
aicas GmbH

First Experiences with Xlets — User Manual

Version 2.7.1dev
28 October 2016

Released under NDA

aicas

Every effort has been made to ensure that all statements and information contained in this document are accurate. How-
ever, aicas GmbH accepts no liability for any error or omission therein.

© Copyright of this document is owned by aicas GmbH, Karlsruhe

First Experiences with Xlets — User Manual

Page ii Version 2.7.1dev
Confidentiality: Released under NDA

28 October 2016

Contents

1 JamaicaCAR 3
1.1 Features and Functions . 4

1.2 JamaicaCAR Tools . 5

1.2.1 JamaicaCAR Emulator . 5

1.2.2 CodenameOne Designer . 5

1.2.3 Eclipse Plugin . 6

2 Xlets 7
2.1 What are Xlets . 7

2.1.1 Functions and Features . 8

2.1.2 Graphical and Service Xlets . 9

3 Creating a Downloadable Application with Eclipse 11
3.1 The javax.microedition.Xlet Interface . 11

3.2 Initializing an Xlet Project in Eclipse without the Codenameone Designer 12

3.3 Example: HelloWorld . 16

4 Creating a Downloadable Application with the CodenameOne Designer 19
4.1 Initializing the Designer in Eclipse . 19

4.2 Designer basics . 21

4.2.1 Action Listeners . 22

4.2.2 Action Event . 23

4.2.3 Containers . 24

4.2.4 Layouts . 25

4.2.5 Themes . 28

A Further Reading 31

iii

First Experiences with Xlets — User Manual

Page iv Version 2.7.1dev
Confidentiality: Released under NDA

28 October 2016

First Experiences with Xlets — User Manual

Preface

This manual is aimed at any and all who want/need to work with Xlets in an Eclipse IDE for the first
time and require an introduction to this field. Virtually no understanding of Eclipse and only very
rudimentary knowledge of Java is required to understand and implement what is said in this manual.
This manual is intended as a quick introduction to kick-start the user’s first steps with Xlets.

This is a very basic guide to the application and the technicalities of using Xlets in Eclipse and the
CodenameOne Designer. This manual also includes a basic introduction to the JamaicaCAR tools
used and an illustration of the concept of Xlets. This is intended as a hands-on-guide, therefore it is
recommended to actively follow the steps illustrated on your computer.

After having read this manual the user should be able to understand the structure of an Xlet appli-
cation, make basic Xlet applications using both Eclipse and the CodenameOne Designer according
to their level of understanding of Java and easily continue exploring the capabilities of Xlets and the
CodenameOne Designer without technical difficulties.

28 October 2016 Version 2.7.1dev
Confidentiality: Released under NDA

Page 1

First Experiences with Xlets — User Manual

Page 2 Version 2.7.1dev
Confidentiality: Released under NDA

28 October 2016

Chapter 1

JamaicaCAR

JamaicaCAR is an automotive application framework. It is based on the JamaicaVM and Java tech-
nology, and adds realtime and reliability to the flexibility and extendibility of mobile apps. Ja-
maicaCAR supports 2D and 3D applications using a lightweight user interface toolkit (Codename-
One) and OpenGL ES (Graphic Library for embedded systems). Extensive libraries provide access
to the board net, internet, GPS information and many other sources. Applications can communicate
directly and securely.

The JamaicaVM security model is based on Java’s security managers and is extended by signable
apps, privileges, and access control mechanisms. The system is controlled by the JamaicaCAR man-
ager, which can pause, stop, or slow down running apps at any time.

OEMs (original equipment manufacturer) can ensure their look and feel for all apps. Suppliers can
gain access to the center console and can easily integrate their after market products, if this is allowed
by the OEM. For Automobile owners the connection of GPS information and internet access opens a
host of new possibilities for local services such as finding the nearest available parking place or hotel
room, or even communication between vehicles for fleet management.

Did you know?

JamaicaCAR is also sometimes called AMS, after its core component, the Application Management System.

3

First Experiences with Xlets — User Manual

1.1 Features and Functions

The features of the JamaicaCAR include:

Platform independence

The component based design and platform neutrality of JamaicaCAR enables OEMs to deploy appli-
cations on any CPU and OS with a custom look and feel.

Safety and Security

Application security management provides fine grain access control to platform services and limit on
resource use by applications.

Compactness and Swiftness

The JamaicaVM, that the JamaicaCAR uses, is equipped with a highly optimizing static compiler
and profiler. The tradeoff between runtime performance and code size can be chosen freely.

By using precompiled JARs the runtime performance is further increased.

Dynamic Loading

The JamaicaVM enables dynamic class loading for upgrading applications at runtime.

Remote Debugging

Applications running on a target system can be debugged with standard IDEs such as Eclipse and
NetBeans.

HMI (Human Machine Interface)

Both 2D and 3D graphics support, using a Light Weight User Interface Toolkit and OpenGL ES.
This, with hardware acceleration, provides ease of development and maximum performance.

Page 4 Version 2.7.1dev
Confidentiality: Released under NDA

28 October 2016

First Experiences with Xlets — User Manual

1.2 JamaicaCAR Tools

1.2.1 JamaicaCAR Emulator

The JamaicaCAR Emulator (see Figure 1.1) facilitates the testing of applications greatly. By using
the JamaicaCAR Emulator, users can bypass the need to install a written application on an external
device in order to find errors and bugs in the code. With the Emulator you can test your applications
from the comfort of your very own desktop. The Emulator, that was developed by aicas GmbH,
emulates the interface of an external device on your computer’s desktop directly from your IDE
(Integrated Development Environment).

Figure 1.1: The JamaicaCAR Emulator

1.2.2 CodenameOne Designer

Codename One is a set of tools for mobile application development that derive a great
deal of its architecture from Java. It stands both as the name of the startup that created
the set of tools and as a prefix to the distinct tools that make up the Codename One prod-
uct. The goal of the Codename One project is to take the complex and fragmented task
of mobile device programming and unify it under a single set of tools, APIs and services
to create a more manageable approach to mobile application development without sac-
rificing development power/control.
–http://www.codenameone.com/developer-guide.html

28 October 2016 Version 2.7.1dev
Confidentiality: Released under NDA

Page 5

http://www.codenameone.com/developer-guide.html

First Experiences with Xlets — User Manual

The CodenameOne Designer (see Figure 1.2) is one of the set of tools provided by CodenameOne.
It is a GUI Builder which simplifies the production of a GUI immensely. The simple point and drag

Figure 1.2: The CodenameOne Designer

interface is easy to operate and doesn’t require any code to be entered in order to create a tremendous
variety of themes, styles, components and visually pleasing surfaces.

The biggest advantage of the CodenameOne Designer is that it is written entirely in Java, it draws its
own interface and handles its own events/states. This has huge portability advantages since the same
code executes on all platforms. The GUI builder allows for live preview and accurate reproduction
across platforms.

Once constructed using the Designer, an application can be further developed in the AMS without
further ado and can be downloaded on to a device directly.

1.2.3 Eclipse Plugin

The JamaicaVM Eclipse Plugin is another product of aicas GmbH. Without the Eclipse Plugin none
of the above tools would work together with the Eclipse IDE. The Eclipse Plugin is also compatible
with most Eclipse derivative IDEs like Windriver’s Workbench or QNX’s Momentics. All of the
JamaicaVM tools can be run from command line, output to stdout (standard output) and can be
integrated with any IDE that supports launching external tools.

We are very excited to be working with aicas to create this world-class mixed language
technology, JamaicaVM provides the industry’s most advanced real-time Java technol-
ogy. Soon, developers will be able to use this technology in a mixed language environ-
ment combining real-time Java with C, Embedded C++, and Ada. This unique environ-
ment should be very attractive not only to Java developers who require mixed language
capability, but also to legacy developers who are looking to migrate existing C, Embed-
ded C++ and Ada programs to Java.
–Bob Morris, president and CEO of DDC-I.

Page 6 Version 2.7.1dev
Confidentiality: Released under NDA

28 October 2016

Chapter 2

Xlets

2.1 What are Xlets

Xlets are a base class for applications that run on the JamaicaCAR. Applications written with the
JamaicaCAR framework are always written using Xlets. Xlets comprise very small programs, written
in Java; in this they are very similar to Java applets.

A Java applet is a special kind of Java program that a browser enabled with Java tech-
nology can download from the internet and run. An applet is typically embedded inside
a web page and runs in the context of a browser. The Applet class provides the standard
interface between the applet and the browser environment.
–docs.oracle.com/javase/tutorial/deploymentapplet

Did you know?

Xlets were first used in Sun’s Java TV specification to support Digital TV.

An Xlet application consists of multiple Xlet states that work together. They are the building blocks of
the application. The user writes his programm in theXlet methods. Xlet methods tell the application
what to do in each Xlet state and when to switch between states. There are four main Xlet methods
to an application which perform the following transitions:

• initXlet
This Xlet method is the first one to activate when the application is started. ’init’ is
short for ’initialize’ and that is exactly what it does. This Xlet typically only runs once in an
application. The display is initialized here, the code for this is automatically generated when
you start a new Xlet class. initXlet sends the application into the stable ’Paused’ state.

• startXlet
The startXlet method starts the stable ’Running’ state and tells the Application what to
do while in the Running state. This method can be called from either the Paused or the
Running state. While the application is in this state, it is running in the foreground. This is
where some applications do what they are meant to do. (I say ’some’ applications because
we distinguish between graphical and service Xlets, more on these later). Here structures are
made visible for the user on the GUI (Graphical User Interface) and the user can interact with
the application insofar as it was programmed.

7

First Experiences with Xlets — User Manual

• pauseXlet
This method sends the Xlet into the ’Paused’ state and determines what is done in the
Paused state. It can do this either from the ’Running’ state or from the ’Paused’ state,
restarting and repeating the state. When in the ’Paused’ state, the application relinquishes its
control over the GUI and runs in the background. Effectively it pauses any progress it made in
the Running state. Unless of course the programmer wrote some code into the method. In this
case the Paused state is a service Xlet.

• destroyXlet
This is the final method of the application and can be called from any state. Everything
is ’cleaned up’, i.e. variables are forgotten, memory space that was used in the course of the
application is freed up. The Application is terminated.

2.1.1 Functions and Features

If built with Xlets, an application gains the following advantages:

• More than one application can be active at any given time. Though only one application can
run in the Running state, visible on the device. However any number of other applications can
run in the Paused state at the same time. As a result of this, the advantage of not having to
restart an application again after switching to a different one is gained.

• Since the code is effectively separated into multiple parts, the layout is considered ’asyn-
chronous’. This allows seamless switching between states and switching to the desired part
of code becomes much easier and faster.

• How the different states are related and where which methods are able to be called, is depicted
in Figure 2.1.

Figure 2.1: Xlet states

Page 8 Version 2.7.1dev
Confidentiality: Released under NDA

28 October 2016

First Experiences with Xlets — User Manual

2.1.2 Graphical and Service Xlets

As promised, we will now take a quick look at graphical and service Xlets. They are really very
simple:

Graphical Xlets

Graphical Xlets are the Xlets that have been focused on so far. A graphical Xlet gives output. It
uses the GUI to display, for example, a form with which the user can interact that contains buttons or
textfields or a map. It is the typical application that you use in your everyday life when you use your
phone to select a contact, play music, shedule an appointment, play a game or any number of other
things that you can see.

Service Xlets

Service Xlets on the other hand, are essentially all the applications that are not ’graphical’. These are
applications that run in the background (in the pauseXlet state) and provide (or ’serve’ as in ’service’
Xlet) the graphical Xlets with all sorts of information. They do not have any output of their own.
Often they are used to enable interaction and communication between different applications. As
such, they are also referred to as Daemon Xlets.

Daemons are processes that live for a long time. They are often started when the system
is bootstrapped and terminate only when the system is shut down. Because they don’t
have a controlling terminal, it is said that they run in the background. UNIX systems
have numerous daemons that perform day-to-day activities. They are very lightweight
and don’t contribute any output to a shell.

Xlets are available as part of the javax.microedition.xlet package (see Section 3.1)

28 October 2016 Version 2.7.1dev
Confidentiality: Released under NDA

Page 9

First Experiences with Xlets — User Manual

Page 10 Version 2.7.1dev
Confidentiality: Released under NDA

28 October 2016

Chapter 3

Creating a Downloadable Application with
Eclipse

3.1 The javax.microedition.Xlet Interface

In order to create an Application using Xlets, the javax.microedition.Xlet interfaces are re-
quired. For more information about the package go to http://docs.oracle.com/
javame/config/cdc/ref-impl/pbp1.1.2/jsr217/javax/microedition/
xlet/package-summary.html

To purchase the package (if you have not already), contact aicas GmbH or aicas incorporated de-
pending on your location. For contact information go to https://www.aicas.com/cms/en/
contact-us Once you have created an Xlet framework according to the steps below, the imported
frameworkes should be visible at the top of the code (see Figure 3.1).

Figure 3.1: microedition.Xlet Package content

11

http://docs.oracle.com/javame/config/cdc/ref-impl/pbp1.1.2/jsr217/javax/microedition/xlet/package-summary.html
http://docs.oracle.com/javame/config/cdc/ref-impl/pbp1.1.2/jsr217/javax/microedition/xlet/package-summary.html
http://docs.oracle.com/javame/config/cdc/ref-impl/pbp1.1.2/jsr217/javax/microedition/xlet/package-summary.html
https://www.aicas.com/cms/en/contact-us
https://www.aicas.com/cms/en/contact-us

First Experiences with Xlets — User Manual

3.2 Initializing an Xlet Project in Eclipse without the Codename-
one Designer

Once you have purchased and downloaded the package, you can start building Xlets using Eclipse.

1. First a new project must be created in Eclipse. The option >New>Other (see Figure 3.2) is
used, creating a new Java project will not work.

Figure 3.2: Creating an Xlet project in Eclipse

2. Next, from the list of possible projects, choose the Jamaica Micro Xlet Project as your project
(see Figure 3.3).

Figure 3.3: Jamaica Micro Xlet Project

Page 12 Version 2.7.1dev
Confidentiality: Released under NDA

28 October 2016

First Experiences with Xlets — User Manual

3. Now name your project and select an Emulator (see Figure 3.4).

Figure 3.4: Selecting an Emulator

4. You have now created your Xlet project. However it does not yet contain a class, for this, create
a >New>Other (as in step 1) Xlet Class in the src (source) folder (see Figure3.5).

Figure 3.5: Jamaica Micro Xlet Class

28 October 2016 Version 2.7.1dev
Confidentiality: Released under NDA

Page 13

First Experiences with Xlets — User Manual

5. Name your class and make sure it is in the right project and folder (see Figure 3.6).

Figure 3.6: HelloWorld Class

6. You have now created your first Xlet class. If you open the class you will see that the basic
framework of the Application is already given (Figure 3.7). See if you can spot the imported
frameworks mentioned before.

Page 14 Version 2.7.1dev
Confidentiality: Released under NDA

28 October 2016

First Experiences with Xlets — User Manual

Figure 3.7: Xlet Class

28 October 2016 Version 2.7.1dev
Confidentiality: Released under NDA

Page 15

First Experiences with Xlets — User Manual

3.3 Example: HelloWorld

Now you are all set to create your first Hello World application using Xlets. You can either import
your elements from CodenameOne or from the outdated LWUIT 1.4 library.

Creating an application with Xlets may seem very confusing at first as the file already has code in it
(see Figure 3.8). You are encouraged to first study the structure and compare it to what you know of
Xlets. The basic structure is that there are four separate parts to the public class, these being the Xlet
methods mentioned in Section 2.1.

Figure 3.8: First HelloWorld Xlet

Page 16 Version 2.7.1dev
Confidentiality: Released under NDA

28 October 2016

First Experiences with Xlets — User Manual

Any integers, forms, labels, buttons etc., should be initialized in the public class so that all functions
provided in the Xlet class can access them. In this case, both the Form and the Label are initialized at
the beginning of the document, in the initXlet they are built, the text is set and everything is rendered
visible in the startXlet method, hence the Form will only be visible in the Running state.

Having created a basic HelloWorld Xlet application, the question remains how to run the application
from Eclipse using the emulator.

To run an application in the JamaicaCAR Emulator, it is necessary to create a new run configuration.
Once you have configured it (compare Figure 3.9), you can easily run it again from the same menu
as can be seen here, the name you gave the Configuration will be visible.

Figure 3.9: Making a new Run Configuration

Now you must select the desired project and the class within the project. You can either type the
names in manually or use the browse option or select it from the left-hand-side window. Running the
application as a java applet or java application will not work, as they do not qualify as either. The
Configuration must also be provided with a name (this will be the name that you will see in the run
menu as in Figure 3.9).

28 October 2016 Version 2.7.1dev
Confidentiality: Released under NDA

Page 17

First Experiences with Xlets — User Manual

Figure 3.10: Applying a new Run Configuration

Once you have applied (Figure 3.10) your settings and run (Figure 3.11) the configuration, you will
be able to view your application in the JamaicaCAR Emulator.

Figure 3.11: Running the Configuration in the Emulator

Page 18 Version 2.7.1dev
Confidentiality: Released under NDA

28 October 2016

Chapter 4

Creating a Downloadable Application with
the CodenameOne Designer

4.1 Initializing the Designer in Eclipse

The CodenameOne Designer is a tool from CodenameOne, with which a GUI is very easily cre-
ated for an application. The following steps will show you how to get started with making a basic
application using the CodenameOne Designer.

1. First, it is once again necessary to create a new project. Once again under File, choose
>New>Other.

2. This time, choose the Jamaica Micro Xlet Project with GUI Builder as your Project (compare
Figure 4.1).

Figure 4.1: Use the ’Jamaica Micro Xlet Project with GUI Builder’

19

First Experiences with Xlets — User Manual

3. Name your project and change the JRE to a recent JamaicaCAR Emulator (Figure 4.2).

Figure 4.2: Use a recent JamaicaCAR Emulator

4. Name your Micro Xlet Class (Figure 4.3).

Figure 4.3: Create a HelloWorld Class

Page 20 Version 2.7.1dev
Confidentiality: Released under NDA

28 October 2016

First Experiences with Xlets — User Manual

5. You have now created your Codenameone Designer Project. In order to open the Designer,
double click the GUI.res file (Figure 4.4).

Figure 4.4: GUI.res

6. Finally, select the ’main’ GUI element to see the Designer core components and your current
basic HelloWorld application which is automatically generated (Figure 4.5).

Figure 4.5: CodenameOne Designer Main

4.2 Designer basics

The many components in the Designer make programming a graphical application much easier. Us-
ing the Designer, it becomes incredibly simple to add buttons and labels and any number of com-
ponents to the application; in order to add components to the project, simply drag them into the
interface.

28 October 2016 Version 2.7.1dev
Confidentiality: Released under NDA

Page 21

First Experiences with Xlets — User Manual

4.2.1 Action Listeners

If a ’Button’ is added to the application (point and drag a Button Component from Components list to
the interface), it would be best if it also had an effect, for this an action listener must be added to the
component. In order to create an action listener on a component, it is necessary to select ’Events’ and,
with the desired component selected, press ’Action Event’ (see Figure 4.6). The selected component
will become bold in the overview below. It is however not possible to determine the reaction to
an action event in the CodenameOne Designer itself, for this it is necessary to write code in the
application by using Eclipse. More on this in the Section 4.2.2.

Figure 4.6: Action Listener with the CodenameOne Designer

Running the application generated using the CodenameOne Designer works in the same way as with
Eclipse. See Section 3.3.

Page 22 Version 2.7.1dev
Confidentiality: Released under NDA

28 October 2016

First Experiences with Xlets — User Manual

4.2.2 Action Event

The reaction to an action listener must be written in the StateMachine.java class. This class can
be found in the source folder in the com.aicas.userclasses package. In this example (compare Fig-
ure 4.7), a GUI has been built with a button that has an action listener.

Figure 4.7: GUI with a Button with an Action Listener

The StateMachine files are automatically generated by the Designer. They are the code version of
that which you built in the Designer (the buttons and labels and containers etc.).

In the StateMachine.java file, the desired event can be written in the ButtonAction method. This
method is found at the very bottom of the StateMachine.java file, you needn’t worry about any of
the other code in the file. In this case, the event will be to change the background color of the entire
Display. This is done by, on an instance of the action listener (the button was pressed), checking the
current style’s BgColor and changing it to the color 0xfe5498. This is followed by repainting the
display in its style which then has a different setting (see the code in Figure 4.8).

Figure 4.8: Action Event written in StateMachine.java

Now, when the application is started in the Emulator and the button is pressed...

...the color changes to pink!

28 October 2016 Version 2.7.1dev
Confidentiality: Released under NDA

Page 23

First Experiences with Xlets — User Manual

4.2.3 Containers

It is of course possible to make more complicated UIs. A key component that is essential for appli-
cations that consist of more than one button is the Container. This has the ability to, as the name
suggests, contain other Components and, recursively, other Containers as well. There are multiple
types of Components, what Components exist and which Containers can contain which Components
is displayed very effectively in Figure 4.9.

Figure 4.9: Container Hierarchy

Page 24 Version 2.7.1dev
Confidentiality: Released under NDA

28 October 2016

First Experiences with Xlets — User Manual

4.2.4 Layouts

Containers also enable an effective and easy way to arrange the components enclosed in them. In
the properties window in the Designer, when a container or the main form is selected, there is an
option called ’Layout’ (see Figure 4.10, where we have a Button, a Container that is containing nine
RadioButtons, and a Text Area).

Figure 4.10: Form Layout

When selected, a Layout manager opens where you can choose between multiple different layouts.
A model of this is shown in the right-hand side window in Figure 4.11. In this case, the ’Border
Layout’ will be used.

Figure 4.11: Border Layout

28 October 2016 Version 2.7.1dev
Confidentiality: Released under NDA

Page 25

First Experiences with Xlets — User Manual

As you can see in the background of Figure 4.12, the Button, the TextArea and the Container have
already been rearranged. Now the layout within the Container will be modified to be a ’Grid Layout’
with 3 rows and 3 columns.

Figure 4.12: Layout in the Container

There are of course many more layouts available. There are: Flow, Box X or Box Y, Grid, Table,
Layered and Border Layouts. Try them out and experiment which would suit your application best.

Page 26 Version 2.7.1dev
Confidentiality: Released under NDA

28 October 2016

First Experiences with Xlets — User Manual

As a result of the manipulation, the RadioButtons have automatically been arranged in a grid and we
now have a GUI where the general Layout is a Border Layout but another, different, Layout has been
applied to a Container in the main Form (see Figure 4.13).

Figure 4.13: Grid Layout

28 October 2016 Version 2.7.1dev
Confidentiality: Released under NDA

Page 27

First Experiences with Xlets — User Manual

4.2.5 Themes

For those people who do not want their application to consist of a white background with grey but-
tons; CodenameOne provides ’Themes’. While it is possible to change the color of things (as we
saw before) and also to change the shape, why should the user have to spend so much time designing
components when the CodenameOne Designer does it for you?

The Themes provided by the Designer change the look of your application by providing a skin for
your application, sort of like a background image. These are situated just above the GUI Builder tab
on the left-hand-side of the Designer. Selecting ’Add A New Theme’ will allow you to choose from
a variety of eloquent designs for your application (see Figures 4.14 and 4.15).

Figure 4.14: Selecting a Theme

Figure 4.15: GUI with a Theme

If you are having trouble getting a theme to affect a certain GUI, check if, in the Theme tab of the
Designer, the desired GUI is selected just above the preview.

Page 28 Version 2.7.1dev
Confidentiality: Released under NDA

28 October 2016

First Experiences with Xlets — User Manual

Changing the style’s BgColor as in the the HelloWorld example will not change the color of the
Theme. The BgColor will change, but because you have added a Theme, the background is no longer
visible, it is, so to say, behind the theme. Hence you cannot see a color change.

There are countless more options to explore in the CodenameOne Designer, you are now ready to
design your own applications, according to your level of Java experience without major technical
difficulties.

28 October 2016 Version 2.7.1dev
Confidentiality: Released under NDA

Page 29

First Experiences with Xlets — User Manual

Page 30 Version 2.7.1dev
Confidentiality: Released under NDA

28 October 2016

Appendix A

Further Reading

• https://www.aicas.com/cms/en/JamaicaCAR
• http://www.interactivetvweb.org/images/tutorials/common/xlet_
state_machine.gif

• http://docs.oracle.com/javase/tutorial/deployment/applet/
• http://www.codenameone.com/developer-guide.html
• https://www.aicas.com/cms/sites/default/files/jamaicavm_6.3_
manual.pdf

• https://wiki.aicas.burg/wiki/images/d/d5/AMSManual.pdf

31

https://www.aicas.com/cms/en/JamaicaCAR
http://www.interactivetvweb.org/images/tutorials/common/xlet_state_machine.gif
http://www.interactivetvweb.org/images/tutorials/common/xlet_state_machine.gif
http://docs.oracle.com/javase/tutorial/deployment/applet/
http://www.codenameone.com/developer-guide.html
https://www.aicas.com/cms/sites/default/files/jamaicavm_6.3_manual.pdf
https://www.aicas.com/cms/sites/default/files/jamaicavm_6.3_manual.pdf
https://wiki.aicas.burg/wiki/images/d/d5/AMSManual.pdf

	JamaicaCAR
	Features and Functions
	JamaicaCAR Tools
	JamaicaCAR Emulator
	CodenameOne Designer
	Eclipse Plugin

	Xlets
	What are Xlets
	Functions and Features
	Graphical and Service Xlets

	Creating a Downloadable Application with Eclipse
	The javax.microedition.Xlet Interface
	Initializing an Xlet Project in Eclipse without the Codenameone Designer
	Example: HelloWorld

	Creating a Downloadable Application with the CodenameOne Designer
	Initializing the Designer in Eclipse
	Designer basics
	Action Listeners
	Action Event
	Containers
	Layouts
	Themes

	Further Reading

