aicas

realtime

aicas GmbH

First Experiences with Xlets — User Manual

Version 2.7.1dev
28 October 2016

Released under NDA

aicas

Every effort has been made to ensure that all statements and information contained in this document are accurate. How-
ever, aicas GmbH accepts no liability for any error or omission therein.

© Copyright of this document is owned by aicas GmbH, Karlsruhe

First Experiences with Xlets — User Manual

Page ii Version 2.7.1dev 28 October 2016
Confidentiality: Released under NDA

Contents

I JamaicaCARI|

(1.2.2 CodenameOne Designer|

(1.2.3 Echpse Plugin|

2 Xlets|

3 Creating a Downloadable Application with Eclipse|

(3.1 The javax.microedition.Xlet Interface|
[3.2 Imitializing an Xlet Project in Eclipse without the Codenameone Designer|
[3.3 Example: HelloWorld|.

[4 Creating a Downloadable Application with the CodenameOne Designer|

4.1 Imtializing the Designerm Echipse| o000
4.2 Designerbasics| e e
M21 ActionTistenersl
B22 ActionEvenl
“2.3 Contamersl

4.2.4 Layouts|

/A" Further Reading|

1ii

11
11
12
16

19
19
21
22
23
24
25
28

31

First Experiences with Xlets — User Manual

Page iv Version 2.7.1dev 28 October 2016
Confidentiality: Released under NDA

First Experiences with Xlets — User Manual

Preface

This manual is aimed at any and all who want/need to work with Xlets in an Eclipse IDE for the first
time and require an introduction to this field. Virtually no understanding of Eclipse and only very
rudimentary knowledge of Java is required to understand and implement what is said in this manual.
This manual is intended as a quick introduction to kick-start the user’s first steps with Xlets.

This is a very basic guide to the application and the technicalities of using Xlets in Eclipse and the
CodenameOne Designer. This manual also includes a basic introduction to the JamaicaCAR tools
used and an illustration of the concept of Xlets. This is intended as a hands-on-guide, therefore it is
recommended to actively follow the steps illustrated on your computer.

After having read this manual the user should be able to understand the structure of an Xlet appli-
cation, make basic Xlet applications using both Eclipse and the CodenameOne Designer according
to their level of understanding of Java and easily continue exploring the capabilities of Xlets and the
CodenameOne Designer without technical difficulties.

28 October 2016 Version 2.7.1dev Page 1
Confidentiality: Released under NDA

First Experiences with Xlets — User Manual

Page 2 Version 2.7.1dev 28 October 2016
Confidentiality: Released under NDA

Chapter 1

JamaicaCAR

JamaicaCAR is an automotive application framework. It is based on the JamaicaVM and Java tech-
nology, and adds realtime and reliability to the flexibility and extendibility of mobile apps. Ja-
maicaCAR supports 2D and 3D applications using a lightweight user interface toolkit (Codename-
One) and OpenGL ES (Graphic Library for embedded systems). Extensive libraries provide access
to the board net, internet, GPS information and many other sources. Applications can communicate
directly and securely.

The JamaicaVM security model is based on Java’s security managers and is extended by signable
apps, privileges, and access control mechanisms. The system is controlled by the JamaicaCAR man-
ager, which can pause, stop, or slow down running apps at any time.

OEMs (original equipment manufacturer) can ensure their look and feel for all apps. Suppliers can
gain access to the center console and can easily integrate their after market products, if this is allowed
by the OEM. For Automobile owners the connection of GPS information and internet access opens a
host of new possibilities for local services such as finding the nearest available parking place or hotel
room, or even communication between vehicles for fleet management.

Did you know?

JamaicaCAR is also sometimes called AMS, after its core component, the Application Management System.

First Experiences with Xlets — User Manual

1.1 Features and Functions

The features of the JamaicaCAR include:

Platform independence

The component based design and platform neutrality of JamaicaCAR enables OEMs to deploy appli-
cations on any CPU and OS with a custom look and feel.

Safety and Security

Application security management provides fine grain access control to platform services and limit on
resource use by applications.

Compactness and Swiftness

The JamaicaVM, that the JamaicaCAR uses, is equipped with a highly optimizing static compiler
and profiler. The tradeoff between runtime performance and code size can be chosen freely.

By using precompiled JARSs the runtime performance is further increased.

Dynamic Loading

The JamaicaVM enables dynamic class loading for upgrading applications at runtime.

Remote Debugging

Applications running on a target system can be debugged with standard IDEs such as Eclipse and
NetBeans.

HMI (Human Machine Interface)

Both 2D and 3D graphics support, using a Light Weight User Interface Toolkit and OpenGL ES.
This, with hardware acceleration, provides ease of development and maximum performance.

Page 4 Version 2.7.1dev 28 October 2016
Confidentiality: Released under NDA

First Experiences with Xlets — User Manual

1.2 JamaicaCAR Tools

1.2.1 JamaicaCAR Emulator

The JamaicaCAR Emulator (see Figure [I.1) facilitates the testing of applications greatly. By using
the JamaicaCAR Emulator, users can bypass the need to install a written application on an external
device in order to find errors and bugs in the code. With the Emulator you can test your applications
from the comfort of your very own desktop. The Emulator, that was developed by aicas GmbH,
emulates the interface of an external device on your computer’s desktop directly from your IDE
(Integrated Development Environment).

aicas Xlet manager "

CAR Emulator

@GS

recltime:

Figure 1.1: The JamaicaCAR Emulator

1.2.2 CodenameOne Designer

Codename One is a set of tools for mobile application development that derive a great
deal of its architecture from Java. It stands both as the name of the startup that created
the set of tools and as a prefix to the distinct tools that make up the Codename One prod-
uct. The goal of the Codename One project is to take the complex and fragmented task
of mobile device programming and unify it under a single set of tools, APIs and services
to create a more manageable approach to mobile application development without sac-
rificing development power/control.
—-http://www.codenameone.com/developer-guide.html

28 October 2016 Version 2.7.1dev Page 5
Confidentiality: Released under NDA

http://www.codenameone.com/developer-guide.html

First Experiences with Xlets — User Manual

The CodenameOne Designer (see Figure [1.2)) is one of the set of tools provided by CodenameOne.
It is a GUI Builder which simplifies the production of a GUI immensely. The simple point and drag

File Edit Coden:

[BETE]

One Native Theme Images Help.

A

A Override In Platform: [Base Resourcy

e]

o

0 Themes
L Gui Buider

Add A New GUI Element

Core Components

bel Label

Jlabel span Label

o | Button

J-o¢ | MutiButton

lowz] oK | span-Button ([7] check Box
e [7], Radio utton |4 | combo Box
o st (] st
Text Area J[[Z] 7ext Field
Auto Complete Jibl—siiger
| container J[2).7abs

‘ vropemes[events| Localize preview & wisc| elp]
[vame | value]
[Name Ui

LabelForComponent

NextFocusUp
[NextFocusbown
NextFocusteft
NextFocusRight
Ui

I
I
ull
ull
null]
m

EEEET

BEE

GUI 1{Form]

_ Main Images
J Allimages
J Muli-images
J SVG Images
 Timeline Images.
A Fonts
¥ Localization
Data

Figure 1.2: The CodenameOne Designer

interface is easy to operate and doesn’t require any code to be entered in order to create a tremendous
variety of themes, styles, components and visually pleasing surfaces.

The biggest advantage of the CodenameOne Designer is that it is written entirely in Java, it draws its
own interface and handles its own events/states. This has huge portability advantages since the same
code executes on all platforms. The GUI builder allows for live preview and accurate reproduction
across platforms.

Once constructed using the Designer, an application can be further developed in the AMS without
further ado and can be downloaded on to a device directly.

1.2.3 Eclipse Plugin

The JamaicaVM Eclipse Plugin is another product of aicas GmbH. Without the Eclipse Plugin none
of the above tools would work together with the Eclipse IDE. The Eclipse Plugin is also compatible
with most Eclipse derivative IDEs like Windriver’s Workbench or QNX’s Momentics. All of the
JamaicaVM tools can be run from command line, output to stdout (standard output) and can be
integrated with any IDE that supports launching external tools.

We are very excited to be working with aicas to create this world-class mixed language
technology, JamaicaVM provides the industry’s most advanced real-time Java technol-
0gy. Soon, developers will be able to use this technology in a mixed language environ-
ment combining real-time Java with C, Embedded C++, and Ada. This unique environ-
ment should be very attractive not only to Java developers who require mixed language
capability, but also to legacy developers who are looking to migrate existing C, Embed-
ded C++ and Ada programs to Java.

—Bob Morris, president and CEO of DDC-I.

Page 6 Version 2.7.1dev 28 October 2016

Confidentiality: Released under NDA

Chapter 2

Xlets

2.1 What are Xlets

Xlets are a base class for applications that run on the JamaicaCAR. Applications written with the
JamaicaCAR framework are always written using Xlets. Xlets comprise very small programs, written
in Java; in this they are very similar to Java applets.

A Java applet is a special kind of Java program that a browser enabled with Java tech-
nology can download from the internet and run. An applet is typically embedded inside
a web page and runs in the context of a browser. The Applet class provides the standard
interface between the applet and the browser environment.
—docs.oracle.com/javase/tutorial/deploymentapplet

Did you know?

Xlets were first used in Sun’s Java TV specification to support Digital TV.

An Xlet application consists of multiple Xlet states that work together. They are the building blocks of
the application. The user writes his programm in theXlet methods. Xlet methods tell the application
what to do in each Xlet state and when to switch between states. There are four main Xlet methods
to an application which perform the following transitions:

e initXlet
This Xlet method is the first one to activate when the application is started. ’init’ is
short for ’initialize’ and that is exactly what it does. This Xlet typically only runs once in an
application. The display is initialized here, the code for this is automatically generated when
you start a new Xlet class. initXlet sends the application into the stable "Paused’ state.

o startXlet
The startXlet method starts the stable 'Running’ state and tells the Application what to
do while in the Running state. This method can be called from either the Paused or the
Running state. While the application is in this state, it is running in the foreground. This is
where some applications do what they are meant to do. (I say ’some’ applications because
we distinguish between graphical and service Xlets, more on these later). Here structures are
made visible for the user on the GUI (Graphical User Interface) and the user can interact with
the application insofar as it was programmed.

First Experiences with Xlets — User Manual

2.1.1

pauseXlet

This method sends the Xlet into the 'Paused’ state and determines what is done in the
Paused state. It can do this either from the 'Running’ state or from the ’Paused’ state,
restarting and repeating the state. When in the "Paused’ state, the application relinquishes its
control over the GUI and runs in the background. Effectively it pauses any progress it made in
the Running state. Unless of course the programmer wrote some code into the method. In this
case the Paused state is a service Xlet.

destroyXlet

This is the final method of the application and can be called from any state. Everything
is “cleaned up’, i.e. variables are forgotten, memory space that was used in the course of the
application is freed up. The Application is terminated.

Functions and Features

If built with Xlets, an application gains the following advantages:

More than one application can be active at any given time. Though only one application can
run in the Running state, visible on the device. However any number of other applications can
run in the Paused state at the same time. As a result of this, the advantage of not having to
restart an application again after switching to a different one is gained.

Since the code is effectively separated into multiple parts, the layout is considered ’asyn-
chronous’. This allows seamless switching between states and switching to the desired part
of code becomes much easier and faster.

How the different states are related and where which methods are able to be called, is depicted

in Figure 2.1]

Loaded

initkKlet()

Pavused

startxlet () pausexlet|)

Started

destroyxlet()

Destroved -

Figure 2.1: Xlet states

Page 8

Version 2.7.1dev 28 October 2016
Confidentiality: Released under NDA

First Experiences with Xlets — User Manual

2.1.2 Graphical and Service Xlets

As promised, we will now take a quick look at graphical and service Xlets. They are really very
simple:

Graphical Xlets

Graphical Xlets are the Xlets that have been focused on so far. A graphical Xlet gives output. It
uses the GUI to display, for example, a form with which the user can interact that contains buttons or
textfields or a map. It is the typical application that you use in your everyday life when you use your
phone to select a contact, play music, shedule an appointment, play a game or any number of other
things that you can see.

Service Xlets

Service Xlets on the other hand, are essentially all the applications that are not ’graphical’. These are
applications that run in the background (in the pauseXlet state) and provide (or ’serve’ as in ’service’
Xlet) the graphical Xlets with all sorts of information. They do not have any output of their own.
Often they are used to enable interaction and communication between different applications. As
such, they are also referred to as Daemon Xlets.

Daemons are processes that live for a long time. They are often started when the system
is bootstrapped and terminate only when the system is shut down. Because they don’t
have a controlling terminal, it is said that they run in the background. UNIX systems
have numerous daemons that perform day-to-day activities. They are very lightweight
and don’t contribute any output to a shell.

Xlets are available as part of the javax.microedition.xlet package (see Section 3.1))

28 October 2016 Version 2.7.1dev Page 9
Confidentiality: Released under NDA

First Experiences with Xlets — User Manual

Page 10 Version 2.7.1dev 28 October 2016
Confidentiality: Released under NDA

Chapter 3

Creating a Downloadable Application with
Eclipse

3.1 The javax.microedition.Xlet Interface

In order to create an Application using Xlets, the javax.microedition.Xlet interfaces are re-
quired. For more information about the package go to http://docs.oracle.com/
Javame/config/cdc/ref-impl/pbpl.1.2/jsr217/javax/microedition/

xlet /package—-summary.html

To purchase the package (if you have not already), contact aicas GmbH or aicas incorporated de-
pending on your location. For contact information go to https://www.aicas.com/cms/en/
contact—us|/Once you have created an Xlet framework according to the steps below, the imported
frameworkes should be visible at the top of the code (see Figure [3.1).

[J] *Helloworld.java 22

import javax.microedition.xlet.UnavailableContainerException;
import javax.microedition.xlet.Xlet;

import javax.microedition.xlet.XletContext;

import javax.microedition.xlet.XletStateChangeException;

Figure 3.1: microedition.Xlet Package content

11

http://docs.oracle.com/javame/config/cdc/ref-impl/pbp1.1.2/jsr217/javax/microedition/xlet/package-summary.html
http://docs.oracle.com/javame/config/cdc/ref-impl/pbp1.1.2/jsr217/javax/microedition/xlet/package-summary.html
http://docs.oracle.com/javame/config/cdc/ref-impl/pbp1.1.2/jsr217/javax/microedition/xlet/package-summary.html
https://www.aicas.com/cms/en/contact-us
https://www.aicas.com/cms/en/contact-us

First Experiences with Xlets — User Manual

3.2 Initializing an Xlet Project in Eclipse without the Codename-
one Designer

Once you have purchased and downloaded the package, you can start building Xlets using Eclipse.

1. First a new project must be created in Eclipse. The option >New>Other (see Figure [3.2)) is
used, creating a new Java project will not work.

File Edit Source Refactor Mavigate Search Project Run Window Help

Lo -k e : e, a1 e : e ﬁ g
New Ehllac ke V] Java Project
Open File... Project...
Close Ctrl+W Package
Close ALl Shift+Ctri+W Class
Interface .
1aval
Enum
Save As...
Annotation ts X1
Source Folder iy

Java Working Set

Folder ze 1
rself
File ssour
int o
Refresh F5 Untitled Text File
Convert Line Delimiters To > JUnit Test Case [xt o

) Ctrl+N
@ Javadoc [Declaration 4 Searc

Figure 3.2: Creating an Xlet project in Eclipse

2. Next, from the list of possible projects, choose the Jamaica Micro Xlet Project as your project
(see Figure[3.3).

= (= |Jamaica
W Jamaica Buildfile (Ant Buildfile to launch Jamaica tools)
= (= Jamaica Micro

& Jamaica Micro Xlet Class

X Jamaica Micro Xlef, Project

i Jamaica Micro)(Ie'Project with GUI Builder
b (=]ava
P (= Plug-in Development

[ms]
a
ol
=
—_—
:
>
=
v
—
0
2
i
I
5

Figure 3.3: Jamaica Micro Xlet Project

Page 12 Version 2.7.1dev 28 October 2016
Confidentiality: Released under NDA

First Experiences with Xlets — User Manual

3. Now name your project and select an Emulator (see Figure [3.4).

New Xlet Project "™ %]
Create a Jamaica Micro Xlet Project Y
Create a Java project in the workspace or in an external location. m

Project name: ‘Eclipse)(let ‘

[+ Use default location

Location: ‘.-'-10-1‘.&.-': chy/workspaces/ws-kepler/Eclipsexlet | | Browse ‘
|JRE
) Use an execution environment |RE: jdk1.7.0_65
JamaicaME_Emulator
® Use a project specific |RE: JamaicaME_Emulator CN1

) Use default JRE (currently 'jdk1.7.0_65") Configure |REs...

Praiart lavnnt

Figure 3.4: Selecting an Emulator

4. You have now created your Xlet project. However it does not yet contain a class, for this, create
a >New>Other (as in step 1) Xlet Class in the src (source) folder (see FigureJ3.3).

¥ Jamaica Buildfile (Ant Buildfile to launch Jamaica tools)
= [= Jamaica Micro

(%" Jamaica Micro Xlet Class |

R

& Jamaica Micro Xlet Project
il Jamaica Micro Xlet Project with GUI Builder

Figure 3.5: Jamaica Micro Xlet Class

28 October 2016 Version 2.7.1dev Page 13
Confidentiality: Released under NDA

First Experiences with Xlets — User Manual

5. Name your class and make sure it is in the right project and folder (see Figure [3.6).

" 'New Xlet Class

3

Jamaica Micro Xlet Class

Create a new Jamaica Micro Xlet Class

X

Source folder: |ec|ipsexlet,a‘5rc

H Browse... ‘

Package: |ec|ipse)<|et

Browse...

Name: |HeIIoW0r|d|

Implements Interface: javax.microedition.xlet. Xlet

Figure 3.6: HelloWorld Class

| Lﬁfinish |

6. You have now created your first Xlet class. If you open the class you will see that the basic
framework of the Application is already given (Figure [3.7). See if you can spot the imported

frameworks mentioned before.

Page 14 Version 2.7.1dev
Confidentiality: Released under NDA

28 October 2016

First Experiences with Xlets — User Manual

[J] Helloworld.java 2
package eclipseXlet;

= import javax.microedition.xlet.UnavailableContainerException;
import javax.microedition.xlet.Xlet;
import javax.microedition.xlet.XletContext;
import javax.microedition.xlet.XletStateChangeException;

import com.codenamel.ui.Display;

public class HelloWorld implements Xlet
{

java.awt.Container xletContainer;

#* Signals the Xlet to initialize itself and enter the Paused state.

* The Xlet shall initialize itself in preparation for providing service.
* It should not hold shared resources but should be prepared to provide]
* service in a reasonable amount of time.

* @param context The XletContext of this Xlet.

* {@see javax.microedition.xlet.Xlet#initXlet(javax.microedition.xlet.XletContext)
*/
= public void initXlet(XletContext context) throws XletStateChangeException
{
try
{
xletContainer = context.getContainer();
Display.init(xletContainer);

catch (UnavailableContainerException e)

// TODO Auto-generated catch block
e.printStackTrace();

#* Signals the Xlet to stop providing service and enter the Paused state.

#* In the Paused state the Xlet must stop providing service,

* and might release all shared resources and become guiescent.

This method will only be called called when the Xlet is in the Active state.

*/
2 = public void pauseXlet()
{
@ // TODO Auto-generated method stub
}

Figure 3.7: Xlet Class

28 October 2016 Version 2.7.1dev Page 15
Confidentiality: Released under NDA

First Experiences with Xlets — User Manual

3.3 Example: HelloWorld

Now you are all set to create your first Hello World application using Xlets. You can either import
your elements from CodenameOne or from the outdated LWUIT 1.4 library.

Creating an application with Xlets may seem very confusing at first as the file already has code in it
(see Figure [3.8). You are encouraged to first study the structure and compare it to what you know of
Xlets. The basic structure is that there are four separate parts to the public class, these being the Xlet

methods mentioned in Section 2.1l

[4] *HelloWorld.java 23
package eclipsexXlet;

#import javax.microedition.xlet.UnavailableContainerException;

public class HelloWorld implements Xlet]
{

java.awt.Container xletContainer;
Form form;
Label label;

* Signals the Xlet to initialize itself and enter the Paused state.[]
public void initXlet(XletContext context) throws XletStateChangeException
{

try

{
xletContainer = context.getContainer();
Display.init (xletContainer);

catch (UnavailableContainerException e)

J// TODD Auto-generated catch block
) e.printStackTrace();
form = new Form();
label = new Label();
form.addComponent(label);
) label.setText("Hello World!");

* Signals the Xlet to stop providing service and enter the Paused state.[]
public void pauseXlet()
{

// TODO Auto-generated method stub
b
* Signals the Xlet to start providing service and enter the Active state.[]
public void startXlet() throws XletStateChangeException
{

form.show(];

// TODO Auto-generated method stub

i

* Signals the Xlet to terminate and enter the Destroyed state.[] _
public void destroyXlet(boolean unconditional) throws XletStateChangeException

Figure 3.8: First HelloWorld Xlet

Page 16

Version 2.7.1dev 28 October 2016
Confidentiality: Released under NDA

First Experiences with Xlets — User Manual

Any integers, forms, labels, buttons etc., should be initialized in the public class so that all functions
provided in the Xlet class can access them. In this case, both the Form and the Label are initialized at
the beginning of the document, in the initXlet they are built, the text is set and everything is rendered
visible in the startXlet method, hence the Form will only be visible in the Running state.

Having created a basic HelloWorld Xlet application, the question remains how to run the application
from Eclipse using the emulator.

To run an application in the JamaicaCAR Emulator, it is necessary to create a new run configuration.
Once you have configured it (compare Figure [3.9), you can easily run it again from the same menu
as can be seen here, the name you gave the Configuration will be visible.

lipseXlet/HelloWorld.java - Eclipse

r Navigate Search Project Bun Window Help

B O He @y e E g e
1 eclipseHelloWorld.java

2 HelloWorld2.java
3 Codenamel public class HelloWorld i

4 TestXlet2 {

[J] Helloworld.java 22

java.awt.Container xlef

Bun As . Form form;

Run Configurations... Label label;

o ———— Favoes] * Signals the Xlet to
va g - = = public void initXlet (X1
ited {

*ru

Figure 3.9: Making a new Run Configuration

Now you must select the desired project and the class within the project. You can either type the
names in manually or use the browse option or select it from the left-hand-side window. Running the
application as a java applet or java application will not work, as they do not qualify as either. The
Configuration must also be provided with a name (this will be the name that you will see in the run
menu as in Figure[3.9).

28 October 2016 Version 2.7.1dev Page 17
Confidentiality: Released under NDA

First Experiences with Xlets — User Manual

Name: |ec|ipseHeIIOWor|d|

Emulator Main

!URE] =] gammnn]

& Eclipse Application
W Jamaica Application
~ Fl Jamaica Micro Xlet
il Codenamel
Fil HelloWorld2.java
il Testxlet2
Java Applet
Java Application
Ju JUnit
Ji JUnit Plug-in Test
@ 0SGi Framework

Xlet Project
|ec|ipse)(let | l Browse... |
Xlet Main Class

| l Browse I

| eclipseXlet.HelloWorld

|| Start as daemon xlet

Filter matched 12 of 12 items

App!g l Revert

Figure 3.10: Applying a new Run Configuration

Once you have applied (Figure [3.10)) your settings and run (Figure [3.T1)) the configuration, you will
be able to view your application in the JamaicaCAR Emulator.

aicas Xlet manager "

Hello World!

CAR Emulator

Figure 3.11: Running the Configuration in the Emulator

Page 18

Version 2.7.1dev
Confidentiality: Released under NDA

28 October 2016

Chapter 4

Creating a Downloadable Application with
the CodenameOne Designer

4.1 Initializing the Designer in Eclipse

The CodenameOne Designer is a tool from CodenameOne, with which a GUI is very easily cre-
ated for an application. The following steps will show you how to get started with making a basic
application using the CodenameOne Designer.

1. First, it is once again necessary to create a new project. Once again under File, choose
>New>Other.

2. This time, choose the Jamaica Micro Xlet Project with GUI Builder as your Project (compare

Figure [4.1).

U = J
= PTUJECLS 1O Lvs E]

- [= Git
L# Git Repository
< [= Jamaica
¥ Jamaica Buildfile (Ant Buildfile to launch Jamaica toals)

= (= Jamaica Micro
£ Jamaica Micro Xlet Class

il Jamaica Micro Xlet Project

Figure 4.1: Use the "Jamaica Micro Xlet Project with GUI Builder’

19

First Experiences with Xlets — User Manual

3. Name your project and change the JRE to a recent JamaicaCAR Emulator (Figure §.2).

Project name: |C0dename ‘

[Use default location

Location: | home/tichy/workspaces/ws-kepler/Codename | ‘ Browse ‘
JRE

) Use an execution environment |RE: jdk1.7.0_65
JamaicaME_Emulator
JamaicaME_Emulator_CN1

@ Use a project specific JRE:

) Use default |RE (currently 'jdk1.7.0_65') Configure |REs...

Figure 4.2: Use a recent JamaicaCAR Emulator

4. Name your Micro Xlet Class (Figure §.3).

Jamaica Micro Xlet Class

Create a new Jamaica Micro Xlet Class ﬂ
Source folder: [Codenamel.z,fsrc l I Browse...]
Package: [cnm.aicas] Browse...
Name: [l

Figure 4.3: Create a HelloWorld Class

Page 20 Version 2.7.1dev

28 October 2016
Confidentiality: Released under NDA

First Experiences with Xlets — User Manual

5. You have now created your Codenameone Designer Project. In order to open the Designer,
double click the GULres file (Figure 4.4).

File Edit Source Refactor Navigate Search Project Run Window Help

. NiB 0% BE ey - [T
[# Package Explorer &2 A% ¥ = 8 xlet.properties StateMachine.ja codenameone_set [5] Helloworld2.jav 8 ™ =
P % Codenamel package com.aicas; [
~ 3% Codenamel.2
¥ @ src #import javax.microedition.xlet.UnavailableContainerException;

< g3 com.aicas

P [Helloworld2.java
b [com.aicas.generated java.awt.Container xletContainer;
P f# com.aicas.userclasses

public class HelloWorld2 implements Xlet
{

private Form current;

=
b =4 |RE System Library [JamaicaME_Emulator €| 2 = public woid initXlet(XletContext context) throws XletStateChangeException
codenameone_settings.properties { try

xletContainer = context.getContainer();
Display.init(xletContainer);

catch (UnavailableContainerException e)

e.printStackTrace();

Figure 4.4: GULres

6. Finally, select the 'main’ GUI element to see the Designer core components and your current
basic HelloWorld application which is automatically generated (Figure {.5).

File Edit Codename One MNative Theme Images Help

= = 7 @ & | override In Platform: [Base Resource] [+
P Themes Core Components (~] HelloWarld
_ GUI Builder ‘abel Label "abel Span Label
\ Add A New GUI Element | Bution | oli-Butan

|

_ |
|_ME& | Span-Button H @ Check Box |
|@ Radic Butten | Combo Box |
— |
|

|

|

(o
@
i

= ﬁ Multi-List
Text Area Text Field
led 7]

|@ Auto Complete Hbl— slider
‘ ‘Comtaimer H@ Tabs

Properties | Events | Localize | Preview & Misc | Help

|Name |[value | =
Name [Main |
LabelForComponent Crwiy IE

Figure 4.5: CodenameOne Designer Main

4.2 Designer basics

The many components in the Designer make programming a graphical application much easier. Us-
ing the Designer, it becomes incredibly simple to add buttons and labels and any number of com-
ponents to the application; in order to add components to the project, simply drag them into the
interface.

28 October 2016 Version 2.7.1dev Page 21
Confidentiality: Released under NDA

First Experiences with Xlets — User Manual

4.2.1 Action Listeners

If a’Button’ is added to the application (point and drag a Button Component from Components list to
the interface), it would be best if it also had an effect, for this an action listener must be added to the
component. In order to create an action listener on a component, it is necessary to select ’Events’ and,
with the desired component selected, press *Action Event’ (see Figure [4.6). The selected component
will become bold in the overview below. It is however not possible to determine the reaction to
an action event in the CodenameOne Designer itself, for this it is necessary to write code in the
application by using Eclipse. More on this in the Section[4.2.2]

Core Components

~|' Helloworld -

abel Label "abel Span Label
oK | Button l Multi-Button
0K | Span-Button "@ Check Box

)|

I 4 | Combo Box

Multi-List
"@ Text Field
[@ Auto Complete "bl— slider
Container "@ Tabs =

Properties | Events Localizel Preview & Miscl He|p|

l Action Event

On Create

Before Show

Exit Form

List Model

|
|
l Post Show
|
|

Label[Label]

Button[Button]

Figure 4.6: Action Listener with the CodenameOne Designer

Running the application generated using the CodenameOne Designer works in the same way as with
Eclipse. See Section[3.3]

Page 22 Version 2.7.1dev 28 October 2016
Confidentiality: Released under NDA

First Experiences with Xlets — User Manual

4.2.2 Action Event

The reaction to an action listener must be written in the StateMachine.java class. This class can
be found in the source folder in the com.aicas.userclasses package. In this example (compare Fig-
ure [4.7), a GUI has been built with a button that has an action listener.

H

Hello'Waorld |Buttan

an Label

[ti-Button

eck Box

mbo Box

Iti-List

Figure 4.7: GUI with a Button with an Action Listener

The StateMachine files are automatically generated by the Designer. They are the code version of
that which you built in the Designer (the buttons and labels and containers etc.).

In the StateMachine.java file, the desired event can be written in the ButtonAction method. This
method is found at the very bottom of the StateMachine.java file, you needn’t worry about any of
the other code in the file. In this case, the event will be to change the background color of the entire
Display. This is done by, on an instance of the action listener (the button was pressed), checking the
current style’s BgColor and changing it to the color Oxfe5498. This is followed by repainting the
display in its style which then has a different setting (see the code in Figure [4.8§).

tage Explorer &
“odenamel
3 src

H1 com.aicas

B com.aicas.generated

S ¥ = A [J] stateMachine.java &
@ * Your application code goes here
package com.alcas.userclasses;
@ import com.alcas.generated.StateMachineBase;
& ” 4

+
- Your name here

B com.aicas.userclasses €/

puiﬂ.ic class StateMachine extends StateMachineBase {
0 StateMachine.java = public StateMachine(String resFile) {
super (resFile);

Z GUlL.res

xlet.properties

\ JRE System Library [JamaicaME_Emulator _CN1] =

¢ data

s override

bres

| codenameone_settings.properties

/¢ do not modify, write code in initVars and initialize class membe
'/ the constructor might be inveked too late due to race conditions

1

fokok
* this method should be used to initialize variables instead of
* the constructor/class scope to avoid race conditions
vy

= = protected void initvars(Resources res){
a g protected void onMain_ButtonAction(Component ¢, ActionEvent event]) {

Display.getInstance().getCurrent().getStyle().setBgColor (0xfe5498);
Display.getInstance().getCurrent().repaint();

Figure 4.8: Action Event written in StateMachine.java

Now, when the application is started in the Emulator and the button is pressed...

...the color changes to pink!

28 October 2016

Version 2.7.1dev Page 23
Confidentiality: Released under NDA

First Experiences with Xlets — User Manual

4.2.3 Containers

It is of course possible to make more complicated Uls. A key component that is essential for appli-
cations that consist of more than one button is the Container. This has the ability to, as the name
suggests, contain other Components and, recursively, other Containers as well. There are multiple
types of Components, what Components exist and which Containers can contain which Components
is displayed very effectively in Figure [4.9]

java.lang
Object v
com.codenamel.ui
com.codenamel.ui.list
«interface» | |
S TOIEAET Y ListModel 1
Container List ol
| | | ComboBox
Calendar Form Tabs
BrowserComponent ComponentGroup MenuBar
Figure 4.9: Container Hierarchy
Page 24 Version 2.7.1dev 28 October 2016

Confidentiality: Released under NDA

First Experiences with Xlets — User Manual

4.2.4 Layouts

Containers also enable an effective and easy way to arrange the components enclosed in them. In
the properties window in the Designer, when a container or the main form is selected, there is an
option called 'Layout’ (see Figure [4.10} where we have a Button, a Container that is containing nine
RadioButtons, and a Text Area).

| Core Components

| Buttan

Habel Span Label

{JRadioButton {)RadioButtonl (C)RadioButton2 ()RadioButton3 (JF

‘ Multi-Button

{JRadioButtons (C)RadioButton? (_JRadioButtond

Span-Button

H@ Check Box

TextAre
a

‘@ Radio Button

4 | Combo Box

‘E Multi-List

‘@ Text Area

H@ Text Field

‘@ Auto Complete

‘*:)l— slider

|Conta\ner

H@ Tabs

Properties | Evemtsl Local\zel Preview & M\sc| Help‘

‘Nar‘ne ”\.fa\ue |
MNextFocusDown [null]

MNextFocuslLeft [null]

MextFocusRight [null]

uliD Form

Focusable]

Enabled]

scrollvisible [

. FlowLayout

Layout

Button[Button]
+ Container[Containg—

Defines how components are organized within the
container in & way that makes sense for
multiple resclutions and device rotation

Figure 4.10: Form Layout

When selected, a Layout manager opens where you can choose between multiple different layouts.
A model of this is shown in the right-hand side window in Figure @.T1] In this case, the 'Border

Layout’ will be used.

[b
Layout Border Layout |E|
Border Layout
Flow Layout
Rows
Box Layout X
Columns |BorderLayout
Box Layout ¥
Align Grid Layout
wvalign Table Layout j FlowlLayout| | GridLayout Borlayout-y
Fill Rows LayeredLayout
Landscape Nort Border Layout
BoxLayout-»
Landscape South |Don't Swap E“ | .
Border layout places components in positions based on a constrain

Figure 4.11: Border Layout

28 October 2016

Version 2.7.1dev

Confidentiality: Released under NDA

Page 25

First Experiences with Xlets — User Manual

As you can see in the background of Figure 4.12] the Button, the TextArea and the Container have
already been rearranged. Now the layout within the Container will be modified to be a *Grid Layout’
with 3 rows and 3 columns.

Core Components

| | Button

1abe| Label Hﬁbel Span Label
Button | Multi-Button

Span-Button

||@ Check Box

|@ Radio Button

2 | Combo Box

| Multi-List

{JRadioButton1 (_JRadicButton3 (RadioButtond (_JRadioButtons (_JRadicButtons {_iRadioBut
(ORadioButton8 (CJRadioButton (CJRadioButton2

|@ Text Area ||@ Text Field

|*3I— sl

|@ Auto Complete

| Container | ? Ta| Layout |Grid Layout E“ N
Grid Layout
Properties | Eventsl Localizel Preview & Rows | 3 %
|.r:|:r:euw ___ ”L""’i Columns | P|%| ‘BoxLayout—Y HBoxLayout-P{ ‘
NextFocusLeft [null] Align |L—.ff. |_||
NextFocusRight [null] — ‘BorderLayout HFIowLayout ‘
uID cContain| wvalign ‘T..|. E ||
Focusable] - - -
Enabled ® Fill Rows O ‘GndLayout HGroup ‘
Scrallvisible 8 Landscape North | Lorit ey]
— Qordinate
RTL] Landscape South | Don't Swap [+]
LeadComponent [rull] ‘ :| Grid layout places compaonents in a grid with a defined number of
TensileDragEnabled = Landscape Center ‘[---l'.'t Swap [~ || rows/columns. Camponents within the grid are resized to identical ¢
— | based on the preferred width/height of the largest component.
¥ GUI'1[Form] Landscape East ‘[---r.'t Swap [~ ||
Button[Button] —
TextArea[TextAreal Landscape West ‘[---r.'r. Swap [~ ||
¥ Container[Container] —
RadioButton1[RadioButton] Absolute Center [
RadioButton3[RadioButton]
RadioButton4[RadioButton]
RadioButton5[RadioButton] q
RadioButton6[RadioButton] ance
RadioButton7[RadioButton]

RadioButton8[RadioButton]
RadioButton[RadioButton]
RadioButton2[RadioButton]

[TextArea

Figure 4.12: Layout in the Container

There are of course many more layouts available. There are: Flow, Box X or Box Y, Grid, Table,
Layered and Border Layouts. Try them out and experiment which would suit your application best.

Page 26

Version 2.7.1dev

28 October 2016

Confidentiality: Released under NDA

First Experiences with Xlets — User Manual

As a result of the manipulation, the RadioButtons have automatically been arranged in a grid and we
now have a GUI where the general Layout is a Border Layout but another, different, Layout has been

applied to a Container in the main Form (see Figure 4.13).

|Butt0r1
{ JRadioButtons { JRadioButton7 { JRadioButtoné
{ JRadioButtons { JRadioButton4 { JRadioButton3
{ JRadioButton2 { JRadioButtonl { JRadioButton
|Te:-:tArea
Figure 4.13: Grid Layout
28 October 2016 Version 2.7.1dev Page 27

Confidentiality: Released under NDA

First Experiences with Xlets — User Manual

4.2.5 Themes

For those people who do not want their application to consist of a white background with grey but-
tons; CodenameOne provides "Themes’. While it is possible to change the color of things (as we
saw before) and also to change the shape, why should the user have to spend so much time designing
components when the CodenameOne Designer does it for you?

The Themes provided by the Designer change the look of your application by providing a skin for
your application, sort of like a background image. These are situated just above the GUI Builder tab
on the left-hand-side of the Designer. Selecting ’Add A New Theme’ will allow you to choose from
a variety of eloquent designs for your application (see Figures 4.14] and 4.15).

MNarme Theme 1
Template |Mative _Theme E\
Creates g | Mative_ Theme
theme Blank
socialboo
Leather
Chrome
Mapper
Figure 4.14: Selecting a Theme
Rin] o

Unselected ‘ Selectadl Prassadl D\sab\edl Constantsl Halp‘
ii Theme 1]
Selector ‘

[Default style]

BackComman d Preview
Button ~ Previe
ButtonGroup Preview
EButtonGroupFirst Preview
ButtonGroupLast Preview
ButtonGrouponly Preview

CheckBox

<
o
=3
5 ©

ComboBox Preview
ComboBoxitern

ComboBoxList

ComboBoxPopup Preview

Figure 4.15: GUI with a Theme

If you are having trouble getting a theme to affect a certain GUI, check if, in the Theme tab of the
Designer, the desired GUI is selected just above the preview.

Page 28 Version 2.7.1dev 28 October 2016
Confidentiality: Released under NDA

First Experiences with Xlets — User Manual

Changing the style’s BgColor as in the the HelloWorld example will not change the color of the
Theme. The BgColor will change, but because you have added a Theme, the background is no longer
visible, it is, so to say, behind the theme. Hence you cannot see a color change.

There are countless more options to explore in the CodenameOne Designer, you are now ready to
design your own applications, according to your level of Java experience without major technical
difficulties.

28 October 2016 Version 2.7.1dev Page 29
Confidentiality: Released under NDA

First Experiences with Xlets — User Manual

Page 30 Version 2.7.1dev 28 October 2016
Confidentiality: Released under NDA

Appendix A
Further Reading

e https://www.aicas.com/cms/en/JamaicaCAR

e http://www.interactivetvweb.org/images/tutorials/common/xlet_
state_machine.gif

e http://docs.oracle.com/javase/tutorial/deployment/applet/

e http://www.codenameone.com/developer—guide.html

e https://www.aicas.com/cms/sites/default/files/jamaicavm_6.3_
manual .pdf

e https://wiki.aicas.burg/wiki/images/d/d5/AMSManual .pdf

31

https://www.aicas.com/cms/en/JamaicaCAR
http://www.interactivetvweb.org/images/tutorials/common/xlet_state_machine.gif
http://www.interactivetvweb.org/images/tutorials/common/xlet_state_machine.gif
http://docs.oracle.com/javase/tutorial/deployment/applet/
http://www.codenameone.com/developer-guide.html
https://www.aicas.com/cms/sites/default/files/jamaicavm_6.3_manual.pdf
https://www.aicas.com/cms/sites/default/files/jamaicavm_6.3_manual.pdf
https://wiki.aicas.burg/wiki/images/d/d5/AMSManual.pdf

	JamaicaCAR
	Features and Functions
	JamaicaCAR Tools
	JamaicaCAR Emulator
	CodenameOne Designer
	Eclipse Plugin

	Xlets
	What are Xlets
	Functions and Features
	Graphical and Service Xlets

	Creating a Downloadable Application with Eclipse
	The javax.microedition.Xlet Interface
	Initializing an Xlet Project in Eclipse without the Codenameone Designer
	Example: HelloWorld

	Creating a Downloadable Application with the CodenameOne Designer
	Initializing the Designer in Eclipse
	Designer basics
	Action Listeners
	Action Event
	Containers
	Layouts
	Themes

	Further Reading

