
JamaicaVM 8.0 Ñ User Manual

Java Technology for Critical Embedded Systems

aicas GmbH

2

JamaicaVM 8.0 Ñ User Manual: Java Technology for Critical Embedded
Systems

JamaicaVM 8.0, Release 1. Published March 9, 2016.
c! 2001Ð2016 aicas GmbH, Karlsruhe. All rights reserved.

No licenses, expressed or implied, are granted with respect to any of the technology described in
this publication. aicas GmbH retains all intellectual property rights associated with the
technology described in this publication. This publication is intended to assist application
developers to develop applications only for the Jamaica Virtual Machine.
Every effort has been made to ensure that the information in this publication is accurate. aicas
GmbH is not responsible for printing or clerical errors. Although the information herein is
provided with good faith, the supplier gives neither warranty nor guarantee that the information is
correct or that the results described are obtainable under end-user conditions.

aicas GmbH phone +49 721 663 968-0
Haid-und-Neu-Stra§e 18 fax +49 721 663 968-99
76131 Karlsruhe email info@aicas.com
Germany web http://www.aicas.com

aicas incorporated phone +1 203 359 5705
6 Landmark Square, Suite 400
Stamford CT 06901 email info@aicas.com
USA web http://www.aicas.com

aicas GmbH phone +33 1 4997 1762
9 Allee de lÕArche fax +33 1 4997 1700
92671 Paris La Defense email info@aicas.com
France web http://www.aicas.com

This product includes software developed by IAIK of Graz University of Technology. This
software is based in part on the work of the Independent JPEG Group.
Java and all Java-based trademarks are registered trademarks of Oracle America, Inc. All other
brands or product names are trademarks or registered trademarks of their respective holders.
ALL IMPLIED WARRANTIES ON THIS PUBLICATION, INCLUDING IMPLIED
WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE,
ARE LIMITED IN DURATION TO NINETY (90) DAYS FROM THE DATE OF THE
ORIGINAL RETAIL PURCHASE OF THIS PRODUCT.
Although aicas GmbH has reviewed this publication, aicas GmbH MAKES NO WARRANTY
OR REPRESENTATION, EITHER EXPRESSED OR IMPLIED, WITH RESPECT TO THIS
PUBLICATION, ITS QUALITY, ACCURACY, MERCHANTABILITY OR FITNESS FOR A
PARTICULAR PURPOSE. AS A RESULT, THIS PUBLICATION IS PROVIDED AS IS, AND
YOU, THE PURCHASER, ARE ASSUMING THE ENTIRE RISK AS TO ITS QUALITY AND
ACCURACY.
IN NO EVENT WILL aicas GmbH BE LIABLE FOR DIRECT, INDIRECT, SPECIAL,
INCIDENTAL, OR CONSEQUENTIAL DAMAGES RESULTING FROM ANY DEFECT OR
INACCURACY IN THIS PUBLICATION, even if advised of the possibility of such damages.

THE WARRANTIES SET FORTH ABOVE ARE EXCLUSIVE AND IN LIEU OF ALL

OTHERS, ORAL OR WRITTEN, EXPRESSED OR IMPLIED.

Contents

Preface 11
Intended Audience of This Book . 11
Contacting aicas . 12
What is New in JamaicaVM 8.0 . 12

I Introduction 13

1 Key Features of JamaicaVM 15
1.1 Hard Realtime Execution Guarantees 15
1.2 Real-Time SpeciÞcation for Java support 16
1.3 Minimal footprint . 16
1.4 ROMable code . 17
1.5 Native code support . 17
1.6 Dynamic Linking . 17
1.7 Supported Platforms . 17

1.7.1 Development platforms 17
1.7.2 Target platforms . 18

1.8 Fast Execution . 19
1.9 Tools for Realtime and Embedded System Development 20

2 Getting Started 21
2.1 Installation of JamaicaVM . 21

2.1.1 Linux . 22
2.1.2 Sun/Solaris . 24
2.1.3 Windows . 24

2.2 Installation of License Keys . 24
2.2.1 Using the Standard Edition 25
2.2.2 Using the Personal Edition 25

2.3 JamaicaVM Directory Structure 26
2.3.1 API SpeciÞcation . 26

3

4 CONTENTS

2.3.2 Target Platforms . 26
2.4 Building and Running an Example Java Program 28

2.4.1 Host Platform . 28
2.4.2 Target Platform . 30
2.4.3 Improving Size and Performance 30
2.4.4 Overview of Further Examples 31

2.5 Notations and Conventions . 31
2.5.1 Typographic Conventions 32
2.5.2 Argument Syntax . 32
2.5.3 Jamaica Home and User Home 33

3 Tools Overview 35
3.1 Jamaica Java Compiler . 35
3.2 Jamaica Virtual Machine . 35
3.3 Creating Target Executables . 36
3.4 Accelerating JAR Files . 37
3.5 Monitoring Realtime Behavior 37

4 Support for the Eclipse IDE 39
4.1 Plug-in installation . 39

4.1.1 Installation on Eclipse 39
4.1.2 Installation on Other IDEs 40

4.2 Setting up JamaicaVM Distributions 40
4.3 Using JamaicaVM in Java Projects 41
4.4 Setting Virtual Machine Parameters 41
4.5 Building applications with Jamaica Builder 41

4.5.1 Getting started . 42
4.5.2 Jamaica BuildÞles . 42

II Tools Usage and Guidelines 45

5 Performance Optimization 47
5.1 Creating a proÞle . 47

5.1.1 Creating a proÞling application 48
5.1.2 Using the proÞling VM 49
5.1.3 Dumping a proÞle via network 49
5.1.4 Creating a micro proÞle 50

5.2 Using a proÞle with the Builder 50
5.2.1 Building with a proÞle 51
5.2.2 Building with multiple proÞles 51

CONTENTS 5

5.3 Interpreting the proÞling output 52
5.3.1 Format of the proÞle Þle 52
5.3.2 Example . 56

6 Reducing Footprint and Memory Usage 59
6.1 Compilation . 59

6.1.1 Suppressing Compilation 59
6.1.2 Using Default Compilation 61
6.1.3 Using a Custom ProÞle 62
6.1.4 Code Optimization by the C Compiler 64
6.1.5 Full Compilation . 65

6.2 Smart Linking . 66
6.3 API Library Classes and Resources 68
6.4 RAM Usage . 69

6.4.1 Measuring RAM Demand 69
6.4.2 Memory Required for Threads 71
6.4.3 Memory Required for Line Numbers 75

7 Memory Management ConÞguration 79
7.1 ConÞguration for soft-realtime applications 79

7.1.1 Initial heap size . 79
7.1.2 Maximum heap size . 80
7.1.3 Finalizer thread priority 80
7.1.4 Reference Handler thread priority 81
7.1.5 Reserved memory . 81
7.1.6 Stop-the-world Garbage Collection 82
7.1.7 Recommendations . 83

7.2 ConÞguration for hard-realtime applications 84
7.2.1 Usage of the Memory Analyzer tool 84
7.2.2 Measuring an applicationÕs memory requirements 84
7.2.3 Fine tuning the Þnal executable application 86
7.2.4 Constant Garbage Collection Work 87
7.2.5 Comparing dynamic mode and constant GC work mode . 88
7.2.6 Determination of the worst case execution time of an al-

location . 89
7.2.7 Examples . 90

8 Debugging Support 93
8.1 Enabling the Debugger Agent 93
8.2 ConÞguring the IDE to Connect to Jamaica 94
8.3 Reference Information . 94

6 CONTENTS

9 The Real-Time SpeciÞcation for Java 97
9.1 Realtime programming with the RTSJ 97

9.1.1 Thread Scheduling . 98
9.1.2 Memory Management 98
9.1.3 Synchronization . 98
9.1.4 Example . 99

9.2 Realtime Garbage Collection . 100
9.3 Relaxations in JamaicaVM . 100

9.3.1 Use of Memory Areas 101
9.3.2 Thread Priorities . 101
9.3.3 Runtime checks for NoHeapRealtimeThread 101
9.3.4 Static Initializers . 101
9.3.5 Class PhysicalMemoryManager 102

9.4 Limitations of RTSJ Implementation 102

10 Realtime Programming Guidelines 105
10.1 General . 105
10.2 Computational Transparency . 105

10.2.1 EfÞcient Java Statements 106
10.2.2 Non-Obvious Slightly InefÞcient Constructs 108
10.2.3 Statements Causing Implicit Memory Allocation 109
10.2.4 Operations Causing Class Initialization 111
10.2.5 Operations Causing Class Loading 112

10.3 Supported Standards . 113
10.3.1 Real-Time SpeciÞcation for Java 113
10.3.2 Java Native Interface . 115

10.4 Memory Management . 116
10.4.1 Memory Management of RTSJ 116
10.4.2 Finalizers . 118
10.4.3 ConÞguring a Realtime Garbage Collector 119
10.4.4 Programming with the RTSJ and Realtime Garbage Col-

lection . 119
10.4.5 Memory Management Guidelines 121

10.5 Scheduling and Synchronization 121
10.5.1 Schedulable Entities . 121
10.5.2 Synchronization . 123
10.5.3 Scheduling Policy and Priorities 126

10.6 Libraries . 129
10.7 Summary . 129

10.7.1 EfÞciency . 129
10.7.2 Memory Allocation . 130

CONTENTS 7

10.7.3 EventHandlers . 130
10.7.4 Monitors . 130

11 Multicore Guidelines 131
11.1 Tool Usage . 131
11.2 Setting Thread AfÞnities . 132

11.2.1 Communication through Shared Memory 132
11.2.2 Performance Degradation on Locking 133
11.2.3 Periodic Threads . 133
11.2.4 Rate-Monotonic Analysis 134
11.2.5 The Operating SystemÕs Interrupt Handler 134

III Tools Reference 135

12 The Jamaica Java Compiler 137
12.1 Usage of jamaicac . 137

12.1.1 Classpath options . 137
12.1.2 Compliance options . 138
12.1.3 Warning options . 138
12.1.4 Debug options . 139
12.1.5 Other options . 139

12.2 Environment Variables . 139

13 The Jamaica Virtual Machine Commands 141
13.1 jamaicavm Ñ the Standard Virtual Machine 141

13.1.1 Command Line Options 142
13.1.2 Extended Command Line Options 143

13.2 Running a VM on a Target Device 147
13.3 Variants of jamaicavm . 148

13.3.1 jamaicavmslim . 148
13.3.2 jamaicavmm . 148
13.3.3 jamaicavmp . 148
13.3.4 jamaicavmdi . 150

13.4 Environment Variables . 150
13.5 Java Properties . 152

13.5.1 User-DeÞnable Properties 152
13.5.2 PredeÞned Properties . 157

13.6 Exitcodes . 158

8 CONTENTS

14 The Jamaica Builder 161
14.1 How the Builder tool works . 161
14.2 Builder Usage . 161

14.2.1 General . 164
14.2.2 Classes, Þles and paths 165
14.2.3 ProÞling and compilation 170
14.2.4 Smart linking . 173
14.2.5 Heap and stack conÞguration 175
14.2.6 Threads, priorities and scheduling 177
14.2.7 Parallel Execution . 181
14.2.8 GC conÞguration . 182
14.2.9 RTSJ settings . 185
14.2.10 Native code . 186

14.3 Builder Extended Usage . 186
14.3.1 General . 187
14.3.2 Classes, Þles and paths 187
14.3.3 ProÞling and compilation 188
14.3.4 Heap and stack conÞguration 191
14.3.5 Parallel Execution . 192
14.3.6 RTSJ settings . 193
14.3.7 Native code . 193

14.4 Environment Variables . 194
14.5 Exitcodes . 195

15 The Jamaica JAR Accelerator 197
15.1 JAR Accelerator Usage . 198

15.1.1 General . 198
15.1.2 Classes, Þles and paths 200
15.1.3 ProÞling and compilation 201
15.1.4 Threads, priorities and scheduling 203
15.1.5 Parallel Execution . 203

15.2 JAR Accelerator Extended Usage 204
15.2.1 General . 204
15.2.2 Classes, Þles and paths 204
15.2.3 ProÞling and compilation 204
15.2.4 Native code . 207

15.3 Environment Variables . 207
15.4 Exitcodes . 208
15.5 Special Considerations . 208

16 Jamaica JRE Tools and Utilities 211

CONTENTS 9

17 JamaicaTrace 213
17.1 Run-time system conÞguration 213
17.2 Control Window . 214

17.2.1 Control Window Menu 215
17.3 Data Window . 217

17.3.1 Data Window Navigation 218
17.3.2 Data Window Menu . 219
17.3.3 Data Window Context Window 220
17.3.4 Data Window Tool Tips 221
17.3.5 Worst-Case Execution Time Window 221

17.4 Event Recorder . 223
17.4.1 Location . 223
17.4.2 Usage . 223

18 Jamaica and the Java Native Interface (JNI) 225
18.1 Using JNI . 225
18.2 The Jamaicah Command . 228

18.2.1 General . 228
18.2.2 Classes, Þles, and paths 229
18.2.3 Environment Variables 230

19 Building with Apache Ant 231
19.1 Task Declaration . 231
19.2 Task Usage . 232

19.2.1 Jamaica Builder and Jamaicah 232
19.2.2 C Compiler . 233

19.3 Setting Environment Variables 234

IV Additional Information 235

A FAQ Ñ Frequently Asked Questions 237
A.1 Software Development Environments 237
A.2 JamaicaVM and Its Tools . 238

A.2.1 JamaicaVM . 238
A.2.2 JamaicaVM Builder . 239
A.2.3 Third Party Tools . 242

A.3 Supported Technologies . 242
A.3.1 Cryptography . 242
A.3.2 Fonts . 244
A.3.3 Serial Port . 244

10 CONTENTS

A.3.4 Realtime Support and the RTSJ 245
A.3.5 Remote Method Invocation (RMI) 246
A.3.6 OSGi . 248

A.4 Target-SpeciÞc Issues . 248
A.4.1 Targets using the GNU Compiler Collection (GCC) 248
A.4.2 QNX . 248
A.4.3 VxWorks . 249

B Information for SpeciÞc Targets 251
B.1 Operating Systems . 251

B.1.1 VxWorks . 251
B.1.2 Windows . 260
B.1.3 WindowsCE . 260
B.1.4 OS-9 . 262
B.1.5 PikeOS . 262
B.1.6 QNX . 266

B.2 Processor Architectures . 269
B.2.1 ARM . 269

C Heap Usage for Java Datatypes 273

D Limitations 275
D.1 VM Limitations . 275
D.2 Builder Limitations . 277
D.3 Multicore Limitations . 278
D.4 Network Limitations . 278

E Internal Environment Variables 281

F Licenses 283

Preface

The Java programming language, with its clear syntax and semantics, is used
widely for the creation of complex and reliable systems. Development and main-
tenance of these systems beneÞt greatly from object-oriented programming con-
structs such as dynamic binding and automatic memory management. Anyone
who has experienced the beneÞts of these mechanisms on software development
productivity and improved quality of resulting applications will Þnd them essen-
tial when developing software for embedded and time-critical applications.

This manual describes JamaicaVM, a Java implementation that brings tech-
nologies that are required for embedded and time critical applications and that are
not available in classic Java implementations. This enables this new application
domain to proÞt from the advantages that have provided an enormous boost to
most other software development areas.

Intended Audience of This Book

Most developers familiar with Java environments will quickly be able to use the
tools provided with JamaicaVM to produce immediate results. It is therefore
tempting to go ahead and develop your code without studying this manual fur-
ther.

Even though immediate success can be achieved easily, we recommend that
you have a closer look at this manual, since it provides a deeper understanding of
how the different tools work and how to achieve the best results when optimizing
for runtime performance, memory demand or development time.

The JamaicaVM tools provide a myriad of options and settings that have been
collected in this manual. Developing a basic knowledge of what possibilities are
available may help you to Þnd the right option or setting when you need it. Our
experience is that signiÞcant amounts of development time can be avoided by a
good understanding of the tools. Learning about the correct use of the JamaicaVM
tools is an investment that will quickly pay-off during daily use of these tools!

This manual has been written for the developer of software for embedded and
time-critical applications using the Java programming language. A good under-

11

12 CONTENTS

standing of the Java language is expected from the reader, while a certain fa-
miliarity with the speciÞc problems that arise in embedded and realtime system
development is also helpful.

This manual explains the use of the JamaicaVM tools and the speciÞc fea-
tures of the Jamaica realtime virtual machine. It is not a programming guidebook
that explains the use of the standard libraries or extensions such as the Real-Time
SpeciÞcation for Java. Please refer to the JavaDoc documentation of these li-
braries provided with JamaicaVM (see Section 2.3).

Contacting aicas

Please contact aicas or one of aicasÕs sales partners to obtain a copy of JamaicaVM
for your speciÞc hardware and RTOS requirements, or to discuss licensing ques-
tions for the Jamaica binaries or source code. The full contact information for
the aicas main ofÞces is reproduced in the front matter of this manual (page 2).
The current list of sales partners is available online athttps://www.aicas.
com/cms/resellers .

An evaluation version of JamaicaVM may be downloaded from the aicas web
site athttps://www.aicas.com/cms/downloads .

Please help us improve this manual and future versions of JamaicaVM. E-mail
your bug reports and comments tobugs@aicas.com . Please include the exact
version of JamaicaVM you use, the host and target systems you are developing for
and all the information required to reproduce the problem you have encountered.

What is New in JamaicaVM 8.0

With this version of JamaicaVM, aicas opens OpenJDK 8 to the realtime domain.
There are numerous improvements and API extensions, perhaps the most impor-
tant one being lambdas and the stream processing API. Notable is also an en-
hanced API for Þle handling. JamaicaVM will be available in a number ofcom-
pactproÞles, so users who need fewer APIs can beneÞt from smaller library sizes.
JamaicaVM 8.0 provides solid support for IPv6.

For a full list of user-relevant changes including changes between minor re-
leases of JamaicaVM, see the release notes, which are provided in the Jamaica
installation, folderdoc , ÞleRELEASE_NOTES.

https://www.aicas.com/cms/resellers
https://www.aicas.com/cms/resellers
https://www.aicas.com/cms/downloads
mailto:bugs@aicas.com

Part I

Introduction

13

Chapter 1

Key Features of JamaicaVM

The Jamaica Virtual Machine (JamaicaVM) is an implementation of the Java Vir-
tual Machine SpeciÞcation. It is a runtime system for the execution of applications
written for the Java 6 Standard Edition. It has been designed for realtime and em-
bedded systems and offers unparalleled support for this target domain. Among
the extraordinary features of JamaicaVM are:

¥ Hard realtime execution guarantees

¥ Support for the Real-Time SpeciÞcation for Java, Version 1.0.2

¥ Minimal footprint

¥ ROMable code

¥ Native code support

¥ Dynamic linking

¥ Supported platforms

¥ Fast execution

¥ Powerful tools for timing and performance analysis

1.1 Hard Realtime Execution Guarantees

JamaicaVM is the only implementation that provides hard realtime guarantees
for all features of the languages together with high performance runtime efÞ-
ciency. This includes dynamic memory management, which is performed by the
JamaicaVM garbage collector.

15

16 CHAPTER 1. KEY FEATURES OF JAMAICAVM

All threads executed by the JamaicaVM are realtime threads, so there is no
need to distinguish realtime from non-realtime threads. Any higher priority thread
is guaranteed to be able to preempt lower priority threads within a Þxed worst-case
delay. There are no restrictions on the use of the Java language to program real-
time code: Since the JamaicaVM executes all Java code with hard realtime guar-
antees, even realtime tasks can use the full Java language, i.e., allocate objects,
call library functions, etc. No special care is needed. Short worst-case execution
delays can be given for any code.

1.2 Real-Time SpeciÞcation for Java support

JamaicaVM provides an industrial-strength implementation of the Real-Time Spec-
iÞcation for Java SpeciÞcation (RTSJ) V1.0.2 (see [2]) for a wide range of real-
time operating systems available on the market. It combines the additional APIs
provided by the RTSJ with the predictable execution obtained through realtime
garbage collection and a realtime implementation of the virtual machine.

1.3 Minimal footprint

JamaicaVM itself occupies less than 1 MB of memory (depending on the target
platform), such that small applications that make limited use of the standard li-
braries typically Þt into a few MB of memory. The biggest part of the memory re-
quired to store a Java application is typically the space needed for the applicationÕs
class Þles and related resources such as character encodings. Several measures are
taken by JamaicaVM to minimize the memory needed for Java classes:

¥ Compaction: Classes are represented in an efÞcient and compact format to
reduce the overall size of the application.

¥ Smart Linking: JamaicaVM analyzes the Java applications to detect and
remove any code and data that cannot be accessed at run-time.

¥ Fine-grained control over resources such as character encodings, time zones,
locales, supported protocols, etc.

Compaction typically reduces the size of class Þle data by over 50%, while smart
linking allows for much higher gains even for non-trivial applications.

This footprint reduction mechanism allows the usage of complex Java library
code, without worrying about the additional memory overhead: Only code that is
really needed by the application is included and is represented in a very compact
format.

1.4. ROMABLE CODE 17

1.4 ROMable code

The JamaicaVM allows class Þles to be linked with the virtual machine code into
a standalone executable. The resulting executable can be stored in ROM or ßash-
memory since all Þles required by a Java application are packed into the stan-
dalone executable. There is no need for Þle-system support on the target platform,
as all data required for execution is contained in the executable application.

1.5 Native code support

The JamaicaVM implements the Java Native Interface V1.2 (JNI). This allows
for direct embedding of existing native code into Java applications, or to encode
hardware-accesses and performance-critical code sections in C or machine code
routines. The usage of the Java Native Interface provides execution security even
with the presence of native code, while binary compatibility with other Java im-
plementations is ensured. Unlike other Java implementations, JamaicaVM pro-
vides exact garbage collection even with the presence of native code. Realtime
guarantees for the Java code are not affected by the presence of native code.

1.6 Dynamic Linking

One of the most important features of Java is the ability to dynamically load code
in the form of class Þles during execution, e.g., from a local Þle system or from a
remote server. The JamaicaVM supports this dynamic class loading, enabling the
full power of dynamically loaded software components. This allows, for exam-
ple, on-the-ßy reconÞguration, hot swapping of code, dynamic additions of new
features, or applet execution.

1.7 Supported Platforms

During development special care has been taken to reduce porting effort of the
JamaicaVM to a minimum. JamaicaVM is implemented in C using the GNU C
compiler. Threads are based on native threads of the operating system.1

1.7.1 Development platforms

Jamaica is available for the following development platforms (host systems):

1POSIX threads under many Unix systems.

18 CHAPTER 1. KEY FEATURES OF JAMAICAVM

¥ Linux

¥ SunOS/Solaris

¥ Windows

1.7.2 Target platforms

With JamaicaVM, application programs for a large number of platforms (target
systems) can be built. The operating systems listed in this section are supported
as target systems only. You may choose any other supported platform as a devel-
opment environment on which the Jamaica Builder runs to generate code for the
target system.

1.7.2.1 Realtime Operating Systems

¥ Linux/RT

¥ OS-9 (on request)

¥ PikeOS

¥ QNX

¥ WinCE

¥ VxWorks

1.7.2.2 Non-Realtime Operating Systems

Applications built with Jamaica on non-realtime operating systems may be inter-
rupted non-deterministically by other threads of the operating systems. However,
Jamaica applications are still deterministic and there are still no unexpected in-
terrupts within Jamaica application themselves, unlike with standard Java Virtual
Machines.

¥ Linux

¥ SunOS/Solaris

¥ Windows

1.8. FAST EXECUTION 19

1.7.2.3 Processor Architectures

JamaicaVM is highly processor architecture independent. New architectures can
be supported easily. Currently, Jamaica runs on the following processor architec-
tures:

¥ ARM (StrongARM, XScale, . . .)

¥ ERC32 (on request)

¥ MIPS (on request)

¥ Nios

¥ PowerPC

¥ SH-4 (on request)

¥ Sparc

¥ x86

Ports to any required combination of target OS and target processor can be sup-
ported with little effort. Clear separation of platform-dependent from platform-
independent code reduces the required porting effort for new target OS and target
processors. If you are interested in using Jamaica on a speciÞc target OS and
target processor combination or on any operating system or processor that is not
listed here, please contact aicas .

1.8 Fast Execution

The JamaicaVM interpreter performs several selected optimizations to ensure op-
timal performance of the executed Java code. Nevertheless, realtime and embed-
ded systems are often very performance-critical as well, so a purely interpreted
solution may be unacceptable. Current implementations of Java runtime-systems
use just-in-time compilation technologies that are not applicable in realtime sys-
tems: The initial compilation delay breaks all realtime constraints.

The Jamaica compilation technology attacks the performance issue in a new
way: methods and classes can selectively be compiled as a part of the build pro-
cess (static compilation). C-code is used as an intermediary target code, allowing
easy porting to different target platforms. The Jamaica compiler is tightly inte-
grated into the memory management system, allowing highest performance and
reliable realtime behavior. No conservative reference detection code is required,
enabling fully exact and predictable garbage collection.

20 CHAPTER 1. KEY FEATURES OF JAMAICAVM

1.9 Tools for Realtime and Embedded System De-
velopment

JamaicaVM comes with a set of tools that support the development of applications
for realtime and embedded systems

¥ Jamaica Builder: a tool for creating a single executable image out of the
Jamaica Virtual Machine and a set of Java classes. This image can be loaded
into ßash-memory or ROM, avoiding the need for a Þle-system in the target
platform.

For most effective memory usage, the Jamaica Builder Þnds the amount of
memory that is actually used by an application. This allows both system
memory and heap size to be precisely chosen for optimal run-time perfor-
mance. In addition, the Builder enables the detection of performance critical
code to control the static compiler for optimal results.

¥ JamaicaTrace: enables to analyze and Þne-tune the behavior of threaded
Java applications.2

¥ VeriFlux: a static analysis tool for the object-oriented domain that enables
to prove the absence of potential faults such as null pointer exceptions or
deadlocks in Java programs.2

2JamaicaTrace and VeriFlux are not part of the standard Jamaica license.

Chapter 2

Getting Started

2.1 Installation of JamaicaVM

A release of the JamaicaVM tools consists of an info Þle with detailed information
about the host and target platform and optional features such as graphics support,
and a package for the Jamaica binaries, library and documentation Þles. The
Jamaica version, build number, host and target platform and other properties of a
release is encoded asrelease identiÞcation stringin the names of info and package
Þle according to the following scheme:

Jamaica- version- build[- features]- host[- target].info
Jamaica- version- build[- features]- host[- target]. sufÞx

Package Þles with the following package sufÞxes are released.

Host Platform SufÞx Package Kind
Linux rpm Package for therpm package manager

tar.gz Compressed tape archive Þle
Windows exe Interactive installer

zip Windows zip Þle
Solaris tar.gz Compressed tape archive Þle

In order to install the JamaicaVM tools, the following steps are required:

¥ Unpack and install the Jamaica binaries, library and documentation Þles on
the host platform,

¥ ConÞgure the tools for host and target platform (C compiler and native li-
braries),

¥ Set environment variables.

21

22 CHAPTER 2. GETTING STARTED

¥ Install license keys.

The actual installation procedure varies from host platform to host platform; see
the sections below. Cross-compilation tool chains for certain target platforms re-
quire additional setup. Please check Appendix B.

2.1.1 Linux

2.1.1.1 Unpack and Install Files

The default is a system-wide installation of Jamaica. Super user privileges are
required. On Redhat-based systems (CentOS and Fedora), if therpm package
manager is available, this is the recommended method:
> rpm -i Jamaica- release-identiÞcation-string.rpm

Otherwise, unpack the compressed tape archive Þle and run the installation script
as follows:
> tar xfz Jamaica- release-identiÞcation-string.tar.gz
> ./Jamaica.install

Both methods will install the Jamaica tools in the following directory, which is
referred to asjamaica-home:
/usr/local/jamaica- version- build

In addition, the symbolic link/usr/local/jamaica is created, which points
to jamaica-home, and symbolic links to the Jamaica executables are created in
/usr/bin , so it is not necessary to extend thePATHenvironment variable.

In order to uninstall the Jamaica tools, depending on the used installation
method, either use theerase option of rpm or the provided uninstall script
Jamaica.remove .

If super user privileges are not available, the tools may alternatively be in-
stalled locally in a userÕs home directory:
> tar xfz Jamaica- release-identiÞcation-string.tar.gz
> tar xf Jamaica.ss

This will install the Jamaica tools inusr/local/jamaica- version- build rel-
ative to the current working directory. Symbolic links to the executables are cre-
ated inusr/bin , so they will not be on the default path for executables.

2.1.1.2 Package Dependencies

If the Linux system is CentOS or Fedora, and Jamaica is installed viarpm, pack-
age dependencies are resolved automatically.1 Otherwise, dependencies must be

1Jamaica supportsrpm only on Redhat-based systems, not on other variants of Linux even if
they userpm for dependency resolution.

2.1. INSTALLATION OF JAMAICAVM 23

installed manually via the platformÕs package manager. For details, please see the
platform-speciÞc documentation:jamaica-home/doc/README-Linux.txt

2.1.1.3 ConÞgure Platform-SpeciÞc Tools

In order for the Jamaica Builder and JAR Accelerator to work, platform-speciÞc
tools such as the C compiler and linker and the locations of the libraries (SDK)
need to be speciÞed. This is done by editing the appropriate conÞguration Þles,
jamaica.conf for the Builder andjaraccelerator.conf for the JAR
Accelerator, for the target (and possibly also the host).

The precise location of the conÞguration Þles depends on the platform:

jamaica-home/target/ platform/etc/jamaica.conf
jamaica-home/target/ platform/etc/jaraccelerator.conf

For the full Jamaica directory structure, please refer to Section 2.3. Note that the
conÞguration for the host platform is also located in a target directory.

The following properties need to be set appropriately in the conÞguration Þles:

Property Value
Xcc C compiler executable
Xld Linker executable
Xstrip Strip utility executable
Xinclude Include path
XlibraryPaths Library path

Environment variables may be accessed in the conÞguration Þles through the no-
tation${ VARIABLE} . For executables that are on the standard search path (envi-
ronment variablePATH), it is sufÞcient to give the name of the executable.

2.1.1.4 Set Environment Variables

The environment variableJAMAICA must be set tojamaica-home. It is recom-
mended to also addjamaica-home/bin to the system path. Onbash :

> export JAMAICA= jamaica-home
> export PATH= jamaica-home/bin:$PATH

Oncsh :

> setenv JAMAICA jamaica-home
> setenv PATH jamaica-home/bin:$PATH

24 CHAPTER 2. GETTING STARTED

2.1.2 Sun/Solaris

The release for Solaris is provided as compressed tape archive. Please follow the
installation instructions in Section 2.1.1.

2.1.3 Windows

On Windows the recommended means of installation is using the interactive in-
staller, which may be launched by double-clicking the Þle

Jamaica- release-identiÞcation-string.exe

in the Explorer, or by executing it in theCMDshell. You will be asked to provide
a destination directory for the installation and the locations of tools and SDK for
host and target platforms. The destination directory is referred to asjamaica-
home. It defaults to the subdirectoryjamaica in WindowÕs default program
directory Ñ for example,C:\Programs\jamaica , if an English language
locale is used. Defaults for tools and SDKs are obtained from the registry. The
installer will set the environment variableJAMAICAto jamaica-home.

An alternative installation method is to unpack the Windows zip Þle into a suit-
able installation destination directory. For conÞguration of platform-speciÞc tools,
follow the instructions provided in Section 2.1.1. In order to set theJAMAICA
environment variable tojamaica-home, open the Control Panel, choose System,
select Advanced System Settings,2 choose the tab Advanced and press Environ-
ment Variables. It is also recommended to addjamaica-home\bin to thePATH
environment variable in order to be able to run the Jamaica executables conve-
niently.

2.2 Installation of License Keys

There are two different editions of JamaicaVM, aStandard Editionand aPersonal
Edition, that support different licensing models. The Standard Edition requires li-
cense keys for using the tools. License keys are provided with support contracts
or for evaluation of JamaicaVM. The Personal Edition requires an online key for
using the tools, and for running the VMs and application executables built with
JamaicaVM tools. It does not require a support contract, but it requires an in-
ternet connection for checking keys online. The Personal Edition is intended for
prolonged evaluations of JamaicaVM. It is available for selected host and target
platforms only.

2Some Windows versions only.

2.2. INSTALLATION OF LICENSE KEYS 25

2.2.1 Using the Standard Edition

In order to use the Standard Edition of JamaicaVM tools valid licenses are re-
quired. Evaluation keys are available with evaluation versions of JamaicaVM.
License keys are provided inkey ringÞles, which have the sufÞx.aicas_key .
Prior to use, keys need to be installed. This is done with the aicas key installer
utility aicasKeyInstaller , which is located injamaica-home/bin . Simply
execute the utility providing the key ring as command line argument:

> cd jamaica-home/bin
> ./aicasKeyInstaller jamaica.aicas_key

This will extract the keys contained injamaica.aicas_key and add the in-
dividual key Þles touser-home/.jamaica . Keys that are already installed are
not overwritten. The utility reports which keys get installed and which tools they
enable. Installed keys are for individual tools. Of the tools documented in this
manual, the Builder (see Chapter 14) and JamaicaTrace (see Chapter 17) require
keys.3

2.2.2 Using the Personal Edition

To run any commands of the JamaicaVM Personal Edition or built with the Builder
tool of the Personal Edition, an online key is required. This key will be delivered
by e-mail and can be requested at the web pagehttps://www.aicas.com/
cms/jamaicavm-personal-edition-download .

Along with the JamaicaVM Personal Edition the aicas License Provider utility
aicasLicenseProvider is provided as a separate download. This program
performs the license checking, it communicates with the JamaicaVM commands
or built applications running on the same machine and with aicasÕ servers to re-
quest permissions to run. If required, theaicasLicenseProvider will open
user dialogs to request input such as the online key that was emailed to you, and
to conÞrm that you give permission to transfer data to aicasÕ servers. No data will
be transferred unless you conÞrm the corresponding dialog.

Before you can use any of the tools of the JamaicaVM Personal Edition, the
aicasLicenseProvider must be started Þrst:

> ./aicasLicenseProvider

3For old versions of JamaicaVM (before Version 6.0, Release 3), the key installer is provided
separately from the distribution package. For old versions of the installer, the key installer and the
key ring must be placed into the same directory.

https://www.aicas.com/cms/jamaicavm-personal-edition-download
https://www.aicas.com/cms/jamaicavm-personal-edition-download

26 CHAPTER 2. GETTING STARTED

This program needs to run while the JamaicaVM tools are used, so it should be
started in a separate shell or sent to the background. It can be invoked in non-
interactive mode if pop-up dialogs are not desired or no graphics system is avail-
able:

> ./aicasLicenseProvider -nonInteractive -key online key

Please be aware that in non-interactive mode a hashcode of the Java main class,
the user and host name and the MAC address of the system will be transferred
without conÞrmation.

To Þnd out more about theaicasLicenseProvider command, use the
-help option.

! License checking requires a direct connection to servers at aicas. Communi-
cation via proxies is not supported.

2.3 JamaicaVM Directory Structure

The Jamaica installation directory is calledjamaica-home. The environment vari-
ableJAMAICAshould be set to this path (see the installation instructions above).
After successful installation, the following directory structure as shown in Tab. 2.1
is created (in this example for a Linux x86 system).

2.3.1 API SpeciÞcation

The Jamaica API speciÞcation (JavaDoc) is available indoc/jamaica_api .
It may be browsed with an ordinary web browser. Its format is compatible with
common IDEs such as Eclipse and Netbeans. If the Jamaica Eclipse Plug-In is
used (see Chapter 4), Eclipse will automatically use the API speciÞcation of the
selected Jamaica runtime environment.

The speciÞcation will always contain all available classes, even if the runtime
environment supports acompactproÞle only. When developing for a particular
proÞle, only classes where the speciÞcation mentions that proÞle at the top of the
document should be used.

The Real-Time SpeciÞcation for Java (RTSJ) is part of the Jamaica API for all
proÞles.

2.3.2 Target Platforms

The number of target systems supported by a distribution varies. Thetarget di-
rectory contains an entry for each supported target platform. Typically, a Jamaica

2.3. JAMAICAVM DIRECTORY STRUCTURE 27

jamaica-home
+- bin Host tool chain executables
+- doc

+- build.info Comprehensive Jamaica distribution information
+- jamaicavm_manual.pdf
| Jamaica tool chain user manual (this manual)
+- jamaica_api Jamaica API speciÞcation (Javadoc)
+- README-* .txt Host platform speciÞc documentation starting points
+- RELEASE_NOTES User-relevant changes in the present release
+- UNSUPPORTED Unsupported features list
+- * .1 Tool documentation in Unix man page format

+- etc Host platform conÞguration Þles
+- lib Libraries for the development tools
+- license aicas evaluation license, third party licenses
+- target

+- linux-x86_64 Target speciÞc Þles for the targetlinux-x86_64
+- bin Virtual machine executables (some platforms only)
+- etc Default target platform conÞguration Þles
+- examples Example applications
+- include System JNI header Þles
+- lib Development and runtime libraries, resources
+- prof Default proÞles

Table 2.1: JamaicaVM Directory Structure

28 CHAPTER 2. GETTING STARTED

distribution provides support for the target platform that hosts the tool chain, as
well as for an embedded or real-time operating system.

2.4 Building and Running an Example Java Program

A number of sample applications is provided. These are located in the directory
jamaica-home/target/ platform/examples . In the following instructions it
is assumed that a Unix host system is used. For Windows, please note that the
Unix path separator character Ò/ Ó should be replaced by Ò\ Ó.

Before using the examples, it is recommended to copy them from the instal-
lation directory to a working location Ñ that is, copy each of the directories
jamaica-home/ platform/examples to user-home/examples/ platform.

The HelloWorld example is an excellent starting point for getting acquainted
with the JamaicaVM tools. In this section, the main tools are used to build an
application executable for a simple HelloWorld both for the host and target plat-
forms. First, the command-line tools are used. Later we switch to usingant build
Þles.

Below, it is assumed that the example directories have been copied touser-
home/examples/ host anduser-home/examples/ target for host and target
platforms respectively.

2.4.1 Host Platform

In order to build and run theHelloWorld example on the host platform, go to
the corresponding examples directory:

> cd user-home/examples/ host

Depending on your host platform,hostwill be linux-x86_64 (in rare cases
linux-x86), windows-x86 or solaris-sparc .

First, the Java source code needs to be compiled to byte code. This is done
with jamaicac , JamaicaÕs version ofjavac . The source code resides in the
src folder, and we wish to generate byte code in aclasses folder, which must
be created if not already present:

> mkdir classes
> jamaicac -d classes src/HelloWorld.java

Before generating an executable, we test the byte code with the Jamaica virtual
machine:

2.4. BUILDING AND RUNNING AN EXAMPLE JAVA PROGRAM 29

> jamaicavm -cp classes HelloWorld
Hello World!

Hello World!
Hello World!

Hello World!
Hello World!

Hello World!
[...]

Having convinced ourselves that the program exhibits the desired behavior, we
now generate an executable with the Jamaica Builder. In the context of the Ja-
maicaVM Tools, one speaks ofbuildingan application.

> jamaicabuilder -cp classes -interpret HelloWorld
Reading configuration from
Õusr/local/jamaica-8.0/target/linux-x86_64/etc/jamaica.confÕ...
Jamaica Builder Tool 8.0 Release 0
(User: EVALUATION USER, Expires: 2016.04.27)
Generating code for target Õlinux-x86_64Õ, optimization ÕspeedÕ

+ tmp/HelloWorld__.c
+ tmp/HelloWorld__.h
* C compiling Õtmp/HelloWorld__.cÕ
+ tmp/HelloWorld__nc.o
* linking
* stripping

Application memory demand will be as follows:
initial max

Thread C stacks: 1152KB (= 9 * 128KB) 63MB (= 511 * 128KB)
Thread Java stacks: 144KB (= 9 * 16KB) 8176KB (= 511 * 16KB)
Heap Size: 2048KB 256MB
GC data: 128KB 16MB
TOTAL: 3472KB 343MB

The Builder has now generated the executableHelloWorld .

> ./HelloWorld
Hello World!

Hello World!
Hello World!

Hello World!
Hello World!

Hello World!
[...]

30 CHAPTER 2. GETTING STARTED

2.4.2 Target Platform

With the JamaicaVM Tools, building an application for the target platform is as
simple as for the host platform. First go to the corresponding examples directory:

> cd user-home/examples/ platform

Then compile and build the application specifying the target platform.

> mkdir classes
> jamaicac -useTarget platform -d classes src/HelloWorld.java
> jamaicabuilder -target= platform -cp=classes -interpret HelloWorld

The target speciÞc binaryHelloWorld is generated, which can then be deployed
to the target system. For instructions on launching this on the target operating
system, please consult the documentation of the operating system. Additional
target-speciÞc hints are provided in Appendix B.

! When transferring Þles to a device via the Þle transfer protocol (FTP), it should
be kept in mind that this protocol distinguishes ASCII and binary transfer

modes. For executable and JAR Þles, binary mode must be used. ASCII mode is
the default, and binary mode is usually activated by issuingbinary in the FTP
session. If in doubt, Þle sizes on the host and target system should be compared.

JamaicaVM provides pre-built virtual machine binaries, which enable execut-
ing Java byte code on the target system. While these VMs are neither optimized
for speed nor for size, they offer convenient means for rapid prototyping. In order
to use these, JamaicaVMÕs runtime environment must be deployed to the target
system. For instructions, please see Section 13.2.

Applications that use advanced Java features such as dynamic loading of classes
at runtime or reßection usually also require the runtime environment to be avail-
able on the target device.

2.4.3 Improving Size and Performance

The application binaries in the previous two sections provide decent size opti-
mization but no performance optimization at all. The JamaicaVM Tools offer a
wide range of controls to Þne tune the size and performance of a built application.
These optimizations are mostly controlled through command line options of the
Jamaica Builder.

Sets of optimizations for both speed and application size are provided with
the HelloWorld example in anant buildÞle (build.xml). In order to use the
buildÞle, typeant build-targetwherebuild-target is one of the build targets of
the example. For example,

2.5. NOTATIONS AND CONVENTIONS 31

> ant HelloWorld

will build the unoptimized HelloWorld example. If building for a Windows plat-
form, the command

> ant HelloWorld.exe

should be used. In order to optimize for speed, use the build targetHelloWorld_
profiled , in order to optimize for application size, useHelloWorld_micro .
The following is the list of all build targets available for the HelloWorld example;
the optional.exe sufÞx is for Windows platforms only:

HelloWorld [.exe] Build an application in interpreted mode. The generated
binary isHelloWorld .

HelloWorld_profiled [.exe] Build a statically compiled application based
on a proÞle run. The generated binary isHelloWorld_profiled .

HelloWorld_micro [.exe] Build an application with optimized memory de-
mand. The generated binary isHelloWorld_micro .

classes Convert Java source code to byte code.

all Build all three applications.

run Run all three applications Ñ only useful on the host platform.

clean Remove all generated Þles.

2.4.4 Overview of Further Examples

For an overview of the available examples, see Tab. 2.2. Examples that require
graphics or network support are only provided for platforms that support graphics
or network, respectively. Each example comes with aREADMEÞle that provides
further information and lists the available build targets.

2.5 Notations and Conventions

Notations and typographic conventions used in this manual and by the JamaicaVM
Tools in general are explained in the following sections.

32 CHAPTER 2. GETTING STARTED

Example Demonstrates Platforms

HelloWorld Basic Java all
RTHelloWorld Real-time threads (RTSJ) all
SwingHelloWorld Swing graphics with graphics
caffeine CaffeineMark (tm) benchmark all
test jni Java Native Interface all
net Network and internet with network
rmi Remote method invocation with network
DynamicLibraries Linking native code at runtime where supported
Queens Parallel execution multicore systems
Acceleration Speeding up JAR libraries where supported

Table 2.2: Example applications provided in the target directories

2.5.1 Typographic Conventions

Throughout this manual, names of commands, options, classes, Þles etc. are set in
this monospaced font. Output in terminal sessions is reproduced inslanted
monospaced in order to distinguish it from user input. Entities in command lines
and other user inputs that have to be replaced by suitable user input are shown in
italics.

As little example, here is the description of the the Unix command-line tool
cat , which outputs the content of a Þle on the terminal:

Usecat Þleto print the content ofÞleon the terminal. For example,
the content of the Þlesong.txt may be inspected thus:

> cat song.txt
Mary had a little lamb,
Little lamb, little lamb,
Mary had a little lamb,
Its fleece was white as snow.

In situations where suitable fonts are not available Ñ say, in terminal output Ñ
entities to be replaced by the user are displayed in angular brackets. For example,
cat <file> instead ofcat Þle.

2.5.2 Argument Syntax

In the speciÞcation of command line arguments and options, the following nota-
tions are used.

2.5. NOTATIONS AND CONVENTIONS 33

Alternative: the pipe symbol Ò| Ó denotes alternatives. For example,

-XobjectFormat=default|C|ELF

means that theXobjectFormat option must be set to exactly one of the
speciÞed valuesdefault , Cor ELF.

Option: optional arguments that may appear at most once are enclosed in brack-
ets. For example,

-heapSize= n[K|M]

means that theheapSize option must be set to a (numeric) valuen, which
may be followed by eitherK or M.

Repetition: optional arguments that may be repeated are enclosed in braces. For
example,

-priMap= jp=sp{ , jp=sp}

means that thepriMap accepts one or several comma-separated arguments
of the formjp=sp. These are assignments of Java priorities to system prior-
ities.

Alternative option names (aliases) are indicated in parentheses. For example,

-help(-h, -?)

means that the optionhelp may be invoked by any one of-help , -h and-? .

2.5.3 Jamaica Home and User Home

The Þle system location where the JamaicaVM Tools are installed is referred to as
jamaica-home. In order for the tools to work correctly, the environment variable
JAMAICAmust be set tojamaica-home(see Section 2.1).

The JamaicaVM Tools store user-related information such as license keys in
the folder.jamaica inside the userÕs home directory. The userÕs home direc-
tory is referred to asuser-home. On Unix systems it is usually/home/ user, on
WindowsC:\Users\ user.

34 CHAPTER 2. GETTING STARTED

Chapter 3

Tools Overview

The JamaicaVM tool chain provides all the tools required to process Java source
code into an executable format on the target system. Fig. 3.1 provides an overview
over this tool chain.

3.1 Jamaica Java Compiler

JamaicaVM uses Java source code Þles (see the Java Language SpeciÞcation [4])
as input to Þrst create platform independent Java class Þles (see the Java Vir-
tual Machine SpeciÞcation [9]) in the same way classical Java implementations
do. JamaicaVM provides its own Java bytecode compiler,jamaicac , to do this
translation. However, any other bytecode compiler such as JDKÕsjavac may be
used. For a more detailed description ofjamaicac see Chapter 12.

When using a compiler other thanjamaicac it is important to set the boot-
classpath to the Jamaica system classes. These are located in the following JAR
Þle:

jamaica-home/target/ platform/lib/rt.jar

In addition, please note that JamaicaVM uses Java 6 compatible class Þles and
requires a Java compiler capable of interpreting Java 6 compatible class Þles.

3.2 Jamaica Virtual Machine

The commandjamaicavm provides a version of the Jamaica virtual machine.
It can be used directly to quickly execute a Java application. It is the equivalent
to thejava command that is used to run Java applications with OracleÕs JDK. A
more detailed description of thejamaicavm and similar commands that are part
of Jamaica will be given in Chapter 13.

35

36 CHAPTER 3. TOOLS OVERVIEW

!"#"$%"&'$()*+

!"#"$%"% ,-%(".. !"#"$%"/#

,-!"/"

0%'1"&(*

!"#"$%"
!"+"%%*(*+"12+

-!"+
3"1$/*4($&

-!"+

Figure 3.1: The Jamaica Toolchain

The jamaicavm Þrst loads all class Þles that are required to start the ap-
plication. It contains the Jamaica Java interpreter, which then executes the byte
code commands found in these class Þles. Any new class that is referenced by a
byte code instruction that is executed will be loaded on demand to execute the full
application.

Applications running using thejamaicavm command are not very well op-
timized. There is no compiler that speeds up execution and no speciÞc measures
to reduce footprint are taken. We therefore recommend using the Jamaica Builder
presented in the next section and discussed in detail in Chapter 14 to run Java
applications with JamaicaVM on an embedded system.

3.3 Creating Target Executables

In contrast to thejamaicavm command,jamaicabuilder does not execute
the Java application directly. Instead, the Builder loads all the classes that are part
of a Java application and packages them together with the Jamaica runtime sys-
tem (Java interpreter, class loader, realtime garbage collector, JNI native interface,
etc.) into a stand-alone executable. This stand-alone executable can then be exe-
cuted on the target system without needing to load the classes from a Þle system
as is done by thejamaicavm command, but can instead directly proceed execut-
ing the byte codes of the applicationÕs classes that were built into the standalone
executable.

3.4. ACCELERATING JAR FILES 37

The Builder has the opportunity to perform optimizations on the Java appli-
cation before it is built into a stand-alone executable. These optimizations reduce
the memory demand (smart linking, bytecode compaction, etc.) and increase its
runtime performance (bytecode optimizations, proÞle-guided static compilation,
etc.). Also, the Builder permits Þne-grained control over the resources available
to the application such as number of threads, heap size, stack sizes and enables
the user to deactivate expensive functions such as dynamic heap enlargement or
thread creation at runtime. A more detailed description of the Builder is given in
Chapter 14.

3.4 Accelerating JAR Files

Many Java-based applications require loading additional bytecode at runtime.
This holds true especially for application frameworks, of which OSGi is a well-
known example. Such code is typically bundled in JAR Þles. Whilejamaicavm
and executables created with the Builder can load bytecode at runtime and execute
it with JamaicaÕs interpreter, this code cannot beneÞt from the performance gain
of static compilation provided byjamaicabuilder .

The Jamaica JAR Accelerator solves this problem. It works in a fashion similar
to the Builder but instead of converting bytecode to a standalone executable, it
creates a native library that is added to the JAR Þle and loaded and linked at
runtime. For more information on the JAR Accelerator, please refer to Chapter 15.

3.5 Monitoring Realtime Behavior

JamaicaTrace enables to monitor the realtime behavior of applications and helps
developers to Þne-tune the threaded Java applications running on Jamaica run-
time systems. These run-time systems can be either the Jamaica VM or any appli-
cation that was created using the Jamaica Builder.

38 CHAPTER 3. TOOLS OVERVIEW

Chapter 4

Support for the Eclipse IDE

Integrated development environments (IDEs) make a software engineerÕs life eas-
ier by aggregating all important tools under one user interface. aicas provides a
plug-in to integrate the JamaicaVM Virtual Machine and the JamaicaVM Builder
into the Eclipse IDE, which is a popular IDE for Java. The following instructions
refer to versions 1.3.1 and later of the Eclipse plug-in.

4.1 Plug-in installation

The JamaicaVM plug-in can be installed and updated through the Eclipse plug-in
manager.

4.1.1 Installation on Eclipse

For use with Jamaica 8, Eclipse 4.4 or later, a Java 1.7 compatible Java runtime
environment (JRE) and version 1.3.1 of the Eclipse plug-in are required.1 Using
the latest available Eclipse version and an up-to-date JRE is recommended. The
following instructions refer to Eclipse 3.5. The menu structure of other Eclipse
versions may differ slightly.

The plug-in may be installed from the update site provided on the aicas web
servers, or, if web access is not available, from a local update site, which may be
set up from a ZIP Þle. To install the plug-in from the aicas web servers, select the
menu item

Help > Install New Software... ,

1The plug-in itself requires Eclipse 3.5 or later and a Java 1.5 compatible Java runtime envi-
ronment (JRE), but then Java 8 language features are not available.

39

40 CHAPTER 4. SUPPORT FOR THE ECLIPSE IDE

add the update sitehttps://aicas.com/download/eclipse-plugin
and installJamaicaVM Tools .2 The plug-in is available after a restart of
Eclipse. To perform an update, selectHelp > Check for updates... .
You will be notiÞed of updates.

For users working in development environments without internet access, the
JamaicaVM Eclipse plug-in can be provided as a ZIP Þle. This will be named

jamaicavm-eclipse-plugin- version-update-site.zip

and should be unpacked to a temporary location in the Þle space. To install, follow
the instructions above where the web address should be replaced by the temporary
location. ÒContact all update sites during install to Þnd required softwareÓ should
not be selected in this case.

4.1.2 Installation on Other IDEs

The plug-in may also be used on development environments that are based on
Eclipse such as WindRiverÕs WorkBench or QNX Momentics. These environ-
ments are normally not set up for Java development and may lack the Java Devel-
opment Tools (JDT). In order to install these

¥ Identify the Eclipse version the development environment is derived from.
This information is usually available in theHelp > About dialog Ñ for
example, Eclipse 3.5.

¥ Some IDEs have the menu item for installing new software disabled by
default. To enable it switch to the Resource Perspective: selectWindow >
Open Perspective > Other... and chooseResource .

¥ Add the corresponding Eclipse Update Site, which ishttp://download.
eclipse.org/eclipse/updates/3.5 in this example, and install
the JDT: selectHelp > Install New Software... and add the
update site. Then uncheck ÒGroup items by categoryÓ and select the pack-
age ÒEclipse Java Development ToolsÓ. Installation may require to run the
IDE in admin mode.

Restart the development environment before installing the JamaicaVM plug-in.

4.2 Setting up JamaicaVM Distributions

A Jamaica distribution must be made known to Eclipse and the Jamaica plug-in
before it can be used. This is done by installing it as a Java Runtime Environment

2Some web browsers may be unable to display the update site.

https://aicas.com/download/eclipse-plugin
http://download.eclipse.org/eclipse/updates/3.5
http://download.eclipse.org/eclipse/updates/3.5

4.3. USING JAMAICAVM IN JAVA PROJECTS 41

(JRE). In the global preferences dialog (usuallyWindow > Preferences),
open SectionJava > Installed JREs , click Add... , selectJamaicaVM
and choose the Jamaica installation directory as the JRE home. The wizard will
automatically provide defaults for the remaining Þelds.

4.3 Using JamaicaVM in Java Projects

After setting up a Jamaica distribution as a JRE, it can be used like any other JRE
in Eclipse. For example, it is possible to choose Jamaica as a project speciÞc
environment for a Java project, either in theCreate Java Project wizard,
or by changingJRE System Library in the properties of an existing project.
It is also possible to choose a Jamaica as default JRE for the workspace.

In many cases, referring to a particular Java runtime environment is incon-
venient, and Eclipse providesexecution environmentsas an abstraction of JREs
with particular features Ñ for example,JavaSE-1.8 . For projects relying on
features that are speciÞc to JamaicaVM, such as the RTSJ, the execution environ-
mentsJamaicaVM-6 andJamaicaVM-8 are provided. They may be used as
drop-in replacements forJavaSE-1.6 andJavaSE-1.8 , respectively.

If you added a new Jamaica distribution and its associated JRE installation is
not visible afterwards, please restart Eclipse.

4.4 Setting Virtual Machine Parameters

The JamaicaVM Virtual Machine is conÞgured through runtime parameters, which
Ñ for example Ñ control the heap size or the size of memory areas such as scoped
memory. These settings are controlled via environment variables (refer to Sec-
tion 13.4 for a list of available variables). To do so, create or open a run conÞg-
uration of typeJava Application or of typeJamaica Application .
Environment variables can be deÞned on the tab namedEnvironment . The
conÞguration typeJamaica Application provides an additional tab with
predeÞned controls for the environment variables understood by JamaicaÕs VMs
(see Section 13.4).

4.5 Building applications with Jamaica Builder

The plug-in extends Eclipse with support for the Jamaica Builder tool. In the
context of this tool, the term ÒbuildÓ is used to describe the process of translating
compiled Java class Þles into an executable Þle. Please note that in EclipseÕs
terminology, ÒbuildÓ means compiling Java source Þles into class Þles.

42 CHAPTER 4. SUPPORT FOR THE ECLIPSE IDE

4.5.1 Getting started

In order to build your application with Jamaica Builder, you must create a Jamaica
BuildÞle. A wizard is available for creating a build Þle for an existing project with
sources (the wizard needs to know the main class).

To use the wizard, invoke EclipseÕsNewdialog by choosingFile > New
> Other... , navigate toJamaica > Jamaica Buildfile . Choose a
project in the workspace whose JRE is Jamaica, select a target platform and spec-
ify the applicationÕs main class.

After Þnishing the wizard, the newly created buildÞle is opened in a graphical
editor containing an overview page, a conÞguration page and a source page. It
shows a build target and, if generated by the wizard, a launch target. You can
review and modify the Jamaica Builder conÞguration by clickingEdit in the
build target on theOverview page, or in order to start the build process, click
Build .

4.5.2 Jamaica BuildÞles

This section gives a more detailed introduction to Jamaica BuildÞles and the
graphical editor to edit them easily.

4.5.2.1 Concepts

Jamaica BuildÞles are build Þles understood by Apache Ant. (Seehttp://
ant.apache.org .) These build Þles mainly consist oftargetscontaining a
sequence oftaskswhich accomplish a functionality like compiling a set of Java
classes. Many tasks come included with Ant, but tasks may also be provided by
a third party. Third party tasks must be deÞned within the buildÞle by a task
deÞnition (taskdef). Ant tasks that invoke the Jamaica Builder and other tools
are part of the JamaicaVM tools. See Chapter 19 for the available Ant tasks and
further details on the structure of the Jamaica BuildÞles.

The Jamaica-speciÞc tasks can be parameterized similarly to the tools they
represent. We deÞne the usage of such a task along with a set of options as a
conÞguration.

We use the term Jamaica BuildÞle to describe an Ant buildÞle that deÞnes at
least one of the Jamaica-speciÞc Ant tasks and contains one or many conÞgura-
tions.

The beneÞt of this approach is that conÞgurations can easily be used outside of
Eclipse, integrated in a build process and exchanged or stored in a version control
system.

http://ant.apache.org
http://ant.apache.org

4.5. BUILDING APPLICATIONS WITH JAMAICA BUILDER 43

4.5.2.2 Using the editor

The editor for Jamaica BuildÞles consists of three or more pages. The Þrst page
is theOverview page. On this page, you can manage your conÞgurations, task
deÞnitions and Ant properties. More information on this can be found in the
following paragraphs. The pages after theOverview page represent a conÞgu-
ration. The last page displays the XML source code of the buildÞle. Normally,
you should not need to edit the source directly.

4.5.2.3 ConÞgure Builder options

A conÞguration page consists of a header section and a body part. Using the con-
trols in the header, you can request the build of the current conÞguration, change
the task deÞnition used by the conÞguration or add options to the body part. Each
option in the conÞguration is displayed by an input mask, allowing you to perform
various actions:

¥ Modify options. The input masks reßect the characteristics of their asso-
ciated option, e.g. an option that expects a list will be displayed as a list
control. Input masks that consists only of a text Þeld show a diskette sym-
bol in front of the the option name when modiÞed. Please press[Enter]
or click the symbol to accept the new value.

¥ Remove options. Each input mask has anx control that will remove the
option from the conÞguration.

¥ Disable options. Options can also be disabled instead of removed, e.g. in
order to test the conÞguration without a speciÞc option. Click the arrow in
front of an option to disable it.

¥ Load default values. Thedefault control resets the optionÕs value to the
default (not available for all options).

¥ Show help. The question mark control displays the optionÕs help text.

The values of all options are immediately validated. If a value is not valid for a
speciÞc option, that option will be annotated with a red error marker. An error
message is shown when hovering over the error marker.

4.5.2.4 Multiple build targets

It is possible to store more than one build target in a buildÞle. ClickNew Build
Target to create a new Builder conÞguration. The new conÞguration will be
displayed in a new page in the editor. A conÞguration can be removed on the
Overview page by clickingRemove.

44 CHAPTER 4. SUPPORT FOR THE ECLIPSE IDE

4.5.2.5 Ant properties

Ant properties provide a text-replacement mechanism within Ant buildÞles. The
editor supports Ant properties in option values. This is especially useful in con-
junction with multiple conÞgurations in one buildÞle, when you create Ant prop-
erties for option values that are common to all conÞgurations. Additionally you
can also specifyenvironment properties. They allow you to set a preÞx string for
access to the environment variables of your system. To create an environment
property, just click+ in the properties section of the Overview page and enter
<environment> as property name. If you setenv as the value, environment
variables are made available as properties. For example,VARIABLE can be ac-
cessed as propertyenv.VARIABLE .

4.5.2.6 Launch built application

The editor provides a simple way to launch the built application when it has been
built for the host platform. If the wizard did not already generate a target of the
form launch_ name, click New Launch Target to add a target that executes
the binary that resulted from the speciÞc Builder conÞguration. Add command
line arguments if needed. Then clickLaunch to start the application.

Part II

Tools Usage and Guidelines

45

Chapter 5

Performance Optimization

The most fundamental measure employed by the Jamaica Builder to improve the
performance of an application is to statically compile those parts that contribute
most to the overall runtime. These parts are identiÞed in aproÞle runof the
application. Identifying these parts is calledproÞling. The proÞling information
is used by the Builder to decide which parts of an application need to be compiled
and whether further optimizations such as inlining the code are necessary.

5.1 Creating a proÞle

The BuilderÕs-profile option and thejamaicavmp command provide sim-
ple means of proÞling an application. Setting the-profile option enables
proÞling. The Builder will then link the application with the proÞling version of
the JamaicaVM libraries.

During proÞling the Jamaica Virtual Machine counts, among other things, the
number of bytecode instructions executed within every method of the application.
The number of instructions can be used as a measure for the time spent in each
method.

At the end of execution, the total number of bytecode instructions executed by
each method is written to a Þle with the simple name of the main class of the Java
application and the sufÞx.prof , such that it can be used for further processing.
When this Þle already exists, the information is appended.

! Collection of proÞle information is cumulative. When changing the applica-
tion code and in continuous integration setups, be sure to delete the old proÞle

before creating a new one.

ÕHot spotsÕ (the most likely sources for further performance enhancements by
optimization) in the application can easily be determined using the proÞle.

47

48 CHAPTER 5. PERFORMANCE OPTIMIZATION

5.1.1 Creating a proÞling application

The compilation technology of JamaicaÕs Builder is able to use the data generated
during proÞle runs using the-profile option to guide the compilation process,
producing optimal performance with a minimum increase in code size.

Here is a demonstration of the proÞler using the HelloWorld example pre-
sented in Section 2.4. First, it is built using the-profile option:

> jamaicabuilder -cp classes -profile -interpret HelloWorld
Reading configuration from
Õusr/local/jamaica-8.0/target/linux-x86_64/etc/jamaica.confÕ...
Jamaica Builder Tool 8.0 Release 0
(User: EVALUATION USER, Expires: 2016.04.27)
Generating code for target Õlinux-x86_64Õ, optimization ÕspeedÕ

+ tmp/HelloWorld__.c
+ tmp/HelloWorld__.h
* C compiling Õtmp/HelloWorld__.cÕ
+ tmp/HelloWorld__nc.o
* linking
* stripping

Application memory demand will be as follows:
initial max

Thread C stacks: 1152KB (= 9 * 128KB) 63MB (= 511 * 128KB)
Thread Java stacks: 144KB (= 9 * 16KB) 8176KB (= 511 * 16KB)
Heap Size: 2048KB 256MB
GC data: 128KB 16MB
TOTAL: 3472KB 343MB

Next, the generated executableHelloWorld is run. We use the command line
argument10000 so that startup code does not dominate. The output looks like
this:

> ./HelloWorld 10000
Hello World!

Hello World!
Hello World!

Hello World!
Hello World!

Hello World!
[...]

Hello World!
Hello World!

Hello World!
Hello World!

Hello World!
Hello World!
[...]

5.1. CREATING A PROFILE 49

Start writing profile data into file ÕHelloWorld.profÕ
Write threads data...
Write invocation data...

Done writing profile data

5.1.2 Using the proÞling VM

Alternatively, in simple cases, the proÞle can also be created using thejamaicavmp
command on the host without Þrst building a stand-alone executable:

> jamaicavmp HelloWorld 10000
Hello World!

Hello World!
Hello World!

Hello World!
Hello World!

Hello World!
[...]

Hello World!
Hello World!

Hello World!
Hello World!

Hello World!
Hello World!
[...]

Start writing profile data into file ÕHelloWorld.profÕ
Write threads data...
Write invocation data...

Done writing profile data

The use ofjamaicavmp is subject to the following restrictions:

¥ It can generate a proÞle for the host only.

¥ Setting Builder options for the application to be proÞled is not possible.

5.1.3 Dumping a proÞle via network

If the application does not exit or writing a proÞle is very slow on the target, you
can request a proÞle dump with thejamaicaremoteprofile command. You
need to set thejamaica.profile_request_port property when building
the application with the-profile option or using the proÞling VM. Set the
property to an available TCP port and then request a dump remotely:

50 CHAPTER 5. PERFORMANCE OPTIMIZATION

> jamaicaremoteprofile target port
DUMPING...
DONE.

In the above command,target denotes the IP address or host name of the target
system. By default, the proÞle is written on the target to a Þle with the name
of the main class and the sufÞx.prof . You can change the Þle name with the
-file option or you can send the proÞle over the network and write it to the Þle
system (with an absolute path or relative to the current directory) of the host with
the-net option:

> jamaicaremoteprofile -net= Þlename target port

5.1.4 Creating a micro proÞle

To speed up the performance of critical sections in the application, you can use
micro proÞles that only contain proÞling information of such a section (see Sec-
tion 5.2.2). You need to reset the proÞle just before the critical part is executed
and dump a proÞle directly after. To reset a proÞle, you can use the command
jamaicaremoteprofile with the-reset option:

> jamaicaremoteprofile -reset target port

5.2 Using a proÞle with the Builder

Having collected the proÞling data, the Jamaica Compiler can create a compiled
version of the application using the proÞle information. This compiled version
beneÞts from proÞling information in several ways:

¥ Compilation is limited to the most time critical methods, keeping non-
critical methods in smaller interpreted byte-code format.

¥ Method inlining prefers inlining of calls that have shown to be executed
most frequently during the proÞling run.

¥ ProÞling information also collects information on the use of reßection, so
an application that cannot use smart linking due to reßection can proÞt from
smart linking even without manually listing all classes referenced via reßec-
tion.

5.2. USING A PROFILE WITH THE BUILDER 51

5.2.1 Building with a proÞle

The Builder option-useProfile is used to select the generated proÞling data:

> jamaicabuilder -cp classes -useProfile HelloWorld.prof HelloWorld
Reading configuration from
Õusr/local/jamaica-8.0/target/linux-x86_64/etc/jamaica.confÕ...
Jamaica Builder Tool 8.0 Release 0
(User: EVALUATION USER, Expires: 2016.04.27)
Generating code for target Õlinux-x86_64Õ, optimization ÕspeedÕ

+ tmp/PKG__Va233e7043036ccc8__.c
[...]
+ tmp/HelloWorld__.c
+ tmp/HelloWorld__.h
* C compiling Õtmp/HelloWorld__.cÕ
[...]
+ tmp/HelloWorld__nc.o
* linking
* stripping

Application memory demand will be as follows:
initial max

Thread C stacks: 1152KB (= 9 * 128KB) 63MB (= 511 * 128KB)
Thread Java stacks: 144KB (= 9 * 16KB) 8176KB (= 511 * 16KB)
Heap Size: 2048KB 256MB
GC data: 128KB 16MB
TOTAL: 3472KB 343MB

Due to the proÞle-guided optimizations performed by the compiler, the runtime
performance of the application built using a proÞle as shown usually exceeds the
performance of a fully compiled application. Furthermore, the memory footprint
is signiÞcantly smaller and the modify-compile-run cycle time is usually signif-
icantly shorter as well since only a small fraction of the application needs to be
compiled. It is not necessary to re-generate proÞle data after every modiÞcation.

5.2.2 Building with multiple proÞles

You can use several proÞles to improve the performance of your application.
There are two possibilities to specify proÞles that behave in a different way.

First you can just concatenate two proÞle Þles or dump a proÞle several times
into the same Þle which will just behave as if the proÞles were recorded sequen-
tially. You can add a proÞle for a new feature this way.

If you want to favor a proÞle instead, e.g. a micro proÞle for startup or a per-
formance critical section as described in Section 5.1.4, you can specify the proÞle
with another-useProfile option. In this case, all proÞles are normalized be-

52 CHAPTER 5. PERFORMANCE OPTIMIZATION

fore they are concatenated, so highly rated methods in a short-run micro proÞle
are more likely to be compiled.

5.3 Interpreting the proÞling output

When running in proÞling mode, the VM collects data to create an optimized ap-
plication but can also be interpreted manually to Þnd memory leaks or time con-
suming methods. You can make Jamaica collect information about performance,
memory requirements etc.

! Measuring the performance on virtual OS images can be time-consuming and
may lead to incorrect results.

To collect additional information, you have to set the propertyjamaica.
profile_groups to select one or more proÞling groups. The default value is
builder to collect data used by the Builder. You can set the property to the
valuesbuilder , memory, speed , all or a comma separated combination of
those. Example:

> jamaicavmp -cp classes \
> -Djamaica.profile_groups=builder,speed \
> HelloWorld 10000

! The format of the proÞle Þle is likely to change in future versions of Jamaica
Builder.

5.3.1 Format of the proÞle Þle

Every line in the proÞling output starts with a keyword followed by space sepa-
rated values. The meaning of these values depends on the keyword.

For a better overview, the corresponding values in different lines are aligned as
far as possible and words and signs that improve human reading are added. Here
for every keyword the additional words and signs are omitted and the values are
listed in the same order as they appear in the text Þle.

Keyword: BEGIN_PROFILE_DUMP Groups: all

Values

1. unique dump ID

5.3. INTERPRETING THE PROFILING OUTPUT 53

Keyword: END_PROFILE_DUMP Groups: all

Values

1. unique dump ID

Keyword: HEAP_REFS Groups: memory

Values

1. total number of references in object attributes

2. total number of words in object attributes

3. relative number of references in object attributes

Keyword: HEAP_USE Groups: memory

Values

1. total number of currently allocated objects of this class

2. number of blocks needed for one object of this class

3. block size in bytes

4. number of bytes needed for all objects of this class

5. relative heap usage of objects of this class

6. total number of objects of this class organized in a tree structure

7. relative number of objects of this class organized in a tree structure

8. name of the class

Keyword: INSTANTIATION_COUNT Groups: memory

Values

1. total number of instantiated objects of this class

2. number of blocks needed for one object of this class

3. number of blocks needed for all objects of this class

54 CHAPTER 5. PERFORMANCE OPTIMIZATION

4. number of bytes needed for all objects of this class

5. total number of objects of this class organized in a tree structure

6. relative number of objects of this class organized in a tree structure

7. class loader that loaded the class

8. name of the class

Keyword: PROFILE Groups: builder

Values

1. total number of bytecodes executed in this method

2. relative number of bytecodes executed in this method

3. signature of the method

4. class loader that loaded the class of the method

Keyword: PROFILE_CLASS_USED_VIA_REFLECTION Groups: builder

Values

1. name of the class used via reßection

Keyword: PROFILE_CYCLES Groups: speed

Values

1. total number of processor cycles spent in this method (if available on the
target)

2. signature of the method

Keyword: PROFILE_INVOKE Groups: builder

Values

1. number of calls from caller method to called method

2. bytecode position of the call within the method

5.3. INTERPRETING THE PROFILING OUTPUT 55

3. signature of the caller method

4. signature of the called method

Keyword: PROFILE_INVOKE_CYCLES Groups: speed

Values

1. number of processor cycles spent in the called method

2. bytecode position of the call within the method

3. signature of the caller method

4. signature of the called method

Keyword: PROFILE_NATIVE Groups: all

Values

1. total number of calls to the native method

2. relative number of calls to the native method

3. signature of the called native method

Keyword: PROFILE_NEWARRAYGroups: memory

Values

1. number of calls to array creation within a method

2. bytecode position of the call within the method

3. signature of the method

Keyword: PROFILE_THREAD Groups: memory, speed

Values

1. current Java priority of the thread

2. total amount of CPU cycles in this thread

3. relative time in interpreted code

56 CHAPTER 5. PERFORMANCE OPTIMIZATION

4. relative time in compiled code

5. relative time in JNI code

6. relative time in garbage collector code

7. required C stack size

8. required Java stack size

Keyword: PROFILE_THREADS Groups: builder

Values

1. maximum number of concurrently used threads

Keyword: PROFILE_THREADS_JNI Groups: builder

Values

1. maximum number of threads attached via JNI

Keyword: PROFILE_VERSION Groups: all

Values

1. version of Jamaica the proÞle was created with

5.3.2 Example

We can sort the proÞling output to Þnd the application methods where most of the
execution time is spent. Under Unix, the 25 methods which use the most execu-
tion time (in number of bytecode instructions) can be found with the following
command:

> grep PROFILE: HelloWorld.prof | sort -rn -k2 | head -n25
PROFILE: 7178736 (21%) sun/nio/cs/UTF_8$Encoder.encodeArrayLo...
PROFILE: 3507848 (10%) java/lang/String.indexOf(II)I [boot]
PROFILE: 1806300 (5%) java/lang/String.getChars(II[CI)V [boot]
PROFILE: 1060212 (3%) java/io/BufferedWriter.write(Ljava/lan...
PROFILE: 1026091 (3%) java/lang/AbstractStringBuilder.value(...
PROFILE: 1005150 (3%) java/lang/AbstractStringBuilder.append...
PROFILE: 780351 (2%) java/nio/Buffer.position(I)Ljava/nio/B...
PROFILE: 720144 (2%) sun/nio/cs/StreamEncoder.writeBytes()V...
PROFILE: 700140 (2%) sun/nio/cs/StreamEncoder.write([CII)V ...

5.3. INTERPRETING THE PROFILING OUTPUT 57

PROFILE: 687572 (2%) java/lang/String.length()I [boot]
PROFILE: 615876 (1%) java/lang/String.substring(II)Ljava/la...
PROFILE: 560106 (1%) java/nio/charset/CharsetEncoder.encode...
PROFILE: 520104 (1%) sun/nio/cs/StreamEncoder.implWrite([CI...
PROFILE: 480456 (1%) java/nio/Buffer.<init>(IIII)V [boot]
PROFILE: 480096 (1%) java/nio/ByteBuffer.arrayOffset()I [boot]
PROFILE: 460000 (1%) java/io/BufferedOutputStream.write([BI...
PROFILE: 450019 (1%) HelloWorld.main([Ljava/lang/String;)V ...
PROFILE: 400080 (1%) java/io/BufferedWriter.flushBuffer()V ...
PROFILE: 400072 (1%) java/io/PrintStream.write([BII)V [boot]
PROFILE: 360072 (1%) java/nio/CharBuffer.arrayOffset()I [boot]
PROFILE: 320304 (0%) java/nio/Buffer.limit(I)Ljava/nio/Buff...
PROFILE: 320095 (0%) java/lang/AbstractStringBuilder.ensure...
PROFILE: 300060 (0%) sun/nio/cs/UTF_8.updatePositions(Ljava...
PROFILE: 280056 (0%) sun/nio/cs/StreamEncoder.flushBuffer()...
PROFILE: 260052 (0%) java/nio/CharBuffer.<init>(IIII[CI)V [...

In this small example program, it is not a surprise that nearly all execution time
is spent in methods that are required for writing the output to the screen. The
dominant function isUTF_8$Encoder.encodeArrayLoop from the Open-
JDK classes included in Jamaica, which is used while converting JavaÕs unicode
characters to the platformÕs UTF-8 encoding. Also important is the time spent
in AbstractStringBuilder . Calls to the methods of this class have been
generated automatically by thejamaicac compiler for string concatenation ex-
pressions using the Ô+Õ-operator.

On systems that support a CPU cycle counter, the proÞling data also contains
a cumulative count of the number of processor cycles spent in each method. This
information is useful to obtain a more high-level view on where the runtime per-
formance was spent.

The CPU cycle proÞling information is contained in lines starting with the tag
PROFILE_CYCLES:. A similar command line can be used to Þnd the methods
that cumulatively require most of the execution time:

> grep PROFILE_CYCLES: HelloWorld.prof | sort -rn -k2 | head -n25
PROFILE_CYCLES: 1515796664 java/io/PrintStream.println(Lj...
PROFILE_CYCLES: 889681873 java/io/PrintStream.print(Ljav...
PROFILE_CYCLES: 884193729 java/io/PrintStream.write(Ljav...
PROFILE_CYCLES: 746478256 java/io/BufferedWriter.flushBu...
PROFILE_CYCLES: 710506401 java/io/OutputStreamWriter.wri...
PROFILE_CYCLES: 698638578 sun/nio/cs/StreamEncoder.write...
PROFILE_CYCLES: 657955365 sun/nio/cs/StreamEncoder.implW...
PROFILE_CYCLES: 615253112 java/io/PrintStream.newLine()V...
PROFILE_CYCLES: 462874165 java/nio/charset/CharsetEncode...
PROFILE_CYCLES: 412663080 sun/nio/cs/UTF_8$Encoder.encod...
PROFILE_CYCLES: 391520187 java/io/OutputStreamWriter.flu...
PROFILE_CYCLES: 385106215 java/lang/StringBuilder.append...

58 CHAPTER 5. PERFORMANCE OPTIMIZATION

PROFILE_CYCLES: 382065700 sun/nio/cs/StreamEncoder.flush...
PROFILE_CYCLES: 371031697 sun/nio/cs/UTF_8$Encoder.encod...
PROFILE_CYCLES: 365970930 java/lang/AbstractStringBuilde...
PROFILE_CYCLES: 354994367 sun/nio/cs/StreamEncoder.implF...
PROFILE_CYCLES: 335017864 sun/nio/cs/StreamEncoder.write...
PROFILE_CYCLES: 248484082 com/aicas/jamaica/lang/Profile...
PROFILE_CYCLES: 221012872 java/io/PrintStream.write([BII...
PROFILE_CYCLES: 173072516 java/lang/AbstractStringBuilde...
PROFILE_CYCLES: 168880476 java/lang/String.indexOf(I)I(i...
PROFILE_CYCLES: 163454112 java/lang/String.indexOf(II)I(...
PROFILE_CYCLES: 154988208 java/io/BufferedOutputStream.f...
PROFILE_CYCLES: 133841231 java/lang/ClassLoader.loadClas...
PROFILE_CYCLES: 129726158 java/nio/CharBuffer.wrap([CII)...

The report is cumulative. It shows more clearly how much time is spent in which
method. The methodprintln(String) of classjava.io.PrintStream
dominates the program. The main method of a program is not included in the
PROFILE_CYCLES.

The cumulative cycle counts can now be used as a basis for a top-down opti-
mization of the application execution time.

Chapter 6

Reducing Footprint and Memory
Usage

This chapter is a hands-on tutorial that shows how to reduce an applicationÕs foot-
print and RAM demand, while also achieving optimal runtime performance. As
example application we use Pendragon SoftwareÕs embedded CaffeineMark (tm)
3.0. The class Þles for this benchmark are part of the JamaicaVM Tools installa-
tion. See Section 2.4.

6.1 Compilation

JamaicaVM Builder compiles bytecode to machine code, which is typically about
20 to 30 times faster than interpreted code. (This is calledstaticor ahead-of-time
compilation.) However, due to the fact that Java bytecode is very compact com-
pared to machine code on CISC or RISC machines, compiled code is signiÞcantly
larger than bytecode.

Therefore, in order to improve the performance of an application, only those
bytecodes that contribute most to the overall runtime should be compiled to ma-
chine code in order to achieve satisfactory runtime. This is done using a proÞle
and was discussed in the previous chapter (Chapter 5). While using a proÞle usu-
ally offers the best compromise between footprint and performance, JamaicaVM
Builder also provides other modes of compilation. They are discussed in the fol-
lowing sections.

6.1.1 Suppressing Compilation

The Builder option-interpret turns compilation of bytecode off. The created
executable will be a standalone program containing both bytecode of the applica-

59

60 CHAPTER 6. REDUCING FOOTPRINT AND MEMORY USAGE

tion and the virtual machine executing the bytecode.

> jamaicabuilder -cp classes CaffeineMarkEmbeddedApp -interpret \
> -destination=caffeine_interpret
Reading configuration from
Õusr/local/jamaica-8.0/target/linux-x86_64/etc/jamaica.confÕ...
Jamaica Builder Tool 8.0 Release 0
(User: EVALUATION USER, Expires: 2016.04.27)
Generating code for target Õlinux-x86_64Õ, optimization ÕspeedÕ

+ tmp/caffeine_interpret__.c
+ tmp/caffeine_interpret__.h
* C compiling Õtmp/caffeine_interpret__.cÕ
+ tmp/caffeine_interpret__nc.o
* linking
* stripping

Application memory demand will be as follows:
initial max

Thread C stacks: 1152KB (= 9 * 128KB) 63MB (= 511 * 128KB)
Thread Java stacks: 144KB (= 9 * 16KB) 8176KB (= 511 * 16KB)
Heap Size: 2048KB 256MB
GC data: 128KB 16MB
TOTAL: 3472KB 343MB

The size of the created binary may be inspected, for example, with a shell com-
mand to list directories. We usels -sk Þle, which displays the Þle size in
1024 Byte units. It is available on Unix systems. On Windows,dir may be used
instead.

> ls -sk caffeine_interpret
12236 caffeine_interpret

The runtime performance for the built application is slightly better compared to
usingjamaicavm_slim , a variant of the jamaicavm command that has no built-
in standard library classes (see Section 13.3).

> ./caffeine_interpret
Sieve score = 6876 (98)
Loop score = 6503 (2017)
Logic score = 4667 (0)
String score = 5832 (708)
Float score = 6004 (185)
Method score = 4711 (166650)
Overall score = 5703

> jamaicavm_slim -cp classes CaffeineMarkEmbeddedApp
Sieve score = 4709 (98)
Loop score = 4228 (2017)

6.1. COMPILATION 61

Logic score = 4600 (0)
String score = 4324 (708)
Float score = 4505 (185)
Method score = 4443 (166650)
Overall score = 4465

Better performance will be achieved by compilation as shown in the sections be-
low.

6.1.2 Using Default Compilation

If none of the optionsinterpret , compile , or useProfile is speciÞed,
default compilation is used. The default means that a pre-generated proÞle will
be used for the system classes, and all application classes will be compiled fully.
This usually results in good performance for small applications, but it causes sub-
stantial code size increase for larger applications and it results in slow execution
of applications that use the system classes in a way different than recorded in the
system proÞle.

> jamaicabuilder -cp classes CaffeineMarkEmbeddedApp \
> -destination=caffeine
Reading configuration from
Õusr/local/jamaica-8.0/target/linux-x86_64/etc/jamaica.confÕ...
Jamaica Builder Tool 8.0 Release 0
(User: EVALUATION USER, Expires: 2016.04.27)
Generating code for target Õlinux-x86_64Õ, optimization ÕspeedÕ

+ tmp/PKG__Vc6d407a57973c111__.c
[...]
+ tmp/caffeine__.c
+ tmp/caffeine__.h
* C compiling Õtmp/caffeine__.cÕ
[...]
+ tmp/caffeine__nc.o
* linking
* stripping

Application memory demand will be as follows:
initial max

Thread C stacks: 1152KB (= 9 * 128KB) 63MB (= 511 * 128KB)
Thread Java stacks: 144KB (= 9 * 16KB) 8176KB (= 511 * 16KB)
Heap Size: 2048KB 256MB
GC data: 128KB 16MB
TOTAL: 3472KB 343MB

> ls -sk caffeine
13880 caffeine

62 CHAPTER 6. REDUCING FOOTPRINT AND MEMORY USAGE

The performance of this example is dramatically better than the performance of
the interpreted version.

> ./caffeine
Sieve score = 172798 (98)
Loop score = 407601 (2017)
Logic score = 3885141 (0)
String score = 9006 (708)
Float score = 116040 (185)
Method score = 70317 (166650)
Overall score = 164903

6.1.3 Using a Custom ProÞle

Generation of a proÞle for compilation is a powerful tool for creating small ap-
plications with fast turn-around times. The proÞle collects information on the
runtime behavior of an application, guiding the compiler in its optimization pro-
cess and in the selection of which methods to compile and which methods to leave
in compact bytecode format.

To generate the proÞle, we Þrst have to create a proÞling version of the appli-
cations using the Builder optionprofile (see Chapter 5) or using the command
jamaicavmp :

> jamaicavmp -cp classes CaffeineMarkEmbeddedApp
Sieve score = 2827 (98)
Loop score = 2651 (2017)
Logic score = 3132 (0)
String score = 2786 (708)
Float score = 2491 (185)
Method score = 2291 (166650)
Overall score = 2683
Start writing profile data into file ÕCaffeineMarkEmbeddedApp.profÕ

Write threads data...
Write invocation data...

Done writing profile data

This proÞling run also illustrates the runtime overhead of the proÞling data col-
lection: the proÞling run is signiÞcantly slower than the interpreted version.

Now, an application can be compiled using the proÞling data that was stored
in ÞleCaffeineMarkEmbeddedApp.prof :

> jamaicabuilder -cp classes \
> -useProfile=CaffeineMarkEmbeddedApp.prof \
> CaffeineMarkEmbeddedApp -destination=caffeine_useProfile10
Reading configuration from

6.1. COMPILATION 63

Õusr/local/jamaica-8.0/target/linux-x86_64/etc/jamaica.confÕ...
Jamaica Builder Tool 8.0 Release 0
(User: EVALUATION USER, Expires: 2016.04.27)
Generating code for target Õlinux-x86_64Õ, optimization ÕspeedÕ

+ tmp/PKG__V7b68718d23a074b1__.c
[...]
+ tmp/caffeine_useProfile10__.c
+ tmp/caffeine_useProfile10__.h
* C compiling Õtmp/caffeine_useProfile10__.cÕ
[...]
+ tmp/caffeine_useProfile10__nc.o
* linking
* stripping

Application memory demand will be as follows:
initial max

Thread C stacks: 1152KB (= 9 * 128KB) 63MB (= 511 * 128KB)
Thread Java stacks: 144KB (= 9 * 16KB) 8176KB (= 511 * 16KB)
Heap Size: 2048KB 256MB
GC data: 128KB 16MB
TOTAL: 3472KB 343MB

The resulting application is only slightly larger than the interpreted version but,
simliar to default compilation, the runtime score is signiÞcantly better:

> ls -sk caffeine_useProfile10
12600 caffeine_useProfile10

> ./caffeine_useProfile10
Sieve score = 177108 (98)
Loop score = 357258 (2017)
Logic score = 3964559 (0)
String score = 9065 (708)
Float score = 113357 (185)
Method score = 71913 (166650)
Overall score = 162682

For this small example, the runtime score achieved with default compilation hap-
pens to be higher than for the application built with a custom proÞle. For large
real-world application using a custom proÞle usually leads to better performance.

When a proÞle is used to guide the compiler, by default 10% of the methods
executed during the proÞle run are compiled. This results in a moderate code size
increase compared with fully interpreted code and results in a run-time perfor-
mance very close to or typically even better than fully compiled code. Using the
Builder optionpercentageCompiled , this default setting can be adjusted to
any value from 0% to 100%. Best results are usually achieved with a value from

64 CHAPTER 6. REDUCING FOOTPRINT AND MEMORY USAGE

10% to 30%, where a higher value leads to a larger footprint. Note that setting the
value to 100% is not the same as setting the optioncompile (see Section 6.1.5),
since using a proÞle only compiles those methods that are executed during the
proÞling run. Methods not executed during the proÞling run will not be compiled
whenuseProfile is used.

Entries in the proÞle can be edited manually, for example to enforce compila-
tion of a method that is performance critical. For example, the proÞle generated
for this example contains the following entry for the methodsize() of class
java.util.Vector .

PROFILE: 64 (0%) java/util/Vector.size()I

To enforce compilation of this method even whenpercentageCompiled is
not set to 100%, the proÞling data can be changed to a higher value, e.g.,

PROFILE: 1000000 (0%) java/util/Vector.size()I

6.1.4 Code Optimization by the C Compiler

Enabling C compiler optimizations for code size or execution speed can have an
important effect on the the size and speed of the application. These optimiza-
tions are enabled via setting the command line options-optimize=size or
-optimize=speed , respectively. Note thatspeed is normally the default.1

For comparison, we build the caffeine example optimizing forsize .

> jamaicabuilder -cp classes \
> -useProfile=CaffeineMarkEmbeddedApp.prof \
> -optimize=size CaffeineMarkEmbeddedApp \
> -destination=caffeine_useProfile10_size
Reading configuration from
Õusr/local/jamaica-8.0/target/linux-x86_64/etc/jamaica.confÕ...
Jamaica Builder Tool 8.0 Release 0
(User: EVALUATION USER, Expires: 2016.04.27)
Generating code for target Õlinux-x86_64Õ, optimization ÕsizeÕ

+ tmp/PKG__Vecb9f032ef5668e0__.c
[...]
+ tmp/caffeine_useProfile10_size__.c
+ tmp/caffeine_useProfile10_size__.h
* C compiling Õtmp/caffeine_useProfile10_size__.cÕ
[...]
+ tmp/caffeine_useProfile10_size__nc.o
* linking
* stripping

1To check the default, invokejamaicabuilder -help or inspect the Builder status mes-
sages.

6.1. COMPILATION 65

Application memory demand will be as follows:
initial max

Thread C stacks: 1152KB (= 9 * 128KB) 63MB (= 511 * 128KB)
Thread Java stacks: 144KB (= 9 * 16KB) 8176KB (= 511 * 16KB)
Heap Size: 2048KB 256MB
GC data: 128KB 16MB
TOTAL: 3472KB 343MB

Code size and performance depend strongly on the C compiler that is employed
and may even show anomalies such as better runtime performance for the version
optimized for smaller code size. We get these results:

> ls -sk caffeine_useProfile10_size
12320 caffeine_useProfile10_size

> ./caffeine_useProfile10_size
Sieve score = 120004 (98)
Loop score = 133752 (2017)
Logic score = 3005921 (0)
String score = 9114 (708)
Float score = 68678 (185)
Method score = 61652 (166650)
Overall score = 110915

6.1.5 Full Compilation

Full compilation can be used when no proÞling information is available and code
size and build time are not important issues.

! Fully compiling an application leads to very poor turn-around times and may
require signiÞcant amounts of memory during the C compilation phase. We

recommend compilation be used only through proÞling as described above.

To compile the complete application, the optioncompile is set:

> jamaicabuilder -cp classes -compile CaffeineMarkEmbeddedApp \
> -destination=caffeine_compiled
Reading configuration from
Õusr/local/jamaica-8.0/target/linux-x86_64/etc/jamaica.confÕ...
Jamaica Builder Tool 8.0 Release 0
(User: EVALUATION USER, Expires: 2016.04.27)
Generating code for target Õlinux-x86_64Õ, optimization ÕspeedÕ

+ tmp/PKG__Vca144e79d274579f__.c
[...]
+ tmp/caffeine_compiled__.c
+ tmp/caffeine_compiled__.h

66 CHAPTER 6. REDUCING FOOTPRINT AND MEMORY USAGE

* C compiling Õtmp/caffeine_compiled__.cÕ
[...]
+ tmp/caffeine_compiled__nc.o
* linking
* stripping

Application memory demand will be as follows:
initial max

Thread C stacks: 1152KB (= 9 * 128KB) 63MB (= 511 * 128KB)
Thread Java stacks: 144KB (= 9 * 16KB) 8176KB (= 511 * 16KB)
Heap Size: 2048KB 256MB
GC data: 128KB 16MB
TOTAL: 3472KB 343MB

The resulting binary is very large. The performance of the compiled version is sig-
niÞcantly better than the interpreted version. However, even though all code was
compiled, the performance of the versions created using proÞles is not matched.
This is due to poor cache behavior caused by the large footprint.

> ls -sk caffeine_compiled
73768 caffeine_compiled

> ./caffeine_compiled
Sieve score = 179817 (98)
Loop score = 420148 (2017)
Logic score = 3893045 (0)
String score = 5582 (708)
Float score = 112862 (185)
Method score = 70375 (166650)
Overall score = 153419

Full compilation is only feasible in combination with the code size optimizations
discussed in the sequel. Experience shows that using a custom proÞle is superior
in almost all situations.

6.2 Smart Linking

The JamaicaVM Builder can remove unused bytecode from an application. This
is calledsmart linkingand reduces the footprint of both interpreted and statically
compiled code. By default, only a modest degree of smart linking is used: unused
classes and methods of classes are removed, unless that code is explicitly included
with either of the options-includeClasses or -includeJAR . For more
information, see the Builder option-smart .

6.2. SMART LINKING 67

Additional optimizations are possible if the Builder knows for sure that the
application that is compiled is closed, i.e., all classes of the application are built-
in and the application does not use dynamic class loading to add any additional
code. These additional optimizations include static binding and inlining for vir-
tual method calls if the called method is not redeÞned by any built-in class. The
Builder can be instructed to perform these optimizations by setting the option
-closed .

In the Caffeine benchmark application, dynamic class loading is not used, so
we can enable closed application optimizations by setting-closed :

> jamaica -cp classes -closed \
> -useProfile=CaffeineMarkEmbeddedApp.prof \
> CaffeineMarkEmbeddedApp \
> -destination=caffeine_useProfile10_closed
Reading configuration from
Õusr/local/jamaica-8.0/target/linux-x86_64/etc/jamaica.confÕ...
Jamaica Builder Tool 8.0 Release 0
(User: EVALUATION USER, Expires: 2016.04.27)
Generating code for target Õlinux-x86_64Õ, optimization ÕspeedÕ

+ tmp/PKG__V4136fe3a736d3abf__.c
[...]
+ tmp/caffeine_useProfile10_closed__.c
+ tmp/caffeine_useProfile10_closed__.h
* C compiling Õtmp/caffeine_useProfile10_closed__.cÕ
[...]
+ tmp/caffeine_useProfile10_closed__nc.o
* linking
* stripping

Application memory demand will be as follows:
initial max

Thread C stacks: 1152KB (= 9 * 128KB) 63MB (= 511 * 128KB)
Thread Java stacks: 144KB (= 9 * 16KB) 8176KB (= 511 * 16KB)
Heap Size: 2048KB 256MB
GC data: 128KB 16MB
TOTAL: 3472KB 343MB

> ls -sk caffeine_useProfile10_closed
12212 caffeine_useProfile10_closed

The effect on the code size is favourable. Also, the resulting runtime performance
is signiÞcantly better for code that requires frequent virtual method calls. Con-
sequently, the results of the Method test in the Caffeine benchmark are improved
when closed application optimizations are enabled:

> ./caffeine_useProfile10_closed
Sieve score = 180270 (98)

68 CHAPTER 6. REDUCING FOOTPRINT AND MEMORY USAGE

Loop score = 355699 (2017)
Logic score = 3948536 (0)
String score = 9460 (708)
Float score = 119329 (185)
Method score = 248628 (166650)
Overall score = 203518

6.3 API Library Classes and Resources

The footprint of an application can be further reduced by excluding resources
such as language locales and time zone information, which contain a fair amount
of data, and their associated library classes.

For our example application, there is no need for supporting network protocols
or language locales. Furthermore, neither graphics nor fonts are needed. Conse-
quently, we can set all ofprotocols , locales , graphics andfonts to
the empty set. Time zone support is not required either, and we include only a
single time zone. The resulting call to build the application is as follows:

> jamaicabuilder -cp classes -closed \
> -useProfile=CaffeineMarkEmbeddedApp.prof \
> -setProtocols=none -setLocales=none \
> -setGraphics=none -setFonts=none \
> -setTimeZones=Europe/Berlin \
> CaffeineMarkEmbeddedApp -destination=caffeine_nolibs
Reading configuration from
Õusr/local/jamaica-8.0/target/linux-x86_64/etc/jamaica.confÕ...
Jamaica Builder Tool 8.0 Release 0
(User: EVALUATION USER, Expires: 2016.04.27)
Generating code for target Õlinux-x86_64Õ, optimization ÕspeedÕ

+ tmp/PKG__V676a1c1f305fe4a1__.c
[...]
+ tmp/caffeine_nolibs__.c
+ tmp/caffeine_nolibs__.h
* C compiling Õtmp/caffeine_nolibs__.cÕ
[...]
+ tmp/caffeine_nolibs__nc.o
* linking
* stripping

Application memory demand will be as follows:
initial max

Thread C stacks: 1152KB (= 9 * 128KB) 63MB (= 511 * 128KB)
Thread Java stacks: 144KB (= 9 * 16KB) 8176KB (= 511 * 16KB)
Heap Size: 2048KB 256MB
GC data: 128KB 16MB
TOTAL: 3472KB 343MB

6.4. RAM USAGE 69

> ls -sk caffeine_nolibs
5620 caffeine_nolibs

A huge part of the class library code could be removed by the Jamaica Builder so
that the resulting application is signiÞcantly smaller than in the previous examples.

6.4 RAM Usage

In many embedded applications, the amount of random access memory (RAM)
required is even more important than the application performance and its code
size. Therefore, a number of means to control the application RAM demand are
available in Jamaica. RAM is required for three main purposes:

1. Memory for application data structures, such as objects or arrays allocated
at runtime.

2. Memory required to store internal data of the VM, such as representations
of classes, methods, method tables, etc.

3. Memory required for each thread, such as Java and C stacks.

Needless to say that Item 1 is predominant for an applicationÕs use of RAM space.
This includes choosing appropriate classes from the standard library. For mem-
ory critical applications, the used data structures should be chosen with care. The
memory overhead of a single object allocated on the Jamaica heap is relatively
small: typically three machine words are required for internal data such as the
garbage collection state, the objectÕs type information, a monitor for synchroniza-
tion and memory area information. See Chapter 9 for details on memory areas.

Item 2 means that an application that uses fewer classes will also have a lower
memory demand. Consequently, the optimizations discussed in the previous sec-
tions (Section 6.2 and Section 6.3) have a knock-on effect on RAM demand!
Memory needed for threads (Item 3) can be controlled by conÞguring the number
of threads available to the application and the stack sizes.

6.4.1 Measuring RAM Demand

The amount of RAM actually needed by an application can be determined by set-
ting the Builder optionanalyze . Apart from setting this option, it is important
that exactly the same arguments are used as in the Þnal version. Hereanalyze
is set to Ô1Õ, which yields a tolerance of 1%:

70 CHAPTER 6. REDUCING FOOTPRINT AND MEMORY USAGE

> jamaicabuilder -cp classes -analyze=1 -closed \
> -useProfile=CaffeineMarkEmbeddedApp.prof \
> CaffeineMarkEmbeddedApp -destination=caffeine_analyze
Reading configuration from
Õusr/local/jamaica-8.0/target/linux-x86_64/etc/jamaica.confÕ...
Jamaica Builder Tool 8.0 Release 0
(User: EVALUATION USER, Expires: 2016.04.27)
Generating code for target Õlinux-x86_64Õ, optimization ÕspeedÕ

+ tmp/PKG__V4136fe3a736d3abf__.c
[...]
+ tmp/caffeine_analyze__.c
+ tmp/caffeine_analyze__.h
* C compiling Õtmp/caffeine_analyze__.cÕ
[...]
+ tmp/caffeine_analyze__nc.o
* linking
* stripping

Application memory demand will be as follows:
initial max

Thread C stacks: 1152KB (= 9 * 128KB) 63MB (= 511 * 128KB)
Thread Java stacks: 144KB (= 9 * 16KB) 8176KB (= 511 * 16KB)
Heap Size: 2048KB 256MB
GC data: 128KB 16MB
TOTAL: 3472KB 343MB

Running the resulting application will print the amount of RAM memory that was
required during the execution:

> ./caffeine_analyze
Sieve score = 58309 (98)
Loop score = 46672 (2017)
Logic score = 3931387 (0)
String score = 163 (708)
Float score = 30606 (185)
Method score = 248768 (166650)
Overall score = 48661

Recommended heap size: 5601K (contiguous memory).
Application used at most 3389312 bytes for reachable objects
on the Java heap
(accuracy 1%).
###
Reserved memory is set to 10%. To obtain lower memory bounds
or worst-case GC overhead, set reserved memory to 0.
###
Worst case allocation overhead:
heapSize dynamic GC const GC work
17513K 6 3

6.4. RAM USAGE 71

13455K 7 4
11182K 8 4
9764K 9 4
8780K 10 4
7523K 12 5
6769K 14 5
6246K 16 6
5879K 18 6
5601K 20 7
5213K 24 8
4955K 28 9
4777K 32 10
4636K 36 11
4528K 40 12
4373K 48 14
4266K 56 17
4190K 64 19
4012K 96 27
3927K 128 36
3840K 192 53
3801K 256 69
3762K 384 100

The memory analysis report begins with a recommended heap size and the actual
memory demand. The latter is the maximum of simultaneously reachable objects
during the entire program run. The JamaicaVM garbage collector needs more
memory than the actual memory demand to do its work. The overhead depends
on the GC mode and the amount of collection work done per allocation. In dy-
namic mode, which is the default, 20 units of collection work per allocation are
recommended, which leads to a memory overhead. Overheads for various garbage
collection work settings are shown in the table printed by the analyze mode. For
more information on heap size analysis and the Builder option-analyze , see
Section 7.2.

6.4.2 Memory Required for Threads

To reduce memory other than the Java heap, one must reduce the stack sizes and
the number of threads that will be created for the application. This can be done in
the following ways.

6.4.2.1 Reducing Stack Sizes

The Java stack size can be reduced via optionjavaStackSize to a lower value
than the default (typically 20K). To reduce the size to 4K,javaStackSize=4K

72 CHAPTER 6. REDUCING FOOTPRINT AND MEMORY USAGE

can be used. The C stack size can be set accordingly withnativeStackSize .

6.4.2.2 Disabling the Finalizer Thread

A Java application typically uses one thread that is dedicated to running the Þ-
nalization methods (finalize()) of objects that were found to be unreach-
able by the garbage collector. An application that does not allocate any such ob-
jects may not need the Þnalizer thread. The priority of the Þnalizer thread can be
adjusted through the option-XdefineProperty=jamaica.finalizer.
pri= value. Setting the priority to -1 deactivates the Þnalizer thread completely.

Note that deactivating the Þnalizer thread may cause a memory leak since any
objects that have afinalize() method can no longer be reclaimed. If the
resources available on the target system do not permit the use of a Þnalizer thread,
the application may execute thefinalize() method explicitly by regularly
callingRuntime.runFinalization() .

6.4.2.3 Disabling the Reference Handler Thread

In contrast to OpenJDK, the Reference Handler thread in Jamaica does not clear
and enqueue instances ofjava.lang.ref.Reference . Instead, this is done
directly by the garbage collector. However, the Reference Handler is still used
in JamaicaVM since it executescleaners(sun.misc.Cleaner), which serve
as internal Þnalizers for the implementation of some standard classes. The pri-
ority of the Reference Handler can be adjusted through-XdefineProperty=
jamaica.reference_handler.pri= value. Setting the priority to -1 de-
activates the reference handler thread completely.

Note that the reference handler should only be deactivated for applications that
do not require the execution of cleaners, which are typically used by network and
other I/O code to free internal resources they allocate.

6.4.2.4 Disabling Time Slicing

On non-realtime systems that do not strictly respect thread priorities, Jamaica uses
one additional thread to allow time slicing between threads. On realtime systems,
this thread can be used to enforce round-robin scheduling of threads of equal
priorities.

On systems with tight memory demand, the thread required for time-slicing
can be deactivated by setting the size of the time slice to zero using the op-
tion -timeSlice=0ns . In an application that uses threads of equal priorities,
explicit calls to the methodThread.yield() are required to permit thread

6.4. RAM USAGE 73

switches to another thread of the same priority if the time slicing thread is dis-
abled.

The number of threads set by the option-numThreads does not include the
time slicing thread. Unlike when disabling the Þnalizer thread, which is a Java
thread, when the time slicing thread is disabled, the argument to-numThreads
should not be changed.

6.4.2.5 Disabling the Memory Reservation Thread

The memory reservation thread is a low priority thread that continuously tries to
reserve memory up to a speciÞed threshold. This reserved memory is used by all
other threads. As long as reserved memory is available no GC work needs to be
done. This is especially efÞcient for applications that have long pause times with
little or no activity that are preempted by sudden activities that require a burst of
memory allocation.

On systems with tight memory demand, the thread required for memory reser-
vation can be deactivated by setting-reservedMemory=0 .

6.4.2.6 Disabling Signal Handlers

The default handlers for the POSIX signals can be turned off by setting prop-
erties with the optionXdefineProperty . The POSIX signals are SIGINT,
SIGQUIT and SIGTERM. The properties are described in Section 13.5. To turn
off the signal handlers, these properties should be set totrue : jamaica.no_
sig_int_handler , jamaica.no_sig_quit_handler andjamaica.
no_sig_term_handler .

6.4.2.7 Setting the Number of Threads

The number of threads available for the application can be set using the option
numThreads . The default setting for this option is high enough to accommodate
the background tasks discussed above. Since these tasks have been deactivated,
and no new threads are started by the application, the number of threads can be
reduced to one by using the setting-numThreads=1 .

If proÞling information was collected and is provided via theuseProfile
option, the number of threads provided to thenumThreads option is checked to
ensure it is at least the number of threads that was required during the proÞling run.
If not, a warning with the minimum number of threads during the proÞling run will
be displayed. This information can be used to adjust the number of threads to the
minimum required by the application.

74 CHAPTER 6. REDUCING FOOTPRINT AND MEMORY USAGE

6.4.2.8 The Example Continued

Applying this to our example application, we can reduce the Java stack to 4K,
deactivate the Þnalizer thread and the reference handler, set the number of threads
to 1, disable the time slicing thread and the memory reservation thread and turn
off the signal handlers:

> jamaicabuilder -cp classes -closed \
> -useProfile=CaffeineMarkEmbeddedApp.prof \
> -setLocales=none -setProtocols=none \
> -setGraphics=none -setFonts=none \
> -setTimeZones=Europe/Berlin \
> -javaStackSize=4K \
> -XdefineProperty=jamaica.finalizer.pri=-1 \
> -XdefineProperty=jamaica.reference_handler.pri=-1 \
> -numThreads=1 \
> -timeSlice=0ns -reservedMemory=0 \
> -XdefineProperty=jamaica.no_sig_int_handler=true \
> -XdefineProperty=jamaica.no_sig_quit_handler=true \
> -XdefineProperty=jamaica.no_sig_term_handler=true \
> CaffeineMarkEmbeddedApp -destination=caffeine_nolibs_js_fP_tS
Reading configuration from
Õusr/local/jamaica-8.0/target/linux-x86_64/etc/jamaica.confÕ...
Jamaica Builder Tool 8.0 Release 0
(User: EVALUATION USER, Expires: 2016.04.27)
Generating code for target Õlinux-x86_64Õ, optimization ÕspeedÕ

+ tmp/PKG__V676a1c1f305fe4a1__.c
[...]
+ tmp/caffeine_nolibs_js_fP_tS__.c
+ tmp/caffeine_nolibs_js_fP_tS__.h
* C compiling Õtmp/caffeine_nolibs_js_fP_tS__.cÕ
[...]
+ tmp/caffeine_nolibs_js_fP_tS__nc.o
* linking
* stripping

Application memory demand will be as follows:
initial max

Thread C stacks: 128KB (= 1 * 128KB) 63MB (= 511 * 128KB)
Thread Java stacks: 4096B (= 1 * 4096B) 2044KB (= 511 * 4096B)
Heap Size: 2048KB 256MB
GC data: 128KB 16MB
TOTAL: 2308KB 337MB

> ls -sk caffeine_nolibs_js_fP_tS
5620 caffeine_nolibs_js_fP_tS

The additional options have little effect on the application size itself compared to
the earlier version. However, the RAM allocated by the application was reduced

6.4. RAM USAGE 75

signiÞcantly.

6.4.3 Memory Required for Line Numbers

An important advantage of programming in the Java language are the accurate er-
ror messages. Runtime exceptions contain a complete stack trace with line number
information on where the problem occurred. This information, however, needs to
be stored in the application and be available at runtime.

After the debugging of an application is Þnished, the memory demand of an
application may be further reduced by removing this information. The Builder
optionXignoreLineNumbers can be set to suppress it. Continuing the exam-
ple from the previous section, we can further reduce the RAM demand by setting
this option:

> jamaicabuilder -cp classes -closed \
> -useProfile=CaffeineMarkEmbeddedApp.prof \
> -setLocales=none -setProtocols=none -setGraphics=none \
> -setFonts=none -setTimeZones=Europe/Berlin \
> -javaStackSize=4K \
> -XdefineProperty=jamaica.finalizer.pri=-1 \
> -XdefineProperty=jamaica.reference_handler.pri=-1 \
> -numThreads=1 \
> -timeSlice=0ns -reservedMemory=0 \
> -XdefineProperty=jamaica.no_sig_int_handler=true \
> -XdefineProperty=jamaica.no_sig_quit_handler=true \
> -XdefineProperty=jamaica.no_sig_term_handler=true \
> CaffeineMarkEmbeddedApp -XignoreLineNumbers \
> -destination=caffeine_nolibs_js_fP_tS_nL
Reading configuration from
Õusr/local/jamaica-8.0/target/linux-x86_64/etc/jamaica.confÕ...
Jamaica Builder Tool 8.0 Release 0
(User: EVALUATION USER, Expires: 2016.04.27)
Generating code for target Õlinux-x86_64Õ, optimization ÕspeedÕ

+ tmp/PKG__V676a1c1f305fe4a1__.c
[...]
+ tmp/caffeine_nolibs_js_fP_tS_nL__.c
+ tmp/caffeine_nolibs_js_fP_tS_nL__.h
* C compiling Õtmp/caffeine_nolibs_js_fP_tS_nL__.cÕ
[...]
+ tmp/caffeine_nolibs_js_fP_tS_nL__nc.o
* linking
* stripping

Application memory demand will be as follows:
initial max

Thread C stacks: 128KB (= 1 * 128KB) 63MB (= 511 * 128KB)
Thread Java stacks: 4096B (= 1 * 4096B) 2044KB (= 511 * 4096B)
Heap Size: 2048KB 256MB

76 CHAPTER 6. REDUCING FOOTPRINT AND MEMORY USAGE

GC data: 128KB 16MB
TOTAL: 2308KB 337MB

The size of the executable has shrunk since line number information is no longer
present:

> ls -sk caffeine_nolibs_js_fP_tS_nL
5032 caffeine_nolibs_js_fP_tS_nL

By inspecting the Builder output, we see that the initial memory demand reported
by the Builder was not reduced. The actual memory demand may be checked
by repeating the build with the additional option-analyze=1 and running the
obtained executable:

> ./caffeine_analyze_nolibs_js_fP_tS_nL
Sieve score = 58448 (98)
Loop score = 45291 (2017)
Logic score = 3888614 (0)
String score = 162 (708)
Float score = 27996 (185)
Method score = 250017 (166650)
Overall score = 47627

Recommended heap size: 2032K (contiguous memory).
Application used at most 1437344 bytes for reachable objects
on the Java heap
(accuracy 1%).
###
Worst case allocation overhead:
heapSize dynamic GC const GC work
4857K 6 3
4057K 7 4
3545K 8 4
3198K 9 4
2943K 10 4
2600K 12 5
2384K 14 5
2228K 16 6
2118K 18 6
2032K 20 7
1910K 24 8
1828K 28 9
1771K 32 10
1725K 36 11
1690K 40 12
1638K 48 14
1603K 56 17

6.4. RAM USAGE 77

1578K 64 19
1518K 96 27
1489K 128 36
1460K 192 53
1446K 256 69
1433K 384 100

The actual memory demand was reduced to about one third compared to Sec-
tion 6.4.1. The score in analyze mode is signiÞcantly lower than the one of the
production version. To conclude the example we verify that the score of the latter
has not gone down as a result of the memory optimizations:

> ./caffeine_nolibs_js_fP_tS_nL
Sieve score = 178766 (98)
Loop score = 346242 (2017)
Logic score = 3912866 (0)
String score = 6601 (708)
Float score = 119140 (185)
Method score = 251342 (166650)
Overall score = 190552

78 CHAPTER 6. REDUCING FOOTPRINT AND MEMORY USAGE

Chapter 7

Memory Management
ConÞguration

JamaicaVM provides the only efÞcient hard-realtime garbage collector available
for Java implementations on the market today. This chapter will Þrst explain how
this garbage collection technology can be used to obtain the best results for ap-
plications that have soft-realtime requirements before explaining the more Þne-
grained tuning required for realtime applications.

7.1 ConÞguration for soft-realtime applications

For most non-realtime applications, the default memory management settings of
JamaicaVM perform well: The heap size is set to a small starting size and is
extended up to a maximum size automatically whenever the heap is not sufÞcient
or the garbage collection work becomes too high. However, in some situations,
some speciÞc settings may help to improve the performance of a soft-realtime
application.

7.1.1 Initial heap size

The default initial heap size is a small value. The heap size is increased on demand
when the application exceeds the available memory or the garbage collection work
required to collect memory in this small heap becomes too high. This means that
an application that on startup requires signiÞcantly more memory than the initial
heap size will see its startup time increased by repeated incremental heap size
expansion.

The obvious solution here is to set the initial heap size to a value large enough
for the application to start. The Jamaica Builder optionheapSize (see Chap-

79

80 CHAPTER 7. MEMORY MANAGEMENT CONFIGURATION

ter 14) and the virtual machine optionXmssizecan be employed to set a higher
size.

Starting off with a larger initial heap not only prevents the overhead of in-
cremental heap expansion, but it also reduces the garbage collection work during
startup. This is because the garbage collector determines the amount of garbage
collection work from the amount of free memory, and with a larger initial heap,
the initial amount of free memory is larger.

7.1.2 Maximum heap size

The maximum heap size speciÞed via Builder optionmaxHeapSize (see Chap-
ter 14) and the virtual machine optionXmxshould be set to the maximum amount
of memory on the target system that should be available to the Java application.
Setting this option has no direct impact on the performance of the application as
long as the applicationÕs memory demand does not come close to this limit. If
the maximum heap size is not sufÞcient, the application will receive anOutOf-
MemoryError at runtime.

However, it may make sense to set the initial heap size to the same value as
the maximum heap size whenever the initial heap demand of the application is of
no importance for the remaining system. Setting initial heap size and maximum
heap size to the same value has two main consequences. First, as has been seen
in Section 7.1.1 above, setting the initial heap size to a higher value avoids the
overhead of dynamically expanding the heap and reduces the amount of garbage
collection work during startup. Second, JamaicaVMÕs memory management code
contains some optimizations that are only applicable to a non-increasing heap
memory space, so overall memory management overhead will be reduced if the
same value is chosen for the initial and the maximum heap size.

7.1.3 Finalizer thread priority

Before the memory used by an object that has afinalize method can be re-
claimed, thisfinalize method needs to be executed. A dedicated thread, the
FinalizerThread executes thesefinalize methods and otherwise sleeps
waiting for the garbage collector to Þnd objects to be Þnalized.

In order to prevent the system from running out of memory, theFinalizer-
Thread must receive sufÞcient CPU time. Its default priority is therefore set to
8. Consequently, any thread with a lower priority will be preempted whenever an
object is found to require Þnalization.

Selecting a lower Þnalizer thread priority may cause the Þnalizer thread to
starve if a higher priority thread does not yield the CPU for a longer period of
time. However, if it can be guaranteed that the Þnalizer thread will not starve,

7.1. CONFIGURATION FOR SOFT-REALTIME APPLICATIONS 81

system performance may be improved by running the Þnalizer thread at a lower
priority. Then, a higher priority thread that performs memory allocation will not
be preempted by Þnalizer thread execution.

This priority can be set to a different value using the Java propertyjamaica.
finalizer.pri . In an application that has sufÞcient idle CPU time in between
activities of higher priority threads, a Þnalizer priority lower than the priority of
these threads is sufÞcient.

7.1.4 Reference Handler thread priority

The Reference Handler thread is used to free memory allocated outside the gar-
bage collected heap. Such memory is allocated whendirect buffers are created.
Unlike OpenJDK, JamaicaÕs Reference Handler thread does not clear or enqueue
instances ofjava.lang.ref.Reference ; this task is performed by the gar-
bage collector directly.

Direct buffers are used by Java for efÞcient native I/O. They are allocated
by theallocateDirect() factory methods ofByteBuffer and the other
subclasses ofjava.nio.Buffer . They are also used be the various channel
implementations provided by New I/O, such as socket and Þle channels.

To free such native resources, the Reference Handler thread must receive suf-
Þcient CPU time. Its default priority is therefore set to 10. Consequently, any
thread with a lower priority will be preempted whenever a native resource needs
to be released.

Selecting a lower Reference Handler thread priority may cause this thread to
starve if a higher priority thread does not yield the CPU for a longer period of time.
Selecting a lower priority, however, may reduce jitter in higher priority threads
since the Reference Handler will no longer preempt those threads to release native
resources.

This priority can be set to a different value using the propertyjamaica.
reference_handler.pri . In an application that has sufÞcient idle CPU
time in between activities of higher priority threads, a Reference Handler priority
lower than the priority of these threads is sufÞcient.

7.1.5 Reserved memory

JamaicaVMÕs default behavior is to perform garbage collection work at memory
allocation time. This ensures a fair accounting of the garbage collection work:
Those threads with the highest allocation rate will perform correspondingly more
garbage collection work.

However, this approach may slow down threads that run only occasionally and
perform some allocation bursts, e.g., changing the input mask or opening a new

82 CHAPTER 7. MEMORY MANAGEMENT CONFIGURATION

window in a graphical user interface.
To avoid penalizing these time-critical tasks by allocation work, JamaicaVM

uses a low priority memory reservation thread that runs to pre-allocate a given
percentage of the heap memory. This reserved memory can then be allocated
by any allocation bursts without the need to perform garbage collection work.
Consequently, an application with bursts of allocation activity with sufÞcient idle
time between these bursts will see an improved performance.

The maximum amount of memory that will be reserved by the memory reser-
vation thread is given as a percentage of the total memory. The default value for
this percentage is 10%. It can be set via the Builder options-reservedMemory
and-reservedMemoryFromEnv , or for the virtual machine via the environ-
ment variableJAMAICAVM_RESERVEDMEMORY.

An allocation burst that exceeds the amount of reserved memory will have to
fall back to perform garbage collection work as soon as the amount of reserved
memory is exceeded. This may occur if the maximum amount of reserved memory
is less than the memory allocated during the burst or if there is too little idle time
in between consecutive bursts such as when the reservation thread cannot catch
up and reserve the maximum amount of memory.

For an application that cannot guarantee sufÞcient idle time for the memory
reservation thread, the amount of reserved memory should not be set to a high per-
centage. Higher values will increase the worst case garbage collection work that
will have to be performed on an allocation, since after the reserved memory was
allocated, there is less memory remaining to perform sufÞcient garbage collection
work to reclaim memory before the free memory is exhausted.

A realtime application without allocation bursts and sufÞcient idle time should
therefore run with the maximum amount of reserved memory set to0%.

The priority default of the memory reservation thread is the Java priority1
with the scheduler instructed to give preference to other Java threads that run
at priority 1 (i.e., with a priority micro adjustment of-1). The priority can
be changed by setting the Java propertyjamaica.reservation_thread_
priority to an integer value larger than or equal to0. If set, the memory reser-
vation thread will run at the given Java priority. A value of0 will result at a Java
priority 1 with micro adjustment-1 , i.e., the scheduler will give preference to
other threads running at priority1.

7.1.6 Stop-the-world Garbage Collection

For applications that do not have any realtime constraints, but that require the
best average time performance, JamaicaVMÕs Builder provides options to disable
realtime garbage collection, and to use a stop-the-world garbage collector instead.

7.1. CONFIGURATION FOR SOFT-REALTIME APPLICATIONS 83

In stop-the-world mode, no garbage collection work will be performed un-
til the system runs out of free memory. Then, all threads that perform memory
allocation will be stopped to perform garbage collection work until a complete
garbage collection cycle is Þnished and memory was reclaimed. Any thread that
does not perform memory allocation may, however, continue execution even while
the stop-the-world garbage collector is running.

The Builder option-stopTheWorldGC enables the stop-the-world garbage
collector. Alternatively, the Builder option-constGCwork=-1 may be used,
or -constGCworkFromEnv= var with the environment variablevar set to-1 .

JamaicaVM additionally provides an atomic garbage collector that requires
stopping of all threads of the Java application during a stop-the-world garbage
collection cycle. This has the disadvantage that even threads that do not allocate
heap memory will have to be stopped during the GC cycle. However, it avoids
the need to track heap modiÞcations performed by threads running parallel to the
garbage collector (so called write-barrier code). The result is a slightly increased
performance of compiled code.

Specifying the Builder option-atomicGC enables the atomic garbage col-
lector. Alternatively, the Builder option-constGCwork=-2 may be used, or
specify-constGCworkFromEnv= var with the environment variablevar set to
-2 .

Please note that memory reservation should be disabled when stop-the-world
or atomic GC is used.

7.1.7 Recommendations

In summary, to obtain the best performance in your soft-realtime application, fol-
low the following recommendations.

¥ Set initial heap size as large as possible.

¥ Set initial heap size and maximum heap size to the same value if possible.

¥ Set the Þnalizer thread priority to a low value if your system has enough
idle time.

¥ If your application uses allocation bursts with sufÞcient CPU idle time in
between two allocation bursts, set the amount of reserved memory to Þt
with the largest allocation burst.

¥ If your application does not have idle time with intermittent allocation bursts,
set the amount of reserved memory to0%.

84 CHAPTER 7. MEMORY MANAGEMENT CONFIGURATION

¥ Enable memory reservation if your system has idle time that can be used for
garbage collection.

7.2 ConÞguration for hard-realtime applications

For predictable execution of memory allocation, more care is needed when select-
ing memory related options. No dynamic heap size increments should be used if
the break introduced by the heap size expansion can harm the realtime guarantees
required by the application. Also, the heap size must be set such that the implied
garbage collection work is tolerable.

The memory analyzer tool is used to determine the garbage collector settings
during a runtime measurement. Together with the-showNumberOfBlocks
command line option of the Builder tool, they permit an accurate prediction of
the time required for each memory allocation. The following sections explain the
required conÞguration of the system.

7.2.1 Usage of the Memory Analyzer tool

The Memory Analyzer is a tool for Þne tuning an applicationÕs memory require-
ments and the realtime guarantees that can be given when allocating objects within
Java code running on the Jamaica Virtual Machine.

The Memory Analyzer is integrated into the Builder tool. It can be activated
by setting the command line option-analyze= accuracy.

Using the Memory Analyzer Tool is a three-step process: First, an application
is built using the Memory Analyzer. The resulting executable Þle can then be ex-
ecuted to determine its memory requirements. Finally, the result of the execution
can be used to Þne tune the Þnal version of the application.

7.2.2 Measuring an applicationÕs memory requirements

As an example, we will build the HelloWorld example application that was pre-
sented in Section 2.4. By providing the option-analyze to the Builder and
giving the required accuracy of the analysis in percent, the built application will
run in analysis mode to the speciÞed accuracy. In this example, we use an accu-
racy of 5%:

> jamaicabuilder -cp classes -interpret -analyze=5 HelloWorld
Reading configuration from
Õusr/local/jamaica-8.0/target/linux-x86_64/etc/jamaica.confÕ...
Jamaica Builder Tool 8.0 Release 0
(User: EVALUATION USER, Expires: 2016.04.27)

7.2. CONFIGURATION FOR HARD-REALTIME APPLICATIONS 85

Generating code for target Õlinux-x86_64Õ, optimization ÕspeedÕ
+ tmp/HelloWorld__.c
+ tmp/HelloWorld__.h
* C compiling Õtmp/HelloWorld__.cÕ
+ tmp/HelloWorld__nc.o
* linking
* stripping

Application memory demand will be as follows:
initial max

Thread C stacks: 1152KB (= 9 * 128KB) 63MB (= 511 * 128KB)
Thread Java stacks: 144KB (= 9 * 16KB) 8176KB (= 511 * 16KB)
Heap Size: 2048KB 256MB
GC data: 128KB 16MB
TOTAL: 3472KB 343MB

The build process is performed exactly as it would be without the-analyze
option, except that the garbage collector is told to measure the applicationÕs mem-
ory usage with the given accuracy. The result of this measurement is printed to
the console after execution of the application:

> ./HelloWorld
Hello World!

Hello World!
Hello World!

Hello World!
Hello World!

Hello World!
[...]

Recommended heap size: 5556K (contiguous memory).
Application used at most 3362144 bytes for reachable objects
on the Java heap
(accuracy 5%).
###
Reserved memory is set to 10%. To obtain lower memory bounds
or worst-case GC overhead, set reserved memory to 0.
###
Worst case allocation overhead:
heapSize dynamic GC const GC work
17373K 6 3
13347K 7 4
11093K 8 4
9686K 9 4
8710K 10 4
7463K 12 5
6715K 14 5
6195K 16 6
5832K 18 6

86 CHAPTER 7. MEMORY MANAGEMENT CONFIGURATION

5556K 20 7
5171K 24 8
4916K 28 9
4738K 32 10
4599K 36 11
4492K 40 12
4338K 48 14
4232K 56 17
4157K 64 19
3980K 96 27
3895K 128 36
3809K 192 53
3770K 256 69
3732K 384 100

The output consists of the maximum heap memory demand plus a table of possible
heap sizes and their allocation overheads for both dynamic and constant garbage
collection work. We Þrst consider dynamic garbage collection work, since this is
the default.

In this example, the application uses a maximum of 3362144 bytes of memory
for the Java heap. The speciÞed accuracy of 5% means that the actual memory
usage of the application will be up to 5% less than the measured value, but not
higher. JamaicaVM uses the Java heap to store all dynamic data structures internal
to the virtual machine (as Java stacks, classes, etc.), which explains the relatively
high memory demand for this small application.

7.2.3 Fine tuning the Þnal executable application

In addition to printing the measured memory requirements of the application, in
analyze mode Jamaica also prints a table of possible heap sizes and corresponding
worst case allocation overheads. The worst case allocation overhead is given in
units of garbage collection work that are needed to allocate one block of memory
(typically 32 bytes). The amount of time in which these units of garbage collection
work can be done is platform dependent. For example, on the PowerPC processor,
a unit corresponds to the execution of about 160 machine instructions.

From this table, we can choose the minimum heap size that corresponds to
the desired worst case execution time for the allocation of one block of memory.
A heap size of 5556K corresponds to a worst case of 20 units of garbage col-
lection work (3200 machine instructions on the PowerPC) per block allocation,
while a smaller heap size of, for example, 4492K can only guarantee a worst case
execution time of 40 units of garbage collection work (that is, 6400 PowerPC-
instructions) per block allocation.

7.2. CONFIGURATION FOR HARD-REALTIME APPLICATIONS 87

If we Þnd that for our application 14 units of garbage collection work per
allocation is sufÞcient to satisfy all realtime requirements, we can build the Þnal
application using a heap of 6715K:

> jamaicabuilder -cp classes -interpret \
> -heapSize=6715K -maxHeapSize=6715K HelloWorld
Reading configuration from
Õusr/local/jamaica-8.0/target/linux-x86_64/etc/jamaica.confÕ...
Jamaica Builder Tool 8.0 Release 0
(User: EVALUATION USER, Expires: 2016.04.27)
Generating code for target Õlinux-x86_64Õ, optimization ÕspeedÕ

+ tmp/HelloWorld__.c
+ tmp/HelloWorld__.h
* C compiling Õtmp/HelloWorld__.cÕ
+ tmp/HelloWorld__nc.o
* linking
* stripping

Application memory demand will be as follows:
initial max

Thread C stacks: 1152KB (= 9 * 128KB) 63MB (= 511 * 128KB)
Thread Java stacks: 144KB (= 9 * 16KB) 8176KB (= 511 * 16KB)
Heap Size: 6715KB 6715KB
GC data: 419KB 419KB
TOTAL: 8430KB 78MB

Note that both options,heapSize and maxHeapSize , are set to the same
value. This creates an application that has the same initial heap size and maxi-
mum heap size, i.e., the heap size is not increased dynamically. This is required
to ensure that the maximum of 14 units of garbage collection work per unit of
allocation is respected during the whole execution of the application. With a dy-
namically growing heap size, an allocation that happens to require increasing the
heap size will otherwise be blocked until the heap size is increased sufÞciently.

The resulting application will now run with the minimum amount of memory
that guarantees the selected worst case execution time for memory allocation. The
actual amount of garbage collection work that is performed is determined dynam-
ically depending on the current state of the application (including, for example,
its memory usage) and will in most cases be signiÞcantly lower than the described
worst case behavior, so that on average an allocation is signiÞcantly cheaper than
the worst case allocation cost.

7.2.4 Constant Garbage Collection Work

For applications that require best worst case execution times, where average case
execution time is less important, Jamaica also provides the option to statically

88 CHAPTER 7. MEMORY MANAGEMENT CONFIGURATION

select the amount of garbage collection work. This forces the given amount of
garbage collection work to be performed at any allocation, without regard to the
current state of the application. The advantage of this static mode is that worst case
execution times are lower than using dynamic determination of garbage collection
work. The disadvantage is that any allocation requires this worst case amount of
garbage collection work.

The output generated using the option-analyze also shows possible values
for the constant garbage collection option. A unit of garbage collection work is the
same as in the dynamic case Ñ about 160 machine instructions on the PowerPC
processor.

Similarly, if we want to give the same guarantee of 14 units of work for
the worst case execution time of the allocation of a block of memory with con-
stant garbage collection work, a heap size of 4338K bytes is sufÞcient. To in-
form the Builder that constant garbage collection work should be used, the op-
tion -constGCwork and the number of units of work should be speciÞed when
building the application:

> jamaicabuilder -cp classes -interpret -heapSize=4338K \
> -maxHeapSize=4338K -constGCwork=14 HelloWorld
Reading configuration from
Õusr/local/jamaica-8.0/target/linux-x86_64/etc/jamaica.confÕ...
Jamaica Builder Tool 8.0 Release 0
(User: EVALUATION USER, Expires: 2016.04.27)
Generating code for target Õlinux-x86_64Õ, optimization ÕspeedÕ

+ tmp/HelloWorld__.c
+ tmp/HelloWorld__.h
* C compiling Õtmp/HelloWorld__.cÕ
+ tmp/HelloWorld__nc.o
* linking
* stripping

Application memory demand will be as follows:
initial max

Thread C stacks: 1152KB (= 9 * 128KB) 63MB (= 511 * 128KB)
Thread Java stacks: 144KB (= 9 * 16KB) 8176KB (= 511 * 16KB)
Heap Size: 4338KB 4338KB
GC data: 271KB 271KB
TOTAL: 5905KB 76MB

7.2.5 Comparing dynamic mode and constant GC work mode

Which option you should choose (dynamic mode or constant garbage collection)
depends strongly on the kind of application. If worst case execution time and low
jitter are the most important criteria, constant garbage collection work will usu-
ally provide the better performance with smaller heap sizes. But if average case

7.2. CONFIGURATION FOR HARD-REALTIME APPLICATIONS 89

execution time is also an issue, dynamic mode will typically give better overall
throughput, even though for equal heap sizes the guaranteed worst case execution
time is longer with dynamic mode than with constant garbage collection work.

Gradual degradation may also be important. Dynamic mode and constant gar-
bage collection work differ signiÞcantly when the application does not stay within
the memory bounds that were Þxed when the application was built.

There are a number of reasons an application might be using more memory:

¥ The application input data might be bigger than originally anticipated.

¥ The application was built with an incorrect or outdated-heapSize argu-
ment.

¥ A bug in the application may be causing a memory leak and gradual use of
more memory than expected.

Whatever the reason, it may be important in some environments to understand
the behavior of memory management in the case the application exceeds the as-
sumed heap usage.

In dynamic mode, the worst-case execution time for an allocation can no
longer be guaranteed as soon as the application uses more memory. But as long
as the excess heap used stays small, the worst-case execution time will increase
only slightly. This means that the original worst-case execution time may not be
exceeded at all or only by a small amount. However, the garbage collector will
still work properly and recycle enough memory to keep the application running.

If the constant garbage collection work option is chosen, the amount of garbage-
collection work will not increase even if the application uses more memory than
originally anticipated. Allocations will still be made within the same worst-case
execution time. Instead, the collector cannot give a guarantee that it will recycle
memory fast enough. This means that the application may fail abruptly with an
out-of-memory error. Static mode does not provide graceful degradation of per-
formance in this case, but may cause abrupt failure even if the application exceeds
the expected memory requirements only slightly.

7.2.6 Determination of the worst case execution time of an al-
location

As we have just seen, the worst case execution time of an allocation depends on the
amount of garbage collection work that has to be performed for the allocation. The
conÞguration of the heap as shown above gives a worst case number of garbage
collection work units that need to be performed for the allocation of one block of

90 CHAPTER 7. MEMORY MANAGEMENT CONFIGURATION

memory. In order to determine the actual time an allocation might take in the worst
case, it is also necessary to know the number of blocks that will be allocated and
the platform dependent worst case execution time of one unit of garbage collection
work.

For an allocation statementS we get the following equation to calculate the
worst case-execution time:

wcet(S) = numblocks(S) ámax-gc-unitsáwcet-of-gc-unit

Where

¥ wcet(S) is the worst case execution time of the allocation

¥ numblocks(S) gives the number of blocks that need to be allocated

¥ max-gc-units is the maximum number of garbage collection units that need
to be performed for the allocation of one block

¥ wcet-of-gc-unit is the platform dependent worst case execution time of a
single unit of garbage collection work.

7.2.7 Examples

Imagine that we want to determine the worst-case execution time (wcet) of an
allocation of a StringBuffer object, as was done in the HelloWorld.java exam-
ple shown above. If this example was built with the dynamic garbage collection
option and a heap size of 443K bytes, we get

max-gc-units= 14

as has been shown above. If our target platform gives a worst case execution time
for one unit of garbage collection work of1.6µs, we have

wcet-of-gc-unit= 1.6µs

We use the-showNumberOfBlocks command line option to Þnd the number
of blocks required for the allocation of a java.lang.StringBuffer object. Actually
this option shows the number of blocks for all classes used by the application even
when for this example we are only interested in the mentioned class.

> jamaicabuilder -cp classes -showNumberOfBlocks HelloWorld

[...]
java/lang/String$CIO 1

7.2. CONFIGURATION FOR HARD-REALTIME APPLICATIONS 91

java/lang/String$GetBytesCacheEntry 1
java/lang/String$WeakSet 1
java/lang/StringBuffer 2
java/lang/StringBuilder 2
java/lang/StringCoding 1
java/lang/StringCoding$1 1
java/lang/StringCoding$StringDecoder 1
[...]

A StringBuffer object requires two blocks of memory, so that

numblocks(new StringBuffer()) = 2

and the total worst case-execution time of the allocation becomes

wcet(new StringBuffer()) = 2 á14á1.6µs = 44.8µs

Had we used the constant garbage collection option with the same heap size, the
amount of garbage collection work on an allocation of one block could have been
Þxed at 6 units. In that case the worst case execution time of the allocation be-
comes

wcetconstGCwork(new StringBuffer()) = 2 á6 á1.6µs = 19.2µs

92 CHAPTER 7. MEMORY MANAGEMENT CONFIGURATION

Chapter 8

Debugging Support

Jamaica supports the debugging facilities of integrated development environments
(IDEs) such as Eclipse and Netbeans. These are popular IDEs for the Java plat-
form. Debugging is possible on instances of the JamaicaVM running on the host
platform, as well as for applications built with Jamaica, which run on an embed-
ded device. The latter requires that the device provides network access.

In this chapter, it is shown how to set up the IDE debugging facilities with
Jamaica. A reference section towards the end brießy explains the underlying tech-
nology (JPDA) and the supported options.

8.1 Enabling the Debugger Agent

While debugging the IDEÕs debugger needs to connect to the virtual machine or
the running application in order to inspect the VMÕs state, set breakpoints, start
and stop execution and so forth. Jamaica contains a communication agent, which
must be either enabled (for the VM) or built into the application. This is done
through theagentlib option.

> jamaicavm -agentlib:BuiltInAgent=transport=dt_socket, \
> address=localhost:4000,server=y,suspend=y HelloWorld

launches JamaicaVM with debug support enabled andHelloWorld as the main
class. The VM listens on port 4000 atlocalhost . The VM is suspended and
waits for the debugger to connect. It then executes normally until a breakpoint is
reached.

In order to build debugging support into an application, the Builder option
-agentlib=BuiltInAgent . . . should be used. If the application is to be de-
bugged on an (embedded) device,localhost must be replaced by the network
address of the device.

93

94 CHAPTER 8. DEBUGGING SUPPORT

8.2 ConÞguring the IDE to Connect to Jamaica

Before being able to debug a project, the code needs to compile and basically run.
Before starting a debugging session, the debugger must be conÞgured to connect
to the VM by specifying the VMÕs host address and port. Normally, this is done
by setting up adebug conÞguration.

In Eclipse 3.5, for example, select the menu item

Run > Debug Configurations... .

In the list of available items presented on the left side of the dialog window (see
Fig. 8.1), choose a new conÞguration for a remote Java application, then

¥ conÞgure the debugger to connect to the VM by choosing connection type
socket attachand

¥ enter the VMÕs network address and port as the connection propertieshost
andport.

Clicking onDebug attaches the debugger to the VM and starts the debugging ses-
sion. If the VMÕs communication agent is set to suspending the VM before loading
the main class, the application will only run after instructed to do so through the
debugger via commands from theRun menu. In Eclipse, breakpoints may be set
conveniently by double-clicking in the left margin of the source code.

For instructions on debugging, the documentation of the used debugger should
be consulted Ñ in Eclipse, for example, though theHelp menu.

The Jamaica Eclipse Plug-In (see Chapter 4) provides the required setup for
debugging with the JamaicaVM on the host system automatically. It is sufÞcient
to select Jamaica as the Java Runtime Environment of the project.

8.3 Reference Information

Jamaica supports the Java Platform Debugger Architecture (JPDA). Debugging is
possible with IDEs that support the JPDA. Tab. 8.1 shows the debugging options
accepted by JamaicaÕs communication agent. The Jamaica Debugging Interface
has the following limitations:

¥ Local variables of compiled methods cannot be examined

¥ Stepping through a compiled method is not supported

¥ Setting a breakpoint in a compiled method will silently be ignored

¥ NotiÞcation on Þeld access/modiÞcation is not available

8.3. REFERENCE INFORMATION 95

Figure 8.1: Setting up a remote debugging connection in Eclipse 3.5

96 CHAPTER 8. DEBUGGING SUPPORT

Syntax Description
transport=dt_socket The only supported transport protocol is

dt_socket .
address=[host:] port Transport address for the connection.
server=y|n If y, listen for a debugger application to

attach; otherwise, attach to the debugger
application at the speciÞed address.

suspend=y|n If y, suspend this VM until connected to
the debugger.

Table 8.1: Arguments of JamaicaÕs communication agent

¥ Information about java monitors cannot be retrieved

The Java Platform Debugger Architecture (JPDA) consists of three interfaces
designed for use by debuggers in development environments for desktop systems.
The Java Virtual Machine Tools Interface (JVMTI) deÞnes the services a VM must
provide for debugging.1 The Java Debug Wire Protocol (JDWP) deÞnes the format
of information and requests transferred between the process being debugged and
the debugger front end, which implements the Java Debug Interface (JDI). The
Java Debug Interface deÞnes information and requests at the user code level.

A JPDA Transport is a method of communication between a debugger and
the virtual machine that is being debugged. The communication is connection
oriented Ñ one side acts as a server, listening for a connection. The other side acts
as a client and connects to the server. JPDA allows either the debugger application
or the target VM to act as the server. The transport implementations of Jamaica
allows communications between processes running on different machines.

1The JVMTI is a replacement for the Java Virtual Machine Debug Interface (JVMDI) which
has been deprecated.

Chapter 9

The Real-Time SpeciÞcation for
Java

JamaicaVM supports the Real-Time SpeciÞcation for Java V1.0.2 (RTSJ), see
[2]. The speciÞcation is available athttp://www.rtsj.org . The API doc-
umentation of the JamaicaVM implementation is available online athttps:
//www.aicas.com/cms/reference-material and is included in the
API documentation of the Jamaica class library:

jamaica-home/doc/jamaica_api/index.html .

The RTSJ resides in packagejavax.realtime . It is generally recommended
that you refer to the RTSJ documentation provided by aicas since it contains a
detailed description of the behavior of the RTSJ functions and includes speciÞc
comments on the behavior of JamaicaVM at places left open by the speciÞcation.

9.1 Realtime programming with the RTSJ

The aim of the Real-Time SpeciÞcation for Java (RTSJ) is to extend the Java
language deÞnition and the Java standard libraries to support realtime threads, i.e.,
threads whose execution conforms to certain timing constraints. Nevertheless,
the speciÞcation is compatible with different Java environments and backwards
compatible with existing non-realtime Java applications.

The most important improvements of the RTSJ affect the following seven ar-
eas:

¥ thread scheduling,

¥ memory management,

97

http://www.rtsj.org
https://www.aicas.com/cms/reference-material
https://www.aicas.com/cms/reference-material

98 CHAPTER 9. THE REAL-TIME SPECIFICATION FOR JAVA

¥ synchronization,

¥ asynchronous events,

¥ asynchronous ßow of control,

¥ thread termination, and

¥ physical memory access.

With this, the RTSJ also covers areas that are not directly related to realtime appli-
cations. However, these areas are of great importance to many embedded realtime
applications such as direct access to physical memory (e.g., memory mapped I/O)
or asynchronous mechanisms.

9.1.1 Thread Scheduling

To enable the development of realtime software in an environment with a gar-
bage collector that stops the execution of application threads in an unpredictable
way, new thread classesRealtimeThread andNoHeapRealtimeThread
are deÞned. These thread types are unaffected or at least less heavily affected by
garbage collection activity. Also, at least 28 new priority levels, logically higher
than the priority of the garbage collector, are available for these threads.

9.1.2 Memory Management

In order for realtime threads not to be affected by garbage collector activity, they
need to use memory areas that are not under the control of the garbage collector.
New memory classes,ImmortalMemory andScopedMemory , provide these
memory areas. One important consequence of the use of special memory areas
is, of course, that the advantages of dynamic memory management are not fully
available to realtime threads.

9.1.3 Synchronization

In realtime systems with threads of different priority levels, priority inversion sit-
uations must be avoided. Priority inversion occurs when a thread of high priority
is blocked by waiting for a monitor that is owned by a thread of a lower priority.
The RTSJ provides the alternatives priority inheritance and the priority ceiling
protocol to avoid priority inversion.

9.1. REALTIME PROGRAMMING WITH THE RTSJ 99

9.1.4 Example
The RTSJ offers powerful features that enable the development of realtime appli-
cations. The following program shows how the RTSJ can be used in practice.
import javax.realtime. * ;

/ **
* Demo of a periodic thread in Java
* /

public class HelloRT
{

public static void main(String[] args)
{

/ * priority for new thread: min+10 * /
int pri =

PriorityScheduler.instance().getMinPriority() + 10;
PriorityParameters prip = new PriorityParameters(pri);

/ * period: 20ms * /
RelativeTime period =

new RelativeTime(20 / * ms * /, 0 / * ns * /);

/ * release parameters for periodic thread * /
PeriodicParameters perp =

new PeriodicParameters(null, period, null, null, null, null);

/ * create periodic thread * /
RealtimeThread rt = new RealtimeThread(prip, perp)

{
public void run()
{

int n = 1;
while (waitForNextPeriod() && (n < 100))

{
System.out.println("Hello " + n);
n++;

}
}

};

/ * start periodic thread * /
rt.start();

}
}

In this example, a periodic thread is created. This thread becomes active every
20ms and writes output onto the standard console. ARealtimeThread is used
to implement this task. The priority and the length of the period of this peri-
odic thread need to be provided. A call towaitForNextPeriod() causes the

100 CHAPTER 9. THE REAL-TIME SPECIFICATION FOR JAVA

thread to wait after the completion of one activation for the start of the next period.
An introduction to the RTSJ with numerous further examples is given in the book
by Peter Dibble [3].

The RTSJ provides a solution for realtime programming, but it also brings new
difÞculties to the developer. The most important consequence is that applications
have to be split strictly into two parts: a realtime and a non-realtime part. The
communication between these parts is heavily restricted: realtime threads cannot
perform memory operations such as the allocation of objects on the normal heap
which is under the control of the garbage collector. Synchronization between
realtime and non-realtime threads is heavily restricted since it can cause realtime
threads to be blocked by the garbage collector.

9.2 Realtime Garbage Collection

In JamaicaVM, a system that supports realtime garbage collection, this strict sep-
aration into realtime and non-realtime threads is not necessary. The strict splitting
of an application is consequently not required. Threads are activated depending
only on their priorities.

The realtime garbage collector performs its work predictably within the appli-
cation threads. It is activated when memory is allocated. The work done on an
allocation must be preemptible, so that more urgent threads can become active.

The implementation of a realtime garbage collector must solve a number of
technical challenges. Garbage collector activity must be performed in very small
single increments of work. In JamaicaVM, one increment consists of garbage
collecting only 32 bytes of memory. On every allocation, the allocating thread
ÒpaysÓ for the memory by performing a small number of these increments. The
number of increments can be analyzed, such that this is possible even in realtime
code.

The RTSJ provides a powerful extension to the Java speciÞcation. Its full
power, however, is achieved only by the combination with a realtime garbage
collector that helps to overcome its restrictions.

9.3 Relaxations in JamaicaVM

Because JamaicaVM uses a realtime garbage collector, the limitations that the
Real-Time SpeciÞcation for Java imposes on realtime programming are not im-
posed on realtime applications developed for JamaicaVM. The limitations that are
relaxed in JamaicaVM affect the use of memory areas, thread priorities, runtime
checks and static initializers.

9.3. RELAXATIONS IN JAMAICAVM 101

9.3.1 Use of Memory Areas

Because JamaicaVMÕs realtime garbage collector does not interrupt application
threads, it is unnecessary for objects of classRealtimeThread or even of
NoHeapRealtimeThread to run in their own memory area not under the con-
trol of the garbage collector. Instead, any thread can use and access the normal
garbage collected heap.

Nevertheless, any thread can make use of the new memory areas such as
LTMemory or ImmortalMemory if the application developer wishes to do so.
Since these memory classes are not controlled by the garbage collector, alloca-
tions do not require garbage collector activity and may be faster or more pre-
dictable than allocations on the normal heap. However, great care is required in
these memory areas to avoid memory leaks, since temporary objects allocated in
scoped or immortal memory will not be reclaimed automatically.

9.3.2 Thread Priorities

In JamaicaVM,RealtimeThread , NoHeapRealtimeThread and normal
Thread objects all share the same priority range. The lowest possible thread
priority for all of these threads isMIN_PRIORITY which is deÞned in pack-
agejava.lang , classThread . The the highest possible priority may be ob-
tained by queryinginstance().getMaxPriority() in packagejavax.
realtime , classPriorityScheduler .

9.3.3 Runtime checks for NoHeapRealtimeThread

EvenNoHeapRealtimeThread objects will be exempt from interruption by
garbage collector activities. JamaicaVM does not, therefore, prevent these threads
from accessing objects allocated on the normal heap. Runtime checks that typi-
cally ensure that these threads do not access objects allocated on the heap are not
performed by JamaicaVM.

9.3.4 Static Initializers

To permit the initialization of classes even if their Þrst reference is performed
within ScopedMemory or ImmortalMemory within a RealtimeThread
or NoHeapRealtimeThread , and to permit the access of static Þelds such as
System.out from within these threads, static initializers are typically executed
within ImmortalMemory that is accessible by all threads. However, this pre-
vents these objects from being reclaimed when they are no longer used. Also,

102 CHAPTER 9. THE REAL-TIME SPECIFICATION FOR JAVA

it can cause a serious memory leak if dynamic class loading is used since mem-
ory allocated by the static initializers of dynamically loaded classes will never be
reclaimed.

Since JamaicaVM does not limit access to heap objects within any threads,
there is no need to execute static initializers within ImmortalMemory. However,
objects allocated in static initializers typically must be accessible by all threads, so
they cannot be allocated in a scoped memory area if this happens to be the current
threadÕs allocation environment when the static initializer is executed.

JamaicaVM therefore executes all static initializers within heap memory. Ob-
jects allocated by static initializers may be accessed by all threads, and they may
be reclaimed by the garbage collector. There is no memory leak if classes are
loaded dynamically by a user class loader.

9.3.5 Class PhysicalMemoryManager

According to the RTSJ, names and instances of classPhysicalMemoryType-
Filter in packagejavax.realtime that are passed to methodregister-
Filter of classPhysicalMemoryManager in the same package must be
allocated in immortal memory. This requirement does not exist in JamaicaVM.

9.4 Limitations of RTSJ Implementation

The following methods or classes of the RTSJ are not fully supported in Ja-
maicaVM 8.0:

¥ ClassVTPhysicalMemory

¥ ClassLTPhysicalMemory

¥ ClassImmortalPhysicalMemory

¥ In classAsynchronouslyInterruptedException the deprecated
methodpropagate() is not supported.

¥ The classAffinity is currently supported forThreads andBound-
AsyncEventHandlers only, but not for the classProcessingGroup-
Parameters . The default sets supported by Jamaica are sets with either
exactly one single element or the set of all CPUs. The CPU ids used on
the Java side are0 thoughn " 1 when n CPUs are used, while the val-
ues provided to the -Xcpus Builder argument are the CPU ids used by the
underlying OS.

9.4. LIMITATIONS OF RTSJ IMPLEMENTATION 103

Cost monitoring is supported and cost overrun handlers will be Þred on a cost
overrun. However, cost enforcement is currently not supported. The reason is that
stopping a thread or handler that holds a lock is dangerous since it might cause
a deadlock. RTSJ cost enforcement is based on the CPU cycle counter. This is
available on x86 and PPC systems only, so cost enforcement will not work on
other systems.

104 CHAPTER 9. THE REAL-TIME SPECIFICATION FOR JAVA

Chapter 10

Guidelines for Realtime
Programming in Java

10.1 General

Since the timeliness of realtime systems is just as important as their functional
correctness, realtime Java programmers must take more care using Java than other
Java users. In fact, realtime Java implementations in general and the JamaicaVM
in particular offer a host of features not present in standard Java implementations.

The JamaicaVM offers a myriad of sometimes overlapping features for real-
time Java development. The realtime Java developer needs to understand these
features and when to apply them. Particularly, with realtime speciÞc features per-
taining to memory management and task interaction, the programmer needs to
understand the trade-offs involved. This chapter does not offer cut and dried so-
lutions to speciÞc application problems, but instead offers guidelines for helping
the developer make the correct choice.

10.2 Computational Transparency

In contrast to normal software development, the development of realtime code re-
quires not only the correctness of the code, but also the timely execution of the
code. For the developer, this means that not only the result of each statement is im-
portant, but also the approximate time required to perform the statement must be
obvious. One need not know the exact execution time of each statement when this
statement is written, as the exact determination of the worst case execution time
can be performed by a later step; however, one should have a good understanding
of the order of magnitude in time a given code section needs for execution early on
in the coding process. For this, the computational complexity can be described in

105

106 CHAPTER 10. REALTIME PROGRAMMING GUIDELINES

categories such as a few machine cycles, a few hundred machine cycles, thousands
of machine cycles or millions of machine cycles. Side effects such as blocking for
I/O operations or memory allocation should be understood as well.

The termcomputational transparencyrefers to the degree to which the compu-
tational effort of a code sequence written in a programming language is obvious to
the developer. The closer a sequence of commands is to the underlying machine,
the more transparent that sequence is. Modern software development tries to raise
the abstraction level at which programmers ply their craft. This tends to reduce the
cost of software development and increase its robustness. Often however, it masks
the real work the underlying machine has to do, thus reducing the computational
transparency of code.

Languages like Assembler are typically completely computationally transpar-
ent. The computational effort for each instruction can be derived in a straightfor-
ward way (e.g., by consulting a table of instruction latency rules). The range of
possible execution times of different instructions is usually limited as well. Only
very few instructions in advanced processor architectures have an execution time
of more thanO(1) .

Compiled languages vary widely in their computational complexity. Program-
ming languages such as C come very close to full computational transparency. All
basic statements are translated into short sequences of machine code instructions.
More abstract languages can be very different in this respect. Some simple con-
structs may operate on large data structures, e.g., sets, thus take an unbounded
amount of time.

Originally, Java was a language that was very close to C in its syntax with
comparable computational complexity of its statements. Only a few exceptions
were made. Java has evolved, particularly in the area of class libraries, to ease the
job of programming complex systems, at the cost of diminished computational
transparency. Therefore a short tour of the different Java statements and expres-
sions, noting where a non-obvious amount of computational effort is required to
perform these statements with the Java implementation JamaicaVM, is provided
here.

10.2.1 EfÞcient Java Statements

First the good news. Most Java statements and expressions can be implemented
in a very short sequence of machine instructions. Only statements or constructs
for which this is not so obvious are considered further.

10.2. COMPUTATIONAL TRANSPARENCY 107

10.2.1.1 Dynamic Binding for Virtual Method Calls

Since Java is an object-oriented language, dynamic binding is quite common.
In the JamaicaVM dynamic binding of Java methods is performed by a simple
lookup in the method table of the class of the target object. This lookup can
be performed with a small and constant number of memory accesses. The total
overhead of a dynamically bound method invocation is consequently only slightly
higher than that of a procedure call in a language like C.

10.2.1.2 Dynamic Binding for Interface Method Calls

Whereas single inheritance makes normal method calls easy to implement efÞ-
ciently, calling methods via an interface is more challenging. The multiple inher-
itance implicit in Java interfaces means that a simple dispatch table as used by
normal methods can not be used. In the JamaicaVM the time needed to Þnd the
called method is linear with the number of interfaces implemented by the class.

10.2.1.3 Type Casts and Checks

The use of type casts and type checks is very frequent in Java. One example is the
following code sequence that uses aninstanceof check and a type cast:

...
Object o = vector.elementAt(index);

if (o instanceof Integer)
sum = sum + ((Integer)o).intValue();

...

These type checks also occur implicitly whenever a reference is stored in an array
of references to make sure that the stored reference is compatible with the actual
type of the array. Type casts and type checks within the JamaicaVM are per-
formed in constant time with a small and constant number of memory accesses.
In particular,instanceof is more efÞcient than method invocation.

10.2.1.4 Generics (JDK 1.5)

The generic types (generics) introduced in JDK 1.5 avoid explicit type cases that
are required using abstract data types with older versions of Java. Using generics,
the type cast in this code sequence

ArrayList list = new ArrayList();
list.add(0, "some string");
String str = (String) list.get(0);

is no longer needed. The code can be written using a generic instance ofArray-
List that can only hold strings as follows.

108 CHAPTER 10. REALTIME PROGRAMMING GUIDELINES

ArrayList<String> list = new ArrayList<String>();
list.add(0, "some string");
String str = list.get(0);

Generics still require type casts, but these casts are hidden from the developer.
This means that access tolist using list.get(0) in this example in fact
performs the type cast toString implicitly causing additional runtime over-
head. However, since type casts are performed efÞciently and in constant time in
JamaicaVM, the use of generics can be recommended even in time-critical code
wherever this appears reasonable for a good system design.

10.2.2 Non-Obvious Slightly InefÞcient Constructs

A few constructs have some hidden inefÞciencies, but can still be executed within
a short sequence of machine instructions.

10.2.2.1 final Local Variables

The use offinal local variables is very tempting in conjunction with anonymous
inner classes since only variables that are declaredfinal can be accessed from
code in an anonymous inner class. An example for such an access is shown in the
following code snippet:
final int data = getData();

new RealtimeThread(new PriorityParameters(pri))
{

public void run()
{

for (...)
{

...
x = data;
...

}
}

}

All uses of the local variable within the inner class are replaced by accesses to a
hidden Þeld. In contrast to normal local variables, each access requires a memory
access.

10.2.2.2 Accessingprivate Fields from Inner Classes

As with the use offinal local variables, anyprivate Þelds that are accessed
from within an inner class require the call to a hidden access method since these
accesses would otherwise not be permitted by the virtual machine.

10.2. COMPUTATIONAL TRANSPARENCY 109

10.2.3 Statements Causing Implicit Memory Allocation

Thus far, only execution time has been considered, but memory allocation is also
a concern for safety-critical systems. In most cases, memory allocation in Java
is performed explicitly by the keywordnew. However, some statements per-
form memory allocations implicitly. These memory allocations do not only re-
quire additional execution time, but they also require memory. This can be fa-
tal within execution contexts that have limited memory, e.g., code running in a
ScopedMemory or ImmortalMemory as it is required by the Real-Time Spec-
iÞcation for Java forNoHeapRealtimeThreads . A realtime Java programmer
should be familiar with all statements and expressions which cause implicit mem-
ory allocation.

10.2.3.1 String Concatenation

Java permits the composition of strings using the plus operator. Unlike adding
scalars such asint or float values, string concatenation requires the allocation
of temporary objects and is potentially very expensive.

As an example, the instruction

int x = ...;
Object thing = ...;

String msg = "x is " + x + " thing is " + thing;

will be translated into the following statement sequence:

int x = ...;
Object thing = ...;

StringBuffer tmp_sb = new StringBuffer();
tmp_sb.append("x is ");
tmp_sb.append(x);
tmp_sb.append(" thing is ");
tmp_sb.append(thing.toString());
String msg = tmp_sb.toString();

The code contains hidden allocations of aStringBuffer object, of an internal
character buffer that will be used within thisStringBuffer , a temporary string
allocated forthing.toString() , and the Þnal string returned bytmp_sb.
toString() .

Apart from these hidden allocations, the hidden call tothing.toString()
can have an even higher impact on the execution time, since methodtoString
can be redeÞned by the actual class of the instance referred to bything and can
cause arbitrarily complex computations.

110 CHAPTER 10. REALTIME PROGRAMMING GUIDELINES

10.2.3.2 Array Initialization

Java also provides a handy notation for array initialization. For example, an array
with the Þrst 8 Fibonacci numbers can be declared as

int[] fib = { 1, 1, 2, 3, 5, 8, 13, 21 };

Unlike C, where such a declaration is converted into preinitialized data, the Java
code performs a dynamic allocation and is equivalent to the following code se-
quence:

int[] fib = new int[8];
fib[0] = 1;
fib[1] = 1;
fib[2] = 2;
fib[3] = 3;
fib[4] = 5;
fib[5] = 8;
fib[6] = 13;
fib[7] = 21;

Initializing arrays in this way should be avoided in time critical code. When pos-
sible, constant array data should be initialized within the static initializer of the
class that uses the data and assigned to a static variable that is markedfinal .
Due to the signiÞcant code overhead, large arrays should instead be loaded as a
resource, using the Java standard API (via methodgetResourceAsStream
from classjava.lang.Class).

10.2.3.3 Autoboxing (JDK 1.5)

Unlike some Scheme implementations, primitive types in Java are not internally
distinguishable from pointers. This means that in order to use a primitive data type
where an object is needed, the primitive needs to be boxed in its corresponding
object. JDK 1.5 introduces autoboxing which automatically creates objects for
values of primitive types such asint , long , or float whenever these values are
assigned to a compatible reference. This feature is purely syntactic. An expression
such as

o = new Integer(i);

can be written as

o = i;

Due to the hidden runtime overhead for the memory allocation, autoboxing should
be avoided in performance critical code. Within code sequences that have heavy
restrictions on memory demand, such as realtime tasks that run inImmortal-
Memory or ScopedMemory , autoboxing should be avoided completely since it
may result in hidden memory leaks.

10.2. COMPUTATIONAL TRANSPARENCY 111

10.2.3.4 For Loop Over Collections (JDK 1.5)

JDK 1.5 also introduces an extendedfor loop. The extension permits the itera-
tion of aCollection using a simple for loop. This feature is purely syntactic.
A loop such as

ArrayList list = new ArrayList();
for (Iterator i = list.iterator(); i.hasNext();)

{
Object value = i.next();
...

}

can be written as

ArrayList list = new ArrayList();
for (Object value : list)

{
...

}

The allocation of a temporaryIterator that is performed by the call tolist.
iterator() is hidden in this new syntax.

10.2.3.5 Variable Argument Lists (JDK 1.5)

There is still another feature of JDK 1.5 that requires implicit memory allocation.
The new variable argument lists for methods is implemented by an implicit ar-
ray allocation and initialization. Variable argument lists should consequently be
avoided.

10.2.4 Operations Causing Class Initialization

Another area of concern for computational transparency is class initialization.
Java usesstatic initializers for the initialization of classes on their Þrst use.
The Þrst use is deÞned as the Þrst access to a static method or static Þeld of the
class in question, its Þrst instantiation, or the initialization of any of its subclasses.

The code executed during initialization can perform arbitrarily complex oper-
ations. Consequently, any operation that can cause the initialization of a class may
take arbitrarily long for its Þrst execution. This is not acceptable for time critical
code.

Consequently, the execution of static initializers has to be avoided in time
critical code. There are two ways to achieve this: either time critical code must
not perform any statements or expressions that may cause the initialization of a
class, or the initialization has to be made explicit.

The statements and expressions that cause the initialization of a class are

112 CHAPTER 10. REALTIME PROGRAMMING GUIDELINES

¥ reading a static Þeld of another class,

¥ writing a static Þeld of another class,

¥ calling a static method of another class, and

¥ creating an instance of another class usingnew.

An explicit initialization of a classC is best performed in the static initializer of
the classDthat refers toC. One way to do this is to add the following code to class
D:

/ * initialize class C: * /
static { C.class.initialize(); }

The notationC.class itself has its own disadvantages (see Section 10.2.5). So,
if possible, it may be better to access a static Þeld of the class causing initialization
as a side effect instead.

/ * initialize class C: * /
static { int ignore = C.static_field; }

10.2.5 Operations Causing Class Loading
Class loading can also occur unexpectedly. A reference to the class object of a
given classCcan be obtained usingclassname.class as in the following code:

Class class_C = C.class;

This seemingly harmless operation is, however, transformed into a code sequence
similar to the following code:

static Class class$(String name)
{

try { return Class.forName(name); }
catch (ClassNotFoundException e)

{
throw new NoClassDefFoundError(e.getMessage());

}
}

static Class class$C;

...

Class tmp;
if (class$C == null)

{
tmp = class$("C");
class$C = tmp;

10.3. SUPPORTED STANDARDS 113

}
else

{
tmp = class$C;

}
Class class_C = tmp;

This code sequence causes loading of new classes from the current class loading
context. I.e., it may involve memory allocation and loading of new class Þles.
If the new classes are provided by a user class loader, this might even involve
network activity, etc.

Starting with JDK 1.5, theclassname.class notation will be supported by
the JVM directly. The complex code above will be replaced by a simple bytecode
instruction that references the desired class directly. Consequently, the referenced
class can be loaded by the JamaicaVM at the same time the referencing class
is loaded and the statement will be replaced by a constant number of memory
accesses.

10.3 Supported Standards

Thus far, only standard Java constructs have been discussed. However libraries
and other APIs are also an issue. Timely Java development needs support for
timely execution and device access. There are also issues of certiÞability to con-
sider. The JamaicaVM has at least some support for all of the following APIs.

10.3.1 Real-Time SpeciÞcation for Java

The Real-Time SpeciÞcation for Java (RTSJ) provides functionality needed for
time-critical Java applications. RTSJ introduces an additional API of Java classes,
mainly with the goal of providing a standardized mechanism for realtime ex-
tensions of Java Virtual Machines. RTSJ extensions also cover other areas of
great importance to many embedded realtime applications, such as direct access
to physical memory (e.g., memory mapped I/O) or asynchronous mechanisms.

RTSJ is implemented by JamaicaVM and other virtual machines like OracleÕs
Java RTS and IBM WebSphere Realtime.

10.3.1.1 Thread Scheduling in the RTSJ

Ensuring that Java programs can execute in a timely fashion was a main goal
of the RTSJ. To enable the development of realtime software in an environment
with a garbage collector that stops the execution of application threads in an un-
predictable way (see Fig. 10.1), the new thread classesRealtimeThread and

114 CHAPTER 10. REALTIME PROGRAMMING GUIDELINES

Thread time

GC
User 1
User 2

Figure 10.1: Java Threads in a classic JVM are interrupted by the garbage collec-
tor thread

Thread time

rt1
rt2

User 1
User 2

GC

Figure 10.2: RealtimeThreads can interrupt garbage collector activity

NoHeapRealtimeThread were deÞned. These thread types are unaffected,
or at least less severely affected, by garbage collection activity. Also, at least 28
new priority levels, logically higher than the priority of the garbage collector, are
available for these threads, as illustrated in Fig. 10.2.

10.3.1.2 Memory Management

For realtime threads not to be affected by garbage collector activity, these threads
need to use memory areas that are not under the control of the garbage collector.
New memory classes,ImmortalMemory andScopedMemory , provide these
memory areas. One important consequence of using special memory areas is, of
course, that the advantages of dynamic memory management is not fully available
to realtime threads.

10.3.1.3 Synchronization

In realtime systems with threads of different priority levels, priority inversion situ-
ations must be avoided. Priority inversion occurs when a thread of high priority is
blocked by waiting for a monitor that is owned by a thread of a lower priority that

10.3. SUPPORTED STANDARDS 115

is preempted by some thread with intermediate priority. The RTSJ provides two
alternatives, priority inheritance and the priority ceiling protocol, to avoid priority
inversion.

10.3.1.4 Limitations of the RTSJ and their solution

The RTSJ provides a solution for realtime programming, but it also brings new
difÞculties to the developer. The most important consequence is that applications
have to be split strictly into two parts: a realtime and a non realtime part. Commu-
nication between these parts is heavily restricted: realtime threads cannot perform
memory operations such as the allocation of objects on the normal heap which is
under the control of the garbage collector. Synchronization between realtime and
non realtime threads is also severely restricted to prevent realtime threads from
being blocked by the garbage collector due to priority inversion.

The JamaicaVM removes these restrictions by using its realtime garbage col-
lection technology. Realtime garbage collection obviates the need to make a strict
separation of realtime and non realtime code. Using RTSJ with realtime garbage
collection provides necessary realtime facilities without the cumbersomeness of
having to segregate a realtime application.

10.3.2 Java Native Interface

Both the need to use legacy code and the desire to access exotic hardware may
make it advantageous to call foreign code out of a JVM. The Java Native Inter-
face (JNI) provides this access. JNI can be used to embed code written in other
languages than Java, (usually C), into Java programs.

While calling foreign code through JNI is ßexible, the resulting code has sev-
eral disadvantages. It is usually harder to port to other operating systems or hard-
ware architectures than Java code. Another drawback is that JNI is not very high-
performing on any Java Virtual Machine. The main reason for the inefÞciency is
that the JNI speciÞcation is independent of the Java Virtual Machine. SigniÞcant
additional bookkeeping is required to insure that Java references that are handed
over to the native code will remain protected from being recycled by the garbage
collector while they are in use by the native code. The result is that calling JNI
methods is usually expensive.

An additional disadvantage of the use of native code is that the application of
any sort of formal program veriÞcation of this code becomes virtually intractable.

Nevertheless, because of its availability for many JVMs, JNI is the most popu-
lar Java interface for accessing hardware. It can be used whenever Java programs
need to embed C routines that are not called too often or are not overly time-
critical. If portability to other JVMs is a major issue, there is no current alternative

116 CHAPTER 10. REALTIME PROGRAMMING GUIDELINES

Thread time

rt1
rt2
rt3
rt4

Figure 10.3: JamaicaVM provides realtime behavior for all threads.

to JNI. When portability to other operating systems or hardware architectures is
more important, RTSJ is a better choice for device access.

10.4 Memory Management

In a system that supports realtime garbage collection, RTSJÕs strict separation
into realtime and non realtime threads is not necessary. The strict splitting of an
application is consequently not required. Threads are activated only depending on
their priorities, as depicted in Fig. 10.3.

The realtime garbage collector performs its work predictably within the appli-
cation threads. It is activated when memory is allocated. The work done on an
allocation must be preemptible, so that more urgent threads can become active.

The implementation of a realtime garbage collector must solve a number of
technical challenges. Garbage collector activity must be performed in very small
single increments of work. In the JamaicaVM, one increment consists of process-
ing and possibly reclaiming only 32 bytes of memory. On every allocation, the
allocating thread ÒpaysÓ for the memory by performing a small number of these
increments. The number of increments can be analyzed to determine worst-case
behavior for realtime code.

10.4.1 Memory Management of RTSJ

The RTSJ provides a powerful extension to the Java speciÞcation. Its full power,
however, is achieved only by the combination with a realtime garbage collector
that helps to overcome its restrictions. Since JamaicaVM uses a realtime garbage
collector, it does not need to impose the limitation that the Real-Time SpeciÞca-
tion for Java puts onto realtime programming onto realtime applications developed
with the JamaicaVM. The limitations that are relaxed in JamaicaVM affect the use
of memory areas, thread priorities, runtime checks, and static initializers.

10.4. MEMORY MANAGEMENT 117

10.4.1.1 Use of Memory Areas

Since JamaicaÕs realtime garbage collector does not interrupt application threads,
RealtimeThreads and evenNoHeapRealtimeThreads are not required
to run in their own memory area outside the control of the garbage collector. In-
stead, any thread can use and access the normal garbage collected heap.

10.4.1.2 Thread priorities

In Jamaica,RealtimeThreads , NoHeapRealtimeThreads and normal
JavaThread objects all share the same priority range. The lowest possible
thread priority for all of these threads is deÞned in packagejava.lang , class
Thread by ÞeldMIN_PRIORITY. The highest possible priority is can be ob-
tained by queryinginstance().getMaxPriority() , classPriority-
Scheduler , packagejavax.realtime .

10.4.1.3 Runtime checks for NoHeapRealtimeThread

Since evenNoHeapRealtimeThreads are immune to interruption by garbage
collector activities, JamaicaVM does not restrict these threads from accessing ob-
jects allocated on the normal heap. Runtime checks that typically ensure that
these threads do not access objects allocated on the heap can be disabled in the
JamaicaVM. The result is better overall system performance.

10.4.1.4 Static Initializers

In order to permit the initialization of classes even when their Þrst reference is per-
formed withinScopedMemory or ImmortalMemory within a Realtime-
Thread or NoHeapRealtimeThread , and to permit the access of static Þelds
such asSystem.out from within these threads, static initializers are typically
executed withinImmortalMemory that is accessible by all threads. However,
this prevents these objects from being reclaimed when they are no longer in use.
This can result in a serious memory leak when dynamic class loading is used
since memory allocated by the static initializers of dynamically loaded classes
will never be reclaimed.

Since the RTSJ implementation in the JamaicaVM does not limit access to
heap objects within any threads, there is no need to execute static initializers
within ImmortalMemory . However, objects allocated in static initializers typ-
ically must be accessible by all threads. Therefore they cannot be allocated in
a scoped memory area when this happens to be the current threadÕs allocation
environment when the static initializer is executed.

118 CHAPTER 10. REALTIME PROGRAMMING GUIDELINES

The JamaicaVM executes all static initializers within heap memory. Objects
allocated by static initializers may be accessed by all threads, and they may be
reclaimed by the garbage collector. There is no memory leak if classes are loaded
dynamically by a user class loader.

10.4.1.5 ClassPhysicalMemoryManager

Names and instances of classjavax.realtime.PhysicalMemoryType-
Filter that are passed to methodregisterFilter of the classjavax.
realtime.PhysicalMemoryManager are, by the RTSJ, required to be al-
located in immortal memory. Realtime garbage collection obviates this require-
ment. The JamaicaVM does not enforce it either.

10.4.2 Finalizers

Care needs to be taken when using JavaÕs Þnalizers. A Þnalizer is a method that
can be redeÞned by any Java class to perform actions after the garbage collector
has determined that an object has become unreachable. Improper use of Þnalizers
can cause unpredictable results.

The Java speciÞcation does not give any guarantees that an object will ever
be recycled by the system and that a Þnalizer will ever be called. Furthermore, if
several unreachable objects have a Þnalizer, the execution order of these Þnalizers
is undeÞned. For these reasons, it is generally unwise to use Þnalizers in Java at
all. The developer cannot rely on the Þnalizer ever being executed. Moreover,
during the execution of a Þnalizer, the developer cannot rely on the availability of
any other resources since their Þnalizers may have been executed already.

In addition to these unpredictabilities, the use of Þnalizers has an important
impact on the memory demand of an application. The garbage collector cannot
reclaim the memory of any object that has been found to be unreachable before its
Þnalizer has been executed. Consequently, the memory occupied by such objects
remains allocated.

The Þnalizer methods are executed by a Þnalizer thread, which the JamaicaVM
by default runs at the highest priority available to Java threads. If this Þnalizer
thread does not obtain sufÞcient execution time, or it is stopped by a Þnalizer
that is blocked, the system may run out of memory. In this case, explicit calls
to Runtime.runFinalization() may be required by some higher priority
task to empty the queue of Þnalizable objects.

The use of Þnalizers is more predictable for objects allocated inScoped-
Memory or ImmortalMemory . For ScopedMemory , all Þnalizers will be
executed when the last thread exits a scope. This may cause a potentially high

10.4. MEMORY MANAGEMENT 119

overhead for exiting this scope. The Þnalizers of objects that are allocated in
ImmortalMemory will never be executed.

Using Þnalizers may be helpful during debugging to Þnd programming bugs
like leakage of resources or to visualize when an objectÕs memory is recycled. In
a production release, any Þnalizers (even empty ones) should be removed due to
the impact they have on the runtime and the potential for memory leaks caused by
their presence.

As an alternative to Þnalizers, the systematic use offinally clauses in Java
code to free unused resources is recommended. Should this not be possible, phan-
tom references (java.lang.ref.PhantomReference) can be used, which
offer a more ßexible way of doing cleanup before objects get garbage collected.
More information is available from a web post by Muhammad Khojaye [6].

10.4.3 ConÞguring a Realtime Garbage Collector

To be able to determine worst-case execution times for memory allocation oper-
ations in a realtime garbage collector, one needs to know the memory required
by the realtime application. With this information, a worst-case number of gar-
bage collector increments that are required on an allocation can be determined
(see Chapter 7). Automatic tools can help to determine this value. The heap size
can then be selected to give sufÞcient headroom for the garbage collector, while
a larger heap size ensures a shorter execution time for allocation. Tools like the
analyzer in the JamaicaVM help to conÞgure a system and Þnd suitable heap size
and allocation times.

10.4.4 Programming with the RTSJ and Realtime Garbage Col-
lection

Once the unpredictability of the garbage collector has been solved, realtime pro-
gramming is possible even without the need for special thread classes or the use
of speciÞc memory areas for realtime code.

10.4.4.1 Realtime Tasks

In Jamaica, garbage collection activity is performed within application threads
and only when memory is allocated by a thread. A direct consequence of this
is that any realtime task that performs no dynamic memory allocation will be
entirely unaffected by garbage collection activity. These realtime tasks can access
objects on the normal heap just like all other tasks. As long as realtime tasks use a
priority that is higher than other threads, they will be guaranteed to run when they
are ready. Furthermore, even realtime tasks may allocate memory dynamically.

120 CHAPTER 10. REALTIME PROGRAMMING GUIDELINES

Just like any other task, garbage collection work needs to be performed to pay
for this allocation. Since a worst-case execution time can be determined for the
allocation, the worst-case execution time of the task that performs the allocation
can be determined as well.

10.4.4.2 Communication

The communication mechanisms that can be used between threads with differ-
ent priority levels and timing requirements are basically the same mechanisms as
those used for normal Java threads: shared memory and Java monitors.

Shared Memory Since all threads can access the normal, garbage-collected
heap without suffering from unpredictable pauses due to garbage collector ac-
tivity, this normal heap can be used for shared memory communication between
all threads. Any high priority task can access objects on the heap even while
a lower priority thread accesses the same objects or even while a lower priority
thread allocates memory and performs garbage collection work. In the latter case,
the small worst-case execution time of an increment of garbage collection work
ensures a bounded and small thread preemption time, typically in the order of a
few microseconds.

Synchronization The use of Java monitors insynchronized methods and
explicit synchronized statements enables atomic accesses to data structures.
These mechanisms can be used equally well to protect accesses that are performed
in high priority realtime tasks and normal non-realtime tasks. Unfortunately, the
standard Java semantics for monitors does not prevent priority inversion that may
result from a high priority task trying to enter a monitor that is held by another task
of lower priority. The stricter monitor semantics of the RTSJ avoid this priority
inversion. All monitors are required to use priority inheritance or the priority
ceiling protocol, such that no priority inversion can occur when a thread tries to
enter a monitor. As in any realtime system, the developer has to ensure that the
time that a monitor is held by any thread must be bounded when this monitor
needs to be entered by a realtime task that requires an upper bound for the time
required to obtain this monitor.

10.4.4.3 Standard Data Structures

The strict separation of an application into a realtime and non-realtime part that
is required when the Real-Time SpeciÞcation for Java is used in conjunction with
a non-realtime garbage collector makes it very difÞcult to have global data struc-
tures that are shared between several tasks. The Real-Time SpeciÞcation for Java

10.5. SCHEDULING AND SYNCHRONIZATION 121

even provides special data structures such asWaitFreeWriteQueue that en-
able communication between tasks. These queues do not need to synchronize and
hence avoid running the risk of introducing priority inversion. In a system that
uses realtime garbage collection, such speciÞc structures are not required. High
priority tasks can share standard data structures such asjava.util.Vector
with low priority threads.

10.4.5 Memory Management Guidelines

The JamaicaVM provides three options for memory management:Immortal-
Memory, ScopedMemory , and realtime dynamic garbage collection on the nor-
mal heap. They may all be used freely. The choice of which to use is determined
by what the best trade off between external requirements, compatibility, and efÞ-
ciency for a given application.

ImmortalMemory is in fact quite dangerous. Memory leaks can result from
improper use. Its use should be avoided unless compatibility with other RTSJ
JVMs is paramount or heap memory is not allowed by the certiÞcation regime
required for the project.

ScopedMemory is safer, but it is generally inefÞcient due to the runtime
checks required by its use. When a memory check fails, the result is a runtime
exception, which is also undesirable in safety-critical code.

One important property of the JamaicaVM is that any realtime code that runs
at high priority and that does not perform memory allocation is guaranteed not to
be delayed by garbage collection work. This important feature holds for standard
RTSJ applications only under the heavy restrictions that apply toNoHeapReal-
timeThreads .

10.5 Scheduling and Synchronization

As the reader may have already noticed in the previous sections, scheduling and
synchronization are closely related. Scheduling threads that do not interact is
quite simple; however, interaction is necessary for sharing data among cooperat-
ing tasks. This interaction requires synchronization to ensure data integrity. There
are implications on scheduling of threads and synchronization beyond memory
access issues.

10.5.1 Schedulable Entities

The RTSJ introduces new scheduling entities to Java.RealtimeThread and
NoHeapRealtimeThread are thread types with clearer semantics than nor-

122 CHAPTER 10. REALTIME PROGRAMMING GUIDELINES

mal Java threads of classThread and additional scheduling possibilities. Events
are the other new thread-like construct used for transient computations. To save
resources (mainly operating system threads, and thus memory and performance),
AsyncEvents can be used for short code sequences instead. They are easy to
use because they can easily be triggered programmatically, but they must not be
used for blocking. Also, there areBoundAsyncEvents which each require
their own thread and thus can be used for blocking. They are as easy to use
as normalAsyncEvents , but do not use fewer resources than normal threads.
AsyncEventHandlers are triggered by an asynchronous event. All three exe-
cution environments,RealtimeThreads , NoHeapRealtimeThreads and
AsyncEventHandlers , are schedulable entities, i.e., they all have release pa-
rameters and scheduling parameters that are considered by the scheduler.

10.5.1.1 RealtimeThreads and NoHeapRealtimeThreads

The RTSJ includes new thread classesRealtimeThreads andNoHeapReal-
timeThreads to improve the semantics of threads for realtime systems. These
threads can use a priority range that is higher than that of all normal JavaThreads
with at least 28 unique priority levels. The default scheduler uses these priori-
ties for Þxed priority, preemptive scheduling. In addition to this, the new thread
classes can use the new memory areasScopedMemory andImmortalMemory
that are not under the control of the garbage collector.

As previously mentioned, threads of classNoHeapRealtimeThreads are
not permitted to access any object that was allocated on the garbage collected
heap. Consequently, these threads do not suffer from garbage collector activity as
long as they run at a priority that is higher than that of any other schedulable object
that accesses the garbage collected heap. In the JamaicaVM Java environment,
the memory access restrictions present inNoHeapRealtimeThreads are not
required to achieve realtime guarantees. Consequently, the use ofNoHeapReal-
timeThreads is neither required nor recommended.

Apart from the extended priority range,RealtimeThreads provide fea-
tures that are required in many realtime applications. Scheduling parameters for
periodic tasks, deadlines, and resource constraints can be given forRealtime-
Threads , and used to implement more complex scheduling algorithms. For
instance, periodic threads in the JamaicaVM use these parameters. In the Ja-
maicaVM Java environment, normal Java threads also proÞt from strict Þxed pri-
ority, preemptive scheduling; but for realtime code, the use ofRealtimeThread
is still recommended.

10.5. SCHEDULING AND SYNCHRONIZATION 123

10.5.1.2 AsyncEventHandlers vs. BoundAsyncEventHandlers

An alternative execution environment is provided through classesAsyncEvent-
Handler andBoundAsyncEventHandler . Code in an event handler is ex-
ecuted to react to an event. Events are bound to some external happening (e.g, a
processor interrupt), which triggers the event.

AsyncEventHandler andBoundAsyncEventHandler are schedula-
ble entities that are equipped with release and scheduling parameters exactly as
RealtimeThread andNoHeapRealtimeThread . The priority scheduler
schedules both threads and event handlers, according to their priority. Also, ad-
mission checking may take the release parameters of threads and asynchronous
event handlers in account. The release parameters include values such as execu-
tion time, period, and minimum interarrival time.

One important difference from threads is that anAsyncEventHandler is
not bound to one single thread. This means, that several invocations of the same
handler may be performed in different thread environments. A pool of preallo-
catedRealtimeThreads is used for the execution of these handlers. Event
handlers that may execute for a long time or that may block during their execution
may block a thread from this pool for a long time. This may make the timely
execution of other event handlers impossible.

Any event handler that may block should therefore have oneRealtime-
Thread that is assigned to it alone for the execution of its event handler. Handlers
for classBoundAsyncEventHandler provide this feature. They do not share
their thread with any other event handler and they may consequently block without
disturbing the execution of other event handlers.

Due to the additional resources required for aBoundAsyncEventHandler ,
their use should be restricted to blocking or long running events only. The sharing
of threads used for normalAsyncEventHandlers permits the use of a large
number of event handlers with minimal resource usage.

10.5.2 Synchronization

Synchronization is essential to data sharing, especially between cooperating real-
time tasks. Passing data between threads at different priorities without impairing
the realtime behavior of the system is the most important concern. It is essential
to ensure that a lower priority task cannot preempt a higher priority task.

The situation in Fig. 10.4 depicts a case of priority inversion when using
monitors, the most common priority problem. The software problems during the
PathÞnder mission on Mars is the most popular example of a classic priority in-
version error (see Michael JonesÕ web page [5]).

In this situation, a higher priority thread A has to wait for a lower priority

124 CHAPTER 10. REALTIME PROGRAMMING GUIDELINES

Task A

Task B

Task C
Lock(x) Unlock(x)

Lock(x)

Figure 10.4: Priority Inversion

thread B because another thread C with even lower priority is holding a monitor
for which A is waiting. In this situation, B will prevent A and C from running,
because A is blocked and C has lower priority. In fact, this is a programming error.
If a thread might enter a monitor which a higher priority thread might require, then
no other thread should have a priority in between the two.

Since errors of this nature are very hard to locate, the programming environ-
ment should provide a means for avoiding priority inversion. The RTSJ deÞnes
two possible mechanisms for avoiding priority inversion: Priority Inheritance and
Priority Ceiling Emulation. The JamaicaVM implements both mechanisms.

10.5.2.1 Priority Inheritance

Priority Inheritance is a protocol which is easy to understand and to use, but that
poses the risk of causing deadlocks. If priority inheritance is used, whenever a
higher priority thread waits for a monitor that is held by a lower priority thread,
the lower priority threadÕs priority is boosted to the priority of the blocking thread.
Fig. 10.5 illustrates this.

10.5.2.2 Priority Ceiling Emulation

Priority Ceiling Emulation is widely used in safety-critical system. The priority of
any thread entering a monitor is raised to the highest priority of any thread which
could ever enter the monitor. Fig. 10.6 illustrates the Priority Ceiling Emulation
protocol.

As long as no thread that holds a priority ceiling emulation monitor blocks,
any thread that tries to enter such a monitor can be sure not to block.1 Conse-

1If any other thread owns the monitor, its priority will have been boosted to the ceiling priority.
Consequently, the current thread cannot run and try to enter this monitor.

10.5. SCHEDULING AND SYNCHRONIZATION 125

Task A

Task B

Task C
Lock(x) Unlock(x)

Lock(x)

P
rio

rit
y

In
he

rit
an

ce

Figure 10.5: Priority Inheritance

Task A

Task B

Task C
Priority Ceiling

Lock(x) Unlock(x)

Lock(x)

Figure 10.6: Priority Ceiling Emulation Protocol

quently, the use of priority ceiling emulation automatically ensures that a system
is deadlock-free.

10.5.2.3 Priority Inheritance vs. Priority Ceiling Emulation

Priority Inheritance should be used with care, because it can cause deadlocks when
two threads try to enter the same two monitors in different order. This is shown
in Fig. 10.7. Thus it is safer to use Priority Ceiling Emulation, since when used
correctly, deadlocks cannot occur there. Priority Inheritance deadlocks can be
avoided, if all programmers make sure to always enter monitors in the same order.

Unlike classic priority ceiling emulation, the RTSJ permits blocking while
holding a priority ceiling emulation monitor. Other threads that may want to enter
the same monitor will be stopped exactly as they would be for a normal monitor.
This fall back to standard monitor behavior permits the use of priority ceiling
emulation even for monitors that are used by legacy code.

The advantage of a limited and short execution time for entering a priority ceil-
ing monitor, working on a shared resource, then leaving this monitor are, however,

126 CHAPTER 10. REALTIME PROGRAMMING GUIDELINES

Task A

Task B
Lock(x) Lock(y)

Lock(x)Lock(y)

P
rio

rit
y

In
he

rit
an

ce

Figure 10.7: Deadlocks are possible with Priority Inheritance

lost when a thread that has entered this monitor may block. Therefore the system
designer should restrict the use of priority ceiling monitors to short code sequences
that only access a shared resource and that do not block. Entering and exiting the
monitor can then be performed in constant time, and the system ensures that no
thread may try to enter a priority ceiling monitor that is held by some other thread.

Since priority ceiling emulation requires adjusting a threadÕs priority every
time a monitor is entered or exited, there is an additional runtime overhead for this
priority change when using this kind of monitors. This overhead can be signiÞcant
compared to the low runtime overhead that is incurred to enter or leave a normal,
priority inheritance monitor. In this case, there is a priority change penalty only
when a monitor has already been taken by another thread.

Future versions of the Jamaica Java implementation may optimize priority
ceiling and avoid unnecessary priority changes. The JamaicaVM uses atomic code
sequences and restricts thread switches to certain points in the code. A synchro-
nized code sequence that is protected by a priority ceiling monitor and that does
not contain a synchronization point may not require entering and leaving of the
monitor at all since the code sequence is guaranteed to be executed atomically due
to the fact that it does not contain a synchronization point.

10.5.3 Scheduling Policy and Priorities

Although JamaicaVM uses its own scheduler, the realtime behavior depends heav-
ily on the scheduling policy of the underlying operating system. Best results can
be achieved by using priority based scheduling using aÞrst-in-Þrst-outschedul-
ing policy since this corresponds to the scheduling policy implemented by Ja-
maicaVMÕs own scheduler.

10.5. SCHEDULING AND SYNCHRONIZATION 127

10.5.3.1 Native Priorities

In JamaicaVM, a priority map deÞnes which native (OS) priorities are used for the
different Java thread priorities. This priority map can be set via the environment
variableJAMAICAVM_PRIMAP(see Section 13.4), or using the Jamaica Builder
via the-priMap option (see Chapter 14).

Normal (non-realtime) Java thread priorities should usually be mapped to a
single OS priority since otherwise lower priority Java threads may receive no CPU
time if a higher priority thread is running constantly. The reason for this is that
legacy Java code that expects lower priority threads to run even if higher priority
threads are ready may not work otherwise. Afairnessmechanism in JamaicaVM
is used only for the lowest Java thread priorities that map to the same OS prior-
ity. For applications written to work withÞrst-in-Þrst-outscheduling, mapping
different Java priorities to different OS priorities, however, can result in better
performance.

Higher Java priorities used for instances ofRealtimeThread andAsync-
EventHandler , usually the Java priorities 11 through 38, should be mapped to
distinct priorities of the underlying OS. If there are not sufÞciently many OS pri-
ority levels available, different Java priorities may be mapped to the same native
priority. The Jamaica scheduler will still run the thread with higher Java priority
before running the lower priority threads. However, having the same native pri-
ority may result in higher thread-switch overhead since the underlying OS does
not know about the difference in Java priorities and may attempt to run the wrong
thread.

The special keywordsync is used to specify the native priority of the syn-
chronization thread. This thread manages time slicing between the normal Java
threads, so this should usually be mapped to a value that is higher or equal to the
native priority used for Java priority 10, the maximum priority for normal, non-
realtime Java threads. Using a higher priority for the synchronization thread may
introduce jitter to the realtime threads, while using a lower value will disable time
slicing and fairness for this and higher priorities.

10.5.3.2 POSIX Scheduling Policies

On POSIX systems, the scheduling policy can be set via the environment variable
JAMAICAVM_SCHEDULING_POLICY(see Section 13.4). Using the Jamaica
Builder, the scheduling policy can be set with the-schedulingPolicy option
(see Chapter 14). These are the supported POSIX scheduling policies:

¥ OTHERÑ default scheduling

¥ FIFO Ñ Þrst in Þrst out

128 CHAPTER 10. REALTIME PROGRAMMING GUIDELINES

¥ RRÑ round robin

The default isOTHER, which may not be a realtime policy depending on the target
OS. To obtain realtime performance, the use ofFIFO is required. UsingRRis
an alternative toFIFO, but it does make sense only in case Jamaica threads are
supposed to share the CPU with other processes running at the same priority.
UsingFIFO or RRrequires superuser privileges (root access) on some systems,
e.g., Linux.

Scheduling policiesFIFO andRRrequire native thread priorities that are1
or larger, while the default priority map used by JamaicaVM may map all Java
thread priorities to native priority0 if this is a legal priority for theOTHERpolicy
(e.g., on Linux). Hence, it is required to deÞne a different priority map if these
scheduling policies are used.

Native priorities that are lower than the minimum priority of the selected
scheduling policy (e.g., priority0 is lower than the minimumFIFO priority which
is 1) are implemented by falling back to theOTHERscheduling policy for the af-
fected threads.

On Linux, FIFO scheduling is recommended forRealtimeThread s and
AsyncEventHandler s andOTHERfor normal Java threads. These are the
corresponding settings:

JAMAICAVM_SCHEDULING_POLICY=FIFO
JAMAICAVM_PRIMAP=1..10=0,sync=1,11..38=2..29

Since the scheduling policy can be embedded directly into the priority map,
an alternative way of setting the scheduling policy could be done as follows:

JAMAICAVM_PRIMAP=1..10=0/OTHER,sync=1/FIFO,11..38=2..29/FIFO

This would schedule Java priorities 11 to 38 using theFIFO scheduler, and
the rest using theOTHERscheduler.

The result is that a Java application that uses only normal Java threads will use
OTHERscheduling and run in user mode, while any threads and event handlers
that use RTSJÕs realtime priorities (11 through 38) will use the corresponding
FIFO priorities. The priority speciÞed with the keywordsync is used for the
synchronization thread. This thread manages time slicing between the normal
Java threads, so this can use theOTHERscheduling policy as well, whileFIFO
ensures that time slicing will have precedence even if there is a high load of threads
using the scheduling policyOTHER.

10.6. LIBRARIES 129

10.6 Libraries

The use of a standard Java libraries within realtime code poses severe difÞculties,
since standard libraries typically are not developed with the strict requirements
on execution time predictability that come with the use in realtime code. For
use within realtime applications, any libraries that are not speciÞcally written and
documented for realtime system use cannot be used without inspection of the
library code.

The availability of source code for standard libraries is an important prerequi-
site for their use in realtime system development. Within the JamaicaVM, large
parts of the standard Java APIs are taken from OpenJDK, which is an open source
project. The source code is freely available, so that the applicability of certain
methods within realtime code can be checked easily.

10.7 Summary

As one might expect, programming realtime systems in Java is more complicated
than standard Java programming. A realtime Java developer must take care with
many Java constructs. With timely Java development using JamaicaVM, there are
instances where a developer has more than one possible implementation construct
to choose from. Here, the most important of these points are recapitulated.

10.7.1 EfÞciency

All method calls and interface calls are performed in constant time. They are
almost as efÞcient as C function calls, so do not avoid them except in places
where one would avoid a C function call as well.

When accessing Þnallocal variables or private Þelds from within inner
classes in a loop, one should generally cache the result in a local variable for
performance reasons. The access is in constant time, but slower than normal local
variables.

Using the String operator + causes memory allocation with an execution time
that is linear with regard to the size of the resulting String. Using array initializa-
tion causes dynamic allocations as well.

For realtime critical applications, avoid static initializers or explicitly call the
static initializer at startup. When using a java compiler earlier than version 1.5, the
use ofclassname.class causes dynamic class loading. In realtime applications,
this should be avoided or called only during application startup. Subsequent usage
of the same class will then be cached by the JVM.

130 CHAPTER 10. REALTIME PROGRAMMING GUIDELINES

10.7.2 Memory Allocation

The RTSJ introduces new memory areas such asImmortalMemoryArea and
ScopedMemory , which are inconvenient for the programmer, and at the same
time make it possible to write realtime applications that can be executed even on
virtual machines without realtime garbage collection.

In JamaicaVM, it is safe, reliable, and convenient to just ignore those restric-
tions and rely on the realtime garbage collection instead. Be aware that if exten-
sions of the RTSJ without sticking to restrictions imposed by the RTSJ, the code
will not run unmodiÞed on other JVMs.

10.7.3 EventHandlers

AsyncEventHandlers should be used for tasks that are triggered by some
external event. Many event handlers can be used simultaneously; however, they
should not block or run for a long time. Otherwise the execution of other event
handlers may be blocked.

For longer code sequences, or code that might block, event handlers of class
BoundAsyncEventHandler provide an alternative that does not prevent the
execution of other handlers at the cost of an additional thread.

The scheduling and release parameters of event handlers should be set accord-
ing to the scheduling needs for the handler. Particularly, when rate monotonic
analysis [10] is used, an event handler with a certain minimal interarrival time
should be assigned a priority relative to any other events or (periodic) threads
using this minimal interarrival time as the period of this schedulable entity.

10.7.4 Monitors

Priority Inheritance is the default protocol in the RTSJ. It is safe and easy to use,
but one should take care to nest monitor requests properly and in the same order
in all threads. Otherwise, it can cause deadlocks. When used properly, Priority
Ceiling Emulation (PCE) can never cause deadlocks, but care has to be taken
that a monitor is never used in a thread of higher priority than the monitor. Both
protocols are efÞciently implemented in the JamaicaVM.

Chapter 11

Multicore Guidelines

While on single-core systems multithreaded computation eventually boils down to
the sequential execution of instructions on a single CPU, multicore systems pose
new challenges to programmers. This is especially true for languages that expose
features of the target hardware relatively directly, such as C. For example, shared
memory communication requires judiciously placed memory fences to prevent
compiler optimizations that can lead to values being created Òout of thin airÓ.

High-level languages such as Java, which has a well-deÞned and machine-
independent memory model [4, Chapter 17], shield programmers from such sur-
prises. In addition, high-level languages provide automatic memory management.
The Jamaica multicore VM provides concurrent, parallel, real-time garbage col-
lection:

Concurrent Garbage collection can take place on some CPUs while other CPUs
execute application code.

Parallel Several CPUs can perform garbage collection at the same time.

Real-time There is a guaranteed upper bound on the amount of time any part
of application code may be suspended for garbage collection work. At the
same time, it is guaranteed that garbage collection work will be sufÞcient to
reclaim enough memory so all allocation requests by the application can be
satisÞed.

JamaicaVMÕs garbage collector achieves hard real-time guarantees by carefully
distributing the garbage collection to all available CPUs [11].

11.1 Tool Usage

For versions of JamaicaVM with multicore support the Builder can build applica-
tions with and without multicore support. This is controlled via the Builder option

131

132 CHAPTER 11. MULTICORE GUIDELINES

-parallel . On systems with only one CPU or for applications that cannot ben-
eÞt from parallel execution, multicore support should disabled. The multicore
version has a higher overhead of heap memory than the single-core version (see
Appendix C).

In order to limit the CPUs used by Jamaica, a set of CPU afÞnities may be
given to the Builder or VM via the option-Xcpus . See Section 13.1.2 and Sec-
tion 14.3 for details. While Jamaica supports all possible subsets of the existing
CPUs, operating systems may not support these. The set of all CPUs and all sin-
gleton sets of CPUs are usually supported, though. For more information, please
consult the documentation of the operating system you use.

To Þnd out whether a particular Jamaica virtual machine provides multicore
support, use the-version option. A VM with multicore support will identify
itself asparallel .

11.2 Setting Thread AfÞnities

On a multicore system, by default the scheduler can assign any thread to any
CPU as long as priorities are respected. In many cases this ßexibility leads to
reduced throughput or increased jitter. The main reason is that migrating a thread
form one CPU to another is expensive: it renders the code and data stored in the
cache useless, which delays execution. Reducing the schedulerÕs choice by Òpin-
ningÓ a thread to a speciÞc CPU can help. In JamaicaVM the RTSJ classjavax.
realtime.Affinity enables programmers to restrict on which CPUs a thread
can run. The following sections present rules of thumb for choosing thread afÞni-
ties in common situations. In practice, usually experimentation is required to see
which afÞnities work best for a particular application.

11.2.1 Communication through Shared Memory

Communication of threads through shared memory is usually more efÞcient if
both threads run on the same CPU. This is because threads on the same CPU can
communicate via the CPUÕs cache, while in order for data to pass from one CPU to
another, it has to go via main memory, which is slower. The decision on whether
pinning two communicating threads to the same or to different CPUs should be
based on the tradeoff between computation and communication: if computation
dominates, it will usually be better to use different CPUs; if communication dom-
inates, using the same CPU will be better.

Interestingly, the same effect can also occur for threads that do not communi-
cate, but that write data in the same cache line. This is known asfalse sharing.

11.2. SETTING THREAD AFFINITIES 133

In JamaicaVM this can occur if two threads modify data in the same object (more
precisely, the same block).

11.2.2 Performance Degradation on Locking

If two contenders for the same monitor can only run on the same CPU, the runtime
system may be able to decide more efÞciently whether the monitor is free and may
be acquired (i.e.,locked). Consider the following scenario:

¥ A high-priority threadA repeatedly acquires and releases a monitor.

¥ A low-priority threadB repeatedly acquires and releases the same monitor.

This happens, for example, ifA andB concurrently read Þelds of a synchronized
data-structure.

Assume that threadB is started and later also threadA. At some point,A may
have to wait untilB releases the monitor. ThenA resumes. SinceA is of higher
priority thanB, A will not be preempted byB. If A andB are tied to the same
CPU this means thatB cannot run whileA is running. IfA releases the monitor
and tries to re-acquire it later, it is clear that it cannot have been taken byB in the
meantime. Since the monitor is free, it can be taken immediately, which is very
efÞcient.

If, on the other hand,A andB can run on different CPUs,B can be running
while A is running, and it may acquire the monitor whenA releases it. In this
case,A has to re-obtain the monitor fromB before it can continue. The additional
overhead for blockingA and for waking upA after B has released the monitor
can be signiÞcant.

11.2.3 Periodic Threads

Some applications have periodic events that need to happen with high accuracy.
If this is the case, cache latencies can get into the way. Consider the following
scenario:

¥ A high-priority threadA runs every 2ms for 1ms and

¥ A low-priority threadB runs every 10ms for 2ms.

If both threads run on the same CPU,B will Þll some of the gaps left byA. For
the gaps Þlled byB, whenA resumes, it Þrst needs to Þll the cache with its own
code and data. This can lead toCPU stalls. These stalls only occur whenB did
run immediately beforeA. They do not occur after the gaps during which the CPU
was idle. The fact that stalls occur sometimes but sometimes not will be observed

134 CHAPTER 11. MULTICORE GUIDELINES

as jitter in threadA. The problem can be alleviated by tyingA andB to different
CPUs.

11.2.4 Rate-Monotonic Analysis

Rate-monotonic analysis is a technique for determining whether a scheduling
problem is feasible on a system with thread preemption such that deterministic
response times can be guaranteed with simple (rate-monotonic) scheduling algo-
rithms. Rate-monotonic analysis only works for single-core systems. However,
if a subset of application threads can be identiÞed that have little dependency on
the other application threads it may be possible to schedule these based on rate-
monotonic analysis.

A possible scenario where this can be a useful approach is an application
where some threads guarantee deterministic responses of the system, while other
threads perform data processing in the background. The subset of threads in
charge of deterministic responses could be isolated to one CPU and rate-monotonic
scheduling could be used for them.

11.2.5 The Operating SystemÕs Interrupt Handler

Operating systems usually tie interrupt handling to one particular CPU. Cache
effects described in Section 11.2.3 above can also occur between the interrupt
handling code and application threads. Therefore, jitter may be reduced by run-
ning application threads on CPUs other than the one in charge of the operating
systemÕs interrupt handling.

Part III

Tools Reference

135

Chapter 12

The Jamaica Java Compiler

The commandjamaicac is a compiler for the Java programming language and
is based on OpenJDKÕs Java Compiler. It uses the system classes of the Jamaica
distribution, which are located in

jamaica-home/target/ platform/lib/

as default bootclasspath. JamaicaVM may be used with other compilers such as
JDKÕsjavac provided the bootclasspath is set to JamaicaÕs system classes of the
used platform.1

12.1 Usage of jamaicac

The command line syntax for thejamaicac is as follows:

jamaicac [options] [source Þles and directories]

If directories are speciÞed their source contents are compiled. The command line
options ofjamaicac are those ofjavac . As notable difference, the additional
useTarget option enables specifying a particular target platform.

12.1.1 Classpath options

Option -useTarget platform

TheuseTarget option speciÞes the target platform to compile for. It is used to
compute the bootclasspath in casebootclasspath is omitted. By default, the
host platform is used.

1The bootclasspath is bound to the VM system propertysun.boot.class.path .

137

138 CHAPTER 12. THE JAMAICA JAVA COMPILER

Option -cp (-classpath) path

Theclasspath option speciÞes the location for application classes and sources.
The path is a list of directories, zip Þles or jar Þles separated by the platform
speciÞc separator (usually colon, Ô:Õ). Each directory or Þle can specify access
rules for types between Ô[Õ and Ô]Õ (e.g. Ò[-X.java] Ó to deny access to typeX).

Option -bootclasspath path

This option is similar to the optionclasspath , but speciÞes locations for sys-
tem classes.

Option -sourcepath path

Thesourcepath option speciÞes locations for application sources. The path is
a list of directories. For further details, see optionclasspath above.

Option -extdirs dirs

Theextdirs option speciÞes location for extension zip/jar Þles, wherepath is
a list of directories.

Option -d directory

Thed option sets the destination directory to write the generated class Þles to. If
omitted, no directory is created.

12.1.2 Compliance options

Option -source version

Provide source compatibility for speciÞed version, e.g. 1.8 (or 8 or 8.0).

Option -target version

Generated class Þles for a speciÞc VM version, e.g. 1.8 (or 8 or 8.0).

12.1.3 Warning options

Option -deprecation

Thedeprecation option checks for deprecation outside deprecated code.

12.2. ENVIRONMENT VARIABLES 139

Option -nowarn

Thenowarn option disables all warnings.

12.1.4 Debug options

Option -g

Theg option without parameter activates all debug info.

Option -g:none

Theg option withnone disables debug info.

Option -g: { lines,vars,source }

Theg option is used to customize debug info.

12.1.5 Other options

Option -encoding encoding

Theencoding option speciÞes custom encoding for all sources. May be overrid-
den for each Þle or directory by sufÞxing with Ô[ÕencodingÔ]Õ (e.g. ÒX.java[utf8]Ó).

Option -J option

This option is ignored.

Option -X

TheX option prints non-standard options and exits.

12.2 Environment Variables

The following environment variables controljamaicac .

JAMAICAC_HEAPSIZEInitial heap size of thejamaicac command itself in
bytes. Setting this to a larger value will improve thejamaicac perfor-
mance.

140 CHAPTER 12. THE JAMAICA JAVA COMPILER

JAMAICAC_MAXHEAPSIZEMaximum heap size of thejamaicac command
itself in bytes. If the initial heap size is not sufÞcient, it will increase its
heap dynamically up to this value. To compile large applications, you may
have to set this maximum heap size to a larger value.

JAMAICAC_JAVA_STACKSIZEJava stack size of thejamaicac command
itself in bytes.

JAMAICAC_NATIVE_STACKSIZE Native stack size of thejamaicac com-
mand itself in bytes.

Chapter 13

The Jamaica Virtual Machine
Commands

The Jamaica virtual machine provides a set of commands that permit the execu-
tion of Java applications by loading a set of class Þles and executing the code.
The commandjamaicavm launches the standard Jamaica virtual machine. Its
variantsjamaicavm_slim , jamaicavmp andjamaicavmdi provide spe-
cial features like debug support.

13.1 jamaicavm Ñ the Standard Virtual Machine

The jamaicavm is the standard command to execute non-optimized Java ap-
plications in interpreted mode. Its input syntax follows the conventions of Java
virtual machines.

jamaicavm [options] class [args...]
jamaicavm [options] -jar jarÞle [args...]

The programÕs main class is either given directly on the command line, or obtained
from the manifest of a Java archive Þle if option-jar is present.

The main class must be given as a qualiÞed class name that includes the com-
plete package path. For example, if the main classMyClass is in packagecom.
mycompany, the fully qualiÞed class name iscom.mycompany.MyClass .
In Java, the package structure is reßected by nested folders in the Þle system.
The class ÞleMyClass.class , which contains the main classÕs byte code, is
expected in the foldercom/mycompany (or com\mycompany on Windows
systems). The command line for this example is

jamaicavm com.mycompany.MyClass

141

142 CHAPTER 13. THE JAMAICA VIRTUAL MACHINE COMMANDS

on Unix and Windows systems alike.
The available command line options ofjamaicavm , are explained in the

following sections. In addition to command line options, there are environment
variables and Java properties that control the VM. For details on the environment
variables, see Section 13.4, for the Java properties, see Section 13.5.

13.1.1 Command Line Options

Option -classpath (-cp) path

Theclasspath option sets the search path for class Þles. The argument must
be a list of directories or JAR/ZIP Þles separated by the platform dependent path
separator char (Ô:Õ on Unix-Systems, Ô;Õ on Windows). If this option is not used,
the search path for class Þles defaults to the current working directory.

Option -D name=value

The D option sets a system property with a given name to a given value. The
value of this property will be available to the Java application via functions such
asSystem.getProperty() .

Option -javaagent: jarpath[= options]

Thejavaagent option creates a set of Java agents which will be started before
the main application method.jarpath is the path to the JAR containing the agent.
optionsis the argument that will be passed to the agentÕspremain method. Mul-
tiple javaagent options may be speciÞed on the command line, and they will
be called in the order they were speciÞed. For further information, please refer to
the Jamaica API documentation, packagejava.lang.instrument .

! JamaicaVM currently does not fully support instrumentation and cannot pass
an instrumentation object to the agentÕspremain method. Agents that imple-

mentpremain(String,Instrumentation) will therefore receivenull
for the second argument.

Option -version

Theversion option prints the version of JamaicaVM.

13.1. JAMAICAVM Ñ THE STANDARD VIRTUAL MACHINE 143

Option -help (-?)

The help option prints a short help summary on the usage of JamaicaVM and
lists the default values is uses. These default values are target speciÞc. The de-
fault values may be overridden by command line options or environment variable
settings. Where command line options (set through-X option) and environment
variables are possible, the command line settings have precedence. For the avail-
able command line options, see Section 13.1.2 or invoke the VM with-xhelp .

Option -ea (-enableassertions)

Theea andenableassertions options enable Java assertions introduced in
Java code using theassert keyword for application classes. The default setting
for these assertions is disabled.

Option -da (-disableassertions)

Theda anddisableassertions options disable Java assertions introduced
in Java code using theassert keyword for application classes. The default
setting for these assertions is disabled.

Option -esa (-enablesystemassertions)

Theesa andenablesystemassertions options enable Java assertions in-
troduced in Java code using theassert keyword for system classes, i.e., classes
loaded via the bootclasspath. The default setting for these assertions is disabled.

Option -dsa (-disablesystemassertions)

Thedsa andenablesystemassertions options disable Java assertions in-
troduced in Java code using theassert keyword for system classes, i.e., classes
loaded via the bootclasspath. The default setting for these assertions is disabled.

Option -verbose[:class]

Theverbose option enables verbose output. Currently onlyverbose:class
option for tracing of class loading is supported.

13.1.2 Extended Command Line Options

JamaicaVM supports a number of extended options. Some of them are supported
for compatibility with other virtual machines, while some provide functionality

144 CHAPTER 13. THE JAMAICA VIRTUAL MACHINE COMMANDS

that is only available in Jamaica . Please note that the extended options may
change without notice. Use them with care.

Option -xhelp (-X)

The xhelp option prints a short help summary on the extended options of Ja-
maicaVM.

Option -Xbootclasspath: path

The Xbootclasspath option sets bootstrap search paths for class Þles. The
argument must be a list of directories or JAR/ZIP Þles separated by the platform
dependent path separator char (Ô:Õ on Unix-Systems, Ô;Õ on Windows). Note that
the jamaicavm command has all boot and standard API classes built in. The
boot-classpath has the built-in classes as an implicit Þrst entry in the path list,
so it is not possible to replace the built-in boot classes by other classes which
are not built-in. However, the boot class path may still be set to add additional
boot classes. For commandsjamaicavm_slim , jamaicavmp , etc. that do
not have any built-in classes, setting the boot-classpath will force loading of the
system classes from the directories provided in this path. However, extreme care is
required: The virtual machine relies on some internal features in the boot-classes.
Thus it is in general not possible to replace the boot classes by those of a different
virtual machine or even by those of another version of the Jamaica virtual machine
or even by those of a different Java virtual machine. In most cases, it is better to
use-Xbootclasspath/a , which appends to the bootstrap class path.

Option -Xbootclasspath/a: path

TheXbootclasspath/a option appends to the bootstrap class path. The ar-
gument must be a list of directories or JAR/ZIP Þles separated by the platform
dependent path separator char (Ô:Õ on Unix Systems, Ô;Õ on Windows). For further
information, see theXbootclasspath option above.

Option -Xbootclasspath/p: path

TheXbootclasspath/p option prepends to the bootstrap class path. The ar-
gument must be a list of directories or JAR/ZIP Þles separated by the platform
dependent path separator char (Ô:Õ on Unix Systems, Ô;Õ on Windows). For further
information, see theXbootclasspath option above.

13.1. JAMAICAVM Ñ THE STANDARD VIRTUAL MACHINE 145

Option -Xcpus cpus

SpeciÞes the set of CPUs to use. The argument is either an enumerationn1, n2, . . . ,
a rangen1.. n2 or the tokenall . For example,0,1,3 will use the CPUs with
ids 0, 1, and 3.-Xcpusall will use all available CPUs. This option is only avail-
able on conÞgurations with multicore support. Be aware that multicore support
requires an extra license.

Option -Xms(-ms) size

TheXmsoption sets initial Java heap size, the default setting is2M. This option
takes precedence over a heap size set via an environment variable.

Option -Xmx(-mx) size

TheXmxoption sets maximum Java heap size, the default setting is256M. This
option takes precedence over a maximum heap size set via an environment vari-
able.

Option -Xmi(-mi) size

The Xmi option sets heap size increment, the default setting is4M. This option
takes precedence over a heap size increment set via an environment variable.

Option -Xss(-ss) size

TheXss option sets stack size (native and interpreter). This option takes prece-
dence over a stack size set via an environment variable.

Option -Xjs(-js) size

TheXjs option sets interpreter stack size, the default setting is64K. This option
takes precedence over a java stack size set via an environment variable.

Option -Xns(-ns) size

TheXns option sets native stack size, set default setting is64K. This option takes
precedence over a native stack size set via an environment variable.

146 CHAPTER 13. THE JAMAICA VIRTUAL MACHINE COMMANDS

Option -Xprof

Collect simple proÞling information using periodic sampling. This proÞle is used
to provide an estimate of the methods which use the most CPU time during the
execution of an application. During each sample, the currently executing method
is determined and its sample count is incremented, independent of whether the
method is currently executing or is blocked waiting for some other event. The
total number of samples found for each method are printed when the application
terminates. Note that compiled methods may be sampled incorrectly since they
do not necessarily have a stack frame. We therefore recommend to useXprof
only for interpreted applications.

This option should not be confused with the proÞling facilities provided by
jamaicavmp (see Section 13.3.3).

Option -Xcheck:jni

Enable argument checking in the Java Native Interface (JNI). With this option en-
abled the JamaicaVM will be halted if a problem is detected. Enabling this option
will cause a performance impact for the JNI. Using this option is recommended
while developing applications that use native code.

Option -Xmixed

This option is ignored by JamaicaVM and provided only for compatibility.

Option -Xint

This option is ignored by JamaicaVM and provided only for compatibility.

Option -Xbatch

This option is ignored by JamaicaVM and provided only for compatibility.

Option -Xcomp

This option is ignored by JamaicaVM and provided only for compatibility.

Option -XX:+DisplayVMOutputToStderr

When using the-XX:+DisplayVMOutputToStderr option in combination
with the -verbose[:class] option, the additional output will be redirected
to the error console.

13.2. RUNNING A VM ON A TARGET DEVICE 147

Option -XX:+DisplayVMOutputToStdout

When using the-XX:+DisplayVMOutputToStdout option in combination
with the -verbose[:class] option, the additional output will be redirected
to the standard console. This is the default setting.

Option -XX:MaxDirectMemorySize= size

The-XX:MaxDirectMemorySize option speciÞes the maximum total size of
java.nio (New I/O) direct buffer allocations.

Option -XX:OnOutOfMemoryError= cmd

The command speciÞed with the-XX:OnOutOfMemoryError option will be
executed when the ÞrstOutOfMemoryError is thrown.

13.2 Running a VM on a Target Device

In order to runjamaicavm on a target device, the Java runtime system must
be deployed. In Jamaica, the runtime system is platform-speciÞc and located in
the installationÕstarget folder: jamaica-home/target/ platform/ . It has the
following directory structure:

runtime
+- bin
+- lib

The directorybin contains the VM and other runtime executables, andlib
contains the system classes and other ressources such as time zone information
and security settings. The VM executable isjamaicavm_bin (on Windows,
jamaicavm_bin.exe).1 To run jamaicavm on a device most of the folder
structure of the runtime system must be replicated there:

¥ The bin directory andjamaicavm_bin[.exe] . If any of the other
runtime tools are required, these need to be deployed as well. Note that
these tools requirejamaicavm_bin[.exe] to be present as well.

¥ The lib directory including all subdirectories and Þles except the static
librarieslibjamaica_ * .a , which are only required by the JamaicaVM
development tools.

1jamaicavm is merely a script that calls the host platformÕs VM executable.

148 CHAPTER 13. THE JAMAICA VIRTUAL MACHINE COMMANDS

For instructions on invoking the VM executable and supplying arguments, please
refer to the documentation provided by the supplier of the target platform and Ap-
pendix B.1 of this manual. There, JamaicaVMÕs requirements on target platforms
(if applicable) and platform-speciÞc limitations are documented as well.

The same folder structure is required by all variants ofjamaicavm (see Sec-
tion 13.3 below) and by applications built with the Builder option-XnoMain .

13.3 Variants of jamaicavm

A number of variants of the standard virtual machines are provided for special
purposes. Their features and uses are described in the following sections. All
variants accept the command line options, properties and environment variables
of the standard VM. Some variants accept additional command line options as
speciÞed below.

13.3.1 jamaicavmslim

jamaicavm_slim is a variant of thejamaicavm command that has no built-
in standard library classes. Instead, it has to load all standard library classes that
are required by the application from the target-speciÞcrt.jar provided in the
JamaicaVM installation.

Compared tojamaicavm , jamaicavm_slim is signiÞcantly smaller in
size.jamaicavm_slim may start up more quickly for small applications, but it
will require more time for larger applications. Also, since forjamaicavm com-
monly required standard library classes were pre-compiled and optimized by the
Jamaica Builder tool (see Chapter 14),jamaicavm_slim will perform standard
library code more slowly.

13.3.2 jamaicavmm

jamaicavmm is the multicore variant of thejamaicavm_slim . By using
jamaicavmm , you will automatically beneÞt from the available cores in your
machine. Be aware that you need to have an extra license to use this.

jamaicavmm accepts the additional command line option-Xcpus . See
Section 13.1.2.

13.3.3 jamaicavmp

jamaicavmp is a variant ofjamaicavm_slim that collects proÞling informa-
tion. This proÞling information can be used when creating an optimized version

13.3. VARIANTS OF JAMAICAVM 149

of the application using option-useProfile Þleof the Jamaica Builder com-
mand (see Chapter 14).

The proÞling information is written to a Þle whose name is the name of the
main class of the executed Java application with the sufÞx.prof . The follow-
ing run of the HelloWorld application available in the examples (see Section 2.4)
shows how the proÞling information is written after the execution of the applica-
tion.

> jamaicavmp -cp classes HelloWorld
Hello World!

Hello World!
Hello World!

Hello World!
Hello World!

Hello World!
[...]

Start writing profile data into file ÕHelloWorld.profÕ
Write threads data...
Write invocation data...

Done writing profile data

ProÞling information is written when the applications terminates normally and
returns exitcode 0. Alternatively, proÞling information is written when the appli-
cation receivesSIGINT (Ctrl-C is pressed).

For explicit termination, the application needs to be rewritten to terminate at a
certain point, e.g., after a timeout or on a certain user input. The easiest means to
terminate an application is via a call toSystem.exit() . Otherwise, all threads
that are not daemon threads need to be terminated.

Requesting proÞle dumps remotely via a network connection is possible with
the jamaicaremoteprofile command. To enable remote proÞle dumps,
the propertyjamaica.profile_request_port needs to be set to a port
number. For more information, see Section 5.1.3.

ProÞling information is always appended to the proÞling Þle. This means
that proÞling information from several proÞling runs of the same application, e.g.
using different input data, will automatically be written into a single proÞling
Þle. To fully overwrite the proÞling information, e.g., after a major change in the
application, the proÞling Þle must be deleted manually.

The collection of proÞling information requires additional CPU time and mem-
ory to store this information. It may therefore be necessary to increase the memory
size. Also expect poorer runtime performance during a proÞling run.

jamaicavmp accepts the following additional command line option.

150 CHAPTER 13. THE JAMAICA VIRTUAL MACHINE COMMANDS

Option -XprofileFilename: Þlename

This option selects the name of the Þle to which the proÞle data is to be written.
If this option is not provided, the default Þle name is used, consisting of the main
class name and the sufÞx.prof .

13.3.4 jamaicavmdi

Thejamaicavmdi command is a variant ofjamaicavm_slim that includes
support for the JVMTI debugging interface. It includes a debugging agent that
can communicate with remote source-level debuggers such as Eclipse.

jamaicavmdi accepts the following additional command line option.

Option -agentlib: libname[= options]

Theagentlib option loads and runs the dynamic JVMTI agent librarylibname
with the given options. Be aware that JVMTI is not yet fully implemented, so not
every agent will work. Jamaica comes with a statically built in debugging agent
that can be selected by settingBuiltInAgent as name. The transport layer
must be sockets. A typical example of using this option is

-agentlib:BuiltInAgent=transport=dt_socket,server=y,
suspend=y,address=8000

(To be typed in a single line.) This starts the application and waits for an incoming
connection of a debugger on port 8000. See Section 8.1 for further information
on the options that can be provided to the built-in agent for remote debugging.

13.4 Environment Variables

The following environment variables controljamaicavm and its variants. The
defaults may vary for host and target platforms. The values given here are for
guidance only. In order to Þnd out the defaults used by a particular VM, invoke it
with command line option-help .

CLASSPATHPath list to search for class Þles.

JAMAICAVM_SCHEDULING_POLICYNative thread scheduling policy on POSIX
systems. Setting the scheduling policy may require root access. These are
the available values:

¥ OTHERÑ default scheduling

13.4. ENVIRONMENT VARIABLES 151

¥ FIFO Ñ Þrst in Þrst out

¥ RRÑ round robin

The default isOTHER. For obtaining real-time performance,FIFO is re-
quired. See Section 10.5.3 for details.

JAMAICAVM_HEAPSIZEHeap size in bytes, default 2M

JAMAICAVM_MAXHEAPSIZEMax heap size in bytes, default 768M

JAMAICAVM_HEAPSIZEINCREMENTHeap size increment in bytes, default
4M

JAMAICAVM_JAVA_STACKSIZEJava stack size in bytes, default 64K

JAMAICAVM_NATIVE_STACKSIZENative stack size in bytes, default 150K

JAMAICAVM_NUMTHREADSInitial number of Java threads, default: 10

JAMAICAVM_MAXNUMTHREADSMaximum number of Java threads, default:
511

JAMAICAVM_NUMJNITHREADSInitial number of threads for the JNI function
JNI_AttachCurrentThread , default: 0

JAMAICAVM_PRIMAPPriority mapping of Java threads to native threads

JAMAICAVM_TIMESLICE Time slicing for instances ofjava.lang.Thread .
See Builder optiontimeSlice .

JAMAICAVM_CONSTGCWORKAmount of garbage collection per block if set to
value> 0. Amount of garbage collection depending on amount of free mem-
ory if set to 0. Stop the world GC if set to -1. Default: 0.

JAMAICAVM_ANALYZEEnable memory analysis mode with a tolerance given
in percent (see Builder optionanalyze), default: 0 (disabled).

JAMAICAVM_RESERVEDMEMORYSet the percentage of memory that should be
reserved by a low priority thread for fast burst allocation (see Builder option
reservedMemory), default: 10.

JAMAICAVM_SCOPEDSIZESize of scoped memory, default: 0

JAMAICAVM_IMMORTALSIZESize of immortal memory, default: 0

152 CHAPTER 13. THE JAMAICA VIRTUAL MACHINE COMMANDS

JAMAICAVM_PROFILEFILENAMEFile name for proÞle, default:class.prof ,
whereclassis the name of the main class. This variable is only recognized
by VMs with proÞling support.

JAMAICAVM_CPUSCPUs to use. This is either an enumerationn1, n2, . . . , a
rangen1.. n2, or the tokenall (default). This variable is only recognized
by VMs with multicore support.

13.5 Java Properties

A Java property is a string name that has an assigned string value. This sec-
tion lists Java properties that Jamaica uses in addition to those used by a stan-
dard Java implementation. These properties are available with the pre-built VM
commands described in this chapter as well as for applications created with the
Jamaica Builder.

13.5.1 User-DeÞnable Properties

The standard libraries that are delivered with JamaicaVM can be conÞgured by
setting speciÞc Java properties. A property is passed to the Java code via the
JamaicaVM option

-D name=value

or, when building an application with the Builder, via option

-XdefineProperty+= name=value

jamaica.cost_monitoring_accuracy = num
This integer property speciÞes the resolution of the cost monitoring that is
used for RTSJÕs cost overrun handlers. The accuracy is given in nanosec-
onds, the default value is5000000 , i.e., an accuracy of 5ms. The accuracy
speciÞes the maximum value the actual cost may exceed the given cost bud-
get before a cost overrun handler is Þred. A high accuracy (a lower value)
causes a higher runtime overhead since more frequent cost budget checking
is required. See also Section 9.4, Limitations of the RTSJ implementation.

jamaica.cpu_mhz = num
This integer option speciÞes the CPU speed of the system JamaicaVM ex-
ecutes on. This number is used on systems that have a CPU cycle counter
to measure execution time for the RTSJÕs cost monitoring functions. If the
CPU speed is not set and it could not be determined from the system (e.g.,

13.5. JAVA PROPERTIES 153

on Linux via reading Þle/proc/cpuinfo), the CPU speed will be mea-
sured on VM startup and a warning will be printed. An example setting for
a system running at 1.8GHz would be-Djamaica.cpu_mhz=1800.0 .

jamaica.monotonic_currentTimeMillis
Enable an additional check that enforces that the methodjava.lang.
System.currentTimeMillis() always returns a non-negative and
monotonically increasing value.

jamaica.err_to_file
If a Þle name is given, all output sent to System.err will be redirected to this
Þle.

jamaica.err_to_null
If set to true, all output sent to System.err will be ignored. This is useful for
graphical applications if textual output is very slow. The default value for
this property is false.

jamaica.finalizer.pri = n
This property speciÞes the Java priority to be used for the Finalizer thread.
This thread is responsible for the exeuction offinalize methods after the
garbage collector has discovered that an object is eligible for Þnalization. If
not set, the defaultjava.lang.Thread.MAX_PRIORITY " 2 (= 8) is
used. Setting the priority to" 1 deactivates the Þnalizer thread.

jamaica.fontproperties = resource
This property speciÞes the name of a resource that instructs JamaicaVM
which fonts to load. The default value iscom/aicas/jamaica/awt/
fonts.properties . The property may be set to a user deÞned resource
Þle to change the set of supported fonts. The speciÞed Þle itself is a property
Þle that maps font names to resource Þle names. For more details and an
example see Appendix A.3.2.

jamaica.full_stack_trace_on_sig_quit
If this Boolean property is set, then the default handler for POSIX signal
SIGQUIT (Ctrl-\ on Unix-based platforms) is changed to print full stack
trace information in addition to information on thread states, which is the
default. See alsojamaica.no_sig_quit_handler .

jamaica.jaraccelerator.debug
Boolean property used for enabling or disabling displaying debug output
concerning the steps performed for loading the compiled code of an Accel-
erated JAR. This property is set tofalse by default.

154 CHAPTER 13. THE JAMAICA VIRTUAL MACHINE COMMANDS

jamaica.jaraccelerator.load
Boolean property used for enabling or disabling loading the compiled code
of an Accelerated JAR. This property is set tofalse by default.

jamaica.java_thread_default_affinity
Default afÞnity set of normal Java threads. E.g.,7,8,9 for CPUs 7, 8 and
9. If this property is not set or has the valuedefault , the set of all CPUs
available to the VM will be used by default for normal Java threads.

jamaica.heap_so_default_affinity
Default afÞnity set of RTSJ schedulable objects (RealtimeThread and
AsyncEventHandler) running in heap memory. E.g.,0,1,2 for CPUs
0, 1 and 2. If this property is not set or has the valuedefault , the set of
all CPUs available to the VM will be used by default for these schedulable
objects.

jamaica.loadLibrary_ignore_error
This property speciÞes whether every unsuccessful attempt to load a native
library dynamically via System.loadLibrary() should be ignored by the VM
at runtime. If set to true and System.loadLibrary() fails, no UnsatiÞedLink-
Error will be thrown at runtime. The default value for this property is false.

jamaica.noheap_so_default_affinity
Default afÞnity set of RTSJ schedulable objects (RealtimeThread and
AsyncEventHandler) running in no-heap memory. E.g.,4,5,6 for
CPUs 4, 5 and 6. If this property is not set or has the valuedefault ,
the set of all CPUs available to the VM will be used by default for these
schedulable objects.

jamaica.no_sig_int_handler
If this boolean property is set, then no default handler for POSIX signal
SIGINT (Ctrl-C on most platforms) will be created. The default han-
dler that is used when this property is not set prints Ò*** break. Ó to
System.err and callsSystem.exit(130) .

jamaica.no_sig_quit_handler
If this Boolean property is set, then no default handler for POSIX sig-
nal SIGQUIT (Ctrl-\ on Unix-based platforms) will be created. The
default handler that is used when this property is not set prints the cur-
rent thread states via a call tocom.aicas.jamaica.lang.Debug.
dump.ThreadStates() . See alsojamaica.full_stack_trace_
on_sig_quit .

13.5. JAVA PROPERTIES 155

jamaica.no_sig_term_handler
If this boolean property is set, then no default handler for POSIX signal
SIGTERM (default signal sent bykill) will be created. The default han-
dler that is used when this property is not set prints Ò*** terminate. Ó
to System.err and callsSystem.exit(143) .

jamaica.out_to_file
If a Þle name is given, all output sent to System.out will be redirected to this
Þle.

jamaica.out_to_null
If set to true, all output sent to System.out will be ignored. This is useful
for graphical applications if textual output is very slow. The default value
for this property is false.

jamaica.profile_force_dump
If set to true , force a proÞle dump even if the application or VM did
not terminate normally. Note that this property only overrides the exitcode
check of the VM upon termination. It does not activate proÞling by itself.

jamaica.profile_groups = groups
To analyze the application, additional information can be written to the pro-
Þle Þle. This can be done by specifying one or more (comma separated)
groups with that property. The following groups are currently supported:
builder (default),memory, speed , all . See Chapter 5 for more de-
tails.

jamaica.profile_request_port = port
When using the proÞling version of JamaicaVM (jamaicavmp or an ap-
plication built with Ò-profile=true Ó), then this property may be set
to an integer value larger than0 to permit an external request to dump the
proÞle information at any point in time. Setting this property to a value
larger than0 also supresses dumping the proÞle to a Þle when exiting the
application. See Section 5.1.3 for more details.

jamaica.processing_group_default_affinity
Default afÞnity set for RTSJ processing groups (classProcessingGroup-
Parameters). E.g.,10,11 for CPUs 10 and 11. If this property is not
set or has the valuedefault , the set of all CPUs available to the VM will
be used.

jamaica.reference_handler.pri = n
This property speciÞes the Java priority to be used for the Reference Han-
dler thread. After the garbage collector has detected that an instance of
SoftReference , WeakReference , or PhantomReference (pack-
agejava.lang.ref) is eligible for being cleared and equeued, this thread

156 CHAPTER 13. THE JAMAICA VIRTUAL MACHINE COMMANDS

will clear and enqueue the reference. It also enqueues objects that became
eligible for Þnalization (seejamaica.finalizer.pri above). If not
set the defaultjava.lang.Thread.MAX_PRIORITY (= 10) is used.

Jamaica gives this thread a higher eligibility than all other threads with the
same or a lower Java priority. Its priority micro-adjustment is+1. For more
information on eligibility, see the methodsmicroAdjustPriority of
com.aicas.jamaica.lang.Scheduler .

jamaica.reservation_thread_affinity
AfÞnity to be used for memory reservation threads. The cardinality of the
given set deÞnes the number of memory reservation threads to be used. E.g.,
12,13 to use two memory reservation threads running on CPUs 12 and 13.
If this property is not set or has the valuedefault , one reservation thread
will be created for each CPU available to normal Java threads as deÞned by
propertyjamaica.java_thread_default_affinity .

jamaica.reservation_thread_priority = n
If set to an integer value larger than or equal to0, this property instructs
the virtual machine to run the memory reservation thread at the given Java
priority. A value of0 will result at a Java priority1 with micro adjustment
-1 , i.e., the scheduler will give preference to other threads running at prior-
ity 1. By default, the priority of the reservation thread is set to0 (i.e., Java
priority 1 with micro adjustment -1). The priority may be followed by a+
or - character to select priority micro-adjustment+1 or -1 , respectively.
Setting this property, e.g., to10+ will run the memory reservation thread
at a priority higher than all normal Java threads, but lower than all RTSJ
threads. See Section 7.1.5 for more details.

jamaica.scheduler_events_port
This property deÞnes the port where JamaicaTrace can connect to receive
scheduler event notiÞcations.

jamaica.scheduler_events_port_blocking
This property deÞnes the port where JamaicaTrace can connect to receive
scheduler event notiÞcations. The Jamaica runtime system stops before en-
tering the main method and waits for JamaicaTrace to connect.

jamaica.scheduler_events_recorder_affinity
AfÞnity of the VM thread that records scheduler events for JamaicaTrace.
Use this property to restrict on which CPUs this thread may run. By de-
fault, the thread may run on any of the CPUs available to the VM. See also
Chapter 17.

13.5. JAVA PROPERTIES 157

jamaica.softref.minfree
Minimum percentage of free memory for soft references to survive a GC
cycle. If the amount of free memory drops below this threshold, soft refer-
ences may be cleared. In JamaicaVM, the Þnalizer thread is responsible for
clearing soft references. The default value for this property is 10%.

jamaica.x11.display
This property deÞnes the X11 display to use for X11 graphics. This property
takes precedence over a display set via the environment variable DISPLAY.

jamaica.xprof = n
If set to an integer value larger than0 and less or equal to1000 , this
property enables thejamaicavm Õs option-Xprof . If set, the propertyÕs
value speciÞes the number of proÞling samples to be taken per second, e.g.,
-Djamaica.xprof=100 causes the proÞling to make 100 samples per
second. See Section 13.1.2 for more details.

java.home = dir
The home of the Java runtime environment. When Java standard classes
need to locate their associated resources Ñ for example, time zone infor-
mation Ñ the folderdir/lib is searched. If the directory exists and the
resource is found, it is taken from there, otherwise the resource built into
the executable is used.

The main use of this property is to override resources built into a VM ex-
ecutable. If the property is not set, it is computed based on the location
of the VM or application executable. If the executableÕs parent folder is
bin the property is set to the parent of thebin folder. Otherwise, or if the
parent directory of the executable cannot be determined (lacking operating
system functionality) the value of this property and derived properties such
as the bootclasspath may be undeÞned. It might then be necessary to set this
property and the bootclasspath explicitly on the command line through the
VM options-D and-Xbootclasspath . Note that setting this property
on the command line does not affect the bootclasspath, so it must be set as
well.

13.5.2 PredeÞned Properties

The JamaicaVM deÞnes a set of additional properties that contain information
speciÞc to Jamaica:

jamaica.boot.class.path
The boot class path used by JamaicaVM. This is not set when a stand-alone
application has been built using the Builder (see Chapter 14).

158 CHAPTER 13. THE JAMAICA VIRTUAL MACHINE COMMANDS

jamaica.buildnumber
The build number of the JamaicaVM.

jamaica.byte_order
One ofBIG_ENDIAN or LITTLE_ENDIAN depending on the endianness
of the target system.

jamaica.heapSizeFromEnv
If the initial heap size may be set via an environment variable, this is set to
the name of this environment variable.

jamaica.immortalMemorySize
The size of the memory available for immortal memory.

jamaica.maxNumThreadsFromEnv
If the maximum number of threads may be set via an environment variable,
this is set to the name of this environment variable.

jamaica.numThreadsFromEnv
If the initial number of threads may be set via an environment variable, this
is set to the name of this environment variable.

jamaica.release
The release number of the JamaicaVM.

jamaica.scopedMemorySize
The size of the memory available for scoped memory.

jamaica.version
The version number of the JamaicaVM.

jamaica.word_size
One of32 or 64 depending on the word size of the target system.

sun.arch.data.model
One of32 or 64 depending on the word size of the target system.

13.6 Exitcodes

Tab. 13.1 lists the exit codes of the Jamaica VMs. Standard exit codes are exit
codes of the application program. Error exit codes indicate an error such as insuf-
Þcient memory. If you get an exit code of an internal error please contact aicas
support with a full description of the runtime condition or, if available, an example
program for which the error occurred.

13.6. EXITCODES 159

Standard exit codes
0 Normal termination
1 Exception or error in Java program

2..63 Application speciÞc exit code fromSystem.exit()
Error codes

64 JamaicaVM failure
65 VM not initialized
66 InsufÞcient memory
67 Stack overßow
68 Initialization error
69 Setup failure
70 Clean-up failure
71 Invalid command line arguments
72 No main class
73 Exec() failure

Internal errors
100 Serious error:HALTcalled
101 Internal error
102 Internal test error
103 Function or feature not implemented
104 Exit by signal
105 Unreachable code executed
130 POSIX signal SigInt
143 POSIX signal SigTerm
255 Unexpected termination

Table 13.1: Exitcodes of the Jamaica VMs

160 CHAPTER 13. THE JAMAICA VIRTUAL MACHINE COMMANDS

Chapter 14

The Jamaica Builder

Traditionally, Java applications are stored in a set of Java class Þles. To run an
application, these Þles are loaded by a virtual machine prior to their execution.
This method of execution emphasizes the dynamic nature of Java applications
and allows easy replacement or addition of classes to an existing system.

However, in the context of embedded systems, this approach has several dis-
advantages. An embedded system might not provide the necessary Þle system
device and Þle system services. Instead, it is preferable to have all Þles relevant
for an application in a single executable Þle, which may be stored in read only
memory (ROM) within an embedded system.

The Builder provides a way to create a single application out of a set of class
Þles and the Jamaica virtual machine.

14.1 How the Builder tool works

Fig. 14.1 illustrates the process of building a Java application and the JamaicaVM
into a single executable Þle. The Builder takes a set of Java class Þles as input
and by default produces a portable C source Þle which is compiled with a native
C compiler to create an object Þle for the target architecture. The build object Þle
is then linked with the Þles of the JamaicaVM to create a single executable Þle
that contains all the methods and data necessary to execute the Java program.

14.2 Builder Usage

The Builder is a command-line tool. It is namedjamaicabuilder . A variety
of arguments control the work of the Builder tool. The command line syntax is as
follows:

161

162 CHAPTER 14. THE JAMAICA BUILDER

object file

jamaicabuilder C compiler

*.class

object file
object file

linkerexecutable

profiling data

C source file

Figure 14.1: The Builder tool

jamaicabuilder [options] [class]

The Builder accepts numerous options for conÞguring and Þne-tuning the created
executable. The class argument identiÞes the main class. It is required unless the
main class can be inferred otherwise Ñ for example, from the manifest of a jar
Þle.

The options may be given directly to the Builder via the command line, or
by using conÞguration Þles.1 Options given at the command line take priority.
Options not speciÞed at the command line are read from conÞguration Þles in the
following manner:

¥ The host target is read fromjamaica-home/etc/global.conf and is
used as the default target. This Þle should not contain any other information.

¥ If the Builder option-configuration is used, the remaining options
are read from the Þle speciÞed with this option.

¥ Otherwisejamaica-home/target/ platform/etc/jamaica.conf , the
target-speciÞc conÞguration Þle, is used.

1Aliases are not allowed as keys in conÞguration Þles.

14.2. BUILDER USAGE 163

The general format for an option is either- optionfor an option without argument
or - option=valuefor an option with argument. The following special syntax is
accepted:

¥ For an option that accepts a list of values, e.g.,-classpath , the list
from the conÞguration may be extended on the command line using the
following syntax:-classpath+= path. The value from the conÞguration
is prepended with the value provided on the command line.

¥ To read values for an option that accepts a list of values, e.g.,-classpath ,
from a Þle instead from the command line or conÞguration Þle, use this syn-
tax: -classpath=@ Þleor -classpath+=@ Þle. This reads the values
from Þleline by line. Empty lines and lines starting with the character Ò#Ó
(comment) are ignored.

Options that permit lists of arguments can be set by either providing a single list,
or by providing an instance of the option for each element of the list. For example,
the following are equivalent:

-classpath=system_classes:user_classes
-classpath=system_classes -classpath=user_classes

The separator for list elements depends on the argument type and is documented
for the individual options. As a general rule, paths and Þle names are separated
by the system-speciÞc separator character (colon on Unix systems, semicolon on
Windows), for identiÞers such as class names and package names the separator is
space, and for maps the separator is comma.

If an optionÕs argument contains spaces (for example, a Þle names with spaces
or an argument list) that option must be enclosed in double quotes (Ò" Ó). The
following are well-formed options:

"-includeClasses=java.lang... java.util. * "
"-classpath+=system_classes:installation directory"

Options that permit a list of mappings as their arguments require one equals sign
to start the arguments list and another equals for each mapping in the list.

-priMap=1=5,2=7,3=9

Default values for many options are target speciÞc. The actual settings may
be obtained by invoking the Builder with-help . In order to Þnd out the settings
for a target other than the host platform, include-target= platform.

The Builder stores intermediate Þles, in particular generated C and object Þles,
in a temporary folder in the current working directory. For concurrent runs of the
Builder, in order to avoid conßicts, the Builder must be instructed to use distinct
temporary directories. In this case, please use the Builder option-tmpdir to set
specifc directories.

164 CHAPTER 14. THE JAMAICA BUILDER

14.2.1 General

The following are general options which provide information about the Builder
itself or enable the use of script Þles that specifying further options.

Option -help (-h, -?)

Thehelp option displays the Builder usage and a short description of all possible
standard command line options.

Option -Xhelp

TheXhelp option displays the Builder usage and a short description of all pos-
sible extended command line options. Extended command line options are not
needed for normal control of the the Builder command. They are used to con-
Þgure tools and options, and to provide tools required internally for Jamaica VM
development.

Option -agentlib= lib=option=val{ , option=val}

Theagentlib option loads and runs the dynamic JVMTI agent librarylibname
with the given options.

Jamaica comes with a statically built in debugging agent that can be selected
by settingBuiltInAgent as name. The transport layer must be sockets. A
typical example would be:-agentlib=BuiltInAgent=transport=dt_
socket,server=y,suspend=y,address=8000 . This starts the appli-
cation and waits for an incoming connection of a debugger on port 8000. The
BuiltInAgent is currently the only agent supported by JamaicaVM.

Option -version

Print the version of Jamaica Builder and exit.

Option -verbose= n

Theverbose option sets the verbosity level for the Builder. At level 1, which
is the default, warnings are printed. At level 2 additional information on the build
process that might be relevant to users is shown. At level 0 all warnings are
suppressed. Levels above 2 are reserved.

14.2. BUILDER USAGE 165

Option -jobs= n

The jobs option sets the number of parallel jobs for the Builder. Parts of the
Builder work will be performed in parallel if this option is set to a value larger
than one. Parallel execution may speed up the Builder.

Option -showSettings

Print the Builder settings. To make these settings the default, replacejamaica-
home/target/ platform/etc/jamaica.conf by the output.

Option -saveSettings= Þle

If the saveSettings option is used, the Builder options currently in effect are
written to the provided Þle. To make these settings the default, replacejamaica-
home/target/ platform/etc/jamaica.conf by the output.

Option -configuration= Þle

Theconfiguration option speciÞes a Þle to read the set of options used by
the Builder. The format must be identical to the one in the default conÞguration
Þle (jamaica-home/target/ platform/etc/jamaica.conf). When set, the
Þlejamaica-home/target/ platform/etc/jamaica.conf is ignored.

14.2.2 Classes, Þles and paths

These options allow to specify classes and paths to be used by the Builder.

Option -classpath (-cp)[+]= classpath

Theclasspath option speciÞes the paths that are used to search for class Þles.
A list of paths separated by the path separator char (Ô:Õ on Unix systems, Ô;Õ on
Windows) can be speciÞed. This list will be traversed from left to right when the
Builder tries to load a class.

Option -enableassertions (-ea)

Theenableassertions option enables assertions for all classes. Assertions
are disabled by default.

166 CHAPTER 14. THE JAMAICA BUILDER

Option -main= class

The main option speciÞes the main class of the application that is to be built.
This class must contain a static methodvoid main(String[] args) . This
method is the main entry point of the Java application.

If the main option is not speciÞed, the Þrst class of the classes list that is
provided to the Builder is used as the main class.

Option -jar= Þle

The jar option speciÞes a JAR Þle with an application that is to be built. This
JAR Þle must contain aMANIFESTwith a Main-Class entry.

Option -includeClasses[+]=" class| package{ class| package} "

The includeClasses option forces the inclusion of the listed classes and
packages into the created application. The listed classes with all their methods
and Þelds will be included. This is useful or even necessary if you use reßection
with these classes.

Arguments for this option can be: a class name to include the class with all
methods and Þelds, a package name followed by an asterisk to include all classes
in the package or a package name followed by Ò... Ó to include all classes in the
package and in all sub-packages of this package.

Example:

-includeClasses="java.beans.XMLEncoder java.util. *
java.lang..."

includes the classjava.beans.XMLEncoder , all classes injava.util and
all classes in the packagejava.lang and in all sub-packages ofjava.lang
such asjava.lang.ref .

! The includeClasses option affects only the listed classes themselves.
Subclasses of these classes remain subject to smart linking.

! From a Unix shell, when specifying an inner class, the dollar sign must be
preceded by backslash. Otherwise the shell interprets the class name as an

environment variable.

14.2. BUILDER USAGE 167

Option -excludeClasses[+]=" class| package{ class| package} "

TheexcludeClasses option forces exclusion of the listed classes and pack-
ages from the created application. The listed classes with all their methods and
Þelds will be excluded, even if they were previously included usingincludeJAR
or includeClasses . This is useful if you want to load classes at runtime.

Arguments for this option can be: a class name to exclude the class with all
methods and Þelds, a package name followed by an asterisk to exclude all classes
in the package or a package name followed by Ò... Ó to exclude all classes in the
package and in all sub-packages of this package.

Example:

-excludeClasses="com.example1.UnwantedClass
com.example2. * com.example3..."

excludes the classcom.example1.UnwantedClass , all classes incom.
example2 and all classes in the packagecom.example3 and in all sub-packages
of com.example3 such ascom.example3.subpackage .

! TheexcludeClasses option affects only the listed classes themselves.

Option -includeJAR[+]= Þle{ : Þle}

The includeJAR option forces the inclusion of all classes and all resources
contained in the speciÞed Þles. Any archive listed here must be in the classpath
or in the bootclasspath. If a class needs to be included, the implementation in
the includeJAR Þle will not necessarily be used. Instead, the Þrst implemen-
tation of this class which is found in the classpath will be used. This is to ensure
the application behaves in the same way as it would if it were called with the
jamaicavm or java command.

Despite its name, the option accepts directories as well. Multiple archives (or
directories) should be separated by the system speciÞc path separator: colon Ò: Ó
on Unix systems and semicolon Ò; Ó on Windows.

Option -excludeJAR[+]= Þle{ : Þle}

TheexcludeJAR option forces the exclusion of all classes and resources con-
tained in the speciÞed Þles. Any class and resource found will be excluded from
the created application. Use this option to load an entire archive at runtime.

Despite its name, the option accepts directories as well. Multiple archives (or
directories) should be separated by the system speciÞc path separator: colon Ò: Ó
on Unix systems and semicolon Ò; Ó on Windows.

168 CHAPTER 14. THE JAMAICA BUILDER

Option -destination (-o)= name

Thedestination option speciÞes the name of the destination executable to be
generated by the Builder. If this option is not present, the name of the destination
executable is the simple name of the main class.

The destination name can be a path into a different directory. E.g.,

-destination myproject/bin/xyz

may be used to save the created executablexyz in myproject/bin .

Option -tmpdir= name

The tmpdir option may be used to specify the name of the directory used for
temporary Þles generated by the Builder (such as C source and object Þles for
compiled methods).

Option -resource[+]= name{ : name}

This option causes the inclusion of additional resources in the created application.
A resource is additional data (such as image Þles, sound Þles etc.) that can be
accessed by the Java application. Within the Java application, the resource data
can be accessed using the resource name speciÞed as an argument toresource .
To load the resource, a call toClass.getResourceAsStream(name) can
be used.

If a resource is supposed to be in a certain package, the resource name must
include the package name. Any Ô.Õ must be replaced by Ô/Õ. E.g., the resourceABC
from packagefoo.bar can be added using-resource=foo/bar/ABC .

The Builder uses the class path provided through the optionclasspath
to search for resources. Any path containing resources that are provided using
resource must therefore be added to the path provided toclasspath .

This option expects a list of resource Þles that are separated using the platform
dependent path separator character (e.g., Ô:Õ).

Option -setFonts=" font{ font} "

The setFonts option can be used to choose the set of TrueType fonts to be
included in the target application. The font familiessans , serif , mono are
supported. The argumentsall and none cause inclusion of all or no fonts,
respectively. The default is platform dependent and may be obtained by invoking
the Builder with-help . To use TrueType fonts, a graphics system must be set.

14.2. BUILDER USAGE 169

Option -setGraphics= system

The setGraphics option can be used to set the graphics system used by the
target application. If no graphics is required, it can be set tonone .

To get a list of all possible values, invoke the Builder with-help .

Option -setLocalCryptoPolicy= policy

The setLocalCryptoPolicy option sets the local crypto policy Þle to be
used by the target application. The Þle must be present in the Jamaica installation
in the folderjamaica-home/target/ platform/lib/security/ .

For stronger encryption support, this should be set tolimited_local_
policy.jar or unlimited_local_policy.jar . Please note that the re-
quired policy Þles are not part of a standard Jamaica installation. They can be
provided on request.

Option -setLocales=" locale{ locale} "

ThesetLocales option can be used to choose the set of locales to be included
in the target application. This involves date, currency and number formats. Lo-
cales are speciÞed by a lower-case, two-letter code as deÞned by ISO-639.

Example:-setLocales="de en" will include German and English lan-
guage resources. All country information of those locales, e.g. Swiss currency,
will also be included.

To get a list of all possible values, invoke the Builder with-help .

Option -setTimeZones[+]=" timezone{ timezone} "

The setTimeZones option can be used to choose the set of time zones to be
included in the target application. By default all time zones are built in.

Examples:-setTimeZones=Europe/Berlin will include the time zone
of Berlin only,-setTimeZones=Europe will include all European time zones,
-setTimeZones="Europe/Berlin America/Detroit" includes time
zones for Berlin and Detroit.

See the folderjamaica-home/target/ platform/lib/zi for the available
time zones.

Option -setProtocols=" protocol{ protocol} "

The setProtocols option can be used to choose the set of protocols to be
included in the target application.

170 CHAPTER 14. THE JAMAICA BUILDER

Example:-setProtocols="http https" will include handlers for the
HTTP and HTTPS protocols.

To get a list of all possible values, invoke the Builder with-help .

14.2.3 ProÞling and compilation

By default, the Builder compiles all application classes and a predeÞned set of the
system classes. ProÞling and compilation options enable to Þne tune the compila-
tion process for optimal runtime performance of applications generated with the
Builder.

Option -interpret (-Xint)

Theinterpret option disables compilation of the application. This results in a
smaller application and in faster build times, but it causes a signiÞcant slow down
of the runtime performance.

If none of the optionsinterpret , compile , or useProfile is spec-
iÞed, then the default compilation will be used. The default means that a pre-
generated proÞle will be used for the system classes, and all application classes
will be compiled fully. This default usually results in good performance for small
applications, but it causes extreme code size increase for larger applications and
it results in slow execution of applications that use the system classes in a way
different than recorded in the system proÞle.

Option -compile

Thecompile option enables static compilation for the created application. All
methods of the application are compiled into native code causing a signiÞcant
speedup at runtime compared to the interpreted code that is executed by the virtual
machine. Use compilation whenever execution time is important. However, it
is often sufÞcient to compile about 10 percent of the classes, which results in
much smaller executables of comparable speed. You can achieve this by using
the optionsprofile anduseProfile instead ofcompile . For a tutorial on
proÞling see Section Performance Optimization in the user manual.

Option -profile

Theprofile option builds an application that collects information on the amount
of run time spent for the execution of different methods. This information is
dumped to a Þle after a test run of the application has been performed. Collec-
tion of proÞle information is cumulative. That is, when this Þle exists, proÞling

14.2. BUILDER USAGE 171

information is appended. The name of the Þle is derived from the name of the
executable given via thedestination option. Alternatively, it may be given
with the optionXprofileFilename .

The information collected in a proÞling run can then be used as an input for the
optionuseProfile to guide the compilation process. For a tutorial on proÞling
see Section Performance Optimization in the user manual.

Option -useProfile[+]= Þle{ : Þle}

TheuseProfile option instructs the Builder to use proÞling information col-
lected using the Builder optionprofile to restrict compilation to those methods
that were most frequently executed during the proÞling run. The percentage of
methods to be compiled is 10 by default, unlesspercentageCompiled is set
to a different value. For a tutorial on proÞling see Section Performance Optimiza-
tion in the user manual.

This option accepts plain text Þles, GZIP compressed text Þles and ZIP archives
consisting of plain text proÞle entries. All archive entries are required to be pro-
Þles.

It is possible to use this option in combination with the optionprofile .
This may be useful when the fully interpreted application is too slow to obtain a
meaningful proÞle. In such a case one may achieve sufÞcient speed up through an
initial proÞle, and use the proÞled application to obtain a more precise proÞle for
the Þnal build.

Multiple proÞles should be separated by the system speciÞc path separator:
colon Ò: Ó on Unix systems and semicolon Ò; Ó on Windows.

Option -percentageCompiled= n

Use proÞling information collected usingprofile to restrict compilation to
those methods that were most frequently executed during the proÞling run. The
percentage of methods that are to be compiled is given as an argument to the op-
tion percentageCompiled . It must be between 0 and 100. Selecting 100
causes compilation of all methods executed during the proÞling run, i.e., methods
that were not called during proÞling will not be compiled.

Option -includeInCompile[+]=" class| method{ class| method} "

The includeInCompile option forces the compilation of the listed methods
(when not excluded from the application by the smart linker or by any other
means). Either a single method, all methods with the same name or all methods
of classes or even packages can be speciÞed.

172 CHAPTER 14. THE JAMAICA BUILDER

Examples:com.user.MyClass.toString()Ljava/lang/String;
refers to the single method,com.user.MyClass.toString to all meth-
ods with this name, independent of the signature.com.user.MyClass refers
to all methods in this class,com.user. * to all classes in this package and
com.user... to all classes in this package and all subpackages.

Option -excludeFromCompile[+]=" class| method{ class| method} "

TheexcludeFromCompile option disables the compilation of the listed meth-
ods. Either a single method, all methods with the same name or all methods of
classes or even packages can be speciÞed.

Examples:com.user.MyClass.toString()Ljava/lang/String;
refers to the single method,com.user.MyClass.toString to all meth-
ods with this name, independent of the signature.com.user.MyClass refers
to all methods in this class,com.user. * to all classes in this package and
com.user... to all classes in this package and all subpackages.

Option -inline= n

When methods are compiled (via one of the optionscompile , useProfile ,
or interpret=false), this option can be used to set the level of inlining to be
used by the compiler. Inlining typically causes a signiÞcant speedup at runtime
since the overhead of performing method calls is avoided. Nevertheless, inlining
causes duplication of code and hence might increase the binary size of the appli-
cation. In systems with tight memory resources, inlining may therefore not be
acceptable

Eleven levels of inlining are supported by the Jamaica compiler ranging from
0 (no inlining) to 10 (aggressive inlining).

Option -optimize (-optimise)= type

The optimize option enables to specify optimizations for the compilation of
intermediate C code to native code in a platform independent manner, wheretype
is one ofnone , size , speed , andall . The optimization ßags only affect the
C compiler, and they are only given to it if the application is compiled without the
debug option.

Option -target= platform

Thetarget option speciÞes a target platform. For a list of all available platforms
of your Jamaica VM Distribution, useXavailableTargets .

14.2. BUILDER USAGE 173

14.2.4 Smart linking

Smart linking and compaction are techniques to reduce the code size and heap
memory required by the generated application. These techniques are controlled
by the following options.

Option -smart

If the smart option is set, which is the default, smart linking takes place at the
level of Þelds and methods. That is, unused Þelds and methods are removed from
the generated code. Otherwise smart linking may only exclude unused classes as
a whole. Settingsmart can result in smaller binary Þles, smaller memory usage
and faster code execution.

Smart linking at the level of Þelds and methods may not be used for appli-
cations that use JavaÕs reßection API (including reßection via the Java Native
Interface JNI) to load classes that are unknown at buildtime and therefore cannot
be included into the application. This is, for example, the case for classes, which
are loaded from a web server at runtime. In such situations, use-smart=false
to disable smart linking.

Classes loaded via reßection that are known at buildtime should be included
via Builder optionsincludeClasses or includeJAR . These options selec-
tively disable smart linking for the included classes.

! Failures in code execution due to smart linking at the level of Þelds and meth-
ods can be hard to detect. Consider a scenario where a methodm() of a class

A is overridden in a subclassB. If smart linking detects thatA.m() is used but
B.m() is not, then the executable will containA.m() but notB.m() . If m()
is called onB via reßection the methodA.m() will, erroneously, be executed
instead.

Option -closed

For an application that isclosed , i.e., that does not load any classes dynamically
that are not built into the application by the Builder, additional optimization may
be performed by the Builder and the static compiler. These optimizations cause
incorrect execution semantics when additional classes will be added dynamically.
Setting optionclosed to true enables such optimizations, a signiÞcant enhance-
ment of the performance of compiled code is usually the result.

The additional optimization performed whenclosed is set include static
binding of virtual method calls for methods that are not redeÞned by any of the
classes built into the application. The overhead of dynamic binding is removed

174 CHAPTER 14. THE JAMAICA BUILDER

and even inlining of a virtual method call becomes possible, which often results
in even further possibilities for optimizations.

Note that care is needed for an open application that uses dynamic loading
even whenclosed is not set. For an open application, it has to be ensured that all
classes that should be available for dynamically loaded code need to be included
fully using optionincludeClasses or includeJAR . Otherwise, the Builder
may omit these classes (if they are not referenced by the built-in application), or
it may omit parts of these classes (certain methods or Þelds) that happen not to be
used by the built-in application.

Option -showIncludedFeatures

TheshowIncludedFeatures option causes the Builder to display the list of
classes, methods, Þelds and resources that were included in the target applica-
tion. This option can help identify the features that were removed from the target
application through mechanisms such as smart linking.

The output of this option consists of lines starting with the stringINCLUDED
CLASS, INCLUDED METHOD, INCLUDED FIELDor INCLUDED RESOURCE
followed by the name of the class, method, Þeld or resource. For methods, the sig-
nature is shown as well.

Option -showExcludedFeatures

TheshowExcludedFeatures option causes the Builder to display the list of
methods and Þelds that were removed from the target application through mecha-
nisms such as smart linking. Only methods and Þelds from classes present in the
built application will be displayed. Used in conjunction withincludeClasses ,
excludeClasses , includeJAR and excludeJAR this can help identify
which classes were included only partially.

The output of this option consists of lines starting with the stringEXCLUDED
METHODor EXCLUDED FIELDfollowed by the name and signature of a method
or Þeld, respectively.

Option -showNumberOfBlocks

TheshowNumberOfBlocks option causes the Builder to display a table with
the number of blocks needed by all the classes included in the target application.
This option can help to calculate the worst case allocation time.

The output of this option consists of a two columns table. The Þrst column is
namedClass: and the second is namedBlocks: . Next lines contain the name
of each class and the corresponding number of blocks.

14.2. BUILDER USAGE 175

14.2.5 Heap and stack conÞguration

ConÞguring heap and stack memory has an important impact not only on the
amount of memory required by the application but on the runtime performance
and the realtime characteristics of the code as well. The Jamaica Builder therefore
provides a number of options to conÞgure heap memory and stack available to
threads.

Option -heapSize= n[K|M]

The heapSize option sets the heap size to the speciÞed size given in bytes.
The heap is allocated at startup of the application. It is used for static global
information (such as the internal state of the Jamaica Virtual Machine) and for the
garbage collected Java heap.

The heap size may be succeeded by the letter ÔKÕ or ÔMÕ to specify a size in
KBytes (1024 bytes) or MBytes (1048576 bytes). The minimum required heap
size for a given application can be determined using optionanalyze .

Option -maxHeapSize= n[K|M]

The maxHeapSize option sets the maximum heap size to the speciÞed size
given in bytes. If themaximum heap size is larger than the heap size, the heap
size will be increased dynamically on demand.

The maximum heap size may be succeeded by the letter ÔKÕ or ÔMÕ to specify
a size in KBytes (1024 bytes) or MBytes (1048576 bytes). The minimum value is
0 (for no dynamic heap size increase).

Option -heapSizeIncrement= n[K|M]

The heapSizeIncrement option speciÞes the steps by which the heap size
can be increased when the maximum heap size is larger than the heap size.

The maximum heap size may be succeeded by the letter ÔKÕ or ÔMÕ to specify
a size in KBytes (1024 bytes) or MBytes (1048576 bytes). The minimum value is
64k.

Option -javaStackSize= n[K|M]

ThejavaStackSize option sets the stack size to be used for the Java runtime
stacks of all Java threads in the built application. Each Java thread has its own
stack which is allocated from the global Java heap. The stack size consequently
has an important impact on the heap memory required by an application. A small
stack size is recommended for systems with tight memory constraints. If the stack

176 CHAPTER 14. THE JAMAICA BUILDER

size is too small for the application to run, a stack overßow will occur and a
corresponding error reported.

The stack size may be followed by the letter ÔKÕ or ÔMÕ to specify a size in
KBytes (1024 bytes) or MBytes (1048576 bytes). The minimum stack size is 1k.

Option -nativeStackSize= n[K|M]

The nativeStackSize option sets the stack size to be used for the native
runtime stacks of all Java threads in the built application. Each Java thread has
its own native stack. Depending on the target system, the stack is either allocated
and managed by the underlying operating system, as in many Unix systems, or
allocated from the global heap, as in some small embedded systems. When native
stacks are allocated from the global heap, stack size consequently has an important
impact on the heap memory required by an application. A small stack size is
recommended for systems with tight memory constraints. If the selected stack
size is too small, an error may not be reported because the stack-usage of native
code may cause a critical failure.

For some target systems, like many Unix systems, a stack size of 0 can be
selected, meaning ÒunlimitedÓ. In that case the stack size is increased dynamically
as needed.

The stack size may be followed by the letter ÔKÕ or ÔMÕ to specify a size in
KBytes (1024 bytes) or MBytes (1048576 bytes). The minimum stack size is 1k
if not set to ÔunlimitedÕ (value of 0).

Option -heapSizeFromEnv= var

The heapSizeFromEnv option enables the application to read its heap size
from the speciÞed environment variable. If this variable is not set, the heap size
speciÞed using-heapSize n will be used.

Option -maxHeapSizeFromEnv= var

The maxHeapSizeFromEnv option enables the application to read its maxi-
mum heap size from the speciÞed environment variable. If this variable is not set,
the maximum heap size speciÞed using-maxHeapSize n will be used.

Option -heapSizeIncrementFromEnv= var

TheheapSizeIncrementFromEnv option enables the application to read its
heap size increment from the speciÞed environment variable within. If this vari-
able is not set, the heap size increment speciÞed using-heapSizeIncrement
n will be used.

14.2. BUILDER USAGE 177

Option -javaStackSizeFromEnv= var

ThejavaStackSizeFromEnv option enables the application to read its Java
stack size from the speciÞed environment variable. If this variable is not set, the
stack size speciÞed using-javaStackSize n will be used.

Option -nativeStackSizeFromEnv= var

The nativeStackSizeFromEnv option enables the application to read its
native stack size from the speciÞed environment variable. If this variable is not
set, the stack size speciÞed using-nativeStackSize n will be used.

14.2.6 Threads, priorities and scheduling

ConÞguring threads has an important impact not only on the runtime performance
and realtime characteristics of the code but also on the memory required by the
application. The Jamaica Builder provides a range of options for conÞguring the
number of threads available to an application, priorities and scheduling policies.

Option -numThreads= n

ThenumThreads option speciÞes the initial number of Java threads supported
by the destination application. These threads and their runtime stacks are gener-
ated at startup of the application. A large number of threads consequently may
require a signiÞcant amount of memory.

The minimum number of threads is two, one thread for the main Java thread
and one thread for the Þnalizer thread.

Option -maxNumThreads= n

The maxNumThreads option speciÞes the maximum number of Java threads
supported by the application. This also includes Java threads used to attach native
threads to the VM. If this maximum number of threads is larger than the sum
of the values speciÞed fornumThreads andnumJniAttachableThreads ,
threads will be added dynamically if needed. If the maximum is lower than the
sum ofnumThreads andnumJniAttachableThreads , the maximum is
raised to this sum.

Adding new threads requires unfragmented heap memory. It is strongly rec-
ommended to usemaxNumThreads only in conjunction withmaxHeapSize
set to a value larger thanheapSize . This will permit the VM to increase the
heap when memory is fragmented.

The absolute maximum number of threads for the Jamaica VM is 511.

178 CHAPTER 14. THE JAMAICA BUILDER

! If the number of Java threads plus the number of attached native threads has
reachedmaxNumThreads , both starting further Java threads and attaching

additional native threads will fail.

Option -numJniAttachableThreads= n

ThenumJniAttachableThreads speciÞes the initial number of Java thread
structures that will be allocated and reserved for calls to the JNI Invocation API
functions. These are the functionsJNI_AttachCurrentThread andJNI_
AttachCurrentThreadAsDaemon . These threads will be allocated on VM
startup, such that no additional allocation is required on a later call toJNI_
AttachCurrentThread or JNI_AttachCurrentThreadAsDaemon .

Even if this option is set to zero, it still will be possible to use these functions.
However, then these threads will be allocated dynamically when needed.

Since non-fragmented memory is required for the allocation of these threads,
a later allocation may require heap expansion or may fail due to fragmented mem-
ory. It is therefore recommended to pre-allocate these threads.

The number of JNI attachable threads that will be required is the number of
threads that will be attached simultaneously. Any thread structure that will be
detached viaJNI_DetachCurrentThread will become available again and
can be used by a different thread that callsJNI_AttachCurrentThread or
JNI_AttachCurrentThreadAsDaemon .

Option -threadPreemption= n

Compiled code contains special instructions that permit thread preemption. These
instructions have to be executed often enough to allow a thread preemption time
that is sufÞcient for the destination application. As the instructions cause an over-
head in code size and runtime performance, one would want to generate this code
as rarely as possible.

The threadPreemption option enables setting of the maximum number
of intermediate instructions that are permitted between the execution of thread
preemption code. This directly affects the maximum thread preemption time of
the application. One intermediate instruction typically corresponds to 1-2 machine
instructions. There are some intermediate instructions (calls, array accesses) that
can be more expensive (20-50 machine instructions).

The thread preemption must be at least 10 intermediate instructions.

14.2. BUILDER USAGE 179

Option -timeSlice= n

For thread instances ofjava.lang.Thread of equal priority, round robin
scheduling is used when several threads are running simultaneously. Using the
timeSlice option, the maximum size of such a time slice can be given in
nanoseconds. A special synchronization thread is used that waits for the length of
a time slice and permits thread switching after every slice. Time slicing does not
affect real-time threads.

If no round robin scheduling is needed for threads of equal priority, the size
of the time slice may be set to zero. In this case, the synchronization thread is not
required, so fewer system resources are needed.

Option -timeSliceFromEnv= var

ThetimeSliceFromEnv option creates an application that reads the time slice
settings for instances ofjava.lang.Thread from the environment variable
var. If this variable is not set, the mapping speciÞed using-timeSlice n will
be used.

Option -numThreadsFromEnv= var

ThenumThreadsFromEnv option enables the application to read the number
of threads from the speciÞed environment variable. If this variable is not set, the
number speciÞed using-numThreads n will be used.

Option -maxNumThreadsFromEnv= var

ThemaxNumThreadsFromEnv option enables the application to read the max-
imum number of threads from the environment variable speciÞed within. If this
variable is not set, the number speciÞed using-maxNumThreads n will be
used.

Option -numJniAttachableThreadsFromEnv= var

The numJniAttachableThreadsFromEnv option enables the application
to read its initial number of JNI attachable threads from the environment variable
speciÞed within. If this variable is not set, the value speciÞed using the option
-numJniAttachableThreads n will be used.

180 CHAPTER 14. THE JAMAICA BUILDER

Option -priMap[+]= jp=sp[/ policy] { , jp=sp[/ policy] }

ThepriMap option deÞnes the mapping of priority levels of Java threads to native
priorities of system threads and their scheduling policy. This map is required since
JamaicaVM implements Java threads as operating system threads.

The Java thread priorities are integer values in the range 0 through 127, where
0 corresponds to the lowest priority and 127 to the highest priority. Not all Java
thread priorities up to this maximum must be mapped to system priorities, but the
range must be contiguous from 1 to the highest priority in the mapping. Map-
pings for the priority levels ofjava.lang.Thread (ranging from 1 through
10) and the priority levels ofjavax.realtime.RealtimeThread (ranging
from 11 through 38) must be provided. Unless time slicing is disabled, the prior-
ity of the synchronization thread must also be provided with the keyword ÕsyncÕ.
Its purpose is to provide round robin scheduling and to prevent starvation of low
priority thread for instances ofjava.lang.Thread . The Java priority level
0 is optional, it may be used to provide a speciÞc native priority for Java prior-
ity level 1 with micro-adjustment -1 (see classcom.aicas.jamaica.lang.
Scheduler). This is also the default priority of the memory reservation thread.

Each Java priority level from 1 up to the maximal used priority must be mapped
to a system priority, and the mapping must be monotonic. That is, a higher Java
priority level may not be mapped to a lower system priority. The only exception
is the priority of the synchronization thread, which may be mapped to any system
priority. To simplify the notation, a range of priority levels or system priorities
can be described using the notationfrom.. to.

In addition to being mapped to native priorities, scheduling policies could also
be chosen. For example,1..10=5/OTHER,11..38=7..34/FIFO,sync=6
would schedule Java priorities 1 to 10 using theOTHERscheduler, while priorities
11 to 38 would be scheduled using theFIFO scheduler. If no scheduling policy
is chosen, thenOTHERwould be used by default. The availability of particular
scheduling policies is system dependent. Running JamaicaVM with the-help
option will list available scheduling policies.

Example 1: -priMap=1..10=5,sync=6,11..38=7..34 will cause
all normal threads to use system priority 5, while the real-time threads will be
mapped to priorities 7 through 34. The synchronization thread will use priority 6.
There will be 28 priority levels for instances ofRealtimeThread , and the syn-
chronization thread will run at a system priority lower than the real-time threads.

Example 2:-priMap=1..50=100..2,sync=1 on a system where higher
priorities are denoted by smaller numbers will cause the use of system priorities
100, 98, 96 through 2 for priority levels 1 through 50. The synchronization thread
will use priority 1. There will be 40 priority levels available for instances of
RealtimeThread .

14.2. BUILDER USAGE 181

Example 3:-priMap=1..10=5/RR,11..38=6/FIFO,sync=6/OTHER
would schedule Java priorities 1 to 10 using theRRscheduler, 11 to 38 using the
FIFO scheduler, and priority 39 using theOTHERscheduler.

The default of this option is system speciÞc. It maps at least the Java priority
levels required forjava.lang.Thread andRealtimeThread , and for the
synchronization thread to suitable system priorities.

Note: If round robin scheduling is not needed for instances ofjava.lang.
Thread and the timeslice is set to zero (-timeSlice=0), the synchronization
thread is not required and no system priority needs to be given for it.

Option -priMapFromEnv= var

ThepriMapFromEnv option creates an application that reads the priority map-
ping of Java threads to native threads from the environment variablevar. If this
variable is not set, the mapping speciÞed using-priMap jp=sp{ , jp=sp} will
be used.

Option -schedulingPolicy= schedulingPolicy

TheschedulingPolicy option sets the thread scheduling policy. Examples
includeOTHER, FIFO , or RR. If a scheduling policy is not explicitly speciÞed in
the priority map, this option deÞnes the default one.

Option -schedulingPolicyFromEnv= var

TheschedulingPolicy option enables the application to read its scheduling
policy from the speciÞed environment variable. If this variable is not set, the
scheduling policy speciÞed using-schedulingPolicy n will be used.

14.2.7 Parallel Execution

The parallel version of JamaicaVM can execute several threads, including the
garbage collection, in parallel and therefore improves the runtime performance
when using multicore systems. Notice that you need to have an extra license to
use the parallel version of JamaicaVM.

Option -parallel

Theparallel option instructs the Builder to create an application that can make
use of several processors executing Java code in parallel.

182 CHAPTER 14. THE JAMAICA BUILDER

14.2.8 GC conÞguration

The following options provide ways to analyze the applicationÕs memory demand
and to use this information to conÞgure the garbage collector for the desired real-
time behavior.

Option -analyze (-analyse)= tolerance

Theanalyze option enables memory analyze mode with tolerance given in per-
cent. In memory analyze mode, the memory required by the application during
execution is determined. The result is an upper bound for the actual memory re-
quired during a test run of the application. This bound is at most the speciÞed
tolerance larger than the actual amount of memory used during runtime.

The result of a test run of an application built usinganalyze can then be
used to estimate and conÞgure the heap size of an application such that the gar-
bage collection work that is performed on an allocation never exceeds the amount
allowed to ensure timely execution of the applicationÕs realtime code.

Usinganalyze can cause a signiÞcant slowdown of the application. The ap-
plication slows down as the tolerance is reduced, i.e., the lower the value speciÞed
as an argument toanalyze , the slower the application will run.

In order to conÞgure the application heap, a version of the application must
be built using the optionanalyze and, in addition, the exact list of arguments
used for the Þnal version. The heap size determined in a test run can then be
used to build a Þnal version using the preferred heap size with desired garbage
collection overhead. To reiterate, the argument list provided to the Builder for this
Þnal version must be the same as the argument list for the version used to analyze
the memory requirements. Only theheapSize option of the Þnal version must
be set accordingly and the Þnal version must be built without settinganalyze .

Option -analyzeFromEnv (-analyseFromEnv)= var

The analyzeFromEnv option enables the application to read the amount of
analyze accuracy of the garbage collector from the environment variable speciÞed
within. If this variable is not set, the value speciÞed using-analyze n will be
used. Setting the environment variable to Ô0Õ will disable the analysis and cause
the garbage collector to use dynamic garbage collection mode.

Option -constGCwork= n

The constGCwork option runs the garbage collector in static mode. In static
mode, for every unit of allocation, a constant number of units of garbage collection
work is performed. This results in a lower worst case execution time for the

14.2. BUILDER USAGE 183

garbage collection work and allocation and more predictable behavior, compared
with dynamic mode, because the amount of garbage collection work is the same
for any allocation. However, static mode causes higher average garbage collection
overhead compared to dynamic mode.

The value speciÞed is the number for units of garbage collection work to be
performed for a unit of memory that is allocated. This value can be determined
using a test run built with -analyze set.

A value of Ô0Õ for this option chooses the dynamic GC work determination
that is the default for Jamaica VM.

A value of Ô-1Õ enables a stop-the-world GC, see optionstopTheWorldGC
for more information.

A value of Ô-2Õ enables an atomic GC, see optionatomicGC for more infor-
mation.

The default setting chooses dynamic GC: the amount of garbage collection
work on an allocation is then determined dynamically depending on the amount
of free memory.

Option -constGCworkFromEnv= var

TheconstGCworkFromEnv option enables the application to read the amount
of static garbage collection work on an allocation from the environment variable
speciÞed within. If this variable is not set, the value speciÞed with the option
-constGCwork will be used.

Option -stopTheWorldGC

ThestopTheWorlsGC option enables blocking GC, i.e., no GC activity is per-
formed until the heap is fully Þlled. Only then, a complete GC cycle is performed
at once, causing a potentially long pause for the application. During this GC cy-
cle, any thread that performs heap memory allocation will be blocked, but threads
that do not perform heap allocation may continue to run.

If stop-the-world GC is enabled via this option, evenRealtimeThreads
and NoHeapRealtimeThreads may be blocked by GC activity if they al-
locate heap memory.RealtimeThreads andNoHeapRealtimeThreads
that run inScopedMemory or ImmortalMemory will not be stopped by the
GC

A stop-the-world GC enables a higher average throughput compared to incre-
mental GC, but at the cost of losing realtime behaviour for all threads that perform
heap allocation.

184 CHAPTER 14. THE JAMAICA BUILDER

Option -atomicGC

TheatomicGC option enables atomic GC, i.e., no GC activity is performed until
the heap is fully Þlled. Only then, a complete GC cycle is performed at once,
causing a potentially long pause for the application. During this GC cycle, all
Java threads will be blocked.

When this option is set, evenNoHeapRealtimeThreads will be stopped
by GC work, so all realtime guarantees will be lost!

This mode permits more efÞcient code compared tostopTheWorldGC since
it disables certain tracking code (write barriers) that is required for the incremental
GC.

Option -reservedMemory= percentage

Jamaica VMÕs realtime garbage collector performs GC work at allocation time.
This may reduce the responsiveness of applications that have long pause times
with little or no activity and are preempted by sudden activities that require a
burst of memory allocation. The responsiveness of such burst allocations can be
improved signiÞcantly via reserved memory.

If the reservedMemory option is set to a value larger 0, then a low priority
thread will be created that continuously tries to reserve memory up to the percent-
age of the total heap size that is selected via this option. Any thread that performs
memory allocation will then use this reserved memory to satisfy its allocations
whenever there is reserved memory available. For these allocations of reserved
memory, no GC work needs to be performed since the low priority reservation
thread has done this work already. Only when the reserved memory is exhausted
will GC work to allow further allocations be performed.

The overall effect is that a burst of allocations up to the amount of reserved
memory followed by a pause in activity that was long enough during this alloca-
tion will require no GC work to perform the allocation. However, any thread that
performs more allocation than the amount of memory that is currently reserved
will fall back to the performing GC work at allocation time.

The disadvantage of using reserved memory is that the worst-case GC work
that is required per unit of allocation increases as the size of reserved memory is
increased. For a detailed output of the effect of using reserved memory, run the
application with option-analyze set together with the desired value of reserved
memory.

Option -reservedMemoryFromEnv= var

ThereservedMemoryFromEnv option enables the application to read the per-
centage of reserved memory from the environment variable speciÞed within. If

14.2. BUILDER USAGE 185

this variable is not set, the value speciÞed using-reservedMemory n will be
used. See optionreservedMemory for more information on the effect of this
option.

14.2.9 RTSJ settings

The following options set values that are relevant for the Real-Time SpeciÞca-
tion for Java extensions through classes javax.realtime.* that are provided by Ja-
maicaVM.

Option -immortalMemorySize= n[K|M]

TheimmortalMemorySize option sets the size of the immortal memory area,
in bytes. The immortal memory can be accessed through the classjavax.
realtime.ImmortalMemory .

The immortal memory area is guaranteed never to be freed by the garbage
collector. Objects allocated in this area will survive the whole application run.

Option -immortalMemorySizeFromEnv= var

The immortalMemorySizeFromEnv option enables the application to read
its immortal memory size from the environment variable speciÞed using this op-
tion. If this variable is not set, the immortal memory size speciÞed using the
option-immortalMemorySize will be used.

Option -scopedMemorySize= n[K|M]

The scopedMemorySize option sets the size of the memory that should be
made available for scoped memory areasjavax.realtime.LTMemory and
javax.realtime.VTMemory . This memory lies outside of the normal Java
heap, but it is nevertheless scanned by the garbage collector for references to the
heap.

Objects allocated in scoped memory will never be reclaimed by the garbage
collector. Instead, their memory will be freed when the last thread exits the scope.

Option -scopedMemorySizeFromEnv= var

The scopedMemorySizeFromEnv option enables the application to read its
scoped memory size from the environment variable speciÞed within. If this vari-
able is not set, the scoped memory size speciÞed using-scopedMemorySize
n will be used.

186 CHAPTER 14. THE JAMAICA BUILDER

Option -physicalMemoryRanges[+]= range{ , range}

The RawMemory andPhysicalMemory classes in thejavax.realtime
package provide access to physical memory for Java applications. The memory
ranges that may be accessed by the Java application can be speciÞed using the
option physicalMemoryRanges . The default behavior is that no access to
physical memory is permitted by the application.

ThephysicalMemoryRanges option expects a list of address ranges. Each
address range is separated by.. , and gives the lower and upper address of the
range: lower.. upper. The lower address is inclusive and the upper address is
exclusive. I.e., the difference upper-lower gives the size of the accessible area.
There can be an arbitrary number of memory ranges.

Example 1:-physicalMemoryRanges=0x0c00..0x1000 will allow
access to the memory range from address0x0c00 to 0x1000 , i.e., to a range of
1024 bytes.

14.2.10 Native code

Native code is code written in a different programming language than Java (typ-
ically C or C++). This code can be called from within Java code using the Java
Native Interface (JNI). Jamaica internally uses a more efÞcient interface, the Ja-
maica Binary Interface (JBI), for native calls into the VM and for compiled code.

Option -object[+]= Þle{ : Þle}

Unlike many other Java implementations that support accessing native code only
through shared libraries, Jamaica can include native code directly in the exe-
cutable. The object Þles speciÞed with this option will be linked to the destination
executable created by the Builder.

Setting this option may cause linker errors. This happens if default object Þles
needed by Jamaica are overridden. These errors may be avoided by using the
optional Ò+Ó-notation:-object+= Þles.

Multiple object Þles should be separated by the system speciÞc path separator:
colon Ò: Ó on Unix systems and semicolon Ò; Ó on Windows.

14.3 Builder Extended Usage

A number of extended options provide additional means for Þner control of the
BuilderÕs operation for the more experienced user. The following sections list
these extended options and describe their effect. Default values may be obtained
by jamaicabuilder -target= platform -xhelp .

14.3. BUILDER EXTENDED USAGE 187

14.3.1 General

The following are general options which provide information about the Builder
itself or enable the use of script Þles that specifying further options.

Option -XdefineProperty[+]= name[= value]

TheXdefineProperty option sets a system property for the resulting binary.
For security reasons, system properties set by the VM cannot by changed. The
value may contain spaces. Use shell quotation as required. The Unicode character
U+EEEE is reserved and may not be used within the argument of the option.

Option -XdefinePropertyFromEnv[+]= name=var

At program start, the resulting binary will set a system property to the value of
the speciÞed environment variable. This feature can only be used if the target OS
supports environment variables. For security reasons, system properties set by the
VM cannot be changed.

Option -XignoreLineNumbers

Specifying theXignoreLineNumbers option instructs the Builder to remove
the line number information from the classes that are built into the target applica-
tion. The resulting information will have a smaller memory footprint and RAM
demand. However, exception traces in the resulting application will not show line
number information.

14.3.2 Classes, Þles and paths

These options allow to specify classes and paths to be used by the Builder.

Option -XjamaicaHome= directory

TheXjamaicaHome option speciÞesjamaica-home. The directory is normally
set via the environment variableJAMAICA.

Option -XjavaHome= directory

TheXjavaHome option speciÞes the path to the Java home directory. It defaults
to jamaica-home/target/ platform, whereplatform is either the default plat-
form or set with thetarget option.

188 CHAPTER 14. THE JAMAICA BUILDER

Option -Xbootclasspath[+]= classpath

TheXbootclasspath speciÞes path used for loading system classes.

Option -XlazyConstantStrings

Jamaica VM by default allocates all String constants at class loading time such
that later accesses to these strings is very fast and efÞcient. However, this approach
requires code to be executed for this initialization at system startup and it requires
Java heap memory to store all constant Java strings, even those that are never
touched by the application at run time

Setting option-XlazyConstantStrings causes the VM to allocate string
constants lazily, i.e., not at class loading time but at time of Þrst use of any constant
string. This saves Java heap memory and startup time since constant strings that
are never touched will not be created. However, this has the effect that accessing
a constant Java string may cause an OutOfMemoryError.

Option -XlazyConstantStringsFromEnv= var

Causes the creation of an application that reads itsXlazyConstantStrings
setting from the speciÞed environment variable. If this variable is not set, the
value of boolean optionXlazyConstantStrings will be used. The value of
the environment variable must be0 for -XlazyConstantStrings=false
or 1 for -XlazyConstantStrings=true .

Option -XnoMain

TheXnoMain option builds a standalone VM. Do not select a main class for the
built application. Instead, the Þrst argument of the argument list passed to the
application will be interpreted as the main class.

Option -XnoClasses

The XnoClasses option does not include any classes in the built application.
Setting this option is only needed when building thejamaicavm command itself.

14.3.3 ProÞling and compilation

By default, the Builder compiles all application classes and a predeÞned set of the
system classes. ProÞling and compilation options enable to Þne tune the compila-
tion process for optimal runtime performance of applications generated with the
Builder.

14.3. BUILDER EXTENDED USAGE 189

Option -XprofileFilename= name

The XprofileFilename option sets the name of the Þle to which proÞling
data will be written if proÞling is enabled. If a proÞle Þlename is not speciÞed
then the proÞling data will be written to a Þle named after the destination (see
optiondestination) with the extension.prof added.

Option -XprofileFilenameFromEnv= var

TheXprofileFilenameFromEnv creates an application that reads the name
of a Þle for proÞling data from the environment variablevar. If this variable is not
set, the name speciÞed usingXprofileFilename will be used (default: not
used).

Option -XfullStackTrace

Compiled code usually does not contain full Java stack trace information if the
stack trace is not required (as in a method with a try/catch clause or a synchro-
nized method). For better debugging of the application, theXfullStackTrace
option can be used to create a full stack trace for all compiled methods.

Option -XexcludeLongerThan= n

Compilation of large Java methods can cause large C routines in the intermediate
code, especially when combined with aggressive inlining. Some C compilers have
difÞculties with the compilation of large routines. To enable the use of Jamaica
with such C compilers, the compilation of large methods can be disabled using
the optionXexcludeLongerThan .

The argument speciÞed toXexcludeLongerThan gives the minimum num-
ber of bytecode instructions a method must have to be excluded from compilation.

Option -Xcc= cc

The Xcc option speciÞes the C compiler to be used to compile intermediate C
code that is generated by the Builder.

Option -XCFLAGS[+]= cßags

The XCFLAGSoption speciÞes the cßags for the invocation of the C compiler.
Note that for optimizations the compiler independent option-optimize should
be used.

190 CHAPTER 14. THE JAMAICA BUILDER

Option -Xld= linker

The Xld option speciÞes the linker to be used to create a binary Þle from the
object Þle generated by the C compiler.

Option -XLDFLAGS[+]= ldßags

TheXLDFLAGSoption speciÞes the ldßags for the invocation of the C linker.

Option -dwarf2

Thedwarf2 option generates a DWARF2 version of the application. DWARF2
symbols are needed for tracing Java methods in compiled code. Use this option
with WCETA tools and binary debuggers.

Option -Xstrip= tool

The Xstrip option uses the speciÞed tool to remove debug information from
the generated binary. This will reduce the size of the binary Þle by removing
information not needed at runtime.

Option -XstripOptions= options

TheXstripOptions option speciÞes the strip options for the invocation of the
stripper. See also optionXstrip .

Option -Xlibraries[+]=" library{ library} "

TheXlibraries option speciÞes the libraries that must be linked to the desti-
nation binary. The libraries must include the option that is passed to the linker.
Multiple libraries should be separated using spaces and enclosed in quotation
marks. E.g.,-Xlibraries "m pthread" causes linking againstlibm and
libpthread .

Option -XstaticLibraries[+]=" library{ library} "

The XstaticLibraries option speciÞes the libraries that must be statically
linked to the destination binary. The libraries must include the option that is
passed to the linker. Static linking creates larger executables, but may be nec-
essary if the target system doesnÕt provide the library. Multiple libraries should be
separated using spaces and enclosed in quotation marks.

Example: setting-XstaticLibraries "m pthread" causes static link-
ing againstlibm andlibpthread .

14.3. BUILDER EXTENDED USAGE 191

Option -XlibraryPaths[+]= path{ : path}

The XlibraryPaths option adds the directories in the speciÞed paths to the
library search path. Multiple directories should be separated by the system speciÞc
path separator: colon Ò: Ó on Unix systems and semicolon Ò; Ó on Windows.

E.g., to use the directories/usr/local/lib and /usr/lib as library
path, the option-XlibraryPaths /usr/local/lib:/usr/lib must be
speciÞed.

Option -XavailableTargets

TheXavailableTargets option lists all available target platforms of this Ja-
maica distribution.

Option -XnoRuntimeChecks

The XnoRuntimeChecks option disables runtime checks for compiled Java
code. This option deactivates runtime checks to obtain better runtime perfor-
mance. This may be used only for applications that do not cause any runtime
checks to fail. Failure to run these checks can result in crashes, memory cor-
ruption and similar disasters. When untrusted code is executed, disabling these
checks can cause vulnerability through attacks that exploit buffer overßows, type
inconsistencies, etc.

The runtime checks disabled by this option are: checks for use of null point-
ers, out of bounds array indices, out of bounds string indices, array stores that are
not compatible with the array element type, reference assignments between in-
compatible memory areas, division by zero and array instantiation with negative
array size. These runtime checks usually result in throwing one of the following
exceptions:

NullPointerException ArrayIndexOutOfBoundsException
StringIndexOutOfBoundsException ArrayStoreException

IllegalAssignmentError ArithmeticException
NegativeArraySizeException

When deactivated, the system will be in an undeÞned state if any of these condi-
tions occurs.

14.3.4 Heap and stack conÞguration

ConÞguring heap and stack memory has an important impact not only on the
amount of memory required by the application but on the runtime performance

192 CHAPTER 14. THE JAMAICA BUILDER

and the realtime characteristics of the code as well. The Jamaica Builder therefore
provides a number of options to conÞgure heap memory and stack available to
threads.

Option -XnumMonitors= n

TheXnumMonitors option speciÞes the number of monitors that should be al-
located on VM startup. This is required in the parallel VM only to store the data if
the monitor in a Java object is used. This value should be set large enough to ac-
count for the maximum number of monitors that may be used (for synchronization
or for calls toObject.wait) simultaneously by the application.

Pre-allocting monitors is done by the parallel VM only. This option therefore
is ignored if used with the single core VM, i.e., it has no effect unless option
-parallel is set.

Setting this value to 0 will allocate a default number of monitors that is a
multiple of the maximum number of threads.

Option -XnumMonitorsFromEnv= var

TheXnumMonitorsFromEnv option enables the application to read its initial
number of monitors to be allocated at VM startup from the environment vari-
able speciÞed. If this variable is not set, the value speciÞed using the option
-XnumMonitors n will be used.

14.3.5 Parallel Execution

The parallel version of JamaicaVM can execute several threads, including the
garbage collection, in parallel and therefore improves the runtime performance
when using multicore systems. Notice that you need to have an extra license to
use the parallel version of JamaicaVM.

Option -Xcpus= n1{ , n2} | n1.. n2 | all

Select the set of CPUs to use to run JamaicaVM on. The argument can be speciÞed
either as a set (e.g.-Xcpus=0,1,2) or a range (e.g.-Xcpus=0..2). All
available CPUs are selected by using-Xcpus=all .

Option -XcpusFromEnv= var

The XcpusFromEnv option enables the application to read the set of CPUs to
run on from the speciÞed environment variable. If this variable is not set, the set
speciÞed using-Xcpus setwill be used.

14.3. BUILDER EXTENDED USAGE 193

14.3.6 RTSJ settings

The following options set values that are relevant for the Real-Time SpeciÞca-
tion for Java extensions through classes javax.realtime.* that are provided by Ja-
maicaVM.

Option -XuseMonotonicClock

On systems that provide a monotonic clock, setting this option enables use of this
clock instead of the default realtime clock for RTSJ code.

Option -XuseMonotonicClockFromEnv= var

The XuseMonotonicClockFromENv option enables the application to read
its setting ofXuseMonotonicClock from the speciÞed environment variable.
If this variable is not set, the value of the optionXuseMonotonicClock will be
used. The environment variable must be set to 0 (-XuseMonotonicClock=
false) or 1 (-XuseMonotonicClock=true).

14.3.7 Native code

Native code is code written in a different programming language than Java (typ-
ically C or C++). This code can be called from within Java code using the Java
Native Interface (JNI). Jamaica internally uses a more efÞcient interface, the Ja-
maica Binary Interface (JBI), for native calls into the VM and for compiled code.

Option -XloadJNIDynamic[+]=" class| method{ class| method} "

The XloadJNIDynamic option will cause the Builder to know which native
declared methods calls at runtime a dynamic library. Either a single method, all
methods with the same name or all methods of classes or even packages can be
speciÞed.

Examples:com.user.MyClass.toString()Ljava/lang/String;
refers to the single method,com.user.MyClass.toString to all meth-
ods with this name, independent of the signature.com.user.MyClass refers
to all methods in this class,com.user. * to all classes in this package and
com.user... to all classes in this package and all subpackages.

Option -Xinclude[+]= dirs

The Xinclude option adds the speciÞed directories to the include path. This
path should contain the include Þles generated byjamaicah for the native code

194 CHAPTER 14. THE JAMAICA BUILDER

referenced from Java code. The include Þles are used to determine whether the
Java Native Interface (JNI) or Jamaica Binary Interface (JBI) is used to access the
native code.

This option expects a list of paths that are separated using the platform depen-
dent path separator character (e.g., Ô:Õ).

Option -XobjectFormat=default | C | ELF | PECOFF

The XobjectFormat option sets the object format to one ofdefault , C,
PECOFFandELF.

Option -XobjectProcessorFamily= type

TheXobjectProcessorFamily option sets the processor type for code gen-
eration. Available types arenone , i386 , i486 , i586 , i686 , ppc , sparc ,
arm, mips , sh , cris , andx86 64. The processor type is only required if the
ELF or PECOFF object formats are used. Otherwise the type may be set tonone .

Option -XobjectSymbolPrefix= preÞx

TheXobjectSymbolPrefix sets the object symbol preÞx, e.g., Ò_Ó.

Option -Xcheck=jni

Enable argument checking in the Java Native Interface (JNI). With this option en-
abled the Jamaica VM will be halted if a problem is detected. Enabling this option
will cause a performance impact for the JNI. Using this option is recommended
while developing applications that use native code.

14.4 Environment Variables

The following environment variables control theBuilder .

JAMAICA The Jamaica Home directory (jamaica-home). This variable sets the
path of Jamaica to be used. Under Unix systems this must be a Unix style
pathname, while under Windows this has to be a DOS style pathname.

JAMAICA_BUILDER_HEAPSIZE Initial heap size of theBuilder program
itself in bytes. Setting this to a larger value, e.g., Ò512MÓ, will improve the
Builder performance.

14.5. EXITCODES 195

0 Normal termination
1 Error
2 Invalid argument
3 Missing license

64 InsufÞcient memory
100 Internal error

Table 14.1: Jamaica Builder and jamaicah exitcodes

JAMAICA_BUILDER_MAXHEAPSIZEMaximum heap size of theBuilder
program itself in bytes. If the initial heap size of theBuilder is not suf-
Þcient, it will increase its heap dynamically up to this value. To build large
applications, you may have to set this maximum heap size to a larger value,
e.g., Ò640MÓ.

JAMAICA_BUILDER_JAVA_STACKSIZEJava stack size of theBuilder pro-
gram itself in bytes.

JAMAICA_BUILDER_NATIVE_STACKSIZE Native stack size of theBuilder
program itself in bytes.

JAMAICA_BUILDER_NUMTHREADSInitial number of threads used by theBuilder
program itself.

14.5 Exitcodes

Tab. 14.1 lists the exit codes of the JamaicaVM Builder. If you get an exit code
of an internal error please contact aicas support with a full description of the tool
usage, command line options and input.

196 CHAPTER 14. THE JAMAICA BUILDER

Chapter 15

The Jamaica JAR Accelerator

The Jamaica JAR Accelerator takes a JAR Þle (Source JAR) and produces a new
JAR Þle (Accelerated JAR) that has the content of the given Source JAR aug-
mented with a shared library containing methods in classes of the JAR that have
been compiled to machine code. The library is marked with the platform for which
it is intended. When a class from the Accelerated JAR is loaded by an executable
program created by the Jamaica Builder and running on a matching platform, the
shared library is automatically linked with that program. The program may be
a stand-alone program linked directly with the JamaicaVM runtime or a Jamaica
virtual machine instance.

The JAR Accelerator only compiles methods from classes in Source JAR to
put in the shared library. Methods from classes from theclasspath which
are not in Source JAR are not compiled. Theclasspath provides additional
references for classes needed by the compilation process. Not compiling in these
supporting methods ensures that using the created library does not change the
applicationÕs behavior. However, any change done in classes of an Accelerated
JAR might invalidate this guarantee and therefore in this case the Source JAR
should be reaccelerated.

By default all methods from classes in the Source JAR are candidates for com-
pilation. These candidates can be Þltered using the same techniques used by the
Builder. For instance one can provide a proÞle and a compilation percentage, or a
list of methods to be included or excluded from compilation. One can also limit
the length of methods that are compiled. Filtering the compilation candidates is
done using the compilation options found in the section 15.1.

The usage of the JAR Accelerator is illustrated in the exampleAcceleration
(see Tab. 2.2 in Section 2.4).

197

198 CHAPTER 15. THE JAMAICA JAR ACCELERATOR

15.1 JAR Accelerator Usage

The JAR Accelerator is a command-line tool with the following syntax:

jamaicajaraccelerator [options] jar

A variety of arguments control the work of the JAR Accelerator tool. It accepts
numerous options for conÞguring and Þne tuning the created shared library. The
jar argument identiÞes the processed JAR Þle. It is required.

The options may be given directly to the JAR Accelerator via the command
line or by using conÞguration Þles.1 Options given on the command line take
priority. Options not speciÞed on the command line are read from conÞguration
Þles.

¥ The host target is read fromjamaica-home/etc/global.conf and is
used as the default target. This Þle should not contain any other information.

¥ When the JAR Accelerator option-configuration is used, the remain-
ing options are read from the Þle speciÞed with this option.

¥ Otherwise the target-speciÞc conÞguration Þlejamaica-home/target/
platform/etc/jaraccelerator.conf is used.

The general format for an option is either- optionfor an option without argument
or - option=valuefor an option with argument. For details, see Chapter 14.

Default values for many options are target speciÞc. The actual settings may be
obtained by invoking the JAR Accelerator with-help . In order to Þnd out the
settings for a target other than the host platform, include-target= platform.

The JAR Accelerator stores intermediate Þles, in particular generated C and
object Þles, in a temporary folder in the current working directory. For concur-
rent runs of the JAR Accelerator, in order to avoid conßicts, the JAR Accelerator
must be instructed to use distinct temporary directories. In this case, the JAR
Accelerator option-tmpdir can be used to set speciÞc directories.

15.1.1 General

The following are general options which provide information about the JAR Ac-
celerator itself or enable the use of script Þles that specifying further options.

Option -help (-h, -?)

Thehelp option displays the JAR Accelerator usage and a short description of
all possible standard command line options.

1Aliases are not allowed as keys in conÞguration Þles.

15.1. JAR ACCELERATOR USAGE 199

Option -Xhelp

TheXhelp option displays the JAR Accelerator usage and a short description of
all possible extended command line options. Extended command line options are
not needed for normal control of the the JAR Accelerator command. They are
used to conÞgure tools and options, and to provide tools required internally for
Jamaica VM development.

Option -version

Print the version of Jamaica JAR Accelerator and exit.

Option -verbose= n

The verbose option sets the verbosity level for the JAR Accelerator. At level
1, which is the default, warnings are printed. At level 2 additional information on
the build process that might be relevant to users is shown. At level 0 all warnings
are suppressed. Levels above 2 are reserved.

Option -jobs= n

Thejobs option sets the number of parallel jobs for the JAR Accelerator. Parts
of the JAR Accelerator work will be performed in parallel if this option is set to a
value larger than one. Parallel execution may speed up the JAR Accelerator.

Option -showSettings

Print the JAR Accelerator settings. To make these settings the default, replace
jamaica-home/target/ platform/etc/jaraccelerator.conf by the out-
put.

Option -saveSettings= Þle

If the saveSettings option is used, the JAR Accelerator options currently in
effect are written to the provided Þle. To make these settings the default, replace
jamaica-home/target/ platform/etc/jaraccelerator.conf by the out-
put.

Option -configuration= Þle

Theconfiguration option speciÞes a Þle to read the set of options used by the
JAR Accelerator. The format must be identical to the one in the default conÞgura-
tion Þle (jamaica-home/target/ platform/etc/jaraccelerator.conf).

200 CHAPTER 15. THE JAMAICA JAR ACCELERATOR

When set, the Þlejamaica-home/target/ platform/etc/jaraccelerator.
conf is ignored.

15.1.2 Classes, Þles and paths

These options allow to specify classes and paths to be used by the JAR Accelera-
tor.

Option -classpath (-cp)[+]= classpath

Theclasspath option speciÞes the paths that are used to search for class Þles.
A list of paths separated by the path separator char (Ô:Õ on Unix systems, Ô;Õ on
Windows) can be speciÞed. This list will be traversed from left to right when the
JAR Accelerator tries to load a class.

Option -enableassertions (-ea)

Theenableassertions option enables assertions for all classes. Assertions
are disabled by default.

Option -destination (-o)= name

Thedestination option speciÞes the name of the destination accelerated JAR
to be generated by the JAR Accelerator. If this option is not present, the name
of the destination accelerated JAR isxyz-accelerated.jar if xyz.jar is
being accelerated.

The destination name can be a path into a different directory. E.g.,

-destination myproject/bin/xyz.jar

may be used to save the created accelerated JARxyz.jar in myproject/bin .

Option -tmpdir= name

The tmpdir option may be used to specify the name of the directory used for
temporary Þles generated by the JAR Accelerator (such as C source and object
Þles for compiled methods).

Option -autoSeal

DeÞnes whether the JAR Accelerator should automatically seal the accelerated
JAR Þle or not. Whentrue the JAR Accelerator seals the whole accelerated

15.1. JAR ACCELERATOR USAGE 201

JAR Þle ignoring any sealing entry from the existing manifest. Whenfalse the
sealing entries from the existing manifest remain unaltered.

Sealing packages within a JAR Þle means that all classes deÞned in that pack-
age must be archived in the same JAR Þle. It improves security and consistency
among the archived classes.

For the the JAR Accelerator sealing also enables the compiler to be more ag-
gressive during acceleration therefore producing potentially faster code.

The value of this option is unconditionallyfalse if the jar being accelerated
is signed.

15.1.3 ProÞling and compilation

By default, the JAR Accelerator compiles all application classes and a predeÞned
set of the system classes. ProÞling and compilation options enable to Þne tune the
compilation process for optimal runtime performance of libraries generated with
the JAR Accelerator.

Option -useProfile[+]= Þle{ : Þle}

TheuseProfile option instructs the JAR Accelerator to use proÞling informa-
tion collected using the Builder optionprofile to restrict compilation to those
methods that were most frequently executed during the proÞling run. The percent-
age of methods to be compiled is 10 by default, unlesspercentageCompiled
is set to a different value. For a tutorial on proÞling see Section Performance
Optimization in the user manual.

This option accepts plain text Þles, GZIP compressed text Þles and ZIP archives
consisting of plain text proÞle entries. All archive entries are required to be pro-
Þles.

Multiple proÞles should be separated by the system speciÞc path separator:
colon Ò: Ó on Unix systems and semicolon Ò; Ó on Windows.

Option -percentageCompiled= n

Use proÞling information collected usingprofile to restrict compilation to
those methods that were most frequently executed during the proÞling run. The
percentage of methods that are to be compiled is given as an argument to the op-
tion percentageCompiled . It must be between 0 and 100. Selecting 100
causes compilation of all methods executed during the proÞling run, i.e., methods
that were not called during proÞling will not be compiled.

202 CHAPTER 15. THE JAMAICA JAR ACCELERATOR

Option -includeInCompile[+]=" class| method{ class| method} "

The includeInCompile option forces the compilation of the listed methods
(when not excluded from the application by the smart linker or by any other
means). Either a single method, all methods with the same name or all methods
of classes or even packages can be speciÞed.

Examples:com.user.MyClass.toString()Ljava/lang/String;
refers to the single method,com.user.MyClass.toString to all meth-
ods with this name, independent of the signature.com.user.MyClass refers
to all methods in this class,com.user. * to all classes in this package and
com.user... to all classes in this package and all subpackages.

Option -excludeFromCompile[+]=" class| method{ class| method} "

TheexcludeFromCompile option disables the compilation of the listed meth-
ods. Either a single method, all methods with the same name or all methods of
classes or even packages can be speciÞed.

Examples:com.user.MyClass.toString()Ljava/lang/String;
refers to the single method,com.user.MyClass.toString to all meth-
ods with this name, independent of the signature.com.user.MyClass refers
to all methods in this class,com.user. * to all classes in this package and
com.user... to all classes in this package and all subpackages.

Option -inline= n

When methods are compiled (via one of the optionscompile , useProfile ,
or interpret=false), this option can be used to set the level of inlining to be
used by the compiler. Inlining typically causes a signiÞcant speedup at runtime
since the overhead of performing method calls is avoided. Nevertheless, inlining
causes duplication of code and hence might increase the binary size of the appli-
cation. In systems with tight memory resources, inlining may therefore not be
acceptable

Eleven levels of inlining are supported by the Jamaica compiler ranging from
0 (no inlining) to 10 (aggressive inlining).

Option -optimize (-optimise)= type

The optimize option enables to specify optimizations for the compilation of
intermediate C code to native code in a platform independent manner, wheretype
is one ofnone , size , speed , andall . The optimization ßags only affect the
C compiler, and they are only given to it if the application is compiled without the
debug option.

15.1. JAR ACCELERATOR USAGE 203

Option -target= platform

Thetarget option speciÞes a target platform. For a list of all available platforms
of your Jamaica VM Distribution, useXavailableTargets .

15.1.4 Threads, priorities and scheduling

ConÞguring threads has an important impact not only on the runtime performance
and realtime characteristics of the code but also on the memory required by the
application. The Jamaica JAR Accelerator provides an option for conÞguring the
scheduling policies.

Option -threadPreemption= n

Compiled code contains special instructions that permit thread preemption. These
instructions have to be executed often enough to allow a thread preemption time
that is sufÞcient for the destination application. As the instructions cause an over-
head in code size and runtime performance, one would want to generate this code
as rarely as possible.

The threadPreemption option enables setting of the maximum number
of intermediate instructions that are permitted between the execution of thread
preemption code. This directly affects the maximum thread preemption time of
the application. One intermediate instruction typically corresponds to 1-2 machine
instructions. There are some intermediate instructions (calls, array accesses) that
can be more expensive (20-50 machine instructions).

The thread preemption must be at least 10 intermediate instructions.

15.1.5 Parallel Execution

The parallel version of JamaicaVM can execute several threads, including the
garbage collection, in parallel and therefore improves the runtime performance
when using multicore systems. Notice that you need to have an extra license to
use the parallel version of JamaicaVM.

Option -parallel

Theparallel option instructs the JAR Accelerator to create a library that can
make use of several processors executing Java code in parallel.

204 CHAPTER 15. THE JAMAICA JAR ACCELERATOR

15.2 JAR Accelerator Extended Usage

A number of extended options provide additional means for Þner control of the
JAR AcceleratorÕs operation for the more experienced user. The following sec-
tions list these extended options and describe their effect. Default values may be
obtained byjamaicajaraccelerator -target= platform -xhelp .

15.2.1 General

The following are general options which provide information about the JAR Ac-
celerator itself or enable the use of script Þles that specifying further options.

Option -XignoreLineNumbers

Specifying theXignoreLineNumbers option instructs the JAR Accelerator to
remove the line number information from the classes that are built into the target
library. The resulting information will have a smaller memory footprint and RAM
demand. However, exception traces in the resulting library will not show line
number information.

15.2.2 Classes, Þles and paths

These options allow to specify classes and paths to be used by the JAR Accelera-
tor.

Option -XjamaicaHome= directory

TheXjamaicaHome option speciÞesjamaica-home. The directory is normally
set via the environment variableJAMAICA.

15.2.3 ProÞling and compilation

By default, the JAR Accelerator compiles all application classes and a predeÞned
set of the system classes. ProÞling and compilation options enable to Þne tune the
compilation process for optimal runtime performance of libraries generated with
the JAR Accelerator.

Option -XfullStackTrace

Compiled code usually does not contain full Java stack trace information if the
stack trace is not required (as in a method with a try/catch clause or a synchro-

15.2. JAR ACCELERATOR EXTENDED USAGE 205

nized method). For better debugging of the application, theXfullStackTrace
option can be used to create a full stack trace for all compiled methods.

Option -XexcludeLongerThan= n

Compilation of large Java methods can cause large C routines in the intermediate
code, especially when combined with aggressive inlining. Some C compilers have
difÞculties with the compilation of large routines. To enable the use of Jamaica
with such C compilers, the compilation of large methods can be disabled using
the optionXexcludeLongerThan .

The argument speciÞed toXexcludeLongerThan gives the minimum num-
ber of bytecode instructions a method must have to be excluded from compilation.

Option -Xcc= cc

The Xcc option speciÞes the C compiler to be used to compile intermediate C
code that is generated by the JAR Accelerator.

Option -XCFLAGS[+]= cßags

The XCFLAGSoption speciÞes the cßags for the invocation of the C compiler.
Note that for optimizations the compiler independent option-optimize should
be used.

Option -Xld= linker

The Xld option speciÞes the linker to be used to create a binary Þle from the
object Þle generated by the C compiler.

Option -XLDFLAGS[+]= ldßags

TheXLDFLAGSoption speciÞes the ldßags for the invocation of the C linker.

Option -dwarf2

Thedwarf2 option generates a DWARF2 version of the application. DWARF2
symbols are needed for tracing Java methods in compiled code. Use this option
with binary debuggers.

206 CHAPTER 15. THE JAMAICA JAR ACCELERATOR

Option -Xstrip= tool

The Xstrip option uses the speciÞed tool to remove debug information from
the generated binary. This will reduce the size of the binary Þle by removing
information not needed at runtime.

Option -XstripOptions= options

TheXstripOptions option speciÞes the strip options for the invocation of the
stripper. See also optionXstrip .

Option -Xlibraries[+]=" library{ library} "

TheXlibraries option speciÞes the libraries that must be linked to the desti-
nation binary. The libraries must include the option that is passed to the linker.
Multiple libraries should be separated using spaces and enclosed in quotation
marks. E.g.,-Xlibraries "m pthread" causes linking againstlibm and
libpthread .

Option -XstaticLibraries[+]=" library{ library} "

The XstaticLibraries option speciÞes the libraries that must be statically
linked to the destination binary. The libraries must include the option that is
passed to the linker. Static linking creates larger executables, but may be nec-
essary if the target system doesnÕt provide the library. Multiple libraries should be
separated using spaces and enclosed in quotation marks.

Example: setting-XstaticLibraries "m pthread" causes static link-
ing againstlibm andlibpthread .

Option -XlibraryPaths[+]= path{ : path}

The XlibraryPaths option adds the directories in the speciÞed paths to the
library search path. Multiple directories should be separated by the system speciÞc
path separator: colon Ò: Ó on Unix systems and semicolon Ò; Ó on Windows.

E.g., to use the directories/usr/local/lib and /usr/lib as library
path, the option-XlibraryPaths /usr/local/lib:/usr/lib must be
speciÞed.

Option -XavailableTargets

TheXavailableTargets option lists all available target platforms of this Ja-
maica distribution.

15.3. ENVIRONMENT VARIABLES 207

15.2.4 Native code

Native code is code written in a different programming language than Java (typ-
ically C or C++). This code can be called from within Java code using the Java
Native Interface (JNI). Jamaica internally uses a more efÞcient interface, the Ja-
maica Binary Interface (JBI), for native calls into the VM and for compiled code.

Option -Xinclude[+]= dirs

The Xinclude option adds the speciÞed directories to the include path. This
path should contain the include Þles generated byjamaicah for the native code
referenced from Java code. The include Þles are used to determine whether the
Java Native Interface (JNI) or Jamaica Binary Interface (JBI) is used to access the
native code.

This option expects a list of paths that are separated using the platform depen-
dent path separator character (e.g., Ô:Õ).

Option -XobjectFormat=default | C | ELF | PECOFF

The XobjectFormat option sets the object format to one ofdefault , C,
PECOFFandELF.

Option -XobjectProcessorFamily= type

TheXobjectProcessorFamily option sets the processor type for code gen-
eration. Available types arenone , i386 , i486 , i586 , i686 , ppc , sparc ,
arm, mips , sh , cris , andx86 64. The processor type is only required if the
ELF or PECOFF object formats are used. Otherwise the type may be set tonone .

Option -XobjectSymbolPrefix= preÞx

TheXobjectSymbolPrefix sets the object symbol preÞx, e.g., Ò_Ó.

15.3 Environment Variables

The following environment variables control the JAR Accelerator.

JAMAICA The Jamaica Home directory (jamaica-home). This variable sets the
path of Jamaica to be used. Under Unix systems this must be a Unix style
pathname, while under Windows this has to be a DOS style pathname.

208 CHAPTER 15. THE JAMAICA JAR ACCELERATOR

0 Normal termination
1 Error
2 Invalid argument
3 Missing license

64 InsufÞcient memory
100 Internal error

Table 15.1: Jamaica JAR Accelerator exitcodes

JAMAICA_JARACCELERATOR_HEAPSIZEInitial heap size of the JAR Accel-
erator program itself in bytes. Setting this to a larger value, e.g., Ò512MÓ,
will improve theJARAccelerator performance.

JAMAICA_JARACCELERATOR_MAXHEAPSIZEMaximum heap size of the JAR
Accelerator program itself in bytes. If the initial heap size of the JAR Ac-
celerator is not sufÞcient, it will increase its heap dynamically up to this
value. To build large libraries, you may have to set this maximum heap size
to a larger value, e.g., Ò640MÓ.

JAMAICA_JARACCELERATOR_JAVA_STACKSIZEJava stack size of the JAR
Accelerator program itself in bytes.

JAMAICA_JARACCELERATOR_NATIVE_STACKSIZENative stack size of the
JAR Accelerator program itself in bytes.

JAMAICA_JARACCELERATOR_NUMTHREADSInitial number of threads used
by the JAR Accelerator program itself.

15.4 Exitcodes

Tab. 15.1 lists the exit codes of the Jamaica JAR Accelerator. If you get an exit
code of an internal error please contact aicas support with a full description of the
tool usage, command line options and input.

15.5 Special Considerations

For compiling bytecode into machine code, the JAR Accelerator might require
some platform speciÞc conÞguration, please refer to the Section 2.1.1.3 for further
details.

15.5. SPECIAL CONSIDERATIONS 209

For compiled code to be executed on the platform, there are two prerequisites
on the executable program that must be fulÞlled. The executable program might
be either a built application or JamaicaVM. Firstly, in order to load compiled
code from a JAR, the executable program must have the propertyjamaica.
jaraccelerator.load set totrue . Secondly the requiredaccelerator in-
terface versionof the executable program must match the interface version of the
Jamaica JAR Accelerator used for accelerating the JAR. The accelerator interface
version identiÞes the JamaicaVM API provided for the compiled bytecode. Fi-
nally, the Jamaica JAR Accelerator used for accelerating the JAR must match the
platform, and VM variant of the executable program. For instance, a program
built for linux-x86 multicore will only be able to run bytecode compiled for
linux-x86 multicore.2

For enabling debug output, showing the steps performed for loading the com-
piled code of an Accelerated JAR, the propertyjamaica.jaraccelerator.
debug can be used. Please refer to the Section 13.5 for full description of this
property.

The same JAR Þle, including the one being accelerated, may be used as des-
tination of more than one acceleration. The compiled bytecode is simply added
in the JAR at each acceleration. Any preexisting code for the same platform and
VM variant is overwritten.

Most importantly, to ensure consistency, the JAR Accelerator must be rerun
any time the byte code in the JAR Þle is changed.

2The option-version can be used for checking the version of the executable program.

210 CHAPTER 15. THE JAMAICA JAR ACCELERATOR

Chapter 16

Jamaica JRE Tools and Utilities

There are various Java API proÞle speciÞc tools and utilities provided in the target
dependentjamaica-home/target/ platform/bin folder. For an overview of
the currently available tools, see Tab. 16.1.

Name Description Minimal ProÞle
keytool Manage keystores and certiÞcates.compact1
rmiregistry Remote object registry service. compact2
rmid RMI activation system daemon. compact2

Table 16.1: JRE Tools and Utilities

Usually, a detailed usage and parameters can be found out by using the-help
option.

! Note that these tools requirejamaicavm_bin to be available.

211

212 CHAPTER 16. JAMAICA JRE TOOLS AND UTILITIES

Chapter 17

JamaicaTrace

The JamaicaTrace enables to monitor the realtime behavior of applications and
helps developers to Þne-tune the threaded Java applications running on Jamaica
run-time systems. These run-time systems can be either the JamaicaVM or any
application that was created using the Jamaica Builder.

The JamaicaTrace tool collects and presents data sent by the scheduler in
the Jamaica run-time system, and is invoked with thejamaicatrace com-
mand. When JamaicaTrace is started, it presents the user a control window (see
Fig. 17.1).

17.1 Run-time system conÞguration

The event collection for JamaicaTrace in the Jamaica run-time system is con-
trolled by two system properties:

¥ jamaica.scheduler_events_port

¥ jamaica.scheduler_events_port_blocking

To enable the event collection in the JamaicaVM, a user sets the value of one of
these properties to the port number to which the JamaicaTrace GUI will connect
later. If the user chooses theblocking property, the VM will stop after the
bootstrapping and before the main method is invoked. This enables a developer to
investigate the startup behavior of an application.

> jamaicavm -cp classes -Djamaica.scheduler_events_port=2712 \
> HelloWorld
**** accepting Scheduler Events Recording requests on port #2712

Hello World!
Hello World!

Hello World!

213

214 CHAPTER 17. JAMAICATRACE

Hello World!
Hello World!

Hello World!
[...]

When event collection is enabled, the requested events are written into a buffer
and sent to the JamaicaTrace tool by a high priority periodic thread. The amount
of buffering and the time periods can be controlled from the GUI.

17.2 Control Window

The JamaicaTrace control window is the main interface to control recording sched-
uler data from applications running with Jamaica.

On the right hand side of the window, IP address and port of the VM to be
monitored may be entered.

The following list gives a short overview on which events data is collected:

¥ Thread state changes record how the state of a thread changes over time
including which threads cause state changes in other threads.

¥ Thread priority changes show how the priority changed due to explicit calls
to Thread.setPriority() as well as adjustments due to priority in-
heritance on Java monitors.

¥ Thread names show the Java name of a thread.

¥ Monitor enter/exit events show whenever a thread enters or exits a monitor
successfully as well as when it blocks due to contention on a monitor.

¥ GC activity records when the incremental garbage collector does garbage
collection work.

¥ Start execution shows when a thread actually starts executing code after it
was set to be running.

¥ Reschedule shows the point when a thread changes from running to ready
due to a reschedule request.

¥ All threads that have the state ready within the JamaicaVM are also ready
to run from the OS point of view. So it might happen that the OS chooses
a thread to run that does not correspond with the running thread within the
VM. In such cases, the thread chosen by the OS performs a yield to allow a
different thread to run.

17.2. CONTROL WINDOW 215

Name Value
Event classes Selection of event classes that the run-time system should

send.
IP Address The IP address of the run-time system.
Port The Port where the runtime system should be contacted

(see Section 17.1).
Buffer Size The amount of memory that is allocated within the run-

time system to store event data during a period.
Sample Period The period length between sending data.
Start Recording When pressed connects the JamaicaTrace tool to the run-

time systems and collects data until pressed again.

Table 17.1: JamaicaTrace Controls

¥ User events contain user deÞned messages and can be triggered from Java
code. To trigger a user event, the following method can be used:

com.aicas.jamaica.lang.Scheduler.recordUserEvent

For its signature, please consult the API doc of theScheduler class.

¥ Allocated memory gives an indication of the amount of memory that is cur-
rently allocated by the application. The display is relatively coarse, changes
are only displayed if the amount of allocated memory changes by 64kB. A
vertical line gives indicates what thread performed the memory allocation
or GC work that caused a change in the amount of allocated memory.

When JamaicaTrace is started it presents the user a control window Fig. 17.1.

17.2.1 Control Window Menu

The control windowÕs menu permits only three actions:

17.2.1.1 File/Open...

This menu item will open a Þle requester to load previously recorded sched-
uler data that was saved through the data windowÕs ÒFile/Save as...Ó menu item,
see Section 17.3.2.2.

216 CHAPTER 17. JAMAICATRACE

Figure 17.1: Control view of JamaicaTrace

17.3. DATA WINDOW 217

17.2.1.2 File/Close

Select this menu item will close the control window, but it will leave all other
windows open.

17.2.1.3 File/Quit

Select this menu item will close all windows of the JamaicaTrace tool and quit the
application.

17.3 Data Window

The data window will display scheduler data that was recorded through ÒStart/Stop
recordingÓ in the control window or that was loaded from a Þle.

To better understand the output of JamaicaTrace, it is helpful to have some
understanding of the JamaicaVM scheduler. The JamaicaVM scheduler provides
real-time priority enforcement within Java programs on operating systems that
do not offer strict priority based scheduling (e.g. Linux for user programs). The
scheduler reduces the overhead for JNI calls and helps the operating system to
better schedule CPU resources for threads associated with the VM. These im-
provements let the JamaicaVM integrate better with the target OS and increase
the throughput of threaded Java applications.

The VM scheduler controls which thread runs within the VM at any given
time. This means it effectively protects the VM internal data structures like the
heap from concurrent modiÞcations. The VM scheduler does not replace, but
rather supports, the operating system scheduler. This allows, for example, for a
light implementation of Java monitors instead of using heavy system semaphores.

All threads created in the VM are per default attached to the VM (i.e. they are
controlled by the VM scheduler). Threads that execute system calls must detach
themselves from the VM. This allows the VM scheduler to select a different thread
to be the running thread within the VM while the Þrst thread for example blocks
on an IO request. Since it is critical that no thread ever blocks in a system call
while it is attached, all JNI code in the JamaicaVM is executed in detached mode.

For the interpretation of the JamaicaTrace data, the distinction between at-
tached and detached mode is important. A thread that is detached could still be
using the CPU, meaning that the thread that is shown as running within the VM
might not actually be executing any code. Threads attached to the VM may be
in the states running, rescheduling, ready, or blocked. Running means the thread
that currently executes within the context of the VM. Rescheduling is a sub state
of the running thread. The running thread state is changed to rescheduling when
another thread becomes more eligible to execute. This happens when a thread of

218 CHAPTER 17. JAMAICATRACE

higher priority becomes ready either by unblocking or attaching to the VM. The
running thread will then run to the next synchronization point and yield the CPU
to the more eligible thread. Ready threads are attached threads which can execute
as soon as no other thread is more eligible to run. Attached threads may block
for a number of reasons, the most common of which are calls to Thread.sleep,
Object.wait, and entering of a contended monitor.

17.3.1 Data Window Navigation

The data window permits easy navigation through the displayed scheduler data.
Two main properties can be changed: The time resolution can be contracted or
expanded, and the total display can be enlarged or reduced (zoom in and zoom
out). Four buttons on the top of the window serve to change these properties. In
addition, text search is available for user events and thread names.

17.3.1.1 Selection of displayed area

The displayed area can be selected using the scroll bars or via dragging the con-
tents of the window while holding the left mouse button.

17.3.1.2 Time resolution

The displayed time resolution can be changed via the buttons Òexpand timeÓ and
Òcontract timeÓ or via holding down the left mouse button for expansion or the
middle mouse button for contraction. Instead of the middle mouse button, the
control key plus the left mouse button can also be used.

17.3.1.3 Zoom factor

The size of the display can be changed via the buttons Òzoom inÓ and Òzoom outÓ
or via holding down shift in conjunction with the left mouse button for enlarge-
ment or in conjunction with the right mouse button for shrinking. Instead of shift
and the middle mouse button, the shift and the control key plus the left mouse
button can also be used.

17.3.1.4 Search Field

Upon entering text in the search Þeld at the top right of the window, the displayed
area will move to the Þrst match of the entered text. Navigating to other matches
is possible by pressing ÒEnterÓ (cycles forward) and ÒShift EnterÓ (cycles back-
ward). Pressing ÒEscapeÓ cancels the search and clears the search Þeld.

17.3. DATA WINDOW 219

17.3.2 Data Window Menu

The data windowÕs menu offers the following actions.

17.3.2.1 File/Open...

This menu item will open a Þle requester to load previously recorded sched-
uler data that was saved through the data windowÕs ÒFile/Save as...Ó menu item,
see Section 17.3.2.2.

17.3.2.2 File/Save as...

This menu item permits saving the displayed scheduler data, such that it can
later be loaded through the control windowÕs ÒFile/Open...Ó menu item, see Sec-
tion 17.2.1.1.

17.3.2.3 File/Close

Select this menu item will close the data window, but it will leave all other win-
dows open.

17.3.2.4 File/Quit

Select this menu item will close all windows of the JamaicaTrace tool and quit the
application.

17.3.2.5 View/Grid

Selecting this option will display light gray vertical grid lines that facilitate relat-
ing a displayed event to the point on the time scale.

17.3.2.6 View/Thread Headers

If this option is selected, the left part of the window will be used for a Þxed list of
thread names that does not participate in horizontal scrolling.

17.3.2.7 View/Thread Headers

If this option is selected, the top part of the window will be used for a Þxed time
scale that does not participate in vertical scrolling. This is useful in case many
threads are displayed and the time scale should remain visible when scrolling
through these threads.

220 CHAPTER 17. JAMAICATRACE

17.3.2.8 Navigate/Go To...

Selecting this menu item opens an input dialog for selecting a point of time in the
trace. After conÞrmation, the selected time will be centered in the display. Com-
mon time units includingns , us , ms, s, min andh are accepted. Additionally
the time may be speciÞed relative to the length of the trace using fractions such as
0.5 or percentage values such as50%.

17.3.2.9 Navigate/Fit Width

This menu item will change the time contraction such that the whole data Þts into
the current width of the window.

17.3.2.10 Navigate/Fit Height

This menu item will change the zoom factor such that the whole data Þts into the
current height of the window.

17.3.2.11 Navigate/Fit Window

This menu item will change the time contraction and the zoom factor such that the
whole data Þts into the current size of the data window.

17.3.2.12 Tools/Worst-Case Execution Times

This menu item will start the execution time analysis and show the Worst-Case
Execution Time window, see Section 17.3.5.

17.3.2.13 Tools/Reset Monitors

The display of monitor enter and exit events can be suppressed for selected mon-
itors via a context menu on an event of the monitor in questions. This menu item
re-enables the display of all monitors.

17.3.3 Data Window Context Window

The data window has a context menu that appears when pressing the right mouse
button over a monitor event. This context window permits to suppress the display
of events related to a monitor. This display can be re-enabled via the Tools/Reset
Monitors menu item.

17.3. DATA WINDOW 221

17.3.4 Data Window Tool Tips

When pointing onto a thread in the data window, a tool tip appears that display in-
formation on the current state of this thread including its name, the state (running,
ready, etc.) and the threadÕs current priority.

17.3.5 Worst-Case Execution Time Window

Through this window, the JamaicaTrace tool enables the determination of the
maximum execution time that was encountered for each thread within recorded
scheduler data. If the corresponding menu item was selected in the data window
(see Section 17.3.2.12), execution time analysis will be performed on the recorded
data and this window will be displayed.

The window shows a table with one row per thread and the following data
given in each column.

Thread # gives the Jamaica internal number of this thread. Threads are numbered
starting at 1. One Thread number can correspond to several Java threads in
case the lifetime of these threads does not overlap.

Thread Name will present the Java thread name of this thread. In case several
threads used the same thread id, this will display all names of these threads
separated by vertical lines.

Worst-case execution timepresents the maximum execution time that was en-
countered in the scheduler data for this thread. This column will display
ÒN/AÓ in case no releases where found for this thread. See below for a
deÞnition of execution time.

Occurred at gives the point in time within the recording at which the release that
required the maximum execution time started. A mouse click on this cell
will cause this position to be displayed in the center of the data window
the worst-case execution time window was created from. This column will
display ÒN/AÓ in case no Worst-case execution time was displayed for this
thread.

Releasesis the number of releases that of the given thread that where found
during the recording. See below for a deÞnition of a release.

Average time is the average execution time for one release of this thread. See
below for a deÞnition of execution time.

222 CHAPTER 17. JAMAICATRACE

Comment will display important additional information that was found during
the analysis. E.g., in case the data the analysis is based on contains over-
ßows, i.e. periods without recorded information, these times cannot be cov-
ered by this analysis and this will be displayed here.

17.3.5.1 DeÞnitions

Release of a thread T is a point in time at which a waiting thread T becomes
ready to run that is followed by a point in time at which it will block again waiting
for the next release. I.e., a release contains the time a thread remains ready until
it becomes running to execute its job, and it includes all the time the thread is
preempted by other threads or by activities outside of the VM.

Execution Time of a release is the time that has passed between a release and
the point at which the thread blocked again to wait for the next release.

17.3.5.2 Limitations

The worst-case execution times displayed in the worst-case execution times win-
dow are based on the measured scheduling data. Consequently, they can only dis-
play the worst-case times that were encountered during the actual run, which may
be fully unrelated to the theoretical worst-case execution time of a given thread. In
addition to this fundamental limitation, please be aware of the following detailed
limitations:

Releases are the points in time when a waiting thread becomes ready. If a re-
lease is caused by another thread (e.g., via Java functionObject.notify()),
this state change is immediate. However, if a release is caused by a timeout of
a call toObject.wait() , Thread.sleep() , RealtimeThread.wait-
ForNextPeriod() or similar functions, the state change to ready may be de-
layed if higher priority threads are running and the OS does not assign CPU time
to the waiting thread. A means to avoid this inaccuracy is to use a high-priority
timer (e.g., classjavax.realtime.Timer) to wait for a release.

Blocking waits within a release will result in the worst-case execution time anal-
ysis to treat one release as two independent releases. Therefore, the analysis is
wrong for tasks that perform blocking waits during a release. Any blocking within
native code, e.g., blocking I/O operations, is not affected by this, so the analysis
can be used to determine the execution times of I/O operations.

17.4. EVENT RECORDER 223

17.4 Event Recorder

There might be cases were you need to do the monitoring of thread activity in a
non-interactive way, e.g. as part of a build system or continuous delivery envi-
ronment. Then the JamaicaTrace application with its GUI would not be suitable.
In those cases you want to use the Event Recorder java agent. It just records a
user-deÞned set of scheduler events into a Þle and thatÕs it. No interaction with
the user (as long as the analysed java program is non-interactive too).

17.4.1 Location

You can Þnd this scheduler event recorder in the Õevent-recorder.jarÕ Þle in the
jamaica-home/target/ target/lib folder. targetstands for a certain platform,
like linux-x86_64 or qnx-armv7-le .

17.4.2 Usage

To use this event recorder just start the JamaicaVM with the -javaagent option,
like this:

jamaicavm -javaagent: path/event-recorder.jar[= agentargs] [vmargs]
mainclass [javaargs]

Note that the path toevent-recorder.jar must be given, so the VM can Þnd
it. To get some help about the available options and conÞguration possibilities of
the event recorder, start the agent with the help option:

jamaicavm -javaagent: path/event-recorder.jar=help

224 CHAPTER 17. JAMAICATRACE

Chapter 18

Jamaica and the Java Native
Interface (JNI)

The Java Native Interface (JNI) is a standard mechanism for interoperability be-
tween Java and native code, i.e., code written with other programming languages
like C. Jamaica implements version 1.4 of the Java Native Interface. Creating and
destroying the vm via the Invocation API is currently not supported.

18.1 Using JNI

Native code that is interfaced through the JNI interface is typically stored in shared
libraries that are dynamically loaded by the virtual machine when the application
uses native code. Jamaica supports this on many platforms, but since dynamically
loaded libraries are usually not available on small embedded systems that do not
provide a Þle system, Jamaica also offers a different approach. Instead of loading
a library at runtime, you can statically include the native code into the application
itself, i.e., link the native object code directly with the application.

The Builder allows direct linking of native object code with the created ap-
plication through-object= Þleor -XstaticLibraries= library. Multiple
Þles and libraries can be linked. Separate Þle names with the path separator of
the host platform (Ò:Ó or Ò;Ó); separate libraries by spaces and enclose the whole
option argument within double quotes. All object Þles and libraries that should be
included at build time should be presented to the Builder using these options.

Building an application using native code on a target requiring manual linking
may require providing these object Þles to the linker. Here is a short example on
the use of the Java Native Interface with Jamaica. This example simply writes a
value to a hardware register using a native method. We use the ÞleJNITest.
java , which contains the following code:

225

226 CHAPTER 18. JAMAICA AND THE JAVA NATIVE INTERFACE (JNI)

public class JNITest {
static native int write_HW_Register(int address,

int value);

public static void main(String args[]) {
int value;

value = write_HW_Register(0xfc000008,0x10060);
System.out.println("Result: "+value);

}
}

Jamaica provides a tool,jamaicah , for generating C header Þles that con-
tain the function prototypes for all native methods in a given class. Note that
jamaicah operates on Java class Þles, so the class Þles have to be created Þrst
using jamaicac as described in Chapter 12. The header Þle forJNITest.
java is created by the following sequence of commands:

> jamaicac JNITest.java
> jamaicah JNITest
Reading configuration from Õ/usr/local/jamaica/etc/jamaicah.confÕ...
+ JNITest.h (header)

This created the include ÞleJNITest.h :

/ * DO NOT EDIT THIS FILE - it is machine generated * /
#include <jni.h>
/ * Header for class JNITest * /

#ifndef _Included_JNITest
#define _Included_JNITest
#ifdef __cplusplus
extern "C" {
#endif
/ * Class: JNITest

* Method: write_HW_Register
* Signature: (II)I * /

#ifdef __cplusplus
extern "C"

#endif
JNIEXPORT jint JNICALL Java_JNITest_write_1HW_1Register(JNIEnv * env,

jclass c,
jint v0,
jint v1);

#ifdef __cplusplus
}
#endif
#endif

18.1. USING JNI 227

The native code is implemented inJNITest.c .

#include "jni.h"
#include "JNITest.h"
#include <stdio.h>

JNIEXPORT jint JNICALL
Java_JNITest_write_1HW_1Register(JNIEnv * env,

jclass c,
jint v0,
jint v1)

{
printf("Now we could write the value %i into "

"memory address %x\n", v1, v0);
return v1; / * return the "written" value * /

}

Note that the mangling of the Java name into a name for the C routine is deÞned
in the JNI speciÞcation. In order to avoid typing errors, just copy the function
declarations from the generated header Þle.

A C compiler is used to generate an object Þle. Here,gcc Ñ the GNU C
compiler Ñ is used, but other C compilers should also work. Note that the include
search directories provided with the option-I may be different on your system.

For Unix users usinggcc the command line is:

> gcc -I jamaica-home/target/linux-x86_64/include -c JNITest.c

For Windows users using the Visual Studio C compiler the command line is:

> cl /I jamaica-home\windows-x86\include /c JNITest.c

The C compiler may be invoked in a platform-independent manner from Ant build
Þles using the Jamaica C compiler task. See Section 19.2.2 for details.

Finally, the Builder is called to generate a binary Þle which contains all nec-
essary classes as well as the object Þle with the native code fromJNITest.c :

> jamaicabuilder -object=JNITest.o JNITest
Reading configuration from
Õusr/local/jamaica-8.0/target/linux-x86_64/etc/jamaica.confÕ...
Jamaica Builder Tool 8.0 Release 0
(User: EVALUATION USER, Expires: 2016.04.27)
Generating code for target Õlinux-x86_64Õ, optimization ÕspeedÕ

+ tmp/PKG__V10a246a4e62d69a6__.c
[...]
+ tmp/JNITest__.c
+ tmp/JNITest__.h
* C compiling Õtmp/JNITest__.cÕ
[...]

228 CHAPTER 18. JAMAICA AND THE JAVA NATIVE INTERFACE (JNI)

+ tmp/JNITest__nc.o
* linking
* stripping

Application memory demand will be as follows:
initial max

Thread C stacks: 1152KB (= 9 * 128KB) 63MB (= 511 * 128KB)
Thread Java stacks: 144KB (= 9 * 16KB) 8176KB (= 511 * 16KB)
Heap Size: 2048KB 256MB
GC data: 128KB 16MB
TOTAL: 3472KB 343MB

The created application can be executed just like any other executable:

> ./JNITest
Result: 65632
Now we could write the value 65632 into memory address fc000008

18.2 The Jamaicah Command

A variety of arguments control the work of the jamaicah tool. The command line
syntax is as follows:

jamaicah [options] class

The class argument identiÞes the class for which native headers are generated.

18.2.1 General

These are general options providing information about jamaicah itself.

Option -help (-h, -?)

Thehelp option displays jamaicah usage and a short description of all possible
standard command line options.

Option -Xhelp

TheXhelp option displays jamaicah usage and a short description of all possible
extended command line options. Extended command line options are not needed
for normal control of the jamaicah command. They are used to conÞgure tools and
options, and to provide tools required internally for Jamaica VM development.

18.2. THE JAMAICAH COMMAND 229

Option -jni

Create Java Native Interface header Þles for the native declarations in the provided
Java class Þles. This option is the default and hence does not need to be speciÞed
explicitly.

Option -d= directory

Specify output directory for created header Þles. The Þlenames are deduced from
the full qualiÞed Java class names where Ò.Ó are replaced by Ò_Ó and the extension
Ò.h Ó is appended.

Option -o= Þle

Specify the name of the created header Þle. If not set the Þlename is deduced from
the full qualiÞed Java class name where Ò.Ó are replaced by Ò_Ó and the extension
Ò.h Ó is appended.

Option -includeFilename= Þle

Specify the name of the include Þle to be included in stubs.

Option -version

Print the version of jamaicah and exit.

18.2.2 Classes, Þles, and paths

Option -classpath (-cp)[+]= classpath

SpeciÞes default path used for loading classes.

Option -bootclasspath (-Xbootclasspath)[+]= classpath

SpeciÞes default path used for loading system classes.

Option -classname[+]=" class{ class} "

Generate header Þles for the listed classes. Multiple items must be separated by
spaces and enclosed in double quotes.

230 CHAPTER 18. JAMAICA AND THE JAVA NATIVE INTERFACE (JNI)

18.2.3 Environment Variables

The following environment variables controljamaicah .

JAMAICAH_HEAPSIZEInitial heap size of thejamaicah program itself in
bytes.

JAMAICAH_MAXHEAPSIZEMaximum heap size of thejamaicah program
itself in bytes. If the initial heap size ofjamaicah is not sufÞcient, it will
increase its heap dynamically up to this value.

Chapter 19

Building with Apache Ant

Apache Ant is a popular build tool in the Java world. Anttasksfor the Jamaica
Builder and other tools are available. In this chapter, their use is explained.

Ant build Þles (normally namedbuild.xml) are created and maintained by
the Jamaica Eclipse Plug-In (see Chapter 4). They may also be created manu-
ally. To obtain Apache Ant, and for an introduction, see the web pagehttp:
//ant.apache.org . Apache Ant is not provided with Jamaica. In the follow-
ing sections, basic knowledge of Ant is presumed.

19.1 Task Declaration

Ant tasks for the Jamaica Builder,jamaicah and a task for calling the C com-
piler are provided. The latter two are useful for building programs that include
native code via JNI with Ant. In order to use these tasks,taskdef directives are
required. The following code should be placed after the openingproject tag of
the build Þle:

<taskdef name="jamaicabuilder"
classpath=" jamaica-home/lib/JamaicaTools.jar"
classname="com.aicas.jamaica.tools.ant.JamaicaTask" />

<taskdef name="jamaicacc"
classpath=" jamaica-home/lib/JamaicaTools.jar"
classname="com.aicas.jamaica.tools.ant.JamaicaCCTask" />

<taskdef name="jamaicah"
classpath=" jamaica-home/lib/JamaicaTools.jar"
classname="com.aicas.jamaica.tools.ant.JamaicahTask" />

The task names are used within the build Þle to reference these tasks. They may
be chosen arbitrarily for stand-alone build Þles. For compatibility with the Eclipse
Plug-In, the namesjamaicabuilder andjamaicah should be used.

231

http://ant.apache.org
http://ant.apache.org

232 CHAPTER 19. BUILDING WITH APACHE ANT

19.2 Task Usage

All Jamaica Ant tasks obtain the root directory of the Jamaica installation from
the environment variableJAMAICA. Alternatively, the attributejamaica may
be set tojamaica-home.

19.2.1 Jamaica Builder and Jamaicah

Tool options are speciÞed as nested option elements. These option elements ac-
cept the attributes shown in the following table. All attributes are optional, except
for the name attribute.

Attribute Description Required
name Option name Always
value Option argument For options that re-

quire an argument.
enabled Whether the option is passed to the tool.No (defaulttrue)
append Value is appended to the value stored in

the toolÕs conÞguration Þle (+= syntax).
No (defaultfalse)

Although Ant buildÞles are case-insensitive, the precise spelling of the option
name should be preserved for compatibility with the Eclipse Plug-In.

The following example shows an Ant target for executing the Jamaica Builder.

<target name="build_app">
<jamaicabuilder jamaica="/usr/local/jamaica">

<option name="target" value="linux-x86_64"/>
<option name="classpath" value="classes"/>
<option name="classpath" value="extLib.jar"/>
<option name="interpret" value="true" enabled="false"/>
<option name="heapSize" value="32M"/>
<option name="Xlibraries" value="extLibs" append="true"/>
<option name="XdefineProperty" value="window.size=800x600">
<option name="main" value="Application"/>

</jamaicabuilder>
</target>

This is equivalent to the following command line:

/usr/local/jamaica/bin/jamaicabuilder
-target=linux-x86_64
-classpath=classes:extLib.jar
-heapSize=32M
-Xlibraries+=extLibs
-XdefineProperty=window.size=800x600
Application

19.2. TASK USAGE 233

Note that some options take arguments that contain the equals sign. For example,
the argument toXdefineProperty is of the formproperty=value. As shown
in the example, the entire argument should be placed in thevalue attribute liter-
ally. Ant pattern sets and related container structures are currently not supported
by the Jamaica Ant tasks.

19.2.2 C Compiler

The C Compiler task provides an interface to the target-speciÞc compiler, which
is called by the Builder.

Attribute Description Required
configu-
ration

Jamaica conÞguration Þle from which
default settings are taken.

No (defaults to the
Jamaica conÞgura-
tion Þle of the tar-
get platform given
via thetarget at-
tribute.)

target Platform for which to compile. No (default: host
platform)

source C source Þle Yes
output Output Þle Yes
defines Comma separated list of macros. These

are set to the compilerÕs default (usually
1). Providing deÞnitions for macros is
not supported.

No (default: setting
from the conÞgura-
tion Þle)

include-
path

Search path for header Þles. No (default: setting
from the conÞgura-
tion Þle)

shared If set, add compiler ßags needed for
building shared libraries.

No (defaultfalse)

compiler-
flags

Space separated list of command line ar-
guments passed to the compiler verba-
tim. This extends the default setting.

No (default: setting
from the conÞgura-
tion Þle)

verbose If set, print the generated C Compiler
command line.

No (defaultfalse)

debug Generate code with asserts enabled. No (defaultfalse)
gprof Generate code for GNU gprof. Not sup-

ported on all platforms.
No (default: setting
from the conÞgura-
tion Þle)

234 CHAPTER 19. BUILDING WITH APACHE ANT

Attribute Description Required

dwarf2 Generate debug information compatible
with DWARF version 2. Not supported
on all platforms.

No (default: setting
from the conÞgura-
tion Þle)

The nested element<includepath> extends the include path set via at-
tribute or from the conÞguration Þle. It is a path-like structure; for more informa-
tion see the respective chapter in the Ant Manual [1]. The nested element is useful
for extending the default include path from the conÞguration Þle.

This task is used in thetest_jni example, which may be consulted for an
illustration.

19.3 Setting Environment Variables

The Jamaica Ant tasks do support two additional nested elements,<env> and
<envpropertyset> , that can be used to provide environment variables to the
tool. This is normally only required if the target-speciÞc conÞguration requires
certain environment variables to be set.

For example, when building for VxWorks 6.6, it may be necessary to provide
environment variables in the following way:

<jamaicabuilder jamaica="/usr/local/jamaica">
<env key="WIND_HOME" value="/opt/WindRiver"/>
<env key="WIND_BASE" value="/opt/WindRiver/vxworks-6.6"/>
<env key="WIND_USR" value="/opt/WindRiver/target/usr"/>
...

</jamaicabuilder>

or alternatively, using aPropertySet :

<property name="WIND_HOME" value="/opt/WindRiver"/>
<property name="WIND_BASE" value="/opt/WindRiver/vxworks-6.6"/>
<property name="WIND_USR" value="/opt/WindRiver/target/usr"/>

<jamaicabuilder jamaica="/usr/local/jamaica">
<envpropertyset>

<propertyref prefix="WIND_"/>
</envpropertyset>
...

</jamaicabuilder>

For more information about the usage of these two elements, please refer to
their respective chapters in the Ant Manual [1].

Part IV

Additional Information

235

Appendix A

FAQ Ñ Frequently Asked Questions

Check here Þrst when problems occur using JamaicaVM and its tools.

A.1 Software Development Environments

Question I use Eclipse to develop my Java applications. Is there a plug-in avail-
able which will help me to use JamaicaVM and the Builder from within
Eclipse?

Answer Yes. There is a plugin available that will help you to conÞgure the
Builder download and execute your application on your target. For more
information, seehttps://www.aicas.com/eclipse.html . For a
quick start, you can use the Eclipse Update Site Manager with the following
Update Site:https://aicas.com/download/eclipse-plugin .
This conveniently downloads and installs the plugin.

Question When I set up a Java Runtime Environment (JRE) with the JamaicaVM
Eclipse Plugin, the bootclasses (rt.jar) are set up to be taken from the
host platform. Is this safe when developing for the target platform?

Answer The rt.jar conÞgured in the runtime environment will be used by
Eclipse for generating Java Bytecode and for running the Jamaica host VM.
Code for the target platform is generated by the JamaicaVM Builder, which
automatically chooses the correctrt.jar . Since the Java APIs deÞned
by the host and targetrt.jar are compatible (except if the target is a
proÞle other than the Java Standard Edition), the Java Bytecode generated
by Eclipse will be compatible regardless of whether thert.jar is for the
host or the target, and it is sufÞcient that the Builder chooses the correct
rt.jar .

237

https://www.aicas.com/eclipse.html
https://aicas.com/download/eclipse-plugin

238 APPENDIX A. FAQ Ñ FREQUENTLY ASKED QUESTIONS

A.2 JamaicaVM and Its Tools

A.2.1 JamaicaVM

Question When I try to execute an application with the JamaicaVM I get the error
messageOUT OF MEMORY. What can I do?

Answer The JamaicaVM has a predeÞned setting for the internal heap size. If it is
exhausted the error messageOUT OF MEMORYis printed and JamaicaVM
exits with an error code. The predeÞned heap size is usually large enough,
but for some applications it may not be sufÞcient. You can set the heap
size via thejamaicavm optionsXmxsize, via the environment variable
JAMAICAVM_MAXHEAPSIZE, e.g., underbash with

export JAMAICAVM_MAXHEAPSIZE=1G

or, when using the Builder, via the Builder optionmaxHeapSize .

Question When the built application terminates I see some output likeWARNING:
termination of thread 7 failed . What is wrong?

Answer At termination of the application the JamaicaVM tries to shutdown all
running threads by sending some signal. If a thread is stuck in a native
function, e.g., waiting in some OS kernel call, the signal is not received
by the thread and there is no response. In that case the JamaicaVM does
a hard-kill of the thread and outputs the warning. Generally, the warning
can simply be ignored, but be aware that a hard-kill may leave the OS in
an unstable state, or that some resources (e.g., memory allocated in a native
function) can be lost. Such hard-kills can be avoided by making sure no
thread gets stuck in a native-function call for a long time (e.g., more than
100ms).

Question At startup JamaicaVM prints this warning:

CPU rate unknown, please set property >>jamaica.cpu_mhz<<.
Measured rate: 1799.6MHz

Why could this be a problem?

Answer The CPU cycle counter is used on some systems to measure time by Ja-
maicaVM. In particular, this is used by cost monitoring within the RTSJ and
by code that uses the classcom.aicas.jamaica.lang.CpuTime . To

A.2. JAMAICAVM AND ITS TOOLS 239

map the number of CPU cycles to a time measured in seconds (or nanosec-
onds), the CPU frequency is required. For most target systems, JamaicaVM
does not have a means of determining the CPU frequency. Instead, it will
fall back to measure the frequency and print this warning.

Since the measurement has a relevant runtime overhead and brings some
inaccuracy, it is better to specify the frequency via setting the Java property
jamaica.cpu_mhz to the proper value. Care is needed since setting the
property to an incorrect value will result in cost enforcement to be too strict
(if set too low) or too lax (if set too high).

Question When I run my application with JamaicaVM I get the errorException
in thread "main" java.io.FileNotFoundException: (Too
many open files) . What is the problem?

Answer If you get this error message it means that your application is trying to
open more Þles than the maximum open Þle descriptor limit allowed by
the operating system. In this case you should increase this limit. On Unix
systems this can be achieved by setting a higher soft limit, e.g. by running
ulimit-Sn4096 to set it to 4096.

A.2.2 JamaicaVM Builder

Question When I try to compile an application with the Builder I get the error
messageOUT OF MEMORY. What can I do?

Answer The Builder has a predeÞned setting for the internal heap size. If the
memory space is exhausted, the error messageOUT OF MEMORYis printed
and Builder exits with an error code. The predeÞned maximum heap size
(1024MB) is usually large enough, but for some applications it may not be
sufÞcient. You can set the maximum heap size via the environment variable
JAMAICA_BUILDER_MAXHEAPSIZE, e.g., underbash with the follow-
ing command:

> export JAMAICA_BUILDER_MAXHEAPSIZE=1536MB

Question When I try to compile an application with the Builder I get the error
message:

jamaicabuilder: I/O error while executing C-compiler:
Executing ÕgccÕ failed: Cannot allocate memory.

240 APPENDIX A. FAQ Ñ FREQUENTLY ASKED QUESTIONS

Answer There is not enough memory available to compile the C Þles generated
by the Builder. You can increase the available memory on your system or
reduce the predeÞned heap size of the Builder, e.g. underbash with the
following command:

> export JAMAICA_BUILDER_HEAPSIZE=150MB
> export JAMAICA_BUILDER_MAXHEAPSIZE=300MB

Be aware that you could get anOUT OF MEMORYerror if the heap size is
too small to build your application.

Question When I try to compile an application with the Builder using the Visual
Studio compiler I get the error message:

C Compiler failed with exit code 3221225781 (0xC0000135)

Answer A dynamic library required by Visual Studio (mspdb100.dll when
using Visual Studio 2010) cannot be found. Please add theCommon7\IDE
directory located in your Visual Studio installation directory to your PATH
environment variable.

Question When building an application that contains native code it seems that
some Þelds of classes can be accessed with the functionGetFieldID()
from the native code, but some others not. What happened to those Þelds?

Answer If an application is built, the Builder removes from classes all unrefer-
enced methods and Þelds. If a Þeld in a class is only referenced from native
code the Builder can not detect this reference and protect the Þeld from the
smart-linking-process. To avoid this use theincludeClasses option
with the class containing the Þeld. This will instruct the Builder to fully
include the speciÞed class(es).

Question When I build an application with the Builder I get some warning like
the following:

WARNING: Unknown native interface type of class Õ nameÕ
(name.h) - assume JNI calling convention

Is there something wrong?

A.2. JAMAICAVM AND ITS TOOLS 241

Answer In general, this is not an error. The Builder outputs this warning when it
is not able to detect whether a native function is implemented using JNI (the
standard Java native interface; see chapter Chapter 18) or JBI (a Jamaica
speciÞc, more efÞcient native interface used by the $Jamaica; boot classes).
Usually this means the appropriate header Þle generated with some proto-
type tool likejamaicah is not found or not in the proper format. To avoid
this warning, recreate the header Þle withjamaicah and place it into a
directory that is passed via the Builder argumentXinclude .

Question How can I set properties (using-D name=value) for an application that
was built using the Builder?

Answer For VM commands likejamaicavm , parsing of VM arguments such
as-D name=valuestops at the name of the main class of the application.
After the application has been built, the main class is an implicit argument,
so there is no direct way to provide additional options to the VM. How-
ever, there is a way out of this problem: the Builder option-XnoMain
removes the implicit argument for the main class, sojamaicavm Õs normal
argument parsing is used to Þnd the main class. When launching this appli-
cation, the name of the main class must then be speciÞed as an argument, so
it is possible to add additional VM options such as-D name=valuebefore
this argument.

Question When I run the Builder an error Òexec fail Ó is reported when the
intermediate C code should be compiled. The exit code is 69. What hap-
pened?

Answer An external C compiler is called to compile the intermediate C code. The
compiler command and arguments are deÞned inetc/jamaica.conf .
If the compiler command can not be executed the Builder terminates with
an error message and the exit code 69 (see list of exit codes in the appendix).
Try to use the verbose output with the option-verbose and check if the
printed compiler command call can be executed in your command shell. If
not check the parameters for the compiler inetc/jamaica.conf and
the PATH environment variable.

Question Can I build my own VM as an application which expects the name of
the main class on the command line like JamaicaVM does?

Answer A standalone VM can be built with the Builder option-XnoMain . If
this option is speciÞed, the Builder does not expect a main class while com-
piling. Instead, the built application expects the main class later after startup

242 APPENDIX A. FAQ Ñ FREQUENTLY ASKED QUESTIONS

on the command line. Some classes or resources can be included in the cre-
ated VM, e.g., a VM can be built including all classes of the selected API
except the main program with main class. As smart linking cannot be used
without a main class,-smart=false must be set. Otherwise some Þelds
or methods might be missing at runtime.

A.2.3 Third Party Tools

Question I would like to use JamaicaVM on Windows. Do I need Microsoft
Visual Studio?

Answer Visual Studio is only required when developing for Windows or Win-
dows CE. If developing for other operating systems, the tool and SDK lo-
cations (see Section 2.1) may be left empty.

A.3 Supported Technologies

A.3.1 Cryptography

Question Cryptographic protocols such ashttps do not work.

Answer Due to export restrictions, cryptographic support provided by Jamaica
is limited. For JamaicaVM 6.2 Release 4 and earlier the limit defaults to
48 Bit. For JamaicaVM 6.2 Release 5 and later, the limit was increased
to support default conÞgurations of common protocols such ashttps . In
order to increase the cryptographic strength of Jamaica beyond the default,
jurisdiction policy Þles that permit strong encryption must added to the the
Jamaica installation.

In order to obtain suitable policy Þles for your needs, aicas may be con-
tacted at one of the addresses given in the front matter of this manual.
Jurisdiction policy Þles will be provided in accordance to export regula-
tions. Currently, a stronger version oflocal_policy.jar is sufÞcient,
and eitherlimited_local_policy.jar or unlimited_local_
policy.jar will be provided.

Different policies may be installed simultaneously by copying different pol-
icy Þles to thelib/security subfolder of the home folder of the Java
runtime system for the desired platform:

jamaica-home/target/ platform/lib/security

A.3. SUPPORTED TECHNOLOGIES 243

The Builder option-setLocalCryptoPolicy may be used to choose
the policy Þle to be included under the namelocal_policy.jar into
an application built with Jamaica.

To use stronger encryption with thejamaicavm command, i.e., with-
out using the Jamaica Builder, you have to replace thelocal_policy.
jar Þle bylimited_local_policy.jar or unlimited_local_
policy.jar . Alternatively, thejava.home property may be set to an-
other folder containing the folderlib/security , and in which the de-
sired policy Þle was put and renamed tolocal_policy.jar .

Before replacing policy Þles, it is recommended to rename the existing Þles,
so the original settings can be restored easily.

Question How can I install my own X.509 CA root certiÞcates?

Answer The X.509 CA root certiÞcates are by default stored in a Java keystore,
a storage facility for cryptographic keys and certiÞcates. It can be found
in jamaica-home/target/ platform/lib/security/cacerts . For
your convenience Jamaica comes with a pre-set list of X.509 CA root cer-
tiÞcates. Please adjust and update this list for use in your application.

Jamaica provides thekeytool command to interact with the Þle, it can be
found atjamaica-home/target/ platform/bin/keytool . Thekeytool
can be used to add a cryptographic certiÞcate to the keystore as follows:

keytool -import -alias alias -file certiÞcate-Þle
-keystore cacerts

The tool will ask for a password when performing the import, it is by default
set tochangeit.

Thealiasis a name identifying the certiÞcate in the keystore. ThecertiÞcate-
Þleis a X.509 certiÞcate or a PKCS#7 certiÞcate chain either in binary or in
printable Base64 encoding format. ThecacertsÞle is the keystore.

Questions How can I list the X.509 CA root certiÞcates installed in Jamaica?

Answer For a description of thecacerts keystore please see previous answer.

The installed X.509 CA root certiÞcates can be listed via the bundledkeytool
as follows:

keytool -list -keystore cacerts

The tool will ask for a password when performing the import, it is by default
set tochangeit.

ThecacertsÞle is the keystore.

244 APPENDIX A. FAQ Ñ FREQUENTLY ASKED QUESTIONS

A.3.2 Fonts

Question How can I change the mapping from Java fonts to native fonts?

Answer The mapping between Java font names and native fonts is deÞned in the
fonts.properties Þle. Each target system provides this Þle with use-
ful default values. An application developer can provide a specialized ver-
sion for this Þle. To do this the new mapping Þle must exist in the classpath
at build time. The Þle must be added as a resource to the Þnal application by
adding-resource+= pathwherepathis a path relative to a classpath root.
Setting the system propertyjamaica.fontproperties with the op-
tion -XdefineProperty=jamaica.fontproperties= path will
provide the graphics environment with the location of the mapping Þle.

Thefonts.properties Þle contains one line per font mapping, the line
begins with the lower-case name of the font to be mapped followed by an
underscore and the style (p for plain, b for bold, i for italic, ib for italic
and bold). After that the font to be mapped to is assigned using an equals
sign and the absolute path to the font Þle in the classpath.

This is an example for afonts.properties Þle:

bitstream\ vera\ sans_p=/Vera.ttf
bitstream\ vera\ sans_i=/VeraIt.ttf
bitstream\ vera\ sans_b=/VeraBd.ttf
bitstream\ vera\ sans_ib=/VeraBI.ttf

In this example all style variations of theBitstreamVeraSans font
are mapped to TrueType font Þles in the classpath, note that escaping of
spaces in the font name is required. It is also possible to map JavaÕs Þve
logical font families to custom font Þles by providing a mapping for their
respective names (Dialog , DialogInput , Monospaced , Serif or
SansSerif).

Question Why do fonts appear different on host and target?

Answer Jamaica relies on the target graphics system to render true type fonts.
Since that renderer is generally a different one than on the host system it is
possible that the same font is rendered differently.

A.3.3 Serial Port

Question How can I access the serial port (UART) with Jamaica?

A.3. SUPPORTED TECHNOLOGIES 245

Answer You can use RXTX which is available for Linux, Windows, Solaris and
as source code athttp://users.frii.com/jarvi/rxtx . Get fur-
ther information there.

Question Can I use the Java Communications API?

Answer The Java Communications API (also known asjavax.comm) is not
supported by Jamaica. Existing applications can be ported to RXTX easily.

A.3.4 Realtime Support and the RTSJ

Question Does JamaicaVM support the Real-Time SpeciÞcation for Java (RTSJ)?

Answer Yes. The RTSJ V1.0.2 is supported by JamaicaVM 8.0. The API docu-
mentation of the implementation can be found athttps://www.aicas.
com/cms/reference-material .

Question The realtime behavior is not as good as I expected when using Ja-
maicaVM. Is there a way to improve this?

Answer If you are using a POSIX operating system, the best realtime behavior
can be achieved when using the FIFO scheduling policy. Note that Linux
requires root access to set a realtime scheduling policy. See Section 10.5.3

Question Is Linux a real-time operating system?

Answer No. However, kernel patches exist which add the functionality for real-
time behavior to a regular Linux system.

Question When running a real-time application, this warning is printed:

*** warning: Java real-time priorities >=11 not usable,
using priority 10 (error: Operation not permitted)

Answer The creation of a thread with real-time priority was not permitted by
the operating system. Instead JamaicaVM created a thread with normal
priority. This means that real-time scheduling is not available, and that the
application will likely not work properly.

On off-the-shelf Linux systems, use of real-time priorities requires super-
user privileges. That is, starting the application withsudo will resolve
the issue. Alternatively, the priority limits for particular users or groups
may be changed by editing/etc/security/limits.conf and set-
ting rtprio to the maximum native priority used. For the default priority
map used by JamaicaVM on Linux, setting thertprio limit to 80 is sufÞ-
cient.

http://users.frii.com/jarvi/rxtx
https://www.aicas.com/cms/reference-material
https://www.aicas.com/cms/reference-material

246 APPENDIX A. FAQ Ñ FREQUENTLY ASKED QUESTIONS

A.3.5 Remote Method Invocation (RMI)

Question Does Jamaica support RMI?

Answer RMI is supported. JamaicaVM uses dynamically generated stub and
skeleton classes. So no previous call tormic is needed to generate those.

If the Builder is used to create RMI server applications, the exported inter-
faces and implementation classes need to be included.

An example build Þle demonstrating the use of RMI with Jamaica is pro-
vided with the JamaicaVM distribution. See Tab. 2.4.

Question How can I use RMI?

Answer RMI applications often comprise two separate programs, a server and a
client. A typical server program creates some remote objects, makes refer-
ences to these objects accessible, and waits for clients to invoke methods on
these objects. A typical client program obtains a remote reference to one or
more remote objects on a server and then invokes methods on them. RMI
provides the mechanism by which the server and the client communicate
and pass information back and forth.

Like any other Java application, a distributed application built by using Java
RMI is made up of interfaces and classes. The interfaces declare methods.
The classes implement the methods declared in the interfaces and, perhaps,
declare additional methods as well. In a distributed application, some im-
plementations might reside in some Java virtual machines but not others.
Objects with methods that can be invoked across Java virtual machines are
called remote objects.

An object becomes remote by implementing a remote interface, which has
the following characteristics:

¥ A remote interface extends the interfacejava.rmi.Remote .

¥ In addition to any application-speciÞc exceptions, each method sig-
nature of the interface declaresjava.rmi.RemoteException in
its throws clause,.

Using RMI to develop a distributed application involves these general steps:

1. Designing and implementing the components of your distributed ap-
plication.

2. Compiling sources.

A.3. SUPPORTED TECHNOLOGIES 247

3. Making classes network accessible.

4. Starting the application.

First, determine your application architecture, including which components
are local objects and which components are remotely accessible. This step
includes:

¥ DeÞning the remote interfaces. A remote interface speciÞes the meth-
ods that can be invoked remotely by a client. Clients program to re-
mote interfaces, not to the implementation classes of those interfaces.
The design of such interfaces includes the determination of the types
of objects that will be used as the parameters and return values for
these methods. If any of these interfaces or classes do not yet exist,
you need to deÞne them as well.

¥ Implementing the remote objects. Remote objects must implement
one or more remote interfaces. The remote object class may include
implementations of other interfaces and methods that are available
only locally. If any local classes are to be used for parameters or return
values of any of these methods, they must be implemented as well.

Implementing the clients. Clients that use remote objects can be im-
plemented at any time after the remote interfaces are deÞned, includ-
ing after the remote objects have been deployed.

Example source code demonstrating the use of Remote Method Invocation
is provided with the JamaicaVM distribution. See Section 2.4.

Question Does JamaicaVM include tools likermic andrmiregistry to de-
velop RMI applications?

Answer Thermiregistry tool is included in JamaicaVM and can be executed
like this:

jamaicavm sun.rmi.registry.RegistryImpl

JamaicaVM 3.0 added support for the dynamic generation of stub classes at
runtime, obviating the need to use the Java Remote Method Invocation (Java
RMI) stub compilerrmic to pre-generate stub classes for remote objects.

248 APPENDIX A. FAQ Ñ FREQUENTLY ASKED QUESTIONS

A.3.6 OSGi

Question Does JamaicaVM support OSGi?

Answer Yes. JamaicaVM runs with the Prosyst OSGi Runtime, Apache Felix
and Eclipse Equinox.

Question How can I improve the performance of my OSGi application?

Answer OSGi loads every bundle with a different class loader, so the bundles
will be loaded and interpreted at runtime. If a bundle does not need to be
updated at runtime, the class loading can be delegated to the class loader of
the OSGi framework to use the compiled built-in classes (see Chapter 5).

To achieve this, add the affected bundle to the classpath when building the
application. Set theorg.osgi.framework.bundle.parent prop-
erty to framework and pass the list of packages used by the bundle to
the framework with theorg.osgi.framework.bootdelegation
property.

A.4 Target-SpeciÞc Issues

A.4.1 Targets using the GNU Compiler Collection (GCC)

Question The tools for my platform include a GCC 4.4.x compiler, and I observe
semantically incorrect behaviour of code created with Jamaica Builder. What
is going wrong?

Answer This may be caused by a faulty optimization that can be observed with
GCC 4.4.x. The optimization is calledvalue range propagationand it can
be turned off with the compiler ßag-fno-tree-vrp . On the Builder
command line, add-XCFLAGS+=-fno-tree-vrp .

A.4.2 QNX

Question When executing a shell script from Jamaica viaRuntime.exec()
or theProcessBuilder I get the following exception:

java.io.IOException: error=8, Exec format error

I did check that the shell script has executable permissions.

Answer QNXÕs mechanism for invoking the program does not recognize it as a
shell script. This can be resolved by adding

A.4. TARGET-SPECIFIC ISSUES 249

#!/bin/sh

as the Þrst line of the script.

A.4.3 VxWorks

Question When I load a built application I getUndefined symbol: .

Answer This linker error indicates that VxWorks modules required by Jamaica
are not present in the kernel. Please see Appendix B.1.1.1 and recompile
the VxWorks kernel image according to the instructions provided there.

Question When building on a Windows host system, many warnings of the fol-
lowing kind occur:

jamaica_native_io.o(.text+0x12): undefined reference to
ÔvprintfÕ

Answer This problem is caused by a conßicting version of Cygwin being present
on the system. The Builder expects the Cygwin version provided with the
WindRiver Tools. In order to avoid these warnings, ensure that only the
cygwin1.dll provided by the Tool Chain is loaded or on the path.

Question Exceptions and error messages reported by Jamaica refer to VxWorks
error codes. Is it possible to conÞgure Jamaica to show the corresponding
messages?

Answer Jamaica is conÞgured to obtain messages for VxWorks error codes pro-
vided these are built into the kernel. Error messages are provided with the
moduleINCLUDE_STAT_SYM_TBL, which should be included in the ker-
nel. See also Appendix B.1.1.1.

Question On VxWorks 6.6 RTP or higher I observe a segmentation violation
while executing a Jamaica virtual machine or a built application:

0x4529c6c (iJamaicavm_bin): RTP 0x452b010 has been stopped
due to signal 11.

Answer This failure may be caused by one of several possible defects. Please
make sure you use Jamaica 6.0 Release 2 or later. In addition, make sure that
WindRiverÕs patches for bugs WIND00137239, WIND00151164 as well as
WIND00225310 are installed on your VxWorks system.

250 APPENDIX A. FAQ Ñ FREQUENTLY ASKED QUESTIONS

WindRiver has conÞrmed WIND00151164 and WIND00225310 for Vx-
Works 6.6 and the x86 platform only. WIND00137239 was observed for
VxWorks 6.8 x86 platform and VxWorks 6.7 PPC platform, but was con-
Þrmed for other platforms as well.

According to WindRiver, the presence of these patches can be conÞrmed
by checking the version number reported by the C compiler. WindRiver
recommended the following:

In this case you can use the commandccpentium -v in Vx-
Works development shell, in the following directory:

install_dir\gnu\4.1.2-vxworks-6.6\x86-win32\bin

This will print the information about the GNU compiler that you
need. The result should be:

gcc version 4.1.2 (Wind River VxWorks G++ SJLJ-EH 4.1-238)

If there are difÞculties in obtaining the patches or resolving the issue, please
contact the aicas support team.

Question On VxWorks RTP, versions 6.6 to 6.8, I observe an assertion failure
while executing a Jamaica virtual machine or a built application:

In function _rtld_digest_phdr { headers.c:312 nsegs == 2
{ assertion failed

Answer This failure is caused by the WindRiver bug WIND00137239. Please
install the WindRiver patch for bug WIND00137239 or the GNU 4.1.2 Cu-
mulative Patch for your VxWorks version and platform.

Question On VxWorks 6.7 RTP I observe an exception in the task tNet0 while ex-
ecuting a Jamaica virtual machine or a built application which uses java.net:

0x169f020 (tNet0): task 0x169f020 has had a failure
and has been stopped.

Answer This failure is caused by the WindRiver bug WIND00157790. Please
install the WindRiver patch for bug WIND00157790 or the Service Pack 1
for VxWorks 6.7.1 and VxWorks Edition 3.7 Platforms. Then rebuild the
VxWorks image. If you use a built application rebuild the application as
well.

Appendix B

Information for SpeciÞc Targets

This appendix contains target speciÞc documentation and descriptions.

B.1 Operating Systems

B.1.1 VxWorks

VxWorks from Wind River Systems is a real-time operating system for embedded
computers.

B.1.1.1 ConÞguration of VxWorks

For general information on the conÞguration of VxWorks, please refer to the user
documentation provided by WindRiver. For Jamaica, VxWorks should be conÞg-
ured to include the following functionality:1

¥ INCLUDE_DEBUG_SHELL_CMD

¥ INCLUDE_DISK_UTIL_SHELL_CMD

¥ INCLUDE_EDR_SHELL_CMD

¥ INCLUDE_GNU_INTRINSICS

¥ INCLUDE_HISTORY_FILE_SHELL_CMD

¥ INCLUDE_IPTELNETS

¥ INCLUDE_IPWRAP_GETIFADDRS

1Package names refer to VxWorks 6.6, names for other versions vary.

251

252 APPENDIX B. INFORMATION FOR SPECIFIC TARGETS

¥ INCLUDE_KERNEL_HARDENING

¥ INCLUDE_LOADER

¥ INCLUDE_NETWORK

¥ INCLUDE_NFS_CLIENT_ALL

¥ INCLUDE_NFS_MOUNT_ALL

¥ INCLUDE_PING

¥ INCLUDE_POSIX_SEM

¥ INCLUDE_POSIX_SIGNALS

¥ INCLUDE_SHELL

¥ INCLUDE_SHELL_EMACS_MODE

¥ INCLUDE_SHOW_ROUTINES

¥ INCLUDE_STANDALONE_SYM_TBL

¥ INCLUDE_STARTUP_SCRIPT

¥ INCLUDE_STAT_SYM_TBL

¥ INCLUDE_ROUTECMD

¥ INCLUDE_RTL8169_VXB_END

¥ INCLUDE_TASK_SHELL_CMD

¥ INCLUDE_TASK_UTIL

¥ INCLUDE_TC3C905_VXB_END

¥ INCLUDE_TELNET_CLIENT

¥ INCLUDE_UNLOADER

For targets with kernel version VxWorks 6.9.2.2 and later, the moduleINCLUDE_
DRV_STORAGE_PIIXneeds to be included on the target kernel. For earlier ver-
sions, instead the moduleINCLUDE_ATAshould be included.

The moduleINCLUDE_GNU_INTRINSICSis only required if Jamaica was
built using the GNU compiler, which is the default. The moduleINCLUDE_
STAT_SYM_TBLis not strictly necessary but its inclusion is recommended, for

B.1. OPERATING SYSTEMS 253

it enables Jamaica to print messages instead of codes for errors received from the
operating system.

If VxWorks real time processes (aka RTP) are used, the following compo-
nents are also required (RTPs generated with Jamaica are dynamically linked by
default):

¥ INCLUDE_POSIX_PTHREAD_SCHEDULER

¥ INCLUDE_SHL

¥ INCLUDE_RTP

¥ INCLUDE_RTP_SHELL_CMD

If WindML graphics is used, the following component must be included as well:

¥ INCLUDE_WINDML

¥ Further, BMF-Fonts (BitMap Fonts) must be included in the WindML con-
Þguration. A minimum of one font is mandatory. Also make sure that
ÒMonoÓ option is not selected from ÒGraphic ModeÓ.

The number of available open Þles should be increased by setting the following
parameters:

Parameter Value
NUM_FILES 1024 (DKM only)
RTP_FD_NUM_MAX 1024 (RTP only)

You might also need to set Þle system speciÞc parameters. For example, if
dosFs is used, then youÕll also have to set theDOSFS_DEFAULT_MAX_FILES
parameter.

In addition, the following parameters should be set:

Parameter Value
TASK_USER_EXC_STACK_SIZE 16384

! If some of this functionally is not included in the VxWorks kernel image,
linker errors may occur when loading an application built with Jamaica and

the application may not run correctly.

ConÞguration of VxWorks 7.x From VxWorks 7.0, a Source Build needs to
be made as part of the OS conÞguration process. For ARM architectures, the Vx-
Works Source Build needs to be conÞgured to usesoft ßoating point in the BSP
conÞgruration so that the Kernel and thelibc.so library are built with the re-
quiredaeabi symbols. Due to limitations of the ßoating point hardware of ARM
processors, Jamaica uses a software implementation. See also Appendix B.2.1.1.

254 APPENDIX B. INFORMATION FOR SPECIFIC TARGETS

B.1.1.2 Installation

The VxWorks version of Jamaica is installed as described in the section Installa-
tion (Section 2.1). In addition, the following steps are necessary.

ConÞguration for Tornado (VxWorks 5.x)

¥ Set the environment variableWIND_BASEto the base directory of the Tor-
nado installation.

¥ We recommend you set the environment variableWIND_BASEin your boot-
or login-script to the directory where Tornado is installed (top-level direc-
tory).

¥ Add the Tornado tools directory to thePATHenvironment variable, so that
tools likeccppc.exe resp.ccpentium.exe can be found.

! Do not use the DOS/Windows-Style path separator Ò\ Ó (backslash) inWIND_
BASE, because some programs interpret the backslash as an escape sequence

for special characters. Use Ò/ Ó (slash) in path names.

ConÞguration of platform-speciÞc tools (see Section 2.1.1.3) is only required
in special situations. Normally, setting the environment variableWIND_BASE
and extendingPATHis sufÞcient.

ConÞguration for Workbench (VxWorks 6.x)

¥ Set the environment variableWIND_HOMEto the base directory of the Wind-
River installation (e.g./opt/WindRiver).

¥ Set the environment variableWIND_BASEto the VxWorks directory in
the WindRiver installation. The previously declared environment variable
WIND_HOMEmay be used (e.g.,WIND_HOME/vxworks-6.6).

¥ Set the environment variableWIND_USRto the RTP header Þles directory
of the WindRiver installation (e.g.,WIND_BASE/target/usr).

We recommend usingwrenv.sh , located in the WindRiver base directory to
set all necessary environment variables. The VxWorks subdirectory has to be
speciÞed as the following example shows for VxWorks 6.6:

> /opt/WindRiver/wrenv.sh -p vxworks-6.6

B.1. OPERATING SYSTEMS 255

! Do not addwrenv.sh to your boot or login script. It starts a new shell which
tries to process its login-script and thus you create a recursion.

ConÞguration of platform-speciÞc tools (see Section 2.1.1.3) is only required
in special situations. Normally, executingwrenv.sh is sufÞcient.

ConÞguration for VxWorks 7.x

¥ Set the environment variablesWIND_HOME, WIND_BASEandWIND_USR
as described above.

¥ Set the environment variableLD_LIBRARY_PATHto the folder which
containsliblmapi.so or lmapi.dll (the License Management API
libraries), while adding the folder into yourPATHenvironment variable.
LM_LICENSE_FILE needs to be set to the appropriate value based on
your license type (ßoating, node-locked, etc.).

¥ Additionally, set the environment variableVSB_DIRto the VxWorks source
build folder (the folder that contains the Þlevsb.config).

B.1.1.3 Starting an application (DKM)

The procedure for starting an application on VxWorks depends on whether down-
loadable kernel modules (DKM) or real-time processes (RTP) are used.

For DKM, if the target system is conÞgured for disk, FTP or NFS access,
simply enter the following command on the target shell:

-> ld < Þlename

Here,Þlenameis the complete Þlename of the created application.
The main entry point address for an application built with the Jamaica Builder

has the symbolic names Òjvm Ó and Òjvm_ destinationÓ, wheredestinationis ei-
ther the name set via the Builder optiondestination or the name of the main
class. For example, in the VxWorks target shell the HelloWorld application may
be started with these commands:

-> sp jvm
-> sp jvm_HelloWorld

When starting an application that takes arguments, those are given in a single
string as a second argument:

-> sp jvm," args"

256 APPENDIX B. INFORMATION FOR SPECIFIC TARGETS

The start code of the created application parses this string and passes it as a stan-
dard Java string array to the main method. When starting a VM, all options and
arguments must be put in this string according to the VM command line syntax.

Note: even if the Builder generates a Þle with the speciÞed name, it may be
renamed later, because the name of the main entry point is read from the symbol
table included in the object Þle.

Setting environment variables Environment variables may be set in the Vx-
Works shell via theputenv command:

-> putenv(" VARIABLE=value")

In order to start a user task that inherits these variables from the shell, the task must
be spawned with theVX_PRIVATE_ENVbit set. To do so, use thetaskSpawn
command:

-> taskSpawn "jamaica",0,0x01000080,0x020000,jvm," args"

Running two Jamaica applications at the same time In order to run two Ja-
maica applications at the same time, matching of common symbols by the kernel
must be switched off. This is achieved by setting the global VxWorks variable
ldCommonMatchAll to false prior to loading the applications.

-> ldCommonMatchAll=0
-> ld < RTHelloWorld
-> ld < HelloWorld
-> sp jvm_RTHelloWorld
-> sp jvm_HelloWorld

In the example, ifldCommonMatchAll were not set to0, HelloWorld would
reuse symbols deÞned by RTHelloWorld.

Note that this functionality is not available on all versions of VxWorks. Please
check the VxWorks kernel API reference.

Restarting a Jamaica application To restart a Jamaica application after it has
terminated, it should be unloaded with theunld command and then reloaded.
This is illustrated in the following example:

-> ld < HelloWorld
value = 783931720 = 0x2eb9d948 = ÕHÕ
-> sp jvm_HelloWorld
[...]
-> unld 783931720
value = 0 = 0x0
-> ld < HelloWorld

B.1. OPERATING SYSTEMS 257

value = 784003288 = 0x2ebaf0d8 = ÕKÕ
-> sp jvm_HelloWorld
[...]

Note that the application should not be unloaded while still running. Theunld
command is optional, and the VxWorks image needs to be conÞgured to include
it by adding INCLUDE_UNLOADERto the conÞguration as suggested in Ap-
pendix B.1.1.1.

B.1.1.4 Starting an application (RTP)

If real-time processes (aka RTP) are used, the dynamic librarylibc.so must be
renamed tolibc.so.1 and added to the folder of the executable. This library
is located in the WorkBench installation

$WIND_BASE/target/usr/lib/ arch/ variant/common[le]/libc.so

or (for VxWorks 6.8 and later)

$WIND_BASE/target/lib[_smp]/usr/lib/ arch/ variant/common[le]/libc.so

where, in case of an x86 architecture,arch is, for example,pentium andvariant
is, for example,PENTIUM. Thelib_smp directory contains multicore libraries.

To start the application, please use the following shell command:

-> rtpSp " Þlename"

If you would like to specify command line parameters, add them as a space-
separated list in the following fashion:

-> rtpSp " Þlename arg1 arg2 arg3"

ThertpSp command will pass environment variables from the shell to the spawned
process.

B.1.1.5 Linking the application to the VxWorks kernel image

The built application may also be linked directly to the VxWorks kernel image, for
example for saving the kernel and the application in FLASH memory. In the Vx-
Works kernel a user application can be invoked enabling the VxWorks conÞgura-
tion deÞneINCLUDE_USER_APPLand deÞning the macroUSER_APPL_INIT
when compiling the kernel (see VxWorks documentation and the ÞleusrConfig.
c). The prototype to invoke the application created with the Builder is:

int jvm_ main(const char * commandLine);

258 APPENDIX B. INFORMATION FOR SPECIFIC TARGETS

wheremain is the name of the main class or the name speciÞed via the Builder
optiondestination . To link the application with the VxWorks kernel image
the macroUSER_APPL_INIT should be set to something like this:

extern int jvm_ main (const char *); jvm_ main (args)

whereargs is the command line (as a C string) which should be passed to the
application.

B.1.1.6 Enabling AltiVec on PowerPC Devices

If the PowerPC CPU of your target hardware supports AltiVec you can enable
it for VxWorks DKM or RTP by setting the environment variableJAMAICA_
VXWORKS_ALTIVECto true .

B.1.1.7 Limitations

The current release of Jamaica for VxWorks has the following limitations:

¥ java.lang.Runtime.exec() is not implemented

¥ The methodjava.lang.System.getenv() that takes no parameters
and returns ajava.util.Map is not implemented.

¥ Loading of dynamic libraries at runtime is not supported. These methods
are not implemented:

Ð System.loadLibrary(String)

Ð Runtime.loadLibrary(String)

Ð Runtime.load(String)

¥ The following realtime signals are not available:

SIGSTKFLT, SIGURG, SIGXCPU, SIGXFSZ, SIGVTALRM, SIGPROF,
SIGWINCH, SIGIO , SIGPWR, SIGSYS, SIGIOT , SIGUNUSED, SIG-
POLL, SIGCLD.

¥ Jamaica does not allow an application to set the resolution of the realtime
clock provided injavax.realtime .2 The resolution of the clock de-
pends on the frequency of the system ticker (see the VxWorks functions
sysClkRateGet() andsysClkRateSet()). If a higher resolution
for the realtime clock is needed, the frequency of the system ticker must

2The RTSJ realtime clock may be obtained throughClock.getRealtimeClock() .

B.1. OPERATING SYSTEMS 259

be increased. Care must be taken when doing this, because other programs
running on the system may change their behavior and even fail. In addition,
under VxWorks 5.4 the realtime clock must be informed about changes of
the system ticker rate with the functionclock_setres() . The easiest
way of doing this is adding the following into a startup script for VxWorks:

sysClkRateSet(1000)
timeSpec=malloc(8)
(* (timeSpec+0))=0
(* (timeSpec+4))=1000000
clock_setres(0,timeSpec)
free(timeSpec)

This example sets the system ticker frequency to 1000 ticks per second and
the resolution of the realtime clock to 1ms.

¥ Depending on the Þle system,File.canRead() , File.canWrite()
andFile.canExecute() may return incorrect values. These functions
work for NFS, they do not necessarily work for local disk (FAT) and FTP.
The reason for this limitation rooted in the implementation ofaccess()
provided by VxWorks.

¥ Depending on the Þle system,RandomAccessFile.setLength() may
not work. This function works for local disk (FAT), they do not work for
NFS. This is caused by the implementation of ioctl FIOTRUNC.

¥ File locking throughFileChannel.lock() is supported only on High
Reliability File System (HRFS) on VxWorks RTP.

¥ Support for memory mapped buffers (java.nio) is not available on Vx-
Works 5.x. This is due tommapbeing unavailable.

¥ For parallel applications on VxWorks SMP the option-Xcpus can either
be set to all CPUs or one CPU. Any other set of CPUs is currently not
supported by VxWorks.

¥ Running two Jamaica applications, where both usesWindML is not sup-
ported. This is because theWindML graphics context cannot be shared
across different VM instances safely.

¥ Mixing scheduling policies (by using the Builder optionpriMap or the
VM environment variableJAMAICAVM_PRIMAP) is not supported by Vx-
Works.

260 APPENDIX B. INFORMATION FOR SPECIFIC TARGETS

B.1.1.8 Additional notes

¥ Object Þles: because applications for VxWorks (DKM only) are usually
only partially linked, missing external functions and missing object Þles
cannot be detected at build time. If native code is included in the application
with the optionobject , Jamaica cannot check at build time if all needed
native code is linked to the application. This is only possible in the Þnal
linker step when the application is loaded on the target system.

B.1.2 Windows

B.1.2.1 Limitations

The current release of Jamaica for the desktop versions of Windows contains the
following limitations:

¥ No realtime signals are available.

¥ Paths handled byjava.io.File cannot be longer than 248 characters.
This Þgure refers to the absolute path Ñ that is, it is for example not pos-
sible to extend an absolute path of 240 characters by a relative path of 20
characters.

¥ On multicore systems Jamaica will always run on the Þrst CPU in the sys-
tem.

¥ The methodjava.lang.System.getenv() that takes no parameters
and returns ajava.util.Map is only implemented for Windows ver-
sions that support Unicode. To be precise: it is required that the system
header Þlewindows.h deÞnes theUNICODEßag.

B.1.3 WindowsCE

B.1.3.1 Limitations

The current release of Jamaica for WindowsCE contains the following limitations:

¥ WindowsCE Version 5 limits process memory to 32MB of RAM. Therefore
the application executable plus the amount of native stack for all threads
in the thread pool plus the amount of memory required to display graphics
must be less than 32MB.

¥ It is not possible to redirect the standard IO for processes created with
Runtime.exec() .

B.1. OPERATING SYSTEMS 261

¥ WindowsCE does not support the notion of a current working directory. All
relative paths are interpreted as relative to the device root. Any Þle operation
should be done with absolute paths. The methodsFile.getAbsolute-
Path() andFile.getCanonicalPath() will prepend the value of
the system propertyuser.dir . Note that none of the other methods in
File will honor user.dir . When settinguser.dir it is important
not to set it to a single backslash to avoid creating UNC paths. Instead
user.dir should be set to (Ò\. Ó) (which is the default setting in Jamaicaú)

¥ WindowsCE does not support environment variables. If you have a registry
editor on your target, you can create string entries in the registry key

HKEY_CURRENT_USER\Software\aicas\jamaica\environment

that represent environment variable settings. To setVARIABLE=value
create a new string value with nameVARIABLEand datavalue . The type
of the entry should beREG_SZ.

¥ The methodjava.lang.System.getenv() that takes no parameters
and returns ajava.util.Map is not implemented.

¥ File locking throughFileChannel.lock() is not supported for all Þle
systems on WindowsCE. If WindowsCE does not support Þle locking for a
given Þle system calls to FileChannel.lock() will fail silently. In particular,
the UNC network Þlesystems does not support this mechanism.

¥ OnSH4processors, JamaicaVM Builder uses C compiler optimization level
-Od (no optimization) for all three optimization levels (size, speed, all).
This is due to a bug in the C compiler (VisualStudio 2008 (9) Ñ Microsoft
(R) C/C++ Optimizing Compiler Version 15.00.20720 for Renesas SH).

¥ If the UTF8 code page is not supported by the WindowsCE image, classes
cannot be loaded dynamically. In particular, the target VMs will not be
usable. The VM will terminate with the message thatUnicode strings
cannot be created . System calls like reading a Þle might also fail.

¥ Windows Compact 2013 does not support stdin, stdout, stderr. It is not pos-
sible to redirect the output of your application to the console. The output
can still redirected to a Þle on the system. This can be archived by us-
ing the propertiesjamaica.out_to_file and jamaica.err_to_
file . For more information please see Section 13.5.1. Since the stdin
handle is not supported by Windows Compact 2013, JamaicaVM does not
provide console input for this operating system.

262 APPENDIX B. INFORMATION FOR SPECIFIC TARGETS

B.1.4 OS-9

B.1.4.1 Installation

To use the OS-9 toolchain, ensure that the following environment variable is set
correctly (should be done during OS-9 installation):

¥ MWOS(e.g.,C: \ MWOS)

For OS-9 the toolchain executables must be in the system path. On Windows, you
can set this with the PATH environment variable:

¥ set PATH=%PATH%;C:\ MWOS\ DOS\ BIN

! The OS-9 toolchain creates temporary Þles that are not unique. Calling the
toolchain concurrently with the Builder optionjobs may fail.

B.1.4.2 Limitations

The current release of Jamaica for OS-9 contains the following known limitations:

¥ The methodjava.lang.System.getenv() that takes no parameters
and returns ajava.util.Map is not implemented.

¥ Loading of dynamic libraries at runtime is not supported. These methods
are not implemented:

Ð System.loadLibrary(String)

Ð Runtime.loadLibrary(String)

Ð Runtime.load(String)

¥ java.net.Socket.bind()
does not throw an exception if called several times with the same address.

¥ java.nio.FileChannel.map()
is not supported.

¥ It is not possible to redirect the standard IO for processes created with
Runtime.exec() .

B.1.5 PikeOS

JamaicaVM uses the POSIX (PSE52) personality. An application can be built
with the JamaicaVM Builder and integrated into a POSIX (PSE52) partition.

B.1. OPERATING SYSTEMS 263

B.1.5.1 Inter-Partion Communication

JamaicaVM provides basic support for queuing ports, sampling ports and shared
memory objects.

The ports can be accessed viajava.io.File . To write to and read from a
port, ajava.io.FileOutputStream or java.io.FileInputStream
can be used, respectively.

Shared memory objects can be accessed as ajava.nio.ByteBuffer ob-
tained from ajava.nio.channels.FileChannel object.

Queuing Ports

¥ The methodFile.length() can be called to get the number of messages
that can be read or written, depending on the data direction of the port,
without blocking.

¥ The maximum message size has to be deÞned manually.

¥ To write to a queuing port namedSOURCE, this code could be used:

File file = new File("/qport/SOURCE");
FileOutputStream stream = new FileOutputStream(file);
stream.write("My message".getBytes());

¥ Reading from a port namedDESTINATIONcan be done like this:

File file = new File("/qport/DESTINATION");
FileInputStream stream = new FileInputStream(file);
byte[] buffer = new byte[MAX_MESSAGE_SIZE];
stream.read(buffer);

Sampling Ports

¥ The methodFile.length() can be called to get the size of the sampling
port data buffer in bytes.

¥ Writing to and reading from sampling ports is almost equivalent to queuing
ports. The Þle names are/sport/SOURCE and/sport/DESTINATION
if the sampling ports are namedSOURCEandDESTINATION, respectively.

¥ If a message is out of date when read, anIOException is thrown.

264 APPENDIX B. INFORMATION FOR SPECIFIC TARGETS

Shared Memory Objects

¥ The methodFileChannel.size() can be called to get the size of the
shared memory object in bytes.

¥ A ByteBuffer object to access the shared memory can be created with
the methodFileChannel.map() . Thepositionandsizearguments have
to be a multiple of the page size.

¥ Reading the Þrst byte from a shared memory object namedSHAREDcan be
done like this:

File file = new File("/shm/SHARED");
RandomAccessFile random = new RandomAccessFile(file, "r");
FileChannel channel = random.getChannel();
long size = channel.size();
ByteBuffer buffer = channel.map(MapMode.READ_ONLY, 0, size);
byte data = buffer.get();

B.1.5.2 Using a Customized lwIP Library

For applications that can not use the default settings for TCP/IP communication,
the lwIP library has to be customized as described in the PikeOS documentation.

The location of the lwIP build directory with the Þleslwipopts.h and
liblwip4.a then has to be communicated to the JamaicaVM Builder. Oth-
erwise the default lwIP paths located in the toolchain are used, e.g./opt/
pikeos-3.5/target/ppc/e500/bposix/lwip/include/opts and
/opt/pikeos-3.5/target/ppc/e500/bposix/lwip/lib .

¥ To use a customized library as a default, the default lwIP paths that are listed
in theXinclude entry and theXlibraryPaths entry of thejamaica.
conf Þle have to be replaced by the lwIP build directory.

¥ To use a customized library for all applications individually, the default lwIP
paths in thejamaica.conf Þle can be removed and the lwIP build direc-
tory appended to the list of include paths using the-Xinclude+= op-
tion and to the list of library paths using the-XlibraryPaths+= option
when building an application.

B.1.5.3 Limitations

¥ As the POSIX personality is a single process implementation,java.lang.
Runtime.exec() and thejava.lang.ProcessBuilder class are
not supported.

B.1. OPERATING SYSTEMS 265

¥ Because not all socket options are available on PikeOS, several methods in
thejava.net package are not supported:

Ð Socket.getReuseAddress()

Ð Socket.setReuseAddress()

Ð Socket.getSoLinger()

Ð Socket.setSoLinger()

Ð Socket.getReceiveBufferSize()

Ð Socket.setReceiveBufferSize()

¥ Network multicasting is not supported.

¥ Getting and setting Þle permissions is not supported.

¥ Getting Þle partition size information is not supported.

¥ Environment variables (set from the outside) cannot be read.

¥ Because theCLOCK_REALTIMEclock is reset when the partition boots,
System.currentTimeMillis() returns the milliseconds since then,
even if the board provides the current time.

If the current time is required, a PikeOS device driver should be written.

¥ Because of limitations of PikeOS,java.nio.channels.FileChannel
is not fully supported:

Ð Memory mapping withFileChannel.map() depends on the POSIX
functionmmap() support by the underlying Þle system provider.

Ð File transfer withFileChannel.transferTo() orFileChannel.
transferFrom() is not supported.

Ð File locking withFileChannel.lock() is not supported.

¥ Jamaica uses POSIX threads on PikeOS. In order to improve the response
time of applications running with Jamaica, you may tune two system pa-
rameters of PikeOS:

Ð The scheduling property ÒTick duration in millisecondsÓ in the tune-
able parameters of the POSIX partition can be set to a lower value
when using the Codeo IDE. Alternatively, this can be done by modify-
ing theSCHED_TICKparameter inproject.xml.conf directly.

266 APPENDIX B. INFORMATION FOR SPECIFIC TARGETS

Ð The Ukernel property ÒTick durationÓ in the kernel tags of the PikeOS
project conÞguration can be set to a lower value when using the Codeo
IDE. Alternatively, this can be done by modifying theTAG_UK_NS_
PER_TICK parameter inproject.xml.conf directly.

B.1.6 QNX

B.1.6.1 ConÞguration of QNX

For general information on the conÞguration of QNX Momentics IDE please re-
fer to the user documentation provided by QNX. For Jamaica, QNX should be
conÞgured to include the following functionality.

Secure Random To ensure a fast and secure random seed generation of Ja-
maica, the random device provided by the QNX toolchain should be included in
the OS image. To build this device into your image you need to insert the follow-
ing binary in your QNX build scipt inside of your QNX Momentics IDE:

General executables
[...]
/sbin/random /dev/random

Enable IPv6 QNX provides the IPv6 capable network driverio-pkt-v6-hc .
For IPv6 support, this driver must be loaded and conÞgured at startup rather than
io-pkt-v4-hc , which only supports IPv4. IPv6 support can be enabled ei-
ther by adapting the build script of the QNX image or, if present on the system,
through editing the Þle/etc/rc.d/rc.local and restarting QNX. For more
information, please refer to the QNX documentation. Loading a network driver
while another network driver is already active my result in a corrupted network.

Even if IPv6 is conÞgured, it may be the case that a link-local IPv6 address is
available, yet the device is only visible as IPv4 from the outside. These steps are
required for adding a publicly visible IPv6 address:

¥ Enable the TCP/IP stack to accept route advertisements:

sysctl -w net.inet6.ip6.accept_rtadv=1

¥ Start the router solicitation daemon:

rtsold -a

These commands should be put in the QNX build script or/etc/rc.d/rc.
local at a point where IPv6 has already been started.

B.1. OPERATING SYSTEMS 267

B.1.6.2 Installation

To use the QNX toolchain, ensure that the following environment variables are set
correctly (should be done during QNX installation):

¥ QNX_HOST(e.g.,C:/Programs/QNX632/host/win32/x86)

¥ QNX_TARGET(e.g.,C:/Programs/QNX632/target/qnx6)

For QNX 6.4 (and higher) the linker must be in the system path. On Linux, you
can set this with thePATHenvironment variable:

export PATH=$PATH:/opt/QNX640/host/linux/x86/usr/bin

On QNX systems the default clock time resolution is 1 ms if CPU clock is#
40 MHz and 10 ms if CPU clock is< 40 MHz. If this is not enough, you can
change the system clock time resolution either using thejavax.realtime.
Clock.setResolution() method or the C functionsClockPeriod or
ClockPeriod_r deÞned in headersys/neutrino.h .

B.1.6.3 Limitations

On QNX JamaicaVM has the following limitations:

¥ Due to incorrect treatment of denormal double ßoating point values by ßoat-
ing point units for the ARM architecture, JamaicaVM for QNX on ARM
uses soft ßoats by default. See also Appendix B.2.1.1.

¥ Currently the packagejava.nio.file is not fully supported. The fol-
lowing method is not implemented:

java.nio.file.FileStore.isReadOnly()

¥ Writing sparse Þles is only supported by QNX onext2 Þlesystems [8].
Therefore the optionStandardOpenOption.SPARSE is ignored when
creating Þles on all Þlesystems exceptext2 .

¥ On qnx4 Þle system, we observed on QNX 6.6.0 that the information re-
turned bystatvfs concerning the available disk space is not accurate.
This affectsFile.getUsableSpace .

¥ On QNX, a socket will receive messages from all multicast groups that have
been joined globally on the whole system. On Linux, this behavior can
be avoided by disablingIP_MULTICAST_ALL. On QNX, this option is
currently not supported.

268 APPENDIX B. INFORMATION FOR SPECIFIC TARGETS

Additionally, the following limitations of IPv6 support were identiÞed on QNX
6.6.0. Most were found to be present on QNX 6.5.0 SP 1 as well:

¥ Due to a defect ingetifaddrs , which returns broken IPv6 link-local
addresses, the following Java method may return incorrect IPv6 addresses
as well:

java.net.NetworkInterface.getNetworkInterfaces()

¥ The system functionsetsockopt may work incorrectly when setting a
high timeout value forSO_LINGER. As a consequence, after setting

java.net.ServerSocket.setSoLinger(true, HIGH_TIMEOUT),

ServerSocket.getSoLinger() may return" 1, which implies that
the option was disabled. QNX has conÞrmed a Þx for future versions of the
io-pkt PSP.3

¥ Also the socket optionsIPV6_JOIN_GROUPandIPV6_LEAVE_GROUP
are not supported. These methods are affected:

java.nio.channels.MulticastChannel.join all variants
java.nio.channels.MembershipKey.drop()
java.net.MulticastSocket.leaveGroup all variants

¥ For IPv6 UDP sockets the second call ofsendto always fails. This can
also be observed for some versions of NetBSD.4 These methods are af-
fected:

java.net.DatagramSocket.send(DatagramPacket)
java.net.MulticastSocket.send(DatagramPacket, byte)

¥ We observed that connecting an UDP socket to an IPv4 mapped IPv6 ad-
dress is currently not supported. This affects the following methods:

java.net.DatagramSocket.connect all variants

¥ After disconnecting a datagram socket from an endpoint address, we found
that the socket is not bound anymore when this has been bound explicitely
before. Rebinding it then fails in general (IPv4 and IPv6). This affects the
following methods:

3For the case history, seehttp://community.qnx.com/sf/discussion/do/
listPosts/projects.core_os/discussion.newcode.topc26319 .

4Seehttp://gnats.netbsd.org/47408 .

http://community.qnx.com/sf/discussion/do/listPosts/projects.core_os/discussion.newcode.topc26319
http://community.qnx.com/sf/discussion/do/listPosts/projects.core_os/discussion.newcode.topc26319
http://gnats.netbsd.org/47408

B.2. PROCESSOR ARCHITECTURES 269

java.net.DatagramSocket.disconnect()
java.net.DatagramSocket.bind(SocketAddress)

When the socket is disconnected though, in the IPv6 environment, receiving
and sending data from the local address that is provided by the API
(DatagramSocket.getLocalAddress()) is not possible anymore.
This affects the following methods:

java.net.DatagramSocket.send(DatagramPacket)
java.net.DatagramSocket.receive(DatagramPacket)

B.2 Processor Architectures

B.2.1 ARM

B.2.1.1 Use of the Floating Point Unit

Floating point units currently available for ARM processors do not fully support
arithmetic conforming to IEEE 754 for the double format (64 Bit). So called
denormalvalues may be treated as zero, which can lead to faulty results and non-
termination of numerical algorithms, including algorithms in the Jamaica runtime
libraries. On ARM it is therefore strongly recommended to use a library (soft
ßoats) conforming to IEEE 754.

Whether denormal values are treated incorrectly can easily be identiÞed with
the Java program from Fig. B.1. The correct output for this program is as follows.

> jamaicac Denormal.java
> jamaicavm Denormal
Smallest normal value is 2.2250738585072014E-308
Largest denormal value is 2.225073858507201E-308
Their sum is 4.4501477170144023E-308
Expected value for the sum is 4.4501477170144023E-308

If denormal values are not supported, the sum instead is, incorrectly, again the
smallest normal value,2.2250738585072014E-308 .

B.2.1.2 Use of the GCC-provided Soft Float Implementation

The GNU Compiler Collection (GCC), which is used for several target platforms
(e.g. Linux, QNX, VxWorks), provides a soft ßoat implementation for ARM that
is aiming to be compatible with IEEE 754.

We observed incorrect handling of arithmetic operations on operands from the
higher half of the denormal values (i.e. integer encoded starting from 0x400000

270 APPENDIX B. INFORMATION FOR SPECIFIC TARGETS

public strictfp class Denormal
{

// Hexadecimal representation of floating point values
// Smallest normal
private static final long NORM = 0x0010000000000000L;
// Largest denormal
private static final long DENORM = 0x000FFFFFFFFFFFFFL;
// Their sum
private static final long SUM = 0x001FFFFFFFFFFFFFL;

public static void main(String[] args)
{

System.out.println("Smallest normal value is " +
Double.longBitsToDouble(NORM));

System.out.println("Largest denormal value is " +
Double.longBitsToDouble(DENORM));

System.out.println("Their sum is " +
(Double.longBitsToDouble(NORM) +

Double.longBitsToDouble(DENORM)));
System.out.println("Expected value for the sum is " +

Double.longBitsToDouble(SUM));
}

}

Figure B.1:Denormal.java Ñ Identify whether denormal ßoating point val-
ues are treated correctly.

B.2. PROCESSOR ARCHITECTURES 271

for single precision ßoats). This effectively means that on ARM without ßoating
point unit support incorrect results can be expected on the platforms mentioned
for arithmetic operations ßoating point operands between:

¥ ±2! 127 $ ± 5.88á10! 39 and± 2! 126 $ ± 1.18á10! 38 for single precision,

¥ ±2! 1023 $ ± 1.11á10! 308 and± 2! 1022 $ ± 2.23á10! 308 for double precision

in the positive and negative ranges respectively.
We did not observe any negative impact on the algorithms contained in the

Jamaica runtime libraries using the GCC soft ßoat implementation. Hence we still
strongly recommend using this soft ßoat implementation over the Hard Floating
Point Unit.

272 APPENDIX B. INFORMATION FOR SPECIFIC TARGETS

Appendix C

Heap Usage for Java Datatypes

This chapter contains a list of in-memory sizes of datatypes used by JamaicaVM.
For datatypes that are smaller than one machine word, only the smallest mul-

tiple of eight Bits that Þts the datatype will be occupied for the value. I.e., several
values of types boolean, byte, short and char may be packed into a single machine
word when stored in an instance Þeld or an array.

Tab. C.1 shows the usage of heap memory for primitive types, Tab. C.2 shows
the usage of heap memory for objects, arrays and frames.

273

274 APPENDIX C. HEAP USAGE FOR JAVA DATATYPES

Datatype Used Memory Min Value Max Value
Bits Bytes

boolean 8 1 - -
byte 8 1 " 27 27 " 1
short 16 2 " 215 215 " 1
char 16 2 \ u0000 \ uffff
int 32 4 " 231 231 " 1
long 64 8 " 263 263 " 1
float 32 4 1.4E-45F 3.4028235E38F
double 64 8 4.9E-324 1.7976931348623157E308
Java reference

32-bit systems 32 4 - -
64-bit systems 32 4 - -

Table C.1: Memory Demand of Primitive Types

Data Structure Memory Demand
Object header (containing garbage collection state, object
type, inlined monitor and memory area)

12 Bytes

Array header (containing object header, array layout in-
formation and array length)

16 Bytes

Java object size on heap (minimum) 32 Bytes
Java array size on heap (minimum) 32 Bytes
Minimum size of single heap memory chunk 64 KBytes
Garbage Collector data overhead for heap memory. For
a usable heap of a given size, the garbage collector will
allocate this proportion of additional memory for its data.

Single-core systems 6.25%
Multi-core, 32-bit systems 15.63%
Multi-core, 64-bit systems 18.75%

Stack slot 8 Bytes
Java stack frame of normal method 4 slots
Java stack frame of synchronized method 5 slots
Java stack frame of static initializer 7 slots
Java stack frame of asynchronously interruptible method 8 slots
Additional Java stack frame data in proÞle mode 2 slots

Table C.2: Memory Demand of Objects, Arrays and Frames

Appendix D

Limitations

This appendix lists limitations of the JamaicaVM virtual machine and applications
created with JamaicaVM Builder.

D.1 VM Limitations

These limitations apply to both pre-built virtual machines and to applications built
with the JamaicaVM Builder.

¥ ClassÞle veriÞcation is currently limited to pre Java-6 (classÞle version 49
and older) style data ßow analysis of the bytecode instructions. No other
checking (such as veriÞcation of indices and offsets for legal values) is done.
Consequently, classÞle veriÞcation is not sufÞcient to ensure type safety of
class Þles that are produced by untrusted tools, that were tampered with or
that are otherwise broken.

¥ Numeric limitations, such as the absolute maximum number of Java Threads
or the absolute maximum heap size are listed in Tab. D.1.

Aspect Limit
Number of Java Threads 511
Maximum Monitor Nest Count (repeated monitor en-
ter of the same monitor in nestedsynchronized
statements or nested calls tosynchronized meth-
ods). Exceeding this value will result in throwing
an java.lang.InternalError with detail mes-
sage "Max. monitor nest count reached
(255)"

255

275

276 APPENDIX D. LIMITATIONS

Aspect Limit

Minimum Java heap size 64KB
Maximum Java heap size (32-bit systems) approx. 3.5GB
Maximum Java heap size (64-bit systems) 64GB
Minimum Java heap size increment 64KB
Maximum number of heap increments. The Java heap may
not consist of more than this number of chunks, i.e., when
dynamic heap expansion is used (max heap size is larger
than initial heap size), no more than this number of incre-
ments will be performed, including the initial chunk. To
avoid this limit, the heap size increment will automatically
be set to a larger value when more than this number of in-
crements would be needed to reach the maximum heap size.

256

Maximum number of memory areas (instances of
javax.realtime.MemoryArea). Note that
two instances are used forHeapMemory and
ImmortalMemory .

256

Maximum size of Java stack 64MB
Maximum size of native stack 2GB
Maximum number of constant UTF8 strings (names and
signatures of methods, Þelds, classes, interfaces and con-
tents of constant Java strings) in the global constant pool
(exceeding this value will result in a larger application)

224 " 1

Maximum number of constant Java strings in the global
constant pool (exceeding this value will result in a larger
application)

216 " 1

Maximum number of name and type entries (references to
different methods or Þelds) in the global constant pool (ex-
ceeding this value will result in a larger application)

216 " 1

Maximum Java array length. Independent of the heap size,
Java arrays may not have more than this number of ele-
ments. However, the array length is not restricted by the
heap size increment, i.e., even a heap consisting of several
increments each of which is smaller than the memory re-
quired for a Java array permits the allocation of arrays up
to this length provided that the total available memory is
sufÞcient.

227 " 1

D.2. BUILDER LIMITATIONS 277

Aspect Limit
Maximum number of virtual methods per Java class (includ-
ing inherited virtual methods)

4095

Maximum number of interface methods per Java inter-
face (including interface methods inherited from super-
interface)

4095

On POSIX systems wheretime_spec.tv_sec is a 32
Bit value it is not possible to wait until a time and date that
is later than

Tue Jan 19
04:14:07 2038

Table D.1: JamaicaVM limitations

D.2 Builder Limitations

The static compiler does not compile certain Java methods but leaves them in
interpreted bytecode format independent of the compiler options or their signiÞ-
cance in a proÞle.

¥ ClassÞle veriÞcation is not performed for classes built-into a stand-alone bi-
nary created by the builder tool. Consequently, class Þles that are produced
by untrusted tools, that were tampered with or that are otherwise broken
may not be processed by the builder.

¥ Static initializer methods (methods with name<clinit>) are not com-
piled.

A simple way to enable compilation is to change a static initializer into a
static method, which will be compiled. That is, replace a static initializer

class A
{

static
{

<initialization code>
}

}

by the following code:

class A
{

static

278 APPENDIX D. LIMITATIONS

{
init();

}
private static void init()

{
<initialization code>

}
}

¥ Methods with bytecode that is longer than the value provided by Builder
optionXexcludeLongerThan are not compiled.

¥ Methods that reference a class, Þeld or method that is not present at build
time are not compiled. The referenced class will be loaded lazily by the
interpreter.

D.3 Multicore Limitations

Currently, the multicore variant of the JamaicaVM virtual machines (command
jamaicavmm) and the JamaicaVM Builder using option-parallel have the
following additional limitations.

¥ The monitor control policyPriorityCeilingEmulation is not sup-
ported.

¥ In classcom.aicas.jamaica.lang.Debug , methodsgetMaxFree-
RangeSize , getNumberOfFreeRanges , printFreeListStats
andcreateFreeRangeStats are not supported.

¥ Java arrays that are not allocated very early during application startup (be-
fore the garbage collector starts recycling memory) are allocated using a
non-contiguous representation that results in higher costs for array accesses.

¥ The multicore VM does not support the JVMTI interface. In particular, the
option-agentlib of both the VM and the Builder does not work.

D.4 Network Limitations

Currently the network implementation does not support the following features:

D.4. NETWORK LIMITATIONS 279

¥ When the trafÞc class is set for an IPv6 socket andsend or connect is
called, setting the trafÞc class to the ßow info of the socket address is not
supported. These methods are affected:

Ð java.net.Socket.connect

Ð javax.net.ssl.SSLSocket.connect

Ð java.net.DatagramSocket.send

Ð java.net.MulticastSocket.send

280 APPENDIX D. LIMITATIONS

Appendix E

Internal Environment Variables

Additional debugging output can be activated through environment variables if an
application was built with the internal option-debug=true . This option and its
environment variables are used for debugging Jamaica itself and are not normally
relevant for users of JamaicaVM.

JAMAICA_DEBUGLEVELDeÞnes the debug level of an application that was
built with the optiondebug . A level of 0 means that no debug output is
printed; a level of 8 means that very detailed debug output is printed.

Note that at a debug level of 8 a simple HelloWorld application will produce
thousands of lines of debug output. A good choice is a level of 5.

JAMAICA_DEBUGCALLNATIVEDeÞnes a string that gives the name of a native
method. Any call to that method is printed in addition to other debug output.
Printing of these calls requires a minimum debug level of 5. If the variable
is not set or set to Õ*Õ, any native call will be printed.

JAMAICA_DEBUGCALLJAVADeÞnes a string that gives the name of a Java
class or method. Any call to the speciÞed method or to a method deÞned in
the speciÞed class will be printed in addition to the other debug output.

Printing of these calls requires a minimum debug level of 5. If the vari-
able is not set or set to Ô*Õ, any call is printed. E.g., settingJAMAICA_
DEBUGCALLJAVAto java/lang/String.length will print any call
to the methodjava.lang.String.length() .

281

282 APPENDIX E. INTERNAL ENVIRONMENT VARIABLES

Appendix F

Licenses

JamaicaVM is commercially licensed software from aicas GmbH. The virtual ma-
chine and tools are copyrighted by aicas and all rights are reserved. JamaicaVM
does use libraries from other sources, but these may all be linked with commercial
software without affect to the license of that software.

The complete set of third-party licenses for external components, along with
the Jamaica evaluation license, is provided in the Jamaica installation in the folder
jamaica-home/license .

283

284 APPENDIX F. LICENSES

Bibliography

[1] Stephane Bailliez, Nicola Ken Barozzi, et al. Apache AntTM manual.http:
//ant.apache.org/manual/ .

[2] Greg Bollella, James Gosling, Benjamin Brosgol, Peter Dibble, Steve Furr,
and Mark Turnbull.The Real-Time SpeciÞcation for Java. Addison-Wesley,
2000.

[3] Peter C. Dibble. Real-Time Java Platform Programming. Prentice-Hall,
2002.

[4] James Gosling, Bill Joy, Guy Steele, Gilad Bracha, and Alex Buckley.The
Java Language SpeciÞcation, Java SE 8 Edition. Addison-Wesley, 2014.

[5] Mike Jones. What really happened on Mars?http://research.
microsoft.com/ ÷mbj/Mars_Pathfinder/ , 1997.

[6] Muhammad Khojaye. Finalization and phantom references.http:
//java.dzone.com/articles/finalization-and-phantom ,
2010.

[7] Sheng Liang.Java Native Interface: ProgrammerÕs Guide and SpeciÞcation.
Addison-Wesley, 1999.

[8] QNX Software Systems Limited. QNX software development platform
6.6. http://www.qnx.com/developers/docs/660/index.
jsp , 2014.

[9] Tim Lindholm, Frank Yellin, Gilad Bracha, and Alex Buckley.The Java
Virtual Machine SpeciÞcation, Java SE 8 Edition. Addison-Wesley, 2014.

[10] C. L. Liu and J. W. Wayland. Scheduling algorithms for multiprogramming
in hard real-time environment.Journal of the ACM, 20, 1973.

[11] Fridtjof Siebert. Concurrent, parallel, real-time garbage-collection. InACM
Sigplan Notices, volume 45, pages 11Ð20, 2010.

285

http://ant.apache.org/manual/
http://ant.apache.org/manual/
http://research.microsoft.com/~mbj/Mars_Pathfinder/
http://research.microsoft.com/~mbj/Mars_Pathfinder/
http://java.dzone.com/articles/finalization-and-phantom
http://java.dzone.com/articles/finalization-and-phantom
http://www.qnx.com/developers/docs/660/index.jsp
http://www.qnx.com/developers/docs/660/index.jsp

286 BIBLIOGRAPHY

Index of Environment Variables

CLASSPATH
vm, 150

JAMAICA
builder, 194
installation, 23, 24
jaraccelerator, 207

JAMAICA BUILDER HEAPSIZE
builder, 194

JAMAICA BUILDER JAVA
STACKSIZE

builder, 195
JAMAICA BUILDER

MAXHEAPSIZE
builder, 195

JAMAICA BUILDER NATIVE
STACKSIZE

builder, 195
JAMAICA BUILDER

NUMTHREADS
builder, 195

JAMAICA JARACCELERATOR
HEAPSIZE

jaraccelerator, 208
JAMAICA JARACCELERATOR

JAVA STACKSIZE
jaraccelerator, 208

JAMAICA JARACCELERATOR
MAXHEAPSIZE

jaraccelerator, 208
JAMAICA JARACCELERATOR

NATIVE STACKSIZE
jaraccelerator, 208

JAMAICA JARACCELERATOR
NUMTHREADS

jaraccelerator, 208
JAMAICA VXWORKS ALTIVEC

vm, 258
JAMAICAC HEAPSIZE

jamaicac, 139
JAMAICAC JAVA STACKSIZE

jamaicac, 140
JAMAICAC MAXHEAPSIZE

jamaicac, 140
JAMAICAC NATIVE STACKSIZE

jamaicac, 140
JAMAICAH HEAPSIZE

jamaicah, 230
JAMAICAH MAXHEAPSIZE

jamaicah, 230
JAMAICAVM ANALYZE

vm, 151
JAMAICAVM CONSTGCWORK

vm, 151
JAMAICAVM CPUS

vm, 152
JAMAICAVM HEAPSIZE

vm, 151
JAMAICAVM

HEAPSIZEINCREMENT
vm, 151

287

288 INDEX OF ENVIRONMENT VARIABLES

JAMAICAVM IMMORTALSIZE
vm, 151

JAMAICAVM JAVA STACKSIZE
vm, 151

JAMAICAVM MAXHEAPSIZE
vm, 151

JAMAICAVM
MAXNUMTHREADS

vm, 151
JAMAICAVM NATIVE

STACKSIZE
vm, 151

JAMAICAVM NUMJNITHREADS
vm, 151

JAMAICAVM NUMTHREADS
vm, 151

JAMAICAVM PRIMAP
vm, 151

JAMAICAVM
PROFILEFILENAME

vm, 152
JAMAICAVM

RESERVEDMEMORY
vm, 151

JAMAICAVM SCHEDULING

POLICY
vm, 150

JAMAICAVM SCOPEDSIZE
vm, 151

JAMAICAVM TIMESLICE
vm, 151

MWOS
OS-9, 262

PATH
QNX, 267

QNX HOST
QNX, 267

QNX TARGET
QNX, 267

VSB DIR
VxWorks, 255

WIND BASE
VxWorks, 254

WIND HOME
VxWorks, 254

WIND USR
VxWorks, 254

Index of Options

-?
builder, 164
jamaicah, 228
jaraccelerator, 198
vm, 143

-agentlib
builder, 164
vm, 150

-analyse
builder, 182

-analyseFromEnv
builder, 182

-analyze
builder, 182

-analyzeFromEnv
builder, 182

-atomicGC
builder, 184

-autoSeal
jaraccelerator, 200

-bootclasspath
jamaicac, 138
jamaicah, 229

-classname
jamaicah, 229

-classpath
builder, 165
jamaicah, 229
jaraccelerator, 200

vm, 142
-closed

builder, 173
-compile

builder, 170
-conÞguration

builder, 165
jaraccelerator, 199

-constGCwork
builder, 182

-constGCworkFromEnv
builder, 183

-cp
builder, 165
jamaicac, 138
jamaicah, 229
jaraccelerator, 200

-D
vm, 142

-d
jamaicac, 138
jamaicah, 229

-da
vm, 143

-deprecation
jamaicac, 138

-destination
builder, 168
jaraccelerator, 200

-disableassertions

289

290 INDEX OF OPTIONS

vm, 143
-disablesystemassertions

vm, 143
-dsa

vm, 143
-dwarf2

builder, 190
jaraccelerator, 205

-ea
builder, 165
jaraccelerator, 200
vm, 143

-enableassertions
builder, 165
jaraccelerator, 200
vm, 143

-enablesystemassertions
vm, 143

-encoding
jamaicac, 139

-esa
vm, 143

-excludeClasses
builder, 167

-excludeFromCompile
builder, 172
jaraccelerator, 202

-excludeJAR
builder, 167

-extdirs
jamaicac, 138

-g
jamaicac, 139

-h
builder, 164
jamaicah, 228
jaraccelerator, 198

-heapSize
builder, 175

-heapSizeFromEnv
builder, 176

-heapSizeIncrement
builder, 175

-heapSizeIncrementFromEnv
builder, 176

-help
builder, 164
jamaicah, 228
jaraccelerator, 198
vm, 143

-immortalMemorySize
builder, 185

-immortalMemorySizeFromEnv
builder, 185

-includeClasses
builder, 166

-includeFilename
jamaicah, 229

-includeInCompile
builder, 171
jaraccelerator, 202

-includeJAR
builder, 167

-inline
builder, 172
jaraccelerator, 202

-interpret
builder, 170

-J
jamaicac, 139

-jar
builder, 166

-javaagent
vm, 142

-javaStackSize
builder, 175

-javaStackSizeFromEnv
builder, 177

INDEX OF OPTIONS 291

-jni
jamaicah, 229

-jobs
builder, 165
jaraccelerator, 199

-js
vm, 145

-main
builder, 166

-maxHeapSize
builder, 175

-maxHeapSizeFromEnv
builder, 176

-maxNumThreads
builder, 177

-maxNumThreadsFromEnv
builder, 179

-mi
vm, 145

-ms
vm, 145

-mx
vm, 145

-nativeStackSize
builder, 176

-nativeStackSizeFromEnv
builder, 177

-nowarn
jamaicac, 139

-ns
vm, 145

-numJniAttachableThreads
builder, 178

-numJniAttachableThreadsFromEnv
builder, 179

-numThreads
builder, 177

-numThreadsFromEnv
builder, 179

-o
builder, 168
jamaicah, 229
jaraccelerator, 200

-object
builder, 186

-optimise
builder, 172
jaraccelerator, 202

-optimize
builder, 172
jaraccelerator, 202

-parallel
builder, 181
jaraccelerator, 203

-percentageCompiled
builder, 171
jaraccelerator, 201

-physicalMemoryRanges
builder, 186

-priMap
builder, 180

-priMapFromEnv
builder, 181

-proÞle
builder, 170

-reservedMemory
builder, 184

-reservedMemoryFromEnv
builder, 184

-resource
builder, 168

-saveSettings
builder, 165
jaraccelerator, 199

-schedulingPolicy
builder, 181

-schedulingPolicyFromEnv
builder, 181

292 INDEX OF OPTIONS

-scopedMemorySize
builder, 185

-scopedMemorySizeFromEnv
builder, 185

-setFonts
builder, 168

-setGraphics
builder, 169

-setLocalCryptoPolicy
builder, 169

-setLocales
builder, 169

-setProtocols
builder, 169

-setTimeZones
builder, 169

-showExcludedFeatures
builder, 174

-showIncludedFeatures
builder, 174

-showNumberOfBlocks
builder, 174

-showSettings
builder, 165
jaraccelerator, 199

-smart
builder, 173

-source
jamaicac, 138

-sourcepath
jamaicac, 138

-ss
vm, 145

-stopTheWorldGC
builder, 183

-target
builder, 172
jamaicac, 138
jaraccelerator, 203

-threadPreemption

builder, 178
jaraccelerator, 203

-timeSlice
builder, 179

-timeSliceFromEnv
builder, 179

-tmpdir
builder, 168
jaraccelerator, 200

-useProÞle
builder, 171
jaraccelerator, 201

-useTarget
jamaicac, 137

-verbose
builder, 164
jaraccelerator, 199
vm, 143

-version
builder, 164
jamaicah, 229
jaraccelerator, 199
vm, 142

-X
jamaicac, 139
vm, 144

-XavailableTargets
builder, 191
jaraccelerator, 206

-Xbatch
vm, 146

-Xbootclasspath
builder, 188
jamaicah, 229
vm, 144

-Xbootclasspath/a
vm, 144

-Xbootclasspath/p
vm, 144

INDEX OF OPTIONS 293

-Xcc
builder, 189
jaraccelerator, 205

-XCFLAGS
builder, 189
jaraccelerator, 205

-Xcheck
builder, 194
vm, 146

-Xcomp
vm, 146

-Xcpus
builder, 192
vm, 145

-XcpusFromEnv
builder, 192

-XdeÞneProperty
builder, 187

-XdeÞnePropertyFromEnv
builder, 187

-XexcludeLongerThan
builder, 189
jaraccelerator, 205

-XfullStackTrace
builder, 189
jaraccelerator, 204

-Xhelp
builder, 164
jamaicah, 228
jaraccelerator, 199

-xhelp
vm, 144

-XignoreLineNumbers
builder, 187
jaraccelerator, 204

-Xinclude
builder, 193
jaraccelerator, 207

-Xint
builder, 170
vm, 146

-XjamaicaHome
builder, 187
jaraccelerator, 204

-XjavaHome
builder, 187

-Xjs
vm, 145

-XlazyConstantStrings
builder, 188

-XlazyConstantStringsFromEnv
builder, 188

-Xld
builder, 190
jaraccelerator, 205

-XLDFLAGS
builder, 190
jaraccelerator, 205

-Xlibraries
builder, 190
jaraccelerator, 206

-XlibraryPaths
builder, 191
jaraccelerator, 206

-XloadJNIDynamic
builder, 193

-Xmi
vm, 145

-Xmixed
vm, 146

-Xms
vm, 145

-Xmx
vm, 145

-XnoClasses
builder, 188

-XnoMain
builder, 188

-XnoRuntimeChecks
builder, 191

-Xns
vm, 145

294 INDEX OF OPTIONS

-XnumMonitors
builder, 192

-XnumMonitorsFromEnv
builder, 192

-XobjectFormat
builder, 194
jaraccelerator, 207

-XobjectProcessorFamily
builder, 194
jaraccelerator, 207

-XobjectSymbolPreÞx
builder, 194
jaraccelerator, 207

-Xprof
vm, 146

-XproÞleFilename
builder, 189
vm, 150

-XproÞleFilenameFromEnv
builder, 189

-Xss
vm, 145

-XstaticLibraries
builder, 190
jaraccelerator, 206

-Xstrip
builder, 190
jaraccelerator, 206

-XstripOptions
builder, 190
jaraccelerator, 206

-XuseMonotonicClock
builder, 193

-XuseMonotonicClockFromEnv
builder, 193

-XX:+DisplayVMOutputToStderr
vm, 146

-XX:+DisplayVMOutputToStdout
vm, 147

-XX:MaxDirectMemorySize
vm, 147

-XX:OnOutOfMemoryError
vm, 147

Index of VM Properties

jamaica.boot.class.path, 157
jamaica.buildnumber, 158
jamaica.byteorder, 158
jamaica.costmonitoringaccuracy,

152
jamaica.cpumhz, 152
jamaica.errto Þle, 153
jamaica.errto null, 153
jamaica.Þnalizer.pri, 72, 81, 153
jamaica.fontproperties, 153, 244
jamaica.fullstacktraceon sig quit,

153
jamaica.heapso default afÞnity,

154
jamaica.heapSizeFromEnv, 158
jamaica.immortalMemorySize, 158
jamaica.jaraccelerator.debug, 153,

209
jamaica.jaraccelerator.load, 154, 209
jamaica.javathreaddefault afÞnity,

154
jamaica.loadLibraryignoreerror,

154
jamaica.maxNumThreadsFromEnv,

158
jamaica.monotonic

currentTimeMillis, 153
jamaica.nosig int handler, 73, 154
jamaica.nosig quit handler, 73, 154
jamaica.nosig term handler, 73,

154

jamaica.noheapso default afÞnity,
154

jamaica.numThreadsFromEnv, 158
jamaica.outto Þle, 155
jamaica.outto null, 155
jamaica.processinggroupdefault

afÞnity, 155
jamaica.proÞleforce dump, 155
jamaica.proÞlegroups, 52, 155
jamaica.proÞlerequestport, 49, 155
jamaica.referencehandler.pri, 72,

81, 155
jamaica.release, 158
jamaica.reservationthreadafÞnity,

156
jamaica.reservationthreadpriority,

156
jamaica.schedulereventsport, 156,

213
jamaica.schedulereventsport

blocking, 156, 213
jamaica.schedulereventsrecorder

afÞnity, 156
jamaica.scopedMemorySize, 158
jamaica.softref.minfree, 157
jamaica.version, 158
jamaica.wordsize, 158
jamaica.x11.display, 157
jamaica.xprof, 157
java.home, 157, 243

sun.arch.data.model, 158

295

