.

The immortal memory area is guaranteed never to be freed by the garbage

collector. Objects allocated in this area will survive the whole application run.

Option -immortalMemorySizeFromEnv=var

The immortalMemorySizeFromEnv option enables the application to read

its immortal memory size from the environment variable specified using this op-

tion. If this variable is not set, the immortal memory size specified using the

option-immortalMemorySize will be used.

Option -scopedMemorySize=n[K|M]

The scopedMemorySize option sets the size of the memory that should be

made available for scoped memory areas (RTSJ classes javax.realtime.
memory.LTMemory and javax.realtime.VTMemory). This memory lies

outside of the normal Java heap, but it is nevertheless scanned by the garbage

collector for references to the heap.

Objects allocated in scoped memory will never be reclaimed by the garbage

collector. Instead, their memory will be freed when the last thread exits the scope.

Option -scopedMemorySizeFromEnv=var

The scopedMemorySizeFromEnv option enables the application to read its

scoped memory size from the specified environment variable. If this variable is

not set, the scoped memory size specified using -scopedMemorySize=n will

be used.

Option -physicalMemoryRanges[+]=range{,range}
The PhysicalMemoryFactory classes in the javax.realtime.memory
package provide access to RTSJ physical memory for Java object storage. The

13.2. BUILDER USAGE 195

memory ranges that may be accessed by the Java application can be specified

using the option physicalMemoryRanges. The default behavior is that no

access to physical memory is permitted by the application.

The physicalMemoryRanges option expects a list of address ranges. Ad-

dress ranges are of the form lower..upper. The lower address is inclusive and

the upper address is exclusive. I.e., the difference upper-lower gives the size of the

accessible area. The addresses need to be page-aligned. There can be an arbitrary

number of memory ranges.

Example: with -physicalMemoryRanges=0x1000..0x2000 the ap-

plication will be allowed access to the memory range from address 0x1000 to

0x2000, i.e., to a range of 4096 bytes.

Option -rawMemoryRanges[+]=range{,range}
The RawMemory class in the javax.realtime.device package provides

access to device memory for Java applications. The memory ranges accessible by

the Java application can be specified using the option rawMemoryRanges. The

default behavior is that no access to raw memory is permitted by the application.

The rawMemoryRanges option expects a list of address ranges. Address

ranges are of the form lower..upper. The lower address is inclusive and the

upper address is exclusive. In other words, the difference upper-lower gives the

size of the accessible area. The addresses need to be page-aligned. There can be

an arbitrary number of memory ranges.

Example: -rawMemoryRanges=0x1000..0x2000 will allow access to

the memory range from address 0x1000 to 0x2000, i.e., to a range of 4096

bytes.

13.2.10 Native code
Native code is code written in a different programming language than Java (typ-

ically C or C++). This code can be called from within Java code using the Java

Native Interface (JNI).

Option -object[+]=file{:file}
Unlike many other Java implementations that support accessing native code only

through shared libraries, Jamaica can include native code directly in the exe-

cutable. The object files specified with this option will be linked to the destination

executable created by the Builder.

Setting this option may cause linker errors. This happens if default object files

needed by Jamaica are overridden. These errors may be avoided by using the

196 CHAPTER 13. THE JAMAICA BUILDER

optional “+”-notation: -object+=files.

Multiple object files should be separated by the system specific path separator:

colon “:” on Unix systems and semicolon “;” on Windows.

13.3 Builder Extended Usage
A number of extended options provide additional means for finer control of the

Builder’s operation for the more experienced user. The following sections list

these extended options and describe their effect. Default values may be obtained

by jamaicabuilder -target=platform -xhelp.

13.3.1 General
The following are general options which provide information about the Builder

itself or enable the use of script files that specify further options.

Option -XdefineProperty[+]=name[=value]

The XdefineProperty option sets a system property for the resulting binary.

For security reasons, system properties set by the VM cannot be changed. The

value may contain spaces. Use shell quotation as required. The Unicode character

U+EEEE is reserved and may not be used within the argument of the option.

Option -XdefinePropertyFromEnv[+]=name=var

At program start, the resulting binary will set a system property to the value of

the specified environment variable. This feature can only be used if the target OS

supports environment variables. For security reasons, system properties set by the

VM cannot be changed.

Option -XignoreLineNumbers

Specifying the XignoreLineNumbers option instructs the Builder to remove

the line number information from the classes that are built into the target applica-

tion. The resulting information will have a smaller memory footprint and RAM

demand. However, exception traces in the resulting application will not show line

number information.

13.3.2 Classes, files and paths
These options allow to specify classes and paths to be used by the Builder.

13.3. BUILDER EXTENDED USAGE 197

Option -XjamaicaHome=directory

The XjamaicaHome option specifies jamaica-home. The directory is normally

set via the environment variable JAMAICA.

Option -XjavaHome=directory

The XjavaHome option specifies the path to the Java home directory. It defaults

to jamaica-home/target/platform, where platform is either the default plat-

form or set with the target option.

Option -Xbootclasspath[+]=classpath

The Xbootclasspath specifies path used for loading system classes.

Additionally, the boot classpath provided at build time will be added in the

form of URLs with the protocol jamaicabuiltin to the runtime boot class-

path of the built application.

Option -XlazyConstantStrings

Jamaica VM by default allocates all String constants at class loading time such

that later accesses to these strings is very fast and efficient. However, this approach

requires code to be executed for this initialization at system startup and it requires

Java heap memory to store all constant Java strings, even those that are never

touched by the application at run time

Setting the option -XlazyConstantStrings causes the VM to allocate

string constants lazily, i.e., not at class loading time but at time of first use of

any constant string. This saves Java heap memory and startup time since constant

strings that are never touched will not be created. However, this has the effect that

accessing a constant Java string may cause an OutOfMemoryError.

Option -XlazyConstantStringsFromEnv=var

Causes the creation of an application that reads its XlazyConstantStrings
setting from the specified environment variable. If this variable is not set, the

value of boolean option XlazyConstantStrings will be used. The value of

the environment variable must be 0 for -XlazyConstantStrings=false
or 1 for -XlazyConstantStrings=true.

198 CHAPTER 13. THE JAMAICA BUILDER

Option -XnoMain

The XnoMain option builds a standalone VM. Do not select a main class for the

built application. Instead, the first argument of the argument list passed to the

application will be interpreted as the main class.

Option -XnoClasses

The XnoClasses option does not include any classes in the built application.

Setting this option is only needed when building the jamaicavm command itself.

13.3.3 Profiling and compilation

By default, the Builder compiles all application classes and a predefined set of the

system classes. Profiling and compilation options enable to fine tune the compila-

tion process for optimal runtime performance of applications generated with the

Builder.

Option -XprofileFilename=name

The XprofileFilename option sets the name of the file to which profiling

data will be written if profiling is enabled. If a profile filename is not specified

then the profiling data will be written to a file named after the destination (see

option destination) with the extension .prof added.

Option -XprofileFilenameFromEnv=var

The XprofileFilenameFromEnv creates an application that reads the name

of a file for profiling data from the environment variable var. If this variable is not

set, the name specified using XprofileFilename will be used (default: not

used).

Option -XfullStackTrace

Compiled code usually does not contain full Java stack trace information if the

stack trace is not required (as in a method with a try/catch clause or a synchro-

nized method). For better debugging of the application, the XfullStackTrace
option can be used to create a full stack trace for all compiled methods.

13.3. BUILDER EXTENDED USAGE 199

Option -XexcludeLongerThan=n

Compilation of large Java methods can cause large C routines in the intermediate

code, especially when combined with aggressive inlining. Some C compilers have

difficulties with the compilation of large routines. To enable the use of Jamaica

with such C compilers, the compilation of large methods can be disabled using

the option XexcludeLongerThan.

The argument of XexcludeLongerThan gives the minimum number of

bytecode instructions a method must have to be excluded from compilation.

Option -Xcc=cc

The Xcc option specifies the C compiler to be used to compile intermediate C

code that is generated by the Builder.

Option -XCFLAGS[+]=cflags

The XCFLAGS option specifies the cflags for the invocation of the C compiler.

Note that for optimizations the compiler independent option -optimize should

be used.

Option -Xld=linker

The Xld option specifies the linker to be used to create a binary from the object

file(s) generated by the C compiler.

Option -XLDFLAGS[+]=ldflags

The XLDFLAGS option specifies the ldflags for the invocation of the C linker.

Option -dwarf2

The dwarf2 option generates a DWARF2 version of the application. DWARF2

symbols are needed for tracing Java methods in compiled code. Use this option

with WCETA tools and binary debuggers.

Option -Xstrip=tool

The Xstrip option uses the specified tool to remove debug information from

the generated binary. This will reduce the size of the binary file by removing

information not needed at runtime.

200 CHAPTER 13. THE JAMAICA BUILDER

Option -XstripOptions=options

The XstripOptions option specifies the strip options for the invocation of the

stripper. See also option Xstrip.

Option -XnoStrip

The XnoStrip option disables stripping (removing debugging information) of

created binaries.

Option -Xlibraries[+]="library{ library}"
The Xlibraries option specifies the libraries that must be linked to the destina-

tion binary. The libraries must include the option that is passed to the linker. Mul-

tiple libraries should be separated using spaces and enclosed in quotation marks.

For example, on Unix systems -Xlibraries "m pthread" causes linking

against libm.so and libpthread.so.

Option -XstaticLibraries[+]="library{ library}"
The XstaticLibraries option specifies the libraries that must be statically

linked to the destination binary. Static linking creates larger binaries, but may

be necessary if the target system does not provide the library. Multiple libraries

should be separated using spaces and enclosed in quotation marks. For example,

on Unix systems -XstaticLibraries="m pthread" causes static linking

against libm.a and libpthread.a.

Option -XlibraryPaths[+]=path{:path}
The XlibraryPaths option adds the directories in the specified paths to the

library search path. Multiple directories should be separated by the system specific

path separator: colon “:” on Unix systems and semicolon “;” on Windows.

E.g., to use the directories /usr/local/lib and /usr/lib as library

path, the option -XlibraryPaths /usr/local/lib:/usr/libmust be

specified.

Option -XavailableTargets

The XavailableTargets option lists all available target platforms of this Ja-

maica distribution.

13.3. BUILDER EXTENDED USAGE 201

13.3.4 Heap and stack configuration

Configuring heap and stack memory has an important impact not only on the

amount of memory required by the application but on the runtime performance

and the realtime characteristics of the code as well. The Jamaica Builder therefore

provides a number of options to configure heap memory and stack available to

threads.

Option -XnumMonitors=n

The XnumMonitors option specifies the number of monitors that should be al-

located on VM startup. This is required in the parallel VM only to store the data if

the monitor in a Java object is used. This value should be set large enough to ac-

count for the maximum number of monitors that may be used (for synchronization

or for calls to Object.wait) simultaneously by the application.

Pre-allocting monitors is done by the parallel VM only. This option therefore

is ignored if used with the single core VM, i.e., it has no effect unless option

-parallel is set.

Setting this value to 0 will allocate a default number of monitors that is a

multiple of the maximum number of threads.

Option -XnumMonitorsFromEnv=var

The XnumMonitorsFromEnv option enables the application to read its initial

number of monitors to be allocated at VM startup from the environment vari-

able specified. If this variable is not set, the value specified using the option

-XnumMonitors=n will be used.

13.3.5 Parallel Execution

The parallel version of JamaicaVM can execute several threads, including the

garbage collection, in parallel and therefore improves the runtime performance

when using multicore systems. Notice that you need to have an extra license to

use the parallel version of JamaicaVM.

Option -Xcpus=n1{,n2} | n1..n2 | all

Select the set of CPUs to use to run JamaicaVM on. The argument can be specified

either as a set (e.g. -Xcpus=0,1,2) or a range (e.g. -Xcpus=0..2). All

available CPUs are selected by using -Xcpus=all.

202 CHAPTER 13. THE JAMAICA BUILDER

Option -XcpusFromEnv=var

The XcpusFromEnv option enables the application to read the set of CPUs to

run on from the specified environment variable. If this variable is not set, the set

specified using -Xcpus=cpuset will be used.

13.3.6 RTSJ settings
The following options set values that are relevant for the Real-Time Specifica-

tion for Java extensions through classes javax.realtime.* that are provided by Ja-

maicaVM.

Option -XuseMonotonicClock

On systems that provide a monotonic clock, setting this option enables use of this

clock instead of the standard (wall-)clock for relative timeouts (e.g., Object.wait).

Option -XuseMonotonicClockFromEnv=var

The XuseMonotonicClockFromENv option enables the application to read

its setting of XuseMonotonicClock from the specified environment variable.

If this variable is not set, the value of the option XuseMonotonicClockwill be

used. The environment variable must be set to 0 (-XuseMonotonicClock=
false) or true (-XuseMonotonicClock=true).

13.3.7 Native code
Native code is code written in a different programming language than Java (typ-

ically C or C++). This code can be called from within Java code using the Java

Native Interface (JNI).

Option -XloadJNIDynamic[+]="class|method{ class| method}"
The XloadJNIDynamic option will cause the Builder to know which native

declared methods calls at runtime a dynamic library. Either a single method, all

methods with the same name or all methods of classes or even packages can be

specified.

Examples: com.user.Sample.toString()Ljava/lang/String;
refers to the single method, com.user.Sample.toString to all methods

with this name, independent of the signature, com.user.Sample refers to all

methods in this class, com.user.* to all classes in this package and com.
user... to all classes in this package and all subpackages.

13.4. ENVIRONMENT VARIABLES 203

Option -Xinclude[+]=dirs

The Xinclude option adds the specified directories to the include path. This

path should contain the include files generated by jamaicah for the native code

referenced from Java code.

This option expects a list of paths that are separated using the platform depen-

dent path separator character (e.g., ‘:’).

Option -XobjectProcessorFamily=type

The XobjectProcessorFamily option sets the processor type for code gen-

eration. Available types are none, i386, i486, i586, i686, ppc, ppc64,

arm, amd64, and aarch64. This is only required if the ELF or PECOFF object

formats are used. Otherwise the type may be set to none.

Option -XobjectSymbolPrefix=prefix

The XobjectSymbolPrefix sets the object symbol prefix, e.g., “_”.

Option -Xcheck=jni

Enable argument checking in the Java Native Interface (JNI). With this option en-

abled the Jamaica VM will be halted if a problem is detected. Enabling this option

will cause a performance impact for the JNI. Using this option is recommended

while developing applications that use native code.

13.4 Environment Variables
The following environment variables control the Builder.

JAMAICA The Jamaica Home directory (jamaica-home). This variable sets the

path of Jamaica to be used. Under Unix systems this must be a Unix style

pathname, while under Windows this has to be a DOS style pathname.

JAMAICA_BUILDER_HEAPSIZE Initial heap size of the Builder program it-

self in bytes. Setting this to a larger value, e.g., “512M”, will improve the

Builder performance.

JAMAICA_BUILDER_MAXHEAPSIZE Maximum heap size of the Builder pro-

gram itself in bytes. If the initial heap size of the Builder is not sufficient,

it will increase its heap dynamically up to this value. To build large appli-

cations, you may have to set this maximum heap size to a larger value, e.g.,

“640M”.

204 CHAPTER 13. THE JAMAICA BUILDER

0 Normal termination

1 Error

2 Invalid argument

3 Missing license

64 Insufficient memory

100 Internal error

Table 13.1: Jamaica Builder and jamaicah exitcodes

JAMAICA_BUILDER_JAVA_STACKSIZE Java stack size of the Builder pro-

gram itself in bytes.

JAMAICA_BUILDER_NATIVE_STACKSIZE Native stack size of the Builder

program itself in bytes.

JAMAICA_BUILDER_NUMTHREADS Initial number of threads allocated by the

Builder program itself.

13.5 Exitcodes
Tab. 13.1 lists the exit codes of the JamaicaVM Builder. If you get an exit code

of an internal error please contact aicas support with a full description of the tool

usage, command line options and input.

Chapter 14

The Jamaica JAR Accelerator

The Jamaica JAR Accelerator takes a JAR file (Source JAR) and produces a new

JAR file (Accelerated JAR) that has the content of the given Source JAR aug-

mented with a shared library containing methods in classes of the JAR that have

been compiled to machine code. The library is marked with the platform for

which it is intended. When a class from the Accelerated JAR is loaded by an

executable program running on a matching platform, the shared library is auto-

matically linked with that program. The program may be a stand-alone program

linked directly with the JamaicaVM runtime (i.e. an executable program created

by the Jamaica Builder) or a Jamaica virtual machine instance.

The JAR Accelerator only compiles methods from classes in Source JAR to

put in the shared library. Methods from classes from the classpath which

are not in Source JAR are not compiled. The classpath provides additional

references for classes needed by the compilation process. Not compiling in these

supporting methods ensures that using the created library does not change the

application’s behavior. However, any change done in classes of an Accelerated

JAR might invalidate this guarantee and therefore in this case the Source JAR

should be reaccelerated.

By default all methods from classes in the Source JAR are candidates for com-

pilation. These candidates can be filtered using the same techniques used by the

Builder. For instance one can provide a profile and a compilation percentage, or a

list of methods to be included or excluded from compilation. One can also limit

the length of methods that are compiled. Filtering the compilation candidates is

done using the compilation options found in the section 14.1.

The usage of the JAR Accelerator is illustrated in the Acceleration exam-

ple (see Tab. 2.2 in Section 2.4).

205

206 CHAPTER 14. THE JAMAICA JAR ACCELERATOR

14.1 JAR Accelerator Usage

The JAR Accelerator is a command-line tool with the following syntax:

jamaicajaraccelerator [options] jar

A variety of arguments control the work of the JAR Accelerator tool. It accepts

numerous options for configuring and fine tuning the created shared library. The

jar argument identifies the processed JAR file. It is required unless the processed

JAR file is specified using -source=jar.

The options may be given directly to the JAR Accelerator via the command

line or by using configuration files.1 Options given on the command line take

priority. Options not specified on the command line are read from configuration

files.

• The host target is read from jamaica-home/etc/global.conf and is

used as the default target. This file should not contain any other information.

• When the JAR Accelerator option -configuration is used, the remain-

ing options are read from the file specified with this option.

• Otherwise the target-specific configuration file jamaica-home/target/
platform/etc/jaraccelerator.conf is used.

The general format for an option is either -option for an option without argument

or -option=value for an option with argument. For details, see Chapter 13.

Default values for many options are target specific. The actual settings may be

obtained by invoking the JAR Accelerator with -help. In order to find out the

settings for a target other than the host platform, include -target=platform.

The JAR Accelerator stores intermediate files, in particular generated C and

object files, in a temporary folder in the current working directory. For concur-

rent runs of the JAR Accelerator, in order to avoid conflicts, the JAR Accelerator

must be instructed to use distinct temporary directories. In this case, the JAR

Accelerator option -tmpdir can be used to set specific directories.

14.1.1 General

The following are general options which provide information about the JAR Ac-

celerator itself or enable the use of script files that specify further options.

1Aliases are not allowed as keys in configuration files.

14.1. JAR ACCELERATOR USAGE 207

Option -help (-h, -?)

The help option displays the JAR Accelerator usage and a short description of

all possible standard command line options.

Option -Xhelp

The Xhelp option displays the JAR Accelerator usage and a short description of

all possible extended command line options. Extended command line options are

not needed for normal control of the JAR Accelerator command. They are used to

configure tools and options, and to provide tools required internally for Jamaica

VM development.

Option -version

Print the version of Jamaica JAR Accelerator and exit.

Option -verbose=n

The verbose option sets the verbosity level for the JAR Accelerator. At level

1, which is the default, warnings are printed. At level 2 additional information on

the build process that might be relevant to users is shown. At level 0 all warnings

are suppressed. Levels above 2 are reserved.

Option -jobs=n

The jobs option sets the number of parallel jobs for the JAR Accelerator. Parts

of the JAR Accelerator work will be performed in parallel if this option is set to a

value larger than one. Parallel execution may speed up the JAR Accelerator.

Option -showSettings

Print the JAR Accelerator settings. To make these settings the default, replace the

file jamaica-home/target/platform/etc/jaraccelerator.conf by the

output.

Option -saveSettings=file

If the saveSettings option is used, the JAR Accelerator options currently in

effect are written to the provided file. To make these settings the default, replace

the file jamaica-home/target/platform/etc/jaraccelerator.conf by

the output.

208 CHAPTER 14. THE JAMAICA JAR ACCELERATOR

! The saved settings will only work for the target platform they were generated

for. Copying configurations across target platforms will cause misconfigura-

tion of the platform-specific tools and will lead to severe errors.

Option -configuration=file

The configuration option specifies a file to read the set of options used by the

JAR Accelerator. The format must be identical to the one in the default configura-

tion file (jamaica-home/target/platform/etc/jaraccelerator.conf).

When set the default configuration file is ignored.

14.1.2 Classes, files and paths
These options allow to specify classes and paths to be used by the JAR Accelera-

tor.

Option -destination (-o)=name

The destination option specifies the name of the destination accelerated JAR

to be generated by the JAR Accelerator. If this option is not present, the name

of the destination accelerated JAR is xyz-accelerated.jar if xyz.jar is

being accelerated.

The destination name can be a path into a different directory. E.g.,

-destination=myproject/bin/xyz.jar

may be used to save the created accelerated JAR xyz.jar in myproject/bin.

Option -tmpdir=name

The tmpdir option may be used to specify the name of the directory used for

temporary files generated by the JAR Accelerator (such as C source and object

files for compiled methods).

Option -autoSeal

Defines whether the JAR Accelerator should automatically seal the accelerated

JAR file or not. When true the JAR Accelerator seals the whole accelerated

JAR file, unless the manifest of the original JAR file already contains any sealing

attributes.

Sealing packages within a JAR file means that all classes defined in that pack-

age must be archived in the same JAR file; attempting to load such classes from a

14.1. JAR ACCELERATOR USAGE 209

different source throws a security exception. It improves security and consistency

among the archived classes.

For the JAR Accelerator sealing also enables the compiler to be more aggres-

sive during acceleration therefore producing potentially faster code.

The value of this option is unconditionally false if the JAR file being accel-

erated is signed.

Option -source=name

Specifies the source JAR file that is to be compiled. Alternatively, the source JAR

file can be specified as a non-option argument to the JAR Accelerator.

14.1.3 Profiling and compilation

Profiling and compilation options enable to fine tune the compilation process for

optimal runtime performance of libraries generated with the JAR Accelerator.

Option -useProfile[+]=file{:file}
The useProfile option instructs the JAR Accelerator to use profiling informa-

tion collected using the Builder option profile to restrict compilation to those

methods that were most frequently executed during the profiling run. The percent-

age of methods to be compiled is 10 by default, unless percentageCompiled
is set to a different value. For a tutorial on profiling see Section Performance

Optimization in the user manual.

This option accepts plain text profile files, GZIP compressed profile files and

ZIP archives consisting of plain text profile entries. All archive entries are required

to be profiles.

Multiple profiles should be separated by the system specific path separator:

colon “:” on Unix systems and semicolon “;” on Windows.

Option -percentageCompiled=n

Use profiling information collected using profile to restrict compilation to

those methods that were most frequently executed during the profiling run. The

percentage of methods that are to be compiled is given as an argument to the op-

tion percentageCompiled. It must be between 0 and 100. Selecting 100

causes compilation of all methods executed during the profiling run, i.e., methods

that were not called during profiling will not be compiled.

210 CHAPTER 14. THE JAMAICA JAR ACCELERATOR

Option -includeInCompile[+]="class|method{ class| method}"
The includeInCompile option forces the compilation of the listed methods .

Either a single method, all methods with the same name or all methods of classes

or even packages can be specified.

Examples: com.user.Sample.toString()Ljava/lang/String;
refers to the single method, com.user.Sample.toString to all methods

with this name, independent of the signature, com.user.Sample refers to all

methods in this class, com.user.* to all classes in this package and com.
user... to all classes in this package and all subpackages.

Option -excludeFromCompile[+]="class|method{ class| method}"
The excludeFromCompile option disables the compilation of the listed meth-

ods. Either a single method, all methods with the same name or all methods of

classes or even packages can be specified.

Examples: com.user.Sample.toString()Ljava/lang/String;
refers to the single method, com.user.Sample.toString to all methods

with this name, independent of the signature, com.user.Sample refers to all

methods in this class, com.user.* to all classes in this package and com.
user... to all classes in this package and all subpackages.

Option -inline=n

This option can be used to set the level of inlining used by the compiler when

compiling a method. Inlining typically causes a significant speedup at runtime

since the overhead of performing method calls is avoided. Nevertheless, inlining

causes duplication of code and hence might increase the binary size of the library.

In systems with tight memory resources, inlining may therefore not be acceptable.

Eleven levels of inlining are supported by the Jamaica compiler ranging from

0 (no inlining) to 10 (aggressive inlining).

Option -optimize (-optimise)=type

The optimize option enables to specify optimizations for the compilation of

intermediate C code to native code in a platform independent manner, where type
is one of none, size, speed, and all. The optimization flags only affect the

C compiler, and they are only given to it if the library is compiled without the

debug option.

14.1. JAR ACCELERATOR USAGE 211

Option -target=platform

The target option specifies a target platform. For a list of all available platforms

of your Jamaica VM Distribution, use XavailableTargets.

14.1.4 Threads, priorities and scheduling

Configuring threads has an important impact not only on the runtime performance

and realtime characteristics of the code but also on the memory required by the

application. The Jamaica JAR Accelerator provides an option for configuring the

scheduling policies.

Option -threadPreemption=n

Compiled code contains special instructions that permit thread preemption. These

instructions have to be executed often enough to allow a thread preemption time

that is sufficient for the destination application. As the instructions cause an over-

head in code size and runtime performance, one would want to generate this code

as rarely as possible.

The threadPreemption option enables setting of the maximum number

of intermediate instructions that are permitted between the execution of thread

preemption code. This directly affects the maximum thread preemption time of

the application. One intermediate instruction typically corresponds to 1-2 machine

instructions. There are some intermediate instructions (calls, array accesses) that

can be more expensive (20-50 machine instructions).

The thread preemption must be at least 10 intermediate instructions.

14.1.5 Parallel Execution

The parallel version of JamaicaVM can execute several threads, including the

garbage collection, in parallel and therefore improves the runtime performance

when using multicore systems. Notice that you need to have an extra license to

use the parallel version of JamaicaVM.

Option -parallel

The parallel option instructs the JAR Accelerator to create a library that can

make use of several processors executing Java code in parallel.

212 CHAPTER 14. THE JAMAICA JAR ACCELERATOR

14.2 JAR Accelerator Extended Usage
A number of extended options provide additional means for finer control of the

JAR Accelerator’s operation for the more experienced user. The following sec-

tions list these extended options and describe their effect. Default values may be

obtained by jamaicajaraccelerator -target=platform -xhelp.

14.2.1 General
The following are general options which provide information about the JAR Ac-

celerator itself or enable the use of script files that specify further options.

Option -XignoreLineNumbers

Specifying the XignoreLineNumbers option instructs the JAR Accelerator to

remove the line number information from the classes that are built into the target

library. The resulting information will have a smaller memory footprint and RAM

demand. However, exception traces in the resulting library will not show line

number information.

14.2.2 Classes, files and paths
These options allow to specify classes and paths to be used by the JAR Accelera-

tor.

Option -XjamaicaHome=directory

The XjamaicaHome option specifies jamaica-home. The directory is normally

set via the environment variable JAMAICA.

14.2.3 Profiling and compilation
Profiling and compilation options enable to fine tune the compilation process for

optimal runtime performance of libraries generated with the JAR Accelerator.

Option -XfullStackTrace

Compiled code usually does not contain full Java stack trace information if the

stack trace is not required (as in a method with a try/catch clause or a synchro-

nized method). For better debugging of the application, the XfullStackTrace
option can be used to create a full stack trace for all compiled methods.

14.2. JAR ACCELERATOR EXTENDED USAGE 213

Option -XexcludeLongerThan=n

Compilation of large Java methods can cause large C routines in the intermediate

code, especially when combined with aggressive inlining. Some C compilers have

difficulties with the compilation of large routines. To enable the use of Jamaica

with such C compilers, the compilation of large methods can be disabled using

the option XexcludeLongerThan.

The argument of XexcludeLongerThan gives the minimum number of

bytecode instructions a method must have to be excluded from compilation.

Option -Xcc=cc

The Xcc option specifies the C compiler to be used to compile intermediate C

code that is generated by the JAR Accelerator.

Option -XCFLAGS[+]=cflags

The XCFLAGS option specifies the cflags for the invocation of the C compiler.

Note that for optimizations the compiler independent option -optimize should

be used.

Option -Xld=linker

The Xld option specifies the linker to be used to create a library from the object

file(s) generated by the C compiler.

Option -XLDFLAGS[+]=ldflags

The XLDFLAGS option specifies the ldflags for the invocation of the C linker.

Option -dwarf2

The dwarf2 option generates a DWARF2 version of the library. DWARF2 sym-

bols are needed for tracing Java methods in compiled code. Use this option with

binary debuggers.

Option -Xstrip=tool

The Xstrip option uses the specified tool to remove debug information from

the generated library. This will reduce the size of the library file by removing

information not needed at runtime.

214 CHAPTER 14. THE JAMAICA JAR ACCELERATOR

Option -XstripOptions=options

The XstripOptions option specifies the strip options for the invocation of the

stripper. See also option Xstrip.

Option -XnoStrip

The XnoStrip option disables stripping (removing debugging information) of

created binaries.

Option -Xlibraries[+]="library{ library}"
The Xlibraries option specifies the libraries that must be linked to the destina-

tion library. The libraries must include the option that is passed to the linker. Mul-

tiple libraries should be separated using spaces and enclosed in quotation marks.

For example, on Unix systems -Xlibraries "m pthread" causes linking

against libm.so and libpthread.so.

Option -XstaticLibraries[+]="library{ library}"
The XstaticLibraries option specifies the libraries that must be statically

linked to the destination library. Static linking creates larger binaries, but may

be necessary if the target system does not provide the library. Multiple libraries

should be separated using spaces and enclosed in quotation marks. For example,

on Unix systems -XstaticLibraries="m pthread" causes static linking

against libm.a and libpthread.a.

Option -XlibraryPaths[+]=path{:path}
The XlibraryPaths option adds the directories in the specified paths to the

library search path. Multiple directories should be separated by the system specific

path separator: colon “:” on Unix systems and semicolon “;” on Windows.

E.g., to use the directories /usr/local/lib and /usr/lib as library

path, the option -XlibraryPaths /usr/local/lib:/usr/libmust be

specified.

Option -XavailableTargets

The XavailableTargets option lists all available target platforms of this Ja-

maica distribution.

14.3. SPECIAL CONSIDERATIONS 215

14.2.4 Native code
Native code is code written in a different programming language than Java (typ-

ically C or C++). This code can be called from within Java code using the Java

Native Interface (JNI).

Option -Xinclude[+]=dirs

The Xinclude option adds the specified directories to the include path. This

path should contain the include files generated by jamaicah for the native code

referenced from Java code.

This option expects a list of paths that are separated using the platform depen-

dent path separator character (e.g., ‘:’).

Option -XobjectProcessorFamily=type

The XobjectProcessorFamily option sets the processor type for code gen-

eration. Available types are none, i386, i486, i586, i686, ppc, ppc64,

arm, amd64, and aarch64. This is only required if the ELF or PECOFF object

formats are used. Otherwise the type may be set to none.

Option -XobjectSymbolPrefix=prefix

The XobjectSymbolPrefix sets the object symbol prefix, e.g., “_”.

14.3 Special Considerations
The same JAR file, including the one being accelerated, may be used as destination

of more than one acceleration. The recently compiled bytecode is simply added

in the JAR at each acceleration. Any preexisting code for the same platform and

VM variant is overwritten. The purpose of this is twofold:

• enable reaccelerating a JAR: the same JAR can be reaccelerated using the

same destination without having to remove previously compiled code. This

is useful when the contents of an accelerated JAR is updated, or when one

wants to experiment accelerating using different compilation options.

• provide support for multiple platforms: the same JAR can be reaccelerated,

using the same destination, for different platforms and VM variants.

For compiling bytecode into machine code, the JAR Accelerator might require

some platform specific configuration, please refer to the Section 2.1.1.3 for further

details.

216 CHAPTER 14. THE JAMAICA JAR ACCELERATOR

Most importantly, to ensure consistency, the JAR Accelerator must be rerun

any time the bytecode in the JAR file is changed.

14.3.1 Which Methods are Compiled

The key for achieving good results from the acceleration is to make sure that the

methods relevant for performance are compiled. One should be aware that when

accelerating a JAR, some of its methods might not be compiled due to different

reasons.

Sometimes there are technical reasons preventing compilation and nothing can

be done about that. However, most of the time, the compilation of a method

can be enabled by the user. This is the case, for instance, when a method is not

compiled because it is out of the percentage selected for compilation. In this

case the user can increase the percentage of profiled methods to be compiled.

The option -verbose can be used for checking which methods could not be

compiled and why2. It is recommended to check if important methods have been

compiled or not.

A frequent reason preventing compilation is missing classes, i.e. the bytecode

being accelerated refers to classes that can not be found by the JAR accelerator. To

avoid this problem it is recommended to provide to the accelerator a full class path

which should cover all dependencies. Providing the same path used for running

the application is usually a good “rule of thumb”. Missing methods or fields are

usually caused by missing classes: for instance, the accelerator can not find the

method A.m() if the class A is missing. However, there are cases where missing

methods or fields is caused by different versions of a class, i.e. the accelerator

finds first in the given class path a version of a class which is different than the

required one.

14.3.2 Compilation and Sealing

Packages within JAR files can be sealed. Sealing a package means that all classes

defined in that package must be archived in the same JAR file. A sealed package

helps ensuring consistency among the classes of an application. One can also

seal the whole JAR guaranteeing consistency among packages. A sealed JAR

specifies that all packages defined by that JAR are sealed unless overridden on a

per-package basis.

Another advantage of sealing a package is that the JAR Accelerator can per-

form its optimization more aggressively producing (usually) faster code. This is

2Verbose level 2 provides an overview of methods that are not compiled.

14.3. SPECIAL CONSIDERATIONS 217

possible because of extra assumptions that can be made about the classes of a

sealed package.

The JAR Accelerator tries to automatically seal a JAR, unless it is signed or

already contains any sealing attribute. This is usually good for most JAR files but

will cause problems if a package is spread in more than one JAR. For controlling

this behavior the option -autoSeal3 should be used.

14.3.3 At Runtime

For compiled code to be executed on the platform, there are two prerequisites on

the executable program that must be fulfilled. Firstly, in order to load compiled

code from a JAR, the executable program must have the property jamaica.
jaraccelerator.load set to true. Secondly, the required accelerator in-
terface version of the executable program must match the interface version of the

Jamaica JAR Accelerator used for accelerating the JAR. The accelerator inter-

face version identifies the JamaicaVM API provided for the compiled bytecode.

Finally, the Jamaica JAR Accelerator used for accelerating the JAR must match

the platform and VM variant of the executable program. For instance, a program

built for linux-x86 multicore will only be able to run bytecode compiled for

linux-x86 multicore.4

When the executable program finds at runtime a matching accelerated JAR it

extracts, from the JAR, the shared library that contains the compiled code and

registers this code into the running executable. The library can be extracted

in the same directory as the original JAR file or to the system dependent de-

fault temporary file directory.5 The extraction directory can be defined using the

property jamaica.jaraccelerator.extraction.dir. A safety check

that concerned classes are not being modified during class loading, such as by

a bytecode weaving service, can be activated by using the property jamaica.
jaraccelerator.check.class.

The property jamaica.jaraccelerator.verbose enables additional

output showing the steps performed for loading the compiled code of an Acceler-

ated JAR. For enabling debug output concerning classes loaded and their sources

the property jamaica.jaraccelerator.debug.class can be used.

Please refer to the Section 12.5 for full description of the properties mentioned

above.

3The default value of this and other options can be checked by invoking the JAR Accelerator

with the -help option.
4The option -version can be used for checking the version of the executable program.
5The default temporary file directory can be specified by the system property “java.io.tmpdir”.

218 CHAPTER 14. THE JAMAICA JAR ACCELERATOR

0 Normal termination

1 Error

2 Invalid argument

3 Missing license

64 Insufficient memory

100 Internal error

Table 14.1: Jamaica JAR Accelerator exitcodes

14.4 Environment Variables
The following environment variables control the JAR Accelerator.

JAMAICA The Jamaica Home directory (jamaica-home). This variable sets the

path of Jamaica to be used. Under Unix systems this must be a Unix style

pathname, while under Windows this has to be a DOS style pathname.

JAMAICA_JARACCELERATOR_HEAPSIZE Initial heap size of the JAR Accel-

erator program itself in bytes. Setting this to a larger value, e.g., “512M”,

will improve the JARAccelerator performance.

JAMAICA_JARACCELERATOR_MAXHEAPSIZE Maximum heap used by the

JAR Accelerator program itself in bytes. If the initial heap size of the JAR

Accelerator is not sufficient, it will increase its heap dynamically up to this

value. To build large libraries, you may have to set this maximum heap size

to a larger value, e.g., “640M”.

JAMAICA_JARACCELERATOR_JAVA_STACKSIZE Size of the Java stack of

the JAR Accelerator program itself in bytes.

JAMAICA_JARACCELERATOR_NATIVE_STACKSIZE Stack size of the na-

tive stack of the JAR Accelerator program itself in bytes.

JAMAICA_JARACCELERATOR_NUMTHREADS Initial number of threads used

by the JAR Accelerator program itself.

14.5 Exitcodes
Tab. 14.1 lists the exit codes of the Jamaica JAR Accelerator. If you get an exit

code of an internal error please contact aicas support with a full description of the

tool usage, command line options and input.

Chapter 15

Jamaica JRE Tools and Utilities

There are various Java API profile specific tools and utilities provided in the target

dependent jamaica-home/target/platform/bin folder. For an overview of

the currently available tools, see Tab. 15.1.

Name Description Minimal Profile
keytool Manage keystores and certificates. compact1

orbd Provides support for clients to transpar-

ently locate and invoke persistent ob-

jects on servers in the CORBA environ-

ment.

full JRE

servertool Provides a command-line interface to

manage a persistent server.

full JRE

rmiregistry Remote object registry service. compact2

rmid RMI activation system daemon. compact2

Table 15.1: JRE Tools and Utilities

Usually, a detailed usage and parameters can be found out by using the -help
option.

! Note that these tools do not support -J options.

219

220 CHAPTER 15. JAMAICA JRE TOOLS AND UTILITIES

Chapter 16

JamaicaTrace

The JamaicaTrace enables to monitor the realtime behavior of applications and

helps developers to fine-tune the threaded Java applications running on Jamaica

runtime systems. These runtime systems can be either the JamaicaVM or any

application that was created using the Jamaica Builder.

The JamaicaTrace tool collects and presents data sent by the scheduler in

the Jamaica runtime system, and is invoked with the jamaicatrace com-

mand. When JamaicaTrace is started, it presents the user a control window (see

Fig. 16.1).

16.1 Runtime system configuration
The event collection for JamaicaTrace in the Jamaica runtime system is controlled

by two system properties:

• jamaica.scheduler_events_port

• jamaica.scheduler_events_port_blocking

To enable the event collection in the JamaicaVM, a user sets the value of one of

these properties to the port number to which the JamaicaTrace GUI will connect

later. If the user chooses the blocking property, the VM will stop after the

bootstrapping and before the main method is invoked. This enables a developer to

investigate the startup behavior of an application.

> jamaicavm -cp classes -Djamaica.scheduler_events_port=2712 \
> HelloWorld

**** accepting Scheduler Events Recording requests on port #2712
Hello World!

Hello World!
Hello World!

221

222 CHAPTER 16. JAMAICATRACE

Hello World!
Hello World!

Hello World!
[...]

When event collection is enabled, the requested events are written into a buffer

and sent to the JamaicaTrace tool by a high priority periodic thread. The amount

of buffering and the time periods can be controlled from the GUI.

16.2 Control Window
The JamaicaTrace control window is the main interface to controlling the record-

ing of scheduler data from applications running with Jamaica.

On the right hand side of the window, IP address and port of the VM to be

monitored may be entered.

The following list gives a short overview on which events data is collected:

• Thread state changes record how the state of a thread changes over time

including which threads cause state changes in other threads.

• Thread priority changes show how the priority changed due to explicit calls

to Thread.setPriority() as well as adjustments due to priority in-

heritance on Java monitors.

• Thread names show the Java name of a thread.

• Monitor enter/exit events show whenever a thread enters or exits a monitor

successfully as well as when it blocks due to contention on a monitor.

• GC activity records when the incremental garbage collector does garbage

collection work.

• Start execution shows when a thread actually starts executing code after it

was set to be running.

• Reschedule shows the point when a thread changes from running to ready

due to a reschedule request.

• All threads that have the state ready within the JamaicaVM are also ready

to run from the OS point of view. So it might happen that the OS chooses

a thread to run that does not correspond with the running thread within the

VM. In such cases, the thread chosen by the OS performs a yield to allow a

different thread to run.

16.2. CONTROL WINDOW 223

Name Value
Event classes Selection of event classes that the runtime system should

send.

IP Address The IP address of the runtime system.

Port The Port where the runtime system should be contacted

(see Section 16.1).

Buffer Size The amount of memory that is allocated within the run-

time system to store event data during a period.

Sample Period The period length between sending data.

Start Recording When pressed connects the JamaicaTrace tool to the run-

time systems and collects data until pressed again.

Table 16.1: JamaicaTrace Controls

• User events contain user defined messages and can be triggered from Java

code. To trigger a user event, the following method can be used:

com.aicas.jamaica.lang.Scheduler.recordUserEvent

For its signature, please consult the API doc of the Scheduler class.

• Allocated memory gives an indication of the amount of memory that is cur-

rently allocated by the application. The display is relatively coarse, changes

are only displayed if the amount of allocated memory changes by 64kB. A

vertical line gives indicates what thread performed the memory allocation

or GC work that caused a change in the amount of allocated memory.

When JamaicaTrace is started it presents the user a control window Fig. 16.1.

16.2.1 Control Window Menu

The control window’s menu permits only three actions:

16.2.1.1 File/Open...

This menu item will open a file requester to load previously recorded sched-

uler data that was saved through the data window’s “File/Save as...” menu item,

see Section 16.3.2.2.

224 CHAPTER 16. JAMAICATRACE

Figure 16.1: Control view of JamaicaTrace

16.3. DATA WINDOW 225

16.2.1.2 File/Close

Select this menu item will close the control window, but it will leave all other

windows open.

16.2.1.3 File/Quit

Select this menu item will close all windows of the JamaicaTrace tool and quit the

application.

16.3 Data Window
The data window will display data that was recorded through “Start/Stop record-

ing” in the control window or that was loaded from a file.

To better understand the output of JamaicaTrace, it is helpful to have some

understanding of the JamaicaVM scheduler. The JamaicaVM scheduler provides

real-time priority enforcement within Java programs on operating systems that

do not offer strict priority based scheduling (e.g. Linux for user programs). The

scheduler reduces the overhead for JNI calls and helps the operating system to

better schedule CPU resources for threads associated with the VM. These im-

provements let the JamaicaVM integrate better with the target OS and increase

the throughput of threaded Java applications.

The VM scheduler controls which thread runs within the VM at any given

time. This means it effectively protects the VM internal data structures like the

heap from concurrent modifications. The VM scheduler does not replace, but

rather supports, the operating system scheduler. This allows, for example, for a

light implementation of Java monitors instead of using heavy system semaphores.

All threads created in the VM are per default attached to the VM (i.e. they are

controlled by the VM scheduler). Threads that execute system calls must detach

themselves from the VM. This allows the VM scheduler to select a different thread

to be the running thread within the VM while the first thread for example blocks

on an IO request. Since it is critical that no thread ever blocks in a system call

while it is attached, all JNI code in the JamaicaVM is executed in detached mode.

For the interpretation of the JamaicaTrace data, the distinction between at-

tached and detached mode is important. A thread that is detached could still be

using the CPU, meaning that the thread that is shown as running within the VM

might not actually be executing any code. Threads attached to the VM may be

in the states running, rescheduling, ready, or blocked. Running means the thread

that currently executes within the context of the VM. Rescheduling is a sub state

of the running thread. The running thread state is changed to rescheduling when

another thread becomes more eligible to execute. This happens when a thread of

226 CHAPTER 16. JAMAICATRACE

higher priority becomes ready either by unblocking or attaching to the VM. The

running thread will then run to the next synchronization point and yield the CPU

to the more eligible thread. Ready threads are attached threads which can execute

as soon as no other thread is more eligible to run. Attached threads may block

for a number of reasons, the most common of which are calls to Thread.sleep,

Object.wait, and entering of a contended monitor.

16.3.1 Data Window Navigation
The data window permits easy navigation through the displayed scheduler data.

Two main properties can be changed: The time resolution can be contracted or

expanded, and the total display can be enlarged or reduced (zoom in and zoom

out). Four buttons on the top of the window serve to change these properties. In

addition, text search is available for user events and thread names.

16.3.1.1 Selection of displayed area

The displayed area can be selected using the scroll bars or via dragging the con-

tents of the window while holding the left mouse button.

16.3.1.2 Time resolution

The displayed time resolution can be changed via the buttons “expand time” and

“contract time” or via holding down the left mouse button for expansion or the

middle mouse button for contraction. Instead of the middle mouse button, the

control key plus the left mouse button can also be used.

16.3.1.3 Zoom factor

The size of the display can be changed via the buttons “zoom in” and “zoom out”

or via holding down shift in conjunction with the left mouse button for enlarge-

ment or in conjunction with the right mouse button for shrinking. Instead of shift

and the middle mouse button, the shift and the control key plus the left mouse

button can also be used.

16.3.1.4 Search Field

Upon entering text in the search field at the top right of the window, the displayed

area will move to the first match of the entered text. Navigating to other matches

is possible by pressing “Enter” (cycles forward) and “Shift Enter” (cycles back-

ward). Pressing “Escape” cancels the search and clears the search field.

16.3. DATA WINDOW 227

16.3.2 Data Window Menu
The data window’s menu offers the following actions.

16.3.2.1 File/Open...

This menu item will open a file requester to load previously recorded sched-

uler data that was saved through the data window’s “File/Save as...” menu item,

see Section 16.3.2.2.

16.3.2.2 File/Save as...

This menu item permits saving the displayed scheduler data, such that it can

later be loaded through the control window’s “File/Open...” menu item, see Sec-

tion 16.2.1.1.

16.3.2.3 File/Close

Select this menu item will close the data window, but it will leave all other win-

dows open.

16.3.2.4 File/Quit

Select this menu item will close all windows of the JamaicaTrace tool and quit the

application.

16.3.2.5 View/Grid

Selecting this option will display light gray vertical grid lines that facilitate relat-

ing a displayed event to the point on the time scale.

16.3.2.6 View/Thread Headers

If this option is selected, the left part of the window will be used for a fixed list of

thread names that does not participate in horizontal scrolling.

16.3.2.7 View/Scale

If this option is selected, the top part of the window will be used for a fixed time

scale that does not participate in vertical scrolling. This is useful in case many

threads are displayed and the time scale should remain visible when scrolling

through these threads.

228 CHAPTER 16. JAMAICATRACE

16.3.2.8 Navigate/Go To...

Selecting this menu item opens an input dialog for selecting a point of time in the

trace. After confirmation, the selected time will be centered in the display. Com-

mon time units including ns, us, ms, s, min and h are accepted. Additionally

the time may be specified relative to the length of the trace using fractions such as

0.5 or percentage values such as 50%.

16.3.2.9 Navigate/Fit Width

This menu item will change the time contraction such that the whole data fits into

the current width of the window.

16.3.2.10 Navigate/Fit Height

This menu item will change the zoom factor such that the whole data fits into the

current height of the window.

16.3.2.11 Navigate/Fit Window

This menu item will change the time contraction and the zoom factor such that the

whole data fits into the current size of the data window.

16.3.2.12 Tools/Worst-Case Execution Times

This menu item will start the execution time analysis and show the Worst-Case

Execution Time window, see Section 16.3.5.

16.3.2.13 Tools/Reset Monitors

The display of monitor enter and exit events can be suppressed for selected mon-

itors via a context menu on an event of the monitor in questions. This menu item

re-enables the display of all monitors.

16.3.3 Data Window Context Window

The data window has a context menu that appears when pressing the right mouse

button over a monitor event. This context window permits to suppress the display

of events related to a monitor. This display can be re-enabled via the Tools/Reset

Monitors menu item.

16.3. DATA WINDOW 229

16.3.4 Data Window Tool Tips

When pointing onto a thread in the data window, a tool tip appears that display in-

formation on the current state of this thread including its name, the state (running,

ready, etc.) and the thread’s current priority.

16.3.5 Worst-Case Execution Time Window

Through this window, the JamaicaTrace tool enables the determination of the

maximum execution time that was encountered for each thread within recorded

scheduler data. If the corresponding menu item was selected in the data window

(see Section 16.3.2.12), execution time analysis will be performed on the recorded

data and this window will be displayed.

The window shows a table with one row per thread and the following data

given in each column.

Thread # gives the Jamaica internal number of this thread. Threads are numbered

starting at 1. One Thread number can correspond to several Java threads in

case the lifetime of these threads does not overlap.

Thread Name will present the Java thread name of this thread. In case several

threads used the same thread id, this will display all names of these threads

separated by vertical lines.

Worst-case execution time presents the maximum execution time that was en-

countered in the scheduler data for this thread. This column will display

“N/A” in case no releases where found for this thread. See below for a

definition of execution time.

Occurred at gives the point in time within the recording at which the release that

required the maximum execution time started. A mouse click on this cell

will cause this position to be displayed in the center of the data window

the worst-case execution time window was created from. This column will

display “N/A” in case no Worst-case execution time was displayed for this

thread.

Releases is the number of releases that of the given thread that where found

during the recording. See below for a definition of a release.

Average time is the average execution time for one release of this thread. See

below for a definition of execution time.

230 CHAPTER 16. JAMAICATRACE

Comment will display important additional information that was found during

the analysis. E.g., in case the data the analysis is based on contains over-

flows, i.e. periods without recorded information, these times cannot be cov-

ered by this analysis and this will be displayed here.

16.3.5.1 Definitions

Release of a thread T is a point in time at which a waiting thread T becomes

ready to run that is followed by a point in time at which it will block again waiting

for the next release. I.e., a release contains the time a thread remains ready until

it becomes running to execute its job, and it includes all the time the thread is

preempted by other threads or by activities outside of the VM.

Execution Time of a release is the time that has passed between a release and

the point at which the thread blocked again to wait for the next release.

16.3.5.2 Limitations

The worst-case execution times displayed in the worst-case execution times win-

dow are based on the measured scheduling data. Consequently, they can only dis-

play the worst-case times that were encountered during the actual run, which may

be fully unrelated to the theoretical worst-case execution time of a given thread. In

addition to this fundamental limitation, please be aware of the following detailed

limitations:

Releases are the points in time when a waiting thread becomes ready. If a re-

lease is caused by another thread (e.g., via Java function Object.notify()),

this state change is immediate. However, if a release is caused by a timeout of

a call to Object.wait(), Thread.sleep(), RealtimeThread.wait-
ForNextPeriod() or similar functions, the state change to ready may be de-

layed if higher priority threads are running and the OS does not assign CPU time

to the waiting thread. A means to avoid this inaccuracy is to use a high-priority

timer (e.g., class javax.realtime.Timer) to wait for a release.

Blocking waits within a release will result in the worst-case execution time anal-

ysis to treat one release as two independent releases. Therefore, the analysis is

wrong for tasks that perform blocking waits during a release. Any blocking within

native code, e.g., blocking I/O operations, is not affected by this, so the analysis

can be used to determine the execution times of I/O operations.

16.4. EVENT RECORDER 231

16.4 Event Recorder
There might be cases were you need to do the monitoring of thread activity in a

non-interactive way, e.g. as part of a build system or continuous delivery envi-

ronment. Then the JamaicaTrace application with its GUI would not be suitable.

In those cases you want to use the Event Recorder java agent. It just records a

user-defined set of scheduler events into a file and that’s it. No interaction with

the user (as long as the analysed java program is non-interactive too).

16.4.1 Location
You can find this scheduler event recorder in the ’event-recorder.jar’ file in the

jamaica-home/target/target/lib folder. target stands for a certain platform,

like linux-x86_64 or qnx-armv7-le.

16.4.2 Usage
To use this event recorder just start the JamaicaVM with the -javaagent option,

like this:

jamaicavm -javaagent:path/event-recorder.jar[=agentargs] [vmargs]
mainclass [javaargs]

Note that the path to event-recorder.jarmust be given, so the VM can find

it. To get some help about the available options and configuration possibilities of

the event recorder, start the agent with the help option:

jamaicavm -javaagent:path/event-recorder.jar=help

232 CHAPTER 16. JAMAICATRACE

Chapter 17

Jamaica and the Java Native
Interface (JNI)

The Java Native Interface (JNI) is a standard mechanism for interoperability be-

tween Java and native code, i.e., code written with other programming languages

like C. Jamaica implements version 1.4 of the Java Native Interface. Creating and

destroying the vm via the Invocation API is currently not supported.

17.1 Using JNI

Native code that is interfaced through the JNI interface is typically stored in shared

libraries that are dynamically loaded by the virtual machine when the application

uses native code. Jamaica supports this on many platforms, but since dynamically

loaded libraries are usually not available on small embedded systems that do not

provide a file system, Jamaica also offers a different approach. Instead of loading

a library at runtime, you can statically include the native code into the application

itself, i.e., link the native object code directly with the application.

The Builder allows direct linking of native object code with the created ap-

plication through -object=file or -XstaticLibraries=library. Multiple

files and libraries can be linked. Separate file names with the path separator of

the host platform (“:” or “;”); separate libraries by spaces and enclose the whole

option argument within double quotes. All object files and libraries that should be

included at build time should be presented to the Builder using these options.

Building an application using native code on a target requiring manual linking

may require providing these object files to the linker. Here is a short example on

the use of the Java Native Interface with Jamaica. This example simply writes a

value to a hardware register using a native method. We use the file JNITest.
java, which contains the following code:

233

234 CHAPTER 17. JAMAICA AND THE JAVA NATIVE INTERFACE (JNI)

public class JNITest {
static native int write_HW_Register(int address,

int value);

public static void main(String args[]) {
int value;

value = write_HW_Register(0xfc000008,0x10060);
System.out.println("Result: "+value);

}
}

Jamaica provides a tool, jamaicah, for generating C header files that con-

tain the function prototypes for all native methods in a given class. Note that

jamaicah operates on Java class files, so the class files have to be created first

using jamaicac as described in Chapter 11. The header file for JNITest.
java is created by the following sequence of commands:

> jamaicac JNITest.java
> jamaicah JNITest
Reading configuration from ’/usr/local/jamaica/etc/jamaicah.conf’...
+ JNITest.h (header)

This created the include file JNITest.h:

/* DO NOT EDIT THIS FILE - it is machine generated */
#include <jni.h>
/* Header for class JNITest */

#ifndef _Included_JNITest
#define _Included_JNITest
#ifdef __cplusplus
extern "C" {
#endif
/* Class: JNITest

* Method: write_HW_Register

* Signature: (II)I */
#ifdef __cplusplus

extern "C"
#endif
JNIEXPORT jint JNICALL Java_JNITest_write_1HW_1Register(JNIEnv *env,

jclass c,
jint v0,
jint v1);

#ifdef __cplusplus
}
#endif
#endif

17.1. USING JNI 235

The native code is implemented in JNITest.c.

#include "jni.h"
#include "JNITest.h"
#include <stdio.h>

JNIEXPORT jint JNICALL
Java_JNITest_write_1HW_1Register(JNIEnv *env,

jclass c,
jint v0,
jint v1)

{
printf("Now we could write the value %i into "

"memory address %x\n", v1, v0);
return v1; /* return the "written" value */

}

Note that the mangling of the Java name into a name for the C routine is defined

in the JNI specification. In order to avoid typing errors, just copy the function

declarations from the generated header file. Then, a C compiler is used to generate

an object file.

It is recommended to invoke the C compiler in a platform-independent manner

from Ant build files using the Jamaica C compiler task. See Section 18.2.2 for

details.

However, if you want to compile manually, please make sure to use the C com-

piler flags from jamaica-home/target/platform/etc/jamaica.conf named XCFLAGS
and the includes directives named Xinclude.

Finally, the Builder is called to generate a binary file which contains all nec-

essary classes as well as the object file with the native code from JNITest.c:

> jamaicabuilder -object+=JNITest.o JNITest
Reading configuration from
’usr/local/jamaica-8.3/target/linux-x86_64/etc/jamaica.conf’...
Jamaica Builder Tool 8.3 Release 0 (build 12543)
(User: EVALUATION USER, Expires: 2019.09.29)
Generating code for target ’linux-x86_64’, optimization ’speed’
+ tmp/PKG__V33b71bfff98ba232__.c
[...]
+ tmp/JNITest__.c
+ tmp/JNITest__.h

* C compiling ’tmp/JNITest__.c’
[...]
+ tmp/JNITest__DATA.o

* linking

* stripping
Application memory demand will be as follows:

initial max

236 CHAPTER 17. JAMAICA AND THE JAVA NATIVE INTERFACE (JNI)

Thread C stacks: 1152KB (= 9* 128KB) 63MB (= 511* 128KB)
Thread Java stacks: 144KB (= 9* 16KB) 8176KB (= 511* 16KB)
Heap Size: 2048KB 768MB
GC data: 128KB 48MB
TOTAL: 3472KB 887MB

The created application can be executed just like any other executable:

> ./JNITest
Result: 65632
Now we could write the value 65632 into memory address fc000008

17.2 The Jamaicah Command
A variety of arguments control the work of the jamaicah tool. The command line

syntax is as follows:

jamaicah [options] class

The class argument identifies the class for which native headers are generated.

17.2.1 General
These are general options providing information about jamaicah itself.

Option -help (-h, -?)

The help option displays jamaicah usage and a short description of all possible

standard command line options.

Option -Xhelp

The Xhelp option displays jamaicah usage and a short description of all possible

extended command line options. Extended command line options are not needed

for normal control of jamaicah command. They are used to configure tools and

options, and to provide tools required internally for Jamaica VM development.

Option -jni

Create Java Native Interface header files for the native declarations in the provided

Java class files. This option is the default and hence does not need to be specified

explicitly.

17.2. THE JAMAICAH COMMAND 237

Option -d=directory

Specify output directory for created header files. The filenames are deduced from

the full qualified Java class names where “.” are replaced by “_” and the extension

“.h” is appended.

Option -o=file

Specify the name of the created header file. If not set the filename is deduced from

the full qualified Java class name where “.” are replaced by “_” and the extension

“.h” is appended.

Option -includeFilename=file

Specify the name of the include file to be included in stubs.

Option -version

Print the version of jamaicah and exit.

17.2.2 Classes, files, and paths

Option -classpath (-cp)[+]=classpath

Specifies default path used for loading classes.

Option -bootclasspath (-Xbootclasspath)[+]=classpath

Specifies default path used for loading system classes.

Option -classname[+]="class{ class}"
Generate header files for the listed classes. Multiple items must be separated by

spaces and enclosed in double quotes.

17.2.3 Environment Variables

The following environment variables control jamaicah.

JAMAICAH_HEAPSIZE Initial heap size of the jamaicah program itself in

bytes.

238 CHAPTER 17. JAMAICA AND THE JAVA NATIVE INTERFACE (JNI)

JAMAICAH_MAXHEAPSIZE Maximum heap size of the jamaicah program

itself in bytes. If the initial heap size of jamaicah is not sufficient, it will

increase its heap dynamically up to this value.

17.3 Finding Problems in JNI Code
Errors are easily introduced into an application due to the complex nature of JNI

code. Jamaica features the VM option -Xcheck:jni along the correspond-

ing Builder option -Xcheck=jni which enables argument checking in the JNI.

With this option enabled Jamaica will be halted when a problem is detected. In

case of “call of JNI function with exception pending” Jamaica will only issue a

warning message together with a trace of the exception pending and the current

Java stack trace. The application will continue to run. Since enabling this op-

tion will cause a performance impact using it is recommended while still in the

development phase. It is recommended to disable it for production environments.

With JNI checking enabled the following conditions will be checked while

executing the application:

• There are no illegal calls of JNI functions with exceptions pending.

• No calls of JNI functions are performed without being attached to the VM.

• Objects are initialized using a valid constructor.

• Invoked methods have the expected return type.

• Field accesses use the expected types.

• Array accesses use the expected types.

• UTF-8 strings are correctly encoded.

17.4 FPU Flags in JNI Code
Some processor architectures (such as ARM and x86) allow for Floating Point

Unit (FPU) flags to be set by user code. JamaicaVM expects JNI code to call

into/return to the VM with the FPU flags unchanged. The VM relies on full

IEEE 754 compliance. If the FPU flags are not set appropriately, unexpected

behavior can occur, such as algorithms not terminating.

Chapter 18

Building with Apache Ant

Apache Ant is a popular build tool in the Java world. Ant tasks for the Jamaica

Builder and other tools are available. In this chapter, their use is explained.

Ant build files (normally named build.xml) are created and maintained by

the Jamaica Eclipse Plug-In (see Chapter 4). They may also be created manu-

ally. To obtain Apache Ant, and for an introduction, see the web page http:
//ant.apache.org. Apache Ant is not provided with Jamaica. In the follow-

ing sections, basic knowledge of Ant is presumed.

18.1 Task Declaration
Ant tasks for the Jamaica Builder, Jamaica JAR Accelerator, jamaicah and tasks

for calling the C compiler and linker are provided. The latter are useful for build-

ing programs that include JNI code and for creating dynamic libraries. In order to

use these tasks, taskdef directives are required. The following code should be

placed after the opening project tag of the build file:

<taskdef name="jamaicabuilder"
classpath="jamaica-home/lib/JamaicaTools.jar"
classname="com.aicas.jamaica.tools.ant.JamaicaTask" />

<taskdef name="jamaicajaraccelerator"
classpath="jamaica-home/lib/JamaicaTools.jar"
classname="com.aicas.jamaica.tools.ant.JarAcceleratorTask" />

<taskdef name="jamaicacc"
classpath="jamaica-home/lib/JamaicaTools.jar"
classname="com.aicas.jamaica.tools.ant.JamaicaCCTask" />

<taskdef name="jamaicald"
classpath="jamaica-home/lib/JamaicaTools.jar"
classname="com.aicas.jamaica.tools.ant.JamaicaLinkTask" />

<taskdef name="jamaicah"
classpath="jamaica-home/lib/JamaicaTools.jar"

239

240 CHAPTER 18. BUILDING WITH APACHE ANT

classname="com.aicas.jamaica.tools.ant.JamaicahTask" />

The task names are used within the build file to reference these tasks. They may

be chosen arbitrarily for stand-alone build files. For compatibility with the Eclipse

Plug-In, the names jamaicabuilder and jamaicah should be used.

18.2 Task Usage
All Jamaica Ant tasks obtain the root directory of the Jamaica installation from

the environment variable JAMAICA. Alternatively, the attribute jamaica may

be set to jamaica-home.

18.2.1 Jamaica Builder, JAR Accelerator, and Jamaicah
Tool options are specified as nested option elements. These option elements ac-

cept the attributes shown in the following table. All attributes are optional, except

for the name attribute.

Attribute Description Required
name Option name Always

value Option argument For options that re-

quire an argument.

enabled Whether the option is passed to the tool. No (default true)

append Value is appended to the value stored in

the tool’s configuration file (+= syntax).

No (default false)

Although Ant buildfiles are case-insensitive, the precise spelling of the option

name should be preserved for compatibility with the Eclipse Plug-In.

The following example shows an Ant target for executing the Jamaica Builder.

<target name="build_app">
<jamaicabuilder jamaica="/usr/local/jamaica">

<option name="target" value="linux-x86_64"/>
<option name="classpath" value="classes"/>
<option name="classpath" value="extLib.jar"/>
<option name="interpret" value="true" enabled="false"/>
<option name="heapSize" value="32M"/>
<option name="Xlibraries" value="extLibs" append="true"/>
<option name="XdefineProperty" value="window.size=800x600">
<option name="main" value="Application"/>

</jamaicabuilder>
</target>

This is equivalent to the following command line:

18.2. TASK USAGE 241

/usr/local/jamaica/bin/jamaicabuilder
-target=linux-x86_64
-classpath=classes:extLib.jar
-heapSize=32M
-Xlibraries+=extLibs
-XdefineProperty=window.size=800x600
Application

Note that some options take arguments that contain the equals sign. For example,

the argument to XdefineProperty is of the form property=value. As shown

in the example, the entire argument should be placed in the value attribute liter-

ally. Ant pattern sets and related container structures are currently not supported

by the Jamaica Ant tasks.

18.2.2 C Compiler
The C Compiler task (jamaicacc) provides an interface to the target-specific

compiler that is called by the Builder.

Attribute Description Required
configu-
ration

Jamaica configuration file from which

default settings are taken.

No (defaults to the

Jamaica configura-

tion file of the tar-

get platform given

via the target at-

tribute.)

target Platform for which to compile. No (default: host

platform)

source C source file Yes, unless given as

nested elements

output Output file No (default: derived

from source)

defines Comma separated list of macros. These

are set to the compiler’s default (usu-

ally 1). See also the nested elements

<define> and <defines>.

No (default: setting

from the configura-

tion file)

include-
path

Search path for header files. No (default: setting

from the configura-

tion file)

242 CHAPTER 18. BUILDING WITH APACHE ANT

Attribute Description Required
shared If set, add compiler flags needed for

building shared libraries.

No (default false)

compiler-
flags

Space separated list of command line ar-

guments passed to the compiler verba-

tim. This extends the default setting.

No (default: setting

from the configura-

tion file)

verbose If set, print the generated C Compiler

command line.

No (default false)

debug Generate code with asserts enabled. No (default false)

gprof Generate code for GNU gprof. Not sup-

ported on all platforms.

No (default: setting

from the configura-

tion file)

dwarf2 Generate debug information compatible

with DWARF version 2. Not supported

on all platforms.

No (default: setting

from the configura-

tion file)

Additional configuration is available through nested elements. A set of source

files may be given as a file set with the nested <source> element. By default,

object files are placed next to source files with .c replaced by the platform-

specific suffix for object files. Other schemes may be provided through a nested

<mapper> element.

The nested <includepath> element extends the include path set via the

includepath attribute or from the configuration file. It is a path-like structure

and useful for extending the default include path from the configuration file.

The nested <define> and <defines> elements add macro definitions in

addition to macros set via the defines attribute. The <define> element re-

quires key and value attributes:

<define key="max(A, B)" value="((A) > (B) ? (A) : (B))"/>

The <defines> element expects the nested elements of an Ant PropertySet.

For more information on file sets, property sets, mappers and path-like struc-

tures see the respective chapter in the Ant Manual [1]. This task is used in the

test_jni example, which may be consulted for an illustration.

18.2.3 Native Linker
The Native Linker task (jamaicald) provides an interface to the target-specific

linker that is called by the Builder.

18.2. TASK USAGE 243

Attribute Description Required
configu-
ration

Jamaica configuration file from which

default settings are taken.

No (defaults to the

Jamaica configura-

tion file of the tar-

get platform given

via the target at-

tribute.)

target Platform for which to compile. No (default: host

platform)

library-
path

Search path for libraries. No (default: setting

from the configura-

tion file)

output Output file Yes

linker-
flags

Space separated list of command line ar-

guments passed to the linker verbatim.

This extends the default setting.

No (default: setting

from the configura-

tion file)

shared If set, add linker options for creating a

shared library.

No (default false)

verbose If set, print the generated linker com-

mand line.

No (default false)

gprof Generate code for GNU gprof. Not sup-

ported on all platforms.

No (default: setting

from the configura-

tion file)

The linked object files are given as nested <fileset> elements. For more

information on filesets see the respective chapter in the Ant Manual [1].

Additional libraries may be given via nested <libset> elements. These

extend the library path set via attribute or from the configuration file. Libsets have

the following attributes:

Attribute Description Required
dir Directory in which the libraries of the set

are located.

Yes

libs Comma-separated list of library names

without prefixes and extensions; for ex-

ample X for libX.so on Unix systems.

Yes

type Preferred library type. Either static
or shared.

No (default

shared)

This task is used in the DynamicLibraries example, which is available

for platforms that support loading of native libraries at runtime.

244 CHAPTER 18. BUILDING WITH APACHE ANT

18.3 Setting Environment Variables
The Jamaica Ant tasks do support two additional nested elements, <env> and

<envpropertyset>, that can be used to provide environment variables to the

tool. This is normally only required if the target-specific configuration requires

certain environment variables to be set.

For example, when building for VxWorks 6.6, it may be necessary to provide

environment variables in the following way:

<jamaicabuilder jamaica="/usr/local/jamaica">
<env key="WIND_HOME" value="/opt/WindRiver"/>
<env key="WIND_BASE" value="/opt/WindRiver/vxworks-6.6"/>
<env key="WIND_USR" value="/opt/WindRiver/target/usr"/>
...

</jamaicabuilder>

or alternatively, using a PropertySet:

<property name="WIND_HOME" value="/opt/WindRiver"/>
<property name="WIND_BASE" value="/opt/WindRiver/vxworks-6.6"/>
<property name="WIND_USR" value="/opt/WindRiver/target/usr"/>

<jamaicabuilder jamaica="/usr/local/jamaica">
<envpropertyset>

<propertyref prefix="WIND_"/>
</envpropertyset>
...

</jamaicabuilder>

For more information about the usage of these two elements, please refer to

their respective chapters in the Ant Manual [1].

Part IV

Additional Information

245

Appendix A

FAQ — Frequently Asked Questions

Check here first when problems occur using JamaicaVM and its tools.

A.1 Software Development Environments
Question I use Eclipse to develop my Java applications. Is there a plug-in avail-

able which will help me to use JamaicaVM and the Builder from within

Eclipse?

Answer Yes. There is a plugin available that will help you to configure the

Builder download and execute your application on your target. For more

information, see https://www.aicas.com/eclipse.html. For a

quick start, use the Eclipse Update Site Manager with the following Update

Site: https://aicas.com/download/eclipse-plugin. This

conveniently downloads and installs the plugin.

Question When I set up a Java Runtime Environment (JRE) with the JamaicaVM

Eclipse Plugin, the bootclasses (rt.jar) are set up to be taken from the

host platform. Is this safe when developing for the target platform?

Answer The rt.jar configured in the runtime environment will be used by

Eclipse for generating Java Bytecode and for running the Jamaica host VM.

Code for the target platform is generated by the JamaicaVM Builder, which

automatically chooses the correct rt.jar. Since the Java APIs defined

by the host and target rt.jar are compatible (except if the target is a

profile other than the Java Standard Edition), the Java Bytecode generated

by Eclipse will be compatible regardless of whether the rt.jar is for the

host or the target, and it is sufficient that the Builder chooses the correct

rt.jar.

247

248 APPENDIX A. FAQ — FREQUENTLY ASKED QUESTIONS

A.2 JamaicaVM and Its Tools

A.2.1 JamaicaVM
Question When I try to execute an application with the JamaicaVM I get the error

message OUT OF MEMORY. What can I do?

Answer The JamaicaVM has a predefined setting for the internal heap size. If it is

exhausted the error message OUT OF MEMORY is printed and JamaicaVM

exits with an error code. The predefined heap size is usually large enough,

but for some applications it may not be sufficient. You can set the heap

size via the jamaicavm options Xmxsize, via the environment variable

JAMAICAVM_MAXHEAPSIZE, e.g., under bash with

export JAMAICAVM_MAXHEAPSIZE=1G

or, when using the Builder, via the Builder option maxHeapSize.

Question When the built application terminates I see the following output:

WARNING: termination of thread 7 failed

What is wrong?

Answer At termination of the application the JamaicaVM tries to shutdown all

running threads by sending some signal. If a thread is stuck in a native

function, e.g., waiting in some OS kernel call, the signal is not received

by the thread and there is no response. In that case the JamaicaVM does

a hard-kill of the thread and outputs the warning. Generally, the warning

can simply be ignored, but be aware that a hard-kill may leave the OS in

an unstable state, or that some resources (e.g., memory allocated in a native

function) can be lost. Such hard-kills can be avoided by making sure no

thread gets stuck in a native-function call for a long time (e.g., more than

100ms).

Question At startup JamaicaVM prints this warning:

CPU rate unknown, please set property >>jamaica.cpu_mhz<<.
Measured rate: 1799.6MHz

Why could this be a problem?

A.2. JAMAICAVM AND ITS TOOLS 249

Answer The CPU cycle counter is used on some systems to measure time by Ja-

maicaVM. In particular, this is used by cost monitoring within the RTSJ and

by code that uses the class com.aicas.jamaica.lang.CpuTime. To

map the number of CPU cycles to a time measured in seconds (or nanosec-

onds), the CPU frequency is required. For most target systems, JamaicaVM

does not have a means of determining the CPU frequency. Instead, it will

fall back to measure the frequency and print this warning.

Since the measurement has a relevant runtime overhead and brings some

inaccuracy, it is better to specify the frequency via setting the Java property

jamaica.cpu_mhz to the proper value. Care is needed since setting the

property to an incorrect value will result in cost enforcement to be too strict

(if set too low) or too lax (if set too high).

Question When I run my application with JamaicaVM I get the following error:

Exception in thread "main" java.io.FileNotFoundException:
Too many open files

What is the problem?

Answer If you get this error message it means that your application is trying to

open more files than the maximum open file descriptor limit allowed by

the operating system. In this case you should increase this limit. On Unix

systems this can be achieved by setting a higher soft limit, e.g. by running

ulimit-Sn4096 to set it to 4096.

A.2.2 JamaicaVM Builder
Question When I try to compile an application with the Builder I get the error

message OUT OF MEMORY. What can I do?

Answer The Builder has a predefined setting for the internal heap size. If the

memory space is exhausted, the error message OUT OF MEMORY is printed

and Builder exits with an error code. The predefined maximum heap size

(1024MB) is usually large enough, but for some applications it may not be

sufficient. You can set the maximum heap size via the environment variable

JAMAICA_BUILDER_MAXHEAPSIZE, e.g., under bash with the follow-

ing command:

> export JAMAICA_BUILDER_MAXHEAPSIZE=1536MB

Question When I try to compile an application with the Builder I get the error

message:

250 APPENDIX A. FAQ — FREQUENTLY ASKED QUESTIONS

jamaicabuilder: I/O error while executing C-compiler:
Executing ’gcc’ failed: Cannot allocate memory.

Answer There is not enough memory available to compile the C files generated

by the Builder. You can increase the available memory on your system or

reduce the predefined heap size of the Builder, e.g. under bash with the

following command:

> export JAMAICA_BUILDER_HEAPSIZE=150MB
> export JAMAICA_BUILDER_MAXHEAPSIZE=300MB

Be aware that you could get an OUT OF MEMORY error if the heap size is

too small to build your application.

Question When I try to compile an application with the Builder using the Visual

Studio compiler I get the error message:

C Compiler failed with exit code 3221225781 (0xC0000135)

Answer A dynamic library required by Visual Studio (mspdb100.dll when

using Visual Studio 2010) cannot be found. Please add the Common7\IDE
directory located in your Visual Studio installation directory to your PATH

environment variable.

Question When building an application that contains native code it seems that

some fields of classes can be accessed with the function GetFieldID()
from the native code, but some others not. What happened to those fields?

Answer If an application is built, the Builder removes from classes all unrefer-

enced methods and fields. If a field in a class is only referenced from native

code the Builder can not detect this reference and protect the field from the

smart-linking-process. To avoid this use the includeClasses option

with the class containing the field. This will instruct the Builder to fully

include the specified class(es).

Question When I build an application with the Builder I get some warning like

the following:

WARNING: Unknown native interface type of class ’name’
(name.h) - assume JNI calling convention

Is there something wrong?

A.2. JAMAICAVM AND ITS TOOLS 251

Answer In general, this is not an error. The Builder outputs this warning when

it is not able to detect whether a native function is implemented using JNI

(the standard Java native interface; see chapter Chapter 17). Usually this

means the appropriate header file generated with some prototype tool like

jamaicah is not found or not in the proper format. To avoid this warning,

recreate the header file with jamaicah and place it into a directory that is

passed via the Builder argument Xinclude.

Question How can I set properties (using -Dname=value) for an application that

was built using the Builder?

Answer To set properties that are known at build-time, XdefineProperty
or XdefinePropertyFromEnv can be used. Setting properties un-

known at build-time requires the application be built without a main class.

For VM commands like jamaicavm, parsing of VM arguments such as

-Dname=value stops at the name of the main class of the application. Af-

ter the application has been built, the main class is an implicit argument,

so there is no direct way to provide additional options to the VM. How-

ever, there is a way out of this problem: the Builder option -XnoMain
removes the implicit argument for the main class, so jamaicavm’s normal

argument parsing is used to find the main class. When launching this appli-

cation, the name of the main class must then be specified as an argument, so

it is possible to add additional VM options such as -Dname=value before

this argument.

Question When I run the Builder an error “exec fail” is reported when the

intermediate C code should be compiled. The exit code is 69. What hap-

pened?

Answer An external C compiler is called to compile the intermediate C code. The

compiler command and arguments are defined in etc/jamaica.conf.

If the compiler command can not be executed the Builder terminates with

an error message and the exit code 69 (see list of exit codes in the appendix).

Try to use the verbose output with the option -verbose and check if the

printed compiler command call can be executed in your command shell. If

not check the parameters for the compiler in etc/jamaica.conf and

the PATH environment variable.

Question Can I build my own VM as an application which expects the name of

the main class on the command line like JamaicaVM does?

252 APPENDIX A. FAQ — FREQUENTLY ASKED QUESTIONS

Answer A standalone VM can be built with the Builder option -XnoMain. If

this option is specified, the Builder does not expect a main class while com-

piling. Instead, the built application expects the main class later after startup

on the command line. Some classes or resources can be included in the cre-

ated VM, e.g., a VM can be built including all classes of the selected API

except the main program with main class. As smart linking cannot be used

without a main class, -smart=false must be set. Otherwise some fields

or methods might be missing at runtime.

A.2.3 Third Party Tools
Question I would like to use JamaicaVM on Windows. Do I need Microsoft

Visual Studio?

Answer Visual Studio is only required when developing for Windows or Win-

dows CE. If developing for other operating systems, the tool and SDK lo-

cations (see Section 2.1) may be left empty.

A.3 Supported Technologies

A.3.1 Compact Profiles
Question What are compact profiles?

Answer Compact profiles are subsets of the Java SE Platform Specification that

have been introduced by OpenJDK with Java 8. Each profile specifies a

specific set of Java API packages. They are arranged in additive layers so

that each profile contains all of the APIs in profiles smaller than itself.

Currently, the profiles compact1, compact2, and compact3 are avail-

able. For their high-level composition and the included packages please re-

fer to https://docs.oracle.com/javase/8/docs/technotes/
guides/compactprofiles/compactprofiles.html. The Ja-

maica API specification (JavaDoc) lists for each class the profiles that con-

tain it.

Question How do I know what compact profile my application requires?

Answer The tool jdeps provided by JDK 8 shows the dependencies of a class

or a JAR file. Note that a dependent class may not be loaded at runtime,

e.g. because the method that references that class is not reachable. So the

required compact profile may be smaller but not higher than determined.

A.3. SUPPORTED TECHNOLOGIES 253

The tool shows the required profile with the -P or -profile option:

> jdeps -profile application.jar
application.jar -> /opt/jdk8/jre/lib/rt.jar (compact1)

<unnamed> (application.jar)
-> java.io compact1
-> java.lang compact1

A.3.2 Cryptography
Question Does Jamaica support Elliptic curve cryptography?

Answer Elliptic curve cryptography is currently only supported for the platforms:

• linux.

• windows.

• qnx.

Question How can I use Elliptic curve cryptography with the Builder?

Answer In order to use Elliptic curve cryptography in a built application, the

native SunEC library must be available on the target. The SunEC library

in turn requires Standard C++ library and the libraries that the C++ library

depends on and hence they also must be available on the target.

This library can be found in jamaica-home/target/platform/lib/arch
and is called libsunec.so for Unix systems. For Windows systems,

the library can be found in jamaica-home/target/platform/bin and is

called sunec.dll.

When building the application, the Java property sun.boot.library.
path has to be set to the path containing the SunEC library at runtime and

passed to the Builder via the option -XdefineProperty.

Question Why does the built application using cryptography fail with either of

these exceptions:

• java.lang.ExceptionInInitializerError

• java.security.NoSuchAlgorithmException

Answer This is due to missing dependencies in the Builder. As a workaround,

you can generate a profile for your application usingjamaicavmp and pro-

vide it to the Builder using -useProfile, or you can explicitly include

254 APPENDIX A. FAQ — FREQUENTLY ASKED QUESTIONS

the cryptography and security classes with the Builder command line option

-includeClasses.

For instance, when the built application is using SunEC provider the fol-

lowing classes need to be provided to the Builder:

-includeClasses="com.sun.crypto.provider.*
sun.security.provider.* sun.security.ec.*"

Question How can I install my own X.509 CA root certificates?

Answer The X.509 CA root certificates are by default stored in a Java keystore,

a storage facility for cryptographic keys and certificates. It can be found

in jamaica-home/target/platform/lib/security/cacerts. For

your convenience Jamaica comes with a pre-set list of X.509 CA root cer-

tificates. Please adjust and update this list for use in your application.

Jamaica provides the keytool command to interact with the file, it can

be found at jamaica-home/target/platform/bin/keytool. The tool

can be used to add a cryptographic certificate to the keystore as follows:

keytool -import -alias alias -file certificate -keystore cacerts

The tool will ask for a password when performing the import, it is by default

set to changeit.

Here alias is a name identifying the certificate in the keystore, and certifi-
cate is a file containing a X.509 certificate or a PKCS#7 certificate chain

either in binary or in printable Base64 encoding format. The file cacerts is

the keystore.

Questions How can I list the X.509 CA root certificates installed in Jamaica?

Answer For a description of the cacerts keystore please see previous answer.

The installed X.509 CA root certificates can be listed via the keytool
command bundled with JamaicaVM as follows:

keytool -list -keystore cacerts

The tool will ask for a password when performing the import, it is by default

set to changeit. The cacerts file is the keystore.

A.3. SUPPORTED TECHNOLOGIES 255

A.3.3 Graphics
Question Does Jamaica support AWT, Java 2D and Swing?

Answer AWT (Abstract Window Toolkit), Java 2D and Swing are only supported

in headless mode. This means that operations that require a display, a key-

board or a mouse are not supported and will throw a HeadlessException.

Offscreen images in contrast can be created, rendered and saved as a file or

transferred to a server.

When using the headless mode with OpenJDK, there is an internal dele-

gation to the OS graphic system when possible. But the Jamaica headless

mode implementation is platform-independent. That means that, e.g., only

the fonts provided with the Jamaica distribution or custom fonts can be used.

It should be noted that a given Jamaica release would only include the

classes needed to support the targeted graphics environment. For exam-

ple, a headless Jamaica release would neither include the classes needed to

support X-Window on Linux nor Win32 API on Windows.

For more information on using headless mode in the Java SE platform, see

https://www.oracle.com/technetwork/articles/javase/
headless-136834.html.

A.3.4 Fonts
Question How can I change the mapping from Java fonts to native fonts?

Answer The mapping between Java font names and native fonts is defined in the

fonts.properties file. Each target system provides this file with use-

ful default values. An application developer can provide a specialized ver-

sion for this file. To do this the new mapping file must exist in the classpath

at build time. The file must be added as a resource to the final application by

adding -resource+=path where path is a path relative to a classpath root.

Setting the system property jamaica.fontproperties with the op-

tion -XdefineProperty=jamaica.fontproperties=path will

provide the graphics environment with the location of the mapping file.

The fonts.properties file contains one line per font mapping, the line

begins with the lower-case name of the font to be mapped followed by an

underscore and the style (p for plain, b for bold, i for italic, ib for italic

and bold). After that the font to be mapped to is assigned using an equals

sign and the absolute path to the font file in the classpath.

This is an example for a fonts.properties file:

256 APPENDIX A. FAQ — FREQUENTLY ASKED QUESTIONS

bitstream\ vera\ sans_p=/Vera.ttf
bitstream\ vera\ sans_i=/VeraIt.ttf
bitstream\ vera\ sans_b=/VeraBd.ttf
bitstream\ vera\ sans_ib=/VeraBI.ttf

In this example all style variations of the BitstreamVeraSans font

are mapped to TrueType font files in the classpath, note that escaping of

spaces in the font name is required. It is also possible to map Java’s five

logical font families to custom font files by providing a mapping for their

respective names (Dialog, DialogInput, Monospaced, Serif or

SansSerif).

Question Why do fonts appear different on host and target?

Answer Jamaica relies on the target graphics system to render true type fonts.

Since that renderer is generally a different one than on the host system it is

possible that the same font is rendered differently.

A.3.5 Serial Port

Question How can I access the serial port (UART) with Jamaica?

Answer You can use RXTX which is available for Linux, Windows and as source

code at http://users.frii.com/jarvi/rxtx. Get further infor-

mation there.

Question Can I use the Java Communications API?

Answer The Java Communications API (also known as javax.comm) is not

supported by Jamaica. Existing applications can be ported to RXTX easily.

A.3.6 Realtime Support and the RTSJ

Question Does JamaicaVM support the Real-Time Specification for Java?

Answer Yes. The RTSJ V1.0.2 is supported by JamaicaVM 8.3. The API docu-

mentation of the implementation can be found at https://www.aicas.
com/cms/reference-material.

Question The realtime behavior is not as good as I expected when using Ja-

maicaVM. Is there a way to improve this?

A.3. SUPPORTED TECHNOLOGIES 257

Answer If you are using a POSIX operating system, the best realtime behavior

can be achieved when using the FIFO scheduling policy. Note that Linux

requires root access to set a realtime scheduling policy. See Section 9.8.3

Question Is Linux a real-time operating system?

Answer No. However, kernel patches exist which add the functionality for real-

time behavior to a regular Linux system.

Question When running a real-time application, this warning is printed:

*** warning: Java real-time priorities >=11 not usable,
using priority 10 (error: Operation not permitted)

Answer The creation of a thread with real-time priority was not permitted by

the operating system. Instead JamaicaVM created a thread with normal

priority. This means that real-time scheduling is not available, and that the

application will likely not work properly.

On off-the-shelf Linux systems, use of real-time priorities requires super-

user privileges. That is, starting the application with sudo will resolve

the issue. Alternatively, the priority limits for particular users or groups

may be changed by editing /etc/security/limits.conf and set-

ting rtprio to the maximum native priority used. For the default priority

map used by JamaicaVM on Linux, setting the rtprio limit to 80 is suffi-

cient.

A.3.7 Remote Method Invocation (RMI)
Question Does Jamaica support RMI?

Answer RMI is supported. JamaicaVM uses dynamically generated stub and

skeleton classes. So no previous call to rmic is needed to generate those.

If the Builder is used to create RMI server applications, the exported inter-

faces and implementation classes need to be included.

An example build file demonstrating the use of RMI with Jamaica is pro-

vided with the JamaicaVM distribution. See Tab. 2.4.

Question How can I use RMI?

Answer RMI applications often comprise two separate programs, a server and a

client. A typical server program creates some remote objects, makes refer-

ences to these objects accessible, and waits for clients to invoke methods on

258 APPENDIX A. FAQ — FREQUENTLY ASKED QUESTIONS

these objects. A typical client program obtains a remote reference to one or

more remote objects on a server and then invokes methods on them. RMI

provides the mechanism by which the server and the client communicate

and pass information back and forth.

Like any other Java application, a distributed application built by using Java

RMI is made up of interfaces and classes. The interfaces declare methods.

The classes implement the methods declared in the interfaces and, perhaps,

declare additional methods as well. In a distributed application, some im-

plementations might reside in some Java virtual machines but not others.

Objects with methods that can be invoked across Java virtual machines are

called remote objects.

An object becomes remote by implementing a remote interface, which has

the following characteristics:

• A remote interface extends the interface java.rmi.Remote.

• In addition to any application-specific exceptions, each method sig-

nature of the interface declares java.rmi.RemoteException in

its throws clause,.

Using RMI to develop a distributed application involves these general steps:

1. Designing and implementing the components of your distributed ap-

plication.

2. Compiling sources.

3. Making classes network accessible.

4. Starting the application.

First, determine your application architecture, including which components

are local objects and which components are remotely accessible. This step

includes:

• Defining the remote interfaces. A remote interface specifies the meth-

ods that can be invoked remotely by a client. Clients program to re-

mote interfaces, not to the implementation classes of those interfaces.

The design of such interfaces includes the determination of the types

of objects that will be used as the parameters and return values for

these methods. If any of these interfaces or classes do not yet exist,

you need to define them as well.

A.3. SUPPORTED TECHNOLOGIES 259

• Implementing the remote objects. Remote objects must implement

one or more remote interfaces. The remote object class may include

implementations of other interfaces and methods that are available

only locally. If any local classes are to be used for parameters or return

values of any of these methods, they must be implemented as well.

Implementing the clients. Clients that use remote objects can be im-

plemented at any time after the remote interfaces are defined, includ-

ing after the remote objects have been deployed.

Example source code demonstrating the use of Remote Method Invocation

is provided with the JamaicaVM distribution. See Section 2.4.

Question Does JamaicaVM include tools like rmic and rmiregistry to de-

velop RMI applications?

Answer The rmiregistry tool is included in JamaicaVM and can be executed

like this:

jamaicavm sun.rmi.registry.RegistryImpl

JamaicaVM 3.0 added support for the dynamic generation of stub classes at

runtime, obviating the need to use the Java Remote Method Invocation (Java

RMI) stub compiler rmic to pre-generate stub classes for remote objects.

A.3.8 OSGi
Question Does JamaicaVM support OSGi?

Answer Yes. JamaicaVM runs with the Prosyst OSGi Runtime, Apache Felix

and Eclipse Equinox.

Question How can I improve the performance of my OSGi application?

Answer OSGi loads every bundle with a different class loader, so the bundles

will be loaded and interpreted at runtime. If a bundle does not need to be

updated at runtime, the class loading can be delegated to the class loader of

the OSGi framework to use the compiled built-in classes (see Chapter 5).

To achieve this, add the affected bundle to the classpath when building the

application. Set the org.osgi.framework.bundle.parent prop-

erty to framework and pass the list of packages used by the bundle to

the framework with the org.osgi.framework.bootdelegation
property.

260 APPENDIX A. FAQ — FREQUENTLY ASKED QUESTIONS

A.4 Target-Specific Issues

A.4.1 Targets using the GNU Compiler Collection (GCC)
Question The tools for my platform include a GCC 4.4.x compiler, and I observe

semantically incorrect behaviour of code created with the Builder. What is

going wrong?

Answer This may be caused by a faulty optimization that can be observed with

GCC 4.4.x. The optimization is called value range propagation and it can

be turned off with the compiler flag -fno-tree-vrp. On the Builder

command line, add -XCFLAGS+=-fno-tree-vrp.

Question When I try to compile an application with the Builder I get the error

message:

gcc: internal compiler error: Killed (program cc1)

Answer This is a problem in the C compiler that may be fixed in a later version.

So updating the toolchain might help.

It could be caused by insufficient memory available for the compiler. You

can try to increase the available memory on your system or reduce the heap

size of the Builder (see Appendix A.2.2).

A.4.2 Linux
Question What compiler toolchain is recommended for Linux?

Answer We recommend using the toolchain provided with the Linux distribution

you use. If you encounter any problems, rather contact aicas to solve the

issue instead of trying a different and potentially incompatible third-party

toolchain.

Question My ARM system does not come with a cross-compilation toolchain,

what cross-compilation toolchain can I use?

Answer In our experience the Linaro toolchain (http://www.linaro.org)

works well for most scenarios. Please note that there are many configura-

tions of the Linaro toolchain available and not all of them are compatible to

your target system. Feel free to contact aicas if in doubt.

Question When linking static libraries or individual object files into an applica-

tion with the Jamaica Builder I get the following linker error:

A.4. TARGET-SPECIFIC ISSUES 261

relocation ... against ‘...’ can not be used when making a
shared object; recompile with -fPIC.

Answer For security reasons the Jamaica Builder by default creates position in-

dependent executables; this requires all linked objects to be position inde-

pendent. To achieve this for your objects, rebuild them using the -fPIC
compiler option as suggested by the linker error message. This is the pro-

cedure recommended by aicas. If this is not possible, you can deactivate

the creation as position independent executable removing the -pie linker

option from the XLDFLAGS Builder option in jamaica.conf.

Question I cannot start built executables by double clicking them in the GNOME

file manager.

Answer For security reasons the Jamaica Builder by default creates position inde-

pendent executables. GNOME’s file manager reports position independent

executables as shared libraries and does not automatically start them when

double clickling them. To start them you have to use the command line in a

terminal emulator such as gnome-terminal.

A.4.3 QNX
Question When executing a shell script from Jamaica via Runtime.exec()

or the ProcessBuilder I get the following exception:

java.io.IOException: error=8, Exec format error

I did check that the shell script has executable permissions.

Answer QNX’s mechanism for invoking the program does not recognize it as a

shell script. This can be resolved by adding

#!/bin/sh

as the first line of the script.

A.4.4 VxWorks
Question When I load a built application I get Undefined symbol:.

Answer This linker error indicates that VxWorks modules required by Jamaica

are not present in the kernel. Please see Appendix B.4.1 and recompile the

VxWorks kernel image according to the instructions provided there.

262 APPENDIX A. FAQ — FREQUENTLY ASKED QUESTIONS

Question When building on a Windows host system, many warnings of the fol-

lowing kind occur:

jamaica_native_io.o(.text+0x12): undefined reference to
‘vprintf’

Answer This problem is caused by a conflicting version of Cygwin being present

on the system. The Builder expects the Cygwin version provided with the

WindRiver Tools. In order to avoid these warnings, ensure that only the

cygwin1.dll provided by the Tool Chain is loaded or on the path.

Question Exceptions and error messages reported by Jamaica refer to VxWorks

error codes. Is it possible to configure Jamaica to show the corresponding

messages?

Answer Jamaica is configured to obtain messages for VxWorks error codes pro-

vided these are built into the kernel. Error messages are provided with the

module INCLUDE_STAT_SYM_TBL, which should be included in the ker-

nel. See also Appendix B.4.1.

Question On VxWorks 6.6 RTP or higher I observe a segmentation violation

while executing a Jamaica virtual machine or a built application:

0x4529c6c (iJamaicavm_bin): RTP 0x452b010 has been stopped
due to signal 11.

Answer This failure may be caused by one of several possible defects. Please

make sure you use Jamaica 6.0 Release 2 or later. In addition, make sure that

WindRiver’s patches for bugs WIND00137239, WIND00151164 as well as

WIND00225310 are installed on your VxWorks system.

WindRiver has confirmed WIND00151164 and WIND00225310 for Vx-

Works 6.6 and the x86 platform only. WIND00137239 was observed for

VxWorks 6.8 x86 platform and VxWorks 6.7 PPC platform, but was con-

firmed for other platforms as well.

According to WindRiver, the presence of these patches can be confirmed

by checking the version number reported by the C compiler. WindRiver

recommended the following:

In this case you can use the command ccpentium -v in Vx-
Works development shell, in the following directory:

install_dir\gnu\4.1.2-vxworks-6.6\x86-win32\bin

A.4. TARGET-SPECIFIC ISSUES 263

This will print the information about the GNU compiler that you
need. The result should be:

gcc version 4.1.2 (Wind River VxWorks G++ SJLJ-EH 4.1-238)

If there are difficulties in obtaining the patches or resolving the issue, please

contact the aicas support team.

Question On VxWorks RTP, versions 6.6 to 6.8, I observe an assertion failure

while executing a Jamaica virtual machine or a built application:

In function _rtld_digest_phdr { headers.c:312 nsegs == 2
{ assertion failed

Answer This failure is caused by the WindRiver bug WIND00137239. Please

install the WindRiver patch for bug WIND00137239 or the GNU 4.1.2 Cu-

mulative Patch for your VxWorks version and platform.

Question On VxWorks 6.7 RTP I observe an exception in the task tNet0 while ex-

ecuting a Jamaica virtual machine or a built application which uses java.net:

0x169f020 (tNet0): task 0x169f020 has had a failure
and has been stopped.

Answer This failure is caused by the WindRiver bug WIND00157790. Please

install the WindRiver patch for bug WIND00157790 or the Service Pack 1

for VxWorks 6.7.1 and VxWorks Edition 3.7 Platforms. Then rebuild the

VxWorks image. If you use a built application rebuild the application as

well.

A.4.5 Windows
Question When executing jamaicatrace I get a warning like this:

Could not open/create prefs root node
Software\JavaSoft\Prefs at root [...]

Answer This is caused by the underlying JVM that tries to store preferences

in the registry but doesn’t have the required access rights. This can be

solved by creating a registry key HKEY_LOCAL_MACHINE\Software\
JavaSoft\Prefs as administrator.

264 APPENDIX A. FAQ — FREQUENTLY ASKED QUESTIONS

Appendix B

Operating Systems

This appendix contains instructions on using Jamaica with specific operating sys-

tems.

B.1 Linux

B.1.1 Secure Random

By default, Jamica uses /dev/random as a source for cryptographically strong

random numbers. It has to be checked for the particular Linux that is in use that

this device provides sufficiently good random numbers for secure communication.

If this is not the case, please refer to Appendix E.4 for how to provide a different

source for a cryptographically strong random number generator.

B.1.2 Thread Priorities

On Linux systems, JamaicaVM uses priority boosting for threads using the FIFO
or RR native scheduling policy to yield a CPU to a particular thread as explained

in Section 9.8.3.2. JamaicaVM’s threads may consequently run temporarily at a

priority level that is one above the native priority for that thread.

B.1.3 System Time Overflow

B.1.3.1 64-bit Linux

On 64-bit systems, data types to store time values use 64-bit signed values and

will consequently be effectively unlimited.

265

266 APPENDIX B. OPERATING SYSTEMS

B.1.3.2 32-bit Linux

On 32-bit Linux systems, the system clock is stored in a signed 32-bit integer.1

This value will overflow on 19 January 2038 at 03:14:07 GMT. For Jamaica, this

means that delays that wait for an absolute time later than that will not work

properly. Jamaica will replace absolute times after this value by 19 January 2038

at 03:14:07 GMT.

Delays for an absolute time are relatively infrequent in Java code. The main

Java methods using absolute times are sun.misc.Unsafe.park (with pa-

rameter isAbsolute set to true) and java.util.concurrent.locks.
LockSupport.parkUntil.

Relative times used in methods such as java.lang.Object.wait() are

based on a different internal clock that usually does not show this problem.2

B.1.4 Limitations
On Linux kernels of the versions 3.15 to 4.5 an unusually high scheduling jitter

can be observed when using JamaicaVM in realtime scenarios. This issue is paired

with kernel warnings of the following format in the system log (the CPU, PID, line

numbers and memory addresses might vary):

WARNING: CPU: 0 PID: 11 at kernel/sched/rt.c:1103
dequeue_rt_stack+0xc9/0x340()

...
Call Trace:
[<ffffffff81544f13>] ? dump_stack+0x4a/0x74
[<ffffffff8106d0e0>] ? warn_slowpath_common+0x90/0xe0
[<ffffffff810a6219>] ? dequeue_rt_stack+0xc9/0x340
[<ffffffff810a6739>] ? dequeue_rt_entity+0x19/0x70
[<ffffffff810a6cd5>] ? dequeue_task_rt+0x25/0x40
[<ffffffff81546e56>] ? __schedule+0x576/0x80b
[<ffffffff815471ed>] ? schedule+0x3d/0xd0
[<ffffffff8108e11f>] ? smpboot_thread_fn+0x11f/0x260
[<ffffffff8108e000>] ? SyS_setgroups+0x180/0x180
[<ffffffff8108ac0e>] ? kthread+0xae/0xd0
[<ffffffff8108ab60>] ? kthread_worker_fn+0x160/0x160
[<ffffffff8154acd8>] ? ret_from_fork+0x58/0x90
[<ffffffff8108ab60>] ? kthread_worker_fn+0x160/0x160

This issue in the kernel was solved for Linux version 4.6. For using Ja-

maicaVM on Linux in realtime scenarios we recommend using unaffected kernel

versions.

1See the type of time_t declared in time.h
2The clock used is CLOCK_MONOTONIC, which typically starts from 0 on system boot and

does not cause an overflow unless the system keeps running for more than 68 years.

B.2. PIKEOS 267

B.2 PikeOS
JamaicaVM uses the POSIX (PSE52) personality. An application can be built

with the JamaicaVM Builder and integrated into a POSIX (PSE52) partition.

B.2.1 Inter-Partition Communication
JamaicaVM provides basic support for queuing ports, sampling ports and shared

memory objects.

The ports can be accessed via java.io.File. To write to and read from a

port, a java.io.FileOutputStream or java.io.FileInputStream
can be used, respectively.

Shared memory objects can be accessed as a java.nio.ByteBuffer ob-

tained from a java.nio.channels.FileChannel object.

B.2.1.1 Queuing Ports

• The method File.length() can be called to get the number of messages

that can be read or written, depending on the data direction of the port,

without blocking.

• The maximum message size has to be defined manually.

• To write to a queuing port named SOURCE, this code could be used:

File file = new File("/qport/SOURCE");
FileOutputStream stream = new FileOutputStream(file);
stream.write("My message".getBytes());

• Reading from a port named DESTINATION can be done like this:

File file = new File("/qport/DESTINATION");
FileInputStream stream = new FileInputStream(file);
byte[] buffer = new byte[MAX_MESSAGE_SIZE];
stream.read(buffer);

B.2.1.2 Sampling Ports

• The method File.length() can be called to get the size of the sampling

port data buffer in bytes.

• Writing to and reading from sampling ports is analog to queuing ports.

The file names are /sport/SOURCE and /sport/DESTINATION if

the sampling ports are named SOURCE and DESTINATION, respectively.

• If a message is out of date when read, an IOException is thrown.

268 APPENDIX B. OPERATING SYSTEMS

B.2.1.3 Shared Memory Objects

• The method FileChannel.size() can be called to get the size of the

shared memory object in bytes.

• A ByteBuffer object to access the shared memory can be created with

the method FileChannel.map(). The position and size arguments have

to be a multiple of the page size.

• Reading the first byte from a shared memory object named SHARED can be

done like this:

File file = new File("/shm/SHARED");
RandomAccessFile random = new RandomAccessFile(file, "r");
FileChannel channel = random.getChannel();
long size = channel.size();
ByteBuffer buffer = channel.map(MapMode.READ_ONLY, 0, size);
byte data = buffer.get();

B.2.2 Using a Customized lwIP Library
For applications that can not use the default settings for TCP/IP communication,

the lwIP library has to be customized as described in the PikeOS documentation.

The location of the lwIP build directory with the files lwipopts.h and

liblwip4.a then has to be communicated to the JamaicaVM Builder. Oth-

erwise the default lwIP paths located in the toolchain are used, e.g. /opt/
pikeos-3.5/target/ppc/e500/bposix/lwip/include/opts and

/opt/pikeos-3.5/target/ppc/e500/bposix/lwip/lib.

• To use a customized library as the default, the default lwIP paths that are

listed in the Xinclude entry and the XlibraryPaths entry of the file

jamaica.conf have to be replaced by the lwIP build directory.

• To use a customized library for all applications individually, the default lwIP

paths in the jamaica.conf file can be removed and the lwIP build direc-

tory appended to the list of include paths using the -Xinclude+= op-

tion and to the list of library paths using the -XlibraryPaths+= option

when building an application.

B.2.3 Environment Variables
Because environment variables set from the outside cannot be read, JamaicaVM

accepts PikeOS string properties as environment variables. These can be set for

each partition and process individually and have to be located in

B.2. PIKEOS 269

prop:/app/partition name/process name/env

As an example, this entry could be added to the posix.rbx.inc file to set the

initial heap size of a VM executable to 16M:

<prop_dir name="app/$(posix_Partition)/posix/env">
<prop_string name="JAMAICAVM_HEAPSIZE" data="16M"/>

</prop_dir>

B.2.4 Secure Random
Please refer to Appendix E.4 for how to provide a source for a cryptographically

strong random number generator that is the basis for secure communication.

B.2.5 Thread Priorities
On PikeOS systems, JamaicaVM uses priority boosting for threads using the

FIFO or RR native scheduling policy to yield a CPU to a particular thread as

explained in Section 9.8.3.2. JamaicaVM’s threads may consequently run tem-

porarily at a priority level that is one above the native priority for that thread.

B.2.6 Limitations
• The POSIX personality is a single process implementation; java.lang.
Runtime.exec() and the java.lang.ProcessBuilder are not

supported.

• Because not all socket options are available on PikeOS, several methods in

the java.net package are not supported:

– Socket.getReuseAddress()

– Socket.setReuseAddress()

– Socket.getSoLinger()

– Socket.setSoLinger()

– Socket.getReceiveBufferSize()

– Socket.setReceiveBufferSize()

• Network multicasting is not supported.

• Getting and setting file permissions is not supported.

• Getting file partition size information is not supported.

270 APPENDIX B. OPERATING SYSTEMS

• Because the CLOCK_REALTIME clock is reset when the partition boots,

System.currentTimeMillis() returns the milliseconds since then,

even if the board provides the current time.

If the current time is required, a PikeOS device driver should be written.

• Due to limitations of PikeOS, java.nio.channels.FileChannel
is not fully supported:

– Memory mapping with FileChannel.map() requires support of

the POSIX function mmap() by the underlying file system provider.

– File transfer with the methods FileChannel.transferFrom()
and FileChannel.transferTo() is not supported.

– File locking with FileChannel.lock() is not supported.

• Jamaica uses POSIX threads on PikeOS. In order to improve the response

time of applications running with Jamaica, you may tune two system pa-

rameters of PikeOS:

– The scheduling property “Tick duration in milliseconds” in the tune-

able parameters of the POSIX partition can be set to a lower value

when using the Codeo IDE. Alternatively, this can be done by modify-

ing the SCHED_TICK parameter in project.xml.conf directly.

– The Ukernel property “Tick duration” in the kernel tags of the PikeOS

project configuration can be set to a lower value when using the Codeo

IDE. Alternatively, this can be done by modifying the TAG_UK_NS_
PER_TICK parameter in project.xml.conf directly.

B.3 QNX

B.3.1 Configuration of QNX
For general information on the configuration of QNX Momentics IDE please re-

fer to the user documentation provided by QNX. For Jamaica, QNX should be

configured to include the following functionality.

B.3.1.1 Enable IPv6

QNX provides the IPv6 capable network driver io-pkt-v6-hc. For IPv6 sup-

port, this driver must be loaded and configured at startup rather than the default

io-pkt-v4-hc, which only supports IPv4. IPv6 support can be enabled ei-

ther by adapting the build script of the QNX image or, if present on the system,

B.3. QNX 271

through editing the file /etc/rc.d/rc.local and restarting QNX. For more

information, please refer to the QNX documentation. Loading a network driver

while another network driver is already active my result in a corrupted network.

Even if IPv6 is configured, it may be the case that a link-local IPv6 address is

available, yet the device is only visible as IPv4 from the outside. These steps are

required for adding a publicly visible IPv6 address:

• Enable the TCP/IP stack to accept route advertisements:

sysctl -w net.inet6.ip6.accept_rtadv=1

• Start the router solicitation daemon:

rtsold -a

If the handling of IPv4-mapped IPv6 addresses by the network stack is required,

this step is also needed:

sysctl -w net.inet6.ip6.v6only=0

These commands should be put in the QNX build script or /etc/rc.d/rc.
local at a point where IPv6 has already been started.

B.3.2 Installation
To use the QNX toolchain, ensure that the following environment variables are set

correctly (should be done during QNX installation):

• QNX_HOST (e.g., C:/Programs/QNX632/host/win32/x86)

• QNX_TARGET (e.g., C:/Programs/QNX632/target/qnx6)

For QNX 6.4 (and higher) the linker must be in the system path. On Linux, you

can set this with the PATH environment variable:

export PATH=$PATH:/opt/QNX640/host/linux/x86/usr/bin

On QNX systems the default clock time resolution is 1 ms if CPU clock is ≥
40 MHz and 10 ms if CPU clock is < 40 MHz. If this is not enough, you can

change the system clock time resolution either using the javax.realtime.
Clock.setResolution() method or the C functions ClockPeriod or

ClockPeriod_r defined in header sys/neutrino.h.

272 APPENDIX B. OPERATING SYSTEMS

B.3.3 Secure Random

A wide range of Java APIs depend on java.security.SecureRandom.

This includes creating temporary files but also the Java Cryptography Extension.

That class is intended as a source of cryptographically strong random numbers.

On QNX, Jamaica relies on the random devices /dev/random and /dev/
urandom, which must be available.

QNX provides implementations of these devices, and to build these into your

image you need to insert two lines at appropriate places in your QNX build script:

Boot script
[+script] .script = {
[...]
random arguments # create random devices
}
General executables
[...]
/usr/sbin/random=random # provide random command

Also see the QNX documentation.

aicas has not made an evaluation of the cryptographic quality of these devices

and therefore cannot endorse their use in cryptographic services.

Please refer to Appendix E.4 for how to provide an alternative source for a

cryptographically strong random number generator if this is required.

B.3.4 Thread Priorities

On QNX systems, JamaicaVM uses priority boosting for threads using the FIFO
or RR native scheduling policy to yield a CPU to a particular thread as explained

in Section 9.8.3.2. JamaicaVM’s threads may consequently run temporarily at a

priority level that is one above the native priority for that thread.

B.3.5 System Time Overflow

B.3.5.1 32-bit QNX

On 32-bit QNX systems, the system clock is stored in an unsigned 32-bit integer.3

This value will overflow on 07 February 2106 at 06:28:15 GMT. For Jamaica,

this means that delays that wait for an absolute time later than that will not work

properly. Jamaica will replace absolute times after this value by 07 February 2106

at 06:28:15 GMT.

3See the type of time_t declared in time.h

B.3. QNX 273

Delays for an absolute time are relatively infrequent in Java code. The main

Java methods using absolute times are sun.misc.Unsafe.park (with pa-

rameter isAbsolute set to true) and java.util.concurrent.locks.
LockSupport.parkUntil.

Relative times used in methods such as java.lang.Object.wait() are

based on a different internal clock that usually does not show this problem.4

B.3.6 Handling of Floating Point Arithmetics on ARMv7
To maximize IEEE 754 compliance of floating point arithmetics on the ARMv7

architecture, JamaicaVM uses the following QNX version specific compiler set-

tings on ARMv7:

• 6.5 and 6.6: hard float with soft float calling conventions (-mfloat-abi=
softfp)

• 7.0 and newer: hard float (-mfloat-abi=hard)

B.3.7 Limitations
On QNX JamaicaVM has the following limitations:

• Currently the package java.nio.file is not fully supported. The fol-

lowing method is not implemented:

java.nio.file.FileStore.isReadOnly()

• Writing sparse files is only supported by QNX on ext2 filesystems [8].

Therefore the option StandardOpenOption.SPARSE is ignored when

creating files on all filesystems except ext2.

• We have observed on QNX 6.6 armv7, that some library functions that per-

form input and output operations do not accept offsets larger than 231 − 1
bytes. Therefore file offset repositioning will be limited by 231 − 1 bytes.

The following method is affected:

java.nio.channels.FileChannel.write(ByteBuffer, long)

• On qnx4 file system, we observed on QNX 6.6.0 that the information re-

turned by statvfs concerning the available disk space is not accurate.

This affects File.getUsableSpace.

4The clock used is CLOCK_MONOTONIC, which typically starts from 0 on system boot and

does not cause an overflow unless the system keeps running for more than 136 years.

274 APPENDIX B. OPERATING SYSTEMS

• In order to retrieve information about the system, the user should have root

privileges, otherwise the following method is not supported:

com.sun.management.OperatingSystemMXBean.getSystemCpuLoad()

• On QNX 6.5.0, AsynchronousChannelProvider is not supported. The fol-

lowing classes are affected:

java.nio.channels.AsynchronousChannelGroup
java.nio.channels.AsynchronousServerSocketChannel
java.nio.channels.AsynchronousSocketChannel

• On QNX, a socket will receive messages from all multicast groups that have

been joined globally on the whole system. On Linux, this behavior can

be avoided by disabling IP_MULTICAST_ALL. On QNX, this option is

currently not supported.

• On QNX 6.5.0 setting the socket options SO_SNDBUF and SO_RECVBUF
is not supported. This method is affected:

java.net.PlainDatagramSocketImpl.setOption

• The system function setsockopt may work incorrectly when setting a

high timeout value for SO_LINGER. As a consequence, after setting

java.net.ServerSocket.setSoLinger(true, HIGH_TIMEOUT),

ServerSocket.getSoLinger() may return −1, which implies that

the option was disabled. QNX has confirmed a fix for future versions of the

io-pkt PSP.5

Additionally, the following limitations of IPv6 support were identified on QNX

6.6.0. Most were found to be present on QNX 6.5.0 SP 1 as well:

• The socket options IPV6_JOIN_GROUP and IPV6_LEAVE_GROUP are

not supported. These methods are affected:

java.nio.channels.MulticastChannel.join all variants
java.nio.channels.MembershipKey.drop()
java.net.MulticastSocket.leaveGroup all variants

5For the case history, see http://community.qnx.com/sf/discussion/do/
listPosts/projects.core_os/discussion.newcode.topc26319.

B.4. VXWORKS 275

• For IPv6 UDP sockets the second call of sendto always fails. This can

also be observed for some versions of NetBSD.6 These methods are af-

fected:

java.net.DatagramSocket.send(DatagramPacket)
java.net.MulticastSocket.send(DatagramPacket, byte)

• Joining an IPv4 multicast group on an IPv6 socket is not supported on QNX.

The following methods are affected:

java.net.MulticastSocket.joinGroup(InetAddress)
java.net.MulticastSocket.leaveGroup(InetAddress)

• We observed that connecting an UDP socket to an IPv4-mapped IPv6 ad-

dress is currently not supported. This affects the following methods:

java.net.DatagramSocket.connect all variants

Due to the limitations in handling IPv4-mapped IPv6 addresses affecting QNX

6.5.0 and QNX 6.6.0, it is recommended for IPv4-only applications on dual-stack

hosts to disable IPv6 by setting the property java.net.preferIPv4Stack
to true.

B.4 VxWorks
VxWorks from Wind River Systems is a real-time operating system for embedded

computers.

B.4.1 Configuration of VxWorks
For general information on the configuration of VxWorks, please refer to the user

documentation provided by WindRiver. For Jamaica, VxWorks should be config-

ured to include the following functionality:7

• INCLUDE_DEBUG_SHELL_CMD

• INCLUDE_DISK_UTIL_SHELL_CMD

• INCLUDE_EDR_SHELL_CMD

6See http://gnats.netbsd.org/47408.
7Package names refer to VxWorks 6.6, names for other versions vary.

276 APPENDIX B. OPERATING SYSTEMS

• INCLUDE_GNU_INTRINSICS

• INCLUDE_HISTORY_FILE_SHELL_CMD

• INCLUDE_IPTELNETS

• INCLUDE_IPWRAP_GETIFADDRS

• INCLUDE_KERNEL_HARDENING

• INCLUDE_LOADER

• INCLUDE_NETWORK

• INCLUDE_NFS_CLIENT_ALL

• INCLUDE_NFS_MOUNT_ALL

• INCLUDE_PING

• INCLUDE_POSIX_PIPES

• INCLUDE_POSIX_SEM

• INCLUDE_POSIX_SIGNALS

• INCLUDE_RANDOM_NUM_GEN

• INCLUDE_ROUTECMD

• INCLUDE_RTL8169_VXB_END

• INCLUDE_SHELL

• INCLUDE_SHELL_EMACS_MODE

• INCLUDE_SHOW_ROUTINES

• INCLUDE_STANDALONE_SYM_TBL

• INCLUDE_STARTUP_SCRIPT

• INCLUDE_STAT_SYM_TBL

• INCLUDE_TASK_SHELL_CMD

• INCLUDE_TASK_UTIL

• INCLUDE_TC3C905_VXB_END

B.4. VXWORKS 277

• INCLUDE_TELNET_CLIENT

• INCLUDE_UNLOADER

For targets with kernel version VxWorks 6.9.2.2 and later, the kernel module

INCLUDE_DRV_STORAGE_PIIX needs to be included. For earlier versions,

instead the module INCLUDE_ATA should be included.

The module INCLUDE_GNU_INTRINSICS is only required if Jamaica was

built using the GNU compiler, which is the default. The module INCLUDE_
STAT_SYM_TBL is not strictly necessary but its inclusion is recommended, for

it enables Jamaica to print messages instead of codes for errors received from the

operating system.

If VxWorks real time processes (aka RTP) are used, the following compo-

nents are also required (RTPs generated with Jamaica are dynamically linked by

default):

• INCLUDE_POSIX_PTHREAD_SCHEDULER

• INCLUDE_SHL

• INCLUDE_RTP

• INCLUDE_RTP_SHELL_CMD

If WindML graphics is used, the following component must be included as well:

• INCLUDE_WINDML

• Further, BMF-Fonts (BitMap Fonts) must be included in the WindML con-

figuration. A minimum of one font is mandatory. Also make sure that

“Mono” option is not selected from “Graphic Mode”.

If File locking is used, the following component must be included as well:

• INCLUDE_POSIX_ADVISORY_FILE_LOCKING

The number of available open files should be increased by setting the following

parameters:

Parameter Value Notes
NUM_FILES 1024 (DKM only)

RTP_FD_NUM_MAX 1024 (RTP only)

You might also need to set file system specific parameters. For example, if

dosFs is used, then you will also have to set the DOSFS_DEFAULT_MAX_FILES

278 APPENDIX B. OPERATING SYSTEMS

parameter. Similary, if HRFS is used, then you will also have to set the HRFS_
DEFAULT_MAX_FILES parameter.

In addition, the following parameters should be set:

Parameter Value
TASK_USER_EXC_STACK_SIZE 16384

If DNS is used, the following component must be included as well:

• INCLUDE_IPDNSC

• Additionally, the parameters DNSC_DOMAIN_NAME, DNSC_PRIMARY_
NAME_SERVER and DNSC_SECONDARY_NAME_SERVER need be con-

figured appropriate to your network settings.

! If some of this functionally is not included in the VxWorks kernel image,

linker errors may occur when loading an application built with Jamaica and

the application may not run correctly.

B.4.1.1 Configuration of VxWorks 7.x

For VxWorks 7.0 or newer, a source build needs to be made as part of the OS

configuration process.

For ARM architectures, Jamaica uses a software library to perform floating

point arithmetics. For the required library symbols to be containted in the oper-

ating system image, the VxWorks source build needs to be configured to use soft
floating point in the BSP configuration.

B.4.2 Installation
The VxWorks version of Jamaica is installed as described in the section Installa-

tion (Section 2.1). In addition, the following steps are necessary.

B.4.2.1 Configuration for Workbench (VxWorks 6.x)

• Set the environment variable WIND_HOME to the WindRiver installation

base directory (e.g. /opt/WindRiver).

• Set the environment variable WIND_BASE to the VxWorks directory in

the WindRiver installation. The previously declared environment variable

WIND_HOME may be used (e.g., WIND_HOME/vxworks-6.6).

B.4. VXWORKS 279

• Set the environment variable WIND_USR to the RTP header files directory

of the WindRiver installation (e.g., WIND_BASE/target/usr).

We recommend using wrenv.sh, located in the WindRiver base directory to

set all necessary environment variables. The VxWorks subdirectory has to be

specified as the following example shows for VxWorks 6.6:

> /opt/WindRiver/wrenv.sh -p vxworks-6.6

! Do not add wrenv.sh to your boot or login script. It starts a new shell which

tries to process its login-script and thus you create a recursion.

Configuration of platform-specific tools (see Section 2.1.1.3) is only required

in special situations. Normally, executing wrenv.sh is sufficient.

B.4.2.2 Configuration for VxWorks 7.x

• Set the environment variables WIND_HOME, WIND_BASE and WIND_USR
as described above.

• Set the environment variable LD_LIBRARY_PATH to the folder which

contains liblmapi.so or lmapi.dll (the License Management API

libraries), while adding the folder into your PATH environment variable.

LM_LICENSE_FILE needs to be set to the appropriate value based on

your license type (floating, node-locked, etc.).

• In addition, set the environment variable VSB_DIR to the VxWorks source

build folder (the folder that contains the file vsb.config).

B.4.3 Secure Random
A wide range of Java APIs depend on java.security.SecureRandom.

This includes creating temporary files but also the Java Cryptography Extension.

That class is intended as a source of cryptographically strong random numbers.

On VxWorks, Jamaica relies on the target being configured in FIPS140-2mode.

This has been described in the document Windriver Cryptography Libraries for
Vxworks7 provided by VxWorks.

If the target is not set-up with a hardware entropy source, then the VxWorks

source build needs to be configured with RANDOM_ENTROPY_INJECTION en-

abled.

aicas has not made an evaluation of Windriver Cryptography Libraries with

respect to its degree of conformance to FIPS140-2 standard.

Please refer to Appendix E.4 for how to provide an alternative source for a

cryptographically strong random number generator if this is required.

280 APPENDIX B. OPERATING SYSTEMS

B.4.4 Starting an application
The procedure for starting an application on VxWorks depends on whether down-

loadable kernel modules (DKM) or real-time processes (RTP) are used. The fol-

lowing instructions assume that the target system is configured for disk or remote

file system access. It is also possible to link the application to a kernel image; see

Appendix B.4.4.3.

! VxWorks supports remote file access via FTP, RSH and NFS [13, Remote File

System Access]. FTP and RSH are remote file access protocols that handle

simple file transfers well, but have limited capabilities. They are, for example,

suitable for loading and launching an application created with the Builder. When

running an application that loads code from Java archive (JAR) files at runtime,

such as a Jamaica target VM (see Section 12.2), many simultaneous connections

may be opened accessing parts of JAR files. With FTP and RSH this can overload

the file server, resulting in sporadic instances of ClassNotFoundException
or NoClassDefFoundError, even when starting up the VM. In such situa-

tions, NFS or a local disk must be used. For setting up an NFS client, see the

VxWorks File System Programmer’s Guide [12].

B.4.4.1 DKM

For DKM, simply enter the following command on the target shell:

-> ld < filename

Here, filename is the complete filename of the created application.

The main entry point address for an application built with the Jamaica Builder

has the symbolic names “jvm” and “jvm_destination”, where destination is ei-

ther the name set via the Builder option destination or the name of the main

class. For example, in the VxWorks target shell the HelloWorld application may

be started with these commands:

-> sp jvm
-> sp jvm_HelloWorld

When starting an application that takes arguments, those are given in a single

string as a second argument:

-> sp jvm,"args"

The start code of the created application parses this string and passes it as a stan-

dard Java string array to the main method. When starting a VM, all options and

arguments must be put in this string according to the VM command line syntax.

B.4. VXWORKS 281

Note: even if the Builder generates a file with the specified name, it may be

renamed later, because the name of the main entry point is read from the symbol

table included in the object file.

Setting environment variables Environment variables may be set in the Vx-

Works shell via the putenv command:

-> putenv("VARIABLE=value")

In order to start a user task that inherits these variables from the shell, the task must

be spawned with the VX_PRIVATE_ENV bit set. To do so, use the taskSpawn
command:

-> taskSpawn "jamaica",0,0x01000080,0x020000,jvm,"args"

Running two Jamaica applications at the same time In order to run two Ja-

maica applications at the same time, matching of common symbols by the kernel

must be switched off. This is achieved by setting the global VxWorks variable

ldCommonMatchAll to false prior to loading the applications.

-> ldCommonMatchAll=0
-> ld < RTHelloWorld
-> ld < HelloWorld
-> sp jvm_RTHelloWorld
-> sp jvm_HelloWorld

In the example, if ldCommonMatchAll were not set to 0, HelloWorld would

reuse symbols defined by RTHelloWorld.

Note that this functionality is not available on all versions of VxWorks. Please

check the VxWorks kernel API reference.

Restarting a Jamaica application To restart a Jamaica application after it has

terminated, it should be unloaded with the unld command and then reloaded.

This is illustrated in the following example:

-> ld < HelloWorld
value = 783931720 = 0x2eb9d948 = ’H’
-> sp jvm_HelloWorld
[...]
-> unld 783931720
value = 0 = 0x0
-> ld < HelloWorld
value = 784003288 = 0x2ebaf0d8 = ’K’
-> sp jvm_HelloWorld
[...]

282 APPENDIX B. OPERATING SYSTEMS

Note that the application should not be unloaded while still running. The unld
command is optional, and the VxWorks image needs to be configured to include

it by adding INCLUDE_UNLOADER to the configuration as suggested in Ap-

pendix B.4.1.

B.4.4.2 RTP

If real-time processes (aka RTP) are used, the dynamic library libc.so must be

renamed to libc.so.1 and added to the folder of the executable. This library

is located in the WorkBench installation

$WIND_BASE/target/usr/lib/arch/variant/common[le]/libc.so

or (for VxWorks 6.8 and later)

$WIND_BASE/target/lib[_smp]/usr/lib/arch/variant/common[le]/libc.so

where, in case of an x86 architecture, arch is, for example, pentium and variant
is, for example, PENTIUM. The lib_smp directory contains multicore libraries.

To start the application, please use the following shell command:

-> rtpSp "filename"

If you would like to specify command line parameters, add them as a space-

separated list in the following fashion:

-> rtpSp "filename arg1 arg2 arg3"

The rtpSp command will pass environment variables from the shell to the cre-

ated process.

To kill the running process, please use the following shell command:

-> rtpKill ID

where ID is the identifier returned by an invocation of rtpSp as above. This sends

a SIGTERM to the VM which when not explicitly disabled, invokes the VM shut-

down sequence calling any registered shutdown hooks.

To kill the processes forcefully, rtpKill may be invoked with SIGKILL as be-

low:

-> rtpKill ID, 9

Here, the kernel takes care of killing the process and the signal is never sent to the

process itself.

B.4. VXWORKS 283

B.4.4.3 Linking the application to the VxWorks kernel image

The built application may also be linked directly to the VxWorks kernel image,

for example for storing the kernel and the application in FLASH memory. In the

VxWorks kernel a user application can be invoked enabling the VxWorks config-

uration define INCLUDE_USER_APPL and defining USER_APPL_INIT when

compiling the kernel (see VxWorks documentation and the file usrConfig.c).

The prototype to invoke the application created with the Builder is:

int jvm_main(const char *commandLine);

where main is the name of the main class or the name specified via the Builder

option destination. To link the application with the VxWorks kernel image

the macro USER_APPL_INIT should be set to something like this:

extern int jvm_main (const char *); jvm_main (args)

where args is the command line (as a C string) which should be passed to the

application.

B.4.4.4 Enabling AltiVec on PowerPC Devices

If the PowerPC CPU of your target hardware supports AltiVec you can enable

it for VxWorks DKM or RTP by setting the environment variable JAMAICA_
VXWORKS_ALTIVEC to true.

B.4.5 Secure Random
Please refer to Appendix E.4 for how to provide a source for a cryptographically

strong random number generator that is the basis for secure communication.

B.4.6 Thread Priorities
On VxWorks systems, JamaicaVM does not use or implement a specific mecha-

nism to yield a CPU to a particular thread as explained in Section 9.8.3.2. In case

a thread is preempted by a more eligible thread in the same VM, this might result

in the preempted thread losing the CPU to a different process’ thread running at

the same priority.

To avoid any interference between JamaicaVM’s threads and other threads, it

is best to use disjoint native thread priorities for JamaicaVM’s threads and other

threads running on the same CPUs. This defines a clear precedence between these

threads.

284 APPENDIX B. OPERATING SYSTEMS

B.4.7 Limitations
The following limitations to the Java API exist on VxWorks.

B.4.7.1 General

• java.lang.Runtime.exec() is not implemented

• On DKM, the const environ does not exist, which is available for RTPs

as part of crt0.o. Hence, the methods System.getenv(String) and

java.lang.System.getenv() are not supported.

• Loading of dynamic libraries at runtime is supported only for RTP.

• The following realtime signals are not available:

SIGSTKFLT, SIGURG, SIGXCPU, SIGXFSZ, SIGVTALRM, SIGPROF,

SIGWINCH, SIGIO, SIGPWR, SIGSYS, SIGIOT , SIGUNUSED, SIG-
POLL, SIGCLD.

• Jamaica does not allow an application to set the resolution of the realtime

clock provided in javax.realtime.8 The resolution of the clock de-

pends on the frequency of the system ticker (see the VxWorks functions

sysClkRateGet() and sysClkRateSet()). If a higher resolution

for the realtime clock is needed, the frequency of the system ticker must

be increased. Care must be taken when doing this, because other programs

running on the system may change their behavior and even fail. In addition,

under VxWorks 5.4 the realtime clock must be informed about changes of

the system ticker rate with the function clock_setres(). The easiest

way of doing this is adding the following into a startup script for VxWorks:

sysClkRateSet(1000)
timeSpec=malloc(8)
(*(timeSpec+0))=0
(*(timeSpec+4))=1000000
clock_setres(0,timeSpec)
free(timeSpec)

This example sets the system ticker frequency to 1000 ticks per second and

the resolution of the realtime clock to 1ms. Setting sysClkRateSet()
to a value higher than the value supported on the board is implementa-

tion defined and should be avoided by checking its return value. To get

8The RTSJ realtime clock may be obtained through Clock.getRealtimeClock().

B.4. VXWORKS 285

the maximum possible resolution for your board, check the BSP docu-

mentation for macros that define this value. For example on x86, it is

SYSCLK_OPTIMUM_MAXFRQ and on ARM, it is SYS_CLK_RATE_MAX.

• For parallel applications on VxWorks SMP the option -Xcpus can either

be set to all CPUs or one CPU. Any other set of CPUs is currently not

supported by VxWorks.

• Running two Jamaica applications, where both uses WindML is not sup-

ported. This is because the WindML graphics context cannot be shared

across different VM instances safely.

• Mixing scheduling policies (by using the Builder option priMap or the

VM environment variable JAMAICAVM_PRIMAP) is not supported by Vx-

Works.

• Native threads are named according to their corresponding Java threads

name on DKM from VxWorks 6.2 and above.

• IPv6 is not yet supported on VxWorks.

• Setting the socket option IP_MULTICAST_TTL to 0 doesn’t work on Vx-

Works. An attempt to do so will not result in an error, however, the value

will not be changed. Windriver defect-ID is V7NET-1379.

• According to VxWorks documentation, the socket option SO_RCVBUF has

a maximum limit of 65535. Attempting to set it to a higher value will im-

plicitly cause it to be set to that maximum.

• In VxWorks source, the socket option SO_SNDBUF has a hard-coded limit

of 1879048192. To avoid returning an error when attempting to set it to

a higher value, it will implicitly be set to the hard-coded limit. Windriver

defect-ID is V7NET-1387.

• SecureRandom does not support the algorithm NativePRNG on Vx-

Works as it depends on the existence of the devices /dev/random and

/dev/urandom. However, SHA1PRNG is defined and is used as the de-

fault.

• Java Runtime tools keytool, rmid and rmiregistry do not support

-J option. Additionally, the -C option is not supported by rmid and

rmiregistry. If these options are needed, one could start the VM with

the java class that contains the main method for these tools. For example,

the rmiregistry tool can be executed like this:

286 APPENDIX B. OPERATING SYSTEMS

jamaicavm sun.rmi.registry.RegistryImpl

and here, the options can be sent directly to the java-interpreter.

• Event polling epoll is only supported in kernel-mode. Furthermore, it

allows for the monitoring of network socket descriptors only. Therefore

AsynchronousChannelProvider is not implemented and the fol-

lowing Java API classes are, consequently, not supported:

java.nio.channels.AsynchronousFileChannel
java.nio.channels.AsynchronousSocketChannel
java.nio.channels.AsynchronousServerSocketChannel

• On VxWorks7 kernels from version SR0520, a kernel configured with sys-

tem component HIGH_RES_POSIX_CLOCK may return sooner than the

specified timeout in Java API like Thread.sleep(). The Windriver

defect-ID is V7COR-5753.

• On VxWorks7 kernels from version SR0520, higher scheduling latency

can be observed when using JamaicaVM as an RTP, especially in realtime

scenarios. This is due to a defect in the underlying scheduler in VxWorks.

The Windriver defect summary is RTP pthread cond timedout() may delay
one tick longer than it should and the defect-ID is V7COR-5694.

• Using GCC 4.8.1.7 or 4.8.1.8, an RTP or shared library may be created with

more than 2 segments. Such RTPs and shared libraries will fail to load. The

Windriver defect summary is Loading an RTP depending upon a shared
library with more than 2 loadable segments will fail and the defect-ID is

TCVXWGCC-178. C code, that does not generate more than 2 segments

is not affected. Accordingly, depending on the application, JamaicaVM

Builder built RTP as well as the Jamaica JAR Accelerator built shared li-

brary might be affected when using these C-compilers. This has been fixed

for RTPs starting with version 4.8.1.10. For shared libraries, an enhance-

ment request has been filed in Windriver database with id TCVXWGCC-

185.

• On VxWorks7 kernels from version SR0520, the software library to per-

form floating point arithmetics on the ARMv7 architecture can be observed

not to be fully IEEE 754 compliant. The Windriver defect summary is Unex-
pected results for floating point operations, the defect-ID is TCVXWGCC-

213.

• Elliptic curve cryptography is not yet supported on VxWorks.

B.4. VXWORKS 287

B.4.7.2 File system support

VxWorks provides remote file access through FTP, RSH and NFS [13, Remote

File System Access]. FTP and RSH are useful in the development process for

deploying and running applications, but unlike NFS they do not constitute fully-

fledged remote file systems. Most operations of Java’s file API java.io.File
will either not work or not work reliably. NFS or a local file system must be used.

Also see the VxWorks File System Programmer’s Guide [12]. Jamaica runs best

on High Reliability File System (HRFS) which supports real-time systems and

is POSIX PSE52 compliant. For further limitations of file system support, see

below.

• Depending on the file system, File.canRead(), File.canWrite()
and File.canExecute() may return incorrect values. These func-

tions do not necessarily work for NFS and local disk (FAT). The reason

for this limitation is rooted in the implementation of access() provided

by VxWorks. Also file functions of java.nio.file.Files relying

on access() function, for example Files.isReadable(), may not

work properly.

• Also RandomAccessFile.setLength() may not work. This func-

tion works for local disk (FAT), it does not work for NFS. This is caused by

the implementation of ioctl FIOTRUNC.

• File locking through FileChannel.lock() is only supported on the

High Reliability File System (HRFS) on VxWorks RTP. The Preferences

APIs in java.util.prefs.Preferences also requires file-locking.

• Timezone related APIs such as TimeZone.getDefault() are not sup-

ported on VxWorks DKM. This functionality is enabled only on VxWorks

RTP.

• Support for memory mapped buffers (java.nio) is not available on Vx-

Works 5.x. This is due to mmap being unavailable. It is not supported on

other versions of VxWorks where mmap is available as well. The reason

for this limitation rooted in the implementation of mmap provided by Vx-

Works. The Windriver defect summary is successive mmap calls with the
same fd and with MAP SHARED on HRFS returns the same address and

the defect-ID is V7COR-5766.

• Since VxWorks doesn’t fully support the APIs needed for symbolic links,

operations will always take effect on the linked file and not the link itself.

288 APPENDIX B. OPERATING SYSTEMS

• VxWorks do not provide any API for querying mount entries; therefore, the

package java.nio.file is currently not fully supported. The following

Java API methods are not implemented:

java.nio.file.Files.getFileStore()
java.nio.file.FileSystem.getFileStores()

• VxWorks does not provide file ownership and file permissions. Conse-

quently, the file operations requiring functions such as chown(), are not

supported. For example, java.nio.file.Files.copy() is not sup-

ported as it relies on fchown().

• On HRFS, it has been observed that a file deletion or a file update operation

might result in an HRFS_EXCEPTION. As the name suggests, this is a

filesystem exception thrown by VxWorks. The defect-ID is V7STO-1190.

B.4.8 Additional notes
• Object files: because applications for VxWorks (DKM only) are usually

only partially linked, missing external functions and missing object files

cannot be detected at build time. If native code is included in the application

with the option object, Jamaica cannot check at build time if all needed

native code is linked to the application. This is only possible in the final

linker step when the application is loaded on the target system.

B.5 Windows

B.5.1 Secure Random
The default source of cryptographically strong random numbers on Windows is

the system function CryptGenRandom. Please refer to Appendix E.4 for how to

provide a different source for a cryptographically strong random number generator

for systems for which CryptGenRandom is insufficient for cryptographic use.

B.5.2 Limitations
The current release of Jamaica for the desktop versions of Windows contains the

following limitations:

• No realtime signals are available.

B.6. WINDOWS CE 289

• The java.io.File supports extended-length paths, but full support of

file paths exceeding 260 characters is not guaranteed by the JRE and de-

pends also on Windows version and setup.

• On multicore systems Jamaica will always run on the first CPU in the sys-

tem.

B.6 Windows CE

B.6.1 Secure Random

Please refer to Appendix E.4 for how to provide a source for a cryptographically

strong random number generator that is the basis for secure communication.

B.6.2 Limitations

The current release of Jamaica for Windows CE contains the following limitations:

• Loading of dynamic libraries at runtime is not supported.

• It is not possible to redirect the standard IO for processes created with

Runtime.exec().

• Windows CE does not support the notion of a current working directory. All

relative paths are by Windows CE interpreted as relative to the device root.

Therefore e.g. the file created with filepath set to (“.”) will be created in the

root directory. Jamaica makes possible to override this behavior by speci-

fying user.dir. Java methods prepend relative paths with user.dir.

Default user.dir setting is a backslash, which works same as Windows

CE behavior—all relative paths are relative to the device root. But if you

prefer compatibility with other environments, you can set user.dir to the

absolute path of your current working directory. In such case please make

sure that total length of any of your relative paths prefixed with user.dir
will not exceed the Windows CE limit of 260 characters.

• Windows CE does not support environment variables. If you have a registry

editor on your target, you can create string entries in the registry key

HKEY_CURRENT_USER\Software\aicas\jamaica\environment

290 APPENDIX B. OPERATING SYSTEMS

that represent environment variable settings. To set VARIABLE=value
create a new string value with name VARIABLE and data value. The type

of the entry should be REG_SZ.

• The method java.lang.System.getenv() that takes no parameters

supports environment variables with a total maximum size of 32767 char-

acters.

• Paths handled by java.io.File cannot be longer than 248 characters.

This figure refers to the absolute path—that is, it is for example not pos-

sible to extend an absolute path of 240 characters by a relative path of 20

characters.

• The File.setLastModified() method may not work with directo-

ries, depending on your file system and registry settings. According to

Windows CE documentation the

HKEY_LOCAL_MACHINE\System\StorageManager\FATFS\DirHandleWrite

registry value must be set to 1 in order to get a writable handle to the file

directory. So please make sure that this value is set if you want to use

File.setLastModified() with directories.

• File locking through FileChannel.lock() is not supported for all file

systems on Windows CE. If Windows CE does not support file locking for a

given file system, calls to FileChannel.lock() may fail silently. In particular,

exFAT and the UNC network filesystems do not support this mechanism.

• SocketChannel.write() might block (until all bytes to be written

have been read) before a ClosedChannelException is thrown if the

channel is closed.

• If the UTF8 code page is not supported by the Windows CE image, classes

cannot be loaded dynamically. In particular, the target VMs will not be

usable. The VM will terminate with the message that Unicode strings
cannot be created. System calls like reading a file might also fail.

• Reading data via DatagramSocket.receive() is not supported for

IPv6 addresses when a security manager is installed. A security manager

can only be used when reading data from an IPv4 socket.

• Windows CE does not support I/O Completion Ports. Therefore the class

AsynchronousChannelProvider is not implemented and the fol-

lowing Java API classes are, consequently, not supported:

B.6. WINDOWS CE 291

java.nio.channels.AsynchronousChannelGroup
java.nio.channels.AsynchronousFileChannel
java.nio.channels.AsynchronousServerSocketChannel
java.nio.channels.AsynchronousSocketChannel

• Windows CE does not provide an API for Volume Management; therefore,

the package java.nio.file is currently not fully supported. The fol-

lowing Java API methods are not implemented:

java.nio.file.Files.getFileStore()
java.nio.file.FileSystem.getFileStores()
java.nio.file.FileSystem.getRootDirectories()

• Although Windows CE allows access to files greater than 4GB, the current

release of Jamaica for Windows CE is limited to sizes less than 4GB. This

applies for example to java.io.FileInputStream.

• IPPROTO_IP Socket Option: IP_TOS (Type of Service) settings should

only be set using the Quality of Service API (QOS). Windows CE does not

support QOS service. IP_TOS option for DatagramChannel.setOption()
is not supported.

292 APPENDIX B. OPERATING SYSTEMS

Appendix C

Processor Architectures

There are currently no known processor architecture specific issues.

293

294 APPENDIX C. PROCESSOR ARCHITECTURES

Appendix D

Heap Usage for Java Datatypes

This chapter contains a list of in-memory sizes of datatypes used by JamaicaVM.

For datatypes that are smaller than one machine word, only the smallest mul-

tiple of eight Bits that fits the datatype will be occupied for the value. I.e., several

values of types boolean, byte, short and char may be packed into a single machine

word when stored in an instance field or an array.

Tab. D.1 shows the usage of heap memory for primitive types, Tab. D.2 shows

the usage of heap memory for objects, arrays and frames.

295

296 APPENDIX D. HEAP USAGE FOR JAVA DATATYPES

Datatype Used Memory Min Value Max Value
Bits Bytes

boolean 8 1 - -

byte 8 1 −27 27 − 1
short 16 2 −215 215 − 1
char 16 2 \u0000 \uffff

int 32 4 −231 231 − 1
long 64 8 −263 263 − 1
float 32 4 1.4E-45F 3.4028235E38F

double 64 8 4.9E-324 1.7976931348623157E308

Java reference

32-bit systems 32 4 - -

64-bit systems 32 4 - -

Table D.1: Memory Demand of Primitive Types

Data Structure Memory Demand
Object header (containing garbage collection state, object

type, inlined monitor and memory area)
12 Bytes

Array header (containing object header, array layout in-

formation and array length)
16 Bytes

Java object size on heap (minimum) 32 Bytes

Java array size on heap (minimum) 32 Bytes

Minimum size of single heap memory chunk 64 KBytes

Garbage Collector data overhead for heap memory. For

a usable heap of a given size, the garbage collector will

allocate this proportion of additional memory for its data.

Single-core systems 6.25%

Multi-core, 32-bit systems 15.63%

Multi-core, 64-bit systems 18.75%

Stack slot 8 Bytes

Java stack frame of normal method 4 slots

Java stack frame of synchronized method 5 slots

Java stack frame of static initializer 7 slots

Java stack frame of asynchronously interruptible method 8 slots

Additional Java stack frame data in profile mode 2 slots

Table D.2: Memory Demand of Objects, Arrays and Frames

Appendix E

Limitations

This appendix lists limitations of the JamaicaVM virtual machine and applications

created with JamaicaVM Builder.

E.1 VM Limitations

These limitations apply to both pre-built virtual machines and to applications built

with the JamaicaVM Builder.

• Classfile verification is currently limited to an incomplete pre Java-6 (class-

file version 49 and older) style data flow analysis of the bytecode instruc-

tions. The verification algorithm is designed to increase compatibility with

regards to the order in which classes are loaded. It does not cover all the

functionality described in the JVM specification. Consequently, classfile

verification is not sufficient to ensure correctness of class files that are pro-

duced by untrusted tools, that were tampered with or that are otherwise

broken.

• Numeric limitations, such as the absolute maximum number of Java Threads

or the absolute maximum heap size are listed in Tab. E.1.

297

298 APPENDIX E. LIMITATIONS

Aspect Limit
Number of Java Threads 511
Maximum Monitor Nest Count (repeated monitor en-

ter of the same monitor in nested synchronized
statements or nested calls to synchronized meth-

ods). Exceeding this value will result in throwing

an java.lang.InternalError with detail mes-

sage "Max. monitor nest count reached
(255)"

255

Minimum Java heap size 64KB

Maximum Java heap size (32-bit systems) approx. 3.5GB

Maximum Java heap size (64-bit systems) approx. 127GB

Minimum Java heap size increment 64KB
Maximum number of heap increments. The Java heap may

not consist of more than this number of chunks, i.e., when

dynamic heap expansion is used (max heap size is larger

than initial heap size), no more than this number of incre-

ments will be performed, including the initial chunk. To

avoid this limit, the heap size increment will automatically

be set to a larger value when more than this number of in-

crements would be needed to reach the maximum heap size.

256

Maximum number of memory areas (instances of

javax.realtime.MemoryArea). Note that

two instances are used for HeapMemory and

ImmortalMemory.

256

Minimum size of Java stack 1KB

Maximum size of Java stack 64MB

Maximum size of native stack 2GB
Maximum number of constant UTF8 strings (names and

signatures of methods, fields, classes, interfaces and con-

tents of constant Java strings) in the global constant pool

(exceeding this value will result in a larger application)

224 − 1

Maximum number of constant Java strings in the global

constant pool (exceeding this value will result in a larger

application)
216 − 1

E.2. BUILDER LIMITATIONS 299

Aspect Limit
Maximum number of name and type entries (references to

different methods or fields) in the global constant pool (ex-

ceeding this value will result in a larger application)
216 − 1

Maximum Java array length. Independent of the heap size,

Java arrays may not have more than this number of ele-

ments. However, the array length is not restricted by the

heap size increment, i.e., even a heap consisting of several

increments each of which is smaller than the memory re-

quired for a Java array permits the allocation of arrays up

to this length provided that the total available memory is

sufficient.

228 − 1

Maximum number of virtual methods per Java class (includ-

ing inherited virtual methods)
4095

Maximum number of interface methods per Java inter-

face (including interface methods inherited from super-

interface)

4095

On POSIX systems where time_spec.tv_sec of type

time_t is a signed 32 Bit value it is not possible to wait

until a time and date that is later than

2038-01-19

03:14:07 GMT

On POSIX systems where time_spec.tv_sec of type

time_t is an unsigned 32 Bit value it is not possible to

wait until a time and date that is later than

2106-02-07

06:28:15 GMT

On systems that use 64-bit values to represent times, it is

not possible to wait until a time and date that is later than
year 292 · 106

Table E.1: JamaicaVM limitations

E.2 Builder Limitations

The static compiler does not compile certain Java methods but leaves them in

interpreted bytecode format independent of the compiler options or their signifi-

cance in a profile.

• Classfile verification is not performed for classes built-into a stand-alone bi-

nary created by the builder tool. Consequently, class files that are produced

by untrusted tools, that were tampered with or that are otherwise broken

may not be processed by the builder.

• Static initializer methods (methods with name <clinit>) are not com-

piled.

300 APPENDIX E. LIMITATIONS

A simple way to enable compilation is to change a static initializer into a

static method, which will be compiled. That is, replace a static initializer

class A
{
static
{

<initialization code>
}

}

by the following code:

class A
{
static
{

init();
}

private static void init()
{

<initialization code>
}

}

• Methods with bytecode that is longer than the value provided by Builder

option XexcludeLongerThan are not compiled.

• Methods that reference a class, field or method that is not present at build

time are not compiled. The referenced class will be loaded lazily by the

interpreter.

E.3 Multicore Limitations
Currently, the multicore variant of the JamaicaVM virtual machines (command

jamaicavmm) and the JamaicaVM Builder using option -parallel have the

following additional limitations.

• In class com.aicas.jamaica.lang.Debug the following methods

are not supported:

E.4. SECURITY LIMITATIONS 301

– getMaxFreeRangeSize

– getNumberOfFreeRanges

– printFreeListStats

– createFreeRangeStats

• Java arrays that are not allocated very early during application startup (be-

fore the garbage collector starts recycling memory) are allocated using a

non-contiguous representation that results in higher costs for array accesses.

• The multicore VM does not support the JVMTI interface. In particular, the

option -agentlib of both the VM and the Builder does not work.

E.4 Security Limitations

Cryptography requires a cryptographically strong random number generator. This

is not readily available on many target platforms. For secure communication based

on class java.security.SecureRandom, such a random number generator

is required.

Where this is available, the /dev/random device will be used by default

as a source of secure random numbers. It is, however, required for the user to

ensure that this device is configured such that it produces cryptographically strong

random numbers. Please refer to the information given in Appendix B for details

on the individual operating systems.

The source of cryptographically strong random number is defined in the file

jamaica-home/target/platform/lib/security/java.security. The

entry securerandom.source provides an URL to a stream of cryptograph-

ically strong random numbers. On systems that do not provide a sufficiently

strong /dev/random, this URL has to be replaced. Alternatively, the property

java.security.egd can be set to overwrite the settings defined in java.
security.

Additionally, JamaicaVM provides a mechanism to provide a user defined

Java class as a source of cryptographically strong random numbers. For this,

the URL provided as securerandom.source in file java.security or

via the property java.security.egd can be set to class:name to pro-

vide an arbitrary non-abstract class name that must extend sun.security.
provider.SeedGenerator and implement the method getSeedBytes.

In case the source of cryptographically strong random numbers is not acces-

sible, e.g., when property java.security.egd is set to file:foo for a

302 APPENDIX E. LIMITATIONS

non-existing file foo, Jamaica does not fall back to using an unsafe source of ran-

dom numbers.1 Instead, creating an instance of java.lang.SecureRandom
in this case results in an InternalError with a detail message explaining this.

E.5 Temporary Files
The generation of unique file names for temporary files requires cryptographically

strong random numbers that are not available on all platforms. Please refer to

Appendix E.4 for details.

1Other Java implementations attempt to gather entropy from the system through sun.
security.provider.SeedGenerator$ThreadedSeedGenerator.

Appendix F

Internal Environment Variables

Additional debugging output can be activated through environment variables if an

application was built with the internal option -debug=true. This option and its

environment variables are used for debugging Jamaica itself and are not normally

relevant for users of JamaicaVM.

JAMAICA_DEBUGLEVEL Defines the debug level of an application that was

built with the option debug. A level of 0 means that no debug output is

printed; a level of 8 means that very detailed debug output is printed.

Note that at a debug level of 8 a simple HelloWorld application will produce

thousands of lines of debug output. A good choice is a level of 5.

JAMAICA_DEBUGCALLNATIVE Defines a string that gives the name of a native

method. Any call to that method is printed in addition to other debug output.

Printing of these calls requires a minimum debug level of 5. If the variable

is not set or set to ’*’, any native call will be printed.

JAMAICA_DEBUGCALLJAVA Defines a string that gives the name of a Java

class or method. Any call to the specified method or to a method defined in

the specified class will be printed in addition to the other debug output.

Printing of these calls requires a minimum debug level of 5. If the vari-

able is not set or set to ‘*’, any call is printed. E.g., setting JAMAICA_
DEBUGCALLJAVA to java/lang/String.length will print any call

to the method java.lang.String.length().

JAMAICA_DEBUGGROUP Defines a string that gives a set of function groups for

which debug output should be enabled. The string consists of a comma-

separated list of group names. In addition to the special names ALL, * and

NONE, JamaicaVM supports these groups:

303

304 APPENDIX F. INTERNAL ENVIRONMENT VARIABLES

• VM

• GC

• CLASSES

• INTERPRETER

• THREADS

• SYNCS

• BC

• LOADCLASS

• JVMTI

• DYNAMIC_LIBRARY

• RESOURCES

• MONITORS

• NATIVE

• NATIVE_THREAD

• NATIVE_SEMAPHORE

• NATIVE_SIGNAL

• NATIVE_FILE

• NATIVE_NETWORK

• NATIVE_MEMORY

• NATIVE_MATH

• NATIVE_MISC

• NATIVE_JNI

• NATIVE_GRAPHICS

• NATIVE_TIME

• NATIVE_IO

JAMAICA_DEBUGOUTPUT Defines a string that gives the output method for de-

bug information. The default method is console, however, users may

also specify files or network hosts as a target. Files can be specified with

file:<filename>, remote hosts with udp:<host>[:<port>] via

UDP or with network:<host>[:<port>] via TCP.

Appendix G

Licenses

JamaicaVM is commercially licensed software from aicas GmbH. The virtual ma-

chine and tools are copyrighted by aicas and all rights are reserved. JamaicaVM

does use libraries from other sources, but these may all be linked with commercial

software without affect to the license of that software.

The complete set of third-party licenses for external components, along with

the Jamaica evaluation license, is provided in the Jamaica installation in the folder

jamaica-home/license.

The software included in this product contains copyrighted software that is

licensed under the GNU General Public License (GPL) or GNU Lesser General

Public License (LGPL). You may obtain the complete corresponding source code

from us for a period of three years after our last shipment of this product. aicas

is entitled to charge the cost of performing this distribution of the source code to

your account in advance. Please contact us at the following address for payment

instructions:

aicas GmbH
Emmy-Noether-Straße 9
76131 Karlsruhe
Germany

Email: support@aicas.com

This offer is valid to anyone in receipt of this information.

305

306 APPENDIX G. LICENSES

Bibliography

[1] Stephane Bailliez, Nicola Ken Barozzi, et al. Apache AntTM manual. http:
//ant.apache.org/manual/.

[2] Greg Bollella, James Gosling, Benjamin Brosgol, Peter Dibble, Steve Furr,

and Mark Turnbull. The Real-Time Specification for Java. Addison-Wesley,

2000.

[3] Peter C. Dibble. Real-Time Java Platform Programming. Prentice-Hall,

2002.

[4] James Gosling, Bill Joy, Guy Steele, Gilad Bracha, and Alex Buckley. The
Java Language Specification, Java SE 8 Edition. Addison-Wesley, 2014.

[5] Mike Jones. What really happened on Mars? http://research.
microsoft.com/˜mbj/Mars_Pathfinder/, 1997.

[6] Muhammad Khojaye. Finalization and phantom references. http:
//java.dzone.com/articles/finalization-and-phantom,

2010.

[7] Sheng Liang. Java Native Interface: Programmer’s Guide and Specification.

Addison-Wesley, 1999.

[8] QNX Software Systems Limited. QNX software development platform

6.6. http://www.qnx.com/developers/docs/660/index.
jsp, 2014.

[9] Tim Lindholm, Frank Yellin, Gilad Bracha, and Alex Buckley. The Java
Virtual Machine Specification, Java SE 8 Edition. Addison-Wesley, 2014.

[10] C. L. Liu and J. W. Wayland. Scheduling algorithms for multiprogramming

in hard real-time environment. Journal of the ACM, 20, 1973.

[11] Fridtjof Siebert. Concurrent, parallel, real-time garbage-collection. In ACM
Sigplan Notices, volume 45, pages 11–20, 2010.

307

308 BIBLIOGRAPHY

[12] Wind River Systems. VxWorks 7 File System Programmer’s Guide, 6th edi-

tion, 2016.

[13] Wind River Systems. VxWorks 7 Programmer’s Guide, 11th edition, 2016.

Index of Environment Variables

CLASSPATH

vm, 157

JAMAICA

builder, 203

installation, 27, 28

jaraccelerator, 218

JAMAICA BUILDER HEAPSIZE

builder, 203

JAMAICA BUILDER JAVA

STACKSIZE

builder, 204

JAMAICA BUILDER

MAXHEAPSIZE

builder, 203

JAMAICA BUILDER NATIVE

STACKSIZE

builder, 204

JAMAICA BUILDER

NUMTHREADS

builder, 204

JAMAICA DEBUGCALLJAVA

vm, 303

JAMAICA DEBUGCALLNATIVE

vm, 303

JAMAICA DEBUGGROUP

vm, 303

JAMAICA DEBUGLEVEL

vm, 303

JAMAICA DEBUGOUTPUT

vm, 304

JAMAICA JARACCELERATOR

HEAPSIZE

jaraccelerator, 218

JAMAICA JARACCELERATOR

JAVA STACKSIZE

jaraccelerator, 218

JAMAICA JARACCELERATOR

MAXHEAPSIZE

jaraccelerator, 218

JAMAICA JARACCELERATOR

NATIVE STACKSIZE

jaraccelerator, 218

JAMAICA JARACCELERATOR

NUMTHREADS

jaraccelerator, 218

JAMAICA VXWORKS ALTIVEC

vm, 283

JAMAICAC HEAPSIZE

jamaicac, 145

JAMAICAC JAVA STACKSIZE

jamaicac, 145

JAMAICAC MAXHEAPSIZE

jamaicac, 145

JAMAICAC NATIVE STACKSIZE

jamaicac, 146

JAMAICAH HEAPSIZE

jamaicah, 237

JAMAICAH MAXHEAPSIZE

jamaicah, 238

JAMAICAVM ANALYZE

309

310 INDEX OF ENVIRONMENT VARIABLES

vm, 158

JAMAICAVM CONSTGCWORK

vm, 158

JAMAICAVM CPUS

vm, 158

JAMAICAVM HEAPSIZE

vm, 157

JAMAICAVM

HEAPSIZEINCREMENT

vm, 157

JAMAICAVM IMMORTALSIZE

vm, 158

JAMAICAVM JAVA STACKSIZE

vm, 157

JAMAICAVM LOCK MEMORY

vm, 158

JAMAICAVM MAXHEAPSIZE

vm, 157

JAMAICAVM

MAXNUMTHREADS

vm, 157

JAMAICAVM NATIVE

STACKSIZE

vm, 157

JAMAICAVM NUMJNITHREADS

vm, 157

JAMAICAVM NUMTHREADS

vm, 157

JAMAICAVM PRIMAP

vm, 157

JAMAICAVM

PROFILEFILENAME

vm, 158

JAMAICAVM

RESERVEDMEMORY

vm, 158

JAMAICAVM SCHEDULING

POLICY

vm, 157

JAMAICAVM SCOPEDSIZE

vm, 158

JAMAICAVM TIMESLICE

vm, 157

PATH

QNX, 271

QNX HOST

QNX, 271

QNX TARGET

QNX, 271

VSB DIR

VxWorks, 279

WIND BASE

VxWorks, 278

WIND HOME

VxWorks, 278

WIND USR

VxWorks, 279

Index of Options

-?

builder, 172

jamaicah, 236

jaraccelerator, 207

vm, 149

-A

jamaicac, 144

-agentlib

builder, 172

vm, 156

-analyse

builder, 191

-analyseFromEnv

builder, 191

-analyze

builder, 191

-analyzeFromEnv

builder, 191

-atomicGC

builder, 192

-autoSeal

jaraccelerator, 208

-bootclasspath

jamaicac, 142

jamaicah, 237

-classname

jamaicah, 237

-classpath

builder, 173

jamaicah, 237

vm, 148

-closed

builder, 181

-compile

builder, 178

-configuration

builder, 173

jaraccelerator, 208

-constGCwork

builder, 191

-constGCworkFromEnv

builder, 192

-cp

builder, 173

jamaicac, 142

jamaicah, 237

-D

vm, 148

-d

jamaicac, 142

jamaicah, 237

-da

vm, 149

-deprecation

jamaicac, 143

-destination

builder, 176

jaraccelerator, 208

-disableassertions

311

312 INDEX OF OPTIONS

vm, 149

-disablesystemassertions

vm, 149

-dsa

vm, 149

-dwarf2

builder, 199

jaraccelerator, 213

-ea

builder, 174

vm, 149

-enableassertions

builder, 174

vm, 149

-enablesystemassertions

vm, 149

-encoding

jamaicac, 144

-endorseddirs

jamaicac, 142

-esa

vm, 149

-excludeClasses

builder, 175

-excludeFromCompile

builder, 180

jaraccelerator, 210

-excludeJAR

builder, 175

-extdirs

jamaicac, 142

-g

jamaicac, 144

-h

builder, 172

jamaicac, 143

jamaicah, 236

jaraccelerator, 207

-heapSize

builder, 183

-heapSizeFromEnv

builder, 184

-heapSizeIncrement

builder, 183

-heapSizeIncrementFromEnv

builder, 185

-help

builder, 172

jamaicac, 145

jamaicah, 236

jaraccelerator, 207

vm, 149

-immortalMemorySize

builder, 194

-immortalMemorySizeFromEnv

builder, 194

-implicit

jamaicac, 143

-includeClasses

builder, 174

-includeFilename

jamaicah, 237

-includeInCompile

builder, 180

jaraccelerator, 210

-includeJAR

builder, 175

-inline

builder, 180

jaraccelerator, 210

-interpret

builder, 178

-J

jamaicac, 145

-jar

builder, 174

-javaagent

vm, 148

INDEX OF OPTIONS 313

-javaStackSize

builder, 184

-javaStackSizeFromEnv

builder, 185

-jni

jamaicah, 236

-jobs

builder, 173

jaraccelerator, 207

-js

vm, 151

-lockMemory

builder, 185

-main

builder, 174

-maxHeapSize

builder, 183

-maxHeapSizeFromEnv

builder, 185

-maxNumThreads

builder, 186

-maxNumThreadsFromEnv

builder, 188

-mi

vm, 151

-ms

vm, 151

-mx

vm, 151

-nativeStackSize

builder, 184

-nativeStackSizeFromEnv

builder, 185

-nowarn

jamaicac, 143

-ns

vm, 152

-numJniAttachableThreads

builder, 187

-numJniAttachableThreadsFromEnv

builder, 188

-numThreads

builder, 186

-numThreadsFromEnv

builder, 188

-o

builder, 176

jamaicah, 237

jaraccelerator, 208

-object

builder, 195

-optimise

builder, 180

jaraccelerator, 210

-optimize

builder, 180

jaraccelerator, 210

-parallel

builder, 190

jaraccelerator, 211

-parameters

jamaicac, 143

-percentageCompiled

builder, 179

jaraccelerator, 209

-physicalMemoryRanges

builder, 194

-priMap

builder, 188

-priMapFromEnv

builder, 190

-proc

jamaicac, 144

-processor

jamaicac, 144

-processorpath

jamaicac, 144

-profile

314 INDEX OF OPTIONS

builder, 179

jamaicac, 143

-rawMemoryRanges

builder, 195

-reservedMemory

builder, 193

-reservedMemoryFromEnv

builder, 193

-resource

builder, 176

-s

jamaicac, 143

-saveSettings

builder, 173

jaraccelerator, 207

-schedulingPolicy

builder, 190

-schedulingPolicyFromEnv

builder, 190

-scopedMemorySize

builder, 194

-scopedMemorySizeFromEnv

builder, 194

-setFonts

builder, 177

-setGraphics

builder, 177

-setLocales

builder, 177

-setProtocols

builder, 178

-showExcludedFeatures

builder, 182

-showIncludedFeatures

builder, 182

-showNumberOfBlocks

builder, 183

-showSettings

builder, 173

jaraccelerator, 207

-showversion

vm, 149

-smart

builder, 181

-source

jamaicac, 143

jaraccelerator, 209

-sourcepath

jamaicac, 142

-ss

vm, 151

-stopTheWorldGC

builder, 192

-target

builder, 181

jamaicac, 143

jaraccelerator, 211

-threadPreemption

builder, 187

jaraccelerator, 211

-timeSlice

builder, 187

-timeSliceFromEnv

builder, 188

-tmpdir

builder, 176

jaraccelerator, 208

-useProfile

builder, 179

jaraccelerator, 209

-useTarget

jamaicac, 141

-verbose

builder, 172

jamaicac, 145

jaraccelerator, 207

vm, 150

-version

INDEX OF OPTIONS 315

builder, 172

jamaicac, 145

jamaicah, 237

jaraccelerator, 207

vm, 149

-Werror

jamaicac, 144

-X

jamaicac, 145

vm, 150

-XavailableTargets

builder, 200

jaraccelerator, 214

-Xbatch

vm, 152

-Xbootclasspath

builder, 197

jamaicah, 237

vm, 150

-Xbootclasspath/a

vm, 150

-Xbootclasspath/p

vm, 151

-Xcc

builder, 199

jaraccelerator, 213

-XCFLAGS

builder, 199

jaraccelerator, 213

-Xcheck

builder, 203

vm, 152

-Xcomp

vm, 152

-Xcpus

builder, 201

vm, 151

-XcpusFromEnv

builder, 202

-XdefineProperty

builder, 196

-XdefinePropertyFromEnv

builder, 196

-XexcludeLongerThan

builder, 199

jaraccelerator, 213

-XfullStackTrace

builder, 198

jaraccelerator, 212

-Xhelp

builder, 172

jamaicah, 236

jaraccelerator, 207

-xhelp

vm, 150

-XignoreLineNumbers

builder, 196

jaraccelerator, 212

-Xinclude

builder, 203

jaraccelerator, 215

-Xint

builder, 178

vm, 152

-XjamaicaHome

builder, 197

jaraccelerator, 212

-XjavaHome

builder, 197

-Xjs

vm, 151

-XlazyConstantStrings

builder, 197

-XlazyConstantStringsFromEnv

builder, 197

-Xld

builder, 199

jaraccelerator, 213

-XLDFLAGS

builder, 199

316 INDEX OF OPTIONS

jaraccelerator, 213

-Xlibraries

builder, 200

jaraccelerator, 214

-XlibraryPaths

builder, 200

jaraccelerator, 214

-XloadJNIDynamic

builder, 202

-Xmi

vm, 151

-Xmixed

vm, 152

-Xms

vm, 151

-Xmx

vm, 151

-XnoClasses

builder, 198

-XnoMain

builder, 198

-XnoStrip

builder, 200

jaraccelerator, 214

-Xns

vm, 152

-XnumMonitors

builder, 201

-XnumMonitorsFromEnv

builder, 201

-XobjectProcessorFamily

builder, 203

jaraccelerator, 215

-XobjectSymbolPrefix

builder, 203

jaraccelerator, 215

-Xprof

vm, 152

-XprofileFilename

builder, 198

vm, 156

-XprofileFilenameFromEnv

builder, 198

-Xss

vm, 151

-XstaticLibraries

builder, 200

jaraccelerator, 214

-Xstrip

builder, 199

jaraccelerator, 213

-XstripOptions

builder, 200

jaraccelerator, 214

-XuseMonotonicClock

builder, 202

-XuseMonotonicClockFromEnv

builder, 202

-XX:+DisplayVMOutputToStderr

vm, 153

-XX:+DisplayVMOutputToStdout

vm, 153

-XX:MaxDirectMemorySize

builder, 185

vm, 153

-XX:OnOutOfMemoryError

vm, 153

Index of VM Properties

jamaica.awt.dispatchthread.priority,

159

jamaica.boot.class.path, 164

jamaica.buildnumber, 165

jamaica.byte order, 165

jamaica.cost monitoring accuracy,

159

jamaica.cpu mhz, 159

jamaica.err to file, 159

jamaica.err to null, 159

jamaica.finalizer.pri, 74, 83, 159

jamaica.fontproperties, 160, 255

jamaica.full stack trace on sig quit,

160

jamaica.heapSizeFromEnv, 165

jamaica.immortalMemorySize, 165

jamaica.jaraccelerator.check.class,

160, 217

jamaica.jaraccelerator.debug.class,

160, 217

jamaica.jaraccelerator.extraction.dir,

160, 217

jamaica.jaraccelerator.load, 161, 217

jamaica.jaraccelerator.verbose, 161,

217

jamaica.loadLibrary ignore error,

161

jamaica.maxNumThreadsFromEnv,

165

jamaica.monotonic

currentTimeMillis, 159

jamaica.no sig int handler, 75, 161

jamaica.no sig quit handler, 75, 161

jamaica.no sig term handler, 75,

161

jamaica.numThreadsFromEnv, 165

jamaica.out to file, 162

jamaica.out to null, 162

jamaica.profile force dump, 162

jamaica.profile groups, 53, 162

jamaica.profile quiet dump, 162

jamaica.profile request port, 51, 162

jamaica.reference handler.pri, 74,

83, 162

jamaica.release, 165

jamaica.reservation thread affinity,

163

jamaica.reservation thread priority,

163

jamaica.scheduler events port, 163,

221

jamaica.scheduler events port

blocking, 163, 221

jamaica.scheduler events recorder

affinity, 163

jamaica.scopedMemorySize, 165

jamaica.softref.minfree, 163

jamaica.version, 165

jamaica.word size, 165

jamaica.x11.display, 163

317

318 INDEX OF VM PROPERTIES

jamaica.xprof, 164

java.class.path, 164

java.home, 164

javax.realtime.version, 165

sun.arch.data.model, 165

user.dir, 289

