JamaicaVM 8.11 — User Manual

Java Technology for Critical Embedded Systems

aicas GmbH

JamaicaVM 8.11 — User Manual: Java Technology for Critical Embedded
Systems

JamaicaVM 8.11.1-0. Published December 17, 2025.
©2001-2025 aicas GmbH, Karlsruhe. All rights reserved.

No licenses, expressed or implied, are granted with respect to any of the technology described in
this publication. aicas GmbH retains all intellectual property rights associated with the
technology described in this publication. This publication is intended to assist application
developers to develop applications only for the Jamaica Virtual Machine.

Every effort has been made to ensure that the information in this publication is accurate. aicas
GmbH is not responsible for printing or clerical errors. Although the information herein is
provided with good faith, the supplier gives neither warranty nor guarantee that the information is
correct or that the results described are obtainable under end-user conditions.

aicas GmbH phone +49 721 663 968-0
Emmy-Noether-StraBe 9 fax +49 721 663 968-99
76131 Karlsruhe email info@aicas.com
Germany web http://www.aicas.com
aicas America Limited phone +1 203 359 5705

4023 Kennett Pike, Suite 810

Wilmington, DE 19807 email 1info@aicas.com

USA web http://www.alcas.com

This product includes software developed by IAIK of Graz University of Technology. This
software is based in part on the work of the Independent JPEG Group. This product includes
software that is derivative of the work by Markus Kuhn licensed under CC BY 4.0. This product
includes the Elliptic Curve Cryptography library, copyright Oracle America, Inc. It is licensed
under LGPL v2.1 and GPL v2 with the classpath exception. This product is based in part on the
work of the FreeType Project.

Java and all Java-based trademarks are registered trademarks of Oracle America, Inc. All other
brands or product names are trademarks or registered trademarks of their respective holders.
ALL IMPLIED WARRANTIES ON THIS PUBLICATION, INCLUDING IMPLIED
WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE,
ARE LIMITED IN DURATION TO NINETY (90) DAYS FROM THE DATE OF THE
ORIGINAL RETAIL PURCHASE OF THIS PRODUCT.

Although aicas GmbH has reviewed this publication, aicas GmbH MAKES NO WARRANTY
OR REPRESENTATION, EITHER EXPRESSED OR IMPLIED, WITH RESPECT TO THIS
PUBLICATION, ITS QUALITY, ACCURACY, MERCHANTABILITY OR FITNESS FOR A
PARTICULAR PURPOSE. AS A RESULT, THIS PUBLICATION IS PROVIDED AS IS, AND
YOU, THE PURCHASER, ARE ASSUMING THE ENTIRE RISK AS TO ITS QUALITY AND
ACCURACY.

IN NO EVENT WILL aicas GmbH BE LIABLE FOR DIRECT, INDIRECT, SPECIAL,
INCIDENTAL, OR CONSEQUENTIAL DAMAGES RESULTING FROM ANY DEFECT OR
INACCURACY IN THIS PUBLICATION, even if advised of the possibility of such damages.

THE WARRANTIES SET FORTH ABOVE ARE EXCLUSIVE AND IN LIEU OF ALL
OTHERS, ORAL OR WRITTEN, EXPRESSED OR IMPLIED.

Contents

[Prefacel

[Contacting aicas|. i

hat 1 mn JamaicaVM 810
hat 1s New 1n JamaicaVM 89

I Intr 10N

(1 Key Features of JamaicaVM|

(1.2 Real-Time Specification for Java (RTSJ) Support|
(1.3 Minimal footprintf oL

(1.5 Nativecodesupport|,
(1.6 Dynamic Linking|
(1.7 Supported Platforms|
(1.7.1 Development platforms|.
(1.7.2 Target platforms|

3

13
13
14
14
14
15
15
15
16
16
17
17
17
18

4 CONTENTS
27 Getting Started| 27
2.1 Installation of JamaicaVM| 27
RIT Lnuxl . . o oo oot e 28

212 Windows| 30

[2.2 Installation of License Keys| 30
[2.3 JamaicaVM Directory Structure| 31
2.3.1 API Specification| 33

[2.3.2 Target Plattorms| 33

2.4 Building and Running a Java Program| 33
2.4.1 HostPlatforml. 34

2.4.2 Target Platform| 35

[2.4.3 Improving Size and Performance|. 36

[2.4.4 Overview of Further Examples|. 37

2.5 Notations and Conventions| 37
[2.5.1 Typographic Conventions| 37

[2.5.2 Argument Syntax|, 38

2 maica Home an rHomel. 39
3__Tools Overview| 41
3.1 JavaCompiler|, 41
3.2 Jamaica Virtual Machinel, 42
[3.3 Creating Target Executables| 42
[3.4 Accelerating JARFiles|, 43
[3.5 Monitoring Realtime Behavior] 43

{4 Support for the Eclipse IDE] 45
4.1 Plug-ininstallation| 45
4.1.1 Installationon Eclipse] 45

“.1.2 Installation on Other IDEs| 46

4.2 Setting up JamaicaVM Distributions|o 0oL 47
4.3 Using JamaicaVM 1n Java Projects| 47
4.4 Setting Virtual Machine Parameters, 47
4.5 Bulding applications with Jamaica Buildery 48
4.5.1 Gettingstarted 48

M52 JamaicaBuildfiled 48

II Tools Usage and Guidelines| 51
[S Performance Optimization| 53
[5.1 Creatingaprofilel 53

CONTENTS

[5.1.1 Using the profiling VM|.
[5.1.2 Creating a profiling application|
[5.1.3 Dumping a profile vianetwork|
[5.1.4 Creatingamicroprofile|]

[5.2 Using a profile for building an application|
[5.2.1 Analyzing Profiles|
[5.2.2 Using multiple profiles|
[5.2.3 Providing the profiling information to the building tools|

53

Interpreting the profiling output|.

[3.3.1 Formatoftheprofilefile|
[5.3.2 Example] 0o
[6 Reducing Footprint and Memory Usage|
6.1 Compilation|
[6.1.1 Suppressing Compilation|.
[6.1.2 Using Default Compilation|.
[6.1.3 Using a Custom Profile|
[6.1.4 Code Optimization by the C Compiler|
[6.1.5 Full Compilation|
(6.2 SmartLinking|.
[6.3 API Library Classes and Resources|.
6.4 RAMUsage|.
[6.4.1 Measuring RAM Demand|
[6.4.2 Memory Required for Threads|
[6.4.3 Memory Required for Line Numbers|
(7 Memory Management Configuration|
[7.1 Configuration for soft-realtime applications|

(/.1.1 Imtial heapsizel
(/.1.2 Maximum heapsize|
(7.1.3 Finalizer thread priority|
[7.1.4 Reference Handler thread priority]
[/.1.5 Reserved memory|
[7.1.6

Stop-the-world Garbage Collection|

[7.1.7 Recommendations|

72

Configuration for hard-realtime applications|

[7.2.1 Usage of the Memory Analyzertool|
[7.2.2 Measuring an application’s memory requirements|
[7.2.3 Fine tuning the final executable application|
[7.2.4 Constant Garbage Collection Workl
[7.2.5 Comparing dynamic mode and constant GC work mode]

54
54
55
56
56
57
57
58
58
59
64

67
67
67
69
70
73
74
75
77
78
78
80
83

87
87
87
88
88
&9
89
91
91
92
92
92
94
96

6 CONTENTS
[12.6 Determination of the worst case execution time of anal- |

[location| 98
(7.2°7 Examples| oo 98

(8 Debugging Support| 101
(8.1 Enabling the Debugger Agent| 101
[8.2 Connecting to Jamaica from the Command Linef 102
[8.2.1 Using sockets as transport layer] 102

[8.2.2 Using shared memory as transport layer| 103

[8.3 Configuring the IDE to connect to Jamaical. 103
(8.4 Reference Information| 105

[9 The Realtime and Embedded Specification for Javal 107
[9.1 Realtime programming with the RTSJ| 108
(09.1.1 Thread Scheduling| 109

0.1.2 Thread Priorities| 109

0.1.3 Affinmty| 109

9.1.4 Synchronization| 110

1 Events and Event Handlers| 110

0.1.6 Example], 110

[9.2 Realtime Garbage Collection| 111
09.2.1 Useof Memory Areas| 112

0.2.2 Static Imtializers| L. 112

[9.3 JamaicaVM and the Realtime and Embedded Specification for Javal 113

4 Extra Features and Trade-Offs| 113

[9.5 Computational Transparency| 113

1 Efficien ments| 114

[9.5.2 Non-Obvious Slightly Inefficient Constructs|. 116

[9.5.3 Statements Causing Implicit Memory Allocation| 117

[9.5.4 Operations Causing Class Initialization| 119

[9.5.5 Operations Causing Class Loading|. 120

[9.6 Supported Standards| L. 121
[9.6.1 Real-Time Specification forJaval 121

0.6.2 Java Native Interfacel 123

9.7 Memory Management|. 124
[09.7.1 Memory Management of RTSJ|. 124

072 Finalizers| 126

[9.7.3 Configuring a Realtime Garbage Collector|. 127

[9.7.4 Programming with the RTSJ and Realtime Garbage Col- [

[lection|. 127

[9.7.5 Memory Management Guidelmes| 129

CONTENTS 7

[9.8 Scheduling and Synchronization| 129
0.8.1 Schedulable Entities] 129
[9.8.2 Synchronization| 131
[9.8.3 Scheduling and Priorities| 134

0.9 labrariesl. 136

[9.10 Summary| 136
(9.10.1 Effictency|. oL 137
[9.10.2 Memory Allocation|. 137
9.10.3 EventHandlers| 137
9.104 Monitors| 138

10_Multicor idelin: 139

(10.1 Tool Usagel 139

(10.2 Setting Thread Affimities| 140
(10.2.1 Communication through Shared Memory| 140
(10.2.2 Performance Degradation on Locking| 141
(10.2.3 Periodic Threads| 141
(10.2.4 Rate-Monotonic Analysts| 142
(10.2.5 The Operating System’s Interrupt Handler{ 142

T _Tools Reference 143
(11 The Jamaica Virtual Machine Commands| 145

[1T.1 jamaicavm — the Standard Virtual Machine| 145
(IT.1.1 Command Line Options| 146
(11.1.2 Extended Command Line Options| 148

(11.2 Running a VM on a Target Device| 151

(11.3 Variants of jamaicavm| 152
(11.3.1 jamaicavm_shm|. 152
(11.3.2 jamaicavmm| 152
(11.3.3 jamaicavmp|. 153
(11.3.4 jamaicavmt] 154

(I1.4 Environment Variables|, 154

(11.5 Java Properties| 156
(11.5.1 User-Definable Properties| 156
(11.5.2 Predefined Properties| 162

11.6 Exitcodes| 164

8 CONTENTS

(12 The Jamaica Profile Analyzer| 167
(12.1 Profile Analyzer Usage| 168
[12.2 Profile Analyzer Options| 168

(12.2.1 Analysis| 168
(12.2.2 Output] 170
0223 Generall 170
(12.3 Environment Variablesl 171
(2.4 Exitcodesl 171

I3 The Jamaica Builder] 173
13.1 How the Builder tool works|. 173
(13.2 Builder Usage| 173

(13.2.1 Using Arguments| 175
13.2.2 nerallo 177
(13.2.3 Smart Linking| 179
(13.2.4 Classes, filesand paths| 181
(13.2.5 RTSJIsettings| 186
(13.2.6 Heap and stack configuration|. 187
(13.2.7 GCconfiguration| 190
(13.2.8 Threads and priorities| 193
13.2 wvecodef 196
[13.2.10 Profiling and compilation|. 196
(13.2.11 Parallel Execution| 199
(13.3 Builder Extended Usage| 199
13.3.1 nerall 200
(13.3.2 Classes, filesand paths| 201
(13.3.3 RTSJsettings| 203
(13.3.4 Threads and priorities| 203
(1335 Nativecodel oL 204
[13.3.6 Profiling and compilation|. 205
(13.3.7 Parallel Executionl 208
13.4 Environment Variablesl 208
1 Exitcodeslo 209

(14 The Jamaica JAR Accelerator] 211

(14.1 JAR Accelerator Usage| 212
(14.1.1 Classes, filesand paths| 212
(14.1.2 Profiling and compilation|. 213
(M4.1.3 Generall 215
(14.1.4 Threads and priorities| 217

14.1.5 Parallel Executionl 217

CONTENTS 9

(14.2 JAR Accelerator Extended Usage|. 218
(14.2.1 Classes, filesand paths| 218
(14.2.2 Profiling and compilation|. 218
1423 Generall 221
1424 Nativecode| L. 221

(14.3 Special Considerations| 221
(14.3.1 Which Methods are Compiled| 222
(14.3.2 Compilation and Sealing| 222
(1433 AtRuntimel L. 223

(14.4 Environment Variablesl 224

145 Exitcodes| 224

15 Jamaica JRE Tools and Utilities 227
(16 JamaicaTrace| 229

(16.1 Runtime System Configuration| 230

(16.2 Control Window|. 230
(16.2.1 Creating UserEvents| 233
(16.2.2 Control WindowMenul 235

(16.3 Data Windowlo 236
(16.3.1 Understanding the Scheduler|. 236
(16.3.2 Data Window Navigation|. 237
(16.3.3 Data WindowMenu| 238
16.3.4 Data Window Context Window| 240
(16.3.5 Data Window Tool Tips| 240

(16.4 EventRecorden 240
[6.41 Tocationl 241

6.4 ge| . .. 241
(17 Jamaica and the Java Native Interface (JNI)| 243

7.7 UsingJNT 243

17.2 The Jamaicah Command| 246
(1721 Generall, 246
(17.2.2 Classes, files, and paths|. 248
17.2.3 Environment Variables| 248

[17.3 Finding Problems in JNI Code 248

[[74 FPUFlagsinJNITCode] 249

1 In Ion APIlo 249
(17.5.1 Example code that creates a Jamaica VM| 249
(17.5.2 Compilation and Linkage|. 251

(17.5.3 Using the Jamaica Buildery 251

10 CONTENTS

(18 Building with Apache Ant] 253
[I8.1 Task Declarationl 253
[18.2 Task Usage| 254

[18.2.1 Jamaica Builder, JAR Accelerator, Jamaicah, and Profile |

| Analyzer] 254

(1822 CCompiler| 255
18.2 iwvelinkero oo 257
[18.3 Setting Environment Variables| 258

(19 Building with Apache Maven| 259
(19.1 Plug-in Installation| 259
(19.2 Plug-inUsage| 259

(19.2.1 Calling the Builder, JAR Accelerator, Profile Analyzer [

[and Jamaicahl Lo oo 260

(19.2.2 Calling the CCompilery. 262
[19.2.3 Calling the Native Linker{. 263
[19.3 Setting Environment Variables| 265

ILV__Additional Information| 267

(A" FAQ — Frequently Asked Questions| 269
[A.1 Software Development Environments| 269
(A2 JamaicaVMand Its Toolsl 270

2.1 maicaVM| Lo 270

A2.2 JamaicaVM Builden 271
[A.2.3 Third Party Tools| 274

[A.3 Supported Technologies|. 274
[A.3.1 Cryptography| L 274
[A.3.2 Graphics| o 276
N 2 277
[A.3.4 Realtime Support and the RTSJ| 278

(B Operating Systems| 279

BILIMuxl . . .o oo 279
B.1.1 _Secure Randoml| 279
B.1.2 Thread Priorities| 279
[B.1.3 System Time Overflow| 279
B.1.4 TLimitations| 280

B OS-91. . . . e 281

CONTENTS

[B.3.2 Configuration of QNX|

[B.3.3 Using JamaicaVM on QNX|

B.4 _VxWorks .

[B.4.1 Configuration of VxWorks|

[B.4.4 Starting an Application| L.

B45 SecureRandom|.

B.5 Windows| .

B.5.1

B.5.2 Tamitationsl

[C Heap Usage for Java Datatypes|

Limitation

D > y| . .

[D.2 Cryptographic Strength|

[D.3" Thread and Data Capacity, Timers|

D.4 Buldern . .

[D.6 Temporary Files|.

[D.7 File System|

[E_Licenses|

11

281
281
281
282
282
282
283
284
286
287
287
290
291
291
293
293
293
297
297
297

299

301
301
301
302
304
305
306
306

307

12

CONTENTS

Preface

The Java programming language, with its clear syntax and semantics, is used
widely for the creation of complex and reliable systems. Development and main-
tenance of these systems benefit greatly from object-oriented programming con-
structs such as dynamic binding and automatic memory management. Anyone
who has experienced the benefits of these mechanisms on software development
productivity and improved quality of resulting applications will find them essen-
tial when developing software for embedded and time-critical applications.

This manual describes JamaicaVM, a Java implementation that brings tech-
nologies that are required for embedded and time critical applications and that are
not available in classic Java implementations. This enables this new application
domain to profit from the advantages that have provided an enormous boost to
most other software development areas.

Intended Audience of This Book

Most developers familiar with Java environments will quickly be able to use the
tools provided with JamaicaVM to produce immediate results. It is therefore
tempting to go ahead and develop your code without studying this manual fur-
ther.

Even though immediate success can be achieved easily, we recommend that
you have a closer look at this manual, since it provides a deeper understanding of
how the different tools work and how to achieve the best results when optimizing
for runtime performance, memory demand or development time.

The JamaicaVM tools provide a myriad of options and settings that have been
collected in this manual. Developing a basic knowledge of what possibilities are
available may help you to find the right option or setting when you need it. Our
experience is that significant amounts of development time can be avoided by a
good understanding of the tools. Learning about the correct use of the JamaicaVM
tools is an investment that will quickly pay-off during daily use of these tools!

This manual has been written for the developer of software for embedded and
time-critical applications using the Java programming language. A good under-

13

14 CONTENTS

standing of the Java language is expected from the reader, while a certain fa-
miliarity with the specific problems that arise in embedded and realtime system
development is also helpful.

This manual explains the use of the JamaicaVM tools and the specific fea-
tures of the Jamaica realtime virtual machine. It is not a programming guidebook
that explains the use of the standard libraries or extensions such as the Real-Time
Specification for Java. Please refer to the JavaDoc documentation of these li-
braries provided with JamaicaVM (see Section [2.3).

Contacting aicas

Please note that the user manual describes functionality linked to some OS-hardware
platforms that are only available on demand. Not all of these platforms are neces-
sarily being shipped with the current version.

Please contact aicas to obtain a copy of JamaicaVM for your specific hardware
and RTOS requirements, or to discuss licensing questions for the Jamaica binaries
or source code. The full contact information for the aicas offices is reproduced in
the front matter of this manual (page [2).

An evaluation version of JamaicaVM may be downloaded from the aicas web
site athttps://www.aicas.com/wp/jamaicavm—evaluationl

Please help us improve this manual and future versions of JamaicaVM. E-mail
your bug reports and comments to bugs@aicas . com. Please include the exact
version of JamaicaVM you use, the host and target systems you are developing for
and all the information required to reproduce the problem you have encountered.

What is New in JamaicaVM 8.11

Version 8.11 of JamaicaVM switched the host support from Ubuntu 20.04 LTS
to Ubuntu 24.04 LTS. This version also reintroduced OS-9 as a target system,
updating and extending its support.

Further changes and updates include the following:

* JamaicaVM is now based on standard classes of OpenJDK version jdk8u472
and is shipped with OpenJDK’s root CA certificates based on that version.

What is New in JamaicaVM 8.10

Version 8.10 of JamaicaVM extends the host support to RHEL version 9. As target
platforms, JamaicaVM extends support to VxWorks 24.03 and QNX 8.0.

https://www.aicas.com/wp/jamaicavm-evaluation
mailto:bugs@aicas.com

CONTENTS 15

Further changes and updates include the following:

* JamaicaVM is now based on standard classes of OpenJDK version jdk8u432
and is shipped with OpenJDK’s root CA certificates based on that version.

* Support for RTSJ 2.0, started with JamaicaVM 8.8, is now completed and
fully tested.

* JamaicaVM now supports JNI version 1.8 and the linking of JNI code in
static libraries.

* JamaicaVM now supports the Invocation API, making it possible to start
the VM from C/C++ code via JNI.

What is New in JamaicaVM 8.9

* JamaicaVM now offers muticore support for CentOS 8.

* By supporting an “idle” scheduling level, this release improves RTSJ en-
forcement of processor usage limits. This improvement applies to systems
with completely fair scheduling (CFS) and comparable fair scheduling ap-
proaches.

What is New in JamaicaVM 8.8

* The profiling VM (jamaicavmp) now provides a new profile group named
classpath. By enabling this group, the code sources from where the
classes are loaded will be tracked. This allows the profile analyzer to select
certain code sources for the analysis.

* JamaicaVM is now based on standard classes of OpenJDK version jdk8u402
and is shipped with OpenJDK’s root CA certificates based on that version.

* Additional RTSJ 2.0 support now includes packages javax.realtime.
memory, javax.realtime.posixand javax.realtime.control.

What is New in JamaicaVM 8.7

Version 8.7 of JamaicaVM switched the host support from CentOS/RHEL ver-
sion 8 to Ubuntu 20.04 LTS. It now supports Raspberry Pi 64-bit OS as a target
platform.

Further changes and updates include the following:

16 CONTENTS

* JamaicaVM is now based on standard classes of OpenJDK version jdk8u332
and is shipped with OpenJDK'’s root CA certificates based on that version.

* Adjusting the sun.misc.Unsafe class to OpenJDK permits JamaicaVM
to better support several libraries (e.g., Netty and LMAX Disruptor).

* JamaicaVM is no longer shipped with the jamaicac compiler, with javac
from OpenJDK being aicas’ recommended replacement.

What is New in JamaicaVM 8.6

Version 8.6 of JamaicaVM adds support for Linux running on RISC-V as target
platform. It also supports QNX 7.1.0 as a target platform.
Further changes and updates include the following:

* Jamaica is now based on standard classes of OpenJDK version jdk8u302
and is shipped with OpenJDK’s root CA certificates based on that version.

* The implementation of the ProcessBuilder on QNX now uses posix_
spawn (). The tool jspawnhelper is required on QNX devices, being
part of the JamaicaVM distribution, to be found in 1ib/<arch> within
the target/gnx—<arch> folder.

What is New in JamaicaVM 8.5

JamaicaVM 8.5 introduces the Profile Analyzer as new tool. This tool takes in-
put from the profiling VM (jamaicavmp), analyzes that input, and passes the
results of the analysis to the Builder. As part of the analysis, the Profile Analyzer
identifies the methods that should be prioritized for compilation and, by doing so,
contributes to the creation of smaller and faster applications. For more details on
the Profile Analyzer, see Chapter

A new feature of JamaicaVM 8.5 is that used resources are now tracked by
jamaicavmp. This information is processed by the Profile Analyzer and passed
to the Builder. Therefore, manually including those resources when building an
application is no longer necessary.

Further notable new features include the following:

* JamaicaVM is now based upon the standard classes of OpenJDK 1.8.0_252
and is shipped with OpenJDK’s root CA certificates from that version.

* In addition to using Apache Ant it is now also possible to use Apache Maven
for building applications. See Chapter [I9] for details on the JamaicaVM
Maven Plug-in.

CONTENTS 17

What is New in JamaicaVM 8.3

Version 8.3 of JamaicaVM adds support for further important APIs. This includes
platform-independent headless graphics, the Java Architecture for XML Binding
(JAXB) and CORBA. The API coverage is now comparable to that of headless
versions of JamaicaVM 6. For more details on headless graphics support, see
Appendix [A.3.2] For a full overview of the unsupported features, please refer
to the UNSUPPORTED file provided with the user documentation (Section [2.3)).
Platform-specific limitations are further discussed in detail in Appendix

What is New in JamaicaVM 8.2

Version 8.2 of JamaicaVM adds support for important APIs of the compact3
profile. This includes the Java Naming and Directory Interface (JNDI) and parts
of the Management API and Extension that are compatible with the supported
platforms and JamaicaVM itself.

The compiler optimizes invocations of the lambda metafactory java.lang.
invoke.LambdaMetafactory. This makes the runtime of lambda expres-
sions in Java code more deterministic and can improve the performance.

Notable are also the following new features:

* Elliptic Curve Cryptography is now supported on Linux, QNX and Win-
dows. Previously it was only supported on Linux for the x86_64 architec-
ture.

* The profiling VM is now precompiled. This improves the performance of
profile generation and yields better profiles in situations where the uncom-
piled profiling VM runs into timeouts.

» JamaicaVM now prints the stack of the corresponding native thread and
all Java threads when a SIGSEGV or SIGABRT signal is encountered (if
supported by the platform).

What is New in JamaicaVM 8.1

Version 8.1 of JamaicaVM extends the range of platforms supported by Jamaica 8
by Windows as host and VxWorks 7 as target.

The compiler underlying the Builder and JAR Accelerator was redesigned. Its
intermediate representation is now based on static single assignment form. This
enables additional code optimizations and improves runtime performance.

Notable are also the following improvements:

18 CONTENTS

* Several revisions to scheduling avoid potential situations of priority inver-
sion and can lead to improved multicore performance.

* The RTSIJ priority ceiling emulation monitor control policy is now also sup-
ported by the multicore VM.

* Support for locking application memory into RAM preventing jitter caused
by memory being swapped.

* Maximum supported heap size increased to 127GB (on 64-bit systems).

* More graceful handling of 32-bit system timer overflows (year 2038 prob-
lem).

* If the target platform has no configured entropy source, JamaicaVM no
longer falls back to software emulation. (An entropy source is required
by java.security.SecureRandom and APIs that depend on it.)

What is New in JamaicaVM 8.0

With this version of JamaicaVM, aicas opens OpenJDK 8 to the realtime domain.
There are numerous improvements and API extensions, perhaps the most impor-
tant one being lambdas and the stream processing API. Notable is also an en-
hanced API for file handling. JamaicaVM will be available in a number of com-
pact profiles, so users who need fewer APIs can benefit from smaller library sizes.
JamaicaVM 8.0 provides solid support for IPv6.

For a full list of user-relevant changes including changes between minor re-
leases of JamaicaVM, see the release notes, which are provided in the Jamaica
installation, folder doc, file RELEASE_NOTES.

Part I

Introduction

19

Chapter 1

Key Features of JamaicaVM

The Jamaica Virtual Machine (JamaicaVM) is an implementation of the Java Vir-
tual Machine Specification. It is a runtime system for the execution of applications
written for Java Standard Edition (Java SE). It has been designed for realtime and
embedded systems and offers unparalleled support for this target domain. Among
the notable features of JamaicaVM are:

* Hard realtime execution guarantees
 Support for the Real-Time Specification for Java, Version 2.0

* Minimal footprint

ROMable code

* Native code support

* Dynamic linking

* A variety of supported platforms
* Fast execution

» Powerful tools for timing and performance analysis

1.1 Hard Realtime Execution Guarantees

JamaicaVM is the only implementation that provides hard realtime guarantees
for all features of the languages together with high performance runtime effi-
ciency. This includes dynamic memory management, which is performed by the
JamaicaVM garbage collector.

21

22 CHAPTER 1. KEY FEATURES OF JAMAICAVM

All threads executed by the JamaicaVM are realtime threads, so there is no
need to distinguish realtime from non-realtime threads. Any higher priority thread
is guaranteed to be able to preempt lower priority threads within a fixed worst-case
delay. There are no restrictions on the use of the Java language to program real-
time code; since the JamaicaVM executes all Java code with hard realtime guar-
antees, even realtime tasks can use the full Java language, i.e., allocate objects,
call library functions, etc. No special care is needed. Short worst-case execution
delays can be determined for any code.

1.2 Real-Time Specification for Java (RTSJ) Sup-
port

JamaicaVM implements the Real-Time Specification for Java V2.0 (http://
www.rtsj2.orqg), offering an industrial-strength solution for a wide range of
real-time operating systems available on the market. It combines the additional
APIs provided by the RTSJ with the predictable execution obtained through real-
time garbage collection and a realtime implementation of the virtual machine.

1.3 Minimal footprint

Although this is target platform-dependent, one can say that generally JamaicaVM
itself does not occupy a lot of memory space. Therefore small applications that
make limited use of the standard libraries could be expected to fit into less than
10 MB, including the executable and the necessary memory space for heap and
stacks.

The largest part of the memory required to store a Java application is typically
the space needed for the application’s class files and related resources such as
character encodings. Several measures are taken by JamaicaVM to minimize the
memory needed for Java classes:

* Compaction: Classes are represented in an efficient and compact format to
reduce the overall size of the application.

* Smart Linking: JamaicaVM analyzes the Java applications to detect and
remove any code and data that cannot be accessed at runtime.

* Fine-grained control over included resources such as character encodings,
locales, supported protocols, etc.

http://www.rtsj2.org
http://www.rtsj2.org

1.4. ROMABLE CODE 23

Compaction typically reduces the size of class file data by over 50%, while smart
linking allows for much higher gains even for non-trivial applications.

This footprint reduction mechanism allows the usage of complex Java library
code, without worrying about the additional memory overhead: Only code that is
really needed by the application is included and is represented in a very compact
format.

1.4 ROMable code

The JamaicaVM allows class files to be linked with the virtual machine code into
a standalone executable. The resulting executable can be stored in ROM or flash-
memory since all files required by a Java application are packed into the stan-
dalone executable. There is no need for file system support on the target platform,
as all data required for execution is contained in the executable application.

1.5 Native code support

The JamaicaVM implements the Java Native Interface V1.6 (JNI). This allows
for direct embedding of existing native code into Java applications, or to encode
hardware-accesses and performance-critical code sections in C or machine code
routines. The usage of the Java Native Interface provides execution security even
in the presence of native code, while binary compatibility with other Java imple-
mentations is ensured. Unlike other Java implementations, JamaicaVM provides
exact garbage collection even in the presence of native code. Realtime guarantees
for the Java code are not affected by the presence of native code.

1.6 Dynamic Linking

One of the most important features of Java is the ability to dynamically load code
in the form of class files during execution, e.g., from a local file system or from a
remote server. The JamaicaVM supports this dynamic class loading, enabling the
full power of dynamically loaded software components. This allows, for exam-
ple, on-the-fly reconfiguration, hot swapping of code, dynamic additions of new
features, or applet execution.

24 CHAPTER 1. KEY FEATURES OF JAMAICAVM

1.7 Supported Platforms

During development special care has been taken to reduce porting effort of the
JamaicaVM to a minimum. JamaicaVM is implemented in C using the GNU C
compiler. Threads are based on native threads of the operating systemﬂ

1.7.1 Development platforms
Jamaica is available for the following development platforms (host systems):
* Linux

¢ Windows

1.7.2 Target platforms

With JamaicaVM, application programs for a large number of platforms (target
systems) can be built. The operating systems listed in this section are supported
as target systems only. You may choose any other supported platform as a devel-
opment environment on which the Jamaica Builder runs to generate code for the
target system.

1.7.2.1 Realtime Operating Systems
e Linux/RT
« QNX

e VxWorks

1.7.2.2 Non-Realtime Operating Systems

Applications built with Jamaica on non-realtime operating systems may be inter-
rupted non-deterministically by other threads of the operating systems. However,
Jamaica applications are still deterministic and there are still no unexpected inter-
rupts within Jamaica applications themselves, unlike with standard Java Virtual
Machines.

e Linux

¢ Windows

'"POSIX threads under many Unix systems.

1.8. FAST EXECUTION 25

1.7.2.3 Processor Architectures

JamaicaVM is highly processor architecture independent. New architectures can
be supported in a straightforward manner. Currently, Jamaica runs on the follow-
ing processor architectures:

ARMV7-A

ARMVvS-A

e PowerPC

RISC-V

32-bit x86

64-bit x86

Ports to any required combination of target OS and target processor can be sup-
ported. Clear separation of platform-dependent from platform-independent code
reduces the required porting effort for new target OS and target processors. If
you are interested in using Jamaica on a specific target OS and target processor
combination or on any operating system or processor that is not listed here, please
contact aicas.

1.8 Fast Execution

The JamaicaVM interpreter performs several selected optimizations to ensure op-
timal performance of the executed Java code. Nevertheless, realtime and embed-
ded systems are often very performance-critical as well, so a purely interpreted
solution may be unacceptable. Current implementations of Java runtime systems
use just-in-time compilation technologies that are not applicable in realtime sys-
tems as the initial compilation delay breaks all realtime constraints.

The Jamaica compilation technology attacks the performance issue in a new
way: methods and classes can selectively be compiled as a part of the build pro-
cess (static compilation). C-code is used as an intermediary target code, allowing
easy porting to different target platforms. The Jamaica compiler is tightly inte-
grated into the memory management system, allowing highest performance and
reliable realtime behavior. No conservative reference detection code is required,
enabling fully exact and predictable garbage collection.

26 CHAPTER 1. KEY FEATURES OF JAMAICAVM

1.9 Tools for Realtime and Embedded System De-
velopment

JamaicaVM comes with a set of tools that support the development of applications
for realtime and embedded systems.

* Jamaica Builder: a tool for creating a single executable image out of the
Jamaica Virtual Machine and a set of Java classes. This image can be loaded
into flash-memory or ROM, avoiding the need for a file system in the target
platform.

For most effective memory usage, the Jamaica Builder determines the amount
of memory that is actually used by an application. This allows both system
memory and heap size to be precisely chosen for optimal runtime perfor-
mance. In addition, the Builder enables the detection of performance critical
code to control the static compiler for optimal results.

* JamaicaTrace: provides the means to analyze and fine-tune the behavior of
threaded Java applicationsE]

2JamaicaTrace is not part of the standard Jamaica license.

Chapter 2

Getting Started

2.1 Installation of JamaicaVM

A release of the JamaicaVM tools consists of a . info file with detailed infor-
mation about the host and target platform and optional features such as graphics
support, and a package for the Jamaica binaries, library and documentation files.
The Jamaica version, build number, host and target platform and other properties
of a release is encoded as a release identification string incorporating the names
of the . info and package files according to the following scheme:

JamaicaVM-version—build|-features|—host|-target| . info
JamaicaVM-version—build|-features|—host[target| . suffix

Package files with the following package suffixes are released.

| Host Platform | Suffix | Package Kind |

Linux tar.gz | Compressed tape archive file
Windows exe Interactive installer
zip Windows zip file

In order to install the JamaicaVM tools, the following steps are required:

* Unpack and install the Jamaica binaries, library and documentation files on
the host platform,

* Configure the tools for host and target platform (C compiler and native li-
braries),

e Set environment variables.

* Install license keys.

27

28 CHAPTER 2. GETTING STARTED

The actual installation procedure varies from host platform to host platform; see
the sections below. Cross-compilation tool chains for certain target platforms re-
quire additional setup. Please check Appendix

2.1.1 Linux
2.1.1.1 Unpack and Install Files

The default is a system-wide installation of Jamaica. Super user privileges are
required. Unpack the compressed .tar file and run the installation script as
follows:

> tar xfz Jamaica-release-identification-string .tar.gz
> ./Jamaica.install

Both methods will install the Jamaica tools in the following directory, which is
referred to as jamaica-home:

/usr/local/jamaica—version—build

In addition, the symbolic link /usr/local/jamaica is created, which points
to jamaica-home, and symbolic links to the Jamaica executables are created in
/usr/bin, so it is not necessary to extend the PATH environment variable.

In order to uninstall the Jamaica tools, use the provided Jamaica.remove
uninstall script.

If super user privileges are not available, the tools may alternatively be in-
stalled locally in a user’s home directory:

> tar xfz Jamaica-release-identification-string .tar.gz
> tar xf Jamaica.ss

This will install the Jamaica tools in usr/local/ jamaica—version—build rel-
ative to the current working directory. Symbolic links to the executables are cre-
ated in usr/bin, so they will not be on the default path for executables.

2.1.1.2 Package Dependencies

Dependencies must be installed manually via the platform’s package manager.
For details, please see the platform-specific documentation that can be found in
Jjamaica-home/doc/README-Linux.txt

2.1. INSTALLATION OF JAMAICAVM 29

2.1.1.3 Configure Platform-Specific Tools

In order for the Jamaica Builder and JAR Accelerator to work, platform-specific
tools such as the C compiler and linker and the locations of the libraries (SDK)
need to be specified. This is done by editing the appropriate configuration files,
jamaica.conf for the Builder and jaraccelerator.conf for the JAR
Accelerator, for the target (and possibly also the host).

The precise location of the configuration files depends on the platform:

jamaica-home/target/platform/etc/jamaica.conf
jamaica-home/target /platform/etc/jaraccelerator.conf

For the full Jamaica directory structure, please refer to Section [2.3] Note that the
configuration for the host platform is also located in a target directory.
The following properties need to be set appropriately in the configuration files:

Property | Value |
Xcc C compiler executable
X1ld Linker executable
Xstrip Strip utility executable
Xinclude Include path
XlibraryPaths | Library path

Environment variables may be accessed in the configuration files through the no-
tation ${VARIABLE}|'| For executables that are on the standard search path (en-
vironment variable PATH), it is sufficient to give the name of the executable.

2.1.1.4 Set Environment Variables

The environment variable JAMATCA must be set to jamaica-home. It is recom-
mended to also add jamaica-home /b1in to the system path. Using bash:

> export JAMAICA=jamaica-home
> export PATH=jamaica-home/bin:$PATH

On csh:

> setenv JAMAICA jamaica-home
> setenv PATH jamaica-home/bin:$PATH

!Configurations that were generated via the —~showSettings or —saveSettings option
of the tools contain expanded values for environment variables.

30 CHAPTER 2. GETTING STARTED

2.1.2 Windows

On Windows the recommended method of installation is using the interactive in-
staller, which may be launched by double-clicking the file

Jamaica-release-identification-string . exe

in the Explorer, or by executing it in the CMD shell. You will be asked to pro-
vide a destination directory for the installation and the locations of tools and SDK
for host and target platforms. The destination directory is referred to as jamaica-
home. It defaults to the subdirectory jamaica in Window’s default program
directory—for example, C: \Programs\ jamaica, if an English language lo-
cale is used. Defaults for tools and SDKs are obtained from the registry. The
installer will set the environment variable JAMATCA to jamaica-home.

An alternative installation method is to unpack the Windows zip file into a suit-
able installation destination directory. For configuration of platform-specific tools,
follow the instructions provided in Section [2.1.1] In order to set the JAMAICA
environment variable to jamaica-home, open the Control Panel, choose System,
select Advanced System Settings choose the tab Advanced and press Environ-
ment Variables. It is also recommended to add jamaica-home\bin to the PATH
environment variable in order to be able to run the Jamaica executables conve-
niently.

2.2 Installation of License Keys

In order to use JamaicaVM tools, valid licenses are required. License keys are
provided in key ring files, which have the suffix .aicas_key. Prior to use,
these keys need to be installed. This is done with the aicas key installer utility
aicasKeyInstaller, which is located in jamaica-home /bin.

The jamaica.aicas_key fileis stored in the customer’s account and needs
to be downloaded prior to its installation. It can be saved in jamaica-home /bin,
and in this case it can be installed by simply executing the command line below:

> cd jamaica-home/bin
> ./aicasKeyInstaller jamaica.aicas_key

Note that, if the jamaica.aicas_key fileis not keptin jamaica-home/bin,
its path needs to be adjusted accordingly in the command line shown above.

The aicasKeyInstaller utility extracts the keys contained in the pro-
vided jamaica.aicas_key and, per default, adds the individual key files to

2Some Windows versions only.

2.3. JAMAICAVM DIRECTORY STRUCTURE 31

user-home/ . jamaica. Should other output directories be preferred for the in-
stallation of the keys, the —d parameter needs to be used. Note that the Builder,
when trying to validate licenses, checks for keys in both user-home/ . jamaica
and jamaica-home /et c folders.

aicasKeyInstaller provides a report about which keys get installed and
which individual tools they enable. Among the tools documented in this manual,
the Builder (see Chapter[13]), JAR Accelerator (see Chapter|[14)), and JamaicaTrace
(see Chapter require keys. The keys that are already installed will not be
overwritten.

2.3 JamaicaVM Directory Structure

The Jamaica installation directory is called jamaica-home. The environment vari-
able JAMATICA should be set to this path (see the installation instructions above).
After successful installation, the following directory structure as shown in Tab.
is created (in this example for a Linux x86 system).

The JamaicaVM directory structure, created during installation, presents a
bin folder containing all binaries, a doc folder containing the documentation,
an etc folder containing the global configuration, a 1ib folder containing JAR
files of Jamaica tools, a 1icense folder, and a target folder. Under the
target folder, each platform has its own target-specific bin, etc, examples,
include, 1lib, prof, slib, and src folders. In order to run JamaicaVM
on a target device, the runtime executable, contained in the bin folder, must be
deployed. The 1ib folder must also be deployed.

'

® Please note that using the pre-built virtual machine binaries jamaicavm_
bin (or jamaicavm_bin.exe, on Windows) should not be seen as the appro-
priate way to directly use the product. Because it will run the user application
code in an interpreted mode, jamaicavm_lbin will show a lower than expected
performance. Its purpose is to test the bytecode on the target system and validate
that the user application behaves as expected with JamaicaVM. Instead, the rec-
ommendation is to generate the executable with the Jamaica Builder. The Builder
improves the performance of an application by statically compiling those parts
that contribute most to the overall runtime. Such parts are identified in a profile
run of the application, which is referred to as profiling.

32

Jjamaica-home

+- bin
+- doc

+—- build.info

CHAPTER 2. GETTING STARTED

Host tool chain executables

Comprehensive Jamaica distribution information

+- jamaicavm_manual.pdf

+- Jjamaica_api
+— README-»*.txt
+— KNOWN_ISSUES
+— RELEASE_NOTES
+— UNSUPPORTED
+—= x.

+—- etc
+- 1lib

1

+- license
+—- target

+- linux—-x86_64

bin

etc
examples
include
1lib
prof
slib

src

Jamaica tool chain user manual (this manual)
Jamaica API specification (Javadoc)

Host platform specific documentation starting points
Known issues of the present release

User-relevant changes in the present release
Unsupported features list

Tool documentation in Unix man page format

Host platform configuration files

Libraries for the development tools

aicas evaluation license, third party licenses

Target specific files for the target 1inux—-x86_64
Virtual machine executables (some platforms only)
Default target platform configuration files

Example applications

System JNI header files

Development and runtime libraries, resources
Default profiles

Static development libraries

Source code provided for legal reasons

Table 2.1: JamaicaVM Directory Structure

2.4. BUILDING AND RUNNING A JAVA PROGRAM 33

2.3.1 API Specification

The Jamaica API specification (JavaDoc) is available in doc/jamaica_api.
It may be browsed with an ordinary web browser. Its format is compatible with
common IDEs such as Eclipse and Netbeans. If the Jamaica Eclipse plug-in is
used (see Chapter [)), Eclipse will automatically use the API specification of the
selected Jamaica runtime environment.

The specification will always contain all available classes, even if the runtime
environment only supports a compact profile. When developing for a particular
profile, only classes where the specification mentions that profile at the top of the
document should be used.

The Real-Time Specification for Java (RTSJ) is part of the Jamaica API for all
profiles.

2.3.2 Target Platforms

The number of target systems supported by a distribution varies. The target di-
rectory contains an entry for each supported target platform. Typically, a Jamaica
distribution provides support for the target platform that hosts the tool chain, as
well as for an embedded or real-time operating system.

2.4 Building and Running a Java Program

A number of sample applications are provided. These are located in the directory
Jjamaica-home/target /platform/examples. In the following instructions it
is assumed that a Unix host system is used. For Windows, please note that the
Unix path separator character “/” should be replaced by “\”.

Before using the examples, it is recommended they be copied from the in-
stallation directory to a working location—that is, copy each of the directories
Jjamaica-home /platform/examples to user-home/examples/platform.

The HelloWorld example is an excellent starting point for getting acquainted
with the JamaicaVM tools. In this section, the main tools are used to build an
application executable for a simple HelloWorld both for the host and target plat-
forms. First, the command-line tools are used. Later we switch to using ant build
files.

Below, it is assumed that the example directories have been copied to user-
home/examples/host and user-home/examples/target for host and target
platforms respectively.

34 CHAPTER 2. GETTING STARTED

2.4.1 Host Platform

In order to build and run the Hel1loWor1d example on the host platform, go to
the corresponding examples directory:

> cd user-home/examples/host/HelloWorld

Depending on your host platform, host will be 1inux-x86_64 (in rare cases
linux—-x86)or windows—x86.

First, the Java source code needs to be compiled to bytecode. This is done with
the javac compiler, which can be obtained by downloading the OpenJDK in the
version the JamaicaVM is based on. For usage with JamaicaVM, the javac
command has to be appended to include the bootstrap class path to the runtime
classes and the extension directory provided by JamaicaVM. The source code
resides in the src folder, and we wish to generate bytecode in a classes folder,
which must be created if not already present:

> mkdir classes

> javac -bootclasspath jamaica-home/target/host/lib/rt.jar \
—extdirs jamaica-home/target/host/lib/ext \
-d classes src/HelloWorld. java

Before generating an executable, we test the bytecode with the Jamaica virtual
machine:

> jamaicavm —-cp classes HelloWorld

Hello World!
Hello World!
Hello World!
Hello World!

Hello World!
Hello World!
[...]

Having convinced ourselves that the program exhibits the desired behavior, we
now generate an executable with the Jamaica Builder. In the context of the Ja-
maicaVM Tools, one refers to building an application.

> jamaicabuilder -cp classes —-interpret HelloWorld
Reading configuration from
’/usr/local/jamaica-8.11/target/linux-x86_64/etc/jamaica.conf’...
Jamaica Builder Tool 8.11 Release 0 (build 15405)

(User: EVALUATION USER, Expires: 2025.12.29)
Generating code for target ’“linux-x86_64’, optimization ’speed’

+ tmp/HelloWorld _.c

+ tmp/HelloWorld _.h

* C compiling ’tmp/HelloWorld _.c”’

2.4. BUILDING AND RUNNING A JAVA PROGRAM 35

+ tmp/HelloWorld DATA.oO
* linking
* Stripping
Application memory demand will be as follows:

initial max
Thread C stacks: 1152KB (= 9+ 128KB) 63MB (= 511+ 128KB)
Thread Java stacks: 144KB (= 9+« 16KB) 8176KB (= 511+ 16KB)
Heap Size: 2048KB 768MB
GC data: 128KB 48MB
TOTAL: 3472KB 887MB

The Builder has now generated the executable HelloWorld.

> ./HelloWorld

Hello World!
Hello World!
Hello World!
Hello World!

Hello World!
Hello World!

[...]

2.4.2 Target Platform

With the JamaicaVM Tools, building an application for the target platform is as
simple as for the host platform. First go to the corresponding examples directory:

> cd user-home/examples/platform/HelloWorld

Then compile and build the application specifying the target platform.

> mkdir classes

> javac -bootclasspath jamaica-home/target/platform/1ib/rt.jar \
—extdirs jamaica-home/target/platform/1ib/ext \
-d classes src/HelloWorld. java

> jamaicabuilder -target=platform -cp=classes —-interpret HelloWorld

The target specific binary He11oWor1d is generated, which can then be deployed
to the target system. For instructions on launching this on the target operating
system, please consult the documentation of the operating system. Additional OS-
specific hints are provided in Appendix B} If an application runs out of memory on
a target device, please refer to Section [6.4|for instructions on reducing its memory
footprint.

36 CHAPTER 2. GETTING STARTED

! When transferring files to a device via the file transfer protocol (FTP), it should
be kept in mind that this protocol distinguishes ASCII and binary transfer
modes. For executable and JAR files, binary mode must be used. ASCII mode is
the default, and binary mode is usually activated by issuing binary in the FTP
session. If in doubt, file sizes on the host and target system should be compared.

JamaicaVM provides pre-built virtual machine binaries, which enable execut-
ing Java bytecode on the target system. While these VMs are neither optimized
for speed nor for size, they offer convenient means for rapid prototyping. In order
to use these, JamaicaVM’s runtime environment must be deployed to the target
system. For instructions, please see Section

Applications that use advanced Java features such as loading classes dynam-
ically at runtime or reflection usually also require the runtime environment to be
available on the target device.

2.4.3 Improving Size and Performance

The application binaries in the previous two sections provide decent size opti-
mization but no performance optimization at all. The JamaicaVM Tools offer a
wide range of controls to fine tune the size and performance of a built application.
These optimizations are mostly controlled through command line options of the
Jamaica Builder.

Sets of optimizations for both speed and application size are provided with
the HelloWorld example in an ant buildfile (build.xml). In order to use the
buildfile, type ant build-target where build-target is one of the build targets of
the example. For example,

> ant HelloWorld

will build the unoptimized HelloWorld example. In order to optimize for speed,
use the build target HelloWorld_profiled. In order to optimize for applica-
tion size, use HelloWorld_micro. The following is the list of all build targets
available for the HelloWorld example:

HelloWorld Build an application in interpreted mode. The generated binary is
HelloWorld.

HelloWorld profiled Build a statically compiled application based on a
profile run. The generated binary is HelloWorld_profiled.

HelloWorld micro Build an application with optimized memory demand.
The generated binary is HelloWorld_micro.

classes Convert Java source code to bytecode.

2.5. NOTATIONS AND CONVENTIONS 37

| Example Demonstrates | Platforms

HelloWorld Basic Java all
RTHelloWorld Real-time threads (RTSJ) all
SwingHelloWorld | Swing graphics with graphics
test_jni Java Native Interface all

net Network and internet with network
rmi Remote method invocation with network
DynamicLibraries | Loading native code at runtime where supported
InvocationAPI Creation of a JVM from JNI code | where supported
Queens Parallel execution all
Acceleration Speeding up JAR libraries where supported

Table 2.2: Example applications provided in the target directories

all Build all three applications.
run Run all three applications—only useful on the host platform.

clean Remove all generated files.

2.4.4 Overview of Further Examples

For an overview of the available examples, see Tab. Examples that require
graphics or network support are only provided for platforms that support graphics
or network, respectively. Each example comes with a README file that provides
further information and lists the available build targets.

2.5 Notations and Conventions

Notations and typographic conventions used in this manual and by the JamaicaVM
Tools in general are explained in the following sections.

2.5.1 Typographic Conventions

Throughout this manual, names of commands, options, classes, files etc. are set in
this monospaced font. Output in terminal sessions is reproduced in slanted
monospaced in order to distinguish it from user input. Entities in command lines
and other user inputs that have to be replaced by suitable user input are shown in
italics.

38 CHAPTER 2. GETTING STARTED

As a brief example, here is the description of the Unix command-line tool
cat, which outputs the content of a file on the terminal:

Use cat file to print the content of file on the terminal. For example,
the content of the file song. txt may be shown as:

> cat song.txt

Mary had a little lamb,
Little lamb, little lamb,
Mary had a little lamb,

Its fleece was white as snow.

In situations where suitable fonts are not available—say, in terminal output—

entities to be replaced by the user are displayed in angular brackets. For example,
cat <file> instead of cat file.

2.5.2 Argument Syntax

In the specification of command line arguments and options, the following nota-
tions are used.

Juxtaposition: juxtaposing expressions means that they appear in sequence. It
has the highest precedence. For example:

-range=a. .b

means that for an hypothetical option range the value of a has to be fol-
lowed by two dots and then by the value of b.

Alternative: the pipe symbol ““|” denotes alternatives. For example:
-mode=alb

means that the mode option must be set to either a or b.

Option: optional arguments that may appear at most once are enclosed in brack-
ets. For example:

—-memory=n[k|m]

means that the memory option must be set to a (numeric) value n, which
may be followed by either k or m.

2.5. NOTATIONS AND CONVENTIONS 39

Repetition: optional arguments that may be repeated are enclosed in braces. For
example:

-some=a{b}

means that the some option accepts a followed by zero or more times b.

Grouping: grouping is used to disambiguate expressions. For example:
—eithersome=(a|b){c}

means that the option receives either a or b and then zero or more times
c. Without the grouping the juxtaposition, which has a higher precedence,
would bind stronger than the alternative.

Alternative option names (aliases) are indicated in parentheses. For example:
—help (-h, -7?)

means that the option he 1p may be invoked by any one of ~—help, —h and -?.

2.5.3 Jamaica Home and User Home

The file system location where the JamaicaVM Tools are installed is referred to as
jamaica-home. In order for the tools to work correctly, the environment variable
JAMATICA must be set to jamaica-home (see Section [2.1)).

The JamaicaVM Tools store user-related information such as license keys in
the folder . jamaica inside the user’s home directory. The user’s home direc-
tory is referred to as user-home. On Unix systems it is usually /home /user, on
Windows C: \Users\user.

40

CHAPTER 2.

GETTING STARTED

Chapter 3

Tools Overview

The JamaicaVM tool chain provides all the tools required to process Java source
code into an executable format on the target system. Fig.[3.1|provides an overview
of this tool chain.

3.1 Java Compiler

JamaicaVM uses Java source code files (see the Java Language Specification [3])
as input to first create platform independent Java class files (see the Java Virtual
Machine Specification [8]) in the same way classical Java implementations do.
JamaicaVM no longer provides its own Java bytecode compiler. Instead, any
bytecode compiler such as JDK’s javac may be used.

It is important to set the bootclasspath to the Jamaica system classes located
in the JAR files in the following folder:

Jjamaica-home/target /platform/1ib/
In the following, this directory is referred to as the jamaica-lib folder. Also the
extension directory has to be set to the following:
Jjamaica-lib/ext

In case of JDK’s javac the command for executing the compiler starts the

following way:
> javac -bootclasspath jamaica-lib/rt . jar:jamaica-lib/jce.jar \
—extdirs jamaica-lib/ext

Note that the path separator character used for specifying multiple bootclasspath
entries is platform-dependent (‘:” on Unix-Systems, ‘;” on Windows).

In addition, please note that bytecode must be generated for the correct tar-
get level. JamaicaVM is capable of processing bytecode up to the target level
indicated by its major version.

41

42 CHAPTER 3. TOOLS OVERVIEW

jar

jamaica Jar
* H . .
java jaraccelerator native lib

Y Y
C javac)_> *_cljss —»C jamaicavm)

Gamaicabuilder)—» executable

Figure 3.1: The Jamaica Toolchain

3.2 Jamaica Virtual Machine

The command jamaicavm provides a version of the Jamaica virtual machine.
It can be used directly to quickly execute a Java application. It is the equivalent
to the java command that is used to run Java applications with Oracle’s JDK. A
more detailed description of jamaicavm and similar commands that are part of
Jamaica can be found in Chapter[I1]

JamaicaVM loads all class files that are required to start the application. It con-
tains the Jamaica Java interpreter, which then executes the bytecode commands
found in these class files. Any new class that is referenced by a bytecode instruc-
tion that is executed will be loaded on demand to execute the full application.

Applications running using the jamaicavm command are not well optimized.
There is no just-in-time compiler to speed up execution and no specific measures
are taken to reduce the footprint. We therefore recommend using the Jamaica
Builder presented in the next section and discussed in detail in Chapter|13|to run
Java applications with JamaicaVM on an embedded system.

3.3 Creating Target Executables

In contrast to jamaicavm, the jamaicabuilder command does not execute
the Java application directly. Instead, the Builder loads all the classes that are
part of a Java application and packages them together with the Jamaica runtime

3.4. ACCELERATING JAR FILES 43

system (Java interpreter, class loader, realtime garbage collector, native interface
code, etc.) into a stand-alone executable. This executable can then be executed
on the target system without needing to load classes from a file system as is done
by the jamaicavm command, but can instead immediately begin executing the
bytecode of the application’s classes built into the executable.

The Builder has the opportunity to perform optimizations on the Java appli-
cation before it is built into a stand-alone executable. These optimizations reduce
the memory demand (smart linking, bytecode compaction, etc.) and increase its
runtime performance (bytecode optimizations, profile-guided static compilation,
etc.). Additionally, the Builder permits fine-grained control over the resources
available to the application such as number of threads, heap size, stack sizes and
enables the user to deactivate expensive functions such as dynamic heap enlarge-
ment or thread creation at runtime. A more detailed description of the Builder is
given in Chapter[13]

3.4 Accelerating JAR Files

Many Java-based applications require loading additional bytecode at runtime.
This holds true especially for application frameworks, of which OSGi is a well-
known example. Such code is typically bundled in JAR files. While jamaicavm
and executables created with the Builder can load bytecode at runtime and execute
it with Jamaica’s interpreter, this code cannot benefit from the performance gain
of static compilation provided by jamaicabuilder.

The Jamaica JAR Accelerator addresses this problem. It works like the Builder
but instead of converting bytecode to a standalone executable, it creates a native
library that is added to the JAR file and loaded and linked at runtime. For more
information on the JAR Accelerator, please refer to Chapter [14]

3.5 Monitoring Realtime Behavior

JamaicaTrace enables the monitoring of the realtime behavior of applications and
helps developers to fine-tune the threaded Java applications running on Jamaica
runtime systems. These runtime systems can be either the Jamaica VM or any
application that was created using the Jamaica Builder. An overview of Jamaica-
Trace 1s given in Chapter

44

CHAPTER 3. TOOLS OVERVIEW

Chapter 4
Support for the Eclipse IDE

Integrated development environments (IDEs) make a software engineer’s life eas-
ier by aggregating all important tools under one user interface. aicas provides a
plug-in to integrate the JamaicaVM Virtual Machine and the JamaicaVM Builder
into the Eclipse IDE, which is a popular IDE for Java. The following instructions
refer to versions 1.3.1 and later of the Eclipse plug-in.

4.1 Plug-in installation

The JamaicaVM plug-in can be installed and updated through the Eclipse plug-in
manager.

4.1.1 Installation on Eclipse

For use with Jamaica 8, Eclipse 4.4 or later, a Java 1.7 compatible Java runtime
environment (JRE) and version 1.3.1 of the Eclipse plug-in are required Using
the latest available Eclipse version and an up-to-date JRE is recommended. The
following instructions refer to Eclipse 3.5. The menu structure of other Eclipse
versions may differ slightly.

The plug-in may be installed from the update site provided on the aicas web
servers, or, if web access is not available, from a local update site, which may be
set up from a ZIP file. To install the plug-in from the aicas web servers, select the
menu item

Help > Install New Software...,

add the update site

I'The plug-in itself requires Eclipse 3.5 or later and a Java 1.5 compatible Java runtime envi-
ronment (JRE), but then Java 8 language features are not available.

45

46 CHAPTER 4. SUPPORT FOR THE ECLIPSE IDE

https://www.aicas.com/download/eclipse—-plugin

and install JamaicaVM ToolsE] The plug-in is available after a restart of
Eclipse. To perform an update, select Help > Check for updates...
You will be notified of updates.

For users working in development environments without internet access, the
JamaicaVM Eclipse plug-in can be provided as a ZIP file. This will be named

jamaicavm-eclipse-plugin-version-update-site.zip

and should be unpacked to a temporary location in the file space. To install, follow
the instructions above where the web address should be replaced by the temporary
location. “Contact all update sites during install to find required software” should
not be selected in this case.

4.1.2 Installation on Other IDEs

The plug-in may also be used on development environments that are based on
Eclipse such as WindRiver’s WorkBench or QNX Momentics. These environ-
ments are normally not set up for Java development and may lack the Java Devel-
opment Tools (JDT). In order to install these

* Identify the Eclipse version the development environment is derived from.
This information is usually available in the Help > About dialog — for
example, Eclipse 3.5.

* Some IDEs have the menu item for installing new software disabled by
default. To enable it, switch to the Resource Perspective. Select Window
> Open Perspective > Other... and choose Resource.

* Add the corresponding Eclipse Update Site, whichishttp://download.
eclipse.org/eclipse/updates/3.5|in this example, and install
the JDT: select Help > Install New Software... and add the
update site. Then uncheck “Group items by category” and select the pack-
age “Eclipse Java Development Tools”. Installation may require the IDE to
be run in admin mode.

Restart the development environment before installing the JamaicaVM plug-in.

2Some web browsers may be unable to display the update site.

https://www.aicas.com/download/eclipse-plugin
http://download.eclipse.org/eclipse/updates/3.5
http://download.eclipse.org/eclipse/updates/3.5

4.2. SETTING UP JAMAICAVM DISTRIBUTIONS 47

4.2 Setting up JamaicaVM Distributions

A Jamaica distribution must be made known to Eclipse and the Jamaica plug-in
before it can be used. This is done by installing it as a Java Runtime Environment
(JRE). In the global preferences dialog (usually Window > Preferences),
open Section Java > Installed JREs,clickAdd.. .,select JamaicaVM
and choose the Jamaica installation directory as the JRE home. The wizard will
automatically provide defaults for the remaining fields.

4.3 Using JamaicaVM in Java Projects

After setting up a Jamaica distribution as a JRE, it can be used like any other JRE
in Eclipse. For example, it is possible to choose Jamaica as a project specific
environment for a Java project, either in the Create Java Project wizard,
or by changing JRE System Library in the properties of an existing project.
It is also possible to choose Jamaica as the default JRE for the workspace.

In many cases, referring to a particular Java runtime environment is incon-
venient, and Eclipse provides execution environments as an abstraction of JREs
with particular features — for example, JavaSE-1. 8. For projects relying on
features that are specific to JamaicaVM, such as the RTSJ, the execution environ-
ments JamaicaVM-6 and JamaicaVM-8 are provided. They may be used as
drop-in replacements for JavaSE-1.6 and JavaSE-1. 8, respectively.

If you added a new Jamaica distribution and its associated JRE installation is
not visible afterwards, please restart Eclipse.

4.4 Setting Virtual Machine Parameters

The JamaicaVM Virtual Machine is configured through environment variables
that control runtime parameters such as the heap size or the size of memory areas
such as scoped memory. To set these in Eclipse, create or open a run config-
uration of type Java Application or of type Jamaica Application.
Environment variables can be defined on the tab named Environment. The
configuration type Jamaica Application provides an additional tab with
predefined controls for the environment variables understood by the JamaicaVM
Virtual Machine (see Section [T1.4)).

48 CHAPTER 4. SUPPORT FOR THE ECLIPSE IDE

4.5 Building applications with Jamaica Builder

The plug-in extends Eclipse with support for the Jamaica Builder tool. In the
context of this tool, the term “build” is used to describe the process of translating
compiled Java class files into an executable file. Please note that in Eclipse’s
terminology, “build” means compiling Java source files into class files.

4.5.1 Getting started

In order to build your application with Jamaica Builder, you must create a Jamaica
Buildfile. A wizard is available for creating a build file for an existing project with
sources (the wizard needs to know the main class).

To use the wizard, invoke Eclipse’s New dialog by choosing File > New
> Other. .., navigate to Jamaica > Jamaica Buildfile. Choose a
project in the workspace whose JRE is Jamaica, select a target platform and spec-
ify the application’s main class.

After finishing the wizard, the newly created buildfile is opened in a graphical
editor containing an overview page, a configuration page and a source page. It
shows a build target and, if generated by the wizard, a launch target. You can
review and modify the Jamaica Builder configuration by clicking Edit in the
build target on the Overview page, or in order to start the build process, click
Build.

4.5.2 Jamaica Buildfiles

This section gives a more detailed introduction to Jamaica Buildfiles and the
graphical editor to edit them easily.

4.5.2.1 Concepts

Jamaica Buildfiles are build files understood by Apache Ant. (See http://
ant .apache.org.) These build files mainly consist of targets containing a
sequence of tasks which can achieve an objective like compiling a set of Java
classes. Many tasks are already included with Ant, but tasks may also be provided
by a third party.

Third party tasks must be defined within the buildfile by a task definition
(taskdef). Ant tasks that invoke the Jamaica Builder and other tools are part of
the JamaicaVM tools. See Chapter (18| for available Ant tasks and further details
on the structure of the Jamaica Buildfiles.

The Jamaica-specific tasks can be parameterized in a similar manner as the
tools they represent. We define the usage of such a task along with a set of options

http://ant.apache.org
http://ant.apache.org

4.5. BUILDING APPLICATIONS WITH JAMAICA BUILDER 49

as a configuration. We use the term Jamaica Buildfile to describe an Ant buildfile
that defines at least one of the Jamaica-specific Ant tasks and contains one or
many configurations.

The benefit of this approach is that configurations can easily be used outside of
Eclipse, integrated in a build process and exchanged or stored in a version control
system.

4.5.2.2 Using the editor

The editor for Jamaica Buildfiles consists of three or more pages. The first page
is the Overview page. On this page, you can manage your configurations, task
definitions and Ant properties. More information on this can be found in the
following paragraphs. The pages after the Overview page represent a configu-
ration. The last page displays the XML source code of the buildfile. Normally,
you should not need to edit the source directly.

4.5.2.3 Configure Builder options

A configuration page consists of a header section and a body part. Using the
controls in the header, you can request a build of the current configuration, change
the task definition used by the configuration or add options to the body part. Each
option in the configuration is displayed by an input mask, allowing you to perform
various actions:

* Modify options. The input masks reflect the characteristics of their asso-
ciated option, e.g., an option that expects a list will be displayed as a list
control. Input masks that consists only of a text field show a diskette sym-
bol in front of the option name when modified. Please press [Enter] or
click the symbol to accept the new value.

* Remove options. Each input mask has an x control that will remove the
option from the configuration.

* Disable options. Options can also be disabled instead of being removed,
e.g., in order to test the configuration without a specific option. Click the

arrow in front of an option to disable it.

* Load default values. The default control resets the option’s value to the
default (not available for all options).

* Show help. The question mark control displays the option’s help text.

50 CHAPTER 4. SUPPORT FOR THE ECLIPSE IDE

The values of all options are immediately validated. If a value is not valid for a
specific option, that option will be annotated with a red error marker. An error
message is shown when hovering over the error marker.

4.5.2.4 Multiple build targets

It is possible to store more than one build target in a buildfile. Click New Build
Target to create a new Builder configuration. The new configuration will be
displayed in a new page in the editor. A configuration can be removed on the
Overview page by clicking Remove.

4.5.2.5 Ant properties

Ant properties provide a text-replacement mechanism within Ant buildfiles. The
editor supports Ant properties in option values. This is especially useful in con-
junction with multiple configurations in one buildfile, when you create Ant prop-
erties for option values that are common to all configurations. Additionally you
can also specify environment properties. They allow you to set a prefix string for
access to the environment variables of your system. To create an environment
property, just click + in the properties section of the Overview page and enter
<environment> as property name. If you set env as the value, environment
variables are made available as properties. For example, VARIABLE can be ac-
cessed as property env.VARIABLE.

4.5.2.6 Launch built application

The editor provides a simple way to launch the built application when it has been
built for the host platform. If the wizard did not already generate a target of the
form launch_name, click New Launch Target to add a target that executes
the binary that resulted from the specific Builder configuration. Add command
line arguments if needed. Then click Launch to start the application.

Part 11

Tools Usage and Guidelines

51

Chapter 5

Performance Optimization

The most fundamental technique employed by the Jamaica Builder to improve the
performance of an application is to statically compile those parts that contribute
most to the overall runtime. These parts are identified in a profile run of the
application. Identifying these parts is called profiling. Profiling information is
used by the Builder to decide which parts of an application need to be compiled
and whether further optimizations such as inlining the code are necessary.

5.1 Creating a profile

The profiling VM and the Builder’s ~profile option provide simple means of
profiling an application. Setting the —profile option enables profiling. The
Builder will then link the application with the profiling version of the JamaicaVM
libraries.

During profiling the Jamaica Virtual Machine counts, among other things, the
number of bytecode instructions executed within each method of the application.
The number of instructions can be used as a metric for the time spent in each
method. At the end of execution, the total number of bytecode instructions exe-
cuted by each method is written to a file with the simple name of the main class
of the Java application and the suffix .prof, so that it can be used for further
processing. If this file already exists, any new information will be appended.

! Collection of profile information is cumulative. When changing the applica-
tion code and in continuous integration setups, be sure to delete the old profile
before creating a new one.

“Hot spots” (the most likely sources for further performance enhancements by
optimization) in the application can be determined using the profile.

53

54 CHAPTER 5. PERFORMANCE OPTIMIZATION

5.1.1 Using the profiling VM

In simple cases, the profile can be created using the jamaicavmp command on
the host without first building a stand-alone executable. The profile is created
by running the application with jamaicavmp. Here is an example using the
HelloWorld example presented in Section[2.4] We use the command line argument
10000 so that startup code does not dominate. The output looks like this:

> jamaicavmp HelloWorld 10000

Hello World!
Hello World!
Hello World!
Hello World!

Hello World!
Hello World!

[...]
Hello World!
Hello World!
Hello World!
Hello World!

Hello World!
Hello World!
[...]
Start writing profile data into file ’“HelloWorld.prof’
Write threads data...
Write invocation data...
Done writing profile data

The use of jamaicavmp is subject to the following restrictions:
* It can generate a profile for the host only.

* Setting Builder options for the application to be profiled is not possible.

If the profile must be created on the target system, profiling with a target-specific
VM such as jamaicavmp_Jbin should be considered. For more information see

Section11.2]

5.1.2 Creating a profiling application

If the profile cannot be obtained with a VM, a profiling application can be built
using the Builder option —profile:

> jamaicabuilder -cp classes —-profile —-interpret HelloWorld
Reading configuration from
’/usr/local/jamaica-8.11/target/linux-x86_64/etc/jamaica.conf’...

5.1. CREATING A PROFILE 55

Jamaica Builder Tool 8.11 Release 0 (build 15405)

(User: EVALUATION USER, Expires: 2025.12.29)
Generating code for target ’linux-x86_64’, optimization ’speed’
+ tmp/HelloWorld _.c

+ tmp/HelloWorld _.h
C compiling ’‘tmp/HelloWorld _.c’
tmp/HelloWorld DATA.o
linking

* stripping
Application memory demand will be as follows:

%+ %

initial max
Thread C stacks: 1152KB (= 9+ 128KB) 63MB (= 511+ 128KB)
Thread Java stacks: 144KB (= 9+« 16KB) 8176KB (= 511+ 16KB)
Heap Size: 2048KB 768MB
GC data: 128KB 48MB
TOTAL: 3472KB 887MB

The generated executable Hel1loWorld, when run, will create a profile like the
profiling VM in the previous section.

Profiling VMs can be configured through environment variables. See Sec-
tion @ for a list available variables. If that is not sufficient, Builder options
offer maximum configurability.

5.1.3 Dumping a profile via network

If the application does not exit or writing a profile is very slow on the target, you
can request a profile dump with the jamaicaremoteprofile command. You
need to set the jamaica.profile_request_port property when building
the application with the —profile option or using the profiling VM. Set the
property to an available TCP port and then request a dump remotely:

> Jamailcaremoteprofile farget port
DUMPING. ..
DONE.

In the above command, target denotes the IP address or host name of the target
system. By default, the profile is written on the target to a file with the name
of the main class and the suffix .prof. You can change the filename with the
—file option or you can send the profile over the network and write it to the file
system (with an absolute path or relative to the current directory) of the host with
the —net option:

> Jamaicaremoteprofile —net=filename target port

56 CHAPTER 5. PERFORMANCE OPTIMIZATION

5.1.4 Creating a micro profile

To speed up the performance of critical sections in the application, you can use
micro profiles that only contain profiling information for a given section (see Sec-
tion [5.2.2). You need to reset the profile just before the critical part is executed
and dump a profile directly after. To reset a profile, you can use the command
jamaicaremoteprofile with the ~-reset option:

> Jjamaicaremoteprofile -reset farget port

5.2 Using a profile for building an application

Having collected the profiling data, the Jamaica Profile Analyzer can be used for
analyzing this data and extract the information useful to the Jamaica Builder. The
Jamaica Builder can create a compiled version of the application using the profile
information. This compiled version benefits from profiling information in several
ways:

* Compilation is limited to the most time critical methods, keeping non-
critical methods in smaller interpreted byte-code format.

* Method inlining concentrates on the inlining of calls that were executed
most frequently during the profiling run.

* Profiling information collects information on the use of reflection, so an
application that cannot use smart linking due to reflection can benefit from
smart linking even without manually listing all classes referenced via reflec-
tion.

* Profiling information also collects information on the loaded resources, con-
sequently these resources are automatically included into the built applica-
tion.

The workflow for this task is quite straightforward:

* an application is profiled

* the generated profile information is given to the Profile Analyzer

the Profile Analyzer analyzes the profile and produces a file with the rele-
vant builder options

* the options file can the reviewed and edited if needed

5.2. USING A PROFILE FOR BUILDING AN APPLICATION 57

* the generated options are provided to the Jamaica Builder

Note that the analysis’ results can be also used for accelerating a JAR file using
the Jamaica JAR Accelerator. The JAR Accelerator uses the list of methods eli-
gible for compilation contained in the options file for selecting, from the JAR file
under acceleration, which methods should be compiled. Any other information
from the options file is ignored. This can be particularly useful when accelerating
large JAR files.

5.2.1 Analyzing Profiles

Use the option —useProfi le to provide the profile files that should be analyzed.
For instance, the profile file Hel1loWorld.prof generated by the profiling VM
(jamaicavmp) or by a profiling application, can be analyzed as follows:

> profileanalyzer -useProfile=HelloWorld.prof

Jamaica Profile Analyzer Tool 8.11 Release 0 (build 15405)

[INFO] Reading profile data from HelloWorld.prof

[INFO] Analyzing profile data from HelloWorld.prof

[INFO] Finished writing general analysis results to the file :
analysisResults.log

[INFO] Finished writing options to the file :
profiled.opt

[INFO] Analysis finished!

This generates the files analysisResults.log and profiled.opt
containing, respectively, an overview of the performed analysis and the options
to be provided to the Jamaica Builder.

5.2.2 Using multiple profiles

You can use several profiles to improve the performance of your application.
There are two possibilities to specify profiles that behave in different ways.

First, you can concatenate multiple profile files or dump a profile several times
into the same file—which will then behave as if the profiles were recorded sequen-
tially. This can be used to add a new feature.

Second, if you want to give a profile more weight instead, e.g., a micro profile
for startup or a performance critical section as described in Section you can
generate many micro profiles, without concatenation. In this case, all profiles are
normalizedf] before they are concatenated, so methods in a short-run micro profile
are more likely to be compiled.

"Whether multiple profiles are normalized can be configured via the Profile Analyzer option
-normalize.

58 CHAPTER 5. PERFORMANCE OPTIMIZATION

5.2.3 Providing the profiling information to the building tools

The next step is to build the application with the generated options file. This file
is provided to the Jamaica Builder using the argument files syntax (see subsection
[13.2.1.6] For instance, the above mentioned HelloWorld application can be
built using the analyzed profiling information as follows:

> jamaicabuilder -cp=classes —-@profiled.opt HelloWorld
Reading configuration from
’/usr/local/jamaica-8.11/target/linux-x86_64/etc/jamaica.conf’...
Jamaica Builder Tool 8.11 Release 0 (build 15405)

(User: EVALUATION USER, Expires: 2025.12.29)
Generating code for target ’linux-x86_64’, optimization ’speed’

+ tmp/PKG__Vd432edd59d3d84b4__.c

[...]

+ tmp/HelloWorld .c

+ tmp/HelloWorld _.h

* C compiling ’‘tmp/HelloWorld _.c’
[...]

+ tmp/HelloWorld DATA.o

* linking

* stripping
Application memory demand will be as follows:

initial max
Thread C stacks: 896KB (= 7+ 128KB) 63MB (= 511+ 128KB)
Thread Java stacks: 112KB (= 7+ 16KB) 8176KB (= 511+ 16KB)
Heap Size: 2048KB 768MB
GC data: 128KB 48MB
TOTAL: 3184KB 887MB

The analysis’ results is provided to the Jamaica JAR Accelerator using the
same syntax.

5.3 Interpreting the profiling output

When running in profiling mode, the VM collects data to create an optimized ap-
plication but can also be interpreted manually to find memory leaks or time con-
suming methods. Jamaica can be used to collect information about performance,
memory requirements, etc.

! Measuring the performance on virtual OS images can be time-consuming and
may lead to incorrect results.

5.3. INTERPRETING THE PROFILING OUTPUT 59

To collect additional information, the property jamaica.profile_groups
should be set in order to select one or more profiling groups. The default value
is builder to collect data used by the Builder. This property can be set to the
values builder, classpath, memory, speed, all or a comma separated
combination. Example:

> jamaicavmp —-cp classes \
> -Djamaica.profile_groups=builder, speed \
> HelloWorld 10000

! The format of the profile file is likely to change in future versions of Jamaica
Builder.

5.3.1 Format of the profile file

Every line in the profiling output starts with a keyword followed by space sepa-
rated values. The meaning of these values depends on the keyword. For improved
readability, the corresponding values in different lines are aligned as far as possi-
ble and words and signs to improve readability are added. Here for every keyword
the additional words and signs are omitted and the values are listed in the same
order as they appear in the text file.

Keyword: BEGIN_PROFILE_DUMP Groups: all

Values

1. unique dump ID

Keyword: END_PROFILE_DUMP Groups: all

Values

1. unique dump ID

Keyword: HEAP_REFS Groups: memory
Values
1. total number of references in object attributes
2. total number of words in object attributes

3. relative number of references in object attributes

60

CHAPTER 5. PERFORMANCE OPTIMIZATION

Keyword: HEAP_USE Groups: memory

Values

1

2.

. total number of currently allocated objects of this class

number of blocks needed for one object of this class

. block size in bytes

number of bytes needed for all objects of this class

. relative heap usage of objects of this class

total number of objects of this class organized in a tree structure

. relative number of objects of this class organized in a tree structure

name of the class

Keyword: INSTANTIATION_COUNT Groups: memory

Values

1

2.

. total number of instantiated objects of this class

number of blocks needed for one object of this class

. number of blocks needed for all objects of this class

number of bytes needed for all objects of this class

. total number of objects of this class organized in a tree structure

. relative number of objects of this class organized in a tree structure
class loader that loaded the class

. name of the class

Keyword: PROFILE Groups: builder

Values

1
2

. total number of bytecodes executed in this method

. relative number of bytecodes executed in this method

5.3. INTERPRETING THE PROFILING OUTPUT 61

3. signature of the method
4. class loader that loaded the class of the method

5. code length of the method

Keyword: PROFILE_CLASS_USED_VIA_REFLECTION Groups: builder
Values
1. name of the class used via reflection

2. the class is synthetic or not synthetic

Keyword: PROFILE_CYCLES Groups: speed
Values

1. total number of processor cycles spent in this method (if available on the
target)

2. signature of the method

Keyword: PROFILE_INVOKE Groups: builder

Values
1. number of calls from the calling method to the called method
2. bytecode position of the call within the method
3. signature of the calling method

4. signature of the called method

Keyword: PROFILE_INVOKE_CYCLES Groups: speed
Values
1. number of processor cycles spent in the called method
2. bytecode position of the call within the method

3. signature of the calling method

62 CHAPTER 5. PERFORMANCE OPTIMIZATION

4. signature of the called method

Keyword: PROFILE_NATIVE Groups: all
Values

1. total number of calls to the native method

2. relative number of calls to the native method

3. signature of the called native method

Keyword: PROFILE_NEWARRAY Groups: memory
Values
1. number of calls to array creation within a method
2. bytecode position of the call within the method

3. signature of the method

Keyword: PROFILE_THREAD Groups: memory, speed

Values

1. current Java priority of the thread

N

total amount of CPU cycles in this thread

relative time in interpreted code

> w

relative time in compiled code

bt

relative time in JNI code
6. relative time in garbage collector code
7. required C stack size

8. required Java stack size

Keyword: PROFILE_THREADS Groups: builder

Values

5.3. INTERPRETING THE PROFILING OUTPUT

1. maximum number of concurrently used threads

Keyword: PROFILE_THREADS_JNI Groups: builder
Values

1. maximum number of threads attached via JNI

Keyword: PROFILE_VERSION Groups: all
Values

1. version of Jamaica with which the profile was created

Keyword: LOADED_CLASS Groups: classpath
Values
1. the class path

2. the class loaded from this class path

Keyword: CLASSPATH Groups: classpath
Values

1. the class path

63

In the class path, user-home and jamaica-home are replaced with [user.
home] and [jamaica.home] respectively. The maximum accepted length of

the class path is 512 characters. If necessary, the given path may be truncated.

Built-in classes are loaded directly from the profiling VM executable and do
not have a class path per se. The class path of these classes is shown as [built__
in]. To avoid this, the slim profiling VM (jamaicavm_slim_bin) should be

used for profiling since it does not have any built-in classes.
Keyword: PROFILE_RESOURCE Groups: builder
Values

1. name of the resource

64

CHAPTER 5. PERFORMANCE OPTIMIZATION

Note that in order to identify referenced resources, jamaicavmp monitors
calls to methods used for accessing resources. Currently calls to the following
methods from java.lang.ClassLoader are monitored:

* getResource (String)

* getResourceAsStream (String)

* getResources (String)

* getSystemResource (String)

* getSystemResourceAsStream (String)

* getSystemResources (String)

LB]

Be aware that resources accessed by other methods are not tracked and have

to be included manually when building the application.

5.3.2 Example

We can sort the profiling output to find the application methods where most of the
execution time is spent. Under Unix, the 25 methods which use the most execu-
tion time (in number of bytecode instructions) can be found with the following

command:

> grep PROFILE:
PROFILE:
PROFILE:
PROFILE:
PROFILE:
PROFILE:
PROFILE:
PROFILE:
PROFILE:
PROFILE:
PROFILE:
PROFILE:
PROFILE:
PROFILE:
PROFILE:
PROFILE:
PROFILE:
PROFILE:
PROFILE:

7181073
3878926
1847070
1200240
1164252
1122255
900585
880176
720225
720144
681836
600202
580116
560000
540189
500100
480600
460080

(18%)
(10%)
(4%)
(3%)
(3%)
(2%)
(2%)
(2%)
(13)
(1%)
(1%)
(1%)
(1%)
(1%)
(1%)
(1%)
(1%)
(1%)

HelloWorld.prof | sort -rn -k2 | head -n25

sun/nio/cs/UTF_8SEncoder.encodeArrayLo. ..
java/lang/String.indexOf (II)I [boot] 84
java/lang/String.getChars (II[CI)V [boo...
java/io/BufferedWriter.write (Ljava/lan...
jdk/internal/org/objectweb/asm/ByteVec. ..
java/lang/AbstractStringBuilder.append. ..
java/nio/Buffer.position(I)Ljava/nio/B...
sun/nio/cs/StreamEncoder.writeBytes () V...
java/nio/ByteBuffer.arrayOffset ()I [bo...
sun/nio/cs/StreamEncoder.write ([CII)V ...
java/lang/String.substring(II)Ljava/la...
java/nio/charset/CharsetEncoder.encode. ..
sun/nio/cs/StreamEncoder. implWrite ([CI. ..
java/io/BufferedOutputStream.write ([BI...
java/nio/CharBuffer.arrayOffset ()I [bo...
java/io/BufferediWriter. flushBuffer ()V ...
java/nio/Buffer.<init>(IIII)V [boot] 121
java/io/PrintStream.write ([BII)V [boot...

5.3. INTERPRETING THE PROFILING OUTPUT 65

PROFILE: 450019 (1%) HelloWorld.main ([Ljava/lang/String;)V ...
PROFILE: 421920 (1%) java/lang/AbstractStringBuilder.ensure. ..
PROFILE: 380475 (0%) java/nio/Buffer.limit (I)Ljava/nio/Buff...
PROFILE: 360099 (0%) java/nio/ByteBuffer.array () [B [boot] 35
PROFILE: 340060 (0%) java/io/PrintStream.write (Ljava/lang/S...
PROFILE: 340000 (0%) java/io/BufferedOutputStream.flushBuff. ..
PROFILE: 320058 (0%) java/io/PrintStream.newLine ()V [boot]

In this small example program, it is not a surprise that nearly all execution time
is spent in methods that are required for writing the output to the screen. The
dominant function is UTF_8$Encoder.encodeArrayLoop from the Open-
JDK classes included in Jamaica, which is used while converting Java’s unicode
characters to the platform’s UTF-8 encoding. Also important is the time spent in
AbstractStringBuilder. Calls to the methods of this class have been gen-
erated automatically by the javac compiler for string concatenation expressions
using the “+”-operator.

On systems that support a CPU cycle counter, when run with jamaica.
profile_groups=speed, the profiling data also contains a cumulative count
of the number of processor cycles spent in each method. This information is useful
to obtain a more high-level view on where runtime activity occurred.

The CPU cycle profiling information is contained in lines starting with the tag
PROFILE_CYCLES:. A similar command line can be used to find the methods

that cumulatively require the majority of execution time:

> grep PROFILE_CYCLES:

PROFILE_CYCLES: 1077793040 HelloWorld.main ([Ljava/lang/St...
PROFILE CYCLES: 742811910 java/io/PrintStream.printin(Lj. ..
PROFILE_CYCLES: 432245140 com/aicas/jamaica/lang/Profile. ..
PROFILE_CYCLES: 374786653 java/io/PrintStream.print (Ljav...
PROFILE_CYCLES: 361684718 java/io/PrintStream.newLine () V...
PROFILE_CYCLES: 361062625 java/io/PrintStream.write (Ljav. ..
PROFILE _CYCLES: 324130680 java/io/OutputStreamWriter.flu. ..
PROFILE_CYCLES: 315672419 java/lang/invoke/MethodHandles. ..
PROFILE CYCLES: 293048499 sun/nio/cs/StreamEncoder.flush. ..
PROFILE_CYCLES: 276621202 java/io/BufferediWriter. flushBu. ..
PROFILE _CYCLES: 268347738 sun/nio/cs/StreamEncoder.implF. ..
PROFILE _CYCLES: 261485741 java/io/OutputStreamWriter.wri. ..
PROFILE CYCLES: 259477107 sun/nio/cs/StreamEncoder.write. ..
PROFILE CYCLES: 256663269 sun/nio/cs/StreamEncoder.write. ..
PROFILE _CYCLES: 241987751 sun/nio/cs/StreamEncoder.implW. . .
PROFILE_CYCLES: 237346595 com/aicas/jamaica/lang/Resourc. ..
PROFILE_CYCLES: 229061649 java/lang/invoke/DirectMethodH. . .
PROFILE_CYCLES: 225613574 java/lang/invoke/MethodHandles. ..
PROFILE CYCLES: 225049639 java/io/PrintStream.write ([BII...
PROFILE _CYCLES: 220371719 java/io/BufferedOutputStream.f. ..
PROFILE CYCLES: 217340746 java/lang/invoke/DirectMethodH. . .

HelloWorld.prof | sort -rn -k2 | head -n25

66

PROFILE_CYCLES:
PROFILE_CYCLES:
PROFILE_CYCLES:
PROFILE_CYCLES:

CHAPTER 5. PERFORMANCE OPTIMIZATION

217325548
211388717
210755952
204827921

java/lang/invoke/MethodHandles. . .
java/lang/invoke/DirectMethodH. . .
java/lang/invoke/DirectMethodH. . .
java/lang/invoke/MethodHandleN. . .

The report is cumulative. It shows more clearly how much time is spent in each
of the named methods. These results show that the method println (String)
of class java.io.PrintStream dominates the program. Note that the main
method of a program is not included in the PROFILE_CYCLES data. The cu-
mulative cycle counts can be used as a basis for a top-down optimization of the
application execution time.

Chapter 6

Reducing Footprint and Memory
Usage

This chapter is a hands-on tutorial that shows how to reduce an application’s foot-
print and RAM demand, while also optimizing runtime performance. As example
application we use the Queens example. The source files for this example are part
of the JamaicaVM Tools installation. See Section 2.4

6.1 Compilation

JamaicaVM Builder compiles bytecode to machine code, which is typically about
20 to 30 times faster than interpreted code. (This is called static or ahead-of-
time compilation.) However, due to the fact that Java bytecode is very compact
compared to machine code on CISC or RISC machines, compiled code tends to
take up more memory than the equivalent bytecode.

Therefore, in order to improve the performance of an application, only those
sections of bytecode that contribute most to the overall runtime should be com-
piled to machine code in order to achieve improved runtime performance. This
is done using a profile as discussed in the previous chapter (Chapter [5). While
using a profile usually offers the best compromise between footprint and perfor-
mance, JamaicaVM Builder also provides other modes of compilation. These are
discussed in the following sections.

6.1.1 Suppressing Compilation

The Builder option —interpret turns compilation of bytecode off. The created
executable will be a standalone program containing both bytecode of the applica-
tion and the virtual machine executing the bytecode.

67

68 CHAPTER 6. REDUCING FOOTPRINT AND MEMORY USAGE

> jamaicabuilder -cp classes Queens —-interpret \

> —destination=Queens_interpret

Reading configuration from
’/usr/local/jamaica-8.11/target/linux-x86_64/etc/jamaica.conf’ ...
Jamaica Builder Tool 8.11 Release 0 (build 15405)

(User: EVALUATION USER, Expires: 2025.12.29)

Generating code for target ’linux-x86_647, optimization ’speed’

+ tmp/queens_linterpret__.c

+ tmp/queens_linterpret__.h

* C compiling ’tmp/queens_linterpret__.c’
+ tmp/queens_linterpret___DATA.O

* linking

* stripping
Application memory demand will be as follows:

initial max
Thread C stacks: 1152KB (= 9+ 128KB) 63MB (= 511+ 128KB)
Thread Java stacks: 144KB (= 9+ 16KB) 8176KB (= 511+ 16KB)
Heap Size: 2048KB 768MB
GC data: 128KB 48MB
TOTAL: 3472KB 88 7MB

The size of the created binary may be inspected, for example, with a shell com-
mand to list directories. We use 1s -sk file, which displays the file size in
1024 Byte units. It is available on Unix systems. On Windows, di r may be used
instead.

> 1s -sk Queens_interpret
9424 queens_interpret

The runtime performance for the built application is slightly better compared to
using jamaicavm_slim, a variant of the jamaicavm command that has no built-
in standard library classes (see Section[T1.3).

> ./Queens_interpret

Computing solutions for 15 x 15 board on 1 thread(s).
Found 69516 solution(s) for queen in row 0, column 1.
Found 98156 solution(s) for queen in row 1, column 1.

Found 122763 solution(s) for queen in row 2, column 1.
Found 157034 solution(s) for queen in row 3, column 1.
Found 175296 solution(s) for queen in row 4, column 1.
Found 201164 solution(s) for queen in row 5, column 1.
Found 206294 solution(s) for queen in row 6, column 1.
Found 218738 solution(s) for queen in row 7, column 1.

Found 2279184 distinct solutions in 40002ms.

> jamaicavm_slim -cp classes Queens
Computing solutions for 15 x 15 board on 1 thread(s).

6.1. COMPILATION

Found 69516 solution(s) for queen in row O,

Found 98156 solution(s) for queen in row 1

Found 122763 solution(s) for
Found 157034 solution(s) for
Found 175296 solution(s) for
Found 201164 solution(s) for
Found 206294 solution(s) for
Found 218738 solution(s) for
Found 2279184 distinct solutions in 51839ms.

Better performance will be achieved by compilation as shown

sections.

6.1.2 Using Default Compilation

queen
queen
queen
queen
queen
queen

in
in
in
in
in
in

row
row
row
row
row
row

7

~

~

~

7

~N O m‘g w N

4

69

column 1.
column 1.

column
column
column
column
column
column

Default compilation is performed when neither —interpret,
profiling information is used when building an application. This means that a pre-
generated profile will be used for the system classes, and all application classes
will be fully compiled. This usually results in good performance for small ap-
plications, but it causes substantial code size increase for larger applications and
it results in slow execution of applications that use the system classes in a way

different than as recorded in the system profile.

> jamaicabuilder -cp classes Queens \

> —-destination=Queens

Reading configuration from
’/usr/local/jamaica-8.11/target/linux-x86_64/etc/jamaica.conf’ ...
Jamaica Builder Tool 8.11 Release 0 (build 15405)

(User: EVALUATION USER, Expires:
Generating code for target

+ tmp/PKG__V1b48b2c36b27a64__.c
[...]

+ tmp/queens___.c

+ tmp/queens___.h

* C compiling ’tmp/queens__.c’
[...]

+ tmp/queens___DATA.o

* linking

* Stripping

2025.12.29)
’linux-x86_64",

S S SN N)
L T S S S

in the following

—compile, nor

optimization ’speed’

Application memory demand will be as follows:
initial

Thread C stacks:
Thread Java stacks:
Heap Size:

GC data:

TOTAL:

1152KB
144KB
204 8KB
128KB
3472KB

(:
(:

(= 511% 128KB)

16KB) 8176KB (= 511x 16KB)

max
9% 128KB) 63MB
9%
768MB
48MB

887MB

70 CHAPTER 6. REDUCING FOOTPRINT AND MEMORY USAGE

> 1s —-sk Queens
12240 queens

The performance of this example is dramatically better than the performance of
the interpreted version.

> ./Queens

Computing solutions for 15 x 15 board on 1 thread(s).
Found 69516 solution(s) for queen in row 0, column 1.
Found 98156 solution(s) for queen in row 1, column 1.

Found 122763 solution(s) for queen in row 2, column 1.
Found 157034 solution(s) for queen in row 3, column 1.
Found 175296 solution(s) for queen in row 4, column 1.
Found 201164 solution(s) for queen in row 5, column 1.
Found 206294 solution(s) for queen in row 6, column 1.
Found 218738 solution(s) for queen in row 7, column 1.

Found 2279184 distinct solutions in 2034ms.

6.1.3 Using a Custom Profile

Generation of a profile for compilation is a powerful tool for creating small ap-
plications with fast turn-around times. The profile collects information on the
runtime behavior of an application, guiding the compiler in its optimization pro-
cess and in the selection of which methods to compile and which methods to leave
as more compact bytecode.

To generate the profile, we first have to create a profiling version of the appli-
cations using the Builder option profile (see Chapter) or using the command
Jjamaicavmp:

> jamaicavmp -cp classes Queens

Computing solutions for 15 x 15 board on 1 thread(s).
Found 69516 solution(s) for queen in row 0, column 1.
Found 98156 solution(s) for queen in row 1, column 1.
Found 122763 solution(s) for queen in row 2, column
Found 157034 solution(s) for queen in row 3, column
Found 175296 solution(s) for queen in row 4, column
Found 201164 solution(s) for queen in row 5, column
Found 206294 solution(s) for queen in row 6,
Found 218738 solution(s) for queen in row 7,
Found 2279184 distinct solutions in 97563ms.
Start writing profile data into file ’Queens.prof’
Write threads data...

Write invocation data...

column
column

R e R)

Done writing profile data

6.1. COMPILATION 71

This profiling run also illustrates the runtime overhead of the profiling data col-
lection: the profiling run is significantly slower than the interpreted version.

The next step is to analyze the generated profile Queens.prof with the
Profile Analyzer.

> profileanalyzer -useProfile=Queens.prof

Jamaica Profile Analyzer Tool 8.11 Release 0 (build 15405)

[INFO] Reading profile data from Queens.prof

[INFO] Analyzing profile data from Queens.prof

[INFO] Finished writing general analysis results to the file
analysisResults.log

[INFO] Finished writing options to the file
profiled.opt

[INFO] Analysis finished!

Now, an application can be built using the generated argument file that is by
default named profiled. opt.

> jamaicabuilder -cp classes \
> —@profiled.opt \
> Queens —-destination=Queens_useProfile
Reading configuration from
’/usr/local/jamaica-8.11/target/linux-x86_64/etc/jamaica.conf’...
Jamaica Builder Tool 8.11 Release 0 (build 15405)
(User: EVALUATION USER, Expires: 2025.12.29)
Generating code for target ’linux-x86_64’, optimization ’speed’
+ tmp/PKG__Vv8d4725309e92132a__.c

[...]

+ tmp/queens_luseProfile _.c

+ tmp/queens_luseProfile__ .h

* C compiling ’tmp/queens_luseProfile _.c’
[...]

+ tmp/queens_luseProfile_DATA.oO

* linking

* stripping
Application memory demand will be as follows:

initial max
Thread C stacks: 896KB (= 7+ 128KB) 63MB (= 511+ 128KB)
Thread Java stacks: 112KB (= 7« 16KB) 8176KB (= 511+ 16KB)
Heap Size: 2048KB 768MB
GC data: 128KB 48MB
TOTAL: 3184KB 887MB

The resulting application is only slightly larger than the interpreted version but,
simliar to that found with default compilation, the runtime score is significantly
better:

72 CHAPTER 6. REDUCING FOOTPRINT AND MEMORY USAGE

> 1s —sk Queens_useProfile
10628 queens_useProfile

> ./Queens_useProfile

Computing solutions for 15 x 15 board on 1 thread(s).
Found 69516 solution(s) for queen in row 0, column 1.
Found 98156 solution(s) for queen in row 1, column 1.

Found 122763 solution(s) for queen in row 2, column 1.
Found 157034 solution(s) for queen in row 3, column 1.
Found 175296 solution(s) for queen in row 4, column 1.
Found 201164 solution(s) for queen in row 5, column 1.
Found 206294 solution(s) for queen in row 6, column 1.
Found 218738 solution(s) for queen in row 7, column 1.

Found 2279184 distinct solutions in 2035ms.

For this small example, the runtime score of the resulting application is virtually
identical to that with default compilation. For a large real-world application, using
profiling information usually leads to significantly better performance.

When the profiling information is used to guide the compiler, by default 30%
of the methods executed during the profile run are compiled. This results in a
moderate code size increase compared with fully interpreted code and results in
a runtime performance very close to or typically even better than fully compiled
code. Using the Profile Analyzer option percentageCompiled, this default
setting can be adjusted to any value from 0% to 100%. Best results are usually
achieved with a value from 10% to 30%, where a higher value leads to a larger
footprint. Note that setting the value to 100% is not the same as setting the option
compile (see Section [6.1.5)), since using a profile only compiles those meth-
ods that are executed during the profiling run. Methods not executed during the
profiling run will not be compiled when the profiling information is used.

Entries in the profile can be edited manually—for example, to insure the com-
pilation of a method that is performance critical. For example, the profile gen-
erated for this example contains the following entry for the method size () of
class java.util.Vector:

PROFILE: 64 (0%) java/util/Vector.size () I
To insure the compilation of this method even when percentageCompiledis
not set to 100%, the profiling data can be changed to a higher value, e.g.:
PROFILE: 1000000 (0%) java/util/Vector.size()I

The argument file generated by the Profile Analyzer can be edited as well. For

example, adding the following entry in the argument file causes the compilation
of the method mentioned above:

—includeInCompile=java/util/Vector.size()I

Please note the use of the qualified method name.

6.1. COMPILATION 73

6.1.4 Code Optimization by the C Compiler

Enabling C compiler optimizations for code size or execution speed can have
an important effect on the size and speed of the application. These optimiza-
tions are enabled via setting the command line options —optimize=size or
-optimize=speed, respectively. Note that speed is normally the defaultE]
For comparison, we build the Queens example optimizing for size:

> jamaicabuilder -cp classes \

> —@profiled.opt \
> —optimize=size Queens \
> —destination=Queens_useProfile_size

Reading configuration from
’/usr/local/jamaica-8.11/target/linux-x86_64/etc/jamaica.conf’ ...
Jamaica Builder Tool 8.11 Release 0 (build 15405)

(User: EVALUATION USER, Expires: 2025.12.29)
Generating code for target ’linux-x86_64", optimization ’size’

+ tmp/PKG__V4a547b2f26fe9a46__.c

[...]

+ tmp/queens_luseProfile_lsize _.c

+ tmp/queens_luseProfile 1lsize .h

* C compiling ’tmp/queens_luseProfile Isize__.c’
[...]

+ tmp/queens_luseProfile _lsize DATA.o

* linking

* stripping
Application memory demand will be as follows:

initial max
Thread C stacks: 896KB (= 7+ 128KB) 63MB (= 511+ 128KB)
Thread Java stacks: 112KB (= 7+ 16KB) 8176KB (= 511% 16KB)
Heap Size: 204 8KB 768MB
GC data: 128KB 48MB
TOTAL: 3184KB 887MB

Code size and performance depend strongly on the C compiler that is employed
and may even show anomalies such as better runtime performance for the version
optimized for smaller code size. We get these results:

> 1s —-sk Queens_useProfile_size
10400 queens_useProfile _size

> ./Queens_useProfile_size

Computing solutions for 15 x 15 board on 1 thread(s).
Found 69516 solution(s) for queen in row 0, column 1.
Found 98156 solution(s) for queen in row 1, column 1.

To check the default, invoke jamaicabuilder -help or inspect the Builder status mes-
sages.

74 CHAPTER 6. REDUCING FOOTPRINT AND MEMORY USAGE

Found 122763 solution(s) for queen in row 2, column 1.
Found 157034 solution(s) for queen in row 3, column 1.
Found 175296 solution(s) for queen in row 4, column 1.
Found 201164 solution(s) for queen in row 5, column 1.
Found 206294 solution(s) for queen in row 6, column 1.
Found 218738 solution(s) for queen in row 7, column 1.

Found 2279184 distinct solutions in 2290ms.

6.1.5 Full Compilation

Full compilation can be used when no profiling information is available and code
size and build time are not important issues.

! Fully compiling an application leads to very poor turn-around times and may
require significant amounts of memory during the C compilation phase. We
recommend compilation be used only through profiling as described above.

To compile the complete application, the option compi le is set:

> jamaicabuilder -cp classes —-compile Queens \
> —destination=Queens_compiled
Reading configuration from
’/usr/local/jamaica-8.11/target/linux-x86_64/etc/jamaica.conf’...
Jamaica Builder Tool 8.11 Release 0 (build 15405)
(User: EVALUATION USER, Expires: 2025.12.29)
Generating code for target ’linux-x86_647, optimization ’speed’
+ tmp/PKG_Vbf1055883481bf52__.c

[...]

+ tmp/queens_Ilcompiled _.c

+ tmp/queens_lcompiled _.h

* C compiling ’tmp/queens_lcompiled _.c’
[...]

+ tmp/queens_Ilcompiled DATA.o

* linking

* stripping
Application memory demand will be as follows:

initial max
Thread C stacks: 1152KB (= 9+ 128KB) 63MB (= 511+ 128KB)
Thread Java stacks: 144KB (= 9+ 16KB) 8176KB (= 511+ 16KB)
Heap Size: 2048KB 768MB
GC data: 128KB 48MB
TOTAL: 3472KB 887MB

Although the resulting binary is quite large, the performance of the compiled ver-
sion is significantly better than the interpreted version. However, even though all
code was compiled, the performance of the versions created using profiles was

6.2. SMART LINKING 75

not matched. Typically, this is due to poor cache behavior caused by the large
footprint.

> 1ls -sk Queens_compiled
58404 queens_compiled

> ./Queens_compiled

Computing solutions for 15 x 15 board on 1 thread(s).
Found 69516 solution(s) for queen in row 0, column 1.
Found 98156 solution(s) for queen in row 1, column 1.
Found 122763 solution(s) for queen in row 2, column
Found 157034 solution(s) for queen in row 3, column
Found 175296 solution(s) for queen in row
Found 201164 solution(s) for queen in row
Found 206294 solution(s) for queen in row
Found 218738 solution(s) for queen in row
Found 2279184 distinct solutions in 2117ms.

, column
column
column
, column

~

~

N Oy o W N
[T L U S S

Full compilation is only feasible in combination with the code size optimizations
discussed in the sequel. Experience shows that using a custom profile is superior
in almost all situations.

6.2 Smart Linking

The JamaicaVM Builder can remove unused bytecode and metadata from an ap-
plication. This is called smart linking and reduces the footprint of both interpreted
and statically compiled code. By default, only a modest degree of smart linking
is used. Unused classes are removed, unless that code is explicitly included with
either of the options —includeClasses or —includeJAR. Optionally, un-
used fields and methods of partially used classes can be removed as well. This is
inherently dangerous in dynamic applications, and hence disabled by default. For
more information, see the Builder option —smart.

Additional optimizations are possible if the Builder knows for sure that the
application that is compiled is closed, i.e., all classes of the application are built-
in and the application does not use dynamic class loading to add any additional
code. These additional optimizations include static binding and inlining for vir-
tual method calls if the called method is not redefined by any built-in class. The
Builder can be instructed to perform these optimizations by setting the option
—closed. This has the side effect of turning the option —smart on implicitly.

In the Queens example application, dynamic class loading is not used, so we
can enable closed application optimizations by setting —closed:

> jamaicabuilder -cp classes -closed \

76 CHAPTER 6. REDUCING FOOTPRINT AND MEMORY USAGE

> —Q@profiled.opt \
> Queens \
> —destination=Queens_useProfile_closed
Reading configuration from
’/usr/local/jamaica-8.11/target/linux-x86_64/etc/jamaica.conf’ ...
Jamaica Builder Tool 8.11 Release 0 (build 15405)
(User: EVALUATION USER, Expires: 2025.12.29)
Generating code for target ’linux-x86_647, optimization ’speed’
+ tmp/PKG__V9fce024al8caf577__.c

[...]

+ tmp/queens_luseProfile_lclosed _.c

+ tmp/queens_luseProfile_lclosed _.h

* C compiling ’tmp/queens_luseProfile_lclosed _.c’
[...]

+ tmp/queens_luseProfile_lclosed _DATA.o

* linking

* Stripping
Application memory demand will be as follows:

initial max
Thread C stacks: 896KB (= 7+ 128KB) 63MB (= 511+ 128KB)
Thread Java stacks: 112KB (= 7+ 16KB) 8176KB (= 511+ 16KB)
Heap Size: 2048KB 768MB
GC data: 128KB 48MB
TOTAL: 3184KB 887MB

> 1s —-sk Queens_useProfile_closed
9744 queens_useProfile closed

The effect on the code size is favorable. Additionally, the resulting runtime perfor-
mance is significantly better for code that requires frequent virtual method calls.
Consequently, the results of the Method test in the Queens example are improved
when closed application optimizations are enabled:

> ./Queens_useProfile_closed

Computing solutions for 15 x 15 board on 1 thread(s).
Found 69516 solution(s) for queen in row 0, column 1.
Found 98156 solution(s) for queen in row 1, column 1.

Found 122763 solution(s) for queen in row 2, column 1.
Found 157034 solution(s) for queen in row 3, column 1.
Found 175296 solution(s) for queen in row 4, column 1.
Found 201164 solution(s) for queen in row 5, column 1.
Found 206294 solution(s) for queen in row 6, column 1.
Found 218738 solution(s) for queen in row 7, column 1.

Found 2279184 distinct solutions in 1729ms.

6.3. API LIBRARY CLASSES AND RESOURCES 77

6.3 API Library Classes and Resources

The footprint of an application can be further reduced by excluding resources such
as language locales and network protocols, which contain a fair amount of data,
and their associated library classes.

For our example application, there is no need for supporting network protocols
or language locales. Furthermore, neither graphics nor fonts are needed. Conse-
quently, we can set all of protocols, locales, and fonts to the empty set.
The resulting call to build the application is as follows:

> jamaicabuilder -cp classes -closed \

> —@profiled.opt \
> —-setProtocols=none —-setLocales=none \
> —-setFonts=none \

> Queens —-destination=Queens_nolibs
Reading configuration from
’/usr/local/jamaica-8.11/target/linux-x86_64/etc/jamaica.conf’ ...
Jamaica Builder Tool 8.11 Release 0 (build 15405)

(User: EVALUATION USER, Expires: 2025.12.29)
Generating code for target ’linux-x86_64’, optimization ’speed’

+ tmp/PKG__Vcf016049¢c6812956___.c

[--.]

+ tmp/queens_Ilnolibs__.c

+ tmp/queens_lnolibs__.h

* C compiling ’tmp/queens_lnolibs__.c’
[...]

+ tmp/queens_Ilnolibs__ DATA.oO

* linking

* Stripping
Application memory demand will be as follows:

initial max
Thread C stacks: 896KB (= 7+ 128KB) 63MB (= 511+ 128KB)
Thread Java stacks: 112KB (= 7« 16KB) 8176KB (= 511+ 16KB)
Heap Size: 2048KB 768MB
GC data: 128KB 48MB
TOTAL: 3184KB 887MB

> 1s —-sk Queens_nolibs
8176 queens_nolibs

A huge part of the class library code could be removed by the Jamaica Builder so
that the resulting application is significantly smaller than in the previous examples.

78 CHAPTER 6. REDUCING FOOTPRINT AND MEMORY USAGE

6.4 RAM Usage

In many embedded applications, the amount of random access memory (RAM)
required is even more important than the application performance and its code
size. Therefore, a number of means to control the application RAM demand are
available in Jamaica. RAM is required for three main purposes:

1. Memory for application data structures, such as objects or arrays allocated
at runtime.

2. Memory required to store internal data of the VM, such as representations
of classes, methods, method tables, etc.

3. Memory required for each thread, such as Java and C stacks.

Needless to say that Item[I]is predominant for an application’s use of RAM space.
This includes choosing appropriate classes from the standard library. For mem-
ory critical applications, the used data structures should be chosen with care. The
memory overhead of a single object allocated on the Jamaica heap is relatively
small—typically three machine words are required for internal data such as the
garbage collection state, the object’s type information, a monitor for synchroniza-
tion and memory area information. See Chapter [9 for details on memory areas.

Item [2] means that an application that uses fewer classes will also have a lower
memory demand. Consequently, the optimizations discussed in the previous sec-
tions (Section [6.2] and Section [6.3)) have a knock-on effect on RAM demand!
Memory needed for threads (Item |3) can be controlled by configuring the number
of threads available to the application and the stack sizes.

6.4.1 Measuring RAM Demand

The amount of RAM actually needed by an application can be determined by set-
ting the Builder option analyze. Apart from setting this option, it is important
that exactly the same arguments are used as in the final version. Here analyze
is set to ‘1’°, which indicates a tolerance of 1%:

> jamaicabuilder -cp classes -analyze=1 -closed \
> —Q@profiled.opt \
> Queens -destination=Queens_analyze
Reading configuration from
’/usr/local/jamaica-8.11/target/linux-x86_64/etc/jamaica.conf’ ...
Jamaica Builder Tool 8.11 Release 0 (build 15405)
(User: EVALUATION USER, Expires: 2025.12.29)
Generating code for target ’linux-x86_647, optimization ’speed’
+ tmp/PKG_V9fce024al8carf577__.c

6.4. RAM USAGE

* Sstripping

Application memory demand will be as follows:

initial
Thread C stacks: 896KB (=
Thread Java stacks: 112KB (=
Heap Size: 2048KB
GC data: 128KB
TOTAL: 3184KB

[...]

+ tmp/queens_lanalyze .c

+ tmp/queens_lanalyze .h

* C compiling ’tmp/queens_lanalyze__.c’
[...]

+ tmp/queens_lanalyze_ DATA.oO

* linking

7% 128KB)

7 *

16KB) 8176KB (= 511x

max

79

63MB (= 511+ 128KB)

768MB
48MB
887MB

16KB)

Running the resulting application will print the amount of RAM memory that was

required during the execution:

> ./Queens_analyze
Computing solutions for 15 x 15 board on 1 thread(s).
69516 solution(s) for queen in row O,
98156 solution(s) for queen in row 1,

Found
Found
Found
Found
Found
Found
Found
Found
Found

Recommended heap size:

122763 solution(s)
157034 solution (s)
175296 solution(s)
201164 solution(s)
206294 solution (s)
218738 solution(s)

for
for
for
for
for
for

queen
queen
queen
queen
queen
queen

in
in
in
in
in
in

row
row
row
row
row
row

7

~

~

~

~N O Ulg w N

7

2279184 distinct solutions in 1944ms.

column
column
column
column
column
column

column 1.
column 1.

[N N N)
L T Y

5127K (contiguous memory) .

Application used at most 3102400 bytes for reachable objects
on the Java heap
(accuracy 1%).

###

Reserved memory is set to 10%.

or worst—case GC overhead,

###

Worst case allocation overhead:
dynamic GC

###
###
#H##
#H##
###
###
###
#H##

heapSize
16031K
12316K
10236K
8938K
8037K
6886K
6196K

6
7
8
9
10
12
14

To obtain lower memory bounds

const GC work

Gr O W DN N W

set reserved memory to 0.

80 CHAPTER 6. REDUCING FOOTPRINT AND MEMORY USAGE

5717K 16 6
5382K 18 6
5127K 20 7
4772K 24 8
4536K 28 9
4372K 32 10
4244K 36 11
4145K 40 12
4003K 48 14
3905K 56 17
3836K 64 19
3673K 96 27
3594K 128 36
3515K 192 53
3479K 256 69
3443K 384 100

The memory analysis report begins with a recommended heap size and the actual
memory demand. The latter is the maximum needed by simultaneously reachable
objects during the entire program run.

The JamaicaVM garbage collector needs more memory than the actual mem-
ory demand to do its work. The overhead depends on the GC mode and the amount
of collection work done per allocation. In dynamic mode, which is the default, 20
units of collection work per allocation are recommended, which leads to a mem-
ory overhead. Overheads for various garbage collection work settings are shown
in the table printed by the analyze mode. For more information on heap size anal-
ysis and the Builder option —analyze, see Section

6.4.2 Memory Required for Threads

To reduce memory other than the Java heap, one must reduce the stack sizes and
the number of threads that will be created for the application. This can be done as
follows.

6.4.2.1 Reducing Stack Sizes

The Java stack size can be reduced via option javaStackSize to a lower value
than the default (typically 20K). To reduce the size to 4K, javaStackSize=4K
can be used. The C stack size can be set accordingly with nativeStackSize.

6.4.2.2 Disabling the Finalizer Thread

A Java application typically uses one thread that is dedicated to running the fi-
nalization methods (finalize ()) of objects that were found to be unreach-

6.4. RAM USAGE 81

able by the garbage collector. An application that does not allocate any such ob-
jects may not need the finalizer thread. The priority of the finalizer thread can be
adjusted through the option ~XdefineProperty=jamaica.finalizer.
pri=value. Setting the priority to -1 deactivates the finalizer thread completely.

Note that deactivating the finalizer thread may cause a memory leak since any
objects that have a finalize () method can no longer be reclaimed. If the
resources available on the target system do not permit the use of a finalizer thread,
the application may execute the finalize () method explicitly by regularly
calling Runtime.runFinalization ().

6.4.2.3 Disabling the Reference Handler Thread

In contrast to OpenJDK, the Reference Handler thread in Jamaica does not clear
and enqueue instances of java.lang.ref.Reference. Instead, this is done
directly by the garbage collector. However, the Reference Handler is still used
in JamaicaVM since it executes cleaners (sun.misc.Cleaner), which serve
as internal finalizers for the implementation of some standard classes. The pri-
ority of the Reference Handler can be adjusted through —XdefineProperty=
jamaica.reference_handler.pri=value. Setting its priority to -1 deac-
tivates the reference handler thread completely.

Note that the reference handler should only be deactivated for applications that
do not require the execution of cleaners, which are typically used by network and
other I/0O code to free internal resources they allocate.

6.4.2.4 Disabling the Memory Reservation Thread

The memory reservation thread is a low priority thread that continuously tries to
reserve memory up to a specified threshold. This reserved memory is used by all
other threads. As long as reserved memory is available no garbage collector work
needs to be done. This is especially effective for applications that have long pause
times with little or no activity that are preempted by sudden activities that require
a burst of memory allocation.

On systems with tight memory demand, the thread required for memory reser-
vation can be deactivated by setting —~reservedMemory=0.

6.4.2.5 Disabling Signal Handlers

The default handlers for the POSIX signals can be turned off by setting prop-
erties with the option XdefineProperty. The POSIX signals are SIGINT,
SIGQUIT and SIGTERM. The properties are described in Section [I1.5] To turn
off these signal handlers, their corresponding properties should be set to t rue:

82 CHAPTER 6. REDUCING FOOTPRINT AND MEMORY USAGE

jJamaica.no_sig_int_handler, jamaica.no_sig_quit_handler
and jamaica.no_sig_term_handler.

6.4.2.6 Setting the Number of Threads

The number of threads available for the application can be set using the option
numThreads. The provided value is checked by the Builder to ensure it is at
least the required minimum number of threads. If not, the required minimum
number will be used and a warning will be generated. Please note that the argu-
ment file created by the Profile Analyzer sets this option as well.

The default setting for this option is high enough to accommodate the back-
ground tasks discussed above. Since these tasks have been deactivated, and no
new threads are started by the application, the number of threads can be reduced
to one by using the setting ~-numThreads=1.

6.4.2.7 The Example Continued

Applying this to our example application, we can reduce the Java stack to 4K,
deactivate the finalizer thread and the reference handler, set the number of threads
to 1, disable the memory reservation thread and turn off the signal handlers:

> jamaicabuilder -cp classes -closed \
> —@profiled.opt \
> -setLocales=none -setProtocols=none \
> —-setFonts=none \
> -javaStackSize=4K \
> -XdefineProperty=Jjamaica.finalizer.pri=-1 \
> —XdefineProperty=jamaica.reference_handler.pri=-1 \
> -numThreads=1 \
> -reservedMemory=0 \
> -XdefineProperty=jamaica.no_sig_int_handler=true \
> -XdefineProperty=jamaica.no_sig_qgquit_handler=true \
> —-XdefineProperty=jamaica.no_sig_term_handler=true \
> Queens —-destination=Queens_nolibs_js_fP_rM
Reading configuration from
’/usr/local/jamaica-8.11/target/linux-x86_64/etc/jamaica.conf’ ...
Jamaica Builder Tool 8.11 Release 0 (build 15405)
(User: EVALUATION USER, Expires: 2025.12.29)
Generating code for target ’linux-x86_64’, optimization ’speed’
+ tmp/PKG_Vcf016049c6812956___.c
-]
tmp/queens_lnolibs _1js_1fP_1rM .c
tmp/queens_lnolibs _1js 1fP_1rM .h
C compiling ’'tmp/queens_Ilnolibs 1js 1fP_1rM .c’
..]
tmp/queens_1lnolibs_1js 1fP_1rM DATA.o

+ ~ x + + ~

6.4. RAM USAGE 83

* linking
* Stripping
Application memory demand will be as follows:

initial max
Thread C stacks: 256KB (= 2+ 128KB) 63MB (= 511+ 128KB)
Thread Java stacks: 8192B (= 2+4096B) 2044KB (= 511%4096B)
Heap Size: 2048KB 768MB
GC data: 128KB 48MB
TOTAL: 2440KB 881MB

> 1ls —-sk Queens_nolibs_js_fP_rM
8700 queens_nolibs_js_fP_rM

The additional options have little effect on the application size itself compared to
the earlier version. However, the RAM allocated by the application was reduced
significantly.

6.4.3 Memory Required for Line Numbers

An important advantage of programming in the Java language are the accurate er-
ror messages. Runtime exceptions contain a complete stack trace with line number
information on where the problem occurred. This information, however, needs to
be stored in the application and be available at runtime.

After the debugging of an application is finished, the memory demand of an
application may be further reduced by removing this information. The Builder
option XignoreLineNumbers can be set to suppress it. Continuing the exam-
ple from the previous section, we can further reduce the RAM demand by setting
this option:

jamaicabuilder -cp classes —-closed \
-@profiled.opt \
—-setLocales=none -setProtocols=none \
—-setFonts=none \
—-javaStackSize=4K \
-XdefineProperty=jamaica.finalizer.pri=-1 \
-XdefineProperty=jamaica.reference_handler.pri=-1 \
-numThreads=1 \
-reservedMemory=0 \
-XdefineProperty=Jjamaica.no_sig_int_handler=true \
-XdefineProperty=jamaica.no_sig_qguit_handler=true \
-XdefineProperty=jamaica.no_sig_term_handler=true \
Queens -XignoreLineNumbers \
—destination=Queens_nolibs_js_fP_rM nL

Reading configuration from

’/usr/local/jamaica-8.11/target/linux-x86_64/etc/jamaica.conf’...

VVVV VYV VYV VYVYVYVYVYV

84 CHAPTER 6. REDUCING FOOTPRINT AND MEMORY USAGE

Jamaica Builder Tool 8.11 Release 0 (build 15405)

(User: EVALUATION USER, Expires: 2025.12.29)

Generating code for target ’linux-x86_647, optimization ’speed’
+ tmp/PKG_Vcf016049c6812956__.c

[...]

+ tmp/queens_Inolibs_1js 1fP 1rM InI__ .c

+ tmp/queens_Ilnolibs_1js_1fP_1rM 1Inl__ .h

* C compiling ’tmp/queens_lnolibs_1js_1fP_1rM 1nL _.c’
[...]

+ tmp/queens_Ilnolibs_1js_1fP_1rM InL DATA.o

* linking

* Stripping
Application memory demand will be as follows:

initial max
Thread C stacks: 256KB (= 2+ 128KB) 63MB (= 511+ 128KB)
Thread Java stacks: 8192B (= 2+4096B) 2044KB (= 511%4096B)
Heap Size: 2048KB 768MB
GC data: 128KB 48MB
TOTAL: 2440KB 881MB

The size of the executable has shrunk since line number information is no longer
present:

> 1s -sk Queens_nolibs_js_fP_rM nL
7892 queens_nolibs_js_fP_rM nL

By inspecting the Builder output, we see that the initial memory demand reported
by the Builder was not reduced. The actual memory demand may be checked
by repeating the build with the additional option —analyze=1 and running the
obtained executable:

> ./Queens_analyze_nolibs_js_fP_rM nL

Computing solutions for 15 x 15 board on 1 thread(s).
Found 69516 solution(s) for queen in row 0, column 1.
Found 98156 solution(s) for queen in row 1, column 1.

Found 122763 solution(s) for queen in row 2, column 1.
Found 157034 solution(s) for queen in row 3, column 1.
Found 175296 solution(s) for queen in row 4, column 1.
Found 201164 solution(s) for queen in row 5, column 1.
Found 206294 solution(s) for queen in row 6, column 1.
Found 218738 solution(s) for queen in row 7, column 1.

Found 2279184 distinct solutions in 1768ms.

Recommended heap size: 2960K (contiguous memory) .

Application used at most 2094208 bytes for reachable objects
on the Java heap

(accuracy 1%).

6.4. RAM USAGE 85

###

Worst case allocation overhead:

heapSize dynamic GC const GC work
#H## 7077K 6 3
5911K 7 4
5165K 8 4
#H## 4659K 9 4
4288K 10 4
3788K 12 5
#H## 3473K 14 5
3247K 16 6
#H## 3085K 18 6
2960K 20 7
2783K 24 8
2663K 28 9
2579K 32 10
#H## 2513K 36 11
#H## 2462K 40 12
2387K 48 14
2335K 56 17
2298K 64 19
#H## 2211K 96 27
#H## 2169K 128 36
2126K 192 53
2107K 256 69
2087K 384 100

The actual memory demand was reduced to about one third compared to Sec-
tion[6.4.1} The score in analyze mode is significantly lower than that found in the
production version. To conclude the example we verify that the score of the latter
has not gone down as a result of the memory optimizations:

> ./Queens_nolibs_js_fP_rM nL

Computing solutions for 15 x 15 board on 1 thread(s).
Found 69516 solution(s) for queen in row 0, column 1.
Found 98156 solution(s) for queen in row 1, column 1.

Found 122763 solution(s) for queen in row 2, column 1.
Found 157034 solution(s) for queen in row 3, column 1.
Found 175296 solution(s) for queen in row 4, column 1.
Found 201164 solution(s) for queen in row 5, column 1.
Found 206294 solution(s) for queen in row 6, column 1.
Found 218738 solution(s) for queen in row 7, column 1.

Found 2279184 distinct solutions in 1732ms.

86 CHAPTER 6. REDUCING FOOTPRINT AND MEMORY USAGE

Chapter 7

Memory Management
Configuration

JamaicaVM provides the only efficient hard-realtime garbage collector available
for Java implementations on the market today. This chapter will first explain how
this garbage collection technology can be used to obtain the best results for ap-
plications that have soft-realtime requirements before explaining the more fine-
grained tuning required for realtime applications.

7.1 Configuration for soft-realtime applications

For most non-realtime applications, the default memory management settings of
JamaicaVM perform well: The heap size is set to a small starting size and is
extended up to a maximum size automatically whenever the heap is not sufficient
or the garbage collection work becomes too high. However, in some situations,
some specific settings may help to improve the performance of a soft-realtime
application.

7.1.1 Initial heap size

The default initial heap size is a small value. The heap size is increased on demand
when the application exceeds the available memory or the garbage collection work
required to collect memory in this small heap becomes too high. This means that
an application that on startup requires significantly more memory than the initial
heap size will see its startup time increased by repeated incremental heap size
expansion.

The obvious solution here is to set the initial heap size to a value large enough
for the application to start. The Jamaica Builder option heapSize (see Chap-

87

88 CHAPTER 7. MEMORY MANAGEMENT CONFIGURATION

ter [13) and the virtual machine option Xmssize can be employed to set a higher
size.

Starting off with a larger initial heap not only prevents the overhead of in-
cremental heap expansion, but it also reduces the garbage collection work during
startup. This is because the garbage collector determines the amount of garbage
collection work from the amount of free memory, and with a larger initial heap,
the initial amount of free memory is larger.

7.1.2 Maximum heap size

The maximum heap size specified via Builder option maxHeapSize (see Chap-
ter|13)) and the virtual machine option Xmx should be set to the maximum amount
of memory on the target system that should be available to the Java application.
Setting this option has no direct impact on the performance of the application as
long as the application’s memory demand does not come close to this limit. If
the maximum heap size is not sufficient, the application will receive an OutOf -
MemoryError at runtime.

However, it may make sense to set the initial heap size to the same value as
the maximum heap size whenever the initial heap demand of the application is of
no importance for the remaining system. Setting initial heap size and maximum
heap size to the same value has two main consequences. First, as has been seen
in Section [/.1.1| above, setting the initial heap size to a higher value avoids the
overhead of dynamically expanding the heap and reduces the amount of garbage
collection work during startup. Second, JamaicaVM’s memory management code
contains some optimizations that are only applicable to a non-increasing heap
memory space, so overall memory management overhead will be reduced if the
same value is chosen for the initial and the maximum heap size.

7.1.3 Finalizer thread priority

Before the memory used by an object that has a finalize method can be re-
claimed, this finalize method needs to be executed. A dedicated thread, the
FinalizerThread executes these finalize methods and otherwise sleeps
waiting for the garbage collector to find objects to be finalized.

In order to prevent the system from running out of memory, the Finalizer—
Thread must receive sufficient CPU time. Its default priority is therefore set to
8. Consequently, any thread with a lower priority will be preempted whenever an
object is found to require finalization.

Selecting a lower finalizer thread priority may cause the finalizer thread to
starve if a higher priority thread does not yield the CPU for a longer period of
time. However, if it can be guaranteed that the finalizer thread will not starve,

7.1. CONFIGURATION FOR SOFT-REALTIME APPLICATIONS 89

system performance may be improved by running the finalizer thread at a lower
priority. Then, a higher priority thread that performs memory allocation will not
be preempted by finalizer thread execution.

This priority can be set to a different value using the Java property jamaica.
finalizer.pri. Inanapplication that has sufficient idle CPU time in between
activities of higher priority threads, a finalizer priority lower than the priority of
these threads is sufficient.

7.1.4 Reference Handler thread priority

The Reference Handler thread is used to free memory allocated outside the gar-
bage collected heap. Such memory is allocated when direct buffers are created.
Unlike OpenJDK, Jamaica’s Reference Handler thread does not clear or enqueue
instances of java.lang.ref.Reference; this task is performed by the gar-
bage collector directly.

Direct buffers are used by Java for efficient native I/O. They are allocated
by the allocateDirect () factory methods of ByteBuffer and the other
subclasses of java.nio.Buffer. They are also used be the various channel
implementations provided by New I/O, such as socket and file channels.

To free such native resources, the Reference Handler thread must receive suf-
ficient CPU time. Its default priority is therefore set to 10. Consequently, any
thread with a lower priority will be preempted whenever a native resource needs
to be released.

Selecting a lower Reference Handler thread priority may cause this thread to
starve if a higher priority thread does not yield the CPU for a longer period of time.
Selecting a lower priority, however, may reduce jitter in higher priority threads
since the Reference Handler will no longer preempt those threads to release native
resources.

This priority can be set to a different value using the property jamaica.
reference_handler.pri. In an application that has sufficient idle CPU
time in between activities of higher priority threads, a Reference Handler priority
lower than the priority of these threads is sufficient.

7.1.5 Reserved memory

JamaicaVM’s default behavior is to perform garbage collection work at memory
allocation time. This ensures a fair accounting of the garbage collection work:
Those threads with the highest allocation rate will perform correspondingly more
garbage collection work.

However, this approach may slow down threads that run only occasionally and
perform some allocation bursts, e.g., changing the input mask or opening a new

90 CHAPTER 7. MEMORY MANAGEMENT CONFIGURATION

window in a graphical user interface.

To avoid penalizing these time-critical tasks by allocation work, JamaicaVM
uses a low priority memory reservation thread that runs to pre-allocate a given
percentage of the heap memory. This reserved memory can then be allocated
by any allocation bursts without the need to perform garbage collection work.
Consequently, an application with bursts of allocation activity with sufficient idle
time between these bursts will see an improved performance.

The maximum amount of memory that will be reserved by the memory reser-
vation thread is given as a percentage of the total memory. The default value for
this percentage is 10%. It can be set via the Builder option ~reservedMemory
or, for the virtual machine commands, via the environment variable JAMATICAVM__
RESERVEDMEMORY.

An allocation burst that exceeds the amount of reserved memory will have to
fall back to perform garbage collection work as soon as the amount of reserved
memory is exceeded. This may occur if the maximum amount of reserved memory
is less than the memory allocated during the burst or if there is too little idle time
in between consecutive bursts such as when the reservation thread cannot catch
up and reserve the maximum amount of memory.

For an application that cannot guarantee sufficient idle time for the memory
reservation thread, the amount of reserved memory should not be set to a high per-
centage. Higher values will increase the worst case garbage collection work that
will have to be performed on an allocation, since after the reserved memory was
allocated, there is less memory remaining to perform sufficient garbage collection
work to reclaim memory before the free memory is exhausted.

A realtime application without allocation bursts and sufficient idle time should
therefore run with the maximum amount of reserved memory set to 0%.

The priority default of the memory reservation thread is the Java priority 1
with the scheduler instructed to give preference to other Java threads that run
at priority 1 (i.e., with a priority micro adjustment of —1). The priority can
be changed by setting the Java property jamaica.reservation_thread_
priority to an integer value larger than or equal to 0. If set, the memory reser-
vation thread will run at the given Java priority. A value of 0 will result at a Java
priority 1 with micro adjustment —1, i.e., the scheduler will give preference to
other threads running at priority 1.

The reserved memory mechanism works only in combination with the default
dynamic work based allocation mode, it cannot be combined with stop-the-world
or atomic garbage collection (see Section [7.1.6), nor with constant garbage col-
lection work (see Section[7.2.4)).

7.1. CONFIGURATION FOR SOFT-REALTIME APPLICATIONS 91

7.1.6 Stop-the-world Garbage Collection

For applications that do not have any realtime constraints, but that require the
best average time performance, JamaicaVM’s Builder provides options to disable
realtime garbage collection, and to use a stop-the-world garbage collector instead.

In stop-the-world mode, no garbage collection work will be performed un-
til the system runs out of free memory. Then, all threads that perform memory
allocation will be stopped to perform garbage collection work until a complete
garbage collection cycle is finished and memory was reclaimed. Any thread that
does not perform memory allocation may, however, continue execution even while
the stop-the-world garbage collector is running.

The Builder option —stopTheWor1dGC enables the stop-the-world garbage
collector. Alternatively, the Builder option —~const GCWork=-1 may be used,
or —constGCWork=%var with the environment variable var set to —1.

JamaicaVM additionally provides an atomic garbage collector that requires
stopping of all threads of the Java application during a stop-the-world garbage
collection cycle. This has the disadvantage that even threads that do not allocate
heap memory will have to be stopped during the GC cycle. However, it avoids
the need to track heap modifications performed by threads running parallel to the
garbage collector (so called write-barrier code). The result is a slightly increased
performance of compiled code.

Specifying the Builder option —at omicGC enables the atomic garbage col-
lector. Alternatively, the Builder option —~constGCWork=-2 may be used, or
specify —constGCWork=%var with the environment variable var set to —2.

Please note that memory reservation (see Section [/.1.5)) should be disabled
when stop-the-world or atomic GC is used.

7.1.7 Recommendations

In summary, to obtain the best performance in your soft-realtime application, fol-
low the following recommendations.

* Set initial heap size as large as possible.
* Set initial heap size and maximum heap size to the same value if possible.

* Set the finalizer thread priority to a low value if your system has enough
idle time.

* If your application uses allocation bursts with sufficient CPU idle time in
between two allocation bursts set the amount of reserved memory to fit with
the largest allocation burst.

92 CHAPTER 7. MEMORY MANAGEMENT CONFIGURATION

* If your application does not have idle time with intermittent allocation bursts
set the amount of reserved memory to 0%.

* Enable memory reservation if your system has idle time that can be used for
garbage collection.

7.2 Configuration for hard-realtime applications

For predictable execution of memory allocation, more care is needed when select-
ing memory related options. No dynamic heap size increments should be used
since the pause introduced by the heap size expansion can harm the realtime guar-
antees required by the application. Dynamic heap expansion requires an atomic
operation, i.e., all Java threads in the VM will be stopped from running when
this happens, adding a possibly unlimited delay to the execution time of the tasks
performed by these threads.

Also, the heap size must be set large enough such that the implied garbage
collection work is tolerable.

The memory analyzer tool is used to determine the garbage collector settings
during a runtime measurement. Together with the —~showNumberOfBlocks
command line option of the Builder tool, they permit an accurate prediction of
the time required for each memory allocation. The following sections explain the
required configuration of the system.

7.2.1 Usage of the Memory Analyzer tool

The Memory Analyzer is a tool for fine tuning an application’s memory require-
ments and the realtime guarantees that can be given when allocating objects within
Java code running on the Jamaica Virtual Machine.

The Memory Analyzer is integrated into the Builder tool. It can be activated
by setting the command line option —analyze=accuracy.

Using the Memory Analyzer Tool is a three-step process: First, an application
is built using the Memory Analyzer. The resulting executable file can then be ex-
ecuted to determine its memory requirements. Finally, the result of the execution
can be used to fine tune the final version of the application.

7.2.2 Measuring an application’s memory requirements

As an example, we will build the HelloWorld example application that was pre-
sented in Section 2.4 By providing the option —analyze to the Builder and
giving the required accuracy of the analysis in percent, the built application will

7.2. CONFIGURATION FOR HARD-REALTIME APPLICATIONS 93

run in analysis mode to the specified accuracy. In this example, we use an accu-
racy of 5%:

> jamaicabuilder -cp classes —-interpret —-analyze=5 HelloWorld
Reading configuration from
’/usr/local/jamaica-8.11/target/linux-x86_64/etc/jamaica.conf’...
Jamaica Builder Tool 8.11 Release 0 (build 15405)
(User: EVALUATION USER, Expires: 2025.12.29)
Generating code for target ’linux-x86_64’, optimization ’speed’
+ tmp/HelloWorld _.c
+ tmp/HelloWorld _.h
C compiling ’“tmp/HelloWorld _.c’
tmp/HelloWorld_ _DATA.o
linking
* Stripping
Application memory demand will be as follows:

%+ %

initial max
Thread C stacks: 1152KB (= 9+ 128KB) 63MB (= 511+ 128KB)
Thread Java stacks: 144KB (= 9+ 16KB) 8176KB (= 511+ 16KB)
Heap Size: 2048KB 768MB
GC data: 128KB 48MB
TOTAL: 3472KB 88 7MB

The build process is performed exactly as it would be without the —analyze
option, except that the garbage collector is told to measure the application’s mem-
ory usage with the given accuracy. The result of this measurement is printed to
the console after execution of the application:

> ./HelloWorld

Hello World!
Hello World!
Hello World!
Hello World!

Hello World!
Hello World!
[...]

Recommended heap size: 4847K (contiguous memory) .

Application used at most 2933024 bytes for reachable objects
on the Java heap

(accuracy 5%).

###

Reserved memory is set to 10%. To obtain lower memory bounds
or worst—case GC overhead, set reserved memory to 0.

#H#

Worst case allocation overhead:

heapSize dynamic GC const GC work

15155K 6 3

94 CHAPTER 7. MEMORY MANAGEMENT CONFIGURATION

11644K 7 4
9677K 8 4
8450K 9 4
7598K 10 4
6510K 12 5
5858K 14 5
5405K 16 6
5088K 18 6
484 7K 20 7
4511K 24 8
4288K 28 9
4134K 32 10
4012K 36 11
3919K 40 12
3784K 48 14
3692K 56 17
3626K 64 19
3472K 96 27
3398K 128 36
3323K 192 53
3289K 256 69
3255K 384 100

The output consists of the maximum heap memory demand plus a table of possible
heap sizes and their allocation overheads for both dynamic and constant garbage
collection work. We first consider dynamic garbage collection work, since this is
the default.

In this example, the application uses a maximum of 2933024 bytes of memory
for the Java heap. The specified accuracy of 5% means that the actual memory
usage of the application will be up to 5% less than the measured value, but not
higher. JamaicaVM uses the Java heap to store all dynamic data structures internal
to the virtual machine (as Java stacks, classes, etc.), which explains the relatively
high memory demand for this small application.

7.2.3 Fine tuning the final executable application

In addition to printing the measured memory requirements of the application, in
analyze mode Jamaica also prints a table of possible heap sizes and corresponding
worst case allocation overheads. The worst case allocation overhead is given in
units of garbage collection work that are needed to allocate one block of memory
(typically 32 bytes). The amount of time in which these units of garbage collection
work can be done is platform dependent. For example, on the PowerPC processor,
a unit corresponds to the execution of about 160 machine instructions.

7.2. CONFIGURATION FOR HARD-REALTIME APPLICATIONS 95

From this table, we can choose the minimum heap size that corresponds to
the desired worst case execution time for the allocation of one block of memory.
A heap size of 4847K corresponds to a worst case of 20 units of garbage col-
lection work (3200 machine instructions on the PowerPC) per block allocation,
while a smaller heap size of, for example, 3919K can only guarantee a worst case
execution time of 40 units of garbage collection work (that is, 6400 PowerPC-
instructions) per block allocation.

If we find that for our application 14 units of garbage collection work per
allocation is sufficient to satisfy all realtime requirements, we can build the final
application using a heap of 5858K:

> jamaicabuilder -cp classes —interpret \
> ~heapSize=5858K -maxHeapSize=5858K HelloWorld
Reading configuration from
’/usr/local/jamaica-8.11/target/linux-x86_64/etc/jamaica.conf’ ...
Jamaica Builder Tool 8.11 Release 0 (build 15405)
(User: EVALUATION USER, Expires: 2025.12.29)
Generating code for target ’linux-x86_647, optimization ’speed’
+ tmp/HelloWorld _.c
+ tmp/HelloWorld _.h

* C compiling ’tmp/HelloWorld _.c’
+ tmp/HelloWorld DATA.o
* linking

* Sstripping
Application memory demand will be as follows:

initial max
Thread C stacks: 1152KB (= 9+ 128KB) 63MB (= 511+ 128KB)
Thread Java stacks: 144KB (= 9+« 16KB) 8176KB (= 511+ 16KB)
Heap Size: 5858KB 5858KB
GC data: 366KB 366KB
TOTAL: 7520KB 77MB

Note that both options, heapSize and maxHeapSize, are set to the same
value. This creates an application that has the same initial heap size and maxi-
mum heap size, i.e., the heap size is not increased dynamically. This is required
to ensure that the maximum of 14 units of garbage collection work per unit of
allocation is respected during the whole execution of the application. With a dy-
namically growing heap size, an allocation that happens to require increasing the
heap size will otherwise be blocked until the heap size is increased sufficiently.
The resulting application will now run with the minimum amount of memory
that guarantees the selected worst case execution time for memory allocation. The
actual amount of garbage collection work that is performed is determined dynam-
ically depending on the current state of the application (including, for example,
its memory usage) and will in most cases be significantly lower than the described

96 CHAPTER 7. MEMORY MANAGEMENT CONFIGURATION

worst case behavior, so that on average an allocation is significantly cheaper than
the worst case allocation cost.

7.2.4 Constant Garbage Collection Work

For applications that require best worst case execution times, where average case
execution time is less important, Jamaica also provides the option to statically
select the amount of garbage collection work. This forces the given amount of
garbage collection work to be performed at any allocation, without regard to the
current state of the application. The advantage of this static mode is that worst case
execution times are lower than using dynamic determination of garbage collection
work. The disadvantage is that any allocation requires this worst case amount of
garbage collection work.

The output generated using the option —analyze also shows possible values
for the constant garbage collection option. A unit of garbage collection work is
the same as in the dynamic case—about 160 machine instructions on the PowerPC
processor.

Similarly, if we want to give the same guarantee of 14 units of work for
the worst case execution time of the allocation of a block of memory with con-
stant garbage collection work, a heap size of 3784K bytes is sufficient. To in-
form the Builder that constant garbage collection work should be used, the op-
tion —constGCWork and the number of units of work should be specified when
building the application:

> jamaicabuilder -cp classes —-interpret -heapSize=3784K \

> -maxHeapSize=3784K -constGCWork=14 HelloWorld

Reading configuration from
’/usr/local/jamaica-8.11/target/linux-x86_64/etc/jamaica.conf’...

Jamaica Builder Tool 8.11 Release 0 (build 15405)

(User: EVALUATION USER, Expires: 2025.12.29)

Generating code for target ’linux-x86_64’, optimization ’speed’
+ tmp/HelloWorld _.c

tmp/HelloWorld _.h

C compiling ’‘tmp/HelloWorld _.c’

tmp/HelloWorld _DATA.o

linking
* stripping

Application memory demand will be as follows:

* 4+ % +

initial max
Thread C stacks: 1152KB (= 9% 128KB) 63MB (= 511+ 128KB)
Thread Java stacks: 144KB (= 9% 16KB) 8176KB (= 511+ 16KB)
Heap Size: 3784KB 3784KB
GC data: 236KB 236KB

TOTAL: 5316KB 75MB

7.2. CONFIGURATION FOR HARD-REALTIME APPLICATIONS 97

Please note that memory reservation (see Section [7.1.5)) should be disabled
when constant garbage collection work is used.

7.2.5 Comparing dynamic mode and constant GC work mode

Which option you should choose (dynamic mode or constant garbage collection)
depends strongly on the kind of application. If worst case execution time and low
jitter are the most important criteria, constant garbage collection work will usu-
ally provide the better performance with smaller heap sizes. But if average case
execution time is also an issue, dynamic mode will typically give better overall
throughput, even though for equal heap sizes the guaranteed worst case execution
time is longer with dynamic mode than with constant garbage collection work.

Gradual degradation may also be important. Dynamic mode and constant gar-
bage collection work differ significantly when the application does not stay within
the memory bounds that were fixed when the application was built.

There are a number of reasons an application might be using more memory:

* The application input data might be bigger than originally anticipated.

* The application was built with an incorrect or outdated ~heapSize argu-
ment.

* A bug in the application may be causing a memory leak and gradual use of
more memory than expected.

Whatever the reason, it may be important in some environments to understand
the behavior of memory management in the case the application exceeds the as-
sumed heap usage.

In dynamic mode, the worst-case execution time for an allocation can no
longer be guaranteed as soon as the application uses more memory. But as long
as the excess heap used stays small, the worst-case execution time will increase
only slightly. This means that the original worst-case execution time may not be
exceeded at all or only by a small amount. However, the garbage collector will
still work properly and recycle enough memory to keep the application running.

If the constant garbage collection work option is chosen, the amount of gar-
bage collection work will not increase even if the application uses more memory
than originally anticipated. Allocations will still be made within the same worst-
case execution time. Instead, the collector cannot give a guarantee that it will
recycle memory fast enough. This means that the application may fail abruptly
with an out-of-memory error. Static mode does not provide graceful degradation
of performance in this case, but may cause abrupt failure even if the application
exceeds the expected memory requirements only slightly.

98 CHAPTER 7. MEMORY MANAGEMENT CONFIGURATION

7.2.6 Determination of the worst case execution time of an al-
location

As we have just seen, the worst case execution time of an allocation depends on the
amount of garbage collection work that has to be performed for the allocation. The
configuration of the heap as shown above gives a worst case number of garbage
collection work units that need to be performed for the allocation of one block of
memory. In order to determine the actual time an allocation might take in the worst
case, it is also necessary to know the number of blocks that will be allocated and
the platform dependent worst case execution time of one unit of garbage collection
work.

For an allocation statement .S we get the following equation to calculate the
worst case-execution time:

weet(S) = numblocks(S) - max-gc-units - weet-of-gc-unit
Where
* wecet(.5) is the worst case execution time of the allocation
 numblocks(S) gives the number of blocks that need to be allocated

* max-gc-units is the maximum number of garbage collection units that need
to be performed for the allocation of one block

* wcet-of-gc-unit is the platform dependent worst case execution time of a
single unit of garbage collection work.

7.2.7 Examples

Imagine that we want to determine the worst-case execution time (wcet) of an
allocation of a StringBuffer object, as was done in the HelloWorld.java exam-
ple shown above. If this example was built with the dynamic garbage collection
option and a heap size of 443K bytes, we get

max-gc-units = 14

as has been shown above. If our target platform gives a worst case execution time
for one unit of garbage collection work of 1.6.s, we have

wcet-of-gc-unit = 1.6

We use the ~showNumberOfBlocks command line option to find the number
of blocks required for the allocation of a java.lang.StringBuffer object. Actually
this option shows the number of blocks for all classes used by the application even
when for this example we are only interested in the mentioned class.

7.2. CONFIGURATION FOR HARD-REALTIME APPLICATIONS

> jamaicabuilder -cp classes —-showNumberOfBlocks HelloWorld

[...]

java/lang/StringS$CIO
java/lang/StringSGetBytesCacheEntry
java/lang/StringSWeakSet
java/lang/StringBuffer
java/lang/StringBuilder
java/lang/StringCoding
java/lang/StringCodings1
java/lang/StringCodingSStringDecoder
[...]

A StringBuffer object requires two blocks of memory, so that
numblocks(new StringBuffer()) =2
and the total worst case-execution time of the allocation becomes

weet(new StringBuffer())=2-14-1.6us = 44.8us

99

o NN R ke

Had we used the constant garbage collection option with the same heap size, the
amount of garbage collection work on an allocation of one block could have been
fixed at 6 units. In that case the worst case execution time of the allocation be-

comes

weetoonstGCWork (New StringBuffer())=2-6-1.6us = 19.2us

100 CHAPTER 7. MEMORY MANAGEMENT CONFIGURATION

Chapter 8

Debugging Support

Jamaica supports the debugging facilities of integrated development environments
(IDEs) such as Eclipse or Netbeans. These are popular IDEs for the Java platform.
Debugging is possible on instances of the JamaicaVM itself, running on the host
or target platform, as well as for applications built with Jamaica Builder, which
run on an embedded device. The latter requires that the device provides network
access.

In this chapter, it is shown how to set up and use Java debugging via both fa-
cilities: a command line tool and the IDE debugging. A reference section towards
the end briefly explains the underlying technology (JPDA) and the supported op-
tions.

8.1 Enabling the Debugger Agent

While debugging the debugger needs to connect to the virtual machine (or the run-
ning application built with Jamaica Builder) in order to inspect the VM’s state, set
breakpoints, start and stop execution and so forth. Jamaica contains a communi-
cation agent (JDWP), which must be either enabled (for the VM as jamaicavmt
variant of the executable) or built into the application. In both cases, this is done
through the agent1ib option though with a bit different syntax. For example,

> Jjamaicavm —-agentlib:BuiltInAgent=transport=dt_socket, \
> server=y,address=8000 HelloWorld

launches JamaicaVM with debug agent enabled and HelloWorld as the main
class. The VM acts as a server and listens on port 8000 at Localhost by default
if the host name is omitted. The VM is suspended (default behavior) and waits
for the debugger (acts as a client) to connect. It then executes normally until a
breakpoint is reached.

101

102 CHAPTER 8. DEBUGGING SUPPORT

In order to build debugging support into an application, the Jamaica Builder
option —agentlib=BuiltInAgent... should be used, for example,
> jamaicabuilder -agentlib=BuiltInAgent=transport=dt_socket, \
> server=y,address=localhost:8000 HelloWorld
creates an executable application HelloWorld with built in debug agent. Be
aware that the given network address must be both valid and reachable (resolvable
host name) especially when the debug agent is run in client mode (that is, without
server=y option).

8.2 Connecting to Jamaica from the Command Line

The typical command line tool used for Java debugging is jdb. It can act as both
server and client. Also, the debug agent of the VM (or built application) can be
set up to run in server or client mode. The JDWP transport layer could be either
sockets or shared memory (currently supported only on Windows). Therefore
couple of scenarios and use cases can occur.

8.2.1 Using sockets as transport layer

Commonly the debug agent is run in server mode and jdb in client mode. First
start the debug agent:

> jamaicavm \
> —agentlib: jdwp=transport=dt_socket, server=y, address=8000
Listening for transport dt_socket at address: 8000

Then attach via jdb:
> jdb -attach [hostname:]8000
Note that the server must be started first! Specifying a hostname in the address is
optional, but the port number must be given.

On Windows the default transport layer is shared memory and therefore dif-
ferent syntax is required. To attach via jdb in client mode use the following
syntax:

> jdb -—-connect com.sun.jdi.SocketAttach:port=8000

Running the debug agent in client and jdb in server mode is done as follows.
First start jdb:

> jdb -connect com.sun.jdi.SocketListen:port=8000
Listening at address: miami:8000

Then attach from the debug agent:

> jamaicavm \
> —agentlib: jdwp=transport=dt_socket, address=[hostname:]8000

8.3. CONFIGURING THE IDE TO CONNECT TO JAMAICA 103

8.2.2 Using shared memory as transport layer

The main difference in using shared memory is the notation of address. It actually
is just a name identifier. It can even be omitted while a default value would be
used then.

Running the debug agent in server mode:

> Jamaicavm \

> —agentlib: jdwp=transport=dt_shmem, server=y, address=somename
Listening for transport dt_shmem at address: somename

and attaching via jdb in client mode:

> jdb —-attach somename

! Note that if the address is omitted, Jamaica uses ‘javadebug[.number]’ as a
default name identifier for the debugging session.

The other case, running jdb in server mode could be done either as:

> jdb -listen somename
Listening at address: somename

or

> jdb -listenany
Listening at address: javadebug

while attaching from the debug agent as:

> Jjamaicavm \
> —agentlib: jdwp=transport=dt_shmem, address=somename

8.3 Configuring the IDE to connect to Jamaica

Before being able to debug a project, the code needs to compile and basically run.
Before starting a debugging session, the debugger must be configured to connect
to the VM by specifying the VM’s host address and port. Normally, this is done
by setting up a debug configuration.

In Eclipse 3.5, for example, select the menu item

Run > Debug Configurations....

In the list of available items presented on the left side of the dialog window (see
Fig.[8.1)), choose a new configuration for a remote Java application, then

104 CHAPTER 8. DEBUGGING SUPPORT

800 Debug Configurations
Create, manage, and run configurations
Attach to a Java virtual machine accepting debug connections
& [I= —+1 r
= ii| = e Name: 'New_configuration
type filter text I Connect - &~ Source| = Common
@ Clojure Project:
& Eclipse Application E
¥ Jamaica Application | Browse..
9 Java Applet .
» 71Java Application Connection Type:
JuJUnit | Standard (Socket Attach) =
Ji JUnit Plug-in Test , o
m2 Maven Build Connection Properties:
4 0SGi Framework Host: |device.sample.com
v[d icati
L;:.ile\m-::rte Java App||Fat|on Port: 18000
=, New_configuration
J¥iTask Context Plug-in Test [| Allow termination of remote VM
JuiTask Context Test
| Apply | | Revert |
Filter matched 15 of 15 items
@ | Close | | Debug |

Figure 8.1: Setting up a remote debugging connection in Eclipse 3.5

* configure the debugger to connect to the VM by choosing connection type
socket attach and

* enter the VM’s network address and port as the connection properties host
and port.

Clicking on Debug attaches the debugger to the VM and starts the debugging ses-
sion. If the VM’s communication agent is set to suspending the VM before loading
the main class, the application will only run after instructed to do so through the
debugger via commands from the Run menu. In Eclipse, breakpoints may be set
conveniently by double-clicking in the left margin of the source code.

For instructions on debugging, the documentation of the used debugger should
be consulted—in Eclipse, for example, though the He 1p menu.

The Jamaica Eclipse Plug-In (see Chapter [) provides the required setup for
debugging with the JamaicaVM on the host system automatically. It is sufficient
to select Jamaica as the Java Runtime Environment of the project.

8.4. REFERENCE INFORMATION 105

| Syntax Description

transport=dt_socket |dt_shmem | dt_socket is a generally supported
transport protocol while dt_shmem is
supported only on Windows.

address=[host:] port| name Transport address (or a name of shared
memory area) for the connection.
server=y|n If v, listen for a debugger application to

attach; otherwise, attach to the debugger
application at the specified address.

suspend=y | n If v, suspend this VM until connected to
the debugger.
help List all accepted options, their descrip-

tion and default values.

Table 8.1: Arguments of Jamaica’s communication agent

8.4 Reference Information

Jamaica supports the Java Platform Debugger Architecture (JPDA). Debugging
is possible with IDEs that support the JPDA. Tab. [8.1] shows the main debugging
options accepted by Jamaica’s communication agent. For a complete list of all
accepted options use the help command as:

> Jjamaicavm -agentlib:jdwp=help

The Jamaica Debugging Interface has the following limitations:
* Local variables of compiled methods cannot be examined
 Stepping through a compiled method is not supported
* Setting a breakpoint in a compiled method will silently be ignored
* Notification on field access/modification is not available
* Information about java monitors cannot be retrieved

The Java Platform Debugger Architecture (JPDA) consists of three interfaces
designed for use by debuggers in development environments for desktop systems.
The Java Virtual Machine Tools Interface (JVMTI) defines the services a VM must
provide for debugging[] The Java Debug Wire Protocol (JDWP) defines the format

'The JVMTI is a replacement for the Java Virtual Machine Debug Interface (JVMDI) which
has been deprecated.

106 CHAPTER 8. DEBUGGING SUPPORT

of information and requests transferred between the process being debugged and
the debugger front end, which implements the Java Debug Interface (JDI). The
Java Debug Interface defines information and requests at the user code level.

A JPDA Transport is a method of communication between a debugger and
the virtual machine that is being debugged. The communication is connection
oriented—one side acts as a server, listening for a connection. The other side acts
as a client and connects to the server. JPDA allows either the debugger application
or the target VM to act as the server. The transport implementations of Jamaica
allows communications between processes running on different machines.

Chapter 9

The Realtime and Embedded
Specification for Java

JamaicaVM supports the Realtime and Embedded Specification for Java (RTSJ)
V2.0. This specification, including API documentation is available online: http:
//www.rtsj2.org/. The API is also documented in the API documentation
of the Jamaica class library:

jamaica-home/doc/ jamaica_api/index.html.

RTSJ core resides in the package javax.realtime. Additional APIs are in
subpackages:

* javax.realtime.control,

* javax.realtime.device,

* javax.realtime.enforce,

* javax.realtime.memory, and
* javax.realtime.posix.

These packages contain classes for asynchronous transfer of control, device ac-
cess, resource enforcement, scoped memory, and POSIX signaling respectively.
The deprecated APIs in core for these features should not be used. For de-
tails about limitations in the current RTSJ implementation, please refer to the
UNSUPPORTED file in the doc folder of the distribution.

107

http://www.rtsj2.org/
http://www.rtsj2.org/

108 CHAPTER 9. THE REALTIME AND EMBEDDED SPECIFICATION FOR JAVA

9.1 Realtime programming with the RTS]J

The aim of the Realtime and Embedded Specification for Java (RTSJ) is to re-
fine the Java language definition and add standard libraries to support realtime
programming. Central to this are realtime threads, i.e., threads which can be trig-
gered periodically by a clock or asynchronously by an event, as well as run with
a realtime priority. It also provides an API for event-based programming without
binding computation to a thread. Nevertheless, a realtime Java implementation,
such as JamaicaVM, can run conventional Java code.

The most important refinements of the RTSJ are in the areas of thread schedul-
ing, synchronization, and asynchronous events. Furthermore, it requires a realtime
garbage collector when the javax.realtime.memory package is not sup-
ported. Whereas the original Real-Time Specification for Java relied on scoped
memory to ensure realtime response, the current Realtime and Embedded Specifi-
cation for Java 2.0 can be used without scoped memory, when the implementation,
e.g., JamaicaVM, has a realtime garbage collector.

Changes implemented in the Scheduler of JamaicaVM require setting certain
capabilities, to allow JamaicaVM to access realtime priorities and provide real-
time thread guarantees.

On Linux, for example, one must either run (effectively) as root or set the
CAP_SYS_NICE capability on the executable, e.g., setcap cap_sys_nice=
eip executable.

Please note that using set cap also requires root privileges. However, on a
dedicated RTOS (Real-Time Operating Systems), such as QNX, this is generally
not needed.

The subpackages are not required, but JamaicaVM supports them all. These
packages provide the following capabilities:

* asynchronous flow of control, including safe thread termination,
¢ device access,
 resource enforcement,

* alternative memory management, and

POSIX signaling.

With this, the RTSJ also covers areas that are not directly related to realtime ap-
plications. However, these areas are very useful for many embedded realtime
applications, where interaction with the physical world and dynamic updatability
is required.

9.1. REALTIME PROGRAMMING WITH THE RTSJ 109

9.1.1 Thread Scheduling

Conventional Java applications rely on fair scheduling to ensure that all threads
have a chance to run. Thus, a thread with priority 1 will run even if all other
threads have a higher priority. From time to time, the low priority thread will
prevent a higher priority thread from running. For a realtime application, this is
not acceptable.

In a hard realtime system, all time-critical computation must complete within
a specified deadline. Being preempted or delayed by a lower priority thread could
prevent this from happening from time to time. Therefore, operation systems, such
as Linux, also provide realtime schedulers, which run threads at higher priorities
than the standard fair scheduler used by most programs.

The RTSJ provides the ability to run threads with FIFO scheduling. On Linux
this is the realtime scheduler defined by POSIX: SCHED_FIFO. Threads with
this priority run until they block or are preempted by a higher priority thread. This
means that a thread that does not block can block all other threads from running.
For this reason, the RTSJ provides the RealtimeThread class that provide spe-
cial blocking method to wait for external events: waitForNextRelease ().
A release can be either a periodic clock tick or an asynchronous event.

9.1.2 Thread Priorities

Thread priorities for normal Java threads must be in the range specified in the class
java.lang.Thread. The minimal priority is MIN_PRIORITY, the maximal
priority MAX_PRIORITY. For threads of the type RealtimeThread, their
additional realtime priority range is defined in the class javax.realtime.
PriorityScheduler, by querying the methods getMinPriority () and
getMaxPriority (). This class also provides a means for normal Java threads
to use realtime priorities, when their thread group is a realtime thread group. This
is useful for managing thread pools, but should be used with care to prevent the
system from locking up.

9.1.3 Affinity

The RTSJ provides APIs, not only for which scheduler can be used for each thread,
but also for limiting the CPUs each thread can run on. The class Affinity
provides this support for both Threads and BoundAsyncEventHandlers.
By default, a thread can run on any CPU or be bound to a particular CPU. CPU
sets that contain more than one CPU and less than all CPUs can be defined at build
or startup time as needed by a given application.

110CHAPTER 9. THE REALTIME AND EMBEDDED SPECIFICATION FOR JAVA

9.1.4 Synchronization

The Java Virtual Machine Specification does not describe how synchronization
interacts with scheduling beyond mutual exclusion between threads for synchro-
nized code. In realtime systems with threads of realtime priority levels, priority
inversion situations must be avoided. Priority inversion occurs when a thread of
high priority is blocked by waiting for a monitor that is owned by a thread of a
lower priority. The RTSJ provides the priority inheritance by default and priority
ceiling protocol as an alternative for preventing priority inversion.

9.1.5 Events and Event Handlers

The RTSJ provides an alternative to thread programming: the AsyncEvent—
Handler class. This is akin to a functional interface, such as a Runnable,
that is called each time an event occurs. This makes timing analysis simpler than
using waitForNextPeriod () in an instance of RealtimeThread, since
one need only consider the body of the handleAsyncEvent () method. Then
there is a good separation between release time and execution time of a handler.
In order to unify timer and other events, the Timer classes now inherit from
AsyncEvent.

9.1.6 Example

The RTSJ offers powerful features that enable the development of realtime appli-
cations. The following program shows how the RTSJ can be used in practice.

import javax.realtime.x;

[* %
» Demo of a periodic thread in Java
*/

public class HelloRT

{

public static void main(String[] args)

{

/* priority for new thread: min+10 */

int pri =
PriorityScheduler.instance () .getMinPriority () + 10;
PriorityParameters prip = new PriorityParameters (pri);

/* period: 20ms x/
RelativeTime period =
new RelativeTime (20 /+ ms */, 0 /% ns x/);

/x release parameters for periodic thread =/

9.2. REALTIME GARBAGE COLLECTION 111

PeriodicParameters perp =
new PeriodicParameters(null, period, null, null, null, null);

/* create periodic thread =*/
RealtimeThread rt = new RealtimeThread (prip, perp)
{

public void run ()

{
int n = 1;
while (waitForNextRelease() && (n < 100))
{
System.out .println("Hello " + n);
n++;
}
}
}i

/* start periodic thread «/
rt.start ();

In this example, a periodic thread is created. This thread becomes active every
20ms and writes output onto the standard console. A RealtimeThread is used
to implement this task. The priority and the length of the period of this peri-
odic thread need to be provided. A call to waitForNextPeriod () causes the
thread to wait after the completion of one activation for the start of the next period.

The same thing can be done with an asynchronous event handler attached to an
instance of PeriodicTimer. The timer is set to release at period intervals.
Then the handleAsyncEvent would contain the code in the body of the loop.

An introduction to the RTSJ with numerous further examples is given in the
book by Peter Dibble [2]. These are based on the original version of the RTSJ,
so though they would run as is, they should be updated to the latest version of the
specification.

Of course, as with any realtime application, care should be taken when passing
data between threads of different priorities to avoid priority inversion. In general, a
higher priority thread should not the use wait and notify for synchronization.
For this the RTSJ provides its own waiting queues.

9.2 Realtime Garbage Collection

In JamaicaVM, a system that supports realtime garbage collection, this strict sep-
aration into realtime and non-realtime threads is not necessary. The strict splitting

112CHAPTER 9. THE REALTIME AND EMBEDDED SPECIFICATION FOR JAVA

of an application is consequently not required. Threads are activated depending
only on their priorities.

The realtime garbage collector performs its work predictably within the appli-
cation threads. It is activated when memory is allocated. The work done on an
allocation must be preemptible, so that more urgent threads can become active.

The implementation of a realtime garbage collector must solve a number of
technical challenges. Garbage collector activity must be performed in very small
single increments of work. In JamaicaVM, one increment consists of garbage
collecting only 32 bytes of memory. On every allocation, the allocating thread
“pays” for the memory by performing a small number of these increments. The
number of increments can be analyzed, such that this is possible even in realtime
code.

The RTSJ provides a powerful extension to the Java specification. Its full
power, however, is achieved only by the combination with a realtime garbage
collector that helps to overcome its restrictions.

9.2.1 Use of Memory Areas

Because JamaicaVM’s realtime garbage collector does not interrupt application
threads, it is unnecessary for an object of class RealtimeThread to run in its
own memory area not under the control of the garbage collector. Instead, any
thread can use and access the normal garbage collected heap. Nevertheless, any
realtime thread can make use of the alternative memory areas such as LTMemory
or ImmortalMemory if the application developer wishes to do so. Since these
memory classes are not controlled by the garbage collector, allocation does not
require garbage collector activity and may be faster or more predictable than al-
locations on the normal heap. However, great care is required in these memory
areas to avoid memory leaks, since temporary objects allocated in immortal mem-
ory will not be reclaimed automatically.

9.2.2 Static Initializers

Since scoped memory is no longer a prerequisite for an implementation of the
RTSJ, the handling of static initialization has been liberalized. Only classes in
specially annotated packages are allocated in immortal memory. This means that
threads and event handlers with scoped configuration parameters must be careful
which class objects they access. Fortunately, for most applications, this is not
necessary.

9.3. JAMAICAVM AND THE REALTIME AND EMBEDDED SPECIFICATION FOR JAVA113

9.3 JamaicaVM and the Realtime and Embedded
Specification for Java

JamaicaVM offers the combination of a fine-granular deterministic garbage col-
lector with a full implementation of the Realtime and Embedded Specification for
Java. It is optimized for embedded systems to provide a flexible trade off between
size and performance. It is not only the basis for the Reference Implementation,
but also the basis of our JamaicaAMS frameworks for supporting dynamic mixed-
critical systems with remote management through aicas EDGE Suite.

9.4 Extra Features and Trade-Offs

Since the timeliness of realtime systems is just as important as their functional
correctness, realtime Java programmers must take more care using Java than other
Java users. In fact, realtime Java implementations in general and the JamaicaVM
in particular offer a host of features not present in standard Java implementations.

The JamaicaVM offers a myriad of sometimes overlapping features for real-
time Java development. The realtime Java developer needs to understand these
features and when to apply them. Particularly, with realtime specific features per-
taining to memory management and task interaction, the programmer needs to
understand the trade-offs involved. The following sections do not offer cut and
dried solutions to specific application problems, but instead offer guidelines for
helping the developer make the correct choice.

9.5 Computational Transparency

In contrast to normal software development, the development of realtime code re-
quires not only the correctness of the code, but also the timely execution of the
code. For the developer, this means that not only the result of each statement is im-
portant, but also the approximate time required to perform the statement must be
obvious. One need not know the exact execution time of each statement when this
statement is written, as the exact determination of the worst case execution time
can be performed by a later step; however, one should have a good understanding
of the order of magnitude in time a given code section needs for execution early on
in the coding process. For this, the computational complexity can be described in
categories such as a few machine cycles, a few hundred machine cycles, thousands
of machine cycles or millions of machine cycles. Side effects such as blocking for
I/O operations or memory allocation should be understood as well.

114CHAPTER 9. THE REALTIME AND EMBEDDED SPECIFICATION FOR JAVA

The term computational transparency refers to the degree to which the compu-
tational effort of a code sequence written in a programming language is obvious to
the developer. The closer a sequence of commands is to the underlying machine,
the more transparent that sequence is. Modern software development tries to raise
the abstraction level at which programmers ply their craft. This tends to reduce the
cost of software development and increase its robustness. Often however, it masks
the real work the underlying machine has to do, thus reducing the computational
transparency of code.

Languages like Assembler are typically completely computationally transpar-
ent. The computational effort for each instruction can be derived in a straightfor-
ward way (e.g., by consulting a table of instruction latency rules). The range of
possible execution times of different instructions is usually limited as well. Only
very few instructions in advanced processor architectures have an execution time
of more than O (1) .

Compiled languages vary widely in their computational complexity. Program-
ming languages such as C come very close to full computational transparency. All
basic statements are translated into short sequences of machine code instructions.
More abstract languages can be very different in this respect. Some simple con-
structs may operate on large data structures, e.g., sets, thus take an unbounded
amount of time.

Originally, Java was a language that was very close to C in its syntax with
comparable computational complexity of its statements. Only a few exceptions
were made. Java has evolved, particularly in the area of class libraries, to ease the
job of programming complex systems, at the cost of diminished computational
transparency. Therefore a short tour of the different Java statements and expres-
sions, noting where a non-obvious amount of computational effort is required to
perform these statements with the Java implementation JamaicaVM, is provided
here.

9.5.1 Efficient Java Statements

First the good news. Most Java statements and expressions can be implemented
in a very short sequence of machine instructions. Only statements or constructs
for which this is not so obvious are considered further.

9.5.1.1 Dynamic Binding for Virtual Method Calls

Since Java is an object-oriented language, dynamic binding is quite common.
In the JamaicaVM dynamic binding of Java methods is performed by a simple
lookup in the method table of the class of the target object. This lookup can
be performed with a small and constant number of memory accesses. The total

9.5. COMPUTATIONAL TRANSPARENCY 115

overhead of a dynamically bound method invocation is consequently only slightly
higher than that of a procedure call in a language like C.

9.5.1.2 Dynamic Binding for Interface Method Calls

Whereas single inheritance makes normal method calls easy to implement effi-
ciently, calling methods via an interface is more challenging. The multiple inher-
itance implicit in Java interfaces means that a simple dispatch table as used by
normal methods can not be used. In the JamaicaVM the time needed to find the
called method is linear with the number of interfaces implemented by the class.

9.5.1.3 Type Casts and Checks

The use of type casts and type checks is very frequent in Java. One example is the
following code sequence that uses an instanceof check and a type cast:

Object o = vector.elementAt (index);

if (o instanceof Integer)
sum = sum + ((Integer)o).intValue();

These type checks also occur implicitly whenever a reference is stored in an array
of references to make sure that the stored reference is compatible with the actual
type of the array. Type casts and type checks within the JamaicaVM are per-
formed in constant time with a small and constant number of memory accesses.
In particular, instanceof is more efficient than method invocation.

9.5.1.4 Generics

The generic types (generics) introduced in JDK 1.5 avoid explicit type cases that
are required using abstract data types with older versions of Java. Using generics,
the type cast in this code sequence

ArrayList list = new ArrayList ();
list.add (0, "some string");
String str = (String) list.get (0);

is no longer needed. The code can be written using a generic instance of Array—
List that can only hold strings as follows.

ArrayList<String> list = new ArrayList<String>{();
list.add (0, "some string");
String str = list.get(0);

116CHAPTER 9. THE REALTIME AND EMBEDDED SPECIFICATION FOR JAVA

Generics still require type casts, but these casts are hidden from the developer.
This means that access to 1ist using 1ist.get (0) in this example in fact
performs the type cast to String implicitly causing additional runtime over-
head. However, since type casts are performed efficiently and in constant time in
JamaicaVM, the use of generics can be recommended even in time-critical code
wherever this appears reasonable for a good system design.

9.5.2 Non-Obvious Slightly Inefficient Constructs

A few constructs have some hidden inefficiencies, but can still be executed within
a short sequence of machine instructions.

9.5.2.1 final Local Variables

The use of £inal local variables is very tempting in conjunction with anonymous
inner classes since only variables that are declared final (or are effectively final)
can be accessed from code in an anonymous inner class. An example for such an
access is shown in the following code snippet:

final int data = getDatal();

new RealtimeThread (new PriorityParameters (pri))

{

public void run{()

{
for (...)

{

x = data;

All uses of the local variable within the inner class are replaced by accesses to a
hidden field. In contrast to normal local variables, each access requires a memory
access.

9.5.2.2 Accessing private Fields from Inner Classes

As with the use of £inal local variables, any private fields that are accessed
from within an inner class require the call to a hidden access method since these
accesses would otherwise not be permitted by the virtual machine.

9.5. COMPUTATIONAL TRANSPARENCY 117

9.5.3 Statements Causing Implicit Memory Allocation

Thus far, only execution time has been considered, but memory allocation is also
a concern for safety-critical systems. In most cases, memory allocation in Java
is performed explicitly by the keyword new. However, some statements per-
form memory allocations implicitly. These memory allocations do not only re-
quire additional execution time, but they also require memory. This can be fa-
tal within execution contexts that have limited memory, e.g., code running in a
ScopedMemory or ImmortalMemory asitis required by the Real-Time Spec-
ification for Java for NoHeapRealtimeThreads. A realtime Java programmer
should be familiar with all statements and expressions which cause implicit mem-
ory allocation.

9.5.3.1 String Concatenation

Java permits the composition of strings using the plus operator. Unlike adding
scalars such as int or f1oat values, string concatenation requires the allocation

of temporary objects and is potentially very expensive.
As an example, the instruction

int X = ...;
Object thing = ...;

String msg = "x is " + x + " thing is " + thing;
will be translated into the following statement sequence:

int X = ...;
Object thing = ...;

StringBuffer tmp_sb = new StringBuffer();
tmp_sb.append("x is ");

tmp_sb.append (x) ;

tmp_sb.append (" thing is ");
tmp_sb.append (thing.toString());

String msg = tmp_sb.toString();

The code contains hidden allocations of a St ringBuf fer object, of an internal
character buffer that will be used within this St ringBuf fer, a temporary string
allocated for thing.toString (), and the final string returned by tmp_sb.
toString ().

Apart from these allocations, the hidden call to thing.toString () can
have an even higher impact on the execution time, since method toString can
be redefined by the actual class of the instance referred to by thing and can
cause arbitrarily complex computations.

118CHAPTER 9. THE REALTIME AND EMBEDDED SPECIFICATION FOR JAVA

9.5.3.2 Array Initialization

Java also provides a handy notation for array initialization. For example, an array
with the first 8 Fibonacci numbers can be declared as

int(] fib = { 1, 1, 2, 3, 5, 8, 13, 21 };

Unlike C, where such a declaration is converted into preinitialized data, the Java
code performs a dynamic allocation and is equivalent to the following code se-
quence:

int[] fib = new int[8];
fib[0] = 1;

fib[1] = 1;

fib[2] = 2;

fib[3] = 3;

fib[4] 5;

fib[5] = 8;

fib[6] = 13;

fib[7] = 21;

Initializing arrays in this way should be avoided in time critical code. When pos-
sible, constant array data should be initialized within the static initializer of the
class that uses the data and assigned to a static variable that is marked final.
Due to the significant code overhead, large arrays should instead be loaded as a
resource, using the Java standard API (via method getResourceAsStream
from class java.lang.Class).

9.5.3.3 Autoboxing

Unlike some Scheme implementations, primitive types in Java are not internally
distinguishable from pointers. This means that in order to use a primitive data type
where an object is needed, the primitive needs to be boxed in its corresponding
object. JDK 1.5 introduced autoboxing which automatically creates objects for
values of primitive types such as int, 1ong, or f1oat whenever these values are
assigned to a compatible reference. This feature is purely syntactic. An expression
such as

o = new Integer(i);

can be written as

o = 1ij;

Due to the hidden runtime overhead for the memory allocation, autoboxing should
be avoided in performance critical code. Within code sequences that have heavy
restrictions on memory demand, such as realtime tasks that run in Tmmortal-

Memory or ScopedMemory, autoboxing should be avoided completely since it
may result in hidden memory leaks.

9.5. COMPUTATIONAL TRANSPARENCY 119

9.5.3.4 For Loop Over Collections

JDK 1.5 also introduced an extended for loop. The extension permits the itera-
tion of a Collection using a simple for loop. This feature is purely syntactic.
A loop such as

ArrayList list = new ArrayList();
for (Iterator i = list.iterator(); i.hasNext();)
{
Object value = i.next();

}

can be written as

ArrayList list = new ArrayList ();
for (Object value : list)
{

}

The allocation of a temporary Iterator thatis performed by the call to 1ist.
iterator () is hidden in this new syntax.

9.5.3.5 Variable Argument Lists

Another feature of JDK 1.5 requires implicit memory allocation: The introduced
variable argument lists for methods is implemented by an implicit array allocation
and initialization, and should consequently be avoided.

9.5.4 Operations Causing Class Initialization

Another area of concern for computational transparency is class initialization.
Java uses static initializers for the initialization of classes on their first use.
The first use is defined as the first access to a static method or static field of the
class in question, its first instantiation, or the initialization of any of its subclasses.

The code executed during initialization can perform arbitrarily complex oper-
ations. Consequently, any operation that can cause the initialization of a class may
take arbitrarily long for its first execution. This is not acceptable for time critical
code.

Consequently, the execution of static initializers has to be avoided in time
critical code. There are two ways to achieve this: either time critical code must
not perform any statements or expressions that may cause the initialization of a
class, or the initialization has to be made explicit.

The statements and expressions that cause the initialization of a class are

120CHAPTER 9. THE REALTIME AND EMBEDDED SPECIFICATION FOR JAVA

* reading a static field of another class,
* writing a static field of another class,
* calling a static method of another class, and

* creating an instance of another class using new.

An explicit initialization of a class C is best performed in the static initializer of
the class D that refers to C. One way to do this is to add the following code to class
D:

/* initialize class C: */
static { C.class.initialize(); }

The notation C. class itself has its own disadvantages (see Section[9.5.5)). So, if
possible, it may be better to access a static field of the class causing initialization
as a side effect instead.

/* initialize class C: */
static { int ignore = C.static_field; }

9.5.5 Operations Causing Class Loading

Class loading can also occur unexpectedly. A reference to the class object of a
given class C can be obtained using classname . class as in the following code:

Class class_C = C.class;

This seemingly harmless operation is, however, transformed into a code sequence
similar to the following code:

static Class class$(String name)
{
try { return Class.forName (name); }
catch (ClassNotFoundException e)
{
throw new NoClassDefFoundError (e.getMessage());
}
}

static Class classsSC;

Class tmp;
if (class$C == null)
{
tmp = classs$("C");
classS$C = tmp;

9.6. SUPPORTED STANDARDS 121

}

else
{
tmp = classS$C;
}

Class class_C = tmp;

This code sequence causes loading of new classes from the current class loading
context. lL.e., it may involve memory allocation and loading of new class files.
If the new classes are provided by a user class loader, this might even involve
network activity, etc.

With JDK 1.5, the classname . c1ass notation started to be supported by the
JVM directly. The code above was therefore replaced by a simple bytecode in-
struction that references the desired class directly. Consequently, the referenced
class can be loaded by JamaicaVM at the same time the referencing class is loaded
and the statement could be replaced by a constant number of memory accesses.

9.6 Supported Standards

Thus far, only standard Java constructs have been discussed. However libraries
and other APIs are also an issue. Timely Java development needs support for
timely execution and device access. There are also issues of certifiability to con-
sider. JamaicaVM has at least some support for all of the following APIs.

9.6.1 Real-Time Specification for Java

The Real-Time Specification for Java (RTSJ) provides functionality needed for
time-critical Java applications. RTSJ introduces an additional API of Java classes,
mainly with the goal of providing a standardized mechanism for realtime ex-
tensions of Java Virtual Machines. RTSJ extensions also cover other areas of
great importance to many embedded realtime applications, such as direct access
to physical memory (e.g., memory mapped 1/0O) or asynchronous mechanisms.

9.6.1.1 Thread Scheduling in the RTS]J

Ensuring that Java programs can execute in a timely fashion was a main goal
of the RTSJ. To enable the development of realtime software in an environment
with a garbage collector that stops the execution of application threads in an un-
predictable way (see Fig. 0.1)), the new thread classes Realt imeThread and
NoHeapRealtimeThread were defined. These thread types are unaffected,
or at least less severely affected, by garbage collection activity. Also, at least 28

122CHAPTER 9. THE REALTIME AND EMBEDDED SPECIFICATION FOR JAVA

Thread time

GC
Userl —mmm—a é é s oy
User2 |m e < < . -

Figure 9.1: Java Threads in a classic JVM are interrupted by the garbage collector
thread

Thread time
itl) S S S
rt2 —k HE Hl B
GC |) T

s -
User 2 I ((o B

Figure 9.2: RealtimeThreads can interrupt garbage collector activity

new priority levels, logically higher than the priority of the garbage collector, are
available for these threads, as illustrated in Fig.[0.2]

9.6.1.2 Memory Management

For realtime threads not to be affected by garbage collector activity, these threads
need to use memory areas that are not under the control of the garbage collector.
New memory classes, ImmortalMemory and ScopedMemory, provide these
memory areas. One important consequence of using special memory areas is, of
course, that the advantages of dynamic memory management is not fully available
to realtime threads.

9.6.1.3 Synchronization

In realtime systems with threads of different priority levels, priority inversion situ-
ations must be avoided. Priority inversion occurs when a thread of high priority is
blocked by waiting for a monitor that is owned by a thread of a lower priority that
is preempted by some thread with intermediate priority. The RTSJ provides two

9.6. SUPPORTED STANDARDS 123

alternatives, priority inheritance and the priority ceiling protocol, to avoid priority
inversion.

9.6.1.4 Limitations of the RTSJ and their solution

The RTSJ provides a solution for realtime programming, but it also brings new
difficulties to the developer. The most important consequence is that applications
have to be split strictly into two parts: a realtime and a non realtime part. Commu-
nication between these parts is heavily restricted: realtime threads cannot perform
memory operations such as the allocation of objects on the normal heap which is
under the control of the garbage collector. Synchronization between realtime and
non realtime threads is also severely restricted to prevent realtime threads from
being blocked by the garbage collector due to priority inversion.

JamaicaVM removes these restrictions by using its realtime garbage collec-
tion technology. Realtime garbage collection obviates the need to make a strict
separation of realtime and non realtime code. Using RTSJ with realtime garbage
collection provides necessary realtime facilities without the cumbersomeness of
having to segregate a realtime application.

9.6.2 Java Native Interface

Both the need to use legacy code and the desire to access exotic hardware may
make it advantageous to call foreign code out of a JVM. The Java Native Inter-
face (JNI) provides this access. JNI can be used to embed code written in other
languages than Java, (usually C), into Java programs.

While calling foreign code through JNI is flexible, the resulting code has sev-
eral disadvantages. It is usually harder to port to other operating systems or hard-
ware architectures than Java code. Another drawback is that JNI is not very high-
performing on any Java Virtual Machine. The main reason for the inefficiency is
that the JNI specification is independent of the Java Virtual Machine. Significant
additional bookkeeping is required to insure that Java references that are handed
over to the native code will remain protected from being recycled by the garbage
collector while they are in use by the native code. The result is that calling JNI
methods is usually expensive.

An additional disadvantage of the use of native code is that the application of
any sort of formal program verification of this code becomes virtually intractable.

Nevertheless, because of its availability for many JVMs, JNI is the most popu-
lar Java interface for accessing hardware. It can be used whenever Java programs
need to embed C routines that are not called too often or are not overly time-
critical. If portability to other JVMs is a major issue, there is no current alternative

124CHAPTER 9. THE REALTIME AND EMBEDDED SPECIFICATION FOR JAVA

Thread time

a3
2 A H——I———H———— 11—
3 & - AHHH 0O
4 - I 0-

Figure 9.3: JamaicaVM provides realtime behavior for all threads.

to JNI. When portability to other operating systems or hardware architectures is
more important, RTSJ is a better choice for device access.

9.7 Memory Management

In a system that supports realtime garbage collection, RTSJ’s strict separation
into realtime and non realtime threads is not necessary. The strict splitting of an
application is consequently not required. Threads are activated only depending on
their priorities, as depicted in Fig.

The realtime garbage collector performs its work predictably within the appli-
cation threads. It is activated when memory is allocated. The work done on an
allocation must be preemptible, so that more urgent threads can become active.

The implementation of a realtime garbage collector must solve a number of
technical challenges. Garbage collector activity must be performed in very small
single increments of work. In JamaicaVM, one increment consists of processing
and possibly reclaiming only 32 bytes of memory. On every allocation, the al-
locating thread “pays” for the memory by performing a small number of these
increments. The number of increments can be analyzed to determine worst-case
behavior for realtime code.

9.7.1 Memory Management of RTS]J

The RTSJ provides a powerful extension to the Java specification. Its full power,
however, is achieved only by the combination with a realtime garbage collector
that helps to overcome its restrictions. Since JamaicaVM uses a realtime garbage
collector, it does not need to impose on the applications developed with it the limi-
tations that the Real-Time Specification for Java puts onto realtime programming.
The limitations that are relaxed in JamaicaVM affect the use of memory areas,
thread priorities, runtime checks, and static initializers.

9.7. MEMORY MANAGEMENT 125

9.7.1.1 Use of Memory Areas

Since Jamaica’s realtime garbage collector does not interrupt application threads,
RealtimeThreads and even NoHeapRealtimeThreads are not required
to run in their own memory area outside the control of the garbage collector. In-
stead, any thread can use and access the normal garbage collected heap.

9.7.1.2 Thread priorities

In Jamaica, RealtimeThreads, NoHeapRealtimeThreads and normal
Java Thread objects all share the same priority range. The lowest possible
thread priority for all of these threads is defined in package java.lang, class
Thread by field MIN_PRIORITY. The highest possible priority can be ob-
tained by querying instance () .getMaxPriority (), class Priority-—
Scheduler, package javax.realtime.

9.7.1.3 Runtime checks for NoHeapRealtimeThread

Since even NoHeapRealtimeThreads are immune to interruption by garbage
collector activities, JamaicaVM does not restrict these threads from accessing ob-
jects allocated on the normal heap. Runtime checks that typically ensure that these
threads do not access objects allocated on the heap can be disabled in JamaicaVM.
The result is better overall system performance.

9.7.1.4 Static Initializers

In order to permit the initialization of classes even when their first reference is per-
formed within ScopedMemory or ImmortalMemory within a Realtime-
Thread or NoHeapRealtimeThread, and to permit the access of static fields
such as System. out from within these threads, static initializers are typically
executed within ImmortalMemory that is accessible by all threads. However,
this prevents these objects from being reclaimed when they are no longer in use.
This can result in a serious memory leak when dynamic class loading is used
since memory allocated by the static initializers of dynamically loaded classes
will never be reclaimed.

Since the RTSJ implementation in JamaicaVM does not limit access to heap
objects within any threads, there is no need to execute static initializers within
ImmortalMemory. However, objects allocated in static initializers typically
must be accessible by all threads. Therefore they cannot be allocated in a scoped
memory area when this happens to be the current thread’s allocation environment
when the static initializer is executed.

126CHAPTER 9. THE REALTIME AND EMBEDDED SPECIFICATION FOR JAVA

JamaicaVM executes all static initializers within heap memory. Objects al-
located by static initializers may be accessed by all threads, and they may be
reclaimed by the garbage collector. There is no memory leak if classes are loaded
dynamically by a user class loader.

9.7.1.5 Class PhysicalMemoryManager

Names and instances of class javax.realtime.PhysicalMemoryType-—
Filter that are passed to method registerFilter of the class javax.
realtime.PhysicalMemoryManager are, by the RTSJ, required to be al-
located in immortal memory. Realtime garbage collection obviates this require-
ment. JamaicaVM does not enforce it either.

9.7.2 Finalizers

Care needs to be taken when using Java’s finalizers. A finalizer is a method that
can be redefined by any Java class to perform actions after the garbage collector
has determined that an object has become unreachable. Improper use of finalizers
can cause unpredictable results.

The Java specification does not give any guarantees that an object will ever
be recycled by the system and that a finalizer will ever be called. Furthermore, if
several unreachable objects have a finalizer, the execution order of these finalizers
is undefined. For these reasons, it is generally unwise to use finalizers in Java at
all. The developer cannot rely on the finalizer ever being executed. Moreover,
during the execution of a finalizer, the developer cannot rely on the availability of
any other resources since their finalizers may have been executed already.

In addition to these unpredictabilities, the use of finalizers has an important
impact on the memory demand of an application. The garbage collector cannot
reclaim the memory of any object that has been found to be unreachable before its
finalizer has been executed. Consequently, the memory occupied by such objects
remains allocated.

The finalizer methods are executed by a finalizer thread, which JamaicaVM
by default runs at the highest priority available to Java threads. If this finalizer
thread does not obtain sufficient execution time, or it is stopped by a finalizer
that is blocked, the system may run out of memory. In this case, explicit calls
to Runtime.runFinalization () may be required by some higher priority
task to empty the queue of finalizable objects.

The use of finalizers is more predictable for objects allocated in Scoped-
Memory or ImmortalMemory. For ScopedMemory, all finalizers will be
executed when the last thread exits a scope. This may cause a potentially high

9.7. MEMORY MANAGEMENT 127

overhead for exiting this scope. The finalizers of objects that are allocated in
ImmortalMemory will never be executed.

Using finalizers may be helpful during debugging to find programming bugs
like leakage of resources or to visualize when an object’s memory is recycled. In
a production release, any finalizers (even empty ones) should be removed due to
the impact they have on the runtime and the potential for memory leaks caused by
their presence.

As an alternative to finalizers, the systematic use of finally clauses in Java
code to free unused resources is recommended. Should this not be possible, phan-
tom references (java.lang.ref.PhantomReference) can be used, which
offer a more flexible way of doing cleanup before objects get garbage collected.
More information is available from a web post by Muhammad Khojaye [5].

9.7.3 Configuring a Realtime Garbage Collector

To be able to determine worst-case execution times for memory allocation oper-
ations in a realtime garbage collector, one needs to know the memory required
by the realtime application. With this information, a worst-case number of gar-
bage collector increments that are required on an allocation can be determined
(see Chapter[7). Automatic tools can help to determine this value. The heap size
can then be selected to give sufficient headroom for the garbage collector, while
a larger heap size ensures a shorter execution time for allocation. Tools like the
analyzer in the JamaicaVM help to configure a system and find suitable heap size
and allocation times.

9.7.4 Programming with the RTSJ and Realtime Garbage Col-
lection

Once the unpredictability of the garbage collector has been solved, realtime pro-
gramming is possible even without the need for special thread classes or the use
of specific memory areas for realtime code.

9.7.4.1 Realtime Tasks

In Jamaica, garbage collection activity is performed within application threads
and only when memory is allocated by a thread. A direct consequence of this
is that any realtime task that performs no dynamic memory allocation will be
entirely unaffected by garbage collection activity. These realtime tasks can access
objects on the normal heap just like all other tasks. As long as realtime tasks use a
priority that is higher than other threads, they will be guaranteed to run when they
are ready. Furthermore, even realtime tasks may allocate memory dynamically.

128CHAPTER 9. THE REALTIME AND EMBEDDED SPECIFICATION FOR JAVA

Just like any other task, garbage collection work needs to be performed to pay
for this allocation. Since a worst-case execution time can be determined for the
allocation, the worst-case execution time of the task that performs the allocation
can be determined as well.

9.7.4.2 Communication

The communication mechanisms that can be used between threads with differ-
ent priority levels and timing requirements are basically the same mechanisms as
those used for normal Java threads: shared memory and Java monitors.

Shared Memory Since all threads can access the normal, garbage-collected
heap without suffering from unpredictable pauses due to garbage collector ac-
tivity, this normal heap can be used for shared memory communication between
all threads. Any high priority task can access objects on the heap even while
a lower priority thread accesses the same objects or even while a lower priority
thread allocates memory and performs garbage collection work. In the latter case,
the small worst-case execution time of an increment of garbage collection work
ensures a bounded and small thread preemption time, typically in the order of a
few microseconds.

Synchronization The use of Java monitors in synchronized methods and
explicit synchronized statements enables atomic accesses to data structures.
These mechanisms can be used equally well to protect accesses that are performed
in high priority realtime tasks and normal non-realtime tasks. Unfortunately, the
standard Java semantics for monitors does not prevent priority inversion that may
result from a high priority task trying to enter a monitor that is held by another task
of lower priority. The stricter monitor semantics of the RTSJ avoid this priority
inversion. All monitors are required to use priority inheritance or the priority
ceiling protocol, such that no priority inversion can occur when a thread tries to
enter a monitor. As in any realtime system, the developer has to ensure that the
time that a monitor is held by any thread must be bounded when this monitor
needs to be entered by a realtime task that requires an upper bound for the time
required to obtain this monitor.

9.7.4.3 Standard Data Structures

The strict separation of an application into a realtime and non-realtime part that
is required when the Real-Time Specification for Java is used in conjunction with
a non-realtime garbage collector makes it very difficult to have global data struc-
tures that are shared between several tasks. The Real-Time Specification for Java

9.8. SCHEDULING AND SYNCHRONIZATION 129

even provides special data structures such as WaitFreeWriteQueue that en-
able communication between tasks. These queues do not need to synchronize and
hence avoid running the risk of introducing priority inversion. In a system that
uses realtime garbage collection, such specific structures are not required. High
priority tasks can share standard data structures such as java.util.Vector
with low priority threads.

9.7.5 Memory Management Guidelines

JamaicaVM provides the following three options for memory management: real-
time dynamic garbage collection on the regular Java heap, ImmortalMemory,
and ScopedMemory. They may all be used freely. The choice of which to use
is determined by what the best trade off between external requirements, compati-
bility, and efficiency for a given application.

ImmortalMemory is in fact quite dangerous. Memory leaks can result from
improper use. Its use should be avoided unless compatibility with other RTSJ
JVMs is paramount or heap memory is not allowed by the certification regime
required for the project.

ScopedMemory is safer, but it is generally inefficient due to the runtime
checks required by its use. When a memory check fails, the result is a runtime
exception, which is also undesirable in safety-critical code.

One important property of JamaicaVM is that any realtime code that runs at
high priority and that does not perform memory allocation is guaranteed not to
be delayed by garbage collection work. This important feature holds for standard
RTSJ applications only under the heavy restrictions that apply to NoHeapReal -
timeThreads.

9.8 Scheduling and Synchronization

As the reader may have already noticed in the previous sections, scheduling and
synchronization are closely related. Scheduling threads that do not interact is
quite simple; however, interaction is necessary for sharing data among cooperat-
ing tasks. This interaction requires synchronization to ensure data integrity. There
are implications on scheduling of threads and synchronization beyond memory
access issues.

9.8.1 Schedulable Entities

The RTSJ introduces new scheduling entities to Java. RealtimeThread and
NoHeapRealtimeThread are thread types with clearer semantics than nor-

130CHAPTER 9. THE REALTIME AND EMBEDDED SPECIFICATION FOR JAVA

mal Java threads of class Thread and additional scheduling possibilities. Events
are the other new thread-like construct used for transient computations. To save
resources (mainly operating system threads, and thus memory and performance),
AsyncEvents can be used for short code sequences instead. They are easy to
use because they can easily be triggered programmatically, but they must not be
used for blocking. Also, there are BoundAsyncEvents which each require
their own thread and thus can be used for blocking. They are as easy to use
as normal AsyncEvents, but do not use fewer resources than normal threads.
AsyncEventHandlers are triggered by an asynchronous event. All three exe-
cution environments, RealtimeThreads, NoHeapRealtimeThreads and
AsyncEventHandlers, are schedulable entities, i.e., they all have release pa-
rameters and scheduling parameters that are considered by the scheduler.

9.8.1.1 RealtimeThreads and NoHeapRealtimeThreads

The RTSJ includes the thread classes RealtimeThreads and NoHeapReal -
timeThreads to improve the semantics of threads for realtime systems. These
threads can use a priority range higher than that of all normal Java Threads with
at least 28 unique priority levels. The default scheduler uses these priorities for
fixed priority, preemptive scheduling. In addition to this, the new thread classes
can use the new memory areas ScopedMemory and ImmortalMemory that
are not under the control of the garbage collector.

As previously mentioned, threads of class NoHeapRealtimeThreads are
not permitted to access any object that was allocated on the garbage collected
heap. Consequently, these threads do not suffer from garbage collector activity as
long as they run at a priority that is higher than that of any other schedulable object
that accesses the garbage collected heap. In the JamaicaVM Java environment,
the memory access restrictions present in NoHeapRealtimeThreads are not
required to achieve realtime guarantees. Consequently, the use of NoHeapReal-
timeThreads is neither required nor recommended.

Apart from the extended priority range, RealtimeThreads provide fea-
tures that are required in many realtime applications. Scheduling parameters for
periodic tasks, deadlines, and resource constraints can be given for Realtime—
Threads, and used to implement more complex scheduling algorithms. For in-
stance, periodic threads in JamaicaVM use these parameters. In the JamaicaVM
Java environment, normal Java threads also profit from strict fixed priority, pre-
emptive scheduling. For realtime code, the use of RealtimeThread is still
recommended.

9.8. SCHEDULING AND SYNCHRONIZATION 131

9.8.1.2 AsyncEventHandlers vs. BoundAsyncEventHandlers

An alternative execution environment is provided through classes AsyncEvent -
Handler and BoundAsyncEventHandler. Code in an event handler is ex-
ecuted to react to an event. Events are bound to some external happening (e.g, a
processor interrupt), which triggers the event.

AsyncEventHandler and BoundAsyncEventHandler are schedula-
ble entities that are equipped with release and scheduling parameters exactly as
RealtimeThread and NoHeapRealtimeThread. The priority scheduler
schedules both threads and event handlers, according to their priority. Also, ad-
mission checking may take the release parameters of threads and asynchronous
event handlers in account. The release parameters include values such as execu-
tion time, period, and minimum interarrival time.

One important difference from threads is that an AsyncEventHandler is
not bound to one single thread. This means, that several invocations of the same
handler may be performed in different thread environments. A pool of preallo-
cated RealtimeThreads is used for the execution of these handlers. Event
handlers that may execute for a long time or that may block during their execution
may block a thread from this pool for a long time. This may make the timely
execution of other event handlers impossible.

Any event handler that may block should therefore have one Realtime-
Thread thatis assigned to it alone for the execution of its event handler. Handlers
for class BoundAsyncEventHandler provide this feature. They do not share
their thread with any other event handler and they may consequently block without
disturbing the execution of other event handlers. Due to the additional resources
required for instances of BoundAsyncEventHandler, their use should be re-
stricted to blocking or long running events only. The sharing of threads used
for normal AsyncEventHandlers permits the use of a large number of event
handlers with minimal resource usage.

9.8.2 Synchronization

Synchronization is essential to data sharing, especially between cooperating real-
time tasks. Passing data between threads at different priorities without impairing
the realtime behavior of the system is the most important concern. It is essential
to ensure that a lower priority task cannot preempt a higher priority task.

The situation in Fig. depicts a case of priority inversion when using mon-
itors, the most common priority problem. The software problems during the
Pathfinder mission on Mars is the most popular example of a classic priority in-
version error (see Michael Jones” web page [4]).

In this situation, a higher priority thread A has to wait for a lower priority

132CHAPTER 9. THE REALTIME AND EMBEDDED SPECIFICATION FOR JAVA

Task A } i : :
Task B } | L
Task C I i } :

Figure 9.4: Priority Inversion

thread B because another thread C with even lower priority is holding a monitor
for which A is waiting. In this situation, B will prevent A and C from running,
because A is blocked and C has lower priority. In fact, this is a programming error.
If a thread might enter a monitor which a higher priority thread might require, then
no other thread should have a priority in between the two.

Since errors of this nature are very hard to locate, the programming environ-
ment should provide a means for avoiding priority inversion. The RTSJ defines
two possible mechanisms for avoiding priority inversion: Priority Inheritance and
Priority Ceiling Emulation. JamaicaVM implements both mechanisms.

9.8.2.1 Priority Inheritance

Priority Inheritance is a protocol which is easy to understand and to use, but that
poses the risk of causing deadlocks. If priority inheritance is used, whenever a
higher priority thread waits for a monitor that is held by a lower priority thread,
the lower priority thread’s priority is boosted to the priority of the blocking thread.
Fig.[9.5]illustrates this.

9.8.2.2 Priority Ceiling Emulation

Priority Ceiling Emulation is widely used in safety-critical system. The priority of
any thread entering a monitor is raised to the highest priority of any thread which
could ever enter the monitor. Fig. [9.6] illustrates the Priority Ceiling Emulation
protocol.

As long as no thread that holds a priority ceiling emulation monitor blocks,
any thread that tries to enter such a monitor can be sure not to block Conse-

'Tf any other thread owns the monitor, its priority will have been boosted to the ceiling priority.
Consequently, the current thread cannot run and try to enter this monitor.

9.8. SCHEDULING AND SYNCHRONIZATION 133

Task A } o } -

Task B —_— —
my.:

Task C i $ } -

Figure 9.5: Priority Inheritance

Task A i }

Task B ! i } i
Priority Ceiling

Task C Jr— i

Figure 9.6: Priority Ceiling Emulation Protocol

quently, the use of priority ceiling emulation automatically ensures that a system
is deadlock-free.

9.8.2.3 Priority Inheritance vs. Priority Ceiling Emulation

Priority Inheritance should be used with care, because it can cause deadlocks when
two threads try to enter the same two monitors in different order. This is shown
in Fig. Thus it is safer to use Priority Ceiling Emulation, since when used
correctly, deadlocks cannot occur there. Priority Inheritance deadlocks can be
avoided, if all programmers make sure to always enter monitors in the same order.

Unlike classic priority ceiling emulation, the RTSJ permits blocking while
holding a priority ceiling emulation monitor. Other threads that may want to enter
the same monitor will be stopped exactly as they would be for a normal monitor.
This fall back to standard monitor behavior permits the use of priority ceiling
emulation even for monitors that are used by legacy code.

The advantage of a limited and short execution time for entering a priority ceil-
ing monitor, working on a shared resource, then leaving this monitor are, however,

134CHAPTER 9. THE REALTIME AND EMBEDDED SPECIFICATION FOR JAVA

Task A i i—
Q- Lol
Task B } k 3 E

Figure 9.7: Deadlocks are possible with Priority Inheritance

lost when a thread that has entered this monitor may block. Therefore the system
designer should restrict the use of priority ceiling monitors to short code sequences
that only access a shared resource and that do not block. Entering and exiting the
monitor can then be performed in constant time, and the system ensures that no
thread may try to enter a priority ceiling monitor that is held by some other thread.

Since priority ceiling emulation requires adjusting a thread’s priority every
time a monitor is entered or exited, there is an additional runtime overhead for this
priority change when using this kind of monitors. This overhead can be significant
compared to the low runtime overhead that is incurred to enter or leave a normal,
priority inheritance monitor. In this case, there is a priority change penalty only
when a monitor has already been taken by another thread.

Future versions of the Jamaica Java implementation may optimize priority
ceiling and avoid unnecessary priority changes. JamaicaVM uses atomic code
sequences and restricts thread switches to certain points in the code. A synchro-
nized code sequence that is protected by a priority ceiling monitor and that does
not contain a synchronization point may not require entering and leaving of the
monitor at all since the code sequence is guaranteed to be executed atomically due
to the fact that it does not contain a synchronization point.

9.8.3 Scheduling and Priorities

Although JamaicaVM uses its own scheduler, the realtime behavior depends heav-
ily on the scheduling policy of the underlying operating system. JamaicaVM bases
scheduling strictly on the Java priority, which can be boosted depending on the
target OS.

9.8. SCHEDULING AND SYNCHRONIZATION 135

9.8.3.1 Native Priorities

In JamaicaVM, a priority map defines which native (OS) priorities are used for the
different Java thread priorities. This priority map can be set via the environment
variable JAMATICAVM_PRIMAP (see Section[I1.4), or using Jamaica Builder via
the —~priMap option (see Chapter [13).

Normal (non-realtime) Java thread priorities should usually be mapped to a
single OS priority since otherwise lower priority Java threads may receive no CPU
time if a higher priority thread is running constantly. The reason for this is that
legacy Java code that expects lower priority threads to run even if higher priority
threads are ready may not work otherwise. A fairness mechanism in JamaicaVM
is used only for the lowest Java thread priorities that map to the same OS priority.

Higher Java priorities used for instances of RealtimeThread and Async—
EventHandler, usually the Java priorities 11 through 38, should be mapped to
distinct priorities of the underlying OS. If there are not sufficiently many OS pri-
ority levels available, different Java priorities may be mapped to the same native
priority. The Jamaica scheduler will still run the thread with higher Java priority
before running the lower priority threads. However, having the same native pri-
ority may result in higher thread-switch overhead since the underlying OS does
not know about the difference in Java priorities and may attempt to run the wrong
thread.

The special keyword sync is used to specify the native priority of the syn-
chronization thread. This thread manages time slicing between the normal Java
threads, so this should usually be mapped to a value that is higher or equal to the
native priority used for Java priority 10, the maximum priority for normal, non-
realtime Java threads. Using a higher priority for the synchronization thread may
introduce jitter to the realtime threads, while using a lower value will disable time
slicing and fairness for this and higher priorities.

9.8.3.2 Priority Boosting

Thread switches between two Java threads running in the same instance of Ja-
maicaVM are restricted to specific points in the VM In case a thread is pre-
empted by a more eligible thread in the same VM, it has to be ensured that the
preempted thread reaches the next point that allows a thread switch. Therefore, the
preempting thread will signal the need to stop at this point to the preempted thread
and yield the CPU back to it. Unfortunately, on most operating systems, there is
no mechanism to yield back to a specific thread. Yielding the current CPU, e.g.,

2These are called synchronization points. They are part of the interpreter loop and they are
added automatically by the compiler controlled by the Builder option ~-threadPreemption.

136CHAPTER 9. THE REALTIME AND EMBEDDED SPECIFICATION FOR JAVA

by a call to POSIX’ pthread_yield function, may yield the CPU to another,
fully unrelated thread of a different process, resulting in unfair scheduling.

Depending on the target operating system, JamaicaVM implements a priority
boosting mechanism that temporarily sets the preempted thread’s native priority
(as set via the Builder option —~priMap) to the next higher priority to ensure the
OS will not yield the CPU to a thread of another process that has the same priority
as the preempted one. Please check the Thread Priorities subsection of the target
OS in Appendix [B|for details on a specific target.

On targets that use priority boosting to the next native priority, you may en-
counter that Jamaica threads are running temporarily at higher priorities than the
priorities specified in the priority map for the corresponding Java thread priority.
To avoid any interference between JamaicaVM’s threads and other processes with
threads at higher priorities, the priorities of JamaicaVM’s threads should be set
such that there is one unused priority level between JamaicaVM’s threads and the
higher priority process’ threads.

9.9 Libraries

The use of a standard Java libraries within realtime code poses severe difficulties,
since standard libraries typically are not developed with the strict requirements
on execution time predictability that come with the use in realtime code. For
use within realtime applications, any libraries that are not specifically written and
documented for realtime system use cannot be used without inspection of the
library code.

The availability of source code for standard libraries is an important prereq-
uisite for their use in realtime system development. Within JamaicaVM, large
parts of the standard Java APIs are taken from OpenJDK, which is an open source
project. The source code is freely available, so that the applicability of certain
methods within realtime code can be checked easily.

9.10 Summary

As one might expect, programming realtime systems in Java is more complicated
than standard Java programming. A realtime Java developer must take care with
many Java constructs. With timely Java development using JamaicaVM, there are
instances where a developer has more than one possible implementation construct
to choose from. Here, the most important of these points are recapitulated.

9.10. SUMMARY 137

9.10.1 Efficiency

All method calls and interface calls are performed in constant time. They are
almost as efficient as C function calls, so do not avoid them except in places
where one would avoid a C function call as well.

When accessing final 1ocal variables or private fields from within inner
classes in a loop, one should generally cache the result in a local variable for
performance reasons. The access is in constant time, but slower than normal local
variables.

Using the String operator + causes memory allocation with an execution time
that is linear with regard to the size of the resulting String. Using array initializa-
tion causes dynamic allocations as well.

For realtime critical applications, avoid static initializers or explicitly call the
static initializer at startup. When using a java compiler earlier than version 1.5, the
use of classname . class causes dynamic class loading. In realtime applications,
this should be avoided or called only during application startup. Subsequent usage
of the same class will then be cached by the JVM.

9.10.2 Memory Allocation

The RTSJ introduces new memory areas such as ImmortalMemoryArea and
ScopedMemory, which are inconvenient for the programmer, and at the same
time make it possible to write realtime applications that can be executed even on
virtual machines without realtime garbage collection.

In JamaicaVM, it is safe, reliable, and convenient to just ignore those restric-
tions and rely on the realtime garbage collection instead. Be aware that if exten-
sions of the RTSJ without sticking to restrictions imposed by the RTSJ, the code
will not run unmodified on other JVMs.

9.10.3 EventHandlers

AsyncEventHandlers should be used for tasks that are triggered by some
external event. Many event handlers can be used simultaneously; however, they
should not block or run for a long time. Otherwise the execution of other event
handlers may be blocked.

For longer code sequences, or code that might block, event handlers of class
BoundAsyncEventHandler provide an alternative that does not prevent the
execution of other handlers at the cost of an additional thread.

The scheduling and release parameters of event handlers should be set accord-
ing to the scheduling needs for the handler. Particularly, when rate monotonic
analysis [9] is used, an event handler with a certain minimal interarrival time

138CHAPTER 9. THE REALTIME AND EMBEDDED SPECIFICATION FOR JAVA

should be assigned a priority relative to any other events or (periodic) threads
using this minimal interarrival time as the period of this schedulable entity.

9.10.4 Monitors

Priority Inheritance is the default protocol in the RTSJ. It is safe and easy to use,
but one should take care to nest monitor requests properly and in the same order
in all threads. Otherwise, it can cause deadlocks. When used properly, Priority
Ceiling Emulation (PCE) can never cause deadlocks, but care has to be taken
that a monitor is never used in a thread of higher priority than the monitor. Both
protocols are efficiently implemented in JamaicaVM.

Chapter 10

Multicore Guidelines

While on single-core systems multithreaded computation eventually boils down to
the sequential execution of instructions on a single CPU, multicore systems pose
new challenges to programmers. This is especially true for languages that expose
features of the target hardware relatively directly, such as C. For example, shared
memory communication requires judiciously placed memory fences to prevent
compiler optimizations that can lead to values being created “out of thin air”.

High-level languages such as Java, which has a well-defined and machine-
independent memory model [3, Chapter 17], shield programmers from such sur-
prises. In addition, high-level languages provide automatic memory management.
The Jamaica multicore VM provides concurrent, parallel, real-time garbage col-
lection:

Concurrent Garbage collection can take place on some CPUs while other CPUs
execute application code.

Parallel Several CPUs can perform garbage collection at the same time.

Real-time There is a guaranteed upper bound on the amount of time any part
of application code may be suspended for garbage collection work. At the
same time, it is guaranteed that garbage collection work will be sufficient to
reclaim enough memory so all allocation requests by the application can be
satisfied.

JamaicaVM'’s garbage collector achieves hard real-time guarantees by carefully
distributing the garbage collection to all available CPUs [10].

10.1 Tool Usage

For versions of JamaicaVM with multicore support the Builder can build applica-
tions with and without multicore support. This is controlled via the Builder option

139

140 CHAPTER 10. MULTICORE GUIDELINES

-parallel. On systems with only one CPU or for applications that cannot ben-
efit from parallel execution, multicore support should be disabled. The multicore
version has a higher overhead of heap memory than the single-core version (see
Appendix [C).

In order to limit the CPUs used by Jamaica, a set of CPU affinities may be
given to the Builder or VM via the option —Xcpus. See Section[I1.1.2]and Sec-
tion for details. While Jamaica supports all possible subsets of the existing
CPUs, operating systems may not support these. The set of all CPUs and all sin-
gleton sets of CPUs are usually supported, though. For more information, please
consult the documentation of the operating system you use.

To find out whether a particular Jamaica virtual machine provides multicore
support, use the —version option. A VM with multicore support will identify
itself as parallel.

10.2 Setting Thread Affinities

On a multicore system, by default the scheduler can assign any thread to any
CPU as long as priorities are respected. In many cases this flexibility leads to
reduced throughput or increased jitter. The main reason is that migrating a thread
form one CPU to another is expensive: it renders the code and data stored in
the cache useless, which delays execution. Reducing the scheduler’s choice by
“pinning” a thread to a specific CPU can help. In JamaicaVM the RTSJ class
javax.realtime.Affinity enablesrestricting on which CPUs a thread can
run. The following sections present rules of thumb for choosing thread affinities in
common situations. In practice, usually experimentation is required to see which
affinities work best for a particular application.

10.2.1 Communication through Shared Memory

Communication of threads through shared memory is usually more efficient if
both threads run on the same CPU. This is because threads on the same CPU can
communicate via the CPU’s cache, while in order for data to pass from one CPU to
another, it has to go via main memory, which is slower. The decision on whether
pinning two communicating threads to the same or to different CPUs should be
based on the tradeoff between computation and communication: if computation
dominates, it will usually be better to use different CPUs; if communication dom-
inates, using the same CPU will be better.

Interestingly, the same effect can also occur for threads that do not communi-
cate, but that write data in the same cache line. This is known as false sharing.

10.2. SETTING THREAD AFFINITIES 141

In JamaicaVM this can occur if two threads modify data in the same object (more
precisely, the same block).

10.2.2 Performance Degradation on Locking

If two contenders for the same monitor can only run on the same CPU, the runtime
system may be able to decide more efficiently whether the monitor is free and may
be acquired (i.e., locked). Consider the following scenario:

* A high-priority thread A repeatedly acquires and releases a monitor.
* A low-priority thread B repeatedly acquires and releases the same monitor.

This happens, for example, if A and B concurrently read fields of a synchronized
data-structure.

Assume that thread B is started and later also thread A. At some point, A may
have to wait until B releases the monitor. Then A resumes. Since A is of higher
priority than B, A will not be preempted by B. If A and B are tied to the same
CPU this means that B cannot run while A is running. If A releases the monitor
and tries to re-acquire it later, it is clear that it cannot have been taken by B in the
meantime. Since the monitor is free, it can be taken immediately, which is very
efficient.

If, on the other hand, A and B can run on different CPUs, B can be running
while A is running, and it may acquire the monitor when A releases it. In this
case, A has to re-obtain the monitor from B before it can continue. The additional
overhead for blocking A and for waking up A after B has released the monitor
can be significant.

10.2.3 Periodic Threads

Some applications have periodic events that need to happen with high accuracy.
If this is the case, cache latencies can get into the way. Consider the following
scenario:

* A high-priority thread A runs every 2ms for 1ms and
* A low-priority thread B runs every 10ms for 2ms.

If both threads run on the same CPU, B will fill some of the gaps left by A. For
the gaps filled by B, when A resumes, it first needs to fill the cache with its own
code and data. This can lead to CPU stalls. These stalls only occur when B did
run immediately before A. They do not occur after the gaps during which the CPU
was idle. The fact that stalls occur sometimes but sometimes not will be observed

142 CHAPTER 10. MULTICORE GUIDELINES

as jitter in thread A. The problem can be alleviated by tying A and B to different
CPUs.

10.2.4 Rate-Monotonic Analysis

Rate-monotonic analysis is a technique for determining whether a scheduling
problem is feasible on a system with thread preemption such that deterministic
response times can be guaranteed with simple (rate-monotonic) scheduling algo-
rithms. Rate-monotonic analysis only works for single-core systems. However,
if a subset of application threads can be identified that have little dependency on
the other application threads it may be possible to schedule these based on rate-
monotonic analysis.

A possible scenario where this can be a useful approach is an application
where some threads guarantee deterministic responses of the system, while other
threads perform data processing in the background. The subset of threads in
charge of deterministic responses could be isolated to a single CPU and rate-
monotonic scheduling could be used for them.

10.2.5 The Operating System’s Interrupt Handler

Operating systems usually tie interrupt handling to one particular CPU. Cache
effects described in Section (10.2.3| above can also occur between the interrupt
handling code and application threads. Therefore, jitter may be reduced by run-
ning application threads on CPUs other than the one in charge of the operating
system’s interrupt handling.

Part 111

Tools Reference

143

Chapter 11

The Jamaica Virtual Machine
Commands

The Jamaica virtual machine provides a set of commands that permit the execu-
tion of Java applications by loading a set of class files and executing the code.
The command jamaicavm launches the standard Jamaica virtual machine. Its
variants jamaicavm_slim, jamaicavmp and jamaicavmt provide special
features like e.g. Java debugging support.

11.1 jamaicavm — the Standard Virtual Machine

The jamaicavm is the standard command to execute non-optimized Java ap-
plications in interpreted mode. Its input syntax follows the conventions of Java
virtual machines.

jamaicavm [options] class [args...]
jamaicavm [options] —Jjar jarfile [args...]

The program’s main class is either given directly on the command line, or obtained
from the manifest of a Java archive file if option —jar is present.

The main class must be given as a qualified class name that includes the com-
plete package path. For example, if the main class MyClass is in package com.
mycompany, the fully qualified class name is com.mycompany.MyClass.
In Java, the package structure is reflected by nested folders in the file system.
The class file MyClass.class, which contains the main class’s bytecode, is
expected in the folder com/mycompany (or com\mycompany on Windows
systems). The command line for this example is

Jjamaicavm com.mycompany.MyClass

145

146 CHAPTER 11. THE JAMAICA VIRTUAL MACHINE COMMANDS

on Unix and Windows systems alike.

The available command line options of jamaicavm, are explained in the
following sections. In addition to command line options, there are environment
variables and Java properties that control the VM. For details on the environment
variables, see Section [[1.4] for the Java properties, see Section[I1.5]

11.1.1 Command Line Options
Option —-classpath (-cp) path

The classpath option sets the search path for class files. The argument must
be a list of directories or JAR/ZIP files separated by the platform dependent path
separator char (‘:> on Unix-Systems, ;" on Windows). If this option is not used,
the search path for class files defaults to the current working directory.

Note that for running the VM on a target device (see Section a platform-
specific path separator char must be used and correctly escaped as required by the
corresponding command-line shell. For example, on VxWorks ‘;’ is the path sep-
arator and on the kernel shell command-interpreter it is escaped either by \ or by
enclosing the whole list in double quotes as such: "pathl; path2; . . .; pathN".

Option —-Dname=value

The D option sets a system property with a given name to a given value. The
value of this property will be available to the Java application via functions such
as System.getProperty ().

Option -javaagent :jarpath [=options]

The javaagent option creates a set of Java agents which will be started before
the main application method. jarpath is the path to the JAR containing the agent.
options is the argument that will be passed to the agent’s premain method. Mul-
tiple javaagent options may be specified on the command line, and they will
be called in the order they were specified. For further information, please refer to
the Jamaica API documentation, package java.lang.instrument.

! JamaicaVM currently does not fully support instrumentation and cannot pass

an instrumentation object to the agent’s premain method. Agents that imple-
ment premain (String, Instrumentation) will therefore receive null
for the second argument.

11.1. JAMAICAVM — THE STANDARD VIRTUAL MACHINE 147

Option -version

The version option prints the version of JamaicaVM and then exits.

Option -showversion

The showversion option prints the version of JamaicaVM before starting the
execution of the main method.

Option -help (-?)

The help option prints a short help summary on the usage of JamaicaVM and
lists the default values is uses. These default values are target specific. The de-
fault values may be overridden by command line options or environment variable
settings. Where command line options (set through —Xoption) and environment
variables are possible, the command line settings have precedence. For the avail-
able command line options, see Section |l 1.1.2|or invoke the VM with —xhelp.

Option —ea (-enableassertions)

The ea and enableassertions options enable Java assertions introduced in
Java code using the assert keyword for application classes. The default setting
for these assertions is disabled.

Option -da (-disableassertions)

The da and disableassertions options disable Java assertions introduced
in Java code using the assert keyword for application classes. The default
setting for these assertions is disabled.

Option —-esa (—-enablesystemassertions)

The esa and enablesystemassertions options enable Java assertions in-
troduced in Java code using the assert keyword for system classes, i.e., classes
loaded via the bootclasspath. The default setting for these assertions is disabled.

Option -dsa (-disablesystemassertions)

The dsa and enablesystemassertions options disable Java assertions in-
troduced in Java code using the assert keyword for system classes, i.e., classes
loaded via the bootclasspath. The default setting for these assertions is disabled.

148 CHAPTER 11. THE JAMAICA VIRTUAL MACHINE COMMANDS

Option —-verbose[:class, sizes]

The verbose option enables verbose output. Currently only verbose:class
option for tracing of class loading and verbose:sizes to display effective
memory settings are supported.

11.1.2 Extended Command Line Options

JamaicaVM supports a number of extended options. Some of them are supported
for compatibility with other virtual machines, while some provide functionality
that is only available in Jamaica . Please note that the extended options may
change without notice. Use them with care.

Option —xhelp (-X)

The xhelp option prints a short help summary on the extended options of Ja-
maicaVM.

Option -Xbootclasspath:path

The Xbootclasspath option sets bootstrap search paths for class files. The
argument must be a list of directories or JAR/ZIP files separated by the platform
dependent path separator char (‘:> on Unix-Systems, ;> on Windows). Note that
the jamaicavm command has all boot and standard API classes built in. The
boot-classpath has the built-in classes as an implicit first entry in the path list, so
it is not possible to replace the built-in boot classes by other classes which are
not built-in. However, the boot class path may still be set to add additional boot
classes.

! For commands jamaicavm_slim, jamaicavmp, etc. that do not have any

built-in classes, setting the boot-classpath will force loading of the system
classes from the directories provided in this path. However, extreme care is re-
quired: The virtual machine relies on some internal features in the boot-classes.
Thus it is in general not possible to replace the boot classes by those of a different
virtual machine or even by those of another version of the Jamaica virtual machine
or even by those of a different Java virtual machine. In most cases, it is better to
use —Xbootclasspath/a, which appends to the bootstrap class path.

Option —Xbootclasspath/a:path

The Xbootclasspath/a option appends to the bootstrap class path. The ar-
gument must be a list of directories or JAR/ZIP files separated by the platform

11.1. JAMAICAVM — THE STANDARD VIRTUAL MACHINE 149

dependent path separator char (‘:> on Unix Systems, ‘;” on Windows). For further
information, see the Xbootclasspath option above.
Option —-Xbootclasspath/p:path

The Xbootclasspath/p option prepends to the bootstrap class path. The ar-
gument must be a list of directories or JAR/ZIP files separated by the platform
dependent path separator char (‘> on Unix Systems, ‘;> on Windows). For further
information, see the Xbootclasspath option above.

Option —-Xcpuscpus

Specifies the set of CPUs to use. The argument is a comma-separated list of indi-
vidual CPU ids and ranges of CPU ids n1. .n2, or the token all. For example,
0, 1, 3 will use the CPUs withids 0, 1, and 3. —Xcpusall will use all available
CPUs. This option is only available on configurations with multicore support. Be
aware that multicore support requires an extra license.

Option —-Xms (-ms) size

The Xms option sets initial Java heap size, the default setting is 6M. This option
takes precedence over a heap size set via an environment variable.

Option -Xmx (-mx) size

The Xmx option sets maximum Java heap size, the default setting is 768M. This
option takes precedence over a maximum heap size set via an environment vari-
able.

Option -Xmi (—mi) size

The Xmi option sets heap size increment, the default setting is 4M. This option
takes precedence over a heap size increment set via an environment variable.
Option -Xss (-ss) size

The Xss option sets stack size (native and Java). This option takes precedence
over a stack size set via an environment variable.

Option -Xjs (-js)size

The X js option sets Java stack size, the default setting is 64K. This option takes
precedence over a java stack size set via an environment variable.

150 CHAPTER 11. THE JAMAICA VIRTUAL MACHINE COMMANDS

Option —-Xns (—-ns) size

The Xns option sets native stack size, the default setting is 192K. This option
takes precedence over a native stack size set via an environment variable.

Option -Xprof

Collect simple profiling information using periodic sampling. This profile is used
to provide an estimate of the methods which use the most CPU time during the
execution of an application. During each sample, the currently executing method
is determined and its sample count is incremented, independent of whether the
method is currently executing or is blocked waiting for some other event. The
total number of samples found for each method are printed when the application
terminates. Note that compiled methods may be sampled incorrectly since they
do not necessarily have a stack frame. We therefore recommend to use Xprof
only for interpreted applications.

This option should not be confused with the profiling facilities provided by

jamaicavmp (see Section|11.3.3).

Option —Xcheck: jni

Enable argument checking in the Java Native Interface (JNI). With this option en-
abled the JamaicaVM will be halted if a problem is detected. Enabling this option
will cause a performance impact for the JNI. Using this option is recommended
while developing applications that use native code.

Option -Xmixed

This option is ignored by JamaicaVM and provided only for compatibility.

Option -Xint

This option is ignored by JamaicaVM and provided only for compatibility.

Option -Xbatch

This option is ignored by JamaicaVM and provided only for compatibility.

Option —Xcomp

This option is ignored by JamaicaVM and provided only for compatibility.

11.2. RUNNING A VM ON A TARGET DEVICE 151

Option -XX:+DisplayVMOutputToStderr

When using the -XX:+DisplayVMOutput ToStderr option in combination
with the —~verbose option, the additional output will be redirected to the error
console.

Option -XX:+DisplayVMOutputToStdout

When using the -XX:+DisplayVMOutput ToStdout option in combination
with the —~verbose option, the additional output will be redirected to the stan-
dard console. This is the default setting.

Option -XX:MaxDirectMemorySize=size
The -XX :MaxDirectMemorySize option specifies the maximum total size of
java.nio (New I/O) direct buffer allocations.

Option -XX:0nOutOfMemoryError=cmd

The command specified with the —~XX: OnOutOfMemoryError option will be
executed when the first Out OfMemoryError is thrown.

11.2 Running a VM on a Target Device

In order to run jamaicavm on a target device, the Java runtime system must
be deployed. In Jamaica, the runtime system is platform-specific and located in
the installation’s target folder: jamaica-home/target /platform/. It has the
following directory structure:

runtime
+—- bin
+- 1ib

The directory bin contains the VM and other runtime executables, and 1ib
contains the system classes and other resources such as time zone information
and security settings. The VM executable is jamaicavm_bin (on Windows,
jamaicavm_bin. exe)E] To run jamaicavm on a device most of the folder
structure of the runtime system must be replicated there:

* The bin directory and jamaicavm_bin[.exe]. If any of the other
runtime tools are required, these need to be deployed as well.

'yamaicavm is merely a script that calls the host platform’s VM executable.

152 CHAPTER 11. THE JAMAICA VIRTUAL MACHINE COMMANDS
* The 11ib directory including all subdirectories and files.

For instructions on invoking the VM executable and supplying arguments, please
refer to the documentation provided by the supplier of the target platform and
Appendix Bof this manual. There, JamaicaVM’s requirements on target platforms
(if applicable) and platform-specific limitations are documented as well.

The same folder structure is required by all variants of jamaicavm (see Sec-
tion[I1.3|below) and by standalone VMs built with the Builder.

11.3 Variants of jamaicavm

A number of variants of the standard virtual machines are provided for special
purposes. Their features and uses are described in the following sections. All
variants accept the command line options, properties and environment variables
of the standard VM. Some variants accept additional command line options as
specified below.

11.3.1 jamaicavm_slim

jamaicavm_slimis a variant of the jamaicavm command that has no built-
in standard library classes. Instead, it has to load all standard library classes that
are required by the application from the target-specific rt . jar provided in the
JamaicaVM installation.

Compared to jamaicavm, jamaicavm_slim is significantly smaller in
size. jamaicavm_slim may start up more quickly for small applications, but it
will require more time for larger applications. Also, since for jamaicavm com-
monly required standard library classes were pre-compiled and optimized by the
Jamaica Builder tool (see Chapter@), jamaicavm_s1im will perform standard
library code more slowly.

11.3.2 jamaicavmm

jamaicavmm is the multicore variant of the jamaicavm_slim. By using
jamaicavmm, you will automatically benefit from the available cores in your
machine. Be aware that you need to have an extra license to use this.

jamaicavmm accepts the additional command line option —Xcpus. See

Section[11.1.21

11.3. VARIANTS OF JAMAICAVM 153

11.3.3 jamaicavmp

jamaicavmp is a variant of jamaicavm_lpin that collects profiling informa-
tion. This profiling information can be used when creating an optimized version
of the application using the Profile Analyzer and the Builder (see Chapter [5).

The profiling information is written to a file whose name is the name of the
main class of the executed Java application with the suffix .prof. For more
details about the format and content of the profiling information see Section[5.3.1]

The following run of the HelloWorld application available in the examples (see
Section [2.4)) shows how the profiling information is written after the execution of
the application.

> jamaicavmp -cp classes HelloWorld

Hello World!
Hello World!
Hello World!
Hello World!

Hello World!
Hello World!
[...]
Start writing profile data into file ’HelloWorld.prof’
Write threads data...
Write invocation data...
Done writing profile data

Profiling information is written when the applications terminates normally and
returns exitcode 0. Alternatively, profiling information is written when the appli-
cation receives SIGINT (Ctrl-C is pressed).

For explicit termination, the application needs to be rewritten to terminate at a
certain point, e.g., after a timeout or on a certain user input. The easiest means to
terminate an application is viaacall to System.exit (). Otherwise, all threads
that are not daemon threads need to be terminated.

Requesting profile dumps remotely via a network connection is possible with
the jamaicaremoteprofile command. To enable remote profile dumps,
the property jamaica.profile_request_port needs to be set to a port
number. For more information, see Section[5.1.3]

Profiling information is always appended to the profiling file. This means
that profiling information from several profiling runs of the same application, e.g.
using different input data, will automatically be written into a single profiling
file. To fully overwrite the profiling information, e.g., after a major change in the
application, the profiling file must be deleted manually.

Collecting profiling information requires additional CPU time and memory to
store this information. It may therefore be necessary to increase the memory size.
Also expect poorer runtime performance during a profiling run.

154 CHAPTER 11. THE JAMAICA VIRTUAL MACHINE COMMANDS
jamaicavmp accepts the following additional command line option.

Option -XprofileFilename:filename

This option selects the name of the file to which the profile data is to be written.
If this option is not provided, the default filename is used, consisting of the main
class name and the suffix .prof.

11.3.4 jamaicavmt

The jamaicavmt command is a variant of jamaicavm_s1im that includes

support for the JVMTI debugging interface. It includes a debugging agent that

can communicate with remote source-level debuggers such as Eclipse.
jamaicavmt accepts the following additional command line option.

Option —-agentlib:libname [=options]

The agent1ib option loads and runs the dynamic JVMTI agent library libname
with the given options. Be aware that JVMTI is not yet fully implemented, so not
every agent will work. Jamaica comes with a statically built in debugging agent
that can be selected by setting Built InAgent as name. A typical example of
using this option is

—agentlib:BuiltInAgent=transport=dt_socket, server=y,
address=8000

(To be typed in a single line.) This starts the application and waits for an incoming
connection of a debugger on port 8000. See Section [8.1] for further information
on the options that can be provided to the built-in agent for remote debugging.

11.4 Environment Variables

The following environment variables control jamaicavm and its variants. The
defaults may vary for host and target platforms. The values given here are for
guidance only. In order to find out the defaults used by a particular VM, invoke it
with command line option —help.

CLASSPATH Path list to search for class files.

JAMAICAVM_HEAPSIZE Heap size in bytes, default 6M

JAMAICAVM_MAXHEAPSIZE Max heap size in bytes, default 768M

11.4. ENVIRONMENT VARIABLES 155

JAMAICAVM_HEAPSIZEINCREMENT Heap size increment in bytes, default
4M

JAMAICAVM_JAVA_STACKSIZE Java stack size in bytes, default 64K
JAMAICAVM NATIVE_STACKSIZE Native stack size in bytes, default 192K
JAMAICAVM NUMTHREADS Initial number of Java threads, default: 10

JAMAICAVM MAXNUMTHREADS Maximum number of Java threads, default:
511

JAMAICAVM NUMJNITHREADS Initial number of threads for the JNI function
JNI_AttachCurrentThread, default: 0

JAMAICAVM_PRIMAP Priority mapping of Java threads to native threads

JAMAICAVM_TIMESLICE Time slicing applied to instances of java.lang.
Thread. See Builder option t imeS1ice.

JAMAICAVM_CONSTGCWORK Amount of garbage collection per block if set to
value >0. Amount of garbage collection depending on amount of free mem-
ory if set to 0. Stop the world GC if set to -1. Default: 0.

JAMAICAVM_LOCK_MEMORY If set to t rue, the VM locks application mem-
ory into RAM to prevent jitter caused by swapping (see Builder option
lockMemory), default: false.

JAMAICAVM_ANALYZE Enable memory analysis mode with a tolerance given
in percent (see Builder option analyze), default: 0 (disabled).

JAMAICAVM_RESERVEDMEMORY Set the percentage of memory that should be
reserved by a low priority thread for fast burst allocation (see Builder option
reservedMemory), default: 10.

JAMAICAVM_SCOPEDSIZE Size of scoped memory, default: O
JAMAICAVM_IMMORTALSIZE Size of immortal memory, default: O

JAMAICAVM_PROFILEFILENAME Filename for profile, default: C.prof, where
C is the name of the application main class. This variable is only recognized
by VMs with profiling support.

JAMAICAVM_CPUS CPUs to use. This is a comma-separated list of CPU ids
and ranges of CPU ids n/ . .n2, or the token a1l (default). This variable is
only recognized by VMs with multicore support.

156 CHAPTER 11. THE JAMAICA VIRTUAL MACHINE COMMANDS

11.5 Java Properties

A Java property is a string name that has an assigned string value. This sec-
tion lists Java properties that Jamaica uses in addition to those used by a stan-
dard Java implementation. These properties are available with the pre-built VM
commands described in this chapter as well as for applications created with the
Jamaica Builder.

11.5.1 User-Definable Properties

The standard libraries that are delivered with JamaicaVM can be configured by
setting specific Java properties. A property is passed to the Java code via the
JamaicaVM option

—~Dname=value
or, when building an application with the Builder, via option
-XdefineProperty+=name=value

cacio.eventpump.priority =num
This integer option specifies the priority of the CacioEventPump thread.
On Jamaica configurations with Caciocavallo GUI backends this thread
polls the native event queue for events and posts them to the AWT event
queue. Changing the thread priority may change the response time of Ul el-
ements. If not set, the default java.lang.Thread.NORM_PRIORITY
is used.

jamaica.awt.dispatchthread.priority =num
This integer option specifies the priority of EventDispatchThread. If
not set, the default java.lang.Thread.NORM_PRIORITY+1 is used.

jamaica.cost_monitoring accuracy =num

This integer property specifies the resolution of the cost monitoring that is
used for RTSJ’s cost overrun handlers. The accuracy is given in nanosec-
onds, the default value is 5000000, i.e., an accuracy of Sms. The accuracy
specifies the maximum value the actual cost may exceed the given cost bud-
get before a cost overrun handler is fired. A high accuracy (a lower value)
causes a higher runtime overhead since more frequent cost budget checking
is required.

jamaica.cpu_mhz = num
This integer option specifies the CPU speed of the system JamaicaVM ex-
ecutes on. This number is used on systems that have a CPU cycle counter

11.5. JAVA PROPERTIES 157

to measure execution time for the RTSJ’s cost monitoring functions. If the
CPU speed is not set and it could not be determined from the system (e.g.,
on Linux via reading file /proc/cpuinfo), the CPU speed will be mea-
sured on VM startup and a warning will be printed. An example setting for
a system running at 1.8GHz would be —D jamaica.cpu_mhz=1800.0.

jamaica.err_to_file
If a filename is given, all output sent to System.err will be redirected to this
file.

jamaica.err_to_null
If set to true, all output sent to System.err will be ignored. This is useful for
graphical applications if textual output is very slow. The default value for
this property is false.

jamaica.finalizer.pri=n
This property specifies the Java priority to be used for the Finalizer thread.
This thread is responsible for the exeuction of £ inalize methods after the
garbage collector has discovered that an object is eligible for finalization. If
not set, the default java.lang.Thread.MAX _PRIORITY—2 (= 8)is
used. Setting the priority to —1 deactivates the finalizer thread.

jamaica. fontproperties =resource
This property specifies the name of a resource that instructs JamaicaVM
which fonts to load. The property may be set to a user defined resource file
to change the set of supported fonts. If not set, java-home/11ib/fonts.
properties file is used, where java-home is a target directory pointed
to by the java.home java property. The specified file itself is a property
file that maps font names to resource filenames. For more details and an

example see Appendix[A.3.3]

jamaica.full_stack_trace_on_sig_quit
If this boolean property is set, then the default handler for POSIX signal
SIGQUIT (Ctr1-\ on Unix-based platforms) is changed to print full stack
trace information in addition to information on thread states, which is the
default. Without this option, this more detailed output is shown only for
repeated SIGQUIT signals that occur within 500ms after handling of the
previous signal. See also jamaica.no_sig_quit_handler.

jamaica. jaraccelerator.check.class
This property specifies whether classes loaded from a JAR file containing
compiled code should be checked for load-time bytecode modifications.
If this property is set to true, any attempt to define such a class from
different bytecode than the reference version, provided by the same class

158 CHAPTER 11. THE JAMAICA VIRTUAL MACHINE COMMANDS

loader when accessing the class file as a resource, will immediately raise an
IncompatibleClassChangeError. This property is set to false
by default.

jamaica. jaraccelerator.debug.class
Boolean property used for enabling or disabling displaying debug output
concerning the classes loaded while loading compiled code of an Acceler-
ated JAR is enabled. This property is set to false by default.

jamaica. jaraccelerator.extraction.dir

This property specifies where the shared library containing compiled code
should be extracted from a JAR file. The value may be an absolute or rel-
ative path, ending in the system-specific separator (‘/’ on Unix-Systems,
“\” on Windows). The empty path and the symbolic values JAR and TMP
(case insensitive) are also accepted. If the path is relative or empty, it is re-
solved in the context of the directory containing the JAR file. The value JAR
is equivalent to the empty path. The value TMP denotes a system-dependent
default temporary file directory. The default value is JAR. If the speci-
fied extraction directory is not writable, the default temporary file directory
is used instead. If the default temporary file directory is the extraction di-
rectory and it does not exist or it is not writable, then the library can not
be extracted and the accelerated code is not loaded. Libraries extracted to
a specified directory keep their original name and are never deleted, rather
they are reused in later execution Libraries extracted to the default tempo-
rary file directory receive a unique name in each extraction and are deleted
when the VM terminates.

jamaica. jaraccelerator. load
Boolean property used for enabling or disabling loading the compiled code
of an Accelerated JAR. This property is set to false by default.

jamaica. jaraccelerator.verbose
Boolean property used for enabling or disabling displaying the steps per-
formed for loading the compiled code of an Accelerated JAR. This property
is set to false by default.

jamaica.loadLibrary_ ignore_error
This property specifies whether every unsuccessful attempt to load a native
library dynamically via System.loadLibrary() should be ignored by the VM
at runtime. If set to true and System.loadLibrary() fails, no UnsatifiedLink-
Error will be thrown at runtime. The default value for this property is false.

2 An extracted library is reused only if it has the same name as the library in the JAR and, if the
library entry in the JAR is signed, if their contents are the same. If the extracted library can not be
reused, it is overwritten by the library in the JAR.

11.5. JAVA PROPERTIES 159

jamaica.monotonic_currentTimeMillis
Enable an additional check that enforces that the method java.lang.
System.currentTimeMillis () always returns a non-negative and
monotonically increasing value.

jamaica.no_sig_int_handler
If this boolean property is set, then no default handler for POSIX signal
SIGINT (Ctr1-C on most platforms) will be created. The default han-
dler that is used when this property is not set prints “xx* break.” to
System.err and calls System.exit (130).

jamaica.no_sig_quit_handler

If this boolean property is set, then no default handler for POSIX sig-
nal SIGQUIT (Ctrl-\ on Unix-based platforms) will be created. The
default handler that is used when this property is not set prints the cur-
rent thread states via a call to com.aicas. jamaica.lang.Debug.
dump.ThreadStates (). If a second SIGQUIT arrives withing 500ms
after this, the full stack trace of all Java threads will be printed. See also
jamaica.full_stack_trace_on_sig quit.

jamaica.no_sig_term handler
If this boolean property is set, then no default handler for POSIX signal
SIGTERM (default signal sent by ki11) will be created. The default han-
dler that is used when this property is not set calls System.exit (143).

jamaica.out_to_file
If a filename is given, all output sent to System.out will be redirected to this
file.

jamaica.out_to_null
If set to true, all output sent to System.out will be ignored. This is useful
for graphical applications if textual output is very slow. The default value
for this property is false.

jamaica.profile_force_dump
If set to true, force a profile dump even if the application or VM did
not terminate normally. Note that this property only overrides the exitcode
check of the VM upon termination. It does not activate profiling by itself.

jamaica.profile_quiet_dump
If set to t rue, all messages related to profile generation except errors are
suppressed.

jamaica.profile_groups = groups
To analyze the application, additional information can be written to the pro-
file file. This can be done by specifying one or more (comma separated)

160 CHAPTER 11. THE JAMAICA VIRTUAL MACHINE COMMANDS

groups with that property. The following groups are currently supported:
builder (default), memory, speed, all. See Chapter E] for more de-
tails.

jamaica.profile_request_port =port
When using the profiling version of JamaicaVM (jamaicavmp or an ap-
plication built with “~profile=true”), then this property may be set
to an integer value larger than O to permit an external request to dump the
profile information at any point in time. Setting this property to a value
larger than 0 also supresses dumping the profile to a file when exiting the
application. See Section [5.1.3]for more details.

jamaica.reference_handler.pri=n
This property specifies the Java priority to be used for the Reference Han-
dler thread. This thread executes cleaners (sun.misc.Cleaner), which
serve as internal finalizers to free resources allocated by certain system
classes. If not set the default java.lang.Thread.MAX_PRIORITY
(= 10) is used.

Jamaica gives this thread a higher eligibility than all other threads with the
same or a lower Java priority. Its priority micro-adjustment is +1. For more
information on eligibility, see the methods microAdjustPriority of
com.aicas.jamaica.lang.Scheduler.

jamaica.reservation_thread affinity
Affinity to be used for memory reservation threads. The cardinality of the
given set defines the number of memory reservation threads to be used. E.g.,
12, 13 to use two memory reservation threads running on CPUs 12 and 13.
If this property is not set or has the value default or 0, one reservation
thread will be created for each CPU available to normal Java threads.

jamaica.reservation_thread_priority=n

If set to an integer value larger than or equal to O, this property instructs
the virtual machine to run the memory reservation thread at the given Java
priority. A value of 0 will result at a Java priority 1 with micro adjustment
-1, i.e., the scheduler will give preference to other threads running at prior-
ity 1. By default, the priority of the reservation thread is set to 0 (i.e., Java
priority 1 with micro adjustment -1). The priority may be followed by a +
or — character to select priority micro-adjustment +1 or -1, respectively.
Setting this property, e.g., to 10+ will run the memory reservation thread
at a priority higher than all normal Java threads, but lower than all RTSJ
threads. See Section for more details.

11.5. JAVA PROPERTIES 161

jamaica.scheduler_ events_port
This property defines the port where JamaicaTrace can connect to receive
scheduler event notifications.

jamaica.scheduler_events_port_blocking
This property defines the port where JamaicaTrace can connect to receive
scheduler event notifications. The Jamaica runtime system stops before en-
tering the main method and waits for JamaicaTrace to connect.

jamaica.scheduler_ events_recorder_affinity
Affinity of the VM thread that records scheduler events for JamaicaTrace.
Use this property to restrict on which CPUs this thread may run. For exam-
ple, 12, 13 will allow the recorder to run on CPUs 12 and 13. By default,
or if the value is O, the thread may run on any of the CPUs available to the
VM. See also Chapter [I6]

jamaica.shutdownhook.time_limit

Time in milliseconds that the VM waits for all shutdown hooks to complete.
A timeout of 0 means to wait forever. The default is O milliseconds. For
systems using realtime priorities, i.e., > 10, VM termination might take in-
definitely long when the shutdown hooks have priorities lower than realtime
threads running in the system. In this case, limiting the time that shutdown
hooks may run would ensure VM’s termination. Setting a nonzero timeout
also protects against erroneous shutdown hooks.

jamaica.shutdownhook.inherit_priority
If set to true, the shutdown hooks run in the same priority as its caller.
As mentioned before, for systems using realtime priorities, i.e., > 10, VM
termination might take indefinitely long when the shutdown hooks have pri-
orities lower than realtime threads running in the system. Ensuring that the
hooks run in the caller’s priority helps avoid hook starvation helping there-
fore to ensure VM’s termination. The default of this property is false.

jamaica.softref .minfree
Minimum percentage of free memory for soft references to survive a GC
cycle. If the amount of free memory drops below this threshold, soft refer-
ences may be cleared. In JamaicaVM, the finalizer thread is responsible for
clearing soft references. The default value for this property is 10%.

jamaica.x1l1l.display
This property defines the X11 display to use for X11 graphics. This property
takes precedence over a display set via the environment variable DISPLAY.

162 CHAPTER 11. THE JAMAICA VIRTUAL MACHINE COMMANDS

jamaica.xprof =n
If set to an integer value larger than O and less or equal to 1000, this
property enables the jamaicavm’s option —Xprof. If set, the property’s
value specifies the number of profiling samples to be taken per second, e.g.,
-Djamaica.xprof=100 causes the profiling to make 100 samples per
second. See Section for more details.

java.class.path = path

The class path used by JamaicaVM. For the jamaicavm command (see
Section [IT.T)) or for a standalone VM built by the Builder (see Chapter[[3),
this is set via the —classpath option or the CLASSPATH environment
variable. For an application that has been built without setting —~XnoMain=
true, this property will be set to the empty string unless it was explicitly
set at build time via —XdefineProperty=java.class.path=path
or -XdefineProperty=java.class.path=%envvar.

java.home =dir
The home of the Java runtime environment. When Java standard classes
need to locate resources—for example, time zone information—the folder
dir/ 11D is searched. If the directory exists and the resource is found, it is
taken from there, otherwise the resource built into the executable is used.

The main use of this property is to override resources built into a VM ex-
ecutable. If the property is not set, it is computed based on the location
of the VM or application executable. If the executable’s parent folder is
bin the property is set to the parent of the bin folder. Otherwise, or if the
parent directory of the executable cannot be determined (lacking operating
system functionality) the value of this property and derived properties such
as the bootclasspath may be undefined. It might then be necessary to set this
property and the bootclasspath explicitly on the command line through the
VM options -D and —~Xbootclasspath. Note that setting this property
on the command line does not affect the bootclasspath, so it must be set as
well.

11.5.2 Predefined Properties

The JamaicaVM defines a set of additional properties that contain information
specific to Jamaica:

jamaica.boot.class.path
The boot class path used by JamaicaVM. This is not set when a stand-alone
application has been built using the Builder (see Chapter [I3)).

11.5. JAVA PROPERTIES 163

jamaica.buildnumber
The build number of the JamaicaVM.

jamaica.byte_order
One of BIG_ENDIAN or LITTLE_ENDIAN depending on the endianness
of the target system.

jamaica.heapSizeFromEnv
If the initial heap size may be set via an environment variable, this is set to
the name of this environment variable.

jamaica.immortalMemorySize
The size of the memory available for immortal memory.

jamaica. jara.abi
The Jamaica JAR Accelerator interface version offered by the JamaicaVM.
This is the same interface number mentioned in section [14.3.3]

jamaica. jara.variant
An ordered set of characters defining the flavors of the underlying JamaicaVM.
Its value contains at most one occurrence of the following characters: admpt
depending on whether the underlying VM uses paged arrays, is for internal
debug, is multicore capable, is profiling, or supports JVMTI respectively.

jamaica.maxNumThreadsFromEnv
If the maximum number of threads may be set via an environment variable,
this is set to the name of this environment variable.

jamaica.numThreadsFromEnv
If the initial number of threads may be set via an environment variable, this
is set to the name of this environment variable.

jamaica.platform
The OS and architecture of the JamaicaVM. For instance 1 inux—x86_64,
gnx—aarché64.

jamaica.release
The release number of the JamaicaVM.

jamaica.scopedMemorySize
The size of the memory available for scoped memory.

jamaica.version
The version number of the JamaicaVM.

jamaica.word_size
One of 32 or 64 depending on the word size of the target system.

164 CHAPTER 11. THE JAMAICA VIRTUAL MACHINE COMMANDS

Standard exit codes
0 | Normal termination
1 | Exception or error in Java program
2..63 | Application specific exit code from System.exit ()

Error codes
66 | Insufficient memory
68 | Initialization error
69 | Setup failure
70 | Clean-up failure
71 | Invalid command line arguments
72 | No main class
74 | Lock memory failed

Internal errors
101 | Internal error
104 | Exit by signal

POSIX signals
130 | SIGINT received
134 | SIGABRT received (Error in VM native or JNI code)
139 | SIGSEGYV received
143 | SIGTERM received

Table 11.1: Exitcodes of the Jamaica VMs

javax.realtime.version
The version number of the RTSJ API supported by JamaicaVM.

sun.arch.data.model
One of 32 or 64 depending on the word size of the target system.

11.6 Exitcodes

Tab. [[1.1] lists the exit codes of the Jamaica VMs. Standard exit codes are exit
codes of the application program. Error exit codes indicate an error such as insuf-
ficient memory. If you get an exit code of an internal error please contact aicas
support with a full description of the runtime condition or, if available, an example
program for which the error occurred.

The VM may also terminate with a POSIX signal exit code. Since the threads
of Jamaica VM install a default SIGSEGV handler, which prints out a thread-info
message to the standard error stream and aborts the VM, the exit code of such

11.6. EXITCODES 165

a reported SIGSEGV happening is actually a SIGABRT instead of SIGSEGV.
Jamaica VM terminates with SIGSEGV exit code only if the default SIGSEGV
handler is not yet activated or in case it cannot run—typically due to an unrecover-
able native stack overflow. In such a case, there is no thread-info message printed
out and the VM terminates abruptly.

166 CHAPTER 11. THE JAMAICA VIRTUAL MACHINE COMMANDS

Chapter 12

The Jamaica Profile Analyzer

The Jamaica Profile Analyzer tool has been developed to analyze the profile in-
formation produced by the profiling version of the JamaicaVM (Jjamaicavmp)
and extract the information relevant for the building tools (i.e., the Builder and
JAR Accelerator). These tools use this information to create smaller and faster
applications. In addition, the Profile Analyzer produces its results as plain text
file, providing transparency and reusability of the analysis’ results.

The tool is used as follows:

* The profile is passed to the Profile Analyzer, together with some parameters;
* The Profile Analyzer analyzes the profiles and generates two files:

— the analysis’ results file provides a detailed view of the analysis in a
user friendly format.

— the options file contains the result of the analysis formatted as options,
ready to be consumed by the building tools.

* The generated options file is then given as input to the building tools. This
file contains referenced classes and resources, which informs the Builder
what must be included in the built application. In addition it contains meth-
ods eligible for compilation which is relevant to both building tools.

It is important to consider that the product of any analysis based on profiling
data is only as complete as the profiling runs it summarizes. Therefore, when
profiling an application, one should ensure that the information is not outdated,
and also that all relevant execution paths have been covered. This does not need
necessarily to be achieved in a single profile run, as several runs may be combined
in the analysis.

167

168 CHAPTER 12. THE JAMAICA PROFILE ANALYZER

12.1 Profile Analyzer Usage

The Profile Analyzer is a command-line tool with the following syntax:
profileanalyzer -useProfile[+]=profile/:profile] [options]

The profiles to be analyzed are provided to the Profile Analyzer via the options
-useProfile. The percentage of methods to be selected for compilation can be
provided by the option ~percentageCompiled. In addition one can decide
which analysis should be performed. There are currently two analysis available:
legacy analysis and heat analysis.

The legacy analysis is the same analysis performed by the building tools and
has been implemented for providing backwards compatibility. It is selected by
setting the option —useLegacy to true.

The heat analysis selects the hottest methods for compilation, i.e., the most
frequently executed ones. It is the default analysis, it can be selected by setting the
option —useLegacy to false. When using the method heat analysis, the Profile
Analyzer analyzes the profiled execution and measures the heat of each profiled
method, using this as criterion to prioritize their compilation. The calculation
of the heat considers the execution frequency of a method and its code size, in
relation to the code size of the whole profile. Small methods frequently called are
then favored over long ones.

As an example, let us say there are two methods: a large method A, with 1000
bytecode instructions and executed just once, and a small method B, with 1 in-
struction, that is executed 1000 times. Legacy analysis would treat both methods
equally, since compiling them brings the same gain in speed. With the heat analy-
sis, however, because method A contributes much more for the code size increase,
and method B brings more speedup per created byte, the latter is more likely to
be compiled.

12.2 Profile Analyzer Options

The Jamaica Profile Analyzer accepts several options for specifying input and
output files, influencing the analysis of the profile execution and managing the
selection criteria to compilation priorities. Those options are given directly to the
Profile Analyzer via the command line.

12.2.1 Analysis

Options that are used for the analysis of the profiling information.

12.2. PROFILE ANALYZER OPTIONS 169

Option -classpath[+]=+/-source{, +/-source}

Select the code source to be used for the analysis. The source must be a partial or
full path found in the profile lines starting with *[CLASSPATH]’. This means that
during the profiling, the property jamaica.profile_groups must contain
the group classpath in order to collect the classpath information.

The source must be prefixed with "+’ or ’-’. Sources prefixed with ’+’ define
the sources included in the analysis. Sources prefixed with ’-’ define the sources
excluded from the analysis. Multiple sources are separated by commas.

Example:

—-classpath=+[user.home] /class, - [user.home] /class/exclude

includes the classes loaded from the class directory and all the sub directories
other than the exclude directory in the analysis.

! Please note that excluded paths prevail over included ones.
[]

Option —normalize (-normalise)

Boolean option used for defining whether the methods execution should be nor-
malized or not, when combining many profiles. When true the weight of each
method is normalized against its own profile before combining the profiles. This
option has no effect on the legacy analysis. It is also ignored if a single profile is
given as input. The default value is t rue.

Option —-percentageCompiled=percentage

This option is used for defining the percentage of code to be selected for compi-
lation. The integer percentage must be between 0 and 100. The default value is
30.

Option -uselLegacy

When set to true, this option guarantees an analysis equivalent to the one origi-
nally performed by the building tools, thus ensuring backward compatibility. The
default value is false.

170 CHAPTER 12. THE JAMAICA PROFILE ANALYZER

Option —-useProfile [+]=file{:file}

Option used for providing the profile files that should be analyzed. This option
accepts plain text files, GZIP compressed files, ZIP archives consisting of plain
text profile entries, and directories containing plain text files. Note that all archive
entries must be profiles. Multiple profiles must be separated by the system specific
separator (for instance ‘> on Unix and ;" on Windows). At least one file is
required for the analysis.

b

12.2.2 Output

Options that are used for controlling output behavior.

Option —analysisResults=file

Option used for providing a name for the generated file which provides a detailed
view of the analysis in a user friendly format. This file has no use for the building
tools. The given name may be an absolute or a relative filename. The default name
is ’analysisResults.log’. The default location is the current directory. If
the file exists, it will be overwritten.

Option —optionsFile=file

Option used for providing a name for the generated file containing the profiled in-
formation consumed by the building tools. The given name may be an absolute or
a relative filename. The default name is ‘profiled. opt’. The default location
is the current directory. The generated file should be given as input to the building
tools via the option —@file. For instance, ~@profiled. opt.

12.2.3 General

General options that provide help and version information.

Option -help

Print usage and help on supported options.

Option -version

This option prints the Jamaica Profile Analyzer version and exits.

12.3. ENVIRONMENT VARIABLES 171

12.3 Environment Variables

The following are the environment variables relevant to the Jamaica Profile Ana-
lyzer:

JAMAICA PROFILE_ANALYZER HEAPSIZE Initial heap size in bytes. Set-
ting it to a larger value will improve the performance of the Profile
Analyzer.

JAMAICA PROFILE_ANALYZER MAXHEAPSIZE Maximum heap size of the
profileanalyzer command itself in bytes. If the initial heap size is not
sufficient, the heap will be dynamically increased up to this value.

12.4 Exitcodes

Normal termination—Finished analyzing profile data

Error Reading—Failed to read profiles

Error Analysis—Failed to analyze profiles

Wrong Options—Failed to parse arguments

Error Output—Failed to write analyzed result to the specified output file
Empty Argument—Application expects at least one input

N W= O

Table 12.1: Jamaica Profile Analyzer exitcodes

Tab. [I2.1]lists the exit codes of the Jamaica Profile Analyzer. If you get an exit
code of related to an error and are not sure how to solve the problem please contact
aicas support with a full description of the tool usage, command line options and
input.

172 CHAPTER 12. THE JAMAICA PROFILE ANALYZER

Chapter 13

The Jamaica Builder

Traditionally, Java applications are stored in a set of Java class files. To run an
application, these files are loaded by a virtual machine prior to their execution.
This method of execution emphasizes the dynamic nature of Java applications
and allows easy replacement or addition of classes to an existing system.

However, in the context of embedded systems, this approach has several dis-
advantages. An embedded system might not provide the necessary file system
device and file system services. Instead, it is preferable to have all files relevant
for an application in a single executable file, which may be stored in read only
memory (ROM) within an embedded system.

The Builder provides a way to create a single application out of a set of class
files and the Jamaica virtual machine.

13.1 How the Builder tool works

Fig. illustrates the process of building a Java application and the JamaicaVM
into a single executable file. The Builder takes a set of Java class files as input
and by default produces a portable C source file which is compiled with a native
C compiler to create an object file for the target architecture. The build object file
is then linked with the files of the JamaicaVM to create a single executable file
that contains all the methods and data necessary to execute the Java program.

13.2 Builder Usage

The Builder is a command-line tool. It is named jamaicabuilder. A variety
of arguments control the work of the Builder tool. The command line syntax is as
follows:

173

174 CHAPTER 13. THE JAMAICA BUILDER

*.class

Y

jamaicabuilder —® C source file —®»{ C compiler

T o

profiling data e

T object file

executable -— linker

Figure 13.1: The Builder tool

jamaicabuilder [options] [class]

The Builder accepts numerous options for configuring and fine-tuning the created
executable. The class argument identifies the main class. It is required unless the
main class can be inferred otherwise—for example, from the manifest of a jar file.

The options may be given directly to the Builder via the command line, or
by using configuration ﬁles[] Options given at the command line take priority.
Options not specified at the command line are read from configuration files in the
following manner:

* The host target is read from jamaica-home/etc/global.conf and is
used as the default target. This file should not contain any other information.

e If the Builder option —configuration is used, the remaining options
are read from the file specified with this option.

* Else jamaica-home/target /platform/etc/jamaica.conf, the tar-
get default configuration, is used.

! Aliases are not allowed as keys in configuration files.

13.2. BUILDER USAGE 175

13.2.1 Using Arguments

The general format for an option is either —option for an option without argument
or —option=value for an option with argument.

13.2.1.1 Extending Configuration Defaults

For an option that accepts a list of values, e.g., —Xinclude, the list from the
configuration may be extended on the command line using the following syntax:
-Xinclude+=path. The value from the configuration is prepended to the value
provided on the command line. Only the first invocation that uses the += syntax
will be prepended by the value from the configuration.

13.2.1.2 Value Files

To read values for an option that accepts a list of values, e.g., —Xinclude,
from a file instead of the command line or configuration file, use this syntax:
-Xinclude=@file or ~-Xinclude+=Qfile. This reads the values from file line
by line. Empty lines and lines starting with the character “#” (comment) are ig-
nored.

13.2.1.3 Specifying Multiple Values

Options that allow a list as argument can be set by either providing the list, its
values being separated by an option-specific separator, or by several invocations of
the option for each element of the list. For example, the following are equivalent:

—classpath=system_classes:user_classes
—classpath=system_classes -classpath=user_classes

The separator for list elements depends on the argument type and is documented
for the individual options. As a general rule, paths and filenames are separated
by the system-specific separator character (colon on Unix systems, semicolon on
Windows), for identifiers such as class names and package names the separator is
space, and for maps the separator is comma.

13.2.1.4 Specifying Mappings

Options that permit a list of mappings as their arguments require one equals sign
to start the arguments list and another equals for each mapping in the list.

-priMap=1=5,2=7,3=9

176 CHAPTER 13. THE JAMAICA BUILDER

13.2.1.5 Avoiding Mistakes with Shell Semantics

Arguments of options may contain characters that are interpreted differently by a
shell for the purpose of globbing, quoting, escaping, et cetera. For example, if an
option’s argument contains spaces, then the space characters have to be protected
from the used shell. Otherwise, parts of the same argument will be interpreted
as separate arguments by the shell. The following are well-formed arguments in
Bash:

"-includeClasses=java.lang... java.util.«"
-classpath=system classes:’'my lib/a.jar’:installation\ directory

13.2.1.6 Argument Files

To read arguments for a tool from a file use —@file. Each line of file is then in-
terpreted as an argument to the tool. In contrast to configuration files, dashes are
used as option prefixes and non-option arguments may be given. This has the
following advantages:

* Common arguments may be shared quickly without writing a shell script.
* Conflicts with shell semantics are avoided completely.

* Input for a tool may be generated. Argument files have a compositional
nature.

13.2.1.7 Default Values

Default values for many options are target specific. The actual settings may be
obtained by invoking the Builder with —he1p. In order to find out the settings for
a target other than the host platform, include —t arget=platform.

13.2.1.8 Escaping Separators in Values

Separators for option values may interfere with the element values. For example,
if a resource should be added with the —~resource option and the resource name
contains colons. A single backslash is used to start an escape sequence but another
one may be necessary for the shell.

"-resource?=data.xml:Lorem ipsum\\: A text analysis.txt"
-resource?=data.xml:Lorem\ ipsum\\:\ A\ text\ analysis.txt

In order to not interfere with other arguments, the escaping may be enabled
individually for each option invocation. This syntax may also be used in configu-
ration files. In that case, interference with the shell semantics is impossible.

13.2. BUILDER USAGE 177

13.2.1.9 Temporary Files

The Builder stores intermediate files, in particular generated C and object files, in
a temporary folder in the current working directory. For concurrent runs of the
Builder, in order to avoid conflicts, the Builder must be instructed to use distinct
temporary directories. In this case, please use the Builder option —tmpdir to set
specifc directories.

13.2.1.10 Using Environment Variables to Read Settings at Runtime

Executables generated by the Builder can read some of their settings from envi-
ronment variables at runtime. If the variable is not set at runtime, the executable
will fall back to a value given at compile-time. To determine the name of the
environment variable a value is read from, the affected options provide syntax to
specify environment variables. $ may be used to specify a variable name and is
used to separate the variable name from the value. However, both parts may be
used in isolation to either set the environment variable or the value:

-maxHeapSize=%TOOL_MAX_HEAP_SIZE
-maxHeapSize=64m

The following invocations are semantically equivalent:

-maxHeapSize=64m%$TOOL_MAX_HEAP_SIZE
-maxHeapSize=64m -maxHeapSize=%$TOOL_MAX_ HEAP_SIZE
—-maxHeapSize=%$TOOL_MAX_HEAP_SIZE -maxHeapSize=64m

Thus, the maximum heap size is set to 64m, and may be used as a fallback when-
ever the TOOL_MAX_ HEAP_SIZE environment variable is not set.

13.2.2 General

The following are general options which provide information about the Builder
itself or enable the use of script files that specify further options.

Option —agentlib=lib=option=val{, option=val}

The agent1lib option will cause the generated executable to load and run the
dynamic JVMTI agent library /ib with the given options.

Jamaica comes with a statically built in debugging agent that can be activated
by selecting Built InAgent. For example, —agentlib=BuiltInAgent=
transport=dt_socket, server=y, address=8000 starts the applica-
tion and waits for an incoming connection of a debugger on port 8000. The
BuiltInAgent is currently the only agent supported by JamaicaVM.

178 CHAPTER 13. THE JAMAICA BUILDER

Option —-configuration[+]=file

The configuration option specifies a file to read the set of options used by
the Builder. The format must be identical to the one in the default configuration
file (jamaica-home/target /platform/etc/jamaica.conf). When set the
default configuration file is ignored.

Option -help (-h, -?)

The he 1p option displays the Builder usage and a short description of all possible
standard command line options.

Option -jobs=n

The jobs option sets the number of parallel jobs for the Builder. Parts of the
Builder work will be performed in parallel if this option is set to a value larger
than one. Parallel execution may speed up the Builder.

Option -saveSettings=file

If the saveSettings option is used, the Builder options currently in effect are
written to the provided file. To make these settings the default, replace the file
Jjamaica-home/target /platform/etc/jamaica.conf by the output.

! The saved settings will only work for the target platform they were generated
for. Copying configurations across target platforms will cause misconfigura-
tion of the platform-specific tools and will lead to severe errors.

Option —-showSettings

Print the Builder settings. To make these settings the default, replace the file
jamaica-home/target /platform/etc/jamaica.conf by the output.
Option -verbose=n

The verbose option sets the verbosity level for the Builder. At level 1, which
is the default, warnings are printed. At level 2 additional information on the build
process that might be relevant to users is shown. At level 0 all warnings are
suppressed. Levels above 2 are reserved.

Option —-version

Print the version of the Jamaica Builder and exit.

13.2. BUILDER USAGE 179

Option -Xhelp

The Xhelp option displays the Builder usage and a short description of all pos-
sible extended command line options. Extended command line options are not
needed for normal control of the Builder command. They are used to configure
tools and options and to provide tools required internally for Jamaica VM devel-
opment.

Option -Xinternal

The Xinternal option prints help on options reserved for the internal usage
of aicas. Those options are only needed for improving the Jamaica development
tools themselves. You may use them without support and at your own risk.

13.2.3 Smart Linking

Smart linking and compaction are technique to reduce the code size and heap
memory required by the generated application. These techniques are controlled
by the following options.

Option -closed

For an application that is closed, i.e., that does not load any classes dynamically
that are not built into the application by the Builder, additional optimization may
be performed by the Builder and the static compiler. These optimizations cause
incorrect execution semantics when additional classes will be added dynamically.
Setting option c1osed to true enables such optimizations, a significant enhance-
ment of the performance of compiled code is usually the result.

The additional optimization performed when closed is set include static
binding of virtual method calls for methods that are not redefined by any of the
classes built into the application. The overhead of dynamic binding is removed
and even inlining of a virtual method call becomes possible, which often results
in even further possibilities for optimizations.

Additionally, the default of smart is set to true, in order to enable optimiza-
tions that reduce the size of the application code base.

Note that care is needed for an open application that uses dynamic loading
even when closed is not set. For an open application, it has to be ensured that all
classes that should be available for dynamically loaded code need to be included
fully using option includeClasses or includeJAR. Otherwise, the Builder
may omit these classes (if they are not referenced by the built-in application), or
it may omit parts of these classes (certain methods or fields) that happen not to be
used by the built-in application.

180 CHAPTER 13. THE JAMAICA BUILDER

Option —-showExcludedFeatures

The showExcludedFeatures option causes the Builder to list the methods
and fields that were removed from the target application through mechanisms
such as smart linking. Only methods and fields from classes present in the built
application will be displayed. Used in conjunction with includeClasses,
excludeClasses, includeJAR and excludeJAR this can help identify
which classes were included only partially.

The output of this option consists of lines starting with the string EXCLUDED
METHOD or EXCLUDED FIELD followed by the name and signature of a method
or field, respectively.

Option —showIncludedFeatures

The showIncludedFeatures option causes the Builder to display the list of
classes, methods, fields and resources that were included in the target applica-
tion. This option can help identify the features that were removed from the target
application through mechanisms such as smart linking.

Additionally generated output starts with INCLUDED CLASS, INCLUDED
METHOD, INCLUDED FIELD or INCLUDED RESOURCE and is followed by
the name of the class, method, field or resource. For methods, the signature is
shown as well.

Option —showNumberOfBlocks

The showNumberOfBlocks option causes the Builder to display a table with
the number of blocks needed by all the classees included in the target application.
This option can help to calculate the worst case allocation time.

The output of this option consists of a two columns table. The first column is
named Class: and the second is named Blocks :. Next lines contain the name
of each class and the corresponding number of blocks.

Option —smart

If the smart option is set, which is the default only if closed is also set, smart
linking takes place at the level of fields and methods. That is, unused fields and
methods are removed from the generated code. Otherwise smart linking may only
exclude unused classes as a whole. Setting smart can result in smaller binary
files, smaller memory usage and faster code execution.

Smart linking at the level of fields and methods may not be used for applica-
tions that use any API, such as reflection, (de)serialization or method handles, to
load classes that are unknown at buildtime and therefore may affect which fields

13.2. BUILDER USAGE 181

and methods of other classes need to be included into the application. In such
situations, use —smart=false to disable smart linking.

Classes loaded via reflection that are known at builtime should be included via
Builder options includeClasses or includeJAR. These options selectively
disable smart linking for the included classes.

! Failures in code execution due to smart linking at the level of fields and meth-

ods can be hard to detect. Consider a scenario where a method m () of a class
A is overriden in a subclass B. If smart linking detects that A.m () is used but
B.m () is not, then the executable will contain A.m () butnot B.m (). If m()
is called on B via reflection the method A.m () will, erroneously, be executed
instead.

13.2.4 Classes, files and paths

These options allow to specify classes and paths to be used by the Builder.

Option —-classpath[+]=classpath (-cp)

The classpath option specifies the class path that is used to search for class
files. A list of paths separated by the path separator char (‘:* on Unix systems; ;’
on Windows) can be specified. This list will be traversed from left to right when
the Builder tries to load a class.

Additionally, the classpath provided at build time will be added in the form of
URLSs with the protocol jamaicabuiltin to the runtime classpath of the built
application.

Option -destination=name (-o0)

The destination option specifies the name of the destination executable to be
generated by the Builder. If this option is not present, the name of the destination
executable is the simple name of the main class.

The destination name can be a path into a different directory. E.g.,

—-destination=myproject/bin/xyz

may be used to save the created executable xyz in myproject /bin.

Option —enableassertions (—ea)

The enableAssertions option enables assertions for all classes in the appli-
cation that is to be built. Assertions are disabled by default.

182 CHAPTER 13. THE JAMAICA BUILDER

Option -excludeClasses [+]=(class |package) { (class|package) }

The excludeClasses option forces exclusion of the listed classes and pack-
ages from the created application. The listed classes with all their methods and
fields will be excluded, even if previously included using the Builder options
includeJar or includeClasses. This is useful if you want to load classes
at runtime.

Arguments for this option can be: a class name to exclude the class with all
methods and fields, a package name followed by an asterisk to exclude all classes
in the package or a package name followed by “. . .” to exclude all classes in the
package and in all sub-packages of this package.

Example:

—excludeClasses="com.my.Unwanted com.myZ2.x com.my3..."

excludes the class com.my .Unwanted, all classes in com.my2 and all classes
in the package com.my3 and in all sub-packages of com.my3 such as com.
my3.subpackage.

! The excludeClasses option affects only the listed classes themselves.
[]

! From a Unix shell, when specifying an inner class, the dollar sign must be
® preceded by backslash. Otherwise the shell interprets the class name as an
environment variable.

Option —excludeJAR [+]=file{:file}

The excludeJAR option forces the exclusion of all classes and resources con-

tained in the specified files. Any class and resource found will be excluded from

the created application. Use this option to load an entire archive at runtime.
Despite its name the option accepts directories as well. Multiple file or direc-

13 2

tory paths should be separated by the system-specifc path separator: colon “:” on

(13 2

Unix systems and semicolon *“;” on Windows.

Option —includeClasses [+]=(class |package) { (class|package) }

The includeClasses option forces the inclusion of the listed classes and
packages into the created application. The listed classes with all their method,
fields and, recursively, inner classes will be included. This is useful or even neces-
sary if you use reflection, (de)serialization, or method handles with these classes.

Arguments for this option can be: a class name to include the class with all
methods and fields, a package name followed by an asterisk to include all classes

13.2. BUILDER USAGE 183

in the package or a package name followed by “. . .” to include all classes in the
package and in all sub-packages of this package.
Example:

—includeClasses="java.beans.Beans java.io.x

java.lang..."

includes the class java.beans.Beans, all classes in java. io and all classes
in the package java.lang and in all sub-packages of java.lang such as
java.lang.ref.

! The includeClasses option affects only the listed classes themselves.
Subclasses of these classes remain subject to smart linking.

! From a Unix shell, when specifying an inner class, the dollar sign must be
preceded by backslash. Otherwise the shell interprets the class name as an
environment variable.

Option -includeJAR[+]=file{:file}

The includeJAR option forces the inclusion of all classes and all resources
contained in the specified files. Any archive listed here must be in the classpath
or in the bootclasspath. If a class needs to be included, the implementation in
the includeJAR file will not necessarily be used. Instead, the first implemen-
tation of this class which is found in the classpath will be used. This is to ensure
the application behaves in the same way as it would if it were called with the
jamaicavm or java command.

Despite its name, the option accepts directories as well. Multiple file or direc-

(13 2

tory paths should be separated by the system-specifc path separator: colon “:” on

(13 29
.

Unix systems and semicolon *“;” on Windows.

Option -jar=file

The jar option specifies a JAR file with an application that is to be built. This
JAR file must contain a MANIFEST with a Main-Class entry.

This option cannot be combined with the -classpath option. You can specify
the class path in the MANTFEST with a Class-Path entry. Alternatively, do not use
this option, put the jar in the class path and specify the main class manually.

184 CHAPTER 13. THE JAMAICA BUILDER

Option -main=class

The main option specifies the main class of the application that is to be built.
This class must contain a static method void main (String[] args). This
method is the main entry point of the Java application.

If the main option is not specified, the first class of the classes list that is
provided to the Builder is used as the main class. If the main is set to com.
jamaicavm. jre.Main, a standalone VM is created.

Option -resource [+]=name{ :name}

Includes the given resources in the created application. Resources are data files
(such as image files, sound files) that can be accessed by the Java application. A
resource name includes a ‘/’-separated package path. The Builder reads resources
from the class path. That is, JAR files and directories containing resources must
be given via the classpath option. The Builder also includes all resources
contained in JAR files and directories given via the includeJAR option. For
information on accessing resources from Java, please refer to the java.lang.
Class APL

The builder supports building multiple resources with the same name (but from
different class path elements) into an application — for example, the manifest
entries (META-INF/MANIFEST.MF) from all JAR files on the class path. Such
resources can be distinguished by their URLs. For a resource included by the
Builder, the URL specifies the protocol jamaicabuiltin: and includes the
class path entry in addition to the resource name. Here are examples:

1. jamaicabuiltin:/lib/a.jar!/META-INF/MANIFEST.MF
2. jamaicabuiltin:/lib/b.jar!/META-INF/MANIFEST.MF
3. jamaicabuiltin:/home/joe/classes/com/my/info.text

The manifests originated from the JAR files /1ib/a.jar and /1ib/b. jar.
The third example is ambiguous. It may identify the resource com/my/info.
txt originally located in directory /home/joe/classes; it may also iden-
tify the resource my/info.txt located in /home/joe/classes/com. The
ambiguity can, of course, be resolved with the resource name.

The class file for classes that are built into an application cannot be loaded as
resources since the format used by the Builder differs from the normal class file
format. To make sure that a class file can be accessed at runtime as a Java resource,
it has to be added explicitly using the resource option, e.g., —resource+
=pkg/A.class.

13.2. BUILDER USAGE 185

However, obtaining the URL of built-in classes via ClassLoader method
getResource ("pkg/A.class") is possible even if the original class data
was not added as a resource as long as no attempt is made to read the data (via
URL.openConnection () .getInputStream/()).

! Absolute file paths are built into the application.

Option -setFonts [+]=font{ font}

The setFonts option can be used to choose the set of TrueType fonts to be
included in the target application. The font families sans, serif, mono are
supported. The arguments all and none cause inclusion of all or no fonts,
respectively. The default is platform dependent and may be obtained by invoking
the Builder with —help. To use TrueType fonts, a graphics system must be set.

Option —-setLocales[+]=locale{ locale}

The setLocales option can be used to choose the set of locales to be included
in the target application. This involves date, currency and number formats. Lo-
cales are specified by a lower-case, two-letter code as defined by ISO-639. The
arguments all and none cause inclusion of all or no locales, respectively.

Example: —setLocales="de en" will include German and English lan-
guage resources. All country information of those locales, e.g., Swiss currency,
will also be included.

To get a list of all possible values, invoke the Builder with ~help.

Option —-setProtocols[+]=protocol{ protocol}

The setProtocols option can be used to choose the set of protocols to be
included in the target application.

For example, ~setProtocols="http https" will include handlers for
the HTTP and HTTPS protocols.

To get a list of all possible values invoke the Builder with —help.

Option —-tmpdir=name

The tmpdir option may be used to specify the name of the directory used for
temporary files generated by the Builder (such as C source and object files for
compiled methods).

186 CHAPTER 13. THE JAMAICA BUILDER

13.2.5 RTS]J settings

The following options set values that are relevant for the Real-Time Specifica-
tion for Java extensions through classes javax.realtime.* that are provided by Ja-
maicaVM.

Option —immortalMemorySize[+]=n[K|M] [%var] | %$var

The immortalMemorySize option sets the size of the immortal memory area,
in bytes. The immortal memory can be accessed through the class javax.
realtime.ImmortalMemory.

The immortal memory area is guaranteed never to be freed by the garbage
collector. Objects allocated in this area will survive the whole application run.

By specifying an environment variable the result of the Builder will read its
setting for this option from the environment variable. Otherwise the setting cannot
be altered at runtime. Examples: ‘$VAR’, ‘32k’, or ‘64m%FOO0’

Option -physicalMemoryRanges [+]=range{, range}

The PhysicalMemoryFactory classesinthe javax.realtime.memory
package provide access to RTSJ physical memory for Java object storage. The
memory ranges that may be accessed by the Java application can be specified
using the option physicalMemoryRanges. The default behavior is that no
access to physical memory is permitted by the application.

The physicalMemoryRanges option expects a list of address ranges. Ad-
dress ranges are of the form lower. .upper. The lower address is inclusive and
the upper address is exclusive. l.e., the difference upper-lower gives the size of the
accesible area. The addresses need to be page-aligned. There can be an arbitrary
number of memory ranges.

Example: with -physicalMemoryRanges=0x1000..0x2000 the ap-
plication will be allowed access to the memory range from address 0x1000 to
0x2000, i.e., to a range of 4096 bytes.

Option -rawMemoryRanges [+]=range{, range}

The RawMemory class in the javax.realtime.device package provide
access to device memory for Java applications. The memory ranges accesible
by the Java application can be specified using the option rawMemoryRanges.
The default behavior is that no access to physical memory is permitted by the
application.

The rawMemoryRanges option expects a list of address ranges. Address
ranges are of the form lower. .upper. The lower address is inclusive and the

13.2. BUILDER USAGE 187

upper address is exclusive. Le., the difference upper-lower gives the size of the
accesible area. The addresses need to be page-aligned. There can be an arbitrary
number of memory ranges.

Example: ~rawMemoryRanges=0x1000..0x2000 will allow access to
the memory range from address 0x1000 to 0x2000, i.e., to a range of 4096
bytes.

Option -scopedMemorySize[+]=n[K|M] [%var] | $var

The scopedMemorySize option sets the size of the memory that should be
made available for scoped memory areas (RTSJ classes javax.realtime.
memory.LTMemory and javax.realtime.VTMemory). This memory lies
outside the normal Java heap, but it is nevertheless scanned by the garbage collec-
tor for references to the heap.

Objects allocated in scoped memory will never be reclaimed by the garbage
collector. Instead, their memory will be freed when the last thread exits the scope.

By specifying an environment variable the result of the Builder will read its
setting for this option from the environment variable. Otherwise the setting cannot
be altered at runtime. Examples: ‘$VAR’, ‘32k’, or ‘64m%FOO’

13.2.6 Heap and stack configuration

By default, the Builder compiles all application classes and a predefined set of the
system classes. Profiling and compilation options enable to fine tune the compila-
tion process for optimal runtime performance of applications generated with the
Builder.

Option -heapSize[+]=n[K|M|G] [%var] | $var

The heapSize option sets the heap size to the specified size given in bytes.
The heap is allocated at startup of the application. It is used for static global
information (such as the internal state of the Jamaica Virtual Machine) and for the
garbage collected Java heap.

The heap size may be succeeded by the letter ‘K’, ‘M’ or ‘G’ to specify a size
in KBytes (1024 bytes), MBytes (1048576 bytes) or GBytes (1073741824 bytes).
The minimum required heap size for a given application can be determined using
option analyze

By specifying an environment variable the result of the Builder will read its
setting for this option from the environment variable. Otherwise the setting cannot
be altered at runtime. Examples: ‘$VAR’, ‘32k’, or ‘64m%FOO’

188 CHAPTER 13. THE JAMAICA BUILDER

Option —-heapSizeIncrement [+]=n[K|M] [%var] | %var

The heapSizeIncrement option specifies the steps by which the heap size
can be increased when the maximum heap size is larger than the heap size.

The increment size may be succeeded by the letter ‘K’, ‘M’ or ‘G’ to specify
a size in KBytes (1024 bytes), MBytes (1048576 bytes) or GBytes (1073741824
bytes). The minimum value is 64k

By specifying an environment variable the result of the Builder will read its
setting for this option from the environment variable. Otherwise the setting cannot
be altered at runtime. Examples: ‘$VAR’, ‘32k’, or ‘64m%F0O0’

Option —-javaStackSize[+]=n[K|M] [%var] | Svar

The javaStackSize option sets the stack size to be used for the Java runtime
stacks of all Java threads in the built application. Each Java thread has its own
stack which is allocated from the global Java heap. The stack size consequently
has an important impact on the heap memory required by an application. A small
stack size is recommaneded for systems with tight memory constraints. If the
stack size is too small for the application to run, a stack overflow will occur and a
corresponding error reported.

The stack size may be followed by the letter ‘K’ or ‘M’ to specify a size in
KBytes (1024 bytes) or MBytes (1048576 bytes). The minimum stack size is 1k.

By specifying an environment variable the result of the Builder will read its
setting for this option from the environment variable. Otherwise the setting cannot
be altered at runtime. Examples: ‘$VAR’, ‘32k’, or ‘64m%FOO’

Option —-lockMemory[=(true|false) [%var] | $var]

If the 1 ockMemory option is set, the built application instructs the OS to attempt
to lock all of its memory into RAM using POSIX m1ockall function on systems
that support it. This avoids indeterministic timing due to swapping of memory to
disk in virtual memory environments.

Locking memory to RAM may require specific user rights or setting of re-
source limits such (e.g., RLIMIT_MEMLOCK on Linux). In case locking of the
memory fails, the built application will fail with error code 74.

By specifying an environment variable the result of the Builder will read its
setting for this option from the environment variable. Otherwise the setting cannot
be altered at runtime. Examples: ‘$VAR’, ‘true’, or ‘false$F00O’

13.2. BUILDER USAGE 189

Option —-maxHeapSize[+]=n[K|M|G] [%var] | %var

The maxHeapSize option sets the maximum heap size to the specified size
given in bytes. If the maximum heap size is larger than the heap size, the heap
size will be increased dynamically on demand.

The maximum heap size may be succeeded by the letter ‘K’, ‘M’ or ‘G’
to specify a size in KBytes (1024 bytes), MBytes (1048576 bytes) or GBytes
(1073741824 bytes). The minimum value is O (for no dynamic heap size increase).

By specifying an environment variable the result of the Builder will read its
setting for this option from the environment variable. Otherwise the setting cannot
be altered at runtime. Examples: ‘$VAR’, ‘32k’, or ‘64m%FOO’

Option —-nativeStackSize[+]=n[K|M] [%var] | $var

The nativeStackSize option sets the stack size to be used for the native
runtime stacks of all Java threads in the built application. Each Java thread has
its own native stack. Depending on the target system, the stack is either allocated
and managed by the underlying operating system, as in many Unix systems, or
allocated from the global heap, as in some small embedded systems. When native
stacks are allocated from the global heap, stack size consequently has an important
impact on the heap memory required by an application. A small stack size is
recommended for systems with tight memory constraints. If the selected native
stack size is too small, an error may not be reported because the stack-usage of
native code may cause a critical failure.

The nativeStackSize option can be set to 0 to leave the application and
management of the native stack on the underlying operating system. The size of
the native stack would be, then, OS-dependent. On Unix systems this could be
managed by the ulimit -s command and an unlimited value could be set.
In that case the stack size is increased dynamically as needed.

The stack size may be followed by the letter ‘K’ or ‘M’ to specify a size in
KBytes (1024 bytes) or MBytes (1048576 bytes). The minimum stack size is
platform dependent.

By specifying an environment variable the result of the Builder will read its
setting for this option from the environment variable. Otherwise the setting cannot
be altered at runtime. Examples: ‘$VAR’, ‘32k’, or ‘64m%FO0’

Option —threadPreemption=n

Compiled code contains special instructions that permit thread preemption. These
instructions have to be executed often enough to allow a thread preemption time
that is sufficient for the destination application. As the instructions cause an over-

190 CHAPTER 13. THE JAMAICA BUILDER

head in code size and runtime performance, one would want to generate this code
as rarely as possible.

The threadPreemption option enables setting of the maximum number
of intermediate instructions that are permitted between the execution of thread
preemption code. This directly affects the maximum thread preemption time of
the application. One intermediate instruction typically correspons to 1-2 machine
instructions. There are some intermediate instructions (calls, array accesses) that
can be more expensive (20-50 machine instructions).

The thread preemption must be at least 10 intermediate instructions.

Option —-XX:MaxDirectMemorySize=n[K|M|G]

The XX:MaxDirectMemorySize option specifies the maximum total size of
java.nio (New I/O) direct buffer allocations in the built application.

The maximum direct memory size may be succeeded by the letter ‘K’, ‘M’ or
‘G’ to specify a size in KBytes (1024 bytes), MBytes (1048576 bytes) or GBytes
(1073741824 bytes). The minimum value is O (for not direct buffer allocations). If
this option is not set the java.nio library chooses a default size automatically
at startup time of the built application.

13.2.7 GC configuration

The following options provide ways to analyze the application’s memory demand
and to use this information to configure the garbage collector for the desired real-
time behavior.

Option —analyze [+]=tolerance [%var] | $var (—analyse)

The analyze option enables memory analyze mode with tolerance given in per-
cent. In memory analyze mode, the memory required by the application during
execution is determined. The result is an upper bound for the actual memory re-
quired during a test run of the application. This bound is at most the specified
tolerance larger than the actual amount of memory used during runtime.

The result of a test run of an application built using analyze can then be
used to estimate and configure the heap size of an application such that the gar-
bage collection work that is performed on an allocation never exceeds the amount
allowed to ensure timely execution of the application’s realtime code.

Using analyze can cause a significant slowdown of the application. The ap-
plication slows down as the tolerance is reduced, i.e., the lower the value specified
as an argument to analyze, the slower the application will run.

13.2. BUILDER USAGE 191

In order to configure the application heap, a version of the application must be
built using the option analyze and, in addition, the exact list of arguments used
for the final version. The heap size with desired garbage collection overhead. To
reiterate, the argument list provided to the Builder for this final version must be
the same as the argument list for the version used to analyze the memory require-
ments. Only the heapSize option of the final version must be set accordingly
and the final version must be built without setting analyze.

By specifying an environment variable the result of the Builder will read its
setting for this option from the environment variable. Otherwise the setting cannot
be altered at runtime. Examples: ‘$VAR’, ‘~23’, or ‘“42%F00’

Option —atomicGC

The at omicGC option enables atomic GC, i.e., no GC activity is performed until
the heap is fully filled. Only then, a complete GC cycle is performed at once,
causing a potentially long pause for the application. During this GC cycle, all
Java threads will be blocked.

This mode permits even more efficient code than st opTheWor1dGC since it
disables certain tracking code (write barriers) that is required for the incremental
GC.

When this option is set, even NoHeapRealtimeThreads will be stopped
by GC work, so all realtime guarantees are lost!

Option —constGCWork [+]=n[%var] | $var

The constGCWork option runs the garbage collector in static mode. In static
mode, for every unit of allocation, a constant number of units of garbage collection
work is performed. This results in a lower worst case execution time for the
garbage collection work and allocation and more predictable behavior, compared
with dynamic mode, because the amount of garbage collection work is the same
for any allocation. However, static mode causes higher average garbage collection
overhead compared to dynamic mode.

The value specified is the number for units of garbage collection work to be
performed for a unit of memory that is allocated. This value can be determined
using a test run built with —analyze set.

A value of ‘0’ for this option chooses the dynamic GC work determination
that is the default for Jamaica VM.

A value of ‘-1’ enables a stop-the-world GC, see option st opTheWor1dGC
for more information.

A value of ‘-2’ enables an atomic GC, see option at omicGC for more infor-
mation.

192 CHAPTER 13. THE JAMAICA BUILDER

The default setting chooses dynamic GC: The amount of garbage collection
work on an allocation is then determined dynamically depending on the amount
of free memory.

By specifying an environment variable the result of the Builder will read its
setting for this option from the environment variable. Otherwise the setting cannot
be altered at runtime. Examples: ‘$VAR’, ‘=23, or ‘42%F00’

Option -reservedMemory [+]=percentage [%var] | $var

Jamaica VM’s realtime garbage collector performs GC work at allocation time.
This may reduce the responsiveness of applications that have long pause times
with little or no activity and are preempted by sudden activities that require a
burst of memory allocation. The responsiveness of such burst allocations can be
improved significantly via reserved memory.

If the reservedMemory option is set to a value larger than 0O, then a low
priority thread will be created that continuously tries to reserve memory up to the
percentage of the total heap size that is selected via this option. Any thread that
performs memory allocation will then used this reserved memory to satisfy its
allocations whenever there is reserved memory available. For these allocations
of reserved memory, no GC work needs to be performed since the low priority
reservation thread has done this work already. Only when the reserved memory is
exhausted will GC work to allow further allocations be performed.

The overall effect is that a burst of allocations up to the amount of reserved
memory followed by a pause in activity that was long enough during this alloca-
tion will require no GC work to perform the allocation. However, any thread that
performs more allocation than the amount of memory that is currently reserved
will fall back to the performing GC work at allocation time.

The disadvantage of using reserved memory is that the worst-case GC work
that is required per unit of allocation increases as the size of reserved memory is
increased. For a detailed output of the effect of using reserved memory, run the
application with option —analyze set together with the desired value of reserved
memory.

By specifying an environment variable the result of the Builder will read its
setting for this option from the environment variable. Otherwise the setting cannot
be altered at runtime. Examples: ‘$VAR’, ‘=23, or ‘42%F00’

Option —stopTheWorldGC

The stopTheWor1dGC option enables blocking GC, i.e., no GC activity is per-
formed until the heap is fully filled. Only then, a complete GC cycle is performed
at once, causing a potentially long pause for the application. During this GC cycle

13.2. BUILDER USAGE 193

any thread that performs heap memory allocation will be blocked, but threads that
do not perform heap allocation may continue to run.

If stop-the-world GC is enabled via this option, even RealtimeThreads
and NoHeapRealtimeThreads may be blocked by GC activity if they al-
locate heap memory. RealtimeThreads and NoHeapRealtimeThreads
that run in ScopedMemory or ImmortalMemory will not be stopped by the
GC.

A stop-the-world GC enables a higher average throughput compared to incre-
mental GC, but at the cost of losing realtime behaviour for all threads that perform
heap allocation.

13.2.8 Threads and priorities

Configuring threads has an important impact not only on the runtime performance
and realtime characteristics of the code but also on the memory required by the ap-
plication. Jamaica Builder provides a range of option for configuring the number
of threads available to an application and their priorities.

Option —maxNumThreads [+]=n[%var] | %var

The maxNumThreads option specifies the maximum number of Java threads
supported by the application. This also includes Java threads used to attach native
threads to the VM. If this maximum number of threads is larger than the sum
of the values specified for numThreads and numJNIAttachableThreads,
threads will be added dynamically if needed. If the maximum is lower than the
sum of numThreads and numJNIAttachableThreads, the maximum is
raised to this sum.

Adding new threads requires unfragmented heap memory. It is strongly rec-
ommended to use maxNumThreads only in conjunction with maxHeapSize
set to a value larger than heapSize. This will permit the VM to increase the
heap when memory is fragmented.

The absolute maximum number of threads for the Jamaica VM is 511.

! If the number of Java threads plus the number of attached native threads has
reached maxNumThreads, both starting further Java threads and attaching
additional native threads will fail.

By specifying an environment variable the result of the Builder will read its
setting for this option from the environment variable. Otherwise the setting cannot
be altered at runtime. Examples: ‘$VAR’, ‘=23, or ‘42%F00’

194 CHAPTER 13. THE JAMAICA BUILDER

Option —numIJNIAttachableThreads[+]=n[%var] | %$var

The numJNIAttachableThreads option specifies the initial number of Java
thread structures that will be allocated and reserved for calls to the JNI Invoca-
tion API functions. These are the functions JNI_AttachCurrentThread
and JNI_AttachCurrentThreadAsDaemon. These threads will be allo-
cated on VM startup, such that no additional allocation is required on a later call to
JNI_AttachCurrentThreador JNI_AttachCurrentThreadAsDaemon.

Even if this option is set to zero, it still will be possible to use these functions.
However, then these threads will be allocated dynamically when needed.

Since non-fragmented memory is required for the allocation of these threads,
a later allocation may require heap expansion or may fail due to fragmented mem-
ory. It is therefore recommended to pre-allocate these threads.

The number of JNI attachable threads that will be required is the number of
threads that will be attached simultaneously. Any thread structure that will be
detached via JNI DetachCurrentThread will become available again and
can be used by a different thread that calls INI_AttachCurrenThread or
JNI_AttachCurrentThreadAsDaemon.

By specifying an environment variable the result of the Builder will read its
setting for this option from the environment variable. Otherwise the setting cannot
be altered at runtime. Examples: ‘$VAR’, ‘~23’, or ‘“42%F00’

Option —numThreads[+]=n[%var] | $var

The numThreads option specifies the initial number of Java threads supported
by the destination application. These threads and their runtime stacks are gener-
ated at startup of the application. A large number of threads consequently may
require a significant amount of memory.

The minimum number of threads is two, one thread for the main Java thread
and one thread for the finalizer thread.

By specifying an environment variable the result of the Builder will read its
setting for this option from the environment variable. Otherwise the setting cannot
be altered at runtime. Examples: ‘$VAR’, ‘=23, or ‘42%F00’

Option —priMap [+]=jp=sp [/policy]{,jp=sp[/policy]l} [%var] | $var

The pr iMap option defines the mapping of priority levels of Java threads to native
priorities of system threads. This map is required since JamaicaVM implements
Java threads as operating system threads.

The Java thread priorities are integer values in the range O through 127, where
0 corresponds to the lowest priority and 127 to the highest priority. Not all Java

13.2. BUILDER USAGE 195

thread priorities up to this maximum must be mapped to system priorities, but the
range must be contiguous from 1 to the highest priority in the mapping. Map-
pings for the priority levels of java.lang.Thread (ranging from 1 through
10) and the priority levels of javax.realtime.RealtimeThread (ranging
from 11 through 38) must be provided. Unless time slicing is disabled, the prior-
ity of the synchronization thread must also be provided with the keyword ’sync’.
Its purpose is to provide round robin scheduling and to prevent starvation of low
priority thread for instances of java.lang.Thread. The Java priority level
0 is optional, it may be used to provide a specific native priority for Java prior-
ity level 1 with micro-adjustment -1 (see class com.aicas. jamaica.lang.
Scheduler. This is also the default priority of the memory reservation thread.

Each Java priority level starting from 1 up to the maximal used priority must
be mapped to a system priority, and the mapping must be monotonic. That is, a
higher Java priority level may not be mapped to a lower system priority. The only
exception is the priority of the synchronization thread, which may be mapped to
any system priority. To simplify the notation, a range of priority levels or system
priorities can be described using the notation from . . to.

Example 1: -priMap=1..10=5,sync=6,11..38=7..34 will cause
all normal threads to use system priority 5, while the real-time threads will be
mapped to priorities 7 through 34. The synchronization thread will used prior-
ity 6. There will be 28 priority levels for instances of RealtimeThread, and
the synchronization thread will run at a system priority lower than the real-time
threads.

Example 2: on a system where higher priorities are denoted by smaller num-
bers, -priMap=1..50=100..2, sync=1 will cause the use of system prior-
ities 100, 98, 96 through 2 for priority levels 1 through 50. The synchronization
thread will use priority 1. There will be 40 priority levels available for instances
of Realtimethread.

The default of this option is platform specific. It maps at least the Java priority
levels required for java.lang.Thread and RealtimeThread, and for the
synchronization thread to suitable system priorities.

By specifying an environment variable the result of the Builder will read its
setting for this option from the environment variable. Otherwise the setting cannot
be altered at runtime. Examples: ‘1..10=5,11..38=6, sync=6%F00’ or
‘SVAR’

Option -schedulingPolicy[+]=policy [$var] | %var (deprecated)

The schedulingPolicy option was used to set the thread scheduling policy,
like OTHER, FIFO, or RR. If a scheduling policy was not explicitly specified in
the priority map, this option would define the default one. Please note: Besides

196 CHAPTER 13. THE JAMAICA BUILDER

being deprecated, this option has currently no effect. Its value is simply ignored.

Option —-timeSlice[+]=n[ns|us|ms|s] [%var] | %var

For thread instances of java.lang.Thread of equal priority, round robin
scheduling is used when several threads are running simultaneously. Using the
timeSlice option, the maximum size of such a time slice can be specified. A
special synchronization thread is used that waits for the length of a time slice and
permits thread switching after every slice.

The value may be specified using the time units ‘ns’, ‘us’, ‘ms’, or ‘s’ to
specify a value in nanoseconds, microseconds, milliseconds, or seconds. If no
unit is given, the value is interpreted as nanoseconds.

By specifying an environment variable the result of the Builder will read its
setting for this option from the environment variable. Otherwise the setting cannot
be altered at runtime. Examples: ‘$VAR’, ‘Ins’, or ‘9us%F0O0’

13.2.9 Native code

Native code is code written in a different programming language than Java (typ-
ically C or C++). This code can be called from within Java code using the Java
Native Interface (JNI).

Option —object [+]=file{ :file}

Unlike many other Java implementations that support accessing native code only
through shared libraries, Jamaica can include native code directly in the exe-
cutable. The object files specified with this option will be linked to the destination
executable created by the Builder.

Setting this option may cause linker errors. This happens if default object fils
needed by Jamaica are overridden. These errors may be avoided by using the
optional “+”-notation: —ob ject +=files.

Multiple file paths should be separated by the system-specifc path separator:

13 2 (13 2
.

colon “:” on Unix systems and semicolon “;” on Windows.

13.2.10 Profiling and compilation

By default, the Builder compiles all application classes and a predefined set of the
system classes. Profiling and compilation options enable to fine tune the compila-
tion process for optimal runtime performance of applications generated with the
Builder.

13.2. BUILDER USAGE 197

Option —compile

The compile option enables static compilation for the created application. All
methods of the application are compiled into native code causing a significant
speedup at runtime compared to the interpreted code that is executed by the virtual
machine. Use compilation whenever execution time is important. However, it
is often sufficient to compile a small percentage of the classes, which results in
smaller executable of comparable speed. You can achieve this by profiling the
application and analyzing its results with the Profile Analyzer. For a tutorial on
profiling see Chapter ’Performance Optimization” in the user manual.

Option —-excludeFromCompile [+]= (class |method) { (class|method) }

The excludeFromCompile option disables the compilation of the listed meth-
ods. Either a single method, all methods with the same name or all methods of
classes or even packages can be specified.

Examples: com.user.Sample.toString()Ljava/lang/String;
refers to the single method, com.user.Sample.toString to all methods
with this name, independent of the method descriptor, com.user . Sample refers
to all methods in this class, com.user.* to all classes in this package and
com.user. .. toall classes in this package and all subpackages.

Option -includeInCompile [+]= (class|method){ (class|method) }

The includeInCompile option forces the compilation of the listed methods
(when not excluded from the application by the smart linker or by any other
means). Either a single method, all methods with the same name or all methods
of classes or even packages can be specified.

Examples: com.user.Sample.toString()Ljava/lang/String;
refers to the single method, com.user.Sample.toString to all methods
with this name, independent of the method descriptor, com.user . Sample refers
to all methods in this class, com.user. to all classes in this package and
com.user. .. to all classes in this package and all subpackages.

Option -inline=n

This option can be used to set the level of inlining used by the Builder when com-
piling a method. Inlining typically causes a significant speedup at runtime since
the overhead of performing method calls is avoided. Nevertheless, inlining causes
duplication of code and hence might increase the binary size of the application. In
systems with tight memory resources, inlining may therfore not be acceptable.

198 CHAPTER 13. THE JAMAICA BUILDER

Eleven levels of inlining are supported by the Jamaica compiler ranging from
0 (no inlining) to 10 (aggressive inlining).

Option —interpret (—-Xint)

The interpret option disables compilation of the application. This results in a
smaller application and in faster build times, but it causes a significant slow down
of the runtime performance.

Option —optimize=fype (—optimise)

The optimize option enables to specify optimizations for the compilation of
intermediate C code to native code in a platform independent manner, where fype
is one of none, size, speed, and all. The optimization flags only affect the
C compiler.

Option —-percentageCompiled=n (deprecated)

Use profiling information collected using profile to restrict compilation to
those methods that were most frequently executed during the profiling run. The
percentage of methods that are to be compiled is given as an argument to the op-
tion percentageCompiled. It must be between 0 and 100. Selecting 100
causes compilation of all methods executed during the profiling run, i.e. methods
that were not called during profiling will not be compiled.

Option —-profile

The profile option instructs the Builder to include code in the built application
that collects information on the amount of run time spent for the execution of
different methods. This information is dumped to a file after a test run of the
application has been performed. Collection of profile information is cumulative.
That is, when this file exists, profiling information is appended. The name of
the file is derived from the name of the executable given via the destination
option. Alternatively, it may be given with the option XprofileFilename.

The information collected in a profiling run can then be used as an input for the
option useProfile to guide the compilation process. For a tutorial on profiling
see Section Performance Optimization in the user manual.

Option —-target=platform

The target option specifies a target platform. For a list of all available platforms
of your Jamaica VM Distribution, use XavailableTargets.

13.3. BUILDER EXTENDED USAGE 199

Option —useProfile [+]=file{:file} (deprecated)

The useProfile option instructs the Builder to use profiling information col-
lected using the Builder option profile to restrict compilation to those methods
that were most frequently executed during the profiling run. The percentage of
methods to be compiled is by default, unless percentageCompiledissettoa
different value. For a tutorial on profiling see Section Performance Optimization
in the user manual.

This option accepts plain text profile files, GZIP compressed profile files and
ZIP archives consisting of plain text profile entries. All archive entries are required
to be profiles.

It is possible to use this option in combination with the option profile.
This may be useful when the fully interpreted application is too slow to obtain a
meaningful profile. In such a case one may achieve sufficient speed up through an
initial profile, and use the profiled application to obtain a more precise profile for
the final build.

Multiple file paths should be separated by the system-specifc path separator:

(3 2 6,

colon “:” on Unix systems and semicolon ““; ” on Windows.

13.2.11 Parallel Execution

The parallel version of JaimaicaVM can execute several threads, including the
garbage collection, in parallel and therefore improves the runtime performance
when using multicore systems. Notice that you need to have an extra license to
use the parallel version of JamaicaVM.

Option -parallel

The parallel option instructs the Builder to create an application that can make
use of several processors executing Java code in parallel.

13.3 Builder Extended Usage

A number of extended options provide additional means for finer control of the
Builder’s operation for the more experienced user. The following sections list
these extended options and describe their effect. Default values for many options
are target-specific. The actual settings may be obtained by invoking the Builder
with —Xhelp. In order to find out the settings for a target other than the host
platform, include -t arget=platform.

200 CHAPTER 13. THE JAMAICA BUILDER

13.3.1 General

The following are general options which provide information about the Builder
itself or enable the use of script files that specify further options.

Option -XactiveVMOptionGroups [+]=group{, group}

The XactiveVMOptionGroups option activates runtime VM options in a
built application. At runtime these options can be provided as extra arguments.
The VM options eligible for runtime activation are bundled in groups and there-
fore activating a group causes the activation of all its options. The group ‘all’ acti-
vates all eligible options and, up to now, it is the only supported group. Currently,
the only VM options eligible for activation are —classpath (or —cp) and —-D
for setting a class path and a property, respectively. Values provided at runtime to
these options have precedence over values specified at build time. As an example,
building the application ”Foo” with this option set to all enables invoking the
built application as follows: . /Foo -cp <path> -D<name>=<value>.

Generally, if a main class is specified at build time, the VM options and en-
vironment variables are disabled in the built application. However, this is not
suitable for all applications: for instance, some applications may need additional
resources which are unknown at build time, while other applications may need
to change Java properties. Using —XactiveVMOptionGroups will cause the
VM options in the groups passed to the Builder to be accepted by the built appli-
cation.

The built application parses the arguments from left to right and stops at the
first unknown option. All remaining arguments go to the argument list for the
application main class. This means that it is possible to add activated VM options
before the application arguments. Be aware that the application main class defined
at build time should not be specified again. The syntax of the command line is:

./builtApp [VM activated opt ...] lapp arg ...]

Option -XdefineProperty [+]=name [= (value [%var] | $var)]

The XdefineProperty option sets a system property for the resulting binary.
For security reasons, system properties set by the VM cannot be changed. The
value may contain spaces.

If a variable is specified for a system property, then the value of the property
will be set to the value of the specified environment variable at program start.
If both are specified, then the environment variable will take precedence. This
feature can only be used if the target OS supports environment variables. For
security reasons, system properties set by the VM cannot be changed.

Examples:

13.3. BUILDER EXTENDED USAGE 201

* A single system property with a fallback value and an environment variable:
-XdefineProperty=tmp.dir=/tmp%$TMP

» Several properties at once: ~XdefineProperty=kl=vl, k2=%V2

Option -XignoreLineNumbers

Specifying the XignoreLineNumbers option instructs the Builder to remove
the line number information from the classes that are built into the target applica-
tion. The resulting information will have a smaller memory footprint and RAM
demand. However, exception traces in the resulting application will not show line
number information.

Option -XrecordEnterEvent [+]=message : method [, message : method]

The XrecordEnterEvent option instructs the Builder to add a user event
with a given message at the beginning of a method. The method must be spec-
ified using its fully qualified name and needs to be compiled (if needed, the
includeInCompile option can be used in order to ensure this). Example:
—XrecordEnterEvent="enterLoop:Loop.execute () I"

Option -XrecordExitEvent [+]=message :method [, message : method]

The XrecordExitEvent option instructs the Builder to add a user event with a
given message at the end of a method. The method must be specified using its fully
qualified name and needs to be compiled (if needed, the includeInCompile
option can be used in order to ensure this). Example: ~XrecordExitEvent=
"exitLoop:Loop.execute () I"

13.3.2 Classes, files and paths

These options allow to specify classes and paths to be used by the Builder.

Option —-Xbootclasspath [+] =directory

The Xbootclasspath option specifies the path used for loading system classes.

Additionally, the boot classpath provided at build time will be added in the
form of URLs with the protocol jamaicabuiltin to the runtime boot class-
path of the built application.

202 CHAPTER 13. THE JAMAICA BUILDER

Option -XjamaicaHome=directory

The X jamaicaHome option specifies jamaica-home. The directory is normally
set via the environment variable JAMATICA.

Option -XjavaHome=directory

The X javaHome option specifies the path to the Java home directory. It defaults
to jamaica-home/target /platform, where plattform is either the default plat-
form or set with the target option.

Option -XjavaHomeFiles [+]=file{:file}

The XjavaHomeF1iles option includes the given files in the built application.
The argument must be a list of file paths that are relative to the Java home direc-
tory. That is, each file path identifies a unique file or directory in the java home
directory. If a directory is specified, all the files in the directory and its subdirec-
tories are included.

Multiple file paths should be separated by the system-specifc path separator:

13 bh) LA

colon *“:” on Unix systems and semicolon ““;” on Windows.

The Java home directory defaults to jamaica-home /t arget /platform, if not
specified by the X javaHome option.

Option -XlazyConstantStrings[=(true|false) [%var] | $var]

Jamaica VM by default allocates all String constant at class loading time such that
later accesses to these strings is very fast and efficient. However, this approach
requires code to be executed for this initialization at system startup and it requires
Java heap memory to store all constant Java strings, even those that are never
touched by the application at run time.

Setting the option —X1lazyConstantStrings causes the VM to allocate
string constants lazily, i.e., not at class loading time but at time of first use of
any constant string. This saves Java heap memory and startup time since constant
strings that are never touched will not be created. However, this has the effect that
accessing a constant Java string may cause an OutOfMemoryError.

By specifying an environment variable the result of the Builder will read its
setting for this option from the environment variable. Otherwise the setting cannot
be altered at runtime. Examples: ‘$VAR’, ‘true’, or ‘false$F00O’

13.3. BUILDER EXTENDED USAGE 203

Option -XnoClasses

The XnoClasses option does not include any classes in the built application.
Setting this option is only needed when building the jamaicavm command itself.

Option —XnoMain

The XnoMain option builds a standalone VM. Do not select a main class for the
built application. Instead, the first argument of the argument list passed to the
application will be interpreted as the main class.

13.3.3 RTS]J settings

The following options set values that are relevant for the Real-Time Specifica-
tion for Java extensions through classes javax.realtime.* that are provided by Ja-
maicaVM.

Option —XuseMonotonicClock[=(true|false) [%var] | $var]

On systems that provide a monotonic clock, setting this option enables using this
clock instead of the standard (wall-)clock for relative timeout (e.g., Object.
wait).

By specifying an environment variable the result of the Builder will read its
setting for this option from the environment variable. Otherwise the setting cannot
be altered at runtime. Examples: ‘$VAR’, ‘true’, or ‘false$F00O’

13.3.4 Threads and priorities

Configuring threads has an important impact not only on the runtime performance
and realtime characteristics of the code but also on the memory required by the ap-
plication. Jamaica Builder provides a range of option for configuring the number
of threads available to an application and their priorities.

Option —XnumMonitors[+]=n[%var] | $var

The XnumMonitors option specifies the number of monitors that should be al-
located on VM startup. this is required in the parallel VM only to store tha data if
the monitor in a Java object is used. This value should be set large enough to ac-
count for the maximum number of monitors that may be used (for synchronization
or for the call so Object .wait) simultaneously by the application.

204 CHAPTER 13. THE JAMAICA BUILDER

Pre-allocating monitors is done by the parallel VM only. This option therefore
is ignored if used with the single core VM, i.e., it has no effect unless option
—-parallel is set.

Setting this value to 0 will allocate a default number of monitors that is a
multiple of the maximum number of threads.

By specifying an environment variable the result of the Builder will read its
setting for this option from the environment variable. Otherwise the setting cannot
be altered at runtime. Examples: ‘$VAR’, ‘=23, or ‘42%F00’

13.3.5 Native code

Native code is code written in a different programming language than Java (typ-
ically C or C++). This code can be called from within Java code using the Java
Native Interface (JNI).

Option —Xinclude [+]=dirs

The Xinclude option specifies directories that are searched for header files by
the platform-specific tools. It should contain the directories that contain the header
files generated by jamaicah for the native code referenced from Java code.

The directories are expected as a list of paths that are separated using the
platform-dependent path separator character (e.g., ‘:*).

Option -XloadJNIDynamic [+]= (class|method){ (class|method) }

The X1loadJNIDynamic option provides to the Builder the native declared
methods whose implementation is not available at build time. Consequently,
the Builder does not even search for the implementation of these native meth-
ods (or native methods of the provided classes) and directly generates generic
calls which do not refer to the implementation’s actual name. These names are
fixed at runtime. Note that a generic call is slower than a direct call generated
for a native method whose implementation is known at build time (because this
call explicitly refers to the implementation’s name). A library containing native
method implementations can be provided to the Builder for instance by the option
-Xlibraries. Either a single method, all methods with the same name or all
methods of classes or even packages can be specified.

Examples: com.user.Sample.toString()Ljava/lang/String;
refers to the single method, com.user.Sample.toString to all methods
with this name, independent of the method descriptor, com.user. Sample refers
to all methods in this class, com.user.« to all classes in this package and
com.user. .. to all classes in this package and all subpackages.

13.3. BUILDER EXTENDED USAGE 205

Option -XobjectProcessorFamily=type

The XobjectProcessorFamily option sets the processor type for code gen-
eration. Available types are none, 1386, ppc, ppc64, arm, amd64, aarch64, riscv64,
and mips_le. This is only required if the ELF or PECOFF object formats are used.
Otherwise the type may be set to none.

Option -XobjectSymbolPrefix=prefix

13 2

The XobjectSymbolPrefix option sets the object symbol prefix, e.g., “_

13.3.6 Profiling and compilation

By default, the Builder compiles all application classes and a predefined set of the
system classes. Profiling and compilation options enable to fine tune the compila-
tion process for optimal runtime performance of applications generated with the
Builder.

Option -XavailableTargets

The XavailableTargets option lists all available target platforms of this Ja-
maica distribution.

Option -Xcc=cc

The Xcc option specifies the C compiler to be used to compile intermediate C
code that is generated by the Builder.

Option -XCFlags [+]=cflags

The XCFlags option specifies the cflags for the invocation of the C compiler.
Note that for optimizations the compiler independent option —opt imi ze should
be used.

Option -Xdwarf2

The -Xdwar £2 option generates a DWARF2 version of the application. DWARF2
symbols are needed for tracing Java methods in compiled code. Use this option
with WCETA tools and binary debuggers.

206 CHAPTER 13. THE JAMAICA BUILDER

Option —-XexcludeLongerThan=n

Compilation of large Java methods can cause large C routines in the intermediate
code, especially when combined with aggressive inlining. Some C compilers have
difficulties with the compilation of large routines. To enable use of Jamaica with
such C compilers, the compilation of large methods can be disabled using the
option XexcludeLongerThan.

The argument of XexcludeLongerThan gives the minimum number of
bytecode instructions a method must have to be excluded from compilation.

Option -XexecutableCompression[+]=tool{ argument-pattern}

This option enables specifying a command-line for calling an external tool for
executable compression. The purpose is to safe memory on a ROM or similar in
exchange for a slightly longer startup time.

In the simplest case it is possible to just specify the name of the external
tool (e.g., ~-XexecutableCompression=gzexe). It is then assumed that
the tool works in-place and receives the input as argument. The input is the un-
compressed executable generated by the Builder. For tools that produce a separate
output file, the pattern variable $output should be used. The following example
uses quoting in a Unix shell: ' -XexecutableCompression=tooll -o
$output’. The input is again implicitly added to the command-line. Alterna-
tively, the input may be specified as well with the $input pattern variable, for in-
stance: "—-XexecutableCompression=tool2 —--source=%input
—-—target=%output’

Option -XfullStackTrace

Compiled code usually does not contain full Java stack trace information if the
stack trace is not required (as in a method with a try/catch clause or a synchro-
nized method). For better debugging of the application, the XfullStackTrace
option can be used to create a full stack trace for all compiled methods.

Option -X1ld=linker

The X1d option specifies the linker to be used to create a binary from the object
file(s) generated by the C compiler.

Option -XLDFlags [+]=ldflags

The XLDF lags option specifies the ldflags for the invocation of the C linker.

13.3. BUILDER EXTENDED USAGE 207

Option -Xlibraries [+]=opftflags

The X1ibraries option specifies the libraries that must be linked to the destina-
tion binary. The libraries must include the option that is passed to the linker. Mul-
tiple libraries should be separated using spaces and enclosed in quotation marks.
For example, on Unix systems —X1ibraries "m pthread" causes linking
against 1ibm.so and 1ibpthread. so.

Option -XlibraryPaths [+]=prefix

The X1ibraryPaths option receives library search paths that are provided to
the platform-specifc tools. Multiple directory paths should be separated by the
system-specifc path separator: colon “:” on Unix systems and semicolon “; ”” on
Windows.

E.g. to use the directories /usr/local/lib and /usr/1lib as library
path, the option —-X1ibraryPaths /usr/local/lib:/usr/lib mustbe

specified.

Option -XnoStrip

The XnoStrip option disables stripping (removing debugging information) of
created binaries.

Option -XprofileFilename [+]=name [%var] | %var

The XprofileFilename option sets the name of the file to which profiling
data will be written if profiling is enabled. If a profile filename is not specified
then the profiling data will be written to a file named after the destination (see
option destination) with the extension . prof added.

By specifying an environment variable the result of the Builder will read its
setting for this option from the environment variable. Otherwise the setting can-
not be altered at runtime. Examples: ‘$VAR’, ‘file.ext’, or ‘/path/toa/
file%FOO’

Option -XshowCompiledMethods

The XshowCompiledMethods option enables displaying the name of methods
being compiled by the Builder.

208 CHAPTER 13. THE JAMAICA BUILDER

Option -XstaticLlibraries[+]=libraries

The XstaticLibraries option specifies the libraries that must be statically
linked to the destination binary. Static linking creates larger binaries, but may
be necessary if the target system does not provide the library. Multiple libraries
should be separated using spaces and enclosed in quotation marks. For example,
on Unix system -XstaticLibraries="m pthread" causes static linking
against 1ibm.a and libpthread. a.

Option -Xstrip=tool

The Xstrip option uses the specified tool to remove debug information from
the generated binary. This will reduce the size of the binary file by removing
information not needed at runtime.

Option -XstripOptions[+]=options

The XstripOptions option specifies the strip options for the invocation of the
stripper. See also option Xstrip.

13.3.7 Parallel Execution

The parallel version of JaimaicaVM can execute several threads, including the
garbage collection, in parallel and therefore improves the runtime performance
when using multicore systems. Notice that you need to have an extra license to
use the parallel version of JamaicaVM.

Option -Xcpus|[+]1=(all| (nl[..n2]1{,mI[..m21}) [%var]) | %var

Select the set of CPUs to use to run JamaicaVM on. The argument can be specified
as a comma-separated list of individual CPU ids and ranges of CPU ids (e.g.,
-Xcpus=0..2,4). All available CPUs are selected by using -Xcpus=all
(option default: all).

By specifying an environment variable the result of the Builder will read its
setting for this option from the environment variable. Otherwise the setting cannot
be altered at runtime. Examples: ‘$VAR’, ‘all’, or ‘all%FO00O’

13.4 Environment Variables

The following environment variables control the Builder.

13.5. EXITCODES 209

Normal termination
Error
Invalid argument
Missing license

64 | Insufficient memory
100 | Internal error

W= O

Table 13.1: Jamaica Builder and jamaicah exitcodes

JAMAICA The Jamaica Home directory (jamaica-home). This variable sets the
path of Jamaica to be used. Under Unix systems this must be a Unix style
pathname, while under Windows this has to be a DOS style pathname.

JAMAICA BUILDER_HEAPSIZE Initial heap size of the Builder program it-
self in bytes. Setting this to a larger value, e.g., “512M”, will improve the
Builder performance.

JAMAICA BUILDER MAXHEAPSIZE Maximum heap size of the Builder pro-
gram itself in bytes. If the initial heap size of the Builder is not sufficient,
it will increase its heap dynamically up to this value. To build large appli-
cations, you may have to set this maximum heap size to a larger value, e.g.,
“640M™.

JAMAICA BUILDER_JAVA_STACKSIZE Java stack size of the Builder pro-
gram itself in bytes.

JAMAICA BUILDER NATIVE_STACKSIZE Native stack size of the Builder
program itself in bytes.

JAMAICA BUILDER NUMTHREADS Initial number of threads allocated by the
Builder program itself.

13.5 Exitcodes

Tab. lists the exit codes of the JamaicaVM Builder. If you get an exit code
of an internal error please contact aicas support with a full description of the tool
usage, command line options and input.

210 CHAPTER 13. THE JAMAICA BUILDER

Chapter 14

The Jamaica JAR Accelerator

The Jamaica JAR Accelerator takes a JAR file (Source JAR) and produces a new
JAR file (Accelerated JAR) that has the content of the given Source JAR aug-
mented with a shared library containing methods in classes of the JAR that have
been compiled to machine code. The library is marked with the platform for
which it is intended. When a class from the Accelerated JAR is loaded by an
executable program running on a matching platform, the shared library is auto-
matically linked with that program. The program may be a stand-alone program
linked directly with the JamaicaVM runtime (i.e. an executable program created
by the Jamaica Builder) or a Jamaica virtual machine instance.

The JAR Accelerator only compiles methods from classes in Source JAR to
put in the shared library. Methods from classes from the classpath which
are not in Source JAR are not compiled. The classpath provides additional
references for classes needed by the compilation process. Not compiling in these
supporting methods ensures that using the created library does not change the
application’s behavior. However, any change done in classes of an Accelerated
JAR might invalidate this guarantee and therefore in this case the Source JAR
should be reaccelerated.

By default all methods from classes in the Source JAR are candidates for com-
pilation. These candidates can be filtered using the same techniques used by the
Builder. For instance one can provide a profile and a compilation percentage, or a
list of methods to be included or excluded from compilation. One can also limit
the length of methods that are compiled. Filtering the compilation candidates is
done using the compilation options found in the section|14.1

The usage of the JAR Accelerator is illustrated in the Acceleration exam-
ple (see Tab.[2.2]in Section [2.4).

211

212 CHAPTER 14. THE JAMAICA JAR ACCELERATOR

14.1 JAR Accelerator Usage

The JAR Accelerator is a command-line tool with the following syntax:
jamaicajaraccelerator [options] jar

A variety of arguments control the work of the JAR Accelerator tool. It accepts
numerous options for configuring and fine tuning the created shared library. The
Jjar argument identifies the processed JAR file. It is required unless the processed
JAR file is specified using —source=jar.

The options may be given directly to the JAR Accelerator via the command
line or by using configuration ﬁlesﬂ Options given on the command line take
priority. Options not specified on the command line are read from configuration
files.

* The host target is read from jamaica-home/etc/global.conf and is
used as the default target. This file should not contain any other information.

* When the JAR Accelerator option —~configuration is used, the remain-
ing options are read from the file specified with this option.

* Otherwise the target-specific configuration file jamaica-home/target/
platform/etc/jaraccelerator.conf is used.

The general format for an option is either —option for an option without argument
or —option=value for an option with argument. For details, see Chapter

Default values for many options are target specific. The actual settings may be
obtained by invoking the JAR Accelerator with —help. In order to find out the
settings for a target other than the host platform, include —~t arget=platform.

The JAR Accelerator stores intermediate files, in particular generated C and
object files, in a temporary folder in the current working directory. For concur-
rent runs of the JAR Accelerator, in order to avoid conflicts, the JAR Accelerator
must be instructed to use distinct temporary directories. In this case, the JAR
Accelerator option —tmpdir can be used to set specific directories.

14.1.1 Classes, files and paths

These options allow to specify classes and paths to be used by the JAR Accelera-
tor.

! Aliases are not allowed as keys in configuration files.

14.1. JAR ACCELERATOR USAGE 213

Option —autoSeal

Defines whether the JAR Accelerator should automatically seal the accelerated
JAR file or not. When true the JAR Accelerator seals the whole accelerated
JAR file, unless the manifest of the original JAR file already contains any sealing
attributes.

Sealing packages within a JAR file means that all classes defined in that pack-
age must be archived in the same JAR file; attempting to load such classes from a
different source throws a security exception. It improves security and consistency
among the archived classes.

For the JAR Accelerator sealing also enables the compiler to be more aggres-
sive during acceleration therefore producing potentially faster code.

The value of this option is unconditionally false if the JAR file being accel-
erated is signed.

Option -destination=name (-o)

The destination option specifies the name of the destination created artifact
to be generated by the JAR Accelerator. If this option is not present, the name
of the destination created artifact is xyz—accelerated. jar if xyz. jar is
being accelerated.

The destination name can be a path into a different directory. E.g.,

—destination=myproject/bin/xyz

may be used to save the created created artifact xyz in myproject /bin.

Option —-source=name

Specifies the source JAR file that is to be compiled. Alternatively, the source JAR
file can be specified as a non-option argument to the JAR Accelerator.

Option —-tmpdir=name

The tmpdir option may be used to specify the name of the directory used for
temporary files generated by the JAR Accelerator (such as C source and object
files for compiled methods).

14.1.2 Profiling and compilation

Profiling and compilation options enable to fine tune the compilation process for
optimal runtime performance of libraries generated with the JAR Accelerator.

214 CHAPTER 14. THE JAMAICA JAR ACCELERATOR

Option —excludeFromCompile [+]= (class|method){ (class|method) }

The excludeFromCompile option disables the compilation of the listed meth-
ods. Either a single method, all methods with the same name or all methods of
classes or even packages can be specified.

Examples: com.user.Sample.toString()Ljava/lang/String;
refers to the single method, com.user.Sample.toString to all methods
with this name, independent of the method descriptor, com.user . Sample refers
to all methods in this class, com.user. « to all classes in this package and
com.user. .. toall classes in this package and all subpackages.

Option -includeInCompile [+]= (class|method) { (class|method) }

The includeInCompile option forces the compilation of the listed methods.
Either a single method, all methods with the same name or all methods of classes
or even packages can be specified.

Examples: com.user.Sample.toString()Ljava/lang/String;
refers to the single method, com.user.Sample.toString to all methods
with this name, independent of the method descriptor, com.user . Sample refers
to all methods in this class, com.user.« to all classes in this package and
com.user. .. toall classes in this package and all subpackages.

Option —inline=n

This option can be used to set the level of inlining used by the Builder when com-
piling a method. Inlining typically causes a significant speedup at runtime since
the overhead of performing method calls is avoided. Nevertheless, inlining causes
duplication of code and hence might increase the binary size of the application
or library. In systems with tight memory resources, inlining may therfore not be
acceptable.

Eleven levels of inlining are supported by the Jamaica compiler ranging from
0 (no inlining) to 10 (aggressive inlining).

Option —-optimize=fype (—optimise)

The optimize option enables to specify optimizations for the compilation of
intermediate C code to native code in a platform independent manner, where type
is one of none, size, speed, and all. The optimization flags only affect the
C compiler.

14.1. JAR ACCELERATOR USAGE 215

Option —-percentageCompiled=n (deprecated)

Use profiling information collected using profile to restrict compilation to
those methods that were most frequently executed during the profiling run. The
percentage of methods that are to be compiled is given as an argument to the op-
tion percentageCompiled. It must be between 0 and 100. Selecting 100
causes compilation of all methods executed during the profiling run, i.e. methods
that were not called during profiling will not be compiled.

Option —-target=platform

The target option specifies a target platform. For a list of all available platforms
of your Jamaica VM Distribution, use XavailableTargets.

Option —useProfile [+]=file{:file} (deprecated)

The useProfile option instructs the JAR Accelerator to use profiling informa-
tion collected using the Builder option profile to restrict compilation to those
methods that were most frequently executed during the profiling run. The percent-
age of methods to be compiled is by default, unless percentageCompiled is
set to a different value. For a tutorial on profiling see Section Performance Opti-
mization in the user manual.

This option accepts plain text profile files, GZIP compressed profile files and
ZIP archives consisting of plain text profile entries. All archive entries are required
to be profiles.

Multiple file paths should be separated by the system-specifc path separator:

(3 2 L

colon *“:” on Unix systems and semicolon ““; ” on Windows.

14.1.3 General

The following are general options which provide information about the JAR Ac-
celerator itself or enable the use of script files that specify further options.

Option —configuration[+]=file

The configuration option specifies a file to read the set of options used by the
JAR Accelerator. The format must be identical to the one in the default configura-
tion file (jamaica-home/target /platform/etc/config). When set the default
configuration file is ignored.

216 CHAPTER 14. THE JAMAICA JAR ACCELERATOR

Option -help (-h, -?)

The help option displays the JAR Accelerator usage and a short description of
all possible standard command line options.

Option -jobs=n

The jobs option sets the number of parallel jobs for the JAR Accelerator. Parts
of the JAR Accelerator work will be performed in parallel if this option is set to a
value larger than one. Parallel execution may speed up the JAR Accelerator.

Option -saveSettings=file

If the saveSettings option is used, the JAR Accelerator options currently in
effect are written to the provided file. To make these settings the default, replace
the file jamaica-home /t arget /platform/et c/config by the output.

! The saved settings will only work for the target platform they were generated
for. Copying configurations across target platforms will cause misconfigura-
tion of the platform-specific tools and will lead to severe errors.

Option —showSettings

Print the JAR Accelerator settings. To make these settings the default, replace the
file jamaica-home/t arget /platform /et c/config by the output.

Option —-verbose=n

The verbose option sets the verbosity level for the JAR Accelerator. At level
1, which is the default, warnings are printed. At level 2 additional information on
the build process that might be relevant to users is shown. At level O all warnings
are suppressed. Levels above 2 are reserved.

Option -version

Print the version of the Jamaica JAR Accelerator and exit.

Option -Xhelp

The Xhelp option displays the JAR Accelerator usage and a short description of
all possible extended command line options. Extended command line options are
not needed for normal control of the JAR Accelerator command. They are used

14.1. JAR ACCELERATOR USAGE 217

to configure tools and options and to provide tools required internally for Jamaica
VM development.

Option -Xinternal

The Xinternal option prints help on options reserved for the internal usage
of aicas. Those options are only needed for improving the Jamaica development
tools themselves. You may use them without support and at your own risk.

14.1.4 Threads and priorities

Configuring threads has an important impact not only on the runtime performance
and realtime characteristics of the code but also on the memory required by the
application.

Option -threadPreemption=n

Compiled code contains special instructions that permit thread preemption. These
instructions have to be executed often enough to allow a thread preemption time
that is sufficient for the destination application. As the instructions cause an over-
head in code size and runtime performance, one would want to generate this code
as rarely as possible.

The threadPreemption option enables setting of the maximum number
of intermediate instructions that are permitted between the execution of thread
preemption code. This directly affects the maximum thread preemption time of
the application. One intermediate instruction typically correspons to 1-2 machine
instructions. There are some intermediate instructions (calls, array accesses) that
can be more expensive (20-50 machine instructions).

The thread preemption must be at least 10 intermediate instructions.

14.1.5 Parallel Execution

The parallel version of JaimaicaVM execute several threads, including the garbage
collection, in parallel and therefore improves the runtime performance when using
multicore systems. Notice that you need to have an extra license to use the parallel
version of JamaicaVM.

Option -parallel

The parallel option instructs the JAR Accelerator to create an artifact that can
make use of several processors executing Java code in parallel.

218 CHAPTER 14. THE JAMAICA JAR ACCELERATOR

14.2 JAR Accelerator Extended Usage

A number of extended options provide additional means for finer control of the
JAR Accelerator’s operation for the more experienced user. The following sec-
tions list these extended options and describe their effect. Default values may be
obtained by jamaicajaraccelerator -target=platform -Xhelp.

14.2.1 Classes, files and paths

These options allow to specify classes and paths to be used by the JAR Accelera-
tor.

Option -XjamaicaHome=directory

The XjamaicaHome option specifies jamaica-home. The directory is normally
set via the environment variable JAMATCA.

14.2.2 Profiling and compilation

Profiling and compilation options enable to fine tune the compilation process for
optimal runtime performance of libraries generated with the JAR Accelerator.

Option -XavailableTargets

The XavailableTargets option lists all available target platforms of this Ja-
maica distribution.

Option —Xcc=cc

The Xcc option specifies the C compiler to be used to compile intermediate C
code that is generated by the JAR Accelerator.

Option -XCFlags [+]=cflags

The XCFlags option specifies the cflags for the invocation of the C compiler.
Note that for optimizations the compiler independent option —opt imize should
be used.

14.2. JAR ACCELERATOR EXTENDED USAGE 219

Option -Xdwarf2

The —Xdwarf2 option generates a DWARF?2 version of the application or library.
DWAREF?2 symbols are needed for tracing Java methods in compiled code. Use this
option with binary debuggers.

Option —-XexcludeLlongerThan=n

Compilation of large Java methods can cause large C routines in the intermediate
code, especially when combined with aggressive inlining. Some C compilers have
difficulties with the compilation of large routines. To enable use of Jamaica with
such C compilers, the compilation of large methods can be disabled using the
option XexcludeLongerThan.

The argument of XexcludeLongerThan gives the minimum number of
bytecode instructions a method must have to be excluded from compilation.

Option -XfullStackTrace

Compiled code usually does not contain full Java stack trace information if the
stack trace is not required (as in a method with a try/catch clause or a synchro-
nized method). For better debugging of the application, the XfullStackTrace
option can be used to create a full stack trace for all compiled methods.

Option -Xld=linker

The X1d option specifies the linker to be used to create a binary or library from
the object file(s) generated by the C compiler.

Option -XLDFlags [+]=ldflags

The XLDF 1lags option specifies the ldflags for the invocation of the C linker.

Option -Xlibraries[+]=opftflags

The X1ibraries option specifies the libraries that must be linked to the desti-
nation binary or library. The libraries must include the option that is passed to the
linker. Multiple libraries should be separated using spaces and enclosed in quo-
tation marks. For example, on Unix systems —X1ibraries "m pthread"
causes linking against 1ibm.so and 1ibpthread. so.

220 CHAPTER 14. THE JAMAICA JAR ACCELERATOR

Option -XlibraryPaths [+]=prefix

The X1ibraryPaths option receives library search paths that are provided to
the platform-specifc tools. Multiple directory paths should be separated by the
system-specifc path separator: colon “:” on Unix systems and semicolon ““; ” on
Windows.

E.g. to use the directories /usr/local/lib and /usr/1lib as library
path, the option ~X1ibraryPaths /usr/local/lib:/usr/1lib mustbe

specified.

Option -XnoStrip

The XnoStrip option disables stripping (removing debugging information) of
created binaries.

Option -XshowCompiledMethods

The XshowCompiledMethods option enables displaying the name of methods
being compiled by the JAR Accelerator.

Option —-XstaticLlibraries[+]=libraries

The XstaticLibraries option specifies the libraries that must be statically
linked to the destination binary or library. Static linking creates larger binaries,
but may be necessary if the target system does not provide the library. Multi-
ple libraries should be separated using spaces and enclosed in quotation marks.
For example, on Unix system ~XstaticLibraries="m pthread" causes
static linking against 1ibm.a and 1ibpthread. a.

Option -Xstrip=tool

The Xst rip option uses the specified tool to remove debug information from the
generated binary or library. This will reduce the size of the binary or library file
by removing information not needed at runtime.

Option —-XstripOptions [+]=options

The XstripOptions option specifies the strip options for the invocation of the
stripper. See also option Xstrip.

14.3. SPECIAL CONSIDERATIONS 221

14.2.3 General

The following are general options which provide information about the JAR Ac-
celerator itself or enable the use of script files that specify further options.

Option -XignoreLineNumbers

Specifying the XignoreLineNumbers option instructs the JAR Accelerator
to remove the line number information from the classes that are built into the
target artifact. The resulting information will have a smaller memory footprint
and RAM demand. However, exception traces in the resulting artifact will not
show line number information.

14.2.4 Native code

Native code is code written in a different programming language than Java (typ-
ically C or C++). This code can be called from within Java code using the Java
Native Interface (JNI).

Option -Xinclude [+]=dirs

The Xinclude option specifies directories that are searched for header files by
the platform-specific tools. It should contain the directories that contain the header
files generated by jamaicah for the native code referenced from Java code.

The directories are expected as a list of paths that are separated using the
platform-dependent path separator character (e.g., ‘:*).

Option -XobjectProcessorFamily=type

The XobjectProcessorFamily option sets the processor type for code gen-
eration. Available types are none, 1386, ppc, ppc64, arm, amd64, aarch64, riscv64,
and mips_le. This is only required if the ELF or PECOFF object formats are used.
Otherwise the type may be set to none.

Option -XobjectSymbolPrefix=prefix

(13 2

The XobjectSymbolPrefix option sets the object symbol prefix, e.g., “_

14.3 Special Considerations

The same JAR file, including the one being accelerated, may be used as destination
of more than one acceleration. The recently compiled bytecode is simply added

222 CHAPTER 14. THE JAMAICA JAR ACCELERATOR

in the JAR at each acceleration. Any preexisting code for the same platform and
VM variant is overwritten. The purpose of this is twofold:

* enable reaccelerating a JAR: the same JAR can be reaccelerated using the
same destination without having to remove previously compiled code. This
is useful when the contents of an accelerated JAR is updated, or when one
wants to experiment accelerating using different compilation options.

* provide support for multiple platforms: the same JAR can be reaccelerated,
using the same destination, for different platforms and VM variants.

For compiling bytecode into machine code, the JAR Accelerator might require
some platform specific configuration, please refer to the Section for further
details.

Most importantly, to ensure consistency, the JAR Accelerator must be rerun
any time the bytecode in the JAR file is changed.

14.3.1 Which Methods are Compiled

The key for achieving good results from the acceleration is to make sure that the
methods relevant for performance are compiled. One should be aware that when
accelerating a JAR, some of its methods might not be compiled due to different
reasons.

Sometimes there are technical reasons preventing compilation and nothing can
be done about that. However, most of the time, the compilation of a method
can be enabled by the user. This is the case, for instance, when a method is not
compiled because it is out of the percentage selected for compilation. In this
case the user can increase the percentage of profiled methods to be compiled.
The option ~verbose can be used for checking which methods could not be
compiled and whyﬂ It is recommended to check if important methods have been
compiled or not.

14.3.2 Compilation and Sealing

Packages within JAR files can be sealed. Sealing a package means that all classes
defined in that package must be archived in the same JAR file. A sealed package
helps ensuring consistency among the classes of an application. One can also
seal the whole JAR guaranteeing consistency among packages. A sealed JAR
specifies that all packages defined by that JAR are sealed unless overridden on a
per-package basis.

ZVerbose level 2 provides an overview of methods that are not compiled.

14.3. SPECIAL CONSIDERATIONS 223

The JAR Accelerator tries to automatically seal a JAR, unless it is signed or
already contains any sealing attribute. Note that the JAR Accelerator only seals
whole JAR files, it does not seal individual packages.

Another advantage of sealing a package is that the JAR Accelerator can per-
form its optimization more aggressively producing (usually) faster code. This is
possible because of extra assumptions that can be made about the classes of a
sealed package.

Sealing is usually a good practice but it may cause problems. When a package
is sealed in a JAR file, classes belonging to that package can only be loaded from
that JAR file. Attempting to load a class from a sealed package from anywhere
else causes a security exception (sealing violation). Therefore one should disable
auto sealing when accelerating a JAR file that contains classes from packages that
might occur somewhere else. This can be done by setting the option —autoSeal

to false’l

14.3.3 At Runtime

For compiled code to be executed on the platform, there are two prerequisites on
the executable program that must be fulfilled. Firstly, in order to load compiled
code from a JAR, the executable program must have the property jamaica.
jaraccelerator.load set to true. Secondly, the required accelerator in-
terface version of the executable program must match the interface version of the
Jamaica JAR Accelerator used for accelerating the JAR. The accelerator inter-
face version identifies the JamaicaVM API provided for the compiled bytecode.
Finally, the Jamaica JAR Accelerator used for accelerating the JAR must match
the platform and VM variant of the executable program. For instance, a program
built for 1inux-x86 multicore will only be able to run bytecode compiled for
1inux-x86 multicore]

When the executable program finds at runtime a matching accelerated JAR it
extracts, from the JAR, the shared library that contains the compiled code and
registers this code into the running executable. The library can be extracted
in the same directory as the original JAR file or to the system dependent de-
fault temporary file directoryE] The extraction directory can be defined using the
property jamaica.jaraccelerator.extraction.dir. A safety check
that concerned classes are not being modified during class loading, such as by
a bytecode weaving service, can be activated by using the property jamaica.
jaraccelerator.check.class.

3The default value of this and other options can be checked by invoking the JAR Accelerator
with the ~he1p option.

“The option —version can be used for checking the version of the executable program.

>The default temporary file directory can be specified by the system property “java.io.tmpdir”.

224 CHAPTER 14. THE JAMAICA JAR ACCELERATOR

The property jamaica.jaraccelerator.verbose enables additional
output showing the steps performed for loading the compiled code of an Acceler-
ated JAR. For enabling debug output concerning classes loaded and their sources
the property jamaica. jaraccelerator.debug.class can be used.

Please refer to the Section[T1.5]for full description of the properties mentioned
above.

14.4 Environment Variables
The following environment variables control the JAR Accelerator.

JAMAICA The Jamaica Home directory (jamaica-home). This variable sets the
path of Jamaica to be used. Under Unix systems this must be a Unix style
pathname, while under Windows this has to be a DOS style pathname.

JAMAICA_ JARACCELERATOR_HEAPSIZE Initial heap size of the JAR Accel-
erator program itself in bytes. Setting this to a larger value, e.g., “512M”,
will improve the JARAccelerator performance.

JAMAICA_ JARACCELERATOR_MAXHEAPSIZE Maximum heap used by the
JAR Accelerator program itself in bytes. If the initial heap size of the JAR
Accelerator is not sufficient, it will increase its heap dynamically up to this
value. To build large libraries, you may have to set this maximum heap size
to a larger value, e.g., “640M”.

JAMAICA_ JARACCELERATOR_JAVA_STACKSIZE Size of the Java stack of
the JAR Accelerator program itself in bytes.

JAMAICA_JARACCELERATOR_NATIVE_STACKSIZE Stack size of the na-
tive stack of the JAR Accelerator program itself in bytes.

JAMAICA JARACCELERATOR NUMTHREADS Initial number of threads used
by the JAR Accelerator program itself.

14.5 Exitcodes

Tab. [I4.1] lists the exit codes of the Jamaica JAR Accelerator. If you get an exit
code of an internal error please contact aicas support with a full description of the
tool usage, command line options and input.

14.5. EXITCODES

Normal termination

Error

Invalid argument

W= O

Missing license

64

Insufficient memory

100

Internal error

Table 14.1: Jamaica JAR Accelerator exitcodes

225

226 CHAPTER 14. THE JAMAICA JAR ACCELERATOR

Chapter 15

Jamaica JRE Tools and Utilities

There are various Java API profile specific tools and utilities provided in the target
dependent jamaica-home/target /platform/bin folder. For an overview of
the currently available tools, see Tab.

| Name | Description Minimal Profile |
keytool Manage keystores and certificates. compactl
orbd Provides support for clients to transpar- | full JRE

ently locate and invoke persistent ob-
jects on servers in the CORBA environ-
ment.

servertool | Provides a command-line interface to | full JRE
manage a persistent server.
rmiregistry | Remote object registry service. compact2
rmid RMI activation system daemon. compact2

Table 15.1: JRE Tools and Utilities

Usually, a detailed usage and parameters can be found out by using the ~help
option.

! Note that these tools do not support —J options.

227

228 CHAPTER 15. JAMAICA JRE TOOLS AND UTILITIES

Chapter 16

JamaicaTrace

JamaicaTrace enables to monitor the realtime behavior of applications, helping
developers to fine-tune, at a thread level, the Java applications running on Jamaica
runtime systems.

This tool facilitates the analysis and viewing of the internal activities in the
VM, e.g. the scheduler or the garbage collection work. Besides helping debug-
ging, the precise observation at thread level can detect behavior patterns to be
avoided. By scanning the execution of their applications, users can identify bot-
tlenecks on CPU usage, deadlocks, or racing conditions and react accordingly,
balancing resources and reducing impact on performance.

The runtime systems to be tracked can be either the JamaicaVM or any ap-
plication created using the Jamaica Builder. JamaicaTrace collects and presents
data sent by the scheduler in the Jamaica runtime system, and is invoked with the
command jamaicatrace. When JamaicaTrace is started, it presents the user a
control window (see Fig. [16.1).

Some users note, it is useful to run the application to be investigated and Ja-
maicaTrace in two different terminals. However, it is important to point out that
this is not a live debugging tool. So even in case of two monitors running applica-
tion and tool, it will not be a parallel execution.

Nevertheless, depending on the usage scenario, it is possible to do a side-by-
side comparison. Developers can specify events in their source code, defined as
“User Events” in JamaicaTrace (see Section [16.2), and the messages assigned to
such events will show up in the data window (see Fig. [16.2).

Depending on how those messages are composed, they can facilitate the trac-
ing: one could for example “wrap” a block of code between two user events with
messages like “enter method x” and “exit method x”, which will act as log out-
puts in JamaicaTrace, revealing possible patterns and also how long the execution
of method “x” lasts. By doing so, users can actually co-relate the tracing with a
specific part of the code. Otherwise, it would be difficult to obtain a causal chain.

229

230 CHAPTER 16. JAMAICATRACE

Moreover, naming threads, and therefore avoiding meaningless default names,
is helpful, once the threads are identified in the data window of JamaicaTrace.
Even if this best practice is obviously not possible for threads created by external
libraries.

16.1 Runtime System Configuration

An event collection is defined here as the options selected to be investigated, as
shown in the control window (Fig. [16.1). The event collection for JamaicaTrace
in the Jamaica runtime system is controlled by two system properties, which are
disabled per default:

* jamaica.scheduler_events_port
* jamaica.scheduler_events_port_blocking

While the event collection is enabled through the setting of these properties, the
port number informs the system where to send the collected data to.

The first property, jamaica.scheduler_events_port, is always pos-
sible: users would start the application and, when the connection is established,
JamaicaTrace would “jump” to the current point of execution.

If the user chooses the blocking property, the VM will stop after the boot-
strapping and before the main method is invoked. This enables a developer to
better control when to start tracing, and also to investigate the startup behavior of
an application.

Once the event collection is enabled, the requested events are written into a
buffer and sent to the JamaicaTrace tool by a high priority periodic thread. The
amount of buffering and the time periods can be controlled from the GUI.

Please note that the settings of event and attributes like buffer size in the Ja-
maicaTrace GUI will affect the collection of data, but not its display, which means,
there is no way to influence how to display the data once it is collected. After the
control window is configured and the start button is pushed, the system sends to
the buffer all data related to the checked settings and there is no interfering in the
middle of the tracing.

16.2 Control Window

When JamaicaTrace is started it presents the user a control window (Fig. [16.1)).
This is the main interface to set the recording of the Scheduler data from applica-
tions running with Jamaica.

16.2. CONTROL WINDOW

|
File

Event classes

JamaicaTrace Control Window

running resch ready blocked detached

10 =]

raise priority set to base priority

ThreadMame <none=
start finish
I 5 5
== .
enter contended exit
gc work
L
T
start reschedule
il
yield
user avent
o —IEMB
=
allocated memory
CRUL CRUD
1 L
running on: CPU1 CPU 0O
interrupted thread intarrupting thraad
Interrupt

thread state change|

thread priority change

thread names

monitor enter/exit

[v] GC activity

start execution, reschedule

ready yield

[¥] user event

allocated memory

running on CPU

nterrupts

231

[=0x]

IP Address: 127.0.0.1
Port: 2712
Timeout: 105

For tracing use Jamaica VM with one of these options:
-Djamaica. scheduler_svents_port=2712
-Djamaica.scheduler_events_port_blocking=2712

advanced
Buffer size:
Sample Period:

[128K |
|saoms |
show thread headers

show fixed time scale

Start recording

Figure 16.1: Control view of JamaicaTrace

232 CHAPTER 16. JAMAICATRACE

On the right hand side of the window, the IP address and port of the VM to
be monitored may be entered. The default port number is 2712. An advanced
settings area, for buffer size and sample periods, is complemented by a prominent
control, that orders the start of the data recording.

On the left hand side of the window, a list of events is available for selection,
which will determine the data collection. They are sided by their graphical rep-
resentation. For example, constant red lines mean just a running process; purple
stands for reschedule of execution, normally due to priorities having been lowered;
green lines indicate a thread that is ready and waiting to execute; blue indicates
threads that are blocked.

The following list gives an overview on which events are offered for the data
collection:

* Thread state changes record how the state of a thread changes over time
including which threads cause state changes in other threads.

* Thread priority changes show how the priority changed due to explicit calls
to Thread.setPriority () as well as adjustments due to priority in-
heritance on Java monitors.

¢ Thread names show the Java name of a thread.

¢ Monitor enter/exit events show whenever a thread enters or exits a monitor
successfully as well as when it blocks due to contention on a monitor.

* GC activity records when the incremental garbage collector does garbage
collection work.

 Start execution shows when a thread actually starts executing code after
it was set to be running, while reschedule shows the point when a thread
changes from running to ready due to a reschedule request.

* All threads that have the state “ready’ within the JamaicaVM are also ready
to run from the OS point of view. So it might happen that the OS chooses
a thread to run that does not correspond with the running thread within the
VM. In such cases, the thread chosen by the OS performs a yield to allow a
different thread to run.

e User Event: See Section[16.2.11

* Allocated memory gives an indication of the amount of memory that is cur-
rently allocated by the application. Since the display is relatively coarse,
changes are only displayed if the amount of allocated memory changes by

16.2. CONTROL WINDOW 233

| Name | Value
Event classes Selection of event classes that the runtime system should
send.
IP Address The IP address of the runtime system.
Port The Port where the runtime system should be contacted
(see Section [16.1].
Timeout The connection will time out after the specified duration.

Already collected data can still be viewed and may be
used for debugging purposes.

Buffer Size The amount of memory that is allocated within the run-
time system to store event data during a period.

Sample Period | The period length between sending data.

Start Recording | When pressed connects the JamaicaTrace tool to the run-
time systems and collects data until pressed again.

Table 16.1: JamaicaTrace Controls

64kB. A vertical line indicates what thread performed the memory alloca-
tion or GC work that caused a change in the amount of allocated memory.

* Running on CPU: It is possible to see in which CPU a process is executed,
either as single or multiple threads.

16.2.1 Creating User Events

As mentioned previously JamaicaTrace can monitor user defined events. User
defined events are helpful for tagging the execution of the code where the event
was created. The execution of the location of a user defined event is marked
by JamaicaTrace with the event’s associated message. It is worth mentioning that
user events created can only be seen when the application’s execution is connected
to JamaicaTrace. Otherwise these events are simply ignored.

For creating an user event in Java code one needs to import the method
recordUserEvent (String message) from the Scheduler class and
call it at the desired location (see example below). For more details, please consult
the API doc of the Scheduler class.

* Copyright 2000-2025, aicas GmbH; all rights reserved.
* This header, including copyright notice, may not be altered or removed.

234 CHAPTER 16. JAMAICATRACE

import static com.aicas.jamaica.lang.Scheduler.recordUserEvent;

/ **
* Hello World Demo
*/
public class HelloWorld
{
/[x
«+ Print a sequence of <i>Hello World</i>s in a fancy curve.
x @param args If set, the first argument is the number of lines printed.
* If the first argument is not an integer, an error is displayed.
*/
public static void main(String[] args)
{

int iterations, sine, cosine;
recordUserEvent ("Start of public static void main");

if (args.length > 0)
{
try
{
iterations = Integer.parselnt (args[0]);
}
catch (NumberFormatException e)
{
System.out.println("Please provide a " +
"properly formatted integer.");

return;
}
}
else
{
iterations = 30;
}
sine = 0;
cosine = 14;
for (int i = 0; i < iterations; i++)
{
String sl =" ".substring(sine + 14);
String s2 =" ".substring(sine / 2 + 7);
System.out.println(sl + "Hello " + s2 + "World!");
sine = sine + cosine / 4;
cosine = cosine - sine / 4;

}

recordUserEvent ("End public static void main");

To compile the .java file into a .class file, please see Section [3.1] The Hel-
loWorld example above would show in the terminal as:

mkdir classes
javac -d classes/ \
-bootclasspath ../../lib/rt.jar src/HelloWorld. java
jamaicavm —-cp classes —-Djamaica.scheduler_events_port=2712 \
HelloWorld
*+4 accepting Scheduler Events Recording requests on port #2712

« VV V VYV

16.2. CONTROL WINDOW 235

Hello World!
Hello World!
Hello World!
Hello World!

Hello World!
Hello World!
[...]

Please note: Since HelloWorld is a very short example, it would make sense
to call JamaicaTrace in blocking mode (see Section [16.1)).

Another way to create user events is to let the Jamaica Builder create them
directly in compiled code. There are two main advantages of creating events this
way:

* The original code remains intact avoiding the need to recompile it each time
a user event is created or removed.

* Enables creating user events for library code, when the original code is not
present.

The Builder can add user events on two predefined locations: at the begin-
ning and at the end of a method. For details on how to instruct the Builder
where to add user events please refer to its options —~XrecordEnterEvent
and -XrecordExitEvent in the Builder Extended Usage section (see[13.3).

16.2.2 Control Window Menu

The control window offers the following actions under the menu point File :

16.2.2.1 File/Open...

This menu item will open a file requester to load previously recorded sched-
uler data that was saved through the data window’s “File/Save as...” menu item,

see Section[16.3.3.2]

16.2.2.2 File/Close

This menu item will close the control window, but it will leave all other windows
open.

16.2.2.3 File/Quit

This menu item will close all windows of the JamaicaTrace tool and quit the ap-
plication.

236 CHAPTER 16. JAMAICATRACE

=] JamaicaVM Recorded Scheduling Data = [=1[E3
File view Navigste Tools

444us 2ms 943us 10ms
2 ims lms ims ims ? 4ms ams 4ms :} sms Sms) }
200j)s 80Qus Ouis 200us 400us 800us {{ ogs 200us 40pus | 600us sopus (i
o E PN BT oo TR 0 0o B0 SRR 0 o BB n ool o oo R o 0 R TR A R n o Bl b
4
}
!] i3 cortended ff
PlesF SsivE vertThread \heap)
TEE R conteryted /
\ SiSnalP umpTHresd
) couts
cortandad/ i L tirmad wait
S(hadu\eruemsRecﬂrdEllpn:SB]IEFEVMSR"fﬂrdér[pnsaal)
Finalizer-
finalizable. ; !
Referance Handery = T - \
¢ +.38 T ! E g el S8 &)
main’ \ 1 t 1 T- 1 \ 1 F; .
povcnpdb e e oo e oo peccpecedb oo oo ool oo e
2005 800us ous 200us 400us 800us] ous 200us 400us 600us 800us
1ms 1ms 1ms 1ms 4ms 4ms 4ms { Sms 5ms
laaaus 2ms liaaaus Mhoms

Figure 16.2: Extracted example of displayed data

16.3 Data Window

After the events are selected and the “Start/Stop recording” button in the control
window is activated, the recording begins and will end after the button is pressed
once again.

The data window will then display data that was recorded or data that was
loaded from a file. A color scheme of the vertical lines helps to identify points of
interest, like interruptions and transitioning stages.

16.3.1 Understanding the Scheduler

To better understand the output of JamaicaTrace, it is helpful to have some under-
standing of the JamaicaVM scheduler. The JamaicaVM scheduler provides real-
time priority enforcement within Java programs on operating systems that do not
offer strict priority based scheduling (e.g. Linux for user programs). The sched-
uler reduces the overhead for JNI calls and helps the operating system to better
schedule CPU resources for threads associated with the VM. These improvements
let JamaicaVM integrate better with the target OS and increase the throughput of
threaded Java applications.

The VM scheduler controls which thread runs within the VM at any given
time. This means it effectively protects the VM internal data structures like the
heap from concurrent modifications. The VM scheduler does not replace, but
rather supports, the operating system scheduler. This allows, for example, for a
light implementation of Java monitors instead of using heavy system semaphores.

16.3. DATA WINDOW 237

All threads created in the VM are per default attached to the VM (i.e. they are
controlled by the VM scheduler). Threads that execute system calls must detach
themselves from the VM. This allows the VM scheduler to select a different thread
to be the running thread within the VM while the first thread for example blocks
on an IO request. Since it is critical that no thread ever blocks in a system call
while it 1s attached, all JNI code in JamaicaVM is executed in detached mode.

For the interpretation of the JamaicaTrace data, the distinction between at-
tached and detached mode is important. A thread that is detached could still be
using the CPU, meaning that the thread that is shown as running within the VM
might not actually be executing any code. Threads attached to the VM may be
in the states running, rescheduling, ready, or blocked. Running means the thread
that currently executes within the context of the VM. Rescheduling is a sub state
of the running thread. The running thread state is changed to rescheduling when
another thread becomes more eligible to execute. This happens when a thread of
higher priority becomes ready either by unblocking or attaching to the VM. The
running thread will then run to the next synchronization point and yield the CPU
to the more eligible thread. Ready threads are attached threads which can execute
as soon as no other thread is more eligible to run. Attached threads may block
for a number of reasons, the most common of which are calls to Thread.sleep,
Object.wait, and entering of a contended monitor.

16.3.2 Data Window Navigation

The data window (Fig. permits easy navigation through the scheduler data
being displayed. Two main properties can be changed: The time resolution can be
contracted or expanded, and the total display can be enlarged or reduced (zoom in
and zoom out).

Four buttons on the top of the window serve to change these properties. In
addition, text search is available for user events and thread names.

16.3.2.1 Selection of displayed area

The displayed area can be selected using the scroll bars or via dragging the con-
tents of the window while holding the left mouse button.

16.3.2.2 Time resolution

The displayed time resolution can be changed via the buttons “expand time” and
“contract time” or via holding down the left mouse button for expansion or the
middle mouse button for contraction. Instead of the middle mouse button, the
control key plus the left mouse button can also be used.

238 CHAPTER 16. JAMAICATRACE

800ms 820ms 600ms §20ms 400ms 426ms 200ms 220ms) oms 20ms 800ms.

Figure 16.3: Expanding time gives a more detailed view

16.3.2.3 Zoom factor

The size of the display can be changed via the buttons “zoom in” and “zoom
out” or via holding down shift in conjunction with the left mouse button for en-
largement or in conjunction with the middle mouse button for shrinking. Instead
of shift and the middle mouse button, the shift and the control key plus the left
mouse button can also be used.

Note in Fig. the “zic-zac” lines. They mean that there is missing infor-
mation, because the buffer or the sampling rate that was defined in the initial con-
figuration is not sufficient for the amount of data received and must be increased.

16.3.2.4 Search Field

JamaicaTrace offers a search function (top right of the data window), which is
helpful, for example, when searching for a specific user event.

Upon entering text in the search field, the displayed area will move to the first
match of the entered text. Navigating to other matches is possible by pressing
“Enter” (cycles forward) and “Shift Enter” (cycles backward). Pressing “Escape”
cancels the search and clears the search field.

16.3.3 Data Window Menu

The data window’s menu offers the following actions.

16.3.3.1 File/Open...

This menu item will open a file requester to load previously recorded sched-
uler data that was saved through the data window’s “File/Save as...” menu item,

see Section[16.3.3.2]

16.3. DATA WINDOW 239

16.3.3.2 File/Save as...

This menu item permits saving the displayed scheduler data, such that it can
later be loaded through the control window’s “File/Open...” menu item, see Sec-
tion[16.2.2.1]

16.3.3.3 File/Close

Select this menu item will close the data window, but it will leave all other win-
dows open.

16.3.3.4 File/Quit

Select this menu item will close all windows of the JamaicaTrace tool and quit the
application.

16.3.3.5 View/Grid

Selecting this option will display light gray vertical grid lines that facilitate relat-
ing a displayed event to the point on the time scale.

16.3.3.6 View/Thread Headers

If this option is selected, the left part of the window will be used for a fixed list of
thread names that remains visible by horizontal scrolling (as seen in Fig.|16.2).

16.3.3.7 View/Scale

If this option is selected, the top part of the window will be used for a fixed time
scale that does not participate in vertical scrolling. This is useful in case many
threads are displayed and the time scale should remain visible when scrolling
through these threads.

16.3.3.8 Navigate/Go To...

Selecting this menu item opens an input dialog for selecting a point of time in the
trace. After confirmation, the selected time will be centered in the display. Com-
mon time units including ns, us, ms, s, min and h are accepted. Additionally
the time may be specified relative to the length of the trace using fractions such as
0.5 or percentage values such as 50%.

240 CHAPTER 16. JAMAICATRACE

16.3.3.9 Navigate/Fit Width

This menu item will change the time contraction such that the whole data fits into
the current width of the window.

16.3.3.10 Navigate/Fit Height

This menu item will change the zoom factor such that the whole data fits into the
current height of the window.

16.3.3.11 Navigate/Fit Window

This menu item will change the time contraction and the zoom factor such that the
whole data fits into the current size of the data window.

16.3.3.12 Tools/Reset Monitors

The display of monitor enter and exit events can be suppressed for selected mon-
itors via a context menu on an event of the monitor in questions. This menu item
re-enables the display of all monitors.

16.3.4 Data Window Context Window

The data window has a context menu that appears when pressing the right mouse
button over a monitor event. This context window permits to suppress the display
of events related to a monitor. This display can be re-enabled via the Tools/Reset
Monitors menu item.

16.3.5 Data Window Tool Tips

When pointing onto a thread in the data window, a tool tip appears that display in-
formation on the current state of this thread including its name, the state (running,
ready, etc.) and the thread’s current priority.

16.4 Event Recorder

There might be cases when you need to do the monitoring of thread activity in a
non-interactive way, e.g. as part of a build system or continuous delivery environ-
ment. Then the JamaicaTrace application with its GUI would not be suitable. In
those cases you want to use the Event Recorder Java agent, which just records a

16.4. EVENT RECORDER 241

user-defined set of scheduler events into a file. There is no interaction with the
user (as long as the analysed Java program is non-interactive too).

16.4.1 Location

You can find this scheduler event recorder in the event-recorder. jar file
in the jamaica-home/target /target/11ib folder. Note that farget stands for a
certain platform, like 1 inux—-x86_64 or gnx—aarch64.

16.4.2 Usage

To use this event recorder just start JamaicaVM with the —javaagent option,
like this:

jamaicavm —javaagent:path/event-recorder. jar [=agentargs] [vmargs]
mainclass [javaargs]

Note that the path to event —recorder. jar must be given, so that the VM can
find it. To get some help about the available options and configuration possibilities
of the event recorder, start the agent with the help option:

jamaicavm —javaagent:path/event-recorder. jar=help

242 CHAPTER 16. JAMAICATRACE

Chapter 17

Jamaica and the Java Native
Interface (JNI)

The Java Native Interface (JNI) is a standard mechanism for interoperability be-
tween Java and native code, i.e., code written with other programming languages
like C. Jamaica implements version 1.8 of the Java Native Interface.

17.1 Using JNI

Native code that is interfaced through the JNI interface is typically stored in shared
libraries that are dynamically loaded by the virtual machine when the application
uses native code. Jamaica supports this on many platforms, but since dynamically
loaded libraries are usually not available on small embedded systems that do not
provide a file system, Jamaica also offers a different approach. Instead of loading
a library at runtime, you can statically include the native code into the application
itself, 1.e., link the native object code directly with the application.

The Builder allows direct linking of native object code with the created ap-
plication through —object=file or ~-XstaticLibraries=library. Multiple
files and libraries can be linked. Separate filenames with the path separator of
the host platform (“:” or *;”); separate libraries by spaces and enclose the whole
option argument within double quotes. All object files and libraries that should be
included at build time should be presented to the Builder using these options.

Building an application using native code on a target requiring manual linking
may require providing these object files to the linker. Here is a short example on
the use of the Java Native Interface with Jamaica. This example simply writes a
value to a hardware register using a native method. We use the file INITest.
java, which contains the following code:

public class JNITest

243

244 CHAPTER 17. JAMAICA AND THE JAVA NATIVE INTERFACE (JNI)

static native int write_HW_Register (int address, int wvalue);

public static void main(String argsl[])
{

int value;
value = write_HW_Register (0xfc000008, 0x10060);
System.out.println ("Result: " + wvalue);

Jamaica provides a tool, jamaicah, for generating C header files that con-
tain the function prototypes for all native methods in a given class. Note that
jamaicah operates on Java class files, so the class files have to be created first
using javac as described in Section@ The header file for INITest . java is
created by the following sequence of commands:

> javac -bootclasspath jamaica-home/target/platform/1ib/rt.jar \
—extdirs jamaica-home/target/platform/1ib/ext JINITest.java
> jamaicah JNITest
Reading configuration from ’/usr/local/jamaica/etc/jamaicah.conf’...
+ JNITest.h (header)

This created the include file INITest . h:

/* DO NOT EDIT THIS FILE - it is machine generated =/
#include <Jjni.h>
/* Header for class JNITest */

#ifndef _Included_JNITest
#define _Included_JNITest
#ifdef __cplusplus

extern "C" {

#endif
/* Class: JNITest
* Method: write_ HW_Register

* Signature: (II)I «/
#ifdef __cplusplus
extern "C"
#endif
JNIEXPORT Jjint JNICALL Java_JNITest_write_1HW_1Register (JNIEnv =xenv,
jclass c,
jint wvO,
Jjint vl1);

#ifdef __ _cplusplus
}

#endif

#endif

17.1. USING JNI 245

The native code is implemented in INITest . c.

#include "Jni.h"
#include "JNITest.h"
#include <stdio.h>

JNIEXPORT Jjint JNICALL

Java_JNITest_write_ 1HW_1Register (JNIEnv =*env,
jclass c,
jint vO,
jint vl)

printf ("Now we could write the value %i into "
"memory address %x\n", vl, vO0);
return vl; /x return the "written" value =/

Note that the mangling of the Java name into a name for the C routine is defined
in the JNI specification. In order to avoid typing errors, just copy the function
declarations from the generated header file. Then, a C compiler is used to generate
an object file.

It is recommended to invoke the C compiler in a platform-independent manner
from Ant build files using the Jamaica C compiler task. See Section [18.2.2] for
details.

However, if you want to compile manually, please make sure to use the C com-
piler flags from jamaica-homeltarget/platform/etc/jamaica.conf named XCFlags
and the includes directives named Xinclude.

Finally, the Builder is called to generate a binary file which contains all nec-
essary classes as well as the object file with the native code from JNITest . c:

> jamaicabuilder -object+=JNITest.o JNITest
Reading configuration from
’/usr/local/jamaica-8.11/target/linux-x86_64/etc/jamaica.conf’ ...
Jamaica Builder Tool 8.11 Release 0 (build 15405)

(User: EVALUATION USER, Expires: 2025.12.29)
Generating code for target ’linux-x86_647, optimization ’speed’

+ tmp/PKG_Vb5£f9a35b775923b2__.c

[...]

+ tmp/JNITest__.c

+ tmp/JNITest__.h

* C compiling ’‘tmp/JNITest__.c’
[...]

+ tmp/JNITest___DATA.o

* linking

* Stripping
Application memory demand will be as follows:
initial max

246 CHAPTER 17. JAMAICA AND THE JAVA NATIVE INTERFACE (JNI)

Thread C stacks: 1152KB (= 9+ 128KB) 63MB (= 511+ 128KB)
Thread Java stacks: 144KB (= 9+ 16KB) 8176KB (= 511+ 16KB)
Heap Size: 2048KB 768MB
GC data: 128KB 48MB
TOTAL: 3472KB 887MB

The created application can be executed just like any other executable:

> ./JNITest
Result: 65632
Now we could write the value 65632 into memory address fc000008

17.2 The Jamaicah Command

A variety of arguments control the work of the jamaicah tool. The command line
syntax is as follows:

jamaicah [options] class

The general format for an option is either —option, for an option without argument,
or —option=value, for an option with argument. For details, see Chapter[I3] The
class argument identifies the class for which native headers are generated.

17.2.1 General

These are general options providing information about jamaicah itself.

Option —-classpath[+]=classpath (-cp)

The classpath option specifies the class path that is used to search for class
files. A list of paths separated by the path separator char (‘:* on Unix systems; ‘;’
on Windows) can be specified. This list will be traversed from left to right when
the Jamaicah tries to load a class.

Additionally, the classpath provided at build time will be added in the form of
URLSs with the protocol jamaicabuiltin to the runtime classpath of the built
application.

Option -d=directory

Specify output directory for created header files. The filenames are deduced from
the full qualified Java class names where “.” are replaced by and the extension

“.h” is appended.

(13 2

17.2. THE JAMAICAH COMMAND 247

Option -help (-h, -?)

The help option displays the Jamaicah usage and a short description of all pos-
sible standard command line options.

Option -includeFilename=file

Specity the name of the include file to be included in the stubs.

Option -jni

Create Java Native Interface header files for the native declarations in the provided
Java class files. This option is the default and hence does not need to be specified
explicitly.

Option -o=file

Specify the name of the created header file. If not set the filename is deduced from
the full qualified Java class name where ”.” are replaced by and the extension

“.h” is appended.

(13 2

Option -version

Print the version of the Jamaica Jamaicah and exit.

Option -Xhelp

The Xhelp option displays the Jamaicah usage and a short description of all pos-
sible extended command line options. Extended command line options are not
needed for normal control of the Jamaicah command. They are used to configure
tools and options and to provide tools required internally for Jamaica VM devel-
opment.

Option -Xinternal

The Xinternal option prints help on options reserved for the internal usage
of aicas. Those options are only needed for improving the Jamaica development
tools themselves. You may use them without support and at your own risk.

248 CHAPTER 17. JAMAICA AND THE JAVA NATIVE INTERFACE (JNI)

17.2.2 Classes, files, and paths

Option -bootclasspath[+]=classpath (-Xbootclasspath)

Specifies the default boot class path used for loading system classes.

Option -classname [+]=class{ class}

Generate header files for the listed classes. Multiple items must be separated by
spaces and enclosed in double quotes.

17.2.3 Environment Variables

The following environment variables control jamaicah.

JAMAICAH_HEAPSIZE Initial heap size of the jamaicah program itself in
bytes.

JAMAICAH_MAXHEAPSIZE Maximum heap size of the jamaicah program
itself in bytes. If the initial heap size of jamaicah is not sufficient, it will
increase its heap dynamically up to this value.

17.3 Finding Problems in JNI Code

Errors are easily introduced into an application due to the complex nature of JNI
code. Jamaica features the VM option —Xcheck: jni along the correspond-
ing Builder option —Xcheck=7Jni which enables argument checking in the JNI.
With this option enabled Jamaica will be halted when a problem is detected. In
case of “call of JNI function with exception pending” Jamaica will only issue a
warning message together with a trace of the exception pending and the current
Java stack trace. The application will continue to run. Since enabling this op-
tion will cause a performance impact using it is recommended while still in the
development phase. It is recommended to disable it for production environments.

With JNI checking enabled the following conditions will be checked while
executing the application:

* There are no illegal calls of JNI functions with exceptions pending.
* No calls of JNI functions are performed without being attached to the VM.
* Objects are initialized using a valid constructor.

* Invoked methods have the expected return type.

17.4.

FPU FLAGS IN JNI CODE 249

* Field accesses use the expected types.

» Array accesses use the expected types.

» UTF-8 strings are correctly encoded.

17.4 FPU Flags in JNI Code

Some processor architectures (such as ARM and x86) allow for Floating Point
Unit (FPU) flags to be set by user code. JamaicaVM expects JNI code to call
into/return to the VM with the FPU flags unchanged. The VM relies on full
IEEE 754 compliance. If the FPU flags are not set appropriately, unexpected
behavior can occur, such as algorithms not terminating.

17.5 Invocation API

The Invocation API allows to create a JVM from inside of the JNI code. Ja-
maicaVM supports the Invocation API to a fair extent, though with few limita-

tions:

JNI_CreateJavaVM () does not support obsolete JDK 1.1 arguments.
Therefore the JavavVMInitArgs structure, passed as the third option via
the vm_args pointer, should have the version field set to INI_VERSTION_
1_2 or higher.

JNI_GetDefaultJavaVMInitArgs () is unsupported.

JNI_GetCreatedJavaVMs () returns at most one JVM instance in the
VM’s buffer as only one (global JamaicaVM) instance can be created.

JamaicaVM supports neither vfprint f nor abort hook functions, only
an exit hook is supported in the JavavVMOption’s optionString set
of hook (callback) functions.

17.5.1 Example code that creates a Jamaica VM

Here is the basic code snippet in the C language:

#include "Jni.h"

int main (void) {
JavaVvM xjvm;
JNIEnv *env;

250 CHAPTER 17. JAMAICA AND THE JAVA NATIVE INTERFACE (JNI)
jint res;
jclass cls;

JavaVMInitArgs vm_args;
JavaVMOption options[2];

options[0] .optionString = "-verbose:class";

options[1l] .optionString = "-Djava.class.path=classes";
vm_args.version = JNI_VERSION_1_2;

vm_args.options = options;

vmm_args.nOptions = 2;

vm_args.ignoreUnrecognized = JNI_FALSE;

/+ Create the JVM =/
res = JNI_CreateJavaVM(&jvm, (voidx*x*)&env, &vm_args);
if (res < 0) {

fprintf (stderr, "Failed to create JVM\n");

return 1;

/* Find main Java application class =/

cls = (*env)->FindClass(env, "HelloWorld");
if (cls != NULL) {
/+ Find main method of the main Java class =/
JjmethodID mid = (xenv)->GetStaticMethodID (env, cls, "main",

"([Ljava/lang/String;)V");
if (mid != NULL) {
/+ Call into Java =/
(void) (*env)->CallStaticVoidMethod(env, cls, mid, NULL);

if ((xenv)->ExceptionOccurred(env)) {
(xenv) —>ExceptionDescribe (env) ;

/+ Destroy the JVM x/
(void) (xjvm)->DestroyJavaVM (jvm) ;

return 0O;

It constructs the arguments for the JVM to be created, attempts to find the main
Java class having the main method and calls into the Java environment. The main
thread is attached to the VM implicitly, hence, there is no need to attach it (via

(*jvm) —>AttachCurrentThread (jvm)) or detach it later (via (* jvm)
->DetachCurrentThread (jvm)).

17.5. INVOCATION API 251

17.5.2 Compilation and Linkage

Here is a Unix-like example that demonstrates how to compile the C program on
a linux-x86_64 platform (having 1ibjamaica_.so in the 1ib/amd64
folder):

> export JAMAICA=/usr/local/jamaica/target/linux-x86_64
> gcc —g —-c¢ —-I$JAMAICA/include invokejvm.c

And also a linkage example that shows the required libraries:

> g++ -LSJAMAICA/lib/amd64 -L/usr/lib/x86_64-linux-gnu invokejvm.o \
-ljamaica_ -lpthread -1m -1d1 \
SJAMAICA/slib/libospi_.a \
SJAMAICA/slib/libffi.a \
SJAMAICA/slib/libfreetype.a \
-0 invokejvm

For a platform-independent compilation it is recommended to invoke the com-
piler via C compiler task (jamaicacc) and the linker via the Native Linker task
(jamaicald) from the Ant (or Maven) build files.

Do not forget to set proper LD_LIBRARY_PATH in order to locate the re-
quired shared libraries prior to executing the resulting binary.

17.5.3 Using the Jamaica Builder

The above mentioned compilation and linkage example creates a binary that launches
a JVM. In case of JamaicaVM, it runs interpreted. In order to obtain the best per-
formance of a user’s Java application, the Jamaica Builder can be used here, in the
case of Invocation API, as well. There are effectively two approaches to adopt in
order to have ahead-of-time compiled Java classes as part of the invoked JVM.

The most obvious approach is to use the Jamaica Builder in its typical way, i.e.
providing a main class name (either via -main=UserApp option or as argument
given on the command line). In special use cases, the ~XnoMain option can be
used. However, in such a case, the list of classes to be included in the resulting
binary needs to be set explicitely, e.g. via the —includeClasses option.

The trick to glue together JamaicaVM with built-in classes and the JNI code
is to set the output name for the Builder to a shared library name instead of an
executable (e.g. via ~destination=libuserapp.so option) or simply on
the command line as follows:

> jamaicabuilder -cp classes UserApp -o libuserapp.so

The newly created shared object library would then replace the jamaica_
library (as it contains the VM with built-in classes) in the linking phase:

252 CHAPTER 17. JAMAICA AND THE JAVA NATIVE INTERFACE (JNI)

> g++ -L. -L/usr/lib/x86_64-1linux—gnu invokejvm.o \
—luserapp —-lpthread -1m -1d1 \
-0 invokejvm

Additionally, the ospi_, ffi and freetype libraries no longer need to be
linked against.
Refer to the Invocat ionAPT example for further details.

Chapter 18

Building with Apache Ant

Apache Ant is a popular build tool in the Java world. Ant tasks for the Jamaica
Builder and other tools are available. In this chapter, their use is explained.

Ant build files (normally named build.xml) are created and maintained by
the Jamaica Eclipse Plug-In (see Chapter). They may also be created manu-
ally. To obtain Apache Ant, and for an introduction, see the web page http:
//ant .apache.orgl Apache Ant is not provided with Jamaica. In the follow-
ing sections, basic knowledge of Ant is presumed.

18.1 Task Declaration

Ant tasks for the Jamaica Builder, Jamaica JAR Accelerator, jamaicah, Profile
Analyzer and tasks for calling the C compiler and linker are provided. The latter
are useful for building programs that include JNI code and for creating dynamic
libraries. In order to use these tasks, taskdef directives are required. The fol-
lowing code should be placed after the opening project tag of the build file:

<taskdef name="jamaicabuilder"
classpath="jamaica-home/1ib/JamaicaTools.jar"
classname="com.aicas.jamaica.tools.ant.JamaicaTask" />
<taskdef name="jamaicajaraccelerator"
classpath="jamaica-home/1ib/JamaicaTools. jar"
classname="com.aicas.jamaica.tools.ant.JarAcceleratorTask" />
<taskdef name="jamaicacc"
classpath="jamaica-home/1ib/JamaicaTools. jar"
classname="com.aicas.jamaica.tools.ant.JamaicaCCTask" />
<taskdef name="jamaicald"
classpath="jamaica-home/1ib/JamaicaTools. jar"
classname="com.aicas.jamaica.tools.ant.JamaicaLinkTask" />
<taskdef name="jamaicah"
classpath="jamaica-home/1ib/JamaicaTools. jar"

253

http://ant.apache.org
http://ant.apache.org

254 CHAPTER 18. BUILDING WITH APACHE ANT

classname="com.aicas.jamaica.tools.ant.JamaicahTask" />
<taskdef name="profileanalyzer"

classpath="jamaica-home/1ib/JamaicaTools. jar"

classname="com.aicas.jamaica.tools.ant.ProfileAnalyzerTask" />

The task names are used within the build file to reference these tasks. They may
be chosen arbitrarily for stand-alone build files. For compatibility with the Eclipse
Plug-In, the names jamaicabuilder and jamaicah should be used.

18.2 Task Usage

All Jamaica Ant tasks obtain the root directory of the Jamaica installation from
the environment variable JAMATCA. Alternatively, the attribute jamaica may
be set to jamaica-home.

18.2.1 Jamaica Builder, JAR Accelerator, Jamaicah, and Pro-
file Analyzer
Tool options are specified as nested option elements. These option elements ac-

cept the attributes shown in the following table. All attributes are optional, except
for the name attribute.

| Attribute | Description Required
name Option name Always
value Option argument For options that re-

quire an argument.
enabled | Whether the option is passed to the tool. | No (default t rue)
append | Value is appended to the value stored in | No (default false)
the tool’s configuration file (+= syntax).
escape | Escape sequences are enabled in the | No (default false)
value attribute.

Although Ant buildfiles are case-insensitive, the precise spelling of the option
name should be preserved for compatibility with the Eclipse Plug-In.

In addition to options, argument ﬁleﬂ which are required for using the output
of the Profile Analyzer to build an executable with profiling information, may be
specified with the argument file element. The file attribute is required.

The following example shows an Ant target for executing the Jamaica Builder.

''See section|13.2.1.6|for argument files.

18.2. TASK USAGE 255

<target name="build_app">
<jamaicabuilder jamaica="/usr/local/jamaica">

<option name="target" value="1linux-x86_64"/>

<option name="classpath" value="classes"/>

<option name="classpath" value="extLib.jar"/>

<option name="interpret" value="true" enabled="false"/>
<option name="heapSize" value="32M"/>

<option name="Xlibraries" value="extLibs" append="true"/>
<option name="XdefineProperty" value="window.size=800x600">
<option name="main" value="Application"/>

<argumentfile file="Application.opt"/>
</jamaicabuilder>
</target>

This is equivalent to the following command line:

/usr/local/jamaica/bin/jamaicabuilder
—target=linux-x86_64
—classpath=classes:extLib. jar
—heapSize=32M
—Xlibraries+=extLibs
-XdefineProperty=window.size=800x600
-main=Application
—Q@Application.opt

Note that some options take arguments that contain the equals sign. For example,
the argument to XdefineProperty is of the form property=value. As shown
in the example, the entire argument should be placed in the value attribute liter-
ally. Ant pattern sets and related container structures are currently not supported
by the Jamaica Ant tasks.

18.2.2 C Compiler

The C Compiler task (jamaicacc) provides an interface to the target-specific
compiler that is called by the Builder.

| Attribute | Description | Required

configu—- | Jamaica configuration file from which | No (defaults to the
ration default settings are taken. Jamaica configura-
tion file of the tar-
get platform given
via the target at-
tribute.)

256 CHAPTER 18. BUILDING WITH APACHE ANT
| Attribute | Description | Required
target Platform for which to compile. No (default: host
platform)
source C source file Yes, unless given as
nested elements
output Output file No (default: derived
from source)
defines | Comma separated list of macros. These | No (default: setting
are set to the compiler’s default (usu- | from the configura-
ally 1). See also the nested elements | tion file)
<define> and <defines>.
include- | Search path for header files. No (default: setting
path from the configura-
tion file)
shared If set, add compiler flags needed for | No (default false)
building shared libraries.
compiler—| Space separated list of command line ar- | No (default: setting
flags guments passed to the compiler verba- | from the configura-
tim. This extends the default setting. tion file)
verbose | If set, print the generated C Compiler | No (default false)
command line.
gprof Generate code for GNU gprof. Not sup- | No (default: setting
ported on all platforms. from the configura-
tion file)
dwarf?2 Generate debug information compatible | No (default: setting
with DWARF version 2. Not supported | from the configura-
on all platforms. tion file)

Additional configuration is available through nested elements. A set of source
files may be given as a file set with the nested <source> element. By default,
object files are placed next to source files with .c replaced by the platform-
specific suffix for object files. Other schemes may be provided through a nested
<mapper> element.

The nested <includepath> element extends the include path set via the
includepath attribute or from the configuration file. It is a path-like structure
and useful for extending the default include path from the configuration file.

The nested <define> and <defines> elements add macro definitions in
addition to macros set via the defines attribute. The <define> element re-
quires key and value attributes:

<define key="max (A, B)" value="((A) > (B) ? (A)

18.2. TASK USAGE 257

The <de fines> element expects the nested elements of an Ant PropertySet.

For more information on file sets, property sets, mappers and path-like struc-
tures see the respective chapter in the Ant Manual [1]. This task is used in the
test_jni example, which may be consulted for an illustration.

18.2.3 Native Linker

The Native Linker task (jamaicald) provides an interface to the target-specific
linker that is called by the Builder.

Attribute | Description | Required
configu- | Jamaica configuration file from which | No (defaults to the
ration default settings are taken. Jamaica configura-
tion file of the tar-
get platform given
via the target at-
tribute.)
target Platform for which to compile. No (default: host
platform)
library- | Search path for libraries. No (default: setting
path from the configura-
tion file)
output Output file Yes
linker— | Space separated list of command line ar- | No (default: setting
flags guments passed to the linker verbatim. | from the configura-
This extends the default setting. tion file)
shared If set, add linker options for creating a | No (default false)
shared library.
verbose If set, print the generated linker com- | No (default false)
mand line.
gprof Generate code for GNU gprof. Not sup- | No (default: setting
ported on all platforms. from the configura-
tion file)

The linked object files are given as nested <fileset> elements. For more
information on filesets see the respective chapter in the Ant Manual [[1].

Additional libraries may be given via nested <libset> elements. These
extend the library path set via attribute or from the configuration file. Libsets have
the following attributes:

258 CHAPTER 18. BUILDING WITH APACHE ANT

] Attribute Description Required
dir Directory in which the libraries of the set | Yes
are located.
libs Comma-separated list of library names | Yes

without prefixes and extensions; for ex-
ample X for 1ibX. so on Unix systems.
type Preferred library type. Either static | No (default
or shared. shared)

Please refer to the DynamicLibraries or InvocationAPI example
(available for supported platforms only) for details on the exact syntax.

18.3 Setting Environment Variables

The Jamaica Ant tasks do support two additional nested elements, <env> and
<envpropertyset>, that can be used to provide environment variables to the
tool. This is normally only required if the target-specific configuration requires
certain environment variables to be set.

For example, when building for VxWorks 6.6, it may be necessary to provide
environment variables in the following way:

<jamaicabuilder jamaica="/usr/local/jamaica">
<env key="WIND_HOME" value="/opt/WindRiver"/>
<env key="WIND_BASE" value="/opt/WindRiver/vxworks-6.6"/>
<env key="WIND_USR" value="/opt/WindRiver/target/usr"/>

</jamaicabuilder>

or alternatively, using a PropertySet:

<property name="WIND_HOME" value="/opt/WindRiver"/>
<property name="WIND_BASE" value="/opt/WindRiver/vxworks-6.6"/>
<property name="WIND_USR" value="/opt/WindRiver/target/usr"/>

<jamaicabuilder Jjamaica="/usr/local/jamaica">
<envpropertyset>
<propertyref prefix="WIND_"/>
</envpropertyset>

</Jjamaicabuilder>

For more information about the usage of these two elements, please refer to
their respective chapters in the Ant Manual [1]].

Chapter 19

Building with Apache Maven

Another popular build tool in the Java world is Apache Maven. JamaicaVM con-
tains a Maven Plug-in that makes it possible to use the Jamaica Builder and other
Jamaica tools in a Maven project. This chapter explains how to do this.

Novices should visit the web page http://maven.apache.org to get
the software and information on how to install and use Maven. Apache Maven
is not provided with JamaicaVM. In the following sections, basic knowledge of
Maven is presumed. Use of the plug-in requires Maven version 3.6.3 or newer.

19.1 Plug-in Installation

At first, the JamaicaVM Maven Plug-in needs to be installed into the local Maven
repository (usually located at SHOME / .m2 /repository). The plug-inis stored
in the JamaicaVM installation directory under:

jamaica-home/1ib/jamaicavm-maven-plugin. jar

To install it, just type:

mvn org.apache.maven.plugins:maven-install-plugin:3.1.4:\
install-file \
-Dfile=jamaicavm-maven-plugin. jar

Maven will tell if everything went fine or if something bad happened.

19.2 Plug-in Usage

Once installed, the plug-in offers several Maven goals (sometimes also called
Mojos) to invoke the Jamaica tools from within the pom. xm1 of a Maven project.

259

http://maven.apache.org

260

Currently there is a goal for the Builder, the JAR Accelerator, the jamaicah
tool and for the Profile Analyzer. There also exist two goals to invoke the same C
compiler and linker that is used by the Builder. This is useful when dealing with
native methods in Java classes or when a Java application is using native libraries.

19.2.1 Calling the Builder, JAR Accelerator, Profile Analyzer

CHAPTER 19. BUILDING WITH APACHE MAVEN

and Jamaicah

To call a Jamaica tool inside a pom. xm1, just add a <plugin> element into the
<build> element of the Maven project. The following example shows a Maven

goal invocation to execute the Jamaica Builder:

<build>
<plugins>

<plugin>

<groupld>com.aicas.jamaica</groupld>

<artifactId>jamaicavm-maven-plugin</artifactId>

<version>1.1.0</version>
<executions>
<execution>
<id>HelloWorldProf_host</id>
<goals>

<goal>builder</goal>

</goals>
<phase>process-classes</phase>
<configuration>

<jamaicaHome>${jamaica}</jamaicaHome>
<options>

<option>
<name>classpath</name>
<value>${javac.classpath}</value>
</option>
<option>
<name>interpret</name>
<value>true</value>
</option>
<option>
<name>profile</name>
<value>true</value>
</option>
<option>
<name>destination</name>
<value>HelloWorldProf_host</value>
</option>
<option>

19.2. PLUG-IN USAGE

<name>main</name>
<value>HelloWorld</value>
</option>
</options>
</configuration>
</execution>

</executions>
</plugin>
</plugins>
</build>

This is equivalent to the following command line:

jamaica-home/bin/jamaicabuilder
-target=1inux-x86_64
—-classpath=classes
—interpret
—-profile
—destination=HelloWorldProf_host
-main=HelloWorld

261

The <goal> element contains the name of the tool that is invoked. Possible val-
ues are: builder, jamaicah, jar—-accelerator,profile—-analyzer.

The <phase> element contains the name of the Maven build phase in which
the <goal> will be executed. When running the Builder, use a build phase that
comes after the compilation of the Java classes. The Builder needs the bytecode

of the classes.

Every <execution> element contains a <configuration> entry, which

can contain the following elements:

Element Description | Required

jamaicaHome | JamaicaVM install path No (defaults to
the environment
variable JAMATICA)

envs Environment variables No

envprefixes | Setof properties used as env vars No

options The tool options and argument files Yes

An <option> element can contain the following child elements:

262 CHAPTER 19. BUILDING WITH APACHE MAVEN

] Element | Description Required
name Option name Always
value Option argument For options that re-

quire an argument.
enabled | Whether the option is passed to the tool. | No (default t rue)
append | Value is appended to the value stored in | No (default false)
the tool’s configuration file (+= syntax).
escape | Escape sequences are enabled in the | No (default false)
value element.

After using the Profile Analyzer to create an option file to enhance the Builder op-
timization process, pass this option file to the Builder by setting an
<argumentFile><file>name.opt</file></argumentFile> entryin
the <options> element of the Builder call:

<execution>
<id>HelloWorldProf_host</id>
<goals>
<goal>builder</goal>
</goals>
<phase>process-classes</phase>
<configuration>
<jamaicaHome>${jamaica}</jamaicaHome>
<options>
<argumentFile><file>name.opt</file></argumentFile>
<option>
<name>classpath</name>
<value>${javac.classpath}</value>
</option>

</options>
</configuration>
</execution>

An <argumentFile> element can be placed anywhere inside the <options>
element, it doesn’t have to be the first entry. Multiple <argumentFile> ele-
ments can be set when multiple files have to be passed.

19.2.2 Calling the C Compiler

The C Compiler goal (jamaicacc) provides an interface to the target-specific
compiler that is called by the Builder. The following elements are supported in
the <configuration> area of the <plugin> entry:

19.2. PLUG-IN USAGE

263

Element Description \ Required
configu- | Jamaica configuration file from which | No (defaults to the
ration default settings are taken. Jamaica configura-
tion file of the tar-
get platform given
via the target at-
tribute.)
target Platform for which to compile. No (default: host
platform)
sources C source files Yes
output Output file (object or executable) No (default: derived
from sources)
defines | List of macros. These are set to the com- | No (default: setting
piler’s default (usually 1). from the configura-
tion file)
includes | List of search paths for header files. No (default: setting
from the configura-
tion file)
shared If set, add compiler flags needed for | No (default false)
building shared libraries.
compiler— List of command line arguments passed | No (default: setting
Flags to the compiler verbatim. This extends | from the configura-
the default setting. tion file)
verbose | If set, print the generated C Compiler | No (default false)
command line.
gprof Generate code for GNU gprof. Not sup- | No (default: setting
ported on all platforms. from the configura-
tion file)
dwarf? Generate debug information compatible | No (default: setting
with DWARF version 2. Not supported | from the configura-
on all platforms. tion file)

All plural elements (sources, defines, includes, compilerFlags) ex-
pect singular elements as children. The singular elements contain strings. The
elements shared, verbose, gprof, dwarf2 expect boolean values as con-
tent (true or false).

19.2.3 Calling the Native Linker

The Native Linker goal (jamaicald) provides an interface to the target-specific
linker that is called by the Builder. The following elements are supported in the

264

CHAPTER 19. BUILDING WITH APACHE MAVEN

<configuration> area of the <plugin> entry:

Element Description \ Required
configu- | Jamaica configuration file from which | No (defaults to the
ration default settings are taken. Jamaica configura-
tion file of the tar-
get platform given
via the target at-
tribute.)
target Platform for which to compile. No (default: host
platform)
objects List of object files to link. Yes
librariesg| List of libraries (static and dynamic) to | No
link against.
library- | List of search paths for libraries. No (default: setting
Paths from the configura-
tion file)
output Output file (static/dynamic lib or exe- | Yes
cutable)
linker— | List of command line arguments passed | No (default: setting
Flags to the linker verbatim. This extends the | from the configura-
default setting. tion file)
shared If set, add linker options for creating a | No (default false)
shared library.
verbose | If set, print the generated linker com- | No (default false)
mand line.
gprof Generate code for GNU gprof. Not sup- | No (default: setting
ported on all platforms. from the configura-
tion file)

All plural elements (objects, libraries, libraryPaths, linkerFlags)
expect singular elements as children. The singular elements contain strings. The
elements shared, verbose, gprof expect boolean values as content (t rue
or false).

While the ob ject s element expects an <ob ject > element list, the 1ibraries
element requires a <librarySet> element listing the libraries within <1ibs>
elements. Please refer to the Invocat ionAPT example (available for supported
platforms only) for details on the exact syntax.

19.3. SETTING ENVIRONMENT VARIABLES 265

19.3 Setting Environment Variables

When calling a tool with the JamaicaVM Maven Plug-in, one can also set envi-
ronment variables for the tool process. This can be used to configure the behavior
of the tool. For example, sometimes it is necessary to enlarge the heapspace of the
Builder. This can be done by setting the environment variables
JAMAICA BUILDER_HEAPSIZE and JAMATICA _BUILDER MAXHEAPSIZE:

<execution>
<id>HelloWorldProf_host</id>
<goals>
<goal>builder</goal>
</goals>
<phase>process-classes</phase>
<configuration>
<jamaicaHome>${jamaica}</jamaicaHome>
<envs>
<env name="JAMAICA BUILDER_HEAPSIZE" value="512M"/>
<env name="JAMAICA BUILDER MAXHEAPSIZE" value="1G"/>
</envs>
<options>
<option>

It is also possible to select some of the Maven properties and use them as environ-
ment variables for the called tool:

<execution>
<id>HelloWorldProf_ host</id>
<goals>
<goal>builder</goal>
</goals>
<phase>process-classes</phase>
<configuration>
<jamaicaHome>${ jamaica}</jamaicaHome>
<envprefixes>
<envprefix>jamaica</envprefix>
</envprefixes>
<options>
<option>

This would set every Maven property beginning with jamaica as an environ-
ment variable with the same name.

266 CHAPTER 19. BUILDING WITH APACHE MAVEN

Part IV

Additional Information

267

Appendix A

FAQ — Frequently Asked Questions

Check here first when problems occur using JamaicaVM and its tools.

A.1 Software Development Environments

Question I use Eclipse to develop my Java applications. Is there a plug-in avail-
able which will help me to use JamaicaVM and the Builder from within
Eclipse?

Answer Yes. There is a plugin available that will help you to configure the
Builder download and execute your application on your target. For more in-
formation, see https://www.aicas.com/wp/eclipse-plugin/.
For a quick start, use the Eclipse Update Site Manager with the following
Update Site: https://aicas.com/download/eclipse-plugin.
This conveniently downloads and installs the plugin.

Question When I set up a Java Runtime Environment (JRE) with the JamaicaVM
Eclipse Plugin, the bootclasses (rt . jar) are set up to be taken from the
host platform. Is this safe when developing for the target platform?

Answer The rt.jar configured in the runtime environment will be used by
Eclipse for generating Java Bytecode and for running the Jamaica host VM.
Code for the target platform is generated by the JamaicaVM Builder, which
automatically chooses the correct rt . jar. Since the Java APIs defined
by the host and target rt . jar are compatible (except if the target is a
profile other than the Java Standard Edition), the Java Bytecode generated
by Eclipse will be compatible regardless of whether the rt . jar is for the
host or the target, and it is sufficient that the Builder chooses the correct
rt.jar.

269

https://www.aicas.com/wp/eclipse-plugin/
https://aicas.com/download/eclipse-plugin

270 APPENDIX A. FAQ — FREQUENTLY ASKED QUESTIONS

A.2 JamaicaVM and Its Tools

A.2.1 JamaicaVM

Question When I try to execute an application with the JamaicaVM I get the error
message OUT OF MEMORY. What can [do?

Answer The JamaicaVM has a predefined setting for the internal heap size. If itis
exhausted the error message OUT OF MEMORY is printed and JamaicaVM
exits with an error code. The predefined heap size is usually large enough,
but for some applications it may not be sufficient. You can set the heap
size via the jamaicavm options Xmxsize, via the environment variable
JAMAICAVM_MAXHEAPSIZE, e.g., under bash with

export JAMAICAVM_MAXHEAPSIZE=1G

or, when using the Builder, via the Builder option maxHeapSize.
Question When the built application terminates I see the following output:

WARNING: termination of thread 7 failed

What is wrong?

Answer At termination of the application the JamaicaVM tries to shutdown all
running threads by sending some signal. If a thread is stuck in a native
function, e.g., waiting in some OS kernel call, the signal is not received
by the thread and there is no response. In that case the JamaicaVM does
a hard-kill of the thread and outputs the warning. Generally, the warning
can simply be ignored, but be aware that a hard-kill may leave the OS in
an unstable state, or that some resources (e.g., memory allocated in a native
function) can be lost. Such hard-kills can be avoided by making sure no
thread gets stuck in a native-function call for a long time (e.g., more than
100ms).

Question At startup JamaicaVM prints this warning:

CPU rate unknown, please set property >>jamaica.cpu_mhz<<.
Measured rate: 1799.6MHz

Why could this be a problem?

A.2. JAMAICAVM AND ITS TOOLS 271

Answer The CPU cycle counter is used on some systems to measure time by Ja-
maicaVM. In particular, this is used by cost monitoring within the RTSJ and
by code that uses the class com.aicas. jamaica.lang.CpuTime. To
map the number of CPU cycles to a time measured in seconds (or nanosec-
onds), the CPU frequency is required. For most target systems, JamaicaVM
does not have a means of determining the CPU frequency. Instead, it will
fall back to measure the frequency and print this warning.

Since the measurement has a relevant runtime overhead and brings some
inaccuracy, it is better to specify the frequency via setting the Java property
jamaica.cpu_mhz to the proper value. Care is needed since setting the
property to an incorrect value will result in cost enforcement to be too strict
(if set too low) or too lax (if set too high).

Question When I run my application with JamaicaVM I get the following error:

Exception in thread "main" java.io.FileNotFoundException:
Too many open files

What is the problem?

Answer If you get this error message it means that your application is trying to
open more files than the maximum open file descriptor limit allowed by
the operating system. In this case you should increase this limit. On Unix
systems this can be achieved by setting a higher soft limit, e.g. by running
ulimit-Sn4096 to set it to 4096.

A.2.2 JamaicaVM Builder

Question When I try to compile an application with the Builder I get the error
message OUT OF MEMORY. What can [do?

Answer The Builder has a predefined setting for the internal heap size. If the
memory space is exhausted, the error message OUT OF MEMORY is printed
and Builder exits with an error code. The predefined maximum heap size
(1024MB)) is usually large enough, but for some applications it may not be
sufficient. You can set the maximum heap size via the environment variable
JAMAICA_BUILDER_MAXHEAPSIZE, e.g., under bash with the follow-
ing command:

> export JAMAICA_BUILDER_MAXHEAPSIZE=1536MB

Question When I try to compile an application with the Builder I get the error
message:

272 APPENDIX A. FAQ — FREQUENTLY ASKED QUESTIONS

jamaicabuilder: I/O error while executing C-compiler:
Executing ’'gcc’ failed: Cannot allocate memory.

Answer There is not enough memory available to compile the C files generated
by the Builder. You can increase the available memory on your system or
reduce the predefined heap size of the Builder, e.g. under bash with the
following command:

> export JAMAICA_BUILDER_HEAPSIZE=150MB
> export JAMAICA_BUILDER_MAXHEAPSIZE=300MB

Be aware that you could get an OUT OF MEMORY error if the heap size is
too small to build your application.

Question When I try to compile an application with the Builder using the Visual
Studio compiler I get the error message:

C Compiler failed with exit code 3221225781 (0xC0000135)

Answer A dynamic library required by Visual Studio (mspdb100.d11 when
using Visual Studio 2010) cannot be found. Please add the Common7\IDE
directory located in your Visual Studio installation directory to your PATH
environment variable.

Question When building an application that contains native code it seems that
some fields of classes can be accessed with the function GetFieldID ()
from the native code, but some others not. What happened to those fields?

Answer If an application is built, the Builder removes from classes all unrefer-
enced methods and fields. If a field in a class is only referenced from native
code the Builder can not detect this reference and protect the field from the
smart-linking-process. To avoid this use the includeClasses option
with the class containing the field. This will instruct the Builder to fully
include the specified class(es).

Question When I build an application with the Builder I get some warning like
the following:

WARNING: Unknown native interface type of class ’name’
(name.h) - assume JNI calling convention

Is there something wrong?

A.2. JAMAICAVM AND ITS TOOLS 273

Answer In general, this is not an error. The Builder outputs this warning when
it is not able to detect whether a native function is implemented using JNI
(the standard Java native interface; see chapter Chapter [I7). Usually this
means the appropriate header file generated with some prototype tool like
jamaicah is not found or not in the proper format. To avoid this warning,
recreate the header file with jamaicah and place it into a directory that is
passed via the Builder argument Xinclude.

Question How can I set properties (using —Dname=value) for an application that
was built using the Builder?

Answer To set properties that are known at build time, XdefineProperty can
be used. Setting properties unknown at build time requires activating the
corresponding VM option groups when building the application. For more
information, please see the description of ~XactiveVMOptionGroups
in section

Question When I run the Builder an error “exec fail” is reported when the
intermediate C code should be compiled. The exit code is 69. What hap-
pened?

Answer An external C compiler is called to compile the intermediate C code. The
compiler command and arguments are defined in etc/jamaica.conf.
If the compiler command can not be executed the Builder terminates with
an error message and the exit code 69 (see list of exit codes in the appendix).
Try to use the verbose output with the option —verbose and check if the
printed compiler command call can be executed in your command shell. If
not check the parameters for the compiler in etc/jamaica.conf and
the PATH environment variable.

Question Can I build my own VM as an application which expects the name of
the main class on the command line like JamaicaVM does?

Answer There are two ways to build a standalone VM: by using the Builder op-
tions —XnoMain or -main=com. jamaicavm. jre.Main. Both make
sure that the Builder does not expect a main class while compiling. Instead,
the built application expects the main class later at startup on the command
line. Some classes or resources can be included in the created VM, e.g., a
VM can be built including all classes of the selected API except the main
program with main class. The default setting —smart=false must be left
unchanged, otherwise some fields or methods might be missing at runtime.

274 APPENDIX A. FAQ — FREQUENTLY ASKED QUESTIONS

Question When linking static libraries or individual object files into an applica-
tion with the Jamaica Builder I get the following linker error:

relocation ... against ‘...’ can not be used when making a
shared object; recompile with —-fPIC.

Answer For security reasons the Jamaica Builder creates by default position inde-
pendent executables; this requires all linked objects to be created position-
independent. To achieve this for your objects, rebuild them using the —£fPIC
compiler option as suggested by the linker error message. This is the pro-
cedure recommended by aicas. If this is not possible, you can deactivate
the creation as position independent executable removing the —pie linker
option from the XLDFlags Builder option in jamaica.conf.

Question I cannot start built executables by double clicking them in the GNOME
file manager.

Answer For security reasons the Jamaica Builder creates by default position inde-
pendent executables. GNOME's file manager reports position independent
executables as shared libraries and does not automatically start them when
double clicking them. To start them you have to use the command line in a
terminal emulator such as gnome—-terminal.

A.2.3 Third Party Tools

Question I would like to use JamaicaVM on Windows. Do I need Microsoft
Visual Studio?

Answer Visual Studio is only required when developing for Windows. If devel-
oping for other operating systems, the tool and SDK locations (see Sec-
tion may be left empty.

A.3 Supported Technologies

A.3.1 Cryptography

Question Does Jamaica support Elliptic curve cryptography?

Answer Elliptic curve cryptography is currently only supported for the following
platforms:

A.3. SUPPORTED TECHNOLOGIES 275

e Linux.
e Windows.

* ONX.

Question How can I use Elliptic curve cryptography with the Builder?

Answer In order to use Elliptic curve cryptography in a built application, the
native SunEC library must be available on the target. The SunEC library
in turn requires Standard C++ library and the libraries that the C++ library
depends on and hence they also must be available on the target.

This library can be found in jamaica-home /target /platform/1ib/arch
and is called 1ibsunec.so for Unix systems. For Windows systems,
the library can be found in jamaica-home/target /platform/bin and is
called sunec.d11.

When building the application, the Java property sun.boot .library.
path has to be set to the path containing the SunEC library at runtime and
passed to the Builder via the option -XdefineProperty.

Question Why does the built application using cryptography fail with either of
these exceptions:

* java.lang.ExceptionInInitializerError

* java.security.NoSuchAlgorithmException

Answer This is due to missing dependencies in the Builder. As a workaround,
you can generate a profile for your application using jamaicavmp, analyze
it with the Profile Analyzer, and provide the results to the Builder (see Chap-
ter[S|for more details), or you can explicitly include the cryptography and se-
curity classes with the Builder command line option ~includeClasses.

For instance, when the built application is using SunEC provider the fol-
lowing classes need to be provided to the Builder:

—includeClasses="com.sun.crypto.provider. *
sun.security.provider.x sun.security.ec.x"

Question How can I install my own X.509 CA root certificates?

Answer The X.509 CA root certificates are by default stored in a Java keystore,
a storage facility for cryptographic keys and certificates. It can be found
in jamaica-home/target /platform/1ib/security/cacerts. For

276 APPENDIX A. FAQ — FREQUENTLY ASKED QUESTIONS

your convenience Jamaica comes with a pre-set list of X.509 CA root cer-
tificates. Please adjust and update this list for use in your application.

Jamaica provides the keytool command to interact with the file, it can
be found at jamaica-home/target /platform/bin/keytool. The tool
can be used to add a cryptographic certificate to the keystore as follows:

keytool —-import -alias alias —file certificate —keystore cacerts

The tool will ask for a password when performing the import, it is by default
set to changeit.

Here alias is a name identifying the certificate in the keystore, and certifi-
cate 1is a file containing a X.509 certificate or a PKCS#7 certificate chain
either in binary or in printable Base64 encoding format. The file cacerts is
the keystore.

Questions How can I list the X.509 CA root certificates installed in Jamaica?

Answer For a description of the cacerts keystore please see previous answer.

The installed X.509 CA root certificates can be listed via the keytool
command bundled with JamaicaVM as follows:

keytool -list -keystore cacerts

The tool will ask for a password when performing the import, it is by default
set to changeit. The cacerts file is the keystore.

A.3.2 Graphics

Question Does Jamaica support AWT, Java 2D and Swing?

Answer AWT (Abstract Window Toolkit), Java 2D and Swing are only supported
in headless mode. This means that operations that require a display, a key-
board or a mouse are not supported and throw a HeadlessException.
Offscreen images in contrast can be created, rendered and saved as a file or
transferred to a server.

When using the headless mode with Open]JDK, there is an internal dele-
gation to the OS graphic system when possible. But the Jamaica headless
mode implementation is platform-independent. That means that, e.g., only
the fonts provided with the Jamaica distribution or custom fonts can be used.

A.3. SUPPORTED TECHNOLOGIES 277

It should be noted that a given Jamaica release would only include the
classes needed to support the targeted graphics environment. For exam-
ple, a headless Jamaica release would neither include the classes needed to
support X-Window on Linux nor Win32 API on Windows.

For more information on using headless mode in the Java SE platform, see
https://www.oracle.com/technical-resources/articles/
javase/headless.html.

A.3.3 Fonts
Question How can I change the mapping from Java fonts to native fonts?

Answer The mapping between Java font names and native fonts is defined in
the java-home/1ib/fonts.properties file. Each target system pro-
vides this file with useful default values. An application developer can
modify this file or provide a new specialized version for this file. The
new mapping file must exist in the target file system. Setting the system
property jamaica.fontproperties with the option —~Djamaica.
fontproperties=file will provide the graphics environment with the
location of the new mapping file.

The fonts.properties file contains one line per font mapping, the
line begins with the lower-case name of the font to be mapped followed
by an underscore and the style (p for plain, b for bold, i for italic, ib for
italic and bold). After that the font to be mapped to is assigned using an
equals sign and font filename. Eventual new fonts must exist in the java-
home/1ib/fonts directory.

This is an example for a fonts.properties file:

bitstream\ vera\ sans_p=Vera.ttf

bitstream\ vera\ sans_i=Veralt.ttf
bitstream\ vera\ sans_b=VeraBd.ttf
bitstream\ vera\ sans_ib=VeraBI.ttf

In this example all style variations of the Bit st reamVeraSans font are
mapped to TrueType font files in the java-home/1ib/fonts directory.
Note that escaping of spaces in the font name is required. It is also pos-
sible to map Java’s five logical font families to custom font files by pro-
viding a mapping for their respective names (Dialog, DialogInput,
Monospaced, Serif or SansSerif).

Question Why do fonts appear different on host and target?

https://www.oracle.com/technical-resources/articles/javase/headless.html
https://www.oracle.com/technical-resources/articles/javase/headless.html

278 APPENDIX A. FAQ — FREQUENTLY ASKED QUESTIONS

Answer Jamaica relies on the target graphics system to render true type fonts.
Since that renderer is generally a different one than on the host system it is
possible that the same font is rendered differently.

A.3.4 Realtime Support and the RTS]J

Question Does JamaicaVM support the Real-Time Specification for Java?

Answer Yes. Version 8.10 of JamaicaVM completed support of RTSJ 2.0. The
API documentation of the JamaicaVM implementation is available online
athttps://www.aicas.com/rtsj/Version_2_0/all/.

Question When running a real-time application, this warning is printed:

*%*x warning: Java real-time priorities >=11 not usable,
using priority 10 (error: Operation not permitted)

Answer The creation of a thread with real-time priority was not permitted by
the operating system. Instead JamaicaVM created a thread with normal
priority. This means that real-time scheduling is not available, and that the
application will likely not work properly.

On off-the-shelf Linux systems, use of real-time priorities requires super-
user privileges. That is, starting the application with sudo will resolve
the issue. Alternatively, the priority limits for particular users or groups
may be changed by editing /etc/security/limits.conf and set-
ting rtprio to the maximum native priority used. For the default priority
map used by JamaicaVM on Linux, setting the rtprio limit to 80 is suffi-
cient.

https://www.aicas.com/rtsj/Version_2_0/all/

Appendix B

Operating Systems

This appendix contains instructions on using Jamaica with specific operating sys-
tems.

B.1 Linux

B.1.1 Secure Random

By default, Jamaica uses /dev/random as a source for cryptographically strong
random numbers. It has to be checked for the particular Linux that is in use that
this device provides sufficiently good random numbers for secure communication.
If this is not the case, please refer to Appendix for how to provide a different
source for a cryptographically strong random number generator.

B.1.2 Thread Priorities

On Linux systems, JamaicaVM uses priority boosting for threads using the FIFO
or RR native scheduling policy to yield a CPU to a particular thread as explained
in Section [9.8.3.2] JamaicaVM’s threads may consequently run temporarily at a
priority level that is one above the native priority for that thread.

B.1.3 System Time Overflow
B.1.3.1 64-bit Linux

On 64-bit systems, data types to store time values use 64-bit signed values and
will consequently be effectively unlimited.

279

280 APPENDIX B. OPERATING SYSTEMS

B.1.3.2 32-bit Linux

On 32-bit Linux systems, the system clock is stored in a signed 32-bit integerﬂ
This value will overflow on 19 January 2038 at 03:14:07 GMT. For Jamaica, this
means that delays that wait for an absolute time later than that will not work
properly. Jamaica will replace absolute times after this value by 19 January 2038
at 03:14:07 GMT.

Delays for an absolute time are relatively infrequent in Java code. The main
Java methods using absolute times are sun.misc.Unsafe.park (with pa-
rameter 1 sAbsolutesettotrue)and java.util.concurrent.locks.
LockSupport.parkUntil.

Relative times used in methods such as java.lang.Object .wait () are
based on a different internal clock that usually does not show this problemE]

B.1.4 Limitations

On Linux kernels of the versions 3.15 to 4.5 an unusually high scheduling jitter
can be observed when using JamaicaVM in realtime scenarios. This issue is paired
with kernel warnings of the following format in the system log (the CPU, PID, line
numbers and memory addresses might vary):

WARNING: CPU: 0 PID: 11 at kernel/sched/rt.c:1103
dequeue_rt_stack+0xc9/0x340 ()

Call Trace:

[<EfffE£££81544£f13>] ? dump_stack+0x4a/0x74
[KEffffff£f8106d0e0>] ? warn_slowpath_common+0x90/0xe0
[<Efffffff810a6219>] ? dequeue_rt_stack+0xc9/0x340
[<EfEff£££810a6739>] ? dequeue_rt_entity+0x19/0x70
[<Efffffff810a6cd5>] ? dequeue_task_rt+0x25/0x40
[<Efffffff81546e56>] ? __ schedule+0x576/0x80b
[KEfffffff815471ed>] ? schedule+0x3d/0xd0
[KEfffffff8108ellf>] ? smpboot_thread_ fn+0x11f/0x260
[<Efffff££8108e000>] ? SyS_setgroups+0x180/0x180
[<Efffffff8108acle>] ? kthread+0Oxae/0xd0
[<Efffffff8108ab60>] ? kthread_worker_fn+0x160/0x160
[<Efffffff8154acd8>] ? ret_from fork+0x58/0x90
[<Efffff£ff8108ab60>] ? kthread_worker_fn+0x160/0x160

This issue in the kernel was solved for Linux version 4.6. For using Ja-
maicaVM on Linux in realtime scenarios we recommend using unaffected kernel
versions.

ISee the type of t ime_t declared in t ime . h
The clock used is CLOCK_MONOTONIC, which typically starts from 0 on system boot and
does not cause an overflow unless the system keeps running for more than 68 years.

B.2. OS-9 281

B.2 0OS-9

B.2.1 Installation

To use the OS-9 toolchain, ensure that the following environment variable is set
correctly (should be done during OS-9 installation):

* MWOS (e.g., /opt /MWOS)

For OS-9 the toolchain executables must be in the system path. On Linux, you
can set this with the PATH environment variable:

e set PATH=SPATH:SMWOS/UNIX/bin/linux

! The OS-9 toolchain creates temporary files that are not unique. Calling the
toolchain concurrently with the Builder option jobs may fail.

B.2.2 Secure Random

Please refer to Appendix for how to provide a source for a cryptographically
strong random number generator that is the basis for secure communication.

B.2.3 Thread Priorities

On OS-9 systems, JamaicaVM does not use or implement a specific mechanism
to yield a CPU to a particular thread as explained in Section In case a
thread is preempted by a more eligible thread in the same VM, this might result in
the preempted thread losing the CPU to a different process’ thread running at the
same priority.

To avoid any interference between JamaicaVM'’s threads and other threads, it
is best to use disjoint native thread priorities for JamaicaVM’s threads and other
threads running on the same CPUs. This defines a clear precedence between these
threads.

B.2.4 Limitations
The current release of Jamaica for OS-9 contains the following known limitations:

* Dynamic heap expansion is not supported. Please set the initial heap size
equal to maximum heap size.

* The method java.lang.System.getenv () that takes no parameters
and returns a java.util.Map is not implemented.

282 APPENDIX B. OPERATING SYSTEMS

* java.net.Socket.bind()
does not throw an exception if called several times with the same address.

* java.nio.FileChannel.map ()
is not supported.

* It is not possible to redirect the standard 10 for processes created with
Runtime.exec ().

B.2.5 Shared Libraries

Shared libraries are now supported, but it is important to point that OS-9 support
is quite specific. So please note the following:

Each shared library needs to define its own SO_INDEX. It must be different
for every . so file used within a process. Indexes 0..31 are reserved for the system;
index 32 is used by the main program module; indexes 33..255 are available.

JamaicaVM uses index 50 for the 1ibsunec. so cryptographic library; the
DynamicLibraries example uses index 60. Please see the DLLDemo.c
source for the SO_TINDEX usage.

Building a shared library produces not only the . so file (like on Linux) but
also a . so.mod file. Please install both files on the target and make sure that the
.so.mod file has the executable attribute set (e.g. for 1ibmylib.so.mod use
attr -e libmylib.so.mod). Alternatively you can load the . so.mod file
(load -d libmylib.so.mod) before launching the application.

For the search library path you can use the java.library.path property
and/or the environment variable LD_LIBRARY_PATH (colon-separated list of
directories) like on Linux.

B3 QNX

B.3.1 Installation

For general information on the configuration of QNX Momentics IDE please refer
to the user documentation for QNX 7.1For QNX 8.0

In order to be able to cross compile applications to QNX, the host development
environment must be correctly set up. This can be done using a script provided
by QNX in its distribution. For details please refer to the Choosing the version of

Shttps://www.gnx.com/developers/docs/7.1/#com.qgnx.doc.gnxsdp.
nav/topic/bookset.html

‘https://www.gnx.com/developers/docs/8.0/com.gnx.doc.qnxsdp.
nav/topic/bookset.html

https://www.qnx.com/developers/docs/7.1/#com.qnx.doc.qnxsdp.nav/topic/bookset.html
https://www.qnx.com/developers/docs/7.1/#com.qnx.doc.qnxsdp.nav/topic/bookset.html
https://www.qnx.com/developers/docs/8.0/com.qnx.doc.qnxsdp.nav/topic/bookset.html
https://www.qnx.com/developers/docs/8.0/com.qnx.doc.qnxsdp.nav/topic/bookset.html

B.3. QNX 283

the OS section (ONX Software Development Platform — Programming — Pro-
grammer’s Guide — Compiling and Debugging), in the above referenced user
documentation provided by QNX.

The host development environment can also be set up manually. For that the
environment variables QNX_HOST and ONX_TARGET must be set to the location
of the QNX toolchain. In addition the compiler and linker must be reachable,
usually by setting their location on system path. This can be done in Linux, for
instance, as follows:

export QNX_HOST=/opt/QNX/host/linux/x86_64
export QONX_TARGET=/opt/QNX/target/gnx
export PATH=SPATH:/opt/QNX/host/linux/x86_64/usr/bin

B.3.2 Configuration of QNX

QNX should be configured to include the following functionality.

B.3.2.1 Clock Time Resolution

On QNX systems the default clock time resolution is 1 ms if CPU clock is >
40 MHz and 10 ms if CPU clock is < 40 MHz. If this is not enough, you can
change the system clock time resolution either using the javax.realtime.
Clock.setResolution () method or the C functions ClockPeriod or
ClockPeriod_r defined in header sys/neutrino.h.

B.3.2.2 Enable IPv6

QNX provides the IPv6 capable network driver io-pkt-vé6-hc. For IPv6 sup-
port, this driver must be loaded and configured at startup rather than the default
io-pkt-v4-hc, which only supports IPv4. IPv6 support can be enabled ei-
ther by adapting the build script of the QNX image or, if present on the system,
through editing the file /etc/rc.d/rc.local and restarting QNX. For more
information, please refer to the QNX documentation. Loading a network driver
while another network driver is already active my result in a corrupted network.

Even if IPv6 is configured, it may be the case that a link-local IPv6 address is
available, yet the device is only visible as IPv4 from the outside. These steps are
required for adding a publicly visible IPv6 address:

* Enable the TCP/IP stack to accept route advertisements:

sysctl -w net.inet6.ip6.accept_rtadv=1

284 APPENDIX B. OPERATING SYSTEMS

e Start the router solicitation daemon:

rtsold -a

If the handling of IPv4-mapped IPv6 addresses by the network stack is required,
this step is also needed:

sysctl -w net.inet6.ip6.v6only=0

These commands should be put in the QNX build script or /etc/rc.d/rc.
local at a point where IPv6 has already been started.

B.3.2.3 Secure Random

A wide range of Java APIs depend on java.security.SecureRandom.
This includes creating temporary files but also the Java Cryptography Extension.
That class is intended as a source of cryptographically strong random numbers.
On QNX, Jamaica relies on the random devices /dev/random and /dev/
urandom, which must be available.

QNX provides implementations of these devices, and to build these into your
image you need to insert two lines at appropriate places in your QNX build script:

Boot script

[+script] .script = {

[...]

random arguments # create random devices

}

General executables
[...]

/usr/sbin/random=random # provide random command

Also see the QNX documentation.

aicas has not made an evaluation of the cryptographic quality of these devices
and therefore cannot endorse their use in cryptographic services.

Please refer to Appendix [D.2] for how to provide an alternative source for a
cryptographically strong random number generator if this is required.

B.3.3 Using JamaicaVM on QNX
B.3.3.1 ProcessBuilder

The implementation of the ProcessBuilder on QNX requires the presence of the
jspawnhelper tool, which is part of the JamaicaVM distribution (to be found
intarget/gnx—<arch>/1ib/<arch>).

B.3. QNX 285

Please note that the jspawnhelper must reside on the QNX target device
in a location where it can be found by the executable generated by the Builder. It
must be copied to java-home/1ib/<arch>: for example in the case of archi-
tecture qnx—x86_ 64 that would be java-home/1ib/amd64.

The location of java-home is determined by JamaicaVM at runtime and de-
pends on where the executable is put:

* if it is in subdirectory bin, then java-home is the parent of that subdirec-
tory;

« if it is in a directory with a different name, then java-home is that directory;

* if the location cannot be determined, then java-home is ./, the current
working directory.

As a workaround, to help identify java-home, users could define a path with
the Builder option ~-XdefineProperty Jjava.home=<path>. Another pos-
sibility would be to read the system property by adding the following line to their
codes:

System.out .println (System.getProperty (" java.home"));

B.3.3.2 Thread Priorities

On QNX systems, JamaicaVM uses priority boosting for threads using the FIFO
or RR native scheduling policy to yield a CPU to a particular thread as explained
in Section [9.8.3.2] JamaicaVM’s threads may consequently run temporarily at a
priority level that is one above the native priority for that thread.

B.3.3.3 System Time Overflow

On 32-bit QNX systems, the system clock is stored in an unsigned 32-bit integerE]
This value will overflow on 07 February 2106 at 06:28:15 GMT. For Jamaica,
this means that delays that wait for an absolute time later than that will not work
properly. Jamaica will replace absolute times after this value by 07 February 2106
at 06:28:15 GMT.

Delays for an absolute time are relatively infrequent in Java code. The main
Java methods using absolute times are sun.misc.Unsafe.park (with pa-
rameter 1 sAbsolutesetto true)and java.util.concurrent.locks.
LockSupport.parkUntil.

>See the type of t ime_t declared in t ime . h

286 APPENDIX B. OPERATING SYSTEMS

Relative times used in methods such as java.lang.Object.wait () are
based on a different internal clock that usually does not show this problemﬁ

B.3.3.4 Handling of Floating Point Arithmetics on ARMv7

To maximize IEEE 754 compliance of floating point arithmetics on the ARMv7
architecture, JamaicaVM uses, for QNX versions 7.0 and above, hard float as
compiler settings on that platform (-mfloat—-abi=hard).

B.3.4 Limitations

On QNX JamaicaVM has the following limitations:

* Currently the package java.nio.file is not fully supported. The fol-
lowing method is not implemented:

java.nio.file.FileStore.isReadOnly ()

* Writing sparse files is only supported by QNX on ext2 file systems [7].
Therefore the option StandardOpenOption.SPARSE is ignored when
creating files on all file systems except ext 2.

* We have observed on QNX, that some library functions that perform input
and output operations do not accept offsets larger than 23! — 1 bytes. There-
fore file offset repositioning will be limited by 23* — 1 bytes. The following
method is affected:

java.nio.channels.FileChannel.write (ByteBuffer, long)

* In order to retrieve information about the system, the user should have root
privileges, otherwise the following method is not supported:

com.sun.management .OperatingSystemMXBean.getSystemCpulLoad ()

* On QNX, a socket will receive messages from all multicast groups that have
been joined globally on the whole system. On Linux, this behavior can
be avoided by disabling TP_ MULTICAST_ALL. On QNX, this option is
currently not supported.

%The clock used is CLOCK_MONOTONIC, which typically starts from 0 on system boot and
does not cause an overflow unless the system keeps running for more than 136 years.

B.4. VXWORKS 287

* On QNX 8.0 the IPv4/IPv6 dual stack networking is not supported. IPv6

is a default, for IPv4 use the -Djava.net.preferIPv4Stack=true
Java option.

On QNX 8.0 only some threads may be un-blocked when multiple requests
to io-sock are blocked waiting on the same resource.

The system function set sockopt may work incorrectly when setting a
high timeout value for SO_LINGER. As a consequence, after setting

java.net.ServerSocket.setSolLinger (true, HIGH_TIMEOUT),

ServerSocket.getSoLinger () may return —1, which implies that
the option was disabled. QNX has confirmed a fix for future versions of the
io-pkt PSP/

B.4 VxWorks

VxWorks from Wind River Systems is a real-time operating system for embedded
computers.

B.4.1 Configuration of VxWorks

For general information on the configuration of VxWorks, please refer to the user
documentation provided by WindRiver. For Jamaica, VxWorks should be config-
ured to include the following functionalityﬁ

INCLUDE_DEBUG_SHELL_CMD
INCLUDE_DISK_UTIL_SHELIL_CMD
INCLUDE_EDR_SHELL_CMD
INCLUDE_LLVM_INTRINSICS
INCLUDE_HISTORY_FILE_SHELL_CMD
INCLUDE_IPTELNETS

INCLUDE_TIPWRAP_GETIFADDRS

"For the case history, see http://community.gnx.com/sf/discussion/do/
listPosts/projects.core_os/discussion.newcode.topc26319.
SPackage names refer to VxWorks 24.03, names for other versions may vary.

http://community.qnx.com/sf/discussion/do/listPosts/projects.core_os/discussion.newcode.topc26319
http://community.qnx.com/sf/discussion/do/listPosts/projects.core_os/discussion.newcode.topc26319

288 APPENDIX B. OPERATING SYSTEMS

¢ INCLUDE_KERNEL_HARDENING
« INCLUDE_LOADER

* INCLUDE_NETWORK

¢ INCLUDE_NFS_CLIENT_ALL

e INCLUDE_PING

« INCLUDE_POSIX_PIPES

e INCLUDE_POSIX_SEM

* INCLUDE_POSIX_SIGNALS

e INCLUDE_POSIX_SYMLINK

¢ INCLUDE_RANDOM_NUM_GEN

e INCLUDE_ROUTECMD

e INCLUDE_RTL8169_VXB_END
« INCLUDE_SC_REALPATH

e INCLUDE_SHELL

e INCLUDE_SHELL_EMACS_MODE
e INCLUDE_SHOW_ROUTINES

¢ INCLUDE_STANDALONE_SYM_TBL
e INCLUDE_STARTUP_SCRIPT

* INCLUDE_STAT_SYM_TBL

¢ INCLUDE_TASK_SHELL_CMD

e INCLUDE_TASK_UTIL

¢ INCLUDE_TELNET_CLIENT

e INCLUDE_UNLOADER

B.4. VXWORKS 289

For targets with kernel version VxWorks 7.0 and later, the kernel module
INCLUDE_DRV_STORAGE_PIIX needs to be included.

The module INCLUDE_LLVM_INTRINSICS is only required if Jamaica was
built using the LLVM compiler. If Jamaica was built using the GNU compiler, the
module INCLUDE_GNU_INTRINSICS is required.

The module INCLUDE_STAT_SYM_TBL is not strictly necessary but its in-
clusion is recommended, for it enables Jamaica to print messages instead of codes
for errors received from the operating system.

If VxWorks real-time processes (RTP) are used, the following components are
also required (RTPs generated with Jamaica are dynamically linked by default):

e INCLUDE_POSIX_CLOCKS

With the following parameter:

Parameter Value
HIGH RES POSIX CLOCK | TRUE

¢ INCLUDE_POSIX_PTHREAD_SCHEDULER
« INCLUDE_POSIX_PTHREADS

« INCLUDE_SHL

* INCLUDE_RTP

e INCLUDE_RTP_SHELL_CMD

If java.lang.ProcessBuilder or java.lang.Runtime.exec ()
is used, the VxWorks source build needs to be configured with RTP__CLONE en-
abled in the BSP configuration and

e INCLUDE_POSIX_EXECVE
e INCLUDE_POSIX_FORK

components need to be configured into the kernel.
If file locking is used, the following component must be included as well:

e INCLUDE_POSIX_ADVISORY_FILE_LOCKING

The number of available open files should be increased by setting the following
parameters:

Parameter Value
RTP_FD_NUM MAX | 1024

290 APPENDIX B. OPERATING SYSTEMS

You might also need to set file system specific parameters. For example, if
dosFs is used, then you will also have to set the DOSFS_DEFAULT_MAX_FILES
parameter. Similary, if HRFS is used, then you will also have to set the HRF'S__
DEFAULT_MAX FILES parameter.

In addition, the following parameters should be set:

Parameter Value
TASK_USER_EXC_STACK_SIZE 16384

If DNS is used, the following component must be included as well:
e INCLUDE_TIPDNSC

+ Additionally, the parameters DNSC_DOMAIN_NAME, DNSC_PRIMARY_
NAME_SERVER and DNSC__SECONDARY_NAME_ SERVER need to be prop-
erly configured according to your network settings.

! If some of this functionally is not included in the VxWorks kernel image,
linker errors may occur when loading an application built with Jamaica and
the application may not run correctly.

For VxWorks 7.0 or newer versions, a source build needs to be made as part
of the OS configuration process.

For ARM architectures, Jamaica uses a software library to perform floating
point arithmetics. For the required library symbols to be containted in the oper-
ating system image, the VxWorks source build needs to be configured to use soft
floating point in the BSP configuration.

B.4.2 Installation

The VxWorks version of Jamaica is installed as described in the section Installa-
tion (Section [2.1)). In addition, the following steps are necessary.

B.4.2.1 Configuration for VxWorks 7.x

e Set the environment variable WIND HOME to the WindRiver installation
base directory (e.g. /opt /WindRiver).

* Set the environment variable WIND_BASE to the VxWorks directory in
the WindRiver installation. The previously declared environment variable
WIND_HOME may be used (e.g., WIND_HOME /vxworks—7).

* Set the environment variable WIND_USR to the RTP header files directory
of the WindRiver installation (e.g., WIND_BASE/target/usr).

B.4. VXWORKS 291

e Set the environment variable LD_LIBRARY PATH to the folder which
contains 1iblmapi.so or lmapi.dll (the License Management API
libraries), while adding the folder into your PATH environment variable.
LM_LICENSE_FILE needs to be set to the appropriate value based on
your license type (floating, node-locked, etc.).

* In addition, set the environment variable VSB_D1IR to the VxWorks source
build folder (the folder that contains the file vsb.config).

B.4.3 Secure Random

A wide range of Java APIs depend on java.security.SecureRandom.
This includes creating temporary files but also the Java Cryptography Extension.
That class is intended as a source of cryptographically strong random numbers.
On VxWorks, Jamaica relies on the target being configured in FIPS14 0~ 2 mode.
This has been described in the document VxWorks 7 Cryptography Libraries Pro-
grammer’s Guide for VxWorks 7 provided by Wind River.

On VxWorks 7, if the target is not set-up with a hardware entropy source,
then the VxWorks source build needs to be configured with RANDOM_ENTROPY__
INJECT enabled.

aicas has not made an evaluation of Windriver Cryptography Libraries with
respect to its degree of conformance to FIPS140-2 standard.

Please refer to Appendix [D.2] for how to provide an alternative source for a
cryptographically strong random number generator if this is required.

B.4.4 Starting an Application

The following instructions assume that real-time processes (RTP) is used and that
the target system is configured for disk or remote file system access. It is also
possible to link the application to a kernel image (see [B.4.4.2).

! VxWorks supports remote file access via FTP, RSH and NFS [12, Remote File

System Access]. FTP and RSH are remote file access protocols that handle
simple file transfers well, but have limited capabilities. They are, for example,
suitable for loading and launching an application created with the Builder. When
running an application that loads code from Java archive (JAR) files at runtime,
such as a Jamaica target VM (see Section [I1.2), many simultaneous connections
may be opened accessing parts of JAR files. With FTP and RSH this can overload
the file server, resulting in sporadic instances of ClassNotFoundException
or NoClassDefFoundError, even when starting up the VM. In such situa-
tions, NFS or a local disk must be used. For setting up an NFS client, see the
VxWorks File System Programmer’s Guide [11].

292 APPENDIX B. OPERATING SYSTEMS

B.44.1 RTP

As Jamaica is compiled as a dynamic executable, the dynamic library 1ibc.
so must be renamed to 1ibc.so.1 and added to the folder of the executable.
This library is located inside the VxWorks Source Build (VSB) project. When
using elliptic curve cryptography the following additional libraries are needed:
libcplusplus.so.l,libllvmcplus.so.land 1ibllvm.so.1. They
can also be found inside the VSB project and can be added to the folder of the
executable. For other possible solutions see the Shared Library Location and
Loading at Run-time paragraph in the VxWorks Application Programmer’s Guide.
To start the application, please use the following shell command:

-> rtpSp "filename"

If you would like to specify command line parameters, add them as a space-
separated list in the following fashion:

-> rtpSp "filename argl arg2 arg3"

The rtpSp command will pass environment variables from the shell to the cre-
ated process.
To kill the running process, please use the following shell command:

-> rtpKill ID

where ID is the identifier returned by an invocation of rtpSp as above. This sends
a SIGTERM to the VM which when not explicitly disabled, invokes the VM shut-
down sequence calling any registered shutdown hooks.

To kill the processes forcefully, rtpKill may be invoked with SIGKILL as be-
low:

-> rtpKill ID, 9

Here, the kernel takes care of killing the process and the signal is never sent to the
process itself.

B.4.4.2 Linking the Application to the VxWorks Kernel Image

The built application may also be linked directly to the VxWorks kernel image,
for example for storing the kernel and the application in FLASH memory. In the
VxWorks kernel a user application can be invoked enabling the VxWorks config-
uration define INCLUDE_USER_APPL and defining USER_APPL_INIT when
compiling the kernel (see VxWorks documentation and the file usrConfig.c).
The prototype to invoke the application created with the Builder is:

int jvm_main (const char xcommandLine) ;

B.4. VXWORKS 293

where main is the name of the main class or the name specified via the Builder
option destination. To link the application with the VxWorks kernel image
the macro USER_APPL_INIT should be set to something like this:

extern int Jjvm_main (const char x); Jjvm_main (args)

where args 1s the command line (as a C string) which should be passed to the
application.

B.4.5 Secure Random

Please refer to Appendix for how to provide a source for a cryptographically
strong random number generator that is the basis for secure communication.

B.4.6 Thread Priorities

On VxWorks systems, JamaicaVM does not use or implement a specific mecha-
nism to yield a CPU to a particular thread as explained in Section[9.8.3.2] In case
a thread is preempted by a more eligible thread in the same VM, this might result
in the preempted thread losing the CPU to a different process’ thread running at
the same priority.

To avoid any interference between JamaicaVM'’s threads and other threads, it
is best to use disjoint native thread priorities for JamaicaVM’s threads and other
threads running on the same CPUs. This defines a clear precedence between these
threads.

B.4.7 Limitations

The following limitations exist on VxWorks.

B.4.7.1 General

* The following realtime signals are not available:

SIGSTKFLT, SIGURG, SIGXCPU, SIGXFSZ, SIGVTALRM, SIGPROF,
SIGWINCH, SIGIO, SIGPWR, SIGSYS, SIGIOT , SIGUNUSED, SIG—
POLL, SIGCLD.

» Jamaica does not allow an application to set the resolution of the realtime
clock provided in javax.realt imeﬂ The resolution of the clock de-
pends on the frequency of the system ticker (see the VxWorks functions

9The RTS]J realtime clock may be obtained through Clock .getRealtimeClock ().

294

APPENDIX B. OPERATING SYSTEMS

sysClkRateGet () and sysClkRateSet ()). If a higher resolution
for the realtime clock is needed, the frequency of the system ticker must
be increased. Care must be taken when doing this, because other programs
running on the system may change their behavior and even fail.

Setting sysClkRateSet () to a value higher than the value supported on
the board is implementation-defined and should be avoided by checking its
return value. To get the maximum possible resolution for your board, check
the BSP documentation for macros that define this value. For example on
x86, it is SYSCLK_OPTIMUM_MAXFRQ and on ARM, it is SYS_CLK_
RATE_MAX.

For parallel applications on VxWorks SMP the option —Xcpus can either
be set to all CPUs or one CPU. Any other set of CPUs is currently not
supported by VxWorks.

IPv6 is not yet supported on VxWorks.

Setting the socket option ITP_MULTICAST_TTL to 0 doesn’t work on Vx-
Works. An attempt to do so will not result in an error, however, the value
will not be changed. Windriver defect-ID is V7/NET-1379.

According to VxWorks documentation, the socket option SO_RCVBUF has
a maximum limit of 65535. Attempting to set it to a higher value will im-
plicitly cause it to be set to that maximum.

In VxWorks source, the socket option SO_SNDBUF has a hard-coded limit
of 1879048192. To avoid returning an error when attempting to set it to

a higher value, it will implicitly be set to the hard-coded limit. Windriver
defect-ID is VINET-1387.

SecureRandom does not support the algorithm NativePRNG on Vx-
Works as it depends on the existence of the devices /dev/random and
/dev/urandom. However, SHA1PRNG is defined and is used as the de-
fault.

Java Runtime tools keytool, rmid and rmiregistry do not support
—J option. Additionally, the —C option is not supported by rmid and
rmiregistry. If these options are needed, one could start the VM with
the java class that contains the main method for these tools. For example,
the rmiregistry tool can be executed like this:

jamaicavm sun.rmi.registry.RegistryImpl

B.4. VXWORKS 295

and here, the options can be sent directly to the java-interpreter.

* Event polling epol1 is only supported in kernel-mode. Furthermore, it
allows for the monitoring of network socket descriptors only. Therefore
AsynchronousChannelProvider is not implemented and the fol-
lowing Java API classes are, consequently, not supported:

java.nio.channels.AsynchronousFileChannel
java.nio.channels.AsynchronousSocketChannel
java.nio.channels.AsynchronousServerSocketChannel

* On VxWorks7 kernels from version SR0520, a kernel configured with sys-
tem component HIGH_RES_POSIX_CLOCK may return sooner than the
specified timeout in Java API like Thread.sleep (). The Windriver
defect-ID is VICOR-5753.

* On VxWorks7 kernels from version SR0520, higher scheduling latency
can be observed when using JamaicaVM as an RTP, especially in realtime
scenarios. This is due to a defect in the underlying scheduler in VxWorks.
The Windriver defect summary is RTP pthread_cond_timedout() may delay
one tick longer than it should and the defect-ID is V7ICOR-5694.

* Using GCC4.8.1.7 or 4.8.1.8, an RTP or shared library may be created with
more than 2 segments. Such RTPs and shared libraries will fail to load. The
Windriver defect summary is Loading an RTP depending upon a shared
library with more than 2 loadable segments will fail and the defect-ID is
TCVXWGCC-178. C code, that does not generate more than 2 segments
is not affected. Accordingly, depending on the application, JamaicaVM
Builder built RTP as well as the Jamaica JAR Accelerator built shared li-
brary might be affected when using these C-compilers. This has been fixed
for RTPs starting with version 4.8.1.10. For shared libraries, an enhance-
ment request has been filed in Windriver database with id TCVXWGCC-
185.

* On VxWorks7 kernels from version SR0520, the software library to per-
form floating point arithmetics on the ARMv7 architecture can be observed
not to be fully IEEE 754 compliant. The Windriver defect summary is Unex-
pected results for floating point operations, the defect-ID is TCVXWGCC-
213.

296 APPENDIX B. OPERATING SYSTEMS

B.4.7.2 File System Support

VxWorks provides remote file access through FTP, RSH and NFS [[12, Remote
File System Access]. FTP and RSH are useful in the development process for
deploying and running applications, but unlike NFS they do not constitute fully-
fledged remote file systems. Most operations of Java’s file API java.io.File
will either not work or not work reliably. NFS or a local file system must be used.
Also see the VxWorks File System Programmer’s Guide [11]]. Jamaica runs best
on High Reliability File System (HRFS) which supports real-time systems and
is POSIX PSE52 compliant. For further limitations of file system support, see
below.

* Depending on the file system, File.canRead (),File.canWrite ()
and File.canExecute () may return incorrect values. These func-
tions do not necessarily work for NFS and local disk (FAT). The reason
for this limitation is rooted in the implementation of access () provided
by VxWorks. Also file functions of java.nio.file.Files relying
on access () function, for example Files.isReadable (), may not
work properly.

* Also truncating a file using RandomAccessFile.setLength () or
FileChannel.truncate () may not work. These functions work for
local disk (FAT), they do not work for NFS. This is caused by the imple-
mentation of ioctl FIOTRUNC.

* File locking through FileChannel.lock () is only supported on the
High Reliability File System (HRFS) on VxWorks RTP. The Preferences
APIsin java.util.prefs.Preferences also requires file-locking.

» Since VxWorks doesn’t fully support the APIs needed for symbolic links,
operations will always take effect on the linked file and not the link itself.

* VxWorks does not provide any API for querying mount entries; therefore,
the package java.nio.file is currently not fully supported. The fol-
lowing Java API methods are not implemented:

java.nio.file.Files.getFileStore()
jJava.nio.file.FileSystem.getFileStores|()

* VxWorks does not provide file ownership and file permissions. Conse-
quently, the file operations requiring functions such as chown (), are not
supported. For example, java.nio.file.Files.copy () is not sup-
ported as it relies on fchown ().

B.5. WINDOWS 297

* On HRFS, it has been observed that a file deletion or a file update operation
might result in an HRFS_EXCEPTION. As the name suggests, this is a file
system exception thrown by VxWorks. The defect-ID is V7STO-1190.

B.5 Windows

B.5.1 Secure Random

The default source of cryptographically strong random numbers on Windows is
the system function Crypt GenRandom. Please refer to Appendix[D.2]for how to
provide a different source for a cryptographically strong random number generator
for systems for which Crypt GenRandom is insufficient for cryptographic use.

B.5.2 Limitations

The current release of Jamaica for the desktop versions of Windows contains the
following limitations:

* No realtime signals are available.

* The java.io.File supports extended-length paths, but full support of
file paths exceeding 260 characters is not guaranteed by the JRE and de-
pends also on Windows version and setup.

* On multicore systems Jamaica will always run on the first CPU in the sys-
tem.

298 APPENDIX B. OPERATING SYSTEMS

Appendix C

Heap Usage for Java Datatypes

This chapter contains a list of in-memory sizes of datatypes used by JamaicaVM.
For datatypes that are smaller than one machine word, only the smallest mul-
tiple of eight Bits that fits the datatype will be occupied for the value. l.e., several
values of types boolean, byte, short and char may be packed into a single machine
word when stored in an instance field or an array.
Tab. shows the usage of heap memory for primitive types, Tab. [C.2]shows
the usage of heap memory for objects, arrays and frames.

299

300

APPENDIX C. HEAP USAGE FOR JAVA DATATYPES

Datatype Used Memory | Min Value Max Value
Bits \ Bytes

boolean 8 1 - -
byte 8 1 —27 2" —1
short 16 2 —21 2t 1
char 16 2 \u0000 \uffff
int 32 4 —231 231 1
long 64 8 —203 203 1
float 32 4 1.4E-45F 3.4028235E38F
double 64 8 49E-324 | 1.7976931348623157E308
Java reference

32-bit systems | 32 4 - -

64-bit systems | 32 4 - -

Table C.1: Memory Demand of Primitive Types

] Data Structure

| Memory Demand |

Object header (containing garbage collection state, object
..) 12 Bytes
type, inlined monitor and memory area)
Array header (containing object header, array layout in-
. 16 Bytes
formation and array length)
Java object size on heap (minimum) 32 Bytes
Java array size on heap (minimum) 32 Bytes
Minimum size of single heap memory chunk 64 KBytes
Garbage Collector data overhead for heap memory. For
a usable heap of a given size, the garbage collector will
allocate this proportion of additional memory for its data.
Single-core systems 6.25%
Multi-core, 32-bit systems 15.63%
Multi-core, 64-bit systems 18.75%
Stack slot 8 Bytes
Java stack frame of normal method 4 slots
Java stack frame of synchronized method 5 slots
Java stack frame of static initializer 7 slots
Java stack frame of asynchronously interruptible method 8 slots
Additional Java stack frame data in profile mode 2 slots

Table C.2: Memory Demand of Objects, Arrays and Frames

Appendix D

Limitations

This appendix lists limitations of the JamaicaVM virtual machine and applications
created with JamaicaVM Builder.

D.1 Security

JamaicaVM is not designed for running untrusted code. Byte code that does not
fulfill the static and structural constraints laid out in The Java Virtual Machine
Specification, Java SE 8 Edition [, Sections 4.1-4.9] may lead to undefined be-
haviour of JamaicaVM.

Classfile verification is currently limited to an incomplete pre Java-6 (classfile
version 49 and older) style data flow analysis of the bytecode instructions. The
verification algorithm is designed to increase compatibility with regards to the
order in which classes are loaded. It does not cover all the functionality described
in the JVM specification. Consequently, classfile verification is not sufficient to
ensure correctness of class files that are produced by untrusted tools, that were
tampered with or that are otherwise broken.

D.2 Cryptographic Strength

Cryptography requires a cryptographically strong random number generator. This
is not readily available on many target platforms. For secure communication based
onclass java.security.SecureRandom, such a random number generator
is required.

Where this is available, the /dev/random device will be used by default
as a source of secure random numbers. It is, however, required for the user to
ensure that this device is configured such that it produces cryptographically strong

301

302 APPENDIX D. LIMITATIONS

random numbers. Please refer to the information given in Appendix [B|for details
on the individual operating systems.

The source of cryptographically strong random number is defined in the file
Jjamaica-home/tarqget /platform/1ib/security/java.security. The
entry securerandom. source provides an URL to a stream of cryptograph-
ically strong random numbers. On systems that do not provide a sufficiently
strong /dev/random, this URL has to be replaced. Alternatively, the property
java.security.egd can be set to overwrite the settings defined in java.
security.

Additionally, JamaicaVM provides a mechanism to provide a user defined
Java class as a source of cryptographically strong random numbers. For this,
the URL provided as securerandom. source in file java.security or
via the property java.security.egd can be set to class:name to pro-
vide an arbitrary non-abstract class name that must extend sun.security.
provider.SeedGenerator and implement the method get SeedBytes.

In case the source of cryptographically strong random numbers is not acces-
sible, e.g., when property java.security.egd is set to file:foo for a
non-existing file foo, Jamaica does not fall back to using an unsafe source of ran-
dom numbersﬂ Instead, creating an instance of java.lang.SecureRandom
in this case results in an InternalError with a detail message explaining this.

D.3 Thread and Data Capacity, Timers

Limitations such as the absolute maximum number of Java Threads, the absolute
maximum heap size or timer overflow are listed in Tab.[D.1]

| Aspect | Limit

Number of Java Threads 511
Maximum Monitor Nest Count (repeated monitor en-
ter of the same monitor in nested synchronized
statements or nested calls to synchronized meth-

ods). Exceeding this value will result in throwing 255
an java.lang.InternalError with detail mes-

sage "Max. monitor nest count reached

(255)"

!Other Java implementations attempt to gather entropy from the system through sun.
security.provider.SeedGenerator$ThreadedSeedGenerator.

D.3. THREAD AND DATA CAPACITY, TIMERS

303

| Aspect

Limit |

Minimum Java heap size

64KB

Maximum Java heap size (32-bit systems)

approx. 3.5GB

Maximum Java heap size (64-bit systems)

approx. 127GB

Minimum Java heap size increment

64KB

Maximum number of heap increments. The Java heap may
not consist of more than this number of chunks, i.e., when
dynamic heap expansion is used (max heap size is larger
than initial heap size), no more than this number of incre-
ments will be performed, including the initial chunk. To
avoid this limit, the heap size increment will automatically
be set to a larger value when more than this number of in-
crements would be needed to reach the maximum heap size.

256

Maximum number of memory areas (instances of
Javax.realtime.MemoryArea). Note that
two instances are used for HeapMemory and
ImmortalMemory.

256

Minimum size of Java stack

1KB

Maximum size of Java stack

64MB

Maximum size of native stack

2GB

Maximum number of constant UTFS8 strings (names and
signatures of methods, fields, classes, interfaces and con-
tents of constant Java strings) in the global constant pool
(exceeding this value will result in a larger application)

224 — 1

Maximum number of constant Java strings in the global
constant pool (exceeding this value will result in a larger
application)

216 —1

Maximum number of name and type entries (references to
different methods or fields) in the global constant pool (ex-
ceeding this value will result in a larger application)

216 — 1

Maximum Java array Iength. Independent of the heap size,
Java arrays may not have more than this number of ele-
ments. However, the array length is not restricted by the
heap size increment, i.e., even a heap consisting of several
increments each of which is smaller than the memory re-
quired for a Java array permits the allocation of arrays up
to this length provided that the total available memory is
sufficient.

2% _ 1

304 APPENDIX D. LIMITATIONS

| Aspect | Limit |

Maximum number of virtual methods per Java class (includ-
ing inherited virtual methods) 4095
Maximum number of interface methods per Java inter-
face (including interface methods inherited from super- 4095
interface)
On POSIX systems where t ime_spec.tv_sec of type 2038-01-19
time_t is a signed 32 Bit value it is not possible to wait 03:14:07 GMT
until a time and date that is later than o
On POSIX systems where t ime_spec.tv_sec of type 2106-02-07
time_t is an unsigned 32 Bit value it is not possible to

. o . 06:28:15 GMT
wait until a time and date that is later than
On systems that use 64-bit values to represent times, it is 6
not possible to wait until a time and date that is later than year 292 - 10

Table D.1: JamaicaVM limitations

D.4 Builder

The static compiler does not compile certain Java methods but leaves them in
interpreted bytecode format independent of the compiler options or their signifi-
cance in a profile.

* Classfile verification is not performed for classes built-into a stand-alone
binary created by the Builder. Consequently, class files that are produced
by untrusted tools, that were tampered with or that are otherwise broken
may not be processed by the Builder.

e Static initializer methods (methods with name <clinit>) are not com-
piled.

A simple way to enable compilation is to change a static initializer into a
static method, which will be compiled. That is, replace a static initializer

class A

{

static

{

<initialization code>

}

by the following code:

D.5. MULTICORE 305

class A

{

static
{
init ();
}
private static void init ()

{

<initialization code>

* Methods with bytecode that is longer than the value provided by Builder
option XexcludeLongerThan are not compiled.

* Methods that reference a class, field or method that is not present at build
time are not compiled. The referenced class will be loaded lazily by the
interpreter.

D.5 Multicore

Currently, the multicore variant of the JamaicaVM virtual machines (command
jamaicavmm) and the JamaicaVM Builder using option —-parallel have the
following additional limitations.

* In class com.aicas. jamaica.lang.Debug the following methods
are not supported:

getMaxFreeRangeSize

getNumberOfFreeRanges
— printFreelistStats
— createFreeRangeStats
* Java arrays that are not allocated very early during application startup (be-

fore the garbage collector starts recycling memory) are allocated using a
non-contiguous representation that results in higher costs for array accesses.

* The multicore VM does not support the JVMTI interface. In particular, the
option —agent 1ib of both the VM and the Builder does not work.

306 APPENDIX D. LIMITATIONS

D.6 Temporary Files

The generation of unique filenames for temporary files requires cryptographically
strong random numbers that are not available on all platforms. Please refer to
Appendix for details.

D.7 File System

The time precision provided by JamaicaVM for file attributes is limited by the
underlying file system. In particular, the JAR loading mechanism for accelerated
JAR files relies on the modification time of JAR files to detect whether a JAR file
has been replaced. If the difference of the modification time between the two files
falls below the file system time precision, the VM will not recognize that the file
has been changed and possibly load the wrong compiled code.

Appendix E

Licenses

JamaicaVM is commercially licensed software from aicas GmbH. The virtual ma-
chine and tools are copyrighted by aicas and all rights are reserved. JamaicaVM
does use libraries from other sources, but these may all be linked with commercial
software without affect to the license of that software.

The complete set of third-party licenses for external components, along with
the Jamaica evaluation license, is provided in the Jamaica installation in the folder
jamaica-home/1license.

The software included in this product contains copyrighted software that is
licensed under the GNU General Public License (GPL) or GNU Lesser General
Public License (LGPL). You may obtain the complete corresponding source code
from us for a period of three years after our last shipment of this product. aicas
is entitled to charge the cost of performing this distribution of the source code to
your account in advance. Please contact us at the following address for payment
instructions:

aicas GmbH
Emmy—-Noether-StraRle 9
76131 Karlsruhe
Germany

Email: support@aicas.com

This offer is valid to anyone in receipt of this information.

307

308 APPENDIX E. LICENSES

Bibliography

[1]

(2]

[7]

[8]

[9]

[10]

Stephane Bailliez, Nicola Ken Barozzi, et al. Apache Ant™ manual. http:
//ant .apache.org/manual/.

Peter C. Dibble. Real-Time Java Platform Programming. Prentice-Hall,
2002.

James Gosling, Bill Joy, Guy Steele, Gilad Bracha, and Alex Buckley. The
Java Language Specification, Java SE 8 Edition. Oracle America, Inc., 2015.
Available online at https://docs.oracle.com/javase/specs/.

Mike Jones. What really happened on Mars? http://web.archive.
org/web/20170201131749/http://research.microsoft.
com/en—-us/um/people/mbj/Mars_Pathfinder/, 1997.

Muhammad Khojaye. Finalization and phantom references. http://
dzone.com/articles/finalization—and-phantom, 2010.

Sheng Liang. Java Native Interface: Programmer’s Guide and Specification.
Addison-Wesley, 1999.

QNX Software Systems Limited. QNX software development platform
7.0. http://www.gnx.com/developers/docs/7.0.0/#com.
gqnx.doc.gnxsdp.nav/topic/bookset.html, 2021.

Tim Lindholm, Frank Yellin, Gilad Bracha, and Alex Buckley. The Java Vir-
tual Machine Specification, Java SE 8 Edition. Oracle America, Inc., 2015.
Available online at https://docs.oracle.com/ javase/specs/.

C. L. Liu and J. W. Wayland. Scheduling algorithms for multiprogramming
in hard real-time environment. Journal of the ACM, 20, 1973.

Fridtjof Siebert. Concurrent, parallel, real-time garbage-collection. In ACM
Sigplan Notices, volume 45, pages 11-20, 2010.

309

http://ant.apache.org/manual/
http://ant.apache.org/manual/
https://docs.oracle.com/javase/specs/
http://web.archive.org/web/20170201131749/http://research.microsoft.com/en-us/um/people/mbj/Mars_Pathfinder/
http://web.archive.org/web/20170201131749/http://research.microsoft.com/en-us/um/people/mbj/Mars_Pathfinder/
http://web.archive.org/web/20170201131749/http://research.microsoft.com/en-us/um/people/mbj/Mars_Pathfinder/
http://dzone.com/articles/finalization-and-phantom
http://dzone.com/articles/finalization-and-phantom
http://www.qnx.com/developers/docs/7.0.0/#com.qnx.doc.qnxsdp.nav/topic/bookset.html
http://www.qnx.com/developers/docs/7.0.0/#com.qnx.doc.qnxsdp.nav/topic/bookset.html
https://docs.oracle.com/javase/specs/

310 BIBLIOGRAPHY

[11] Wind River Systems. VxWorks 7 File System Programmer’s Guide, 6th edi-
tion, 2016.

[12] Wind River Systems. VxWorks 7 Programmer’s Guide, 11th edition, 2016.

Index of Environment Variables

CLASSPATH
vm, [154]

JAMAICA
builder, 209

installation,
jaraccelerator, 224]
JAMAICA _BUILDER _HEAPSIZE
builder, [209]
JAMAICA _BUILDER _JAVA_
STACKSIZE
builder, [209]
JAMAICA _BUILDER _
MAXHEAPSIZE
builder, 209
JAMAICA _BUILDER NATIVE_
STACKSIZE
builder, 209
JAMAICA _BUILDER_
NUMTHREADS
builder, 209
JAMAICA_JARACCELERATOR _
HEAPSIZE
jaraccelerator, 224]
JAMAICA _JARACCELERATOR_
JAVA _STACKSIZE
jaraccelerator, [224]
JAMAICA_JARACCELERATOR_
MAXHEAPSIZE
jaraccelerator, [224
JAMAICA_JARACCELERATOR_

311

NATIVE_STACKSIZE
jaraccelerator, 224]
JAMAICA_JARACCELERATOR_
NUMTHREADS
jaraccelerator, [224
JAMAICA PROFILE_ANALYZER_
HEAPSIZE
profileanalyzer, (171
JAMAICA PROFILE_ANALYZER_
MAXHEAPSIZE
profileanalyzer, (171
JAMAICAH_HEAPSIZE
jamaicah, 248]
JAMAICAH_-MAXHEAPSIZE
jamaicah, 248]
JAMAICAVM_ANALYZE
vm,
JAMAICAVM_CONSTGCWORK
v,
JAMAICAVM_CPUS

vm, [155]
JAMAICAVM HEAPSIZE

v,
JAMAICAVML_
HEAPSIZEINCREMENT
vm,
JAMAICAVM_IMMORTALSIZE

vm, [I55]
JAMAICAVM JAVA _STACKSIZE

vm, [155

312

JAMAICAVM_LOCK_MEMORY

vm,
JAMAICAVM _MAXHEAPSIZE
vm,
JAMAICAVM_
MAXNUMTHREADS
vm,
JAMAICAVM _NATIVE_
STACKSIZE
vm, [155]
JAMAICAVM _NUMIJNITHREADS
vm, [155]
JAMAICAVM_NUMTHREADS
vm, [155]
JAMAICAVM_PRIMAP
v,
JAMAICAVM_
PROFILEFILENAME
v,
JAMAICAVM_
RESERVEDMEMORY

INDEX OF ENVIRONMENT VARIABLES

v,
JAMAICAVM_SCOPEDSIZE

vm,
JAMAICAVM_TIMESLICE

vm, [155]

MWOS
0S-9, 28T]

QNX_HOST

QNX, 283
QNX_TARGET

QNX, 283

VSB_DIR
VxWorks, 291]

WIND_BASE
VxWorks, 290]

WIND_HOME
VxWorks, 290]

WIND_USR
VxWorks, 290]

Index of Options

builder,
jamaicah, 247]
jaraccelerator, 216]
v,

-agentlib
builder,
vm, [154]

-analyse

builder, [190]

-analysisResults

profileanalyzer,

-analyze

builder, [190]

-atomicGC

builder, [191]

-autoSeal
jaraccelerator, 213]

-bootclasspath
jamaicah, 248]

-classname

jamaicah, 248]
-classpath

builder, [T8T]

jamaicah, [240]

profileanalyzer, 169

vm, [146]

-closed

builder, [T79]

-compile

builder, [197]

-configuration
builder,
jaraccelerator, 215]
-constGCWork
builder,
-cp
builder, [T8T]
jamaicah, [246]

D
vm, [146]

jamaicah, [2406]
-da

vm, [147]
-destination

builder, [18T]

jaraccelerator, 213]
-disableassertions

vm,
-disablesystemassertions

vm, [147]

-dsa

vm, [147]

-d

-€a

builder, [181]
v,

-enableassertions

314

builder, [18T]
vm, [147]
-enablesystemassertions
vm,
-esa

vm, [147]

-excludeClasses
builder, [182]

-excludeFromCompile
builder,
jaraccelerator, 214]

-excludeJAR

builder, [182]

-h
builder,
jamaicah,
jaraccelerator, 216]
-heapSize
builder,
-heapSizelncrement
builder, [I88]
-help
builder,
jamaicah, [247]
jaraccelerator,
profileanalyzer,

vm, [147]

-immortalMemorySize

builder, [186]

-includeClasses

builder, [182]

-includeFilename

jamaicah,

-includeInCompile

builder, [197]

jaraccelerator, 214]
-includeJAR

builder, 183

-inline

INDEX OF OPTIONS

builder,
jaraccelerator, [214]
-interpret
builder, [198]
-jar

builder, [183]

-javaagent

vm, [146|

-javaStackSize

builder, [T88]
-jni

jamaicah, [247]
-jobs

builder,

jaraccelerator, [216|
s

vm, [149]

-lockMemory
builder, [T88]

-main

builder, [184]

-maxHeapSize

builder, [T89)

-maxNumThreads

builder, 193]

-mi1

vm, [149]

-msS

vm, [149)

-mXx

vm, [149)

-nativeStackSize

builder, 189

-normalise

profileanalyzer, 169
-normalize

profileanalyzer,
-ns

INDEX OF OPTIONS

vm, [150)
-numJNTIAttachableThreads

builder, [194]

-numThreads

builder, [194]

-0
builder, [181]
jamaicah,
jaraccelerator, 213]
-object
builder, [196]
-optimise
builder, [198]
jaraccelerator, 214]
-optimize
builder, [198]
jaraccelerator, 214]
-optionsFile

profileanalyzer,

-parallel

builder, [199]
jaraccelerator,

-percentageCompiled

builder, [198]

jaraccelerator, 215]

profileanalyzer, [[69]
-physicalMemoryRanges

builder, [186]
-priMap

builder, [194]
-profile

builder,

-rawMemoryRanges

builder, [186]

-reservedMemory

builder, [192]

-resource

builder, [184]

-saveSettings
builder, [T7§]
jaraccelerator, 216]
-schedulingPolicy
builder, [193]
-scopedMemorySize
builder,
-setFonts

builder, [183]

-setLocales

builder, [183]
-setProtocols

builder,
-showExcludedFeatures

builder,
-showIncludedFeatures

builder,
-showNumberOfBlocks

builder, [T80]

-showSettings

builder, [T7§]

jaraccelerator, 216]
-showversion

vm,
-smart

builder, [180]
-source

jaraccelerator, 213
-sS

vm, [149)
-stopTheWorldGC

builder,

-target
builder, [198]
jaraccelerator, 215]
-threadPreemption
builder, [T89]
jaraccelerator, 217]
-timeSlice

builder, [196]

315

316

-tmpdir
builder, [T83]
jaraccelerator,

-useLegacy

profileanalyzer, 169
-useProfile

builder, 199
jaraccelerator, 215]
profileanalyzer, [T70]

-verbose
builder,
jaraccelerator,
vm, [148]

-version
builder, 17§
jamaicah,
jaraccelerator, [216]

profileanalyzer, [I70]
vm, [147]

-X
vm, 14|
-XactiveVMOptionGroups
builder, 200]

-XavailableTargets
builder, 203
jaraccelerator, 218]

-Xbatch
vm, [150]

-Xbootclasspath
builder, 201]
jamaicah, 248
vm, [14§]

-Xbootclasspath/a

vm, [148]
-Xbootclasspath/p

vm, [149]

-Xcc
builder, 203]

jaraccelerator, 21§]

INDEX OF OPTIONS

-XCFlags
builder, 203]
jaraccelerator, 21§
-Xcheck

vm, [150]
-Xcomp

vm, [150]
-Xcpus

builder, 208]

vm, [149]
-XdefineProperty

builder, 200]
-Xdwarf2

builder, 203]
jaraccelerator, 219
-XexcludeLongerThan
builder, 206]
jaraccelerator, 219]
-XexecutableCompression

builder, 206]
-XfullStackTrace

builder, 206]
jaraccelerator, 219
-Xhelp

builder, [T79)

jamaicah, [247]

jaraccelerator, 216]
-xhelp

vm, [14§]

-XignoreLineNumbers
builder, 201]
jaraccelerator, 221]

-Xinclude
builder, 204]
jaraccelerator, 221]

-Xint
builder, 19§

vm, [150]

-Xinternal
builder, 179
jamaicah, [247]

INDEX OF OPTIONS

jaraccelerator,

-XjamaicaHome
builder, 202]
jaraccelerator, 218]

-XjavaHome

builder, 202]

-XjavaHomeFiles
builder, 202]
-Xjs
vm, [149]
-XlazyConstantStrings

builder, 202]
-Xld

builder, 206]

jaraccelerator, 219
-XLDFlags

builder, 206]

jaraccelerator, 219
-Xlibraries

builder, 207

jaraccelerator, 219
-XlibraryPaths

builder,

jaraccelerator, 220]
-XloadJNIDynamic

builder, 204]

-Xmi

vm, [149)

-Xmixed

vm, [150]

-Xms

vm, [149]

-Xmx

vm, [149]

-XnoClasses

builder, 203]
-XnoMain

builder, 203]

-XnoStrip
builder, 207

jaraccelerator, 220

317

-Xns

vm, [I50

-XnumMonitors

builder, 203]

-XobjectProcessorFamily
builder, 203
jaraccelerator, 221]

-XobjectSymbolPrefix
builder, 203]
jaraccelerator, 221]

-Xprof
vm, [150]

-XprofileFilename
builder, 207
vm, [154]

-XrecordEnterEvent

builder, 201]
-XrecordExitEvent

builder,
-XshowCompiledMethods

builder, 207

jaraccelerator, 220
-Xss

vm, [149|

-XstaticLibraries
builder, 208]
jaraccelerator, 220

-Xstrip
builder, 208|
jaraccelerator, 220]

-XstripOptions
builder, 20|
jaraccelerator, 220

-XuseMonotonicClock

builder, 203]
-XX:+DisplayVMOutputToStderr

vm, [I51]
-XX:+Display VMOutputToStdout

vm, [I57]

-XX:MaxDirectMemorySize
builder, [190]

318 INDEX OF OPTIONS

vm, vm,
-XX:0nOutOfMemoryError

Index of VM Properties

cacio.eventpump.priority,

jamaica.awt.dispatchthread.priority,
156

jamaica.boot.class.path,

jamaica.buildnumber, [163|

jamaica.byte_order,

jamaica.cost_monitoring_accuracy,
156)

jamaica.cpu_mhz, [156]

jamaica.err_to_file,
jamaica.err_to_null,
jamaica.finalizer.pri,
jamaica.fontproperties,

jamaica.full stack trace on_sig_quit,
1571
jamaica.heapSizeFromEnv,
jamaica.immortalMemorySize, [163]
jamaica.jara.abi,
jamaica.jara.variant, [[63
Jamaica.jaraccelerator.check.class,

jamaica.jaraccelerator.debug.class,

158|224
jamaica.jaraccelerator.extraction.dir,

158} 223]
jamaica.jaraccelerator.load,

jamaica.jaraccelerator.verbose, [[58]
jamaica.loadLibrary_ignore _error,

(58]

319

jamaica.maxNumThreadsFromEnv,
163]

jamaica.monotonic_
currentTimeMillis,

jamaica.no_sig_int_handler,

jamaica.no_sig_quit_handler,
jamaica.no_sig_term_handler, (82}

jamaica.numThreadsFromEnv,
jamaica.out_to_file,
jamaica.out_to_null, [I59]
jamaica.platform, [163]
jamaica.profile_force_dump, 159

jamaica.profile_groups, [59 [65] [159]

jamaica.profile_quiet_dump, [159

jamaica.profile_request_port, [55]
jamaica.reference_handler.pri, 81}

[891 [T60]
jamaica.release,

jamaica.reservation_thread_affinity,

160l
jamaica.reservation_thread_priority,
160
jamaica.scheduler_events_port,
230

jamaica.scheduler_events_port_

blocking, [161], 230]

jamaica.scheduler_events_recorder_

affinity, [T6]]

jamaica.scopedMemorySize, [163]

320

jamaica.shutdownhook.
inherit_priority, [T6]]
jamaica.shutdownhook.time limit,
161l
jamaica.softref.minfree, [161]
jamaica.version, 163
jamaica.word_size, 163

INDEX OF VM PROPERTIES

jamaica.x11.display, [T6]]

jamaica.xprof, [16]]
java.class.path, [162]

java.home, [162]
javax.realtime.version, [I64]

sun.arch.data.model, [164]

	Preface
	Intended Audience of This Book
	Contacting aicas
	What is New in JamaicaVM 8.11
	What is New in JamaicaVM 8.10
	What is New in JamaicaVM 8.9
	What is New in JamaicaVM 8.8
	What is New in JamaicaVM 8.7
	What is New in JamaicaVM 8.6
	What is New in JamaicaVM 8.5
	What is New in JamaicaVM 8.3
	What is New in JamaicaVM 8.2
	What is New in JamaicaVM 8.1
	What is New in JamaicaVM 8.0

	I Introduction
	Key Features of JamaicaVM
	Hard Realtime Execution Guarantees
	Real-Time Specification for Java (RTSJ) Support
	Minimal footprint
	ROMable code
	Native code support
	Dynamic Linking
	Supported Platforms
	Development platforms
	Target platforms

	Fast Execution
	Tools for Realtime and Embedded System Development

	Getting Started
	Installation of JamaicaVM
	Linux
	Windows

	Installation of License Keys
	JamaicaVM Directory Structure
	API Specification
	Target Platforms

	Building and Running a Java Program
	Host Platform
	Target Platform
	Improving Size and Performance
	Overview of Further Examples

	Notations and Conventions
	Typographic Conventions
	Argument Syntax
	Jamaica Home and User Home

	Tools Overview
	Java Compiler
	Jamaica Virtual Machine
	Creating Target Executables
	Accelerating JAR Files
	Monitoring Realtime Behavior

	Support for the Eclipse IDE
	Plug-in installation
	Installation on Eclipse
	Installation on Other IDEs

	Setting up JamaicaVM Distributions
	Using JamaicaVM in Java Projects
	Setting Virtual Machine Parameters
	Building applications with Jamaica Builder
	Getting started
	Jamaica Buildfiles

	II Tools Usage and Guidelines
	Performance Optimization
	Creating a profile
	Using the profiling VM
	Creating a profiling application
	Dumping a profile via network
	Creating a micro profile

	Using a profile for building an application
	Analyzing Profiles
	Using multiple profiles
	Providing the profiling information to the building tools

	Interpreting the profiling output
	Format of the profile file
	Example

	Reducing Footprint and Memory Usage
	Compilation
	Suppressing Compilation
	Using Default Compilation
	Using a Custom Profile
	Code Optimization by the C Compiler
	Full Compilation

	Smart Linking
	API Library Classes and Resources
	RAM Usage
	Measuring RAM Demand
	Memory Required for Threads
	Memory Required for Line Numbers

	Memory Management Configuration
	Configuration for soft-realtime applications
	Initial heap size
	Maximum heap size
	Finalizer thread priority
	Reference Handler thread priority
	Reserved memory
	Stop-the-world Garbage Collection
	Recommendations

	Configuration for hard-realtime applications
	Usage of the Memory Analyzer tool
	Measuring an application's memory requirements
	Fine tuning the final executable application
	Constant Garbage Collection Work
	Comparing dynamic mode and constant GC work mode
	Determination of the worst case execution time of an allocation
	Examples

	Debugging Support
	Enabling the Debugger Agent
	Connecting to Jamaica from the Command Line
	Using sockets as transport layer
	Using shared memory as transport layer

	Configuring the IDE to connect to Jamaica
	Reference Information

	The Realtime and Embedded Specification for Java
	Realtime programming with the RTSJ
	Thread Scheduling
	Thread Priorities
	Affinity
	Synchronization
	Events and Event Handlers
	Example

	Realtime Garbage Collection
	Use of Memory Areas
	Static Initializers

	JamaicaVM and the Realtime and Embedded Specification for Java
	Extra Features and Trade-Offs
	Computational Transparency
	Efficient Java Statements
	Non-Obvious Slightly Inefficient Constructs
	Statements Causing Implicit Memory Allocation
	Operations Causing Class Initialization
	Operations Causing Class Loading

	Supported Standards
	Real-Time Specification for Java
	Java Native Interface

	Memory Management
	Memory Management of RTSJ
	Finalizers
	Configuring a Realtime Garbage Collector
	Programming with the RTSJ and Realtime Garbage Collection
	Memory Management Guidelines

	Scheduling and Synchronization
	Schedulable Entities
	Synchronization
	Scheduling and Priorities

	Libraries
	Summary
	Efficiency
	Memory Allocation
	EventHandlers
	Monitors

	Multicore Guidelines
	Tool Usage
	Setting Thread Affinities
	Communication through Shared Memory
	Performance Degradation on Locking
	Periodic Threads
	Rate-Monotonic Analysis
	The Operating System's Interrupt Handler

	III Tools Reference
	The Jamaica Virtual Machine Commands
	jamaicavm — the Standard Virtual Machine
	Command Line Options
	Extended Command Line Options

	Running a VM on a Target Device
	Variants of jamaicavm
	jamaicavm_slim
	jamaicavmm
	jamaicavmp
	jamaicavmt

	Environment Variables
	Java Properties
	User-Definable Properties
	Predefined Properties

	Exitcodes

	The Jamaica Profile Analyzer
	Profile Analyzer Usage
	Profile Analyzer Options
	Analysis
	Output
	General

	Environment Variables
	Exitcodes

	The Jamaica Builder
	How the Builder tool works
	Builder Usage
	Using Arguments
	General
	Smart Linking
	Classes, files and paths
	RTSJ settings
	Heap and stack configuration
	GC configuration
	Threads and priorities
	Native code
	Profiling and compilation
	Parallel Execution

	Builder Extended Usage
	General
	Classes, files and paths
	RTSJ settings
	Threads and priorities
	Native code
	Profiling and compilation
	Parallel Execution

	Environment Variables
	Exitcodes

	The Jamaica JAR Accelerator
	JAR Accelerator Usage
	Classes, files and paths
	Profiling and compilation
	General
	Threads and priorities
	Parallel Execution

	JAR Accelerator Extended Usage
	Classes, files and paths
	Profiling and compilation
	General
	Native code

	Special Considerations
	Which Methods are Compiled
	Compilation and Sealing
	At Runtime

	Environment Variables
	Exitcodes

	Jamaica JRE Tools and Utilities
	JamaicaTrace
	Runtime System Configuration
	Control Window
	Creating User Events
	Control Window Menu

	Data Window
	Understanding the Scheduler
	Data Window Navigation
	Data Window Menu
	Data Window Context Window
	Data Window Tool Tips

	Event Recorder
	Location
	Usage

	Jamaica and the Java Native Interface (JNI)
	Using JNI
	The Jamaicah Command
	General
	Classes, files, and paths
	Environment Variables

	Finding Problems in JNI Code
	FPU Flags in JNI Code
	Invocation API
	Example code that creates a Jamaica VM
	Compilation and Linkage
	Using the Jamaica Builder

	Building with Apache Ant
	Task Declaration
	Task Usage
	Jamaica Builder, JAR Accelerator, Jamaicah, and Profile Analyzer
	C Compiler
	Native Linker

	Setting Environment Variables

	Building with Apache Maven
	Plug-in Installation
	Plug-in Usage
	Calling the Builder, JAR Accelerator, Profile Analyzer and Jamaicah
	Calling the C Compiler
	Calling the Native Linker

	Setting Environment Variables

	IV Additional Information
	FAQ — Frequently Asked Questions
	Software Development Environments
	JamaicaVM and Its Tools
	JamaicaVM
	JamaicaVM Builder
	Third Party Tools

	Supported Technologies
	Cryptography
	Graphics
	Fonts
	Realtime Support and the RTSJ

	Operating Systems
	Linux
	Secure Random
	Thread Priorities
	System Time Overflow
	Limitations

	OS-9
	Installation
	Secure Random
	Thread Priorities
	Limitations
	Shared Libraries

	QNX
	Installation
	Configuration of QNX
	Using JamaicaVM on QNX
	Limitations

	VxWorks
	Configuration of VxWorks
	Installation
	Secure Random
	Starting an Application
	Secure Random
	Thread Priorities
	Limitations

	Windows
	Secure Random
	Limitations

	Heap Usage for Java Datatypes
	Limitations
	Security
	Cryptographic Strength
	Thread and Data Capacity, Timers
	Builder
	Multicore
	Temporary Files
	File System

	Licenses

